1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/CodeGenOptions.h" 24 #include "clang/Basic/DiagnosticFrontend.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 // Helper for coercing an aggregate argument or return value into an integer 44 // array of the same size (including padding) and alignment. This alternate 45 // coercion happens only for the RenderScript ABI and can be removed after 46 // runtimes that rely on it are no longer supported. 47 // 48 // RenderScript assumes that the size of the argument / return value in the IR 49 // is the same as the size of the corresponding qualified type. This helper 50 // coerces the aggregate type into an array of the same size (including 51 // padding). This coercion is used in lieu of expansion of struct members or 52 // other canonical coercions that return a coerced-type of larger size. 53 // 54 // Ty - The argument / return value type 55 // Context - The associated ASTContext 56 // LLVMContext - The associated LLVMContext 57 static ABIArgInfo coerceToIntArray(QualType Ty, 58 ASTContext &Context, 59 llvm::LLVMContext &LLVMContext) { 60 // Alignment and Size are measured in bits. 61 const uint64_t Size = Context.getTypeSize(Ty); 62 const uint64_t Alignment = Context.getTypeAlign(Ty); 63 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 64 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 65 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 66 } 67 68 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 69 llvm::Value *Array, 70 llvm::Value *Value, 71 unsigned FirstIndex, 72 unsigned LastIndex) { 73 // Alternatively, we could emit this as a loop in the source. 74 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 75 llvm::Value *Cell = 76 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 77 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 78 } 79 } 80 81 static bool isAggregateTypeForABI(QualType T) { 82 return !CodeGenFunction::hasScalarEvaluationKind(T) || 83 T->isMemberFunctionPointerType(); 84 } 85 86 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 87 bool Realign, 88 llvm::Type *Padding) const { 89 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 90 Realign, Padding); 91 } 92 93 ABIArgInfo 94 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 95 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 96 /*ByVal*/ false, Realign); 97 } 98 99 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 100 QualType Ty) const { 101 return Address::invalid(); 102 } 103 104 static llvm::Type *getVAListElementType(CodeGenFunction &CGF) { 105 return CGF.ConvertTypeForMem( 106 CGF.getContext().getBuiltinVaListType()->getPointeeType()); 107 } 108 109 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 110 if (Ty->isPromotableIntegerType()) 111 return true; 112 113 if (const auto *EIT = Ty->getAs<BitIntType>()) 114 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 115 return true; 116 117 return false; 118 } 119 120 ABIInfo::~ABIInfo() {} 121 122 /// Does the given lowering require more than the given number of 123 /// registers when expanded? 124 /// 125 /// This is intended to be the basis of a reasonable basic implementation 126 /// of should{Pass,Return}IndirectlyForSwift. 127 /// 128 /// For most targets, a limit of four total registers is reasonable; this 129 /// limits the amount of code required in order to move around the value 130 /// in case it wasn't produced immediately prior to the call by the caller 131 /// (or wasn't produced in exactly the right registers) or isn't used 132 /// immediately within the callee. But some targets may need to further 133 /// limit the register count due to an inability to support that many 134 /// return registers. 135 static bool occupiesMoreThan(CodeGenTypes &cgt, 136 ArrayRef<llvm::Type*> scalarTypes, 137 unsigned maxAllRegisters) { 138 unsigned intCount = 0, fpCount = 0; 139 for (llvm::Type *type : scalarTypes) { 140 if (type->isPointerTy()) { 141 intCount++; 142 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 143 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 144 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 145 } else { 146 assert(type->isVectorTy() || type->isFloatingPointTy()); 147 fpCount++; 148 } 149 } 150 151 return (intCount + fpCount > maxAllRegisters); 152 } 153 154 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 155 llvm::Type *eltTy, 156 unsigned numElts) const { 157 // The default implementation of this assumes that the target guarantees 158 // 128-bit SIMD support but nothing more. 159 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 160 } 161 162 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 163 CGCXXABI &CXXABI) { 164 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 165 if (!RD) { 166 if (!RT->getDecl()->canPassInRegisters()) 167 return CGCXXABI::RAA_Indirect; 168 return CGCXXABI::RAA_Default; 169 } 170 return CXXABI.getRecordArgABI(RD); 171 } 172 173 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 174 CGCXXABI &CXXABI) { 175 const RecordType *RT = T->getAs<RecordType>(); 176 if (!RT) 177 return CGCXXABI::RAA_Default; 178 return getRecordArgABI(RT, CXXABI); 179 } 180 181 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 182 const ABIInfo &Info) { 183 QualType Ty = FI.getReturnType(); 184 185 if (const auto *RT = Ty->getAs<RecordType>()) 186 if (!isa<CXXRecordDecl>(RT->getDecl()) && 187 !RT->getDecl()->canPassInRegisters()) { 188 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 189 return true; 190 } 191 192 return CXXABI.classifyReturnType(FI); 193 } 194 195 /// Pass transparent unions as if they were the type of the first element. Sema 196 /// should ensure that all elements of the union have the same "machine type". 197 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 198 if (const RecordType *UT = Ty->getAsUnionType()) { 199 const RecordDecl *UD = UT->getDecl(); 200 if (UD->hasAttr<TransparentUnionAttr>()) { 201 assert(!UD->field_empty() && "sema created an empty transparent union"); 202 return UD->field_begin()->getType(); 203 } 204 } 205 return Ty; 206 } 207 208 CGCXXABI &ABIInfo::getCXXABI() const { 209 return CGT.getCXXABI(); 210 } 211 212 ASTContext &ABIInfo::getContext() const { 213 return CGT.getContext(); 214 } 215 216 llvm::LLVMContext &ABIInfo::getVMContext() const { 217 return CGT.getLLVMContext(); 218 } 219 220 const llvm::DataLayout &ABIInfo::getDataLayout() const { 221 return CGT.getDataLayout(); 222 } 223 224 const TargetInfo &ABIInfo::getTarget() const { 225 return CGT.getTarget(); 226 } 227 228 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 229 return CGT.getCodeGenOpts(); 230 } 231 232 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 233 234 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 235 return false; 236 } 237 238 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 239 uint64_t Members) const { 240 return false; 241 } 242 243 bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const { 244 // For compatibility with GCC, ignore empty bitfields in C++ mode. 245 return getContext().getLangOpts().CPlusPlus; 246 } 247 248 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 249 raw_ostream &OS = llvm::errs(); 250 OS << "(ABIArgInfo Kind="; 251 switch (TheKind) { 252 case Direct: 253 OS << "Direct Type="; 254 if (llvm::Type *Ty = getCoerceToType()) 255 Ty->print(OS); 256 else 257 OS << "null"; 258 break; 259 case Extend: 260 OS << "Extend"; 261 break; 262 case Ignore: 263 OS << "Ignore"; 264 break; 265 case InAlloca: 266 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 267 break; 268 case Indirect: 269 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 270 << " ByVal=" << getIndirectByVal() 271 << " Realign=" << getIndirectRealign(); 272 break; 273 case IndirectAliased: 274 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 275 << " AadrSpace=" << getIndirectAddrSpace() 276 << " Realign=" << getIndirectRealign(); 277 break; 278 case Expand: 279 OS << "Expand"; 280 break; 281 case CoerceAndExpand: 282 OS << "CoerceAndExpand Type="; 283 getCoerceAndExpandType()->print(OS); 284 break; 285 } 286 OS << ")\n"; 287 } 288 289 // Dynamically round a pointer up to a multiple of the given alignment. 290 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 291 llvm::Value *Ptr, 292 CharUnits Align) { 293 llvm::Value *PtrAsInt = Ptr; 294 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 295 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 296 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 297 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 298 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 299 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 300 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 301 Ptr->getType(), 302 Ptr->getName() + ".aligned"); 303 return PtrAsInt; 304 } 305 306 /// Emit va_arg for a platform using the common void* representation, 307 /// where arguments are simply emitted in an array of slots on the stack. 308 /// 309 /// This version implements the core direct-value passing rules. 310 /// 311 /// \param SlotSize - The size and alignment of a stack slot. 312 /// Each argument will be allocated to a multiple of this number of 313 /// slots, and all the slots will be aligned to this value. 314 /// \param AllowHigherAlign - The slot alignment is not a cap; 315 /// an argument type with an alignment greater than the slot size 316 /// will be emitted on a higher-alignment address, potentially 317 /// leaving one or more empty slots behind as padding. If this 318 /// is false, the returned address might be less-aligned than 319 /// DirectAlign. 320 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 321 Address VAListAddr, 322 llvm::Type *DirectTy, 323 CharUnits DirectSize, 324 CharUnits DirectAlign, 325 CharUnits SlotSize, 326 bool AllowHigherAlign) { 327 // Cast the element type to i8* if necessary. Some platforms define 328 // va_list as a struct containing an i8* instead of just an i8*. 329 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 330 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 331 332 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 333 334 // If the CC aligns values higher than the slot size, do so if needed. 335 Address Addr = Address::invalid(); 336 if (AllowHigherAlign && DirectAlign > SlotSize) { 337 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 338 CGF.Int8Ty, DirectAlign); 339 } else { 340 Addr = Address(Ptr, CGF.Int8Ty, SlotSize); 341 } 342 343 // Advance the pointer past the argument, then store that back. 344 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 345 Address NextPtr = 346 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 347 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 348 349 // If the argument is smaller than a slot, and this is a big-endian 350 // target, the argument will be right-adjusted in its slot. 351 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 352 !DirectTy->isStructTy()) { 353 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 354 } 355 356 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 357 return Addr; 358 } 359 360 /// Emit va_arg for a platform using the common void* representation, 361 /// where arguments are simply emitted in an array of slots on the stack. 362 /// 363 /// \param IsIndirect - Values of this type are passed indirectly. 364 /// \param ValueInfo - The size and alignment of this type, generally 365 /// computed with getContext().getTypeInfoInChars(ValueTy). 366 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 367 /// Each argument will be allocated to a multiple of this number of 368 /// slots, and all the slots will be aligned to this value. 369 /// \param AllowHigherAlign - The slot alignment is not a cap; 370 /// an argument type with an alignment greater than the slot size 371 /// will be emitted on a higher-alignment address, potentially 372 /// leaving one or more empty slots behind as padding. 373 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 374 QualType ValueTy, bool IsIndirect, 375 TypeInfoChars ValueInfo, 376 CharUnits SlotSizeAndAlign, 377 bool AllowHigherAlign) { 378 // The size and alignment of the value that was passed directly. 379 CharUnits DirectSize, DirectAlign; 380 if (IsIndirect) { 381 DirectSize = CGF.getPointerSize(); 382 DirectAlign = CGF.getPointerAlign(); 383 } else { 384 DirectSize = ValueInfo.Width; 385 DirectAlign = ValueInfo.Align; 386 } 387 388 // Cast the address we've calculated to the right type. 389 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy; 390 if (IsIndirect) 391 DirectTy = DirectTy->getPointerTo(0); 392 393 Address Addr = 394 emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign, 395 SlotSizeAndAlign, AllowHigherAlign); 396 397 if (IsIndirect) { 398 Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align); 399 } 400 401 return Addr; 402 } 403 404 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 405 QualType Ty, CharUnits SlotSize, 406 CharUnits EltSize, const ComplexType *CTy) { 407 Address Addr = 408 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 409 SlotSize, SlotSize, /*AllowHigher*/ true); 410 411 Address RealAddr = Addr; 412 Address ImagAddr = RealAddr; 413 if (CGF.CGM.getDataLayout().isBigEndian()) { 414 RealAddr = 415 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 416 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 417 2 * SlotSize - EltSize); 418 } else { 419 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 420 } 421 422 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 423 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 424 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 425 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 426 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 427 428 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 429 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 430 /*init*/ true); 431 return Temp; 432 } 433 434 static Address emitMergePHI(CodeGenFunction &CGF, 435 Address Addr1, llvm::BasicBlock *Block1, 436 Address Addr2, llvm::BasicBlock *Block2, 437 const llvm::Twine &Name = "") { 438 assert(Addr1.getType() == Addr2.getType()); 439 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 440 PHI->addIncoming(Addr1.getPointer(), Block1); 441 PHI->addIncoming(Addr2.getPointer(), Block2); 442 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 443 return Address(PHI, Addr1.getElementType(), Align); 444 } 445 446 TargetCodeGenInfo::TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info) 447 : Info(std::move(Info)) {} 448 449 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 450 451 // If someone can figure out a general rule for this, that would be great. 452 // It's probably just doomed to be platform-dependent, though. 453 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 454 // Verified for: 455 // x86-64 FreeBSD, Linux, Darwin 456 // x86-32 FreeBSD, Linux, Darwin 457 // PowerPC Linux, Darwin 458 // ARM Darwin (*not* EABI) 459 // AArch64 Linux 460 return 32; 461 } 462 463 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 464 const FunctionNoProtoType *fnType) const { 465 // The following conventions are known to require this to be false: 466 // x86_stdcall 467 // MIPS 468 // For everything else, we just prefer false unless we opt out. 469 return false; 470 } 471 472 void 473 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 474 llvm::SmallString<24> &Opt) const { 475 // This assumes the user is passing a library name like "rt" instead of a 476 // filename like "librt.a/so", and that they don't care whether it's static or 477 // dynamic. 478 Opt = "-l"; 479 Opt += Lib; 480 } 481 482 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 483 // OpenCL kernels are called via an explicit runtime API with arguments 484 // set with clSetKernelArg(), not as normal sub-functions. 485 // Return SPIR_KERNEL by default as the kernel calling convention to 486 // ensure the fingerprint is fixed such way that each OpenCL argument 487 // gets one matching argument in the produced kernel function argument 488 // list to enable feasible implementation of clSetKernelArg() with 489 // aggregates etc. In case we would use the default C calling conv here, 490 // clSetKernelArg() might break depending on the target-specific 491 // conventions; different targets might split structs passed as values 492 // to multiple function arguments etc. 493 return llvm::CallingConv::SPIR_KERNEL; 494 } 495 496 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 497 llvm::PointerType *T, QualType QT) const { 498 return llvm::ConstantPointerNull::get(T); 499 } 500 501 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 502 const VarDecl *D) const { 503 assert(!CGM.getLangOpts().OpenCL && 504 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 505 "Address space agnostic languages only"); 506 return D ? D->getType().getAddressSpace() : LangAS::Default; 507 } 508 509 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 510 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 511 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 512 // Since target may map different address spaces in AST to the same address 513 // space, an address space conversion may end up as a bitcast. 514 if (auto *C = dyn_cast<llvm::Constant>(Src)) 515 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 516 // Try to preserve the source's name to make IR more readable. 517 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 518 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 519 } 520 521 llvm::Constant * 522 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 523 LangAS SrcAddr, LangAS DestAddr, 524 llvm::Type *DestTy) const { 525 // Since target may map different address spaces in AST to the same address 526 // space, an address space conversion may end up as a bitcast. 527 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 528 } 529 530 llvm::SyncScope::ID 531 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 532 SyncScope Scope, 533 llvm::AtomicOrdering Ordering, 534 llvm::LLVMContext &Ctx) const { 535 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 536 } 537 538 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 539 540 /// isEmptyField - Return true iff a the field is "empty", that is it 541 /// is an unnamed bit-field or an (array of) empty record(s). 542 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 543 bool AllowArrays) { 544 if (FD->isUnnamedBitfield()) 545 return true; 546 547 QualType FT = FD->getType(); 548 549 // Constant arrays of empty records count as empty, strip them off. 550 // Constant arrays of zero length always count as empty. 551 bool WasArray = false; 552 if (AllowArrays) 553 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 554 if (AT->getSize() == 0) 555 return true; 556 FT = AT->getElementType(); 557 // The [[no_unique_address]] special case below does not apply to 558 // arrays of C++ empty records, so we need to remember this fact. 559 WasArray = true; 560 } 561 562 const RecordType *RT = FT->getAs<RecordType>(); 563 if (!RT) 564 return false; 565 566 // C++ record fields are never empty, at least in the Itanium ABI. 567 // 568 // FIXME: We should use a predicate for whether this behavior is true in the 569 // current ABI. 570 // 571 // The exception to the above rule are fields marked with the 572 // [[no_unique_address]] attribute (since C++20). Those do count as empty 573 // according to the Itanium ABI. The exception applies only to records, 574 // not arrays of records, so we must also check whether we stripped off an 575 // array type above. 576 if (isa<CXXRecordDecl>(RT->getDecl()) && 577 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 578 return false; 579 580 return isEmptyRecord(Context, FT, AllowArrays); 581 } 582 583 /// isEmptyRecord - Return true iff a structure contains only empty 584 /// fields. Note that a structure with a flexible array member is not 585 /// considered empty. 586 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 587 const RecordType *RT = T->getAs<RecordType>(); 588 if (!RT) 589 return false; 590 const RecordDecl *RD = RT->getDecl(); 591 if (RD->hasFlexibleArrayMember()) 592 return false; 593 594 // If this is a C++ record, check the bases first. 595 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 596 for (const auto &I : CXXRD->bases()) 597 if (!isEmptyRecord(Context, I.getType(), true)) 598 return false; 599 600 for (const auto *I : RD->fields()) 601 if (!isEmptyField(Context, I, AllowArrays)) 602 return false; 603 return true; 604 } 605 606 /// isSingleElementStruct - Determine if a structure is a "single 607 /// element struct", i.e. it has exactly one non-empty field or 608 /// exactly one field which is itself a single element 609 /// struct. Structures with flexible array members are never 610 /// considered single element structs. 611 /// 612 /// \return The field declaration for the single non-empty field, if 613 /// it exists. 614 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 615 const RecordType *RT = T->getAs<RecordType>(); 616 if (!RT) 617 return nullptr; 618 619 const RecordDecl *RD = RT->getDecl(); 620 if (RD->hasFlexibleArrayMember()) 621 return nullptr; 622 623 const Type *Found = nullptr; 624 625 // If this is a C++ record, check the bases first. 626 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 627 for (const auto &I : CXXRD->bases()) { 628 // Ignore empty records. 629 if (isEmptyRecord(Context, I.getType(), true)) 630 continue; 631 632 // If we already found an element then this isn't a single-element struct. 633 if (Found) 634 return nullptr; 635 636 // If this is non-empty and not a single element struct, the composite 637 // cannot be a single element struct. 638 Found = isSingleElementStruct(I.getType(), Context); 639 if (!Found) 640 return nullptr; 641 } 642 } 643 644 // Check for single element. 645 for (const auto *FD : RD->fields()) { 646 QualType FT = FD->getType(); 647 648 // Ignore empty fields. 649 if (isEmptyField(Context, FD, true)) 650 continue; 651 652 // If we already found an element then this isn't a single-element 653 // struct. 654 if (Found) 655 return nullptr; 656 657 // Treat single element arrays as the element. 658 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 659 if (AT->getSize().getZExtValue() != 1) 660 break; 661 FT = AT->getElementType(); 662 } 663 664 if (!isAggregateTypeForABI(FT)) { 665 Found = FT.getTypePtr(); 666 } else { 667 Found = isSingleElementStruct(FT, Context); 668 if (!Found) 669 return nullptr; 670 } 671 } 672 673 // We don't consider a struct a single-element struct if it has 674 // padding beyond the element type. 675 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 676 return nullptr; 677 678 return Found; 679 } 680 681 namespace { 682 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 683 const ABIArgInfo &AI) { 684 // This default implementation defers to the llvm backend's va_arg 685 // instruction. It can handle only passing arguments directly 686 // (typically only handled in the backend for primitive types), or 687 // aggregates passed indirectly by pointer (NOTE: if the "byval" 688 // flag has ABI impact in the callee, this implementation cannot 689 // work.) 690 691 // Only a few cases are covered here at the moment -- those needed 692 // by the default abi. 693 llvm::Value *Val; 694 695 if (AI.isIndirect()) { 696 assert(!AI.getPaddingType() && 697 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 698 assert( 699 !AI.getIndirectRealign() && 700 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 701 702 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 703 CharUnits TyAlignForABI = TyInfo.Align; 704 705 llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty); 706 llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy); 707 llvm::Value *Addr = 708 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 709 return Address(Addr, ElementTy, TyAlignForABI); 710 } else { 711 assert((AI.isDirect() || AI.isExtend()) && 712 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 713 714 assert(!AI.getInReg() && 715 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 716 assert(!AI.getPaddingType() && 717 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 718 assert(!AI.getDirectOffset() && 719 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 720 assert(!AI.getCoerceToType() && 721 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 722 723 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 724 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), 725 CGF.ConvertTypeForMem(Ty)); 726 CGF.Builder.CreateStore(Val, Temp); 727 return Temp; 728 } 729 } 730 731 /// DefaultABIInfo - The default implementation for ABI specific 732 /// details. This implementation provides information which results in 733 /// self-consistent and sensible LLVM IR generation, but does not 734 /// conform to any particular ABI. 735 class DefaultABIInfo : public ABIInfo { 736 public: 737 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 738 739 ABIArgInfo classifyReturnType(QualType RetTy) const; 740 ABIArgInfo classifyArgumentType(QualType RetTy) const; 741 742 void computeInfo(CGFunctionInfo &FI) const override { 743 if (!getCXXABI().classifyReturnType(FI)) 744 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 745 for (auto &I : FI.arguments()) 746 I.info = classifyArgumentType(I.type); 747 } 748 749 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 750 QualType Ty) const override { 751 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 752 } 753 }; 754 755 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 756 public: 757 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 758 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 759 }; 760 761 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 762 Ty = useFirstFieldIfTransparentUnion(Ty); 763 764 if (isAggregateTypeForABI(Ty)) { 765 // Records with non-trivial destructors/copy-constructors should not be 766 // passed by value. 767 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 768 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 769 770 return getNaturalAlignIndirect(Ty); 771 } 772 773 // Treat an enum type as its underlying type. 774 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 775 Ty = EnumTy->getDecl()->getIntegerType(); 776 777 ASTContext &Context = getContext(); 778 if (const auto *EIT = Ty->getAs<BitIntType>()) 779 if (EIT->getNumBits() > 780 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 781 ? Context.Int128Ty 782 : Context.LongLongTy)) 783 return getNaturalAlignIndirect(Ty); 784 785 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 786 : ABIArgInfo::getDirect()); 787 } 788 789 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 790 if (RetTy->isVoidType()) 791 return ABIArgInfo::getIgnore(); 792 793 if (isAggregateTypeForABI(RetTy)) 794 return getNaturalAlignIndirect(RetTy); 795 796 // Treat an enum type as its underlying type. 797 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 798 RetTy = EnumTy->getDecl()->getIntegerType(); 799 800 if (const auto *EIT = RetTy->getAs<BitIntType>()) 801 if (EIT->getNumBits() > 802 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 803 ? getContext().Int128Ty 804 : getContext().LongLongTy)) 805 return getNaturalAlignIndirect(RetTy); 806 807 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 808 : ABIArgInfo::getDirect()); 809 } 810 811 //===----------------------------------------------------------------------===// 812 // WebAssembly ABI Implementation 813 // 814 // This is a very simple ABI that relies a lot on DefaultABIInfo. 815 //===----------------------------------------------------------------------===// 816 817 class WebAssemblyABIInfo final : public SwiftABIInfo { 818 public: 819 enum ABIKind { 820 MVP = 0, 821 ExperimentalMV = 1, 822 }; 823 824 private: 825 DefaultABIInfo defaultInfo; 826 ABIKind Kind; 827 828 public: 829 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 830 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 831 832 private: 833 ABIArgInfo classifyReturnType(QualType RetTy) const; 834 ABIArgInfo classifyArgumentType(QualType Ty) const; 835 836 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 837 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 838 // overload them. 839 void computeInfo(CGFunctionInfo &FI) const override { 840 if (!getCXXABI().classifyReturnType(FI)) 841 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 842 for (auto &Arg : FI.arguments()) 843 Arg.info = classifyArgumentType(Arg.type); 844 } 845 846 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 847 QualType Ty) const override; 848 849 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 850 bool asReturnValue) const override { 851 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 852 } 853 854 bool isSwiftErrorInRegister() const override { 855 return false; 856 } 857 }; 858 859 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 860 public: 861 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 862 WebAssemblyABIInfo::ABIKind K) 863 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 864 865 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 866 CodeGen::CodeGenModule &CGM) const override { 867 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 868 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 869 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 870 llvm::Function *Fn = cast<llvm::Function>(GV); 871 llvm::AttrBuilder B(GV->getContext()); 872 B.addAttribute("wasm-import-module", Attr->getImportModule()); 873 Fn->addFnAttrs(B); 874 } 875 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 876 llvm::Function *Fn = cast<llvm::Function>(GV); 877 llvm::AttrBuilder B(GV->getContext()); 878 B.addAttribute("wasm-import-name", Attr->getImportName()); 879 Fn->addFnAttrs(B); 880 } 881 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 882 llvm::Function *Fn = cast<llvm::Function>(GV); 883 llvm::AttrBuilder B(GV->getContext()); 884 B.addAttribute("wasm-export-name", Attr->getExportName()); 885 Fn->addFnAttrs(B); 886 } 887 } 888 889 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 890 llvm::Function *Fn = cast<llvm::Function>(GV); 891 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 892 Fn->addFnAttr("no-prototype"); 893 } 894 } 895 }; 896 897 /// Classify argument of given type \p Ty. 898 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 899 Ty = useFirstFieldIfTransparentUnion(Ty); 900 901 if (isAggregateTypeForABI(Ty)) { 902 // Records with non-trivial destructors/copy-constructors should not be 903 // passed by value. 904 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 905 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 906 // Ignore empty structs/unions. 907 if (isEmptyRecord(getContext(), Ty, true)) 908 return ABIArgInfo::getIgnore(); 909 // Lower single-element structs to just pass a regular value. TODO: We 910 // could do reasonable-size multiple-element structs too, using getExpand(), 911 // though watch out for things like bitfields. 912 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 913 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 914 // For the experimental multivalue ABI, fully expand all other aggregates 915 if (Kind == ABIKind::ExperimentalMV) { 916 const RecordType *RT = Ty->getAs<RecordType>(); 917 assert(RT); 918 bool HasBitField = false; 919 for (auto *Field : RT->getDecl()->fields()) { 920 if (Field->isBitField()) { 921 HasBitField = true; 922 break; 923 } 924 } 925 if (!HasBitField) 926 return ABIArgInfo::getExpand(); 927 } 928 } 929 930 // Otherwise just do the default thing. 931 return defaultInfo.classifyArgumentType(Ty); 932 } 933 934 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 935 if (isAggregateTypeForABI(RetTy)) { 936 // Records with non-trivial destructors/copy-constructors should not be 937 // returned by value. 938 if (!getRecordArgABI(RetTy, getCXXABI())) { 939 // Ignore empty structs/unions. 940 if (isEmptyRecord(getContext(), RetTy, true)) 941 return ABIArgInfo::getIgnore(); 942 // Lower single-element structs to just return a regular value. TODO: We 943 // could do reasonable-size multiple-element structs too, using 944 // ABIArgInfo::getDirect(). 945 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 946 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 947 // For the experimental multivalue ABI, return all other aggregates 948 if (Kind == ABIKind::ExperimentalMV) 949 return ABIArgInfo::getDirect(); 950 } 951 } 952 953 // Otherwise just do the default thing. 954 return defaultInfo.classifyReturnType(RetTy); 955 } 956 957 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 958 QualType Ty) const { 959 bool IsIndirect = isAggregateTypeForABI(Ty) && 960 !isEmptyRecord(getContext(), Ty, true) && 961 !isSingleElementStruct(Ty, getContext()); 962 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 963 getContext().getTypeInfoInChars(Ty), 964 CharUnits::fromQuantity(4), 965 /*AllowHigherAlign=*/true); 966 } 967 968 //===----------------------------------------------------------------------===// 969 // le32/PNaCl bitcode ABI Implementation 970 // 971 // This is a simplified version of the x86_32 ABI. Arguments and return values 972 // are always passed on the stack. 973 //===----------------------------------------------------------------------===// 974 975 class PNaClABIInfo : public ABIInfo { 976 public: 977 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 978 979 ABIArgInfo classifyReturnType(QualType RetTy) const; 980 ABIArgInfo classifyArgumentType(QualType RetTy) const; 981 982 void computeInfo(CGFunctionInfo &FI) const override; 983 Address EmitVAArg(CodeGenFunction &CGF, 984 Address VAListAddr, QualType Ty) const override; 985 }; 986 987 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 988 public: 989 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 990 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 991 }; 992 993 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 994 if (!getCXXABI().classifyReturnType(FI)) 995 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 996 997 for (auto &I : FI.arguments()) 998 I.info = classifyArgumentType(I.type); 999 } 1000 1001 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1002 QualType Ty) const { 1003 // The PNaCL ABI is a bit odd, in that varargs don't use normal 1004 // function classification. Structs get passed directly for varargs 1005 // functions, through a rewriting transform in 1006 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 1007 // this target to actually support a va_arg instructions with an 1008 // aggregate type, unlike other targets. 1009 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 1010 } 1011 1012 /// Classify argument of given type \p Ty. 1013 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1014 if (isAggregateTypeForABI(Ty)) { 1015 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1016 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1017 return getNaturalAlignIndirect(Ty); 1018 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1019 // Treat an enum type as its underlying type. 1020 Ty = EnumTy->getDecl()->getIntegerType(); 1021 } else if (Ty->isFloatingType()) { 1022 // Floating-point types don't go inreg. 1023 return ABIArgInfo::getDirect(); 1024 } else if (const auto *EIT = Ty->getAs<BitIntType>()) { 1025 // Treat bit-precise integers as integers if <= 64, otherwise pass 1026 // indirectly. 1027 if (EIT->getNumBits() > 64) 1028 return getNaturalAlignIndirect(Ty); 1029 return ABIArgInfo::getDirect(); 1030 } 1031 1032 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1033 : ABIArgInfo::getDirect()); 1034 } 1035 1036 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1037 if (RetTy->isVoidType()) 1038 return ABIArgInfo::getIgnore(); 1039 1040 // In the PNaCl ABI we always return records/structures on the stack. 1041 if (isAggregateTypeForABI(RetTy)) 1042 return getNaturalAlignIndirect(RetTy); 1043 1044 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. 1045 if (const auto *EIT = RetTy->getAs<BitIntType>()) { 1046 if (EIT->getNumBits() > 64) 1047 return getNaturalAlignIndirect(RetTy); 1048 return ABIArgInfo::getDirect(); 1049 } 1050 1051 // Treat an enum type as its underlying type. 1052 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1053 RetTy = EnumTy->getDecl()->getIntegerType(); 1054 1055 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1056 : ABIArgInfo::getDirect()); 1057 } 1058 1059 /// IsX86_MMXType - Return true if this is an MMX type. 1060 bool IsX86_MMXType(llvm::Type *IRType) { 1061 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1062 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1063 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1064 IRType->getScalarSizeInBits() != 64; 1065 } 1066 1067 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1068 StringRef Constraint, 1069 llvm::Type* Ty) { 1070 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1071 .Cases("y", "&y", "^Ym", true) 1072 .Default(false); 1073 if (IsMMXCons && Ty->isVectorTy()) { 1074 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1075 64) { 1076 // Invalid MMX constraint 1077 return nullptr; 1078 } 1079 1080 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1081 } 1082 1083 // No operation needed 1084 return Ty; 1085 } 1086 1087 /// Returns true if this type can be passed in SSE registers with the 1088 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1089 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1090 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1091 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1092 if (BT->getKind() == BuiltinType::LongDouble) { 1093 if (&Context.getTargetInfo().getLongDoubleFormat() == 1094 &llvm::APFloat::x87DoubleExtended()) 1095 return false; 1096 } 1097 return true; 1098 } 1099 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1100 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1101 // registers specially. 1102 unsigned VecSize = Context.getTypeSize(VT); 1103 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1104 return true; 1105 } 1106 return false; 1107 } 1108 1109 /// Returns true if this aggregate is small enough to be passed in SSE registers 1110 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1111 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1112 return NumMembers <= 4; 1113 } 1114 1115 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1116 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1117 auto AI = ABIArgInfo::getDirect(T); 1118 AI.setInReg(true); 1119 AI.setCanBeFlattened(false); 1120 return AI; 1121 } 1122 1123 //===----------------------------------------------------------------------===// 1124 // X86-32 ABI Implementation 1125 //===----------------------------------------------------------------------===// 1126 1127 /// Similar to llvm::CCState, but for Clang. 1128 struct CCState { 1129 CCState(CGFunctionInfo &FI) 1130 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1131 1132 llvm::SmallBitVector IsPreassigned; 1133 unsigned CC = CallingConv::CC_C; 1134 unsigned FreeRegs = 0; 1135 unsigned FreeSSERegs = 0; 1136 }; 1137 1138 /// X86_32ABIInfo - The X86-32 ABI information. 1139 class X86_32ABIInfo : public SwiftABIInfo { 1140 enum Class { 1141 Integer, 1142 Float 1143 }; 1144 1145 static const unsigned MinABIStackAlignInBytes = 4; 1146 1147 bool IsDarwinVectorABI; 1148 bool IsRetSmallStructInRegABI; 1149 bool IsWin32StructABI; 1150 bool IsSoftFloatABI; 1151 bool IsMCUABI; 1152 bool IsLinuxABI; 1153 unsigned DefaultNumRegisterParameters; 1154 1155 static bool isRegisterSize(unsigned Size) { 1156 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1157 } 1158 1159 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1160 // FIXME: Assumes vectorcall is in use. 1161 return isX86VectorTypeForVectorCall(getContext(), Ty); 1162 } 1163 1164 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1165 uint64_t NumMembers) const override { 1166 // FIXME: Assumes vectorcall is in use. 1167 return isX86VectorCallAggregateSmallEnough(NumMembers); 1168 } 1169 1170 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1171 1172 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1173 /// such that the argument will be passed in memory. 1174 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1175 1176 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1177 1178 /// Return the alignment to use for the given type on the stack. 1179 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1180 1181 Class classify(QualType Ty) const; 1182 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1183 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1184 1185 /// Updates the number of available free registers, returns 1186 /// true if any registers were allocated. 1187 bool updateFreeRegs(QualType Ty, CCState &State) const; 1188 1189 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1190 bool &NeedsPadding) const; 1191 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1192 1193 bool canExpandIndirectArgument(QualType Ty) const; 1194 1195 /// Rewrite the function info so that all memory arguments use 1196 /// inalloca. 1197 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1198 1199 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1200 CharUnits &StackOffset, ABIArgInfo &Info, 1201 QualType Type) const; 1202 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1203 1204 public: 1205 1206 void computeInfo(CGFunctionInfo &FI) const override; 1207 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1208 QualType Ty) const override; 1209 1210 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1211 bool RetSmallStructInRegABI, bool Win32StructABI, 1212 unsigned NumRegisterParameters, bool SoftFloatABI) 1213 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1214 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1215 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1216 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1217 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1218 CGT.getTarget().getTriple().isOSCygMing()), 1219 DefaultNumRegisterParameters(NumRegisterParameters) {} 1220 1221 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1222 bool asReturnValue) const override { 1223 // LLVM's x86-32 lowering currently only assigns up to three 1224 // integer registers and three fp registers. Oddly, it'll use up to 1225 // four vector registers for vectors, but those can overlap with the 1226 // scalar registers. 1227 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1228 } 1229 1230 bool isSwiftErrorInRegister() const override { 1231 // x86-32 lowering does not support passing swifterror in a register. 1232 return false; 1233 } 1234 }; 1235 1236 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1237 public: 1238 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1239 bool RetSmallStructInRegABI, bool Win32StructABI, 1240 unsigned NumRegisterParameters, bool SoftFloatABI) 1241 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1242 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1243 NumRegisterParameters, SoftFloatABI)) {} 1244 1245 static bool isStructReturnInRegABI( 1246 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1247 1248 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1249 CodeGen::CodeGenModule &CGM) const override; 1250 1251 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1252 // Darwin uses different dwarf register numbers for EH. 1253 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1254 return 4; 1255 } 1256 1257 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1258 llvm::Value *Address) const override; 1259 1260 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1261 StringRef Constraint, 1262 llvm::Type* Ty) const override { 1263 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1264 } 1265 1266 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1267 std::string &Constraints, 1268 std::vector<llvm::Type *> &ResultRegTypes, 1269 std::vector<llvm::Type *> &ResultTruncRegTypes, 1270 std::vector<LValue> &ResultRegDests, 1271 std::string &AsmString, 1272 unsigned NumOutputs) const override; 1273 1274 llvm::Constant * 1275 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1276 unsigned Sig = (0xeb << 0) | // jmp rel8 1277 (0x06 << 8) | // .+0x08 1278 ('v' << 16) | 1279 ('2' << 24); 1280 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1281 } 1282 1283 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1284 return "movl\t%ebp, %ebp" 1285 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1286 } 1287 }; 1288 1289 } 1290 1291 /// Rewrite input constraint references after adding some output constraints. 1292 /// In the case where there is one output and one input and we add one output, 1293 /// we need to replace all operand references greater than or equal to 1: 1294 /// mov $0, $1 1295 /// mov eax, $1 1296 /// The result will be: 1297 /// mov $0, $2 1298 /// mov eax, $2 1299 static void rewriteInputConstraintReferences(unsigned FirstIn, 1300 unsigned NumNewOuts, 1301 std::string &AsmString) { 1302 std::string Buf; 1303 llvm::raw_string_ostream OS(Buf); 1304 size_t Pos = 0; 1305 while (Pos < AsmString.size()) { 1306 size_t DollarStart = AsmString.find('$', Pos); 1307 if (DollarStart == std::string::npos) 1308 DollarStart = AsmString.size(); 1309 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1310 if (DollarEnd == std::string::npos) 1311 DollarEnd = AsmString.size(); 1312 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1313 Pos = DollarEnd; 1314 size_t NumDollars = DollarEnd - DollarStart; 1315 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1316 // We have an operand reference. 1317 size_t DigitStart = Pos; 1318 if (AsmString[DigitStart] == '{') { 1319 OS << '{'; 1320 ++DigitStart; 1321 } 1322 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1323 if (DigitEnd == std::string::npos) 1324 DigitEnd = AsmString.size(); 1325 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1326 unsigned OperandIndex; 1327 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1328 if (OperandIndex >= FirstIn) 1329 OperandIndex += NumNewOuts; 1330 OS << OperandIndex; 1331 } else { 1332 OS << OperandStr; 1333 } 1334 Pos = DigitEnd; 1335 } 1336 } 1337 AsmString = std::move(OS.str()); 1338 } 1339 1340 /// Add output constraints for EAX:EDX because they are return registers. 1341 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1342 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1343 std::vector<llvm::Type *> &ResultRegTypes, 1344 std::vector<llvm::Type *> &ResultTruncRegTypes, 1345 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1346 unsigned NumOutputs) const { 1347 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1348 1349 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1350 // larger. 1351 if (!Constraints.empty()) 1352 Constraints += ','; 1353 if (RetWidth <= 32) { 1354 Constraints += "={eax}"; 1355 ResultRegTypes.push_back(CGF.Int32Ty); 1356 } else { 1357 // Use the 'A' constraint for EAX:EDX. 1358 Constraints += "=A"; 1359 ResultRegTypes.push_back(CGF.Int64Ty); 1360 } 1361 1362 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1363 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1364 ResultTruncRegTypes.push_back(CoerceTy); 1365 1366 // Coerce the integer by bitcasting the return slot pointer. 1367 ReturnSlot.setAddress( 1368 CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy)); 1369 ResultRegDests.push_back(ReturnSlot); 1370 1371 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1372 } 1373 1374 /// shouldReturnTypeInRegister - Determine if the given type should be 1375 /// returned in a register (for the Darwin and MCU ABI). 1376 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1377 ASTContext &Context) const { 1378 uint64_t Size = Context.getTypeSize(Ty); 1379 1380 // For i386, type must be register sized. 1381 // For the MCU ABI, it only needs to be <= 8-byte 1382 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1383 return false; 1384 1385 if (Ty->isVectorType()) { 1386 // 64- and 128- bit vectors inside structures are not returned in 1387 // registers. 1388 if (Size == 64 || Size == 128) 1389 return false; 1390 1391 return true; 1392 } 1393 1394 // If this is a builtin, pointer, enum, complex type, member pointer, or 1395 // member function pointer it is ok. 1396 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1397 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1398 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1399 return true; 1400 1401 // Arrays are treated like records. 1402 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1403 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1404 1405 // Otherwise, it must be a record type. 1406 const RecordType *RT = Ty->getAs<RecordType>(); 1407 if (!RT) return false; 1408 1409 // FIXME: Traverse bases here too. 1410 1411 // Structure types are passed in register if all fields would be 1412 // passed in a register. 1413 for (const auto *FD : RT->getDecl()->fields()) { 1414 // Empty fields are ignored. 1415 if (isEmptyField(Context, FD, true)) 1416 continue; 1417 1418 // Check fields recursively. 1419 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1420 return false; 1421 } 1422 return true; 1423 } 1424 1425 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1426 // Treat complex types as the element type. 1427 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1428 Ty = CTy->getElementType(); 1429 1430 // Check for a type which we know has a simple scalar argument-passing 1431 // convention without any padding. (We're specifically looking for 32 1432 // and 64-bit integer and integer-equivalents, float, and double.) 1433 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1434 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1435 return false; 1436 1437 uint64_t Size = Context.getTypeSize(Ty); 1438 return Size == 32 || Size == 64; 1439 } 1440 1441 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1442 uint64_t &Size) { 1443 for (const auto *FD : RD->fields()) { 1444 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1445 // argument is smaller than 32-bits, expanding the struct will create 1446 // alignment padding. 1447 if (!is32Or64BitBasicType(FD->getType(), Context)) 1448 return false; 1449 1450 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1451 // how to expand them yet, and the predicate for telling if a bitfield still 1452 // counts as "basic" is more complicated than what we were doing previously. 1453 if (FD->isBitField()) 1454 return false; 1455 1456 Size += Context.getTypeSize(FD->getType()); 1457 } 1458 return true; 1459 } 1460 1461 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1462 uint64_t &Size) { 1463 // Don't do this if there are any non-empty bases. 1464 for (const CXXBaseSpecifier &Base : RD->bases()) { 1465 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1466 Size)) 1467 return false; 1468 } 1469 if (!addFieldSizes(Context, RD, Size)) 1470 return false; 1471 return true; 1472 } 1473 1474 /// Test whether an argument type which is to be passed indirectly (on the 1475 /// stack) would have the equivalent layout if it was expanded into separate 1476 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1477 /// optimizations. 1478 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1479 // We can only expand structure types. 1480 const RecordType *RT = Ty->getAs<RecordType>(); 1481 if (!RT) 1482 return false; 1483 const RecordDecl *RD = RT->getDecl(); 1484 uint64_t Size = 0; 1485 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1486 if (!IsWin32StructABI) { 1487 // On non-Windows, we have to conservatively match our old bitcode 1488 // prototypes in order to be ABI-compatible at the bitcode level. 1489 if (!CXXRD->isCLike()) 1490 return false; 1491 } else { 1492 // Don't do this for dynamic classes. 1493 if (CXXRD->isDynamicClass()) 1494 return false; 1495 } 1496 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1497 return false; 1498 } else { 1499 if (!addFieldSizes(getContext(), RD, Size)) 1500 return false; 1501 } 1502 1503 // We can do this if there was no alignment padding. 1504 return Size == getContext().getTypeSize(Ty); 1505 } 1506 1507 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1508 // If the return value is indirect, then the hidden argument is consuming one 1509 // integer register. 1510 if (State.FreeRegs) { 1511 --State.FreeRegs; 1512 if (!IsMCUABI) 1513 return getNaturalAlignIndirectInReg(RetTy); 1514 } 1515 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1516 } 1517 1518 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1519 CCState &State) const { 1520 if (RetTy->isVoidType()) 1521 return ABIArgInfo::getIgnore(); 1522 1523 const Type *Base = nullptr; 1524 uint64_t NumElts = 0; 1525 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1526 State.CC == llvm::CallingConv::X86_RegCall) && 1527 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1528 // The LLVM struct type for such an aggregate should lower properly. 1529 return ABIArgInfo::getDirect(); 1530 } 1531 1532 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1533 // On Darwin, some vectors are returned in registers. 1534 if (IsDarwinVectorABI) { 1535 uint64_t Size = getContext().getTypeSize(RetTy); 1536 1537 // 128-bit vectors are a special case; they are returned in 1538 // registers and we need to make sure to pick a type the LLVM 1539 // backend will like. 1540 if (Size == 128) 1541 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1542 llvm::Type::getInt64Ty(getVMContext()), 2)); 1543 1544 // Always return in register if it fits in a general purpose 1545 // register, or if it is 64 bits and has a single element. 1546 if ((Size == 8 || Size == 16 || Size == 32) || 1547 (Size == 64 && VT->getNumElements() == 1)) 1548 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1549 Size)); 1550 1551 return getIndirectReturnResult(RetTy, State); 1552 } 1553 1554 return ABIArgInfo::getDirect(); 1555 } 1556 1557 if (isAggregateTypeForABI(RetTy)) { 1558 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1559 // Structures with flexible arrays are always indirect. 1560 if (RT->getDecl()->hasFlexibleArrayMember()) 1561 return getIndirectReturnResult(RetTy, State); 1562 } 1563 1564 // If specified, structs and unions are always indirect. 1565 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1566 return getIndirectReturnResult(RetTy, State); 1567 1568 // Ignore empty structs/unions. 1569 if (isEmptyRecord(getContext(), RetTy, true)) 1570 return ABIArgInfo::getIgnore(); 1571 1572 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1573 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1574 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1575 if (ET->isFloat16Type()) 1576 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1577 llvm::Type::getHalfTy(getVMContext()), 2)); 1578 } 1579 1580 // Small structures which are register sized are generally returned 1581 // in a register. 1582 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1583 uint64_t Size = getContext().getTypeSize(RetTy); 1584 1585 // As a special-case, if the struct is a "single-element" struct, and 1586 // the field is of type "float" or "double", return it in a 1587 // floating-point register. (MSVC does not apply this special case.) 1588 // We apply a similar transformation for pointer types to improve the 1589 // quality of the generated IR. 1590 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1591 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1592 || SeltTy->hasPointerRepresentation()) 1593 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1594 1595 // FIXME: We should be able to narrow this integer in cases with dead 1596 // padding. 1597 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1598 } 1599 1600 return getIndirectReturnResult(RetTy, State); 1601 } 1602 1603 // Treat an enum type as its underlying type. 1604 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1605 RetTy = EnumTy->getDecl()->getIntegerType(); 1606 1607 if (const auto *EIT = RetTy->getAs<BitIntType>()) 1608 if (EIT->getNumBits() > 64) 1609 return getIndirectReturnResult(RetTy, State); 1610 1611 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1612 : ABIArgInfo::getDirect()); 1613 } 1614 1615 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1616 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1617 } 1618 1619 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1620 const RecordType *RT = Ty->getAs<RecordType>(); 1621 if (!RT) 1622 return false; 1623 const RecordDecl *RD = RT->getDecl(); 1624 1625 // If this is a C++ record, check the bases first. 1626 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1627 for (const auto &I : CXXRD->bases()) 1628 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1629 return false; 1630 1631 for (const auto *i : RD->fields()) { 1632 QualType FT = i->getType(); 1633 1634 if (isSIMDVectorType(Context, FT)) 1635 return true; 1636 1637 if (isRecordWithSIMDVectorType(Context, FT)) 1638 return true; 1639 } 1640 1641 return false; 1642 } 1643 1644 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1645 unsigned Align) const { 1646 // Otherwise, if the alignment is less than or equal to the minimum ABI 1647 // alignment, just use the default; the backend will handle this. 1648 if (Align <= MinABIStackAlignInBytes) 1649 return 0; // Use default alignment. 1650 1651 if (IsLinuxABI) { 1652 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1653 // want to spend any effort dealing with the ramifications of ABI breaks. 1654 // 1655 // If the vector type is __m128/__m256/__m512, return the default alignment. 1656 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1657 return Align; 1658 } 1659 // On non-Darwin, the stack type alignment is always 4. 1660 if (!IsDarwinVectorABI) { 1661 // Set explicit alignment, since we may need to realign the top. 1662 return MinABIStackAlignInBytes; 1663 } 1664 1665 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1666 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1667 isRecordWithSIMDVectorType(getContext(), Ty))) 1668 return 16; 1669 1670 return MinABIStackAlignInBytes; 1671 } 1672 1673 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1674 CCState &State) const { 1675 if (!ByVal) { 1676 if (State.FreeRegs) { 1677 --State.FreeRegs; // Non-byval indirects just use one pointer. 1678 if (!IsMCUABI) 1679 return getNaturalAlignIndirectInReg(Ty); 1680 } 1681 return getNaturalAlignIndirect(Ty, false); 1682 } 1683 1684 // Compute the byval alignment. 1685 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1686 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1687 if (StackAlign == 0) 1688 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1689 1690 // If the stack alignment is less than the type alignment, realign the 1691 // argument. 1692 bool Realign = TypeAlign > StackAlign; 1693 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1694 /*ByVal=*/true, Realign); 1695 } 1696 1697 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1698 const Type *T = isSingleElementStruct(Ty, getContext()); 1699 if (!T) 1700 T = Ty.getTypePtr(); 1701 1702 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1703 BuiltinType::Kind K = BT->getKind(); 1704 if (K == BuiltinType::Float || K == BuiltinType::Double) 1705 return Float; 1706 } 1707 return Integer; 1708 } 1709 1710 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1711 if (!IsSoftFloatABI) { 1712 Class C = classify(Ty); 1713 if (C == Float) 1714 return false; 1715 } 1716 1717 unsigned Size = getContext().getTypeSize(Ty); 1718 unsigned SizeInRegs = (Size + 31) / 32; 1719 1720 if (SizeInRegs == 0) 1721 return false; 1722 1723 if (!IsMCUABI) { 1724 if (SizeInRegs > State.FreeRegs) { 1725 State.FreeRegs = 0; 1726 return false; 1727 } 1728 } else { 1729 // The MCU psABI allows passing parameters in-reg even if there are 1730 // earlier parameters that are passed on the stack. Also, 1731 // it does not allow passing >8-byte structs in-register, 1732 // even if there are 3 free registers available. 1733 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1734 return false; 1735 } 1736 1737 State.FreeRegs -= SizeInRegs; 1738 return true; 1739 } 1740 1741 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1742 bool &InReg, 1743 bool &NeedsPadding) const { 1744 // On Windows, aggregates other than HFAs are never passed in registers, and 1745 // they do not consume register slots. Homogenous floating-point aggregates 1746 // (HFAs) have already been dealt with at this point. 1747 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1748 return false; 1749 1750 NeedsPadding = false; 1751 InReg = !IsMCUABI; 1752 1753 if (!updateFreeRegs(Ty, State)) 1754 return false; 1755 1756 if (IsMCUABI) 1757 return true; 1758 1759 if (State.CC == llvm::CallingConv::X86_FastCall || 1760 State.CC == llvm::CallingConv::X86_VectorCall || 1761 State.CC == llvm::CallingConv::X86_RegCall) { 1762 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1763 NeedsPadding = true; 1764 1765 return false; 1766 } 1767 1768 return true; 1769 } 1770 1771 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1772 if (!updateFreeRegs(Ty, State)) 1773 return false; 1774 1775 if (IsMCUABI) 1776 return false; 1777 1778 if (State.CC == llvm::CallingConv::X86_FastCall || 1779 State.CC == llvm::CallingConv::X86_VectorCall || 1780 State.CC == llvm::CallingConv::X86_RegCall) { 1781 if (getContext().getTypeSize(Ty) > 32) 1782 return false; 1783 1784 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1785 Ty->isReferenceType()); 1786 } 1787 1788 return true; 1789 } 1790 1791 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1792 // Vectorcall x86 works subtly different than in x64, so the format is 1793 // a bit different than the x64 version. First, all vector types (not HVAs) 1794 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1795 // This differs from the x64 implementation, where the first 6 by INDEX get 1796 // registers. 1797 // In the second pass over the arguments, HVAs are passed in the remaining 1798 // vector registers if possible, or indirectly by address. The address will be 1799 // passed in ECX/EDX if available. Any other arguments are passed according to 1800 // the usual fastcall rules. 1801 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1802 for (int I = 0, E = Args.size(); I < E; ++I) { 1803 const Type *Base = nullptr; 1804 uint64_t NumElts = 0; 1805 const QualType &Ty = Args[I].type; 1806 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1807 isHomogeneousAggregate(Ty, Base, NumElts)) { 1808 if (State.FreeSSERegs >= NumElts) { 1809 State.FreeSSERegs -= NumElts; 1810 Args[I].info = ABIArgInfo::getDirectInReg(); 1811 State.IsPreassigned.set(I); 1812 } 1813 } 1814 } 1815 } 1816 1817 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1818 CCState &State) const { 1819 // FIXME: Set alignment on indirect arguments. 1820 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1821 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1822 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1823 1824 Ty = useFirstFieldIfTransparentUnion(Ty); 1825 TypeInfo TI = getContext().getTypeInfo(Ty); 1826 1827 // Check with the C++ ABI first. 1828 const RecordType *RT = Ty->getAs<RecordType>(); 1829 if (RT) { 1830 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1831 if (RAA == CGCXXABI::RAA_Indirect) { 1832 return getIndirectResult(Ty, false, State); 1833 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1834 // The field index doesn't matter, we'll fix it up later. 1835 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1836 } 1837 } 1838 1839 // Regcall uses the concept of a homogenous vector aggregate, similar 1840 // to other targets. 1841 const Type *Base = nullptr; 1842 uint64_t NumElts = 0; 1843 if ((IsRegCall || IsVectorCall) && 1844 isHomogeneousAggregate(Ty, Base, NumElts)) { 1845 if (State.FreeSSERegs >= NumElts) { 1846 State.FreeSSERegs -= NumElts; 1847 1848 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1849 // does. 1850 if (IsVectorCall) 1851 return getDirectX86Hva(); 1852 1853 if (Ty->isBuiltinType() || Ty->isVectorType()) 1854 return ABIArgInfo::getDirect(); 1855 return ABIArgInfo::getExpand(); 1856 } 1857 return getIndirectResult(Ty, /*ByVal=*/false, State); 1858 } 1859 1860 if (isAggregateTypeForABI(Ty)) { 1861 // Structures with flexible arrays are always indirect. 1862 // FIXME: This should not be byval! 1863 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1864 return getIndirectResult(Ty, true, State); 1865 1866 // Ignore empty structs/unions on non-Windows. 1867 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1868 return ABIArgInfo::getIgnore(); 1869 1870 llvm::LLVMContext &LLVMContext = getVMContext(); 1871 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1872 bool NeedsPadding = false; 1873 bool InReg; 1874 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1875 unsigned SizeInRegs = (TI.Width + 31) / 32; 1876 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1877 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1878 if (InReg) 1879 return ABIArgInfo::getDirectInReg(Result); 1880 else 1881 return ABIArgInfo::getDirect(Result); 1882 } 1883 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1884 1885 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1886 // added in MSVC 2015. 1887 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1888 return getIndirectResult(Ty, /*ByVal=*/false, State); 1889 1890 // Expand small (<= 128-bit) record types when we know that the stack layout 1891 // of those arguments will match the struct. This is important because the 1892 // LLVM backend isn't smart enough to remove byval, which inhibits many 1893 // optimizations. 1894 // Don't do this for the MCU if there are still free integer registers 1895 // (see X86_64 ABI for full explanation). 1896 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1897 canExpandIndirectArgument(Ty)) 1898 return ABIArgInfo::getExpandWithPadding( 1899 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1900 1901 return getIndirectResult(Ty, true, State); 1902 } 1903 1904 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1905 // On Windows, vectors are passed directly if registers are available, or 1906 // indirectly if not. This avoids the need to align argument memory. Pass 1907 // user-defined vector types larger than 512 bits indirectly for simplicity. 1908 if (IsWin32StructABI) { 1909 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1910 --State.FreeSSERegs; 1911 return ABIArgInfo::getDirectInReg(); 1912 } 1913 return getIndirectResult(Ty, /*ByVal=*/false, State); 1914 } 1915 1916 // On Darwin, some vectors are passed in memory, we handle this by passing 1917 // it as an i8/i16/i32/i64. 1918 if (IsDarwinVectorABI) { 1919 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1920 (TI.Width == 64 && VT->getNumElements() == 1)) 1921 return ABIArgInfo::getDirect( 1922 llvm::IntegerType::get(getVMContext(), TI.Width)); 1923 } 1924 1925 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1926 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1927 1928 return ABIArgInfo::getDirect(); 1929 } 1930 1931 1932 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1933 Ty = EnumTy->getDecl()->getIntegerType(); 1934 1935 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1936 1937 if (isPromotableIntegerTypeForABI(Ty)) { 1938 if (InReg) 1939 return ABIArgInfo::getExtendInReg(Ty); 1940 return ABIArgInfo::getExtend(Ty); 1941 } 1942 1943 if (const auto *EIT = Ty->getAs<BitIntType>()) { 1944 if (EIT->getNumBits() <= 64) { 1945 if (InReg) 1946 return ABIArgInfo::getDirectInReg(); 1947 return ABIArgInfo::getDirect(); 1948 } 1949 return getIndirectResult(Ty, /*ByVal=*/false, State); 1950 } 1951 1952 if (InReg) 1953 return ABIArgInfo::getDirectInReg(); 1954 return ABIArgInfo::getDirect(); 1955 } 1956 1957 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1958 CCState State(FI); 1959 if (IsMCUABI) 1960 State.FreeRegs = 3; 1961 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1962 State.FreeRegs = 2; 1963 State.FreeSSERegs = 3; 1964 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1965 State.FreeRegs = 2; 1966 State.FreeSSERegs = 6; 1967 } else if (FI.getHasRegParm()) 1968 State.FreeRegs = FI.getRegParm(); 1969 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1970 State.FreeRegs = 5; 1971 State.FreeSSERegs = 8; 1972 } else if (IsWin32StructABI) { 1973 // Since MSVC 2015, the first three SSE vectors have been passed in 1974 // registers. The rest are passed indirectly. 1975 State.FreeRegs = DefaultNumRegisterParameters; 1976 State.FreeSSERegs = 3; 1977 } else 1978 State.FreeRegs = DefaultNumRegisterParameters; 1979 1980 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1981 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1982 } else if (FI.getReturnInfo().isIndirect()) { 1983 // The C++ ABI is not aware of register usage, so we have to check if the 1984 // return value was sret and put it in a register ourselves if appropriate. 1985 if (State.FreeRegs) { 1986 --State.FreeRegs; // The sret parameter consumes a register. 1987 if (!IsMCUABI) 1988 FI.getReturnInfo().setInReg(true); 1989 } 1990 } 1991 1992 // The chain argument effectively gives us another free register. 1993 if (FI.isChainCall()) 1994 ++State.FreeRegs; 1995 1996 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1997 // arguments to XMM registers as available. 1998 if (State.CC == llvm::CallingConv::X86_VectorCall) 1999 runVectorCallFirstPass(FI, State); 2000 2001 bool UsedInAlloca = false; 2002 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 2003 for (int I = 0, E = Args.size(); I < E; ++I) { 2004 // Skip arguments that have already been assigned. 2005 if (State.IsPreassigned.test(I)) 2006 continue; 2007 2008 Args[I].info = classifyArgumentType(Args[I].type, State); 2009 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 2010 } 2011 2012 // If we needed to use inalloca for any argument, do a second pass and rewrite 2013 // all the memory arguments to use inalloca. 2014 if (UsedInAlloca) 2015 rewriteWithInAlloca(FI); 2016 } 2017 2018 void 2019 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2020 CharUnits &StackOffset, ABIArgInfo &Info, 2021 QualType Type) const { 2022 // Arguments are always 4-byte-aligned. 2023 CharUnits WordSize = CharUnits::fromQuantity(4); 2024 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2025 2026 // sret pointers and indirect things will require an extra pointer 2027 // indirection, unless they are byval. Most things are byval, and will not 2028 // require this indirection. 2029 bool IsIndirect = false; 2030 if (Info.isIndirect() && !Info.getIndirectByVal()) 2031 IsIndirect = true; 2032 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2033 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2034 if (IsIndirect) 2035 LLTy = LLTy->getPointerTo(0); 2036 FrameFields.push_back(LLTy); 2037 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2038 2039 // Insert padding bytes to respect alignment. 2040 CharUnits FieldEnd = StackOffset; 2041 StackOffset = FieldEnd.alignTo(WordSize); 2042 if (StackOffset != FieldEnd) { 2043 CharUnits NumBytes = StackOffset - FieldEnd; 2044 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2045 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2046 FrameFields.push_back(Ty); 2047 } 2048 } 2049 2050 static bool isArgInAlloca(const ABIArgInfo &Info) { 2051 // Leave ignored and inreg arguments alone. 2052 switch (Info.getKind()) { 2053 case ABIArgInfo::InAlloca: 2054 return true; 2055 case ABIArgInfo::Ignore: 2056 case ABIArgInfo::IndirectAliased: 2057 return false; 2058 case ABIArgInfo::Indirect: 2059 case ABIArgInfo::Direct: 2060 case ABIArgInfo::Extend: 2061 return !Info.getInReg(); 2062 case ABIArgInfo::Expand: 2063 case ABIArgInfo::CoerceAndExpand: 2064 // These are aggregate types which are never passed in registers when 2065 // inalloca is involved. 2066 return true; 2067 } 2068 llvm_unreachable("invalid enum"); 2069 } 2070 2071 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2072 assert(IsWin32StructABI && "inalloca only supported on win32"); 2073 2074 // Build a packed struct type for all of the arguments in memory. 2075 SmallVector<llvm::Type *, 6> FrameFields; 2076 2077 // The stack alignment is always 4. 2078 CharUnits StackAlign = CharUnits::fromQuantity(4); 2079 2080 CharUnits StackOffset; 2081 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2082 2083 // Put 'this' into the struct before 'sret', if necessary. 2084 bool IsThisCall = 2085 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2086 ABIArgInfo &Ret = FI.getReturnInfo(); 2087 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2088 isArgInAlloca(I->info)) { 2089 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2090 ++I; 2091 } 2092 2093 // Put the sret parameter into the inalloca struct if it's in memory. 2094 if (Ret.isIndirect() && !Ret.getInReg()) { 2095 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2096 // On Windows, the hidden sret parameter is always returned in eax. 2097 Ret.setInAllocaSRet(IsWin32StructABI); 2098 } 2099 2100 // Skip the 'this' parameter in ecx. 2101 if (IsThisCall) 2102 ++I; 2103 2104 // Put arguments passed in memory into the struct. 2105 for (; I != E; ++I) { 2106 if (isArgInAlloca(I->info)) 2107 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2108 } 2109 2110 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2111 /*isPacked=*/true), 2112 StackAlign); 2113 } 2114 2115 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2116 Address VAListAddr, QualType Ty) const { 2117 2118 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2119 2120 // x86-32 changes the alignment of certain arguments on the stack. 2121 // 2122 // Just messing with TypeInfo like this works because we never pass 2123 // anything indirectly. 2124 TypeInfo.Align = CharUnits::fromQuantity( 2125 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2126 2127 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2128 TypeInfo, CharUnits::fromQuantity(4), 2129 /*AllowHigherAlign*/ true); 2130 } 2131 2132 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2133 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2134 assert(Triple.getArch() == llvm::Triple::x86); 2135 2136 switch (Opts.getStructReturnConvention()) { 2137 case CodeGenOptions::SRCK_Default: 2138 break; 2139 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2140 return false; 2141 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2142 return true; 2143 } 2144 2145 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2146 return true; 2147 2148 switch (Triple.getOS()) { 2149 case llvm::Triple::DragonFly: 2150 case llvm::Triple::FreeBSD: 2151 case llvm::Triple::OpenBSD: 2152 case llvm::Triple::Win32: 2153 return true; 2154 default: 2155 return false; 2156 } 2157 } 2158 2159 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2160 CodeGen::CodeGenModule &CGM) { 2161 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2162 return; 2163 2164 llvm::Function *Fn = cast<llvm::Function>(GV); 2165 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2166 if (FD->getNumParams() == 0) 2167 return; 2168 2169 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2170 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2171 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2172 Fn->getContext(), ByValTy); 2173 Fn->addParamAttr(0, NewAttr); 2174 } 2175 2176 void X86_32TargetCodeGenInfo::setTargetAttributes( 2177 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2178 if (GV->isDeclaration()) 2179 return; 2180 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2181 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2182 llvm::Function *Fn = cast<llvm::Function>(GV); 2183 Fn->addFnAttr("stackrealign"); 2184 } 2185 2186 addX86InterruptAttrs(FD, GV, CGM); 2187 } 2188 } 2189 2190 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2191 CodeGen::CodeGenFunction &CGF, 2192 llvm::Value *Address) const { 2193 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2194 2195 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2196 2197 // 0-7 are the eight integer registers; the order is different 2198 // on Darwin (for EH), but the range is the same. 2199 // 8 is %eip. 2200 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2201 2202 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2203 // 12-16 are st(0..4). Not sure why we stop at 4. 2204 // These have size 16, which is sizeof(long double) on 2205 // platforms with 8-byte alignment for that type. 2206 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2207 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2208 2209 } else { 2210 // 9 is %eflags, which doesn't get a size on Darwin for some 2211 // reason. 2212 Builder.CreateAlignedStore( 2213 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2214 CharUnits::One()); 2215 2216 // 11-16 are st(0..5). Not sure why we stop at 5. 2217 // These have size 12, which is sizeof(long double) on 2218 // platforms with 4-byte alignment for that type. 2219 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2220 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2221 } 2222 2223 return false; 2224 } 2225 2226 //===----------------------------------------------------------------------===// 2227 // X86-64 ABI Implementation 2228 //===----------------------------------------------------------------------===// 2229 2230 2231 namespace { 2232 /// The AVX ABI level for X86 targets. 2233 enum class X86AVXABILevel { 2234 None, 2235 AVX, 2236 AVX512 2237 }; 2238 2239 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2240 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2241 switch (AVXLevel) { 2242 case X86AVXABILevel::AVX512: 2243 return 512; 2244 case X86AVXABILevel::AVX: 2245 return 256; 2246 case X86AVXABILevel::None: 2247 return 128; 2248 } 2249 llvm_unreachable("Unknown AVXLevel"); 2250 } 2251 2252 /// X86_64ABIInfo - The X86_64 ABI information. 2253 class X86_64ABIInfo : public SwiftABIInfo { 2254 enum Class { 2255 Integer = 0, 2256 SSE, 2257 SSEUp, 2258 X87, 2259 X87Up, 2260 ComplexX87, 2261 NoClass, 2262 Memory 2263 }; 2264 2265 /// merge - Implement the X86_64 ABI merging algorithm. 2266 /// 2267 /// Merge an accumulating classification \arg Accum with a field 2268 /// classification \arg Field. 2269 /// 2270 /// \param Accum - The accumulating classification. This should 2271 /// always be either NoClass or the result of a previous merge 2272 /// call. In addition, this should never be Memory (the caller 2273 /// should just return Memory for the aggregate). 2274 static Class merge(Class Accum, Class Field); 2275 2276 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2277 /// 2278 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2279 /// final MEMORY or SSE classes when necessary. 2280 /// 2281 /// \param AggregateSize - The size of the current aggregate in 2282 /// the classification process. 2283 /// 2284 /// \param Lo - The classification for the parts of the type 2285 /// residing in the low word of the containing object. 2286 /// 2287 /// \param Hi - The classification for the parts of the type 2288 /// residing in the higher words of the containing object. 2289 /// 2290 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2291 2292 /// classify - Determine the x86_64 register classes in which the 2293 /// given type T should be passed. 2294 /// 2295 /// \param Lo - The classification for the parts of the type 2296 /// residing in the low word of the containing object. 2297 /// 2298 /// \param Hi - The classification for the parts of the type 2299 /// residing in the high word of the containing object. 2300 /// 2301 /// \param OffsetBase - The bit offset of this type in the 2302 /// containing object. Some parameters are classified different 2303 /// depending on whether they straddle an eightbyte boundary. 2304 /// 2305 /// \param isNamedArg - Whether the argument in question is a "named" 2306 /// argument, as used in AMD64-ABI 3.5.7. 2307 /// 2308 /// \param IsRegCall - Whether the calling conversion is regcall. 2309 /// 2310 /// If a word is unused its result will be NoClass; if a type should 2311 /// be passed in Memory then at least the classification of \arg Lo 2312 /// will be Memory. 2313 /// 2314 /// The \arg Lo class will be NoClass iff the argument is ignored. 2315 /// 2316 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2317 /// also be ComplexX87. 2318 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2319 bool isNamedArg, bool IsRegCall = false) const; 2320 2321 llvm::Type *GetByteVectorType(QualType Ty) const; 2322 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2323 unsigned IROffset, QualType SourceTy, 2324 unsigned SourceOffset) const; 2325 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2326 unsigned IROffset, QualType SourceTy, 2327 unsigned SourceOffset) const; 2328 2329 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2330 /// such that the argument will be returned in memory. 2331 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2332 2333 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2334 /// such that the argument will be passed in memory. 2335 /// 2336 /// \param freeIntRegs - The number of free integer registers remaining 2337 /// available. 2338 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2339 2340 ABIArgInfo classifyReturnType(QualType RetTy) const; 2341 2342 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2343 unsigned &neededInt, unsigned &neededSSE, 2344 bool isNamedArg, 2345 bool IsRegCall = false) const; 2346 2347 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2348 unsigned &NeededSSE, 2349 unsigned &MaxVectorWidth) const; 2350 2351 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2352 unsigned &NeededSSE, 2353 unsigned &MaxVectorWidth) const; 2354 2355 bool IsIllegalVectorType(QualType Ty) const; 2356 2357 /// The 0.98 ABI revision clarified a lot of ambiguities, 2358 /// unfortunately in ways that were not always consistent with 2359 /// certain previous compilers. In particular, platforms which 2360 /// required strict binary compatibility with older versions of GCC 2361 /// may need to exempt themselves. 2362 bool honorsRevision0_98() const { 2363 return !getTarget().getTriple().isOSDarwin(); 2364 } 2365 2366 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2367 /// classify it as INTEGER (for compatibility with older clang compilers). 2368 bool classifyIntegerMMXAsSSE() const { 2369 // Clang <= 3.8 did not do this. 2370 if (getContext().getLangOpts().getClangABICompat() <= 2371 LangOptions::ClangABI::Ver3_8) 2372 return false; 2373 2374 const llvm::Triple &Triple = getTarget().getTriple(); 2375 if (Triple.isOSDarwin() || Triple.isPS()) 2376 return false; 2377 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2378 return false; 2379 return true; 2380 } 2381 2382 // GCC classifies vectors of __int128 as memory. 2383 bool passInt128VectorsInMem() const { 2384 // Clang <= 9.0 did not do this. 2385 if (getContext().getLangOpts().getClangABICompat() <= 2386 LangOptions::ClangABI::Ver9) 2387 return false; 2388 2389 const llvm::Triple &T = getTarget().getTriple(); 2390 return T.isOSLinux() || T.isOSNetBSD(); 2391 } 2392 2393 X86AVXABILevel AVXLevel; 2394 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2395 // 64-bit hardware. 2396 bool Has64BitPointers; 2397 2398 public: 2399 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2400 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2401 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2402 } 2403 2404 bool isPassedUsingAVXType(QualType type) const { 2405 unsigned neededInt, neededSSE; 2406 // The freeIntRegs argument doesn't matter here. 2407 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2408 /*isNamedArg*/true); 2409 if (info.isDirect()) { 2410 llvm::Type *ty = info.getCoerceToType(); 2411 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2412 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2413 } 2414 return false; 2415 } 2416 2417 void computeInfo(CGFunctionInfo &FI) const override; 2418 2419 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2420 QualType Ty) const override; 2421 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2422 QualType Ty) const override; 2423 2424 bool has64BitPointers() const { 2425 return Has64BitPointers; 2426 } 2427 2428 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2429 bool asReturnValue) const override { 2430 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2431 } 2432 bool isSwiftErrorInRegister() const override { 2433 return true; 2434 } 2435 }; 2436 2437 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2438 class WinX86_64ABIInfo : public SwiftABIInfo { 2439 public: 2440 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2441 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2442 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2443 2444 void computeInfo(CGFunctionInfo &FI) const override; 2445 2446 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2447 QualType Ty) const override; 2448 2449 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2450 // FIXME: Assumes vectorcall is in use. 2451 return isX86VectorTypeForVectorCall(getContext(), Ty); 2452 } 2453 2454 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2455 uint64_t NumMembers) const override { 2456 // FIXME: Assumes vectorcall is in use. 2457 return isX86VectorCallAggregateSmallEnough(NumMembers); 2458 } 2459 2460 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2461 bool asReturnValue) const override { 2462 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2463 } 2464 2465 bool isSwiftErrorInRegister() const override { 2466 return true; 2467 } 2468 2469 private: 2470 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2471 bool IsVectorCall, bool IsRegCall) const; 2472 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2473 const ABIArgInfo ¤t) const; 2474 2475 X86AVXABILevel AVXLevel; 2476 2477 bool IsMingw64; 2478 }; 2479 2480 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2481 public: 2482 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2483 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2484 2485 const X86_64ABIInfo &getABIInfo() const { 2486 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2487 } 2488 2489 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2490 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2491 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2492 2493 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2494 return 7; 2495 } 2496 2497 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2498 llvm::Value *Address) const override { 2499 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2500 2501 // 0-15 are the 16 integer registers. 2502 // 16 is %rip. 2503 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2504 return false; 2505 } 2506 2507 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2508 StringRef Constraint, 2509 llvm::Type* Ty) const override { 2510 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2511 } 2512 2513 bool isNoProtoCallVariadic(const CallArgList &args, 2514 const FunctionNoProtoType *fnType) const override { 2515 // The default CC on x86-64 sets %al to the number of SSA 2516 // registers used, and GCC sets this when calling an unprototyped 2517 // function, so we override the default behavior. However, don't do 2518 // that when AVX types are involved: the ABI explicitly states it is 2519 // undefined, and it doesn't work in practice because of how the ABI 2520 // defines varargs anyway. 2521 if (fnType->getCallConv() == CC_C) { 2522 bool HasAVXType = false; 2523 for (CallArgList::const_iterator 2524 it = args.begin(), ie = args.end(); it != ie; ++it) { 2525 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2526 HasAVXType = true; 2527 break; 2528 } 2529 } 2530 2531 if (!HasAVXType) 2532 return true; 2533 } 2534 2535 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2536 } 2537 2538 llvm::Constant * 2539 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2540 unsigned Sig = (0xeb << 0) | // jmp rel8 2541 (0x06 << 8) | // .+0x08 2542 ('v' << 16) | 2543 ('2' << 24); 2544 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2545 } 2546 2547 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2548 CodeGen::CodeGenModule &CGM) const override { 2549 if (GV->isDeclaration()) 2550 return; 2551 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2552 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2553 llvm::Function *Fn = cast<llvm::Function>(GV); 2554 Fn->addFnAttr("stackrealign"); 2555 } 2556 2557 addX86InterruptAttrs(FD, GV, CGM); 2558 } 2559 } 2560 2561 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2562 const FunctionDecl *Caller, 2563 const FunctionDecl *Callee, 2564 const CallArgList &Args) const override; 2565 }; 2566 2567 static void initFeatureMaps(const ASTContext &Ctx, 2568 llvm::StringMap<bool> &CallerMap, 2569 const FunctionDecl *Caller, 2570 llvm::StringMap<bool> &CalleeMap, 2571 const FunctionDecl *Callee) { 2572 if (CalleeMap.empty() && CallerMap.empty()) { 2573 // The caller is potentially nullptr in the case where the call isn't in a 2574 // function. In this case, the getFunctionFeatureMap ensures we just get 2575 // the TU level setting (since it cannot be modified by 'target'.. 2576 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2577 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2578 } 2579 } 2580 2581 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2582 SourceLocation CallLoc, 2583 const llvm::StringMap<bool> &CallerMap, 2584 const llvm::StringMap<bool> &CalleeMap, 2585 QualType Ty, StringRef Feature, 2586 bool IsArgument) { 2587 bool CallerHasFeat = CallerMap.lookup(Feature); 2588 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2589 if (!CallerHasFeat && !CalleeHasFeat) 2590 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2591 << IsArgument << Ty << Feature; 2592 2593 // Mixing calling conventions here is very clearly an error. 2594 if (!CallerHasFeat || !CalleeHasFeat) 2595 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2596 << IsArgument << Ty << Feature; 2597 2598 // Else, both caller and callee have the required feature, so there is no need 2599 // to diagnose. 2600 return false; 2601 } 2602 2603 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2604 SourceLocation CallLoc, 2605 const llvm::StringMap<bool> &CallerMap, 2606 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2607 bool IsArgument) { 2608 uint64_t Size = Ctx.getTypeSize(Ty); 2609 if (Size > 256) 2610 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2611 "avx512f", IsArgument); 2612 2613 if (Size > 128) 2614 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2615 IsArgument); 2616 2617 return false; 2618 } 2619 2620 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2621 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2622 const FunctionDecl *Callee, const CallArgList &Args) const { 2623 llvm::StringMap<bool> CallerMap; 2624 llvm::StringMap<bool> CalleeMap; 2625 unsigned ArgIndex = 0; 2626 2627 // We need to loop through the actual call arguments rather than the the 2628 // function's parameters, in case this variadic. 2629 for (const CallArg &Arg : Args) { 2630 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2631 // additionally changes how vectors >256 in size are passed. Like GCC, we 2632 // warn when a function is called with an argument where this will change. 2633 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2634 // the caller and callee features are mismatched. 2635 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2636 // change its ABI with attribute-target after this call. 2637 if (Arg.getType()->isVectorType() && 2638 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2639 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2640 QualType Ty = Arg.getType(); 2641 // The CallArg seems to have desugared the type already, so for clearer 2642 // diagnostics, replace it with the type in the FunctionDecl if possible. 2643 if (ArgIndex < Callee->getNumParams()) 2644 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2645 2646 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2647 CalleeMap, Ty, /*IsArgument*/ true)) 2648 return; 2649 } 2650 ++ArgIndex; 2651 } 2652 2653 // Check return always, as we don't have a good way of knowing in codegen 2654 // whether this value is used, tail-called, etc. 2655 if (Callee->getReturnType()->isVectorType() && 2656 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2657 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2658 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2659 CalleeMap, Callee->getReturnType(), 2660 /*IsArgument*/ false); 2661 } 2662 } 2663 2664 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2665 // If the argument does not end in .lib, automatically add the suffix. 2666 // If the argument contains a space, enclose it in quotes. 2667 // This matches the behavior of MSVC. 2668 bool Quote = Lib.contains(' '); 2669 std::string ArgStr = Quote ? "\"" : ""; 2670 ArgStr += Lib; 2671 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2672 ArgStr += ".lib"; 2673 ArgStr += Quote ? "\"" : ""; 2674 return ArgStr; 2675 } 2676 2677 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2678 public: 2679 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2680 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2681 unsigned NumRegisterParameters) 2682 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2683 Win32StructABI, NumRegisterParameters, false) {} 2684 2685 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2686 CodeGen::CodeGenModule &CGM) const override; 2687 2688 void getDependentLibraryOption(llvm::StringRef Lib, 2689 llvm::SmallString<24> &Opt) const override { 2690 Opt = "/DEFAULTLIB:"; 2691 Opt += qualifyWindowsLibrary(Lib); 2692 } 2693 2694 void getDetectMismatchOption(llvm::StringRef Name, 2695 llvm::StringRef Value, 2696 llvm::SmallString<32> &Opt) const override { 2697 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2698 } 2699 }; 2700 2701 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2702 CodeGen::CodeGenModule &CGM) { 2703 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2704 2705 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2706 Fn->addFnAttr("stack-probe-size", 2707 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2708 if (CGM.getCodeGenOpts().NoStackArgProbe) 2709 Fn->addFnAttr("no-stack-arg-probe"); 2710 } 2711 } 2712 2713 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2714 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2715 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2716 if (GV->isDeclaration()) 2717 return; 2718 addStackProbeTargetAttributes(D, GV, CGM); 2719 } 2720 2721 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2722 public: 2723 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2724 X86AVXABILevel AVXLevel) 2725 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2726 2727 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2728 CodeGen::CodeGenModule &CGM) const override; 2729 2730 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2731 return 7; 2732 } 2733 2734 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2735 llvm::Value *Address) const override { 2736 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2737 2738 // 0-15 are the 16 integer registers. 2739 // 16 is %rip. 2740 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2741 return false; 2742 } 2743 2744 void getDependentLibraryOption(llvm::StringRef Lib, 2745 llvm::SmallString<24> &Opt) const override { 2746 Opt = "/DEFAULTLIB:"; 2747 Opt += qualifyWindowsLibrary(Lib); 2748 } 2749 2750 void getDetectMismatchOption(llvm::StringRef Name, 2751 llvm::StringRef Value, 2752 llvm::SmallString<32> &Opt) const override { 2753 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2754 } 2755 }; 2756 2757 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2758 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2759 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2760 if (GV->isDeclaration()) 2761 return; 2762 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2763 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2764 llvm::Function *Fn = cast<llvm::Function>(GV); 2765 Fn->addFnAttr("stackrealign"); 2766 } 2767 2768 addX86InterruptAttrs(FD, GV, CGM); 2769 } 2770 2771 addStackProbeTargetAttributes(D, GV, CGM); 2772 } 2773 } 2774 2775 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2776 Class &Hi) const { 2777 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2778 // 2779 // (a) If one of the classes is Memory, the whole argument is passed in 2780 // memory. 2781 // 2782 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2783 // memory. 2784 // 2785 // (c) If the size of the aggregate exceeds two eightbytes and the first 2786 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2787 // argument is passed in memory. NOTE: This is necessary to keep the 2788 // ABI working for processors that don't support the __m256 type. 2789 // 2790 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2791 // 2792 // Some of these are enforced by the merging logic. Others can arise 2793 // only with unions; for example: 2794 // union { _Complex double; unsigned; } 2795 // 2796 // Note that clauses (b) and (c) were added in 0.98. 2797 // 2798 if (Hi == Memory) 2799 Lo = Memory; 2800 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2801 Lo = Memory; 2802 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2803 Lo = Memory; 2804 if (Hi == SSEUp && Lo != SSE) 2805 Hi = SSE; 2806 } 2807 2808 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2809 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2810 // classified recursively so that always two fields are 2811 // considered. The resulting class is calculated according to 2812 // the classes of the fields in the eightbyte: 2813 // 2814 // (a) If both classes are equal, this is the resulting class. 2815 // 2816 // (b) If one of the classes is NO_CLASS, the resulting class is 2817 // the other class. 2818 // 2819 // (c) If one of the classes is MEMORY, the result is the MEMORY 2820 // class. 2821 // 2822 // (d) If one of the classes is INTEGER, the result is the 2823 // INTEGER. 2824 // 2825 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2826 // MEMORY is used as class. 2827 // 2828 // (f) Otherwise class SSE is used. 2829 2830 // Accum should never be memory (we should have returned) or 2831 // ComplexX87 (because this cannot be passed in a structure). 2832 assert((Accum != Memory && Accum != ComplexX87) && 2833 "Invalid accumulated classification during merge."); 2834 if (Accum == Field || Field == NoClass) 2835 return Accum; 2836 if (Field == Memory) 2837 return Memory; 2838 if (Accum == NoClass) 2839 return Field; 2840 if (Accum == Integer || Field == Integer) 2841 return Integer; 2842 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2843 Accum == X87 || Accum == X87Up) 2844 return Memory; 2845 return SSE; 2846 } 2847 2848 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, 2849 Class &Hi, bool isNamedArg, bool IsRegCall) const { 2850 // FIXME: This code can be simplified by introducing a simple value class for 2851 // Class pairs with appropriate constructor methods for the various 2852 // situations. 2853 2854 // FIXME: Some of the split computations are wrong; unaligned vectors 2855 // shouldn't be passed in registers for example, so there is no chance they 2856 // can straddle an eightbyte. Verify & simplify. 2857 2858 Lo = Hi = NoClass; 2859 2860 Class &Current = OffsetBase < 64 ? Lo : Hi; 2861 Current = Memory; 2862 2863 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2864 BuiltinType::Kind k = BT->getKind(); 2865 2866 if (k == BuiltinType::Void) { 2867 Current = NoClass; 2868 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2869 Lo = Integer; 2870 Hi = Integer; 2871 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2872 Current = Integer; 2873 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2874 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { 2875 Current = SSE; 2876 } else if (k == BuiltinType::LongDouble) { 2877 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2878 if (LDF == &llvm::APFloat::IEEEquad()) { 2879 Lo = SSE; 2880 Hi = SSEUp; 2881 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2882 Lo = X87; 2883 Hi = X87Up; 2884 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2885 Current = SSE; 2886 } else 2887 llvm_unreachable("unexpected long double representation!"); 2888 } 2889 // FIXME: _Decimal32 and _Decimal64 are SSE. 2890 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2891 return; 2892 } 2893 2894 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2895 // Classify the underlying integer type. 2896 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2897 return; 2898 } 2899 2900 if (Ty->hasPointerRepresentation()) { 2901 Current = Integer; 2902 return; 2903 } 2904 2905 if (Ty->isMemberPointerType()) { 2906 if (Ty->isMemberFunctionPointerType()) { 2907 if (Has64BitPointers) { 2908 // If Has64BitPointers, this is an {i64, i64}, so classify both 2909 // Lo and Hi now. 2910 Lo = Hi = Integer; 2911 } else { 2912 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2913 // straddles an eightbyte boundary, Hi should be classified as well. 2914 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2915 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2916 if (EB_FuncPtr != EB_ThisAdj) { 2917 Lo = Hi = Integer; 2918 } else { 2919 Current = Integer; 2920 } 2921 } 2922 } else { 2923 Current = Integer; 2924 } 2925 return; 2926 } 2927 2928 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2929 uint64_t Size = getContext().getTypeSize(VT); 2930 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2931 // gcc passes the following as integer: 2932 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2933 // 2 bytes - <2 x char>, <1 x short> 2934 // 1 byte - <1 x char> 2935 Current = Integer; 2936 2937 // If this type crosses an eightbyte boundary, it should be 2938 // split. 2939 uint64_t EB_Lo = (OffsetBase) / 64; 2940 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2941 if (EB_Lo != EB_Hi) 2942 Hi = Lo; 2943 } else if (Size == 64) { 2944 QualType ElementType = VT->getElementType(); 2945 2946 // gcc passes <1 x double> in memory. :( 2947 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2948 return; 2949 2950 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2951 // pass them as integer. For platforms where clang is the de facto 2952 // platform compiler, we must continue to use integer. 2953 if (!classifyIntegerMMXAsSSE() && 2954 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2955 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2956 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2957 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2958 Current = Integer; 2959 else 2960 Current = SSE; 2961 2962 // If this type crosses an eightbyte boundary, it should be 2963 // split. 2964 if (OffsetBase && OffsetBase != 64) 2965 Hi = Lo; 2966 } else if (Size == 128 || 2967 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2968 QualType ElementType = VT->getElementType(); 2969 2970 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2971 if (passInt128VectorsInMem() && Size != 128 && 2972 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2973 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2974 return; 2975 2976 // Arguments of 256-bits are split into four eightbyte chunks. The 2977 // least significant one belongs to class SSE and all the others to class 2978 // SSEUP. The original Lo and Hi design considers that types can't be 2979 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2980 // This design isn't correct for 256-bits, but since there're no cases 2981 // where the upper parts would need to be inspected, avoid adding 2982 // complexity and just consider Hi to match the 64-256 part. 2983 // 2984 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2985 // registers if they are "named", i.e. not part of the "..." of a 2986 // variadic function. 2987 // 2988 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2989 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2990 Lo = SSE; 2991 Hi = SSEUp; 2992 } 2993 return; 2994 } 2995 2996 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2997 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2998 2999 uint64_t Size = getContext().getTypeSize(Ty); 3000 if (ET->isIntegralOrEnumerationType()) { 3001 if (Size <= 64) 3002 Current = Integer; 3003 else if (Size <= 128) 3004 Lo = Hi = Integer; 3005 } else if (ET->isFloat16Type() || ET == getContext().FloatTy || 3006 ET->isBFloat16Type()) { 3007 Current = SSE; 3008 } else if (ET == getContext().DoubleTy) { 3009 Lo = Hi = SSE; 3010 } else if (ET == getContext().LongDoubleTy) { 3011 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3012 if (LDF == &llvm::APFloat::IEEEquad()) 3013 Current = Memory; 3014 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 3015 Current = ComplexX87; 3016 else if (LDF == &llvm::APFloat::IEEEdouble()) 3017 Lo = Hi = SSE; 3018 else 3019 llvm_unreachable("unexpected long double representation!"); 3020 } 3021 3022 // If this complex type crosses an eightbyte boundary then it 3023 // should be split. 3024 uint64_t EB_Real = (OffsetBase) / 64; 3025 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3026 if (Hi == NoClass && EB_Real != EB_Imag) 3027 Hi = Lo; 3028 3029 return; 3030 } 3031 3032 if (const auto *EITy = Ty->getAs<BitIntType>()) { 3033 if (EITy->getNumBits() <= 64) 3034 Current = Integer; 3035 else if (EITy->getNumBits() <= 128) 3036 Lo = Hi = Integer; 3037 // Larger values need to get passed in memory. 3038 return; 3039 } 3040 3041 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3042 // Arrays are treated like structures. 3043 3044 uint64_t Size = getContext().getTypeSize(Ty); 3045 3046 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3047 // than eight eightbytes, ..., it has class MEMORY. 3048 // regcall ABI doesn't have limitation to an object. The only limitation 3049 // is the free registers, which will be checked in computeInfo. 3050 if (!IsRegCall && Size > 512) 3051 return; 3052 3053 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3054 // fields, it has class MEMORY. 3055 // 3056 // Only need to check alignment of array base. 3057 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3058 return; 3059 3060 // Otherwise implement simplified merge. We could be smarter about 3061 // this, but it isn't worth it and would be harder to verify. 3062 Current = NoClass; 3063 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3064 uint64_t ArraySize = AT->getSize().getZExtValue(); 3065 3066 // The only case a 256-bit wide vector could be used is when the array 3067 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3068 // to work for sizes wider than 128, early check and fallback to memory. 3069 // 3070 if (Size > 128 && 3071 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3072 return; 3073 3074 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3075 Class FieldLo, FieldHi; 3076 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3077 Lo = merge(Lo, FieldLo); 3078 Hi = merge(Hi, FieldHi); 3079 if (Lo == Memory || Hi == Memory) 3080 break; 3081 } 3082 3083 postMerge(Size, Lo, Hi); 3084 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3085 return; 3086 } 3087 3088 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3089 uint64_t Size = getContext().getTypeSize(Ty); 3090 3091 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3092 // than eight eightbytes, ..., it has class MEMORY. 3093 if (Size > 512) 3094 return; 3095 3096 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3097 // copy constructor or a non-trivial destructor, it is passed by invisible 3098 // reference. 3099 if (getRecordArgABI(RT, getCXXABI())) 3100 return; 3101 3102 const RecordDecl *RD = RT->getDecl(); 3103 3104 // Assume variable sized types are passed in memory. 3105 if (RD->hasFlexibleArrayMember()) 3106 return; 3107 3108 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3109 3110 // Reset Lo class, this will be recomputed. 3111 Current = NoClass; 3112 3113 // If this is a C++ record, classify the bases first. 3114 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3115 for (const auto &I : CXXRD->bases()) { 3116 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3117 "Unexpected base class!"); 3118 const auto *Base = 3119 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3120 3121 // Classify this field. 3122 // 3123 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3124 // single eightbyte, each is classified separately. Each eightbyte gets 3125 // initialized to class NO_CLASS. 3126 Class FieldLo, FieldHi; 3127 uint64_t Offset = 3128 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3129 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3130 Lo = merge(Lo, FieldLo); 3131 Hi = merge(Hi, FieldHi); 3132 if (Lo == Memory || Hi == Memory) { 3133 postMerge(Size, Lo, Hi); 3134 return; 3135 } 3136 } 3137 } 3138 3139 // Classify the fields one at a time, merging the results. 3140 unsigned idx = 0; 3141 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3142 LangOptions::ClangABI::Ver11 || 3143 getContext().getTargetInfo().getTriple().isPS(); 3144 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3145 3146 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3147 i != e; ++i, ++idx) { 3148 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3149 bool BitField = i->isBitField(); 3150 3151 // Ignore padding bit-fields. 3152 if (BitField && i->isUnnamedBitfield()) 3153 continue; 3154 3155 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3156 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3157 // 3158 // The only case a 256-bit or a 512-bit wide vector could be used is when 3159 // the struct contains a single 256-bit or 512-bit element. Early check 3160 // and fallback to memory. 3161 // 3162 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3163 // than 128. 3164 if (Size > 128 && 3165 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3166 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3167 Lo = Memory; 3168 postMerge(Size, Lo, Hi); 3169 return; 3170 } 3171 // Note, skip this test for bit-fields, see below. 3172 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3173 Lo = Memory; 3174 postMerge(Size, Lo, Hi); 3175 return; 3176 } 3177 3178 // Classify this field. 3179 // 3180 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3181 // exceeds a single eightbyte, each is classified 3182 // separately. Each eightbyte gets initialized to class 3183 // NO_CLASS. 3184 Class FieldLo, FieldHi; 3185 3186 // Bit-fields require special handling, they do not force the 3187 // structure to be passed in memory even if unaligned, and 3188 // therefore they can straddle an eightbyte. 3189 if (BitField) { 3190 assert(!i->isUnnamedBitfield()); 3191 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3192 uint64_t Size = i->getBitWidthValue(getContext()); 3193 3194 uint64_t EB_Lo = Offset / 64; 3195 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3196 3197 if (EB_Lo) { 3198 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3199 FieldLo = NoClass; 3200 FieldHi = Integer; 3201 } else { 3202 FieldLo = Integer; 3203 FieldHi = EB_Hi ? Integer : NoClass; 3204 } 3205 } else 3206 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3207 Lo = merge(Lo, FieldLo); 3208 Hi = merge(Hi, FieldHi); 3209 if (Lo == Memory || Hi == Memory) 3210 break; 3211 } 3212 3213 postMerge(Size, Lo, Hi); 3214 } 3215 } 3216 3217 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3218 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3219 // place naturally. 3220 if (!isAggregateTypeForABI(Ty)) { 3221 // Treat an enum type as its underlying type. 3222 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3223 Ty = EnumTy->getDecl()->getIntegerType(); 3224 3225 if (Ty->isBitIntType()) 3226 return getNaturalAlignIndirect(Ty); 3227 3228 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3229 : ABIArgInfo::getDirect()); 3230 } 3231 3232 return getNaturalAlignIndirect(Ty); 3233 } 3234 3235 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3236 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3237 uint64_t Size = getContext().getTypeSize(VecTy); 3238 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3239 if (Size <= 64 || Size > LargestVector) 3240 return true; 3241 QualType EltTy = VecTy->getElementType(); 3242 if (passInt128VectorsInMem() && 3243 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3244 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3245 return true; 3246 } 3247 3248 return false; 3249 } 3250 3251 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3252 unsigned freeIntRegs) const { 3253 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3254 // place naturally. 3255 // 3256 // This assumption is optimistic, as there could be free registers available 3257 // when we need to pass this argument in memory, and LLVM could try to pass 3258 // the argument in the free register. This does not seem to happen currently, 3259 // but this code would be much safer if we could mark the argument with 3260 // 'onstack'. See PR12193. 3261 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3262 !Ty->isBitIntType()) { 3263 // Treat an enum type as its underlying type. 3264 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3265 Ty = EnumTy->getDecl()->getIntegerType(); 3266 3267 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3268 : ABIArgInfo::getDirect()); 3269 } 3270 3271 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3272 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3273 3274 // Compute the byval alignment. We specify the alignment of the byval in all 3275 // cases so that the mid-level optimizer knows the alignment of the byval. 3276 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3277 3278 // Attempt to avoid passing indirect results using byval when possible. This 3279 // is important for good codegen. 3280 // 3281 // We do this by coercing the value into a scalar type which the backend can 3282 // handle naturally (i.e., without using byval). 3283 // 3284 // For simplicity, we currently only do this when we have exhausted all of the 3285 // free integer registers. Doing this when there are free integer registers 3286 // would require more care, as we would have to ensure that the coerced value 3287 // did not claim the unused register. That would require either reording the 3288 // arguments to the function (so that any subsequent inreg values came first), 3289 // or only doing this optimization when there were no following arguments that 3290 // might be inreg. 3291 // 3292 // We currently expect it to be rare (particularly in well written code) for 3293 // arguments to be passed on the stack when there are still free integer 3294 // registers available (this would typically imply large structs being passed 3295 // by value), so this seems like a fair tradeoff for now. 3296 // 3297 // We can revisit this if the backend grows support for 'onstack' parameter 3298 // attributes. See PR12193. 3299 if (freeIntRegs == 0) { 3300 uint64_t Size = getContext().getTypeSize(Ty); 3301 3302 // If this type fits in an eightbyte, coerce it into the matching integral 3303 // type, which will end up on the stack (with alignment 8). 3304 if (Align == 8 && Size <= 64) 3305 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3306 Size)); 3307 } 3308 3309 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3310 } 3311 3312 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3313 /// register. Pick an LLVM IR type that will be passed as a vector register. 3314 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3315 // Wrapper structs/arrays that only contain vectors are passed just like 3316 // vectors; strip them off if present. 3317 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3318 Ty = QualType(InnerTy, 0); 3319 3320 llvm::Type *IRType = CGT.ConvertType(Ty); 3321 if (isa<llvm::VectorType>(IRType)) { 3322 // Don't pass vXi128 vectors in their native type, the backend can't 3323 // legalize them. 3324 if (passInt128VectorsInMem() && 3325 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3326 // Use a vXi64 vector. 3327 uint64_t Size = getContext().getTypeSize(Ty); 3328 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3329 Size / 64); 3330 } 3331 3332 return IRType; 3333 } 3334 3335 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3336 return IRType; 3337 3338 // We couldn't find the preferred IR vector type for 'Ty'. 3339 uint64_t Size = getContext().getTypeSize(Ty); 3340 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3341 3342 3343 // Return a LLVM IR vector type based on the size of 'Ty'. 3344 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3345 Size / 64); 3346 } 3347 3348 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3349 /// is known to either be off the end of the specified type or being in 3350 /// alignment padding. The user type specified is known to be at most 128 bits 3351 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3352 /// classification that put one of the two halves in the INTEGER class. 3353 /// 3354 /// It is conservatively correct to return false. 3355 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3356 unsigned EndBit, ASTContext &Context) { 3357 // If the bytes being queried are off the end of the type, there is no user 3358 // data hiding here. This handles analysis of builtins, vectors and other 3359 // types that don't contain interesting padding. 3360 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3361 if (TySize <= StartBit) 3362 return true; 3363 3364 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3365 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3366 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3367 3368 // Check each element to see if the element overlaps with the queried range. 3369 for (unsigned i = 0; i != NumElts; ++i) { 3370 // If the element is after the span we care about, then we're done.. 3371 unsigned EltOffset = i*EltSize; 3372 if (EltOffset >= EndBit) break; 3373 3374 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3375 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3376 EndBit-EltOffset, Context)) 3377 return false; 3378 } 3379 // If it overlaps no elements, then it is safe to process as padding. 3380 return true; 3381 } 3382 3383 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3384 const RecordDecl *RD = RT->getDecl(); 3385 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3386 3387 // If this is a C++ record, check the bases first. 3388 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3389 for (const auto &I : CXXRD->bases()) { 3390 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3391 "Unexpected base class!"); 3392 const auto *Base = 3393 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3394 3395 // If the base is after the span we care about, ignore it. 3396 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3397 if (BaseOffset >= EndBit) continue; 3398 3399 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3400 if (!BitsContainNoUserData(I.getType(), BaseStart, 3401 EndBit-BaseOffset, Context)) 3402 return false; 3403 } 3404 } 3405 3406 // Verify that no field has data that overlaps the region of interest. Yes 3407 // this could be sped up a lot by being smarter about queried fields, 3408 // however we're only looking at structs up to 16 bytes, so we don't care 3409 // much. 3410 unsigned idx = 0; 3411 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3412 i != e; ++i, ++idx) { 3413 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3414 3415 // If we found a field after the region we care about, then we're done. 3416 if (FieldOffset >= EndBit) break; 3417 3418 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3419 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3420 Context)) 3421 return false; 3422 } 3423 3424 // If nothing in this record overlapped the area of interest, then we're 3425 // clean. 3426 return true; 3427 } 3428 3429 return false; 3430 } 3431 3432 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3433 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3434 const llvm::DataLayout &TD) { 3435 if (IROffset == 0 && IRType->isFloatingPointTy()) 3436 return IRType; 3437 3438 // If this is a struct, recurse into the field at the specified offset. 3439 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3440 if (!STy->getNumContainedTypes()) 3441 return nullptr; 3442 3443 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3444 unsigned Elt = SL->getElementContainingOffset(IROffset); 3445 IROffset -= SL->getElementOffset(Elt); 3446 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3447 } 3448 3449 // If this is an array, recurse into the field at the specified offset. 3450 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3451 llvm::Type *EltTy = ATy->getElementType(); 3452 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3453 IROffset -= IROffset / EltSize * EltSize; 3454 return getFPTypeAtOffset(EltTy, IROffset, TD); 3455 } 3456 3457 return nullptr; 3458 } 3459 3460 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3461 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3462 llvm::Type *X86_64ABIInfo:: 3463 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3464 QualType SourceTy, unsigned SourceOffset) const { 3465 const llvm::DataLayout &TD = getDataLayout(); 3466 unsigned SourceSize = 3467 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3468 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3469 if (!T0 || T0->isDoubleTy()) 3470 return llvm::Type::getDoubleTy(getVMContext()); 3471 3472 // Get the adjacent FP type. 3473 llvm::Type *T1 = nullptr; 3474 unsigned T0Size = TD.getTypeAllocSize(T0); 3475 if (SourceSize > T0Size) 3476 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3477 if (T1 == nullptr) { 3478 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due 3479 // to its alignment. 3480 if (T0->is16bitFPTy() && SourceSize > 4) 3481 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3482 // If we can't get a second FP type, return a simple half or float. 3483 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3484 // {float, i8} too. 3485 if (T1 == nullptr) 3486 return T0; 3487 } 3488 3489 if (T0->isFloatTy() && T1->isFloatTy()) 3490 return llvm::FixedVectorType::get(T0, 2); 3491 3492 if (T0->is16bitFPTy() && T1->is16bitFPTy()) { 3493 llvm::Type *T2 = nullptr; 3494 if (SourceSize > 4) 3495 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3496 if (T2 == nullptr) 3497 return llvm::FixedVectorType::get(T0, 2); 3498 return llvm::FixedVectorType::get(T0, 4); 3499 } 3500 3501 if (T0->is16bitFPTy() || T1->is16bitFPTy()) 3502 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3503 3504 return llvm::Type::getDoubleTy(getVMContext()); 3505 } 3506 3507 3508 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3509 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3510 /// about the high or low part of an up-to-16-byte struct. This routine picks 3511 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3512 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3513 /// etc). 3514 /// 3515 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3516 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3517 /// the 8-byte value references. PrefType may be null. 3518 /// 3519 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3520 /// an offset into this that we're processing (which is always either 0 or 8). 3521 /// 3522 llvm::Type *X86_64ABIInfo:: 3523 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3524 QualType SourceTy, unsigned SourceOffset) const { 3525 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3526 // returning an 8-byte unit starting with it. See if we can safely use it. 3527 if (IROffset == 0) { 3528 // Pointers and int64's always fill the 8-byte unit. 3529 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3530 IRType->isIntegerTy(64)) 3531 return IRType; 3532 3533 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3534 // goodness in the source type is just tail padding. This is allowed to 3535 // kick in for struct {double,int} on the int, but not on 3536 // struct{double,int,int} because we wouldn't return the second int. We 3537 // have to do this analysis on the source type because we can't depend on 3538 // unions being lowered a specific way etc. 3539 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3540 IRType->isIntegerTy(32) || 3541 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3542 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3543 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3544 3545 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3546 SourceOffset*8+64, getContext())) 3547 return IRType; 3548 } 3549 } 3550 3551 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3552 // If this is a struct, recurse into the field at the specified offset. 3553 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3554 if (IROffset < SL->getSizeInBytes()) { 3555 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3556 IROffset -= SL->getElementOffset(FieldIdx); 3557 3558 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3559 SourceTy, SourceOffset); 3560 } 3561 } 3562 3563 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3564 llvm::Type *EltTy = ATy->getElementType(); 3565 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3566 unsigned EltOffset = IROffset/EltSize*EltSize; 3567 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3568 SourceOffset); 3569 } 3570 3571 // Okay, we don't have any better idea of what to pass, so we pass this in an 3572 // integer register that isn't too big to fit the rest of the struct. 3573 unsigned TySizeInBytes = 3574 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3575 3576 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3577 3578 // It is always safe to classify this as an integer type up to i64 that 3579 // isn't larger than the structure. 3580 return llvm::IntegerType::get(getVMContext(), 3581 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3582 } 3583 3584 3585 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3586 /// be used as elements of a two register pair to pass or return, return a 3587 /// first class aggregate to represent them. For example, if the low part of 3588 /// a by-value argument should be passed as i32* and the high part as float, 3589 /// return {i32*, float}. 3590 static llvm::Type * 3591 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3592 const llvm::DataLayout &TD) { 3593 // In order to correctly satisfy the ABI, we need to the high part to start 3594 // at offset 8. If the high and low parts we inferred are both 4-byte types 3595 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3596 // the second element at offset 8. Check for this: 3597 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3598 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3599 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3600 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3601 3602 // To handle this, we have to increase the size of the low part so that the 3603 // second element will start at an 8 byte offset. We can't increase the size 3604 // of the second element because it might make us access off the end of the 3605 // struct. 3606 if (HiStart != 8) { 3607 // There are usually two sorts of types the ABI generation code can produce 3608 // for the low part of a pair that aren't 8 bytes in size: half, float or 3609 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3610 // NaCl). 3611 // Promote these to a larger type. 3612 if (Lo->isHalfTy() || Lo->isFloatTy()) 3613 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3614 else { 3615 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3616 && "Invalid/unknown lo type"); 3617 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3618 } 3619 } 3620 3621 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3622 3623 // Verify that the second element is at an 8-byte offset. 3624 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3625 "Invalid x86-64 argument pair!"); 3626 return Result; 3627 } 3628 3629 ABIArgInfo X86_64ABIInfo:: 3630 classifyReturnType(QualType RetTy) const { 3631 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3632 // classification algorithm. 3633 X86_64ABIInfo::Class Lo, Hi; 3634 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3635 3636 // Check some invariants. 3637 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3638 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3639 3640 llvm::Type *ResType = nullptr; 3641 switch (Lo) { 3642 case NoClass: 3643 if (Hi == NoClass) 3644 return ABIArgInfo::getIgnore(); 3645 // If the low part is just padding, it takes no register, leave ResType 3646 // null. 3647 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3648 "Unknown missing lo part"); 3649 break; 3650 3651 case SSEUp: 3652 case X87Up: 3653 llvm_unreachable("Invalid classification for lo word."); 3654 3655 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3656 // hidden argument. 3657 case Memory: 3658 return getIndirectReturnResult(RetTy); 3659 3660 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3661 // available register of the sequence %rax, %rdx is used. 3662 case Integer: 3663 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3664 3665 // If we have a sign or zero extended integer, make sure to return Extend 3666 // so that the parameter gets the right LLVM IR attributes. 3667 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3668 // Treat an enum type as its underlying type. 3669 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3670 RetTy = EnumTy->getDecl()->getIntegerType(); 3671 3672 if (RetTy->isIntegralOrEnumerationType() && 3673 isPromotableIntegerTypeForABI(RetTy)) 3674 return ABIArgInfo::getExtend(RetTy); 3675 } 3676 break; 3677 3678 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3679 // available SSE register of the sequence %xmm0, %xmm1 is used. 3680 case SSE: 3681 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3682 break; 3683 3684 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3685 // returned on the X87 stack in %st0 as 80-bit x87 number. 3686 case X87: 3687 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3688 break; 3689 3690 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3691 // part of the value is returned in %st0 and the imaginary part in 3692 // %st1. 3693 case ComplexX87: 3694 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3695 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3696 llvm::Type::getX86_FP80Ty(getVMContext())); 3697 break; 3698 } 3699 3700 llvm::Type *HighPart = nullptr; 3701 switch (Hi) { 3702 // Memory was handled previously and X87 should 3703 // never occur as a hi class. 3704 case Memory: 3705 case X87: 3706 llvm_unreachable("Invalid classification for hi word."); 3707 3708 case ComplexX87: // Previously handled. 3709 case NoClass: 3710 break; 3711 3712 case Integer: 3713 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3714 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3715 return ABIArgInfo::getDirect(HighPart, 8); 3716 break; 3717 case SSE: 3718 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3719 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3720 return ABIArgInfo::getDirect(HighPart, 8); 3721 break; 3722 3723 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3724 // is passed in the next available eightbyte chunk if the last used 3725 // vector register. 3726 // 3727 // SSEUP should always be preceded by SSE, just widen. 3728 case SSEUp: 3729 assert(Lo == SSE && "Unexpected SSEUp classification."); 3730 ResType = GetByteVectorType(RetTy); 3731 break; 3732 3733 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3734 // returned together with the previous X87 value in %st0. 3735 case X87Up: 3736 // If X87Up is preceded by X87, we don't need to do 3737 // anything. However, in some cases with unions it may not be 3738 // preceded by X87. In such situations we follow gcc and pass the 3739 // extra bits in an SSE reg. 3740 if (Lo != X87) { 3741 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3742 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3743 return ABIArgInfo::getDirect(HighPart, 8); 3744 } 3745 break; 3746 } 3747 3748 // If a high part was specified, merge it together with the low part. It is 3749 // known to pass in the high eightbyte of the result. We do this by forming a 3750 // first class struct aggregate with the high and low part: {low, high} 3751 if (HighPart) 3752 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3753 3754 return ABIArgInfo::getDirect(ResType); 3755 } 3756 3757 ABIArgInfo 3758 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, 3759 unsigned &neededInt, unsigned &neededSSE, 3760 bool isNamedArg, bool IsRegCall) const { 3761 Ty = useFirstFieldIfTransparentUnion(Ty); 3762 3763 X86_64ABIInfo::Class Lo, Hi; 3764 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); 3765 3766 // Check some invariants. 3767 // FIXME: Enforce these by construction. 3768 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3769 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3770 3771 neededInt = 0; 3772 neededSSE = 0; 3773 llvm::Type *ResType = nullptr; 3774 switch (Lo) { 3775 case NoClass: 3776 if (Hi == NoClass) 3777 return ABIArgInfo::getIgnore(); 3778 // If the low part is just padding, it takes no register, leave ResType 3779 // null. 3780 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3781 "Unknown missing lo part"); 3782 break; 3783 3784 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3785 // on the stack. 3786 case Memory: 3787 3788 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3789 // COMPLEX_X87, it is passed in memory. 3790 case X87: 3791 case ComplexX87: 3792 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3793 ++neededInt; 3794 return getIndirectResult(Ty, freeIntRegs); 3795 3796 case SSEUp: 3797 case X87Up: 3798 llvm_unreachable("Invalid classification for lo word."); 3799 3800 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3801 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3802 // and %r9 is used. 3803 case Integer: 3804 ++neededInt; 3805 3806 // Pick an 8-byte type based on the preferred type. 3807 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3808 3809 // If we have a sign or zero extended integer, make sure to return Extend 3810 // so that the parameter gets the right LLVM IR attributes. 3811 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3812 // Treat an enum type as its underlying type. 3813 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3814 Ty = EnumTy->getDecl()->getIntegerType(); 3815 3816 if (Ty->isIntegralOrEnumerationType() && 3817 isPromotableIntegerTypeForABI(Ty)) 3818 return ABIArgInfo::getExtend(Ty); 3819 } 3820 3821 break; 3822 3823 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3824 // available SSE register is used, the registers are taken in the 3825 // order from %xmm0 to %xmm7. 3826 case SSE: { 3827 llvm::Type *IRType = CGT.ConvertType(Ty); 3828 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3829 ++neededSSE; 3830 break; 3831 } 3832 } 3833 3834 llvm::Type *HighPart = nullptr; 3835 switch (Hi) { 3836 // Memory was handled previously, ComplexX87 and X87 should 3837 // never occur as hi classes, and X87Up must be preceded by X87, 3838 // which is passed in memory. 3839 case Memory: 3840 case X87: 3841 case ComplexX87: 3842 llvm_unreachable("Invalid classification for hi word."); 3843 3844 case NoClass: break; 3845 3846 case Integer: 3847 ++neededInt; 3848 // Pick an 8-byte type based on the preferred type. 3849 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3850 3851 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3852 return ABIArgInfo::getDirect(HighPart, 8); 3853 break; 3854 3855 // X87Up generally doesn't occur here (long double is passed in 3856 // memory), except in situations involving unions. 3857 case X87Up: 3858 case SSE: 3859 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3860 3861 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3862 return ABIArgInfo::getDirect(HighPart, 8); 3863 3864 ++neededSSE; 3865 break; 3866 3867 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3868 // eightbyte is passed in the upper half of the last used SSE 3869 // register. This only happens when 128-bit vectors are passed. 3870 case SSEUp: 3871 assert(Lo == SSE && "Unexpected SSEUp classification"); 3872 ResType = GetByteVectorType(Ty); 3873 break; 3874 } 3875 3876 // If a high part was specified, merge it together with the low part. It is 3877 // known to pass in the high eightbyte of the result. We do this by forming a 3878 // first class struct aggregate with the high and low part: {low, high} 3879 if (HighPart) 3880 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3881 3882 return ABIArgInfo::getDirect(ResType); 3883 } 3884 3885 ABIArgInfo 3886 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3887 unsigned &NeededSSE, 3888 unsigned &MaxVectorWidth) const { 3889 auto RT = Ty->getAs<RecordType>(); 3890 assert(RT && "classifyRegCallStructType only valid with struct types"); 3891 3892 if (RT->getDecl()->hasFlexibleArrayMember()) 3893 return getIndirectReturnResult(Ty); 3894 3895 // Sum up bases 3896 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3897 if (CXXRD->isDynamicClass()) { 3898 NeededInt = NeededSSE = 0; 3899 return getIndirectReturnResult(Ty); 3900 } 3901 3902 for (const auto &I : CXXRD->bases()) 3903 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, 3904 MaxVectorWidth) 3905 .isIndirect()) { 3906 NeededInt = NeededSSE = 0; 3907 return getIndirectReturnResult(Ty); 3908 } 3909 } 3910 3911 // Sum up members 3912 for (const auto *FD : RT->getDecl()->fields()) { 3913 QualType MTy = FD->getType(); 3914 if (MTy->isRecordType() && !MTy->isUnionType()) { 3915 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, 3916 MaxVectorWidth) 3917 .isIndirect()) { 3918 NeededInt = NeededSSE = 0; 3919 return getIndirectReturnResult(Ty); 3920 } 3921 } else { 3922 unsigned LocalNeededInt, LocalNeededSSE; 3923 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, 3924 true, true) 3925 .isIndirect()) { 3926 NeededInt = NeededSSE = 0; 3927 return getIndirectReturnResult(Ty); 3928 } 3929 if (const auto *AT = getContext().getAsConstantArrayType(MTy)) 3930 MTy = AT->getElementType(); 3931 if (const auto *VT = MTy->getAs<VectorType>()) 3932 if (getContext().getTypeSize(VT) > MaxVectorWidth) 3933 MaxVectorWidth = getContext().getTypeSize(VT); 3934 NeededInt += LocalNeededInt; 3935 NeededSSE += LocalNeededSSE; 3936 } 3937 } 3938 3939 return ABIArgInfo::getDirect(); 3940 } 3941 3942 ABIArgInfo 3943 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 3944 unsigned &NeededSSE, 3945 unsigned &MaxVectorWidth) const { 3946 3947 NeededInt = 0; 3948 NeededSSE = 0; 3949 MaxVectorWidth = 0; 3950 3951 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, 3952 MaxVectorWidth); 3953 } 3954 3955 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3956 3957 const unsigned CallingConv = FI.getCallingConvention(); 3958 // It is possible to force Win64 calling convention on any x86_64 target by 3959 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3960 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3961 if (CallingConv == llvm::CallingConv::Win64) { 3962 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3963 Win64ABIInfo.computeInfo(FI); 3964 return; 3965 } 3966 3967 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3968 3969 // Keep track of the number of assigned registers. 3970 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3971 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3972 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; 3973 3974 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3975 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3976 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3977 FI.getReturnInfo() = classifyRegCallStructType( 3978 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); 3979 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3980 FreeIntRegs -= NeededInt; 3981 FreeSSERegs -= NeededSSE; 3982 } else { 3983 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3984 } 3985 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3986 getContext().getCanonicalType(FI.getReturnType() 3987 ->getAs<ComplexType>() 3988 ->getElementType()) == 3989 getContext().LongDoubleTy) 3990 // Complex Long Double Type is passed in Memory when Regcall 3991 // calling convention is used. 3992 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3993 else 3994 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3995 } 3996 3997 // If the return value is indirect, then the hidden argument is consuming one 3998 // integer register. 3999 if (FI.getReturnInfo().isIndirect()) 4000 --FreeIntRegs; 4001 else if (NeededSSE && MaxVectorWidth > 0) 4002 FI.setMaxVectorWidth(MaxVectorWidth); 4003 4004 // The chain argument effectively gives us another free register. 4005 if (FI.isChainCall()) 4006 ++FreeIntRegs; 4007 4008 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 4009 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 4010 // get assigned (in left-to-right order) for passing as follows... 4011 unsigned ArgNo = 0; 4012 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4013 it != ie; ++it, ++ArgNo) { 4014 bool IsNamedArg = ArgNo < NumRequiredArgs; 4015 4016 if (IsRegCall && it->type->isStructureOrClassType()) 4017 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, 4018 MaxVectorWidth); 4019 else 4020 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 4021 NeededSSE, IsNamedArg); 4022 4023 // AMD64-ABI 3.2.3p3: If there are no registers available for any 4024 // eightbyte of an argument, the whole argument is passed on the 4025 // stack. If registers have already been assigned for some 4026 // eightbytes of such an argument, the assignments get reverted. 4027 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 4028 FreeIntRegs -= NeededInt; 4029 FreeSSERegs -= NeededSSE; 4030 if (MaxVectorWidth > FI.getMaxVectorWidth()) 4031 FI.setMaxVectorWidth(MaxVectorWidth); 4032 } else { 4033 it->info = getIndirectResult(it->type, FreeIntRegs); 4034 } 4035 } 4036 } 4037 4038 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4039 Address VAListAddr, QualType Ty) { 4040 Address overflow_arg_area_p = 4041 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4042 llvm::Value *overflow_arg_area = 4043 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4044 4045 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4046 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4047 // It isn't stated explicitly in the standard, but in practice we use 4048 // alignment greater than 16 where necessary. 4049 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4050 if (Align > CharUnits::fromQuantity(8)) { 4051 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4052 Align); 4053 } 4054 4055 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4056 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4057 llvm::Value *Res = 4058 CGF.Builder.CreateBitCast(overflow_arg_area, 4059 llvm::PointerType::getUnqual(LTy)); 4060 4061 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4062 // l->overflow_arg_area + sizeof(type). 4063 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4064 // an 8 byte boundary. 4065 4066 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4067 llvm::Value *Offset = 4068 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4069 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4070 Offset, "overflow_arg_area.next"); 4071 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4072 4073 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4074 return Address(Res, LTy, Align); 4075 } 4076 4077 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4078 QualType Ty) const { 4079 // Assume that va_list type is correct; should be pointer to LLVM type: 4080 // struct { 4081 // i32 gp_offset; 4082 // i32 fp_offset; 4083 // i8* overflow_arg_area; 4084 // i8* reg_save_area; 4085 // }; 4086 unsigned neededInt, neededSSE; 4087 4088 Ty = getContext().getCanonicalType(Ty); 4089 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4090 /*isNamedArg*/false); 4091 4092 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4093 // in the registers. If not go to step 7. 4094 if (!neededInt && !neededSSE) 4095 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4096 4097 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4098 // general purpose registers needed to pass type and num_fp to hold 4099 // the number of floating point registers needed. 4100 4101 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4102 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4103 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4104 // 4105 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4106 // register save space). 4107 4108 llvm::Value *InRegs = nullptr; 4109 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4110 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4111 if (neededInt) { 4112 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4113 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4114 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4115 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4116 } 4117 4118 if (neededSSE) { 4119 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4120 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4121 llvm::Value *FitsInFP = 4122 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4123 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4124 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4125 } 4126 4127 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4128 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4129 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4130 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4131 4132 // Emit code to load the value if it was passed in registers. 4133 4134 CGF.EmitBlock(InRegBlock); 4135 4136 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4137 // an offset of l->gp_offset and/or l->fp_offset. This may require 4138 // copying to a temporary location in case the parameter is passed 4139 // in different register classes or requires an alignment greater 4140 // than 8 for general purpose registers and 16 for XMM registers. 4141 // 4142 // FIXME: This really results in shameful code when we end up needing to 4143 // collect arguments from different places; often what should result in a 4144 // simple assembling of a structure from scattered addresses has many more 4145 // loads than necessary. Can we clean this up? 4146 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4147 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4148 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4149 4150 Address RegAddr = Address::invalid(); 4151 if (neededInt && neededSSE) { 4152 // FIXME: Cleanup. 4153 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4154 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4155 Address Tmp = CGF.CreateMemTemp(Ty); 4156 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4157 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4158 llvm::Type *TyLo = ST->getElementType(0); 4159 llvm::Type *TyHi = ST->getElementType(1); 4160 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4161 "Unexpected ABI info for mixed regs"); 4162 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4163 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4164 llvm::Value *GPAddr = 4165 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4166 llvm::Value *FPAddr = 4167 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4168 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4169 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4170 4171 // Copy the first element. 4172 // FIXME: Our choice of alignment here and below is probably pessimistic. 4173 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4174 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4175 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4176 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4177 4178 // Copy the second element. 4179 V = CGF.Builder.CreateAlignedLoad( 4180 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4181 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4182 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4183 4184 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4185 } else if (neededInt) { 4186 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4187 CGF.Int8Ty, CharUnits::fromQuantity(8)); 4188 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4189 4190 // Copy to a temporary if necessary to ensure the appropriate alignment. 4191 auto TInfo = getContext().getTypeInfoInChars(Ty); 4192 uint64_t TySize = TInfo.Width.getQuantity(); 4193 CharUnits TyAlign = TInfo.Align; 4194 4195 // Copy into a temporary if the type is more aligned than the 4196 // register save area. 4197 if (TyAlign.getQuantity() > 8) { 4198 Address Tmp = CGF.CreateMemTemp(Ty); 4199 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4200 RegAddr = Tmp; 4201 } 4202 4203 } else if (neededSSE == 1) { 4204 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4205 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4206 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4207 } else { 4208 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4209 // SSE registers are spaced 16 bytes apart in the register save 4210 // area, we need to collect the two eightbytes together. 4211 // The ABI isn't explicit about this, but it seems reasonable 4212 // to assume that the slots are 16-byte aligned, since the stack is 4213 // naturally 16-byte aligned and the prologue is expected to store 4214 // all the SSE registers to the RSA. 4215 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4216 fp_offset), 4217 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4218 Address RegAddrHi = 4219 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4220 CharUnits::fromQuantity(16)); 4221 llvm::Type *ST = AI.canHaveCoerceToType() 4222 ? AI.getCoerceToType() 4223 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4224 llvm::Value *V; 4225 Address Tmp = CGF.CreateMemTemp(Ty); 4226 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4227 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4228 RegAddrLo, ST->getStructElementType(0))); 4229 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4230 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4231 RegAddrHi, ST->getStructElementType(1))); 4232 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4233 4234 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4235 } 4236 4237 // AMD64-ABI 3.5.7p5: Step 5. Set: 4238 // l->gp_offset = l->gp_offset + num_gp * 8 4239 // l->fp_offset = l->fp_offset + num_fp * 16. 4240 if (neededInt) { 4241 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4242 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4243 gp_offset_p); 4244 } 4245 if (neededSSE) { 4246 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4247 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4248 fp_offset_p); 4249 } 4250 CGF.EmitBranch(ContBlock); 4251 4252 // Emit code to load the value if it was passed in memory. 4253 4254 CGF.EmitBlock(InMemBlock); 4255 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4256 4257 // Return the appropriate result. 4258 4259 CGF.EmitBlock(ContBlock); 4260 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4261 "vaarg.addr"); 4262 return ResAddr; 4263 } 4264 4265 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4266 QualType Ty) const { 4267 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4268 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4269 uint64_t Width = getContext().getTypeSize(Ty); 4270 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4271 4272 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4273 CGF.getContext().getTypeInfoInChars(Ty), 4274 CharUnits::fromQuantity(8), 4275 /*allowHigherAlign*/ false); 4276 } 4277 4278 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4279 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4280 const Type *Base = nullptr; 4281 uint64_t NumElts = 0; 4282 4283 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4284 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4285 FreeSSERegs -= NumElts; 4286 return getDirectX86Hva(); 4287 } 4288 return current; 4289 } 4290 4291 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4292 bool IsReturnType, bool IsVectorCall, 4293 bool IsRegCall) const { 4294 4295 if (Ty->isVoidType()) 4296 return ABIArgInfo::getIgnore(); 4297 4298 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4299 Ty = EnumTy->getDecl()->getIntegerType(); 4300 4301 TypeInfo Info = getContext().getTypeInfo(Ty); 4302 uint64_t Width = Info.Width; 4303 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4304 4305 const RecordType *RT = Ty->getAs<RecordType>(); 4306 if (RT) { 4307 if (!IsReturnType) { 4308 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4309 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4310 } 4311 4312 if (RT->getDecl()->hasFlexibleArrayMember()) 4313 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4314 4315 } 4316 4317 const Type *Base = nullptr; 4318 uint64_t NumElts = 0; 4319 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4320 // other targets. 4321 if ((IsVectorCall || IsRegCall) && 4322 isHomogeneousAggregate(Ty, Base, NumElts)) { 4323 if (IsRegCall) { 4324 if (FreeSSERegs >= NumElts) { 4325 FreeSSERegs -= NumElts; 4326 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4327 return ABIArgInfo::getDirect(); 4328 return ABIArgInfo::getExpand(); 4329 } 4330 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4331 } else if (IsVectorCall) { 4332 if (FreeSSERegs >= NumElts && 4333 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4334 FreeSSERegs -= NumElts; 4335 return ABIArgInfo::getDirect(); 4336 } else if (IsReturnType) { 4337 return ABIArgInfo::getExpand(); 4338 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4339 // HVAs are delayed and reclassified in the 2nd step. 4340 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4341 } 4342 } 4343 } 4344 4345 if (Ty->isMemberPointerType()) { 4346 // If the member pointer is represented by an LLVM int or ptr, pass it 4347 // directly. 4348 llvm::Type *LLTy = CGT.ConvertType(Ty); 4349 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4350 return ABIArgInfo::getDirect(); 4351 } 4352 4353 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4354 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4355 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4356 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4357 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4358 4359 // Otherwise, coerce it to a small integer. 4360 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4361 } 4362 4363 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4364 switch (BT->getKind()) { 4365 case BuiltinType::Bool: 4366 // Bool type is always extended to the ABI, other builtin types are not 4367 // extended. 4368 return ABIArgInfo::getExtend(Ty); 4369 4370 case BuiltinType::LongDouble: 4371 // Mingw64 GCC uses the old 80 bit extended precision floating point 4372 // unit. It passes them indirectly through memory. 4373 if (IsMingw64) { 4374 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4375 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4376 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4377 } 4378 break; 4379 4380 case BuiltinType::Int128: 4381 case BuiltinType::UInt128: 4382 // If it's a parameter type, the normal ABI rule is that arguments larger 4383 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4384 // even though it isn't particularly efficient. 4385 if (!IsReturnType) 4386 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4387 4388 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4389 // Clang matches them for compatibility. 4390 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4391 llvm::Type::getInt64Ty(getVMContext()), 2)); 4392 4393 default: 4394 break; 4395 } 4396 } 4397 4398 if (Ty->isBitIntType()) { 4399 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4400 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4401 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 4402 // or 8 bytes anyway as long is it fits in them, so we don't have to check 4403 // the power of 2. 4404 if (Width <= 64) 4405 return ABIArgInfo::getDirect(); 4406 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4407 } 4408 4409 return ABIArgInfo::getDirect(); 4410 } 4411 4412 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4413 const unsigned CC = FI.getCallingConvention(); 4414 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4415 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4416 4417 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4418 // classification rules. 4419 if (CC == llvm::CallingConv::X86_64_SysV) { 4420 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4421 SysVABIInfo.computeInfo(FI); 4422 return; 4423 } 4424 4425 unsigned FreeSSERegs = 0; 4426 if (IsVectorCall) { 4427 // We can use up to 4 SSE return registers with vectorcall. 4428 FreeSSERegs = 4; 4429 } else if (IsRegCall) { 4430 // RegCall gives us 16 SSE registers. 4431 FreeSSERegs = 16; 4432 } 4433 4434 if (!getCXXABI().classifyReturnType(FI)) 4435 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4436 IsVectorCall, IsRegCall); 4437 4438 if (IsVectorCall) { 4439 // We can use up to 6 SSE register parameters with vectorcall. 4440 FreeSSERegs = 6; 4441 } else if (IsRegCall) { 4442 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4443 FreeSSERegs = 16; 4444 } 4445 4446 unsigned ArgNum = 0; 4447 unsigned ZeroSSERegs = 0; 4448 for (auto &I : FI.arguments()) { 4449 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4450 // XMM/YMM registers. After the sixth argument, pretend no vector 4451 // registers are left. 4452 unsigned *MaybeFreeSSERegs = 4453 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4454 I.info = 4455 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4456 ++ArgNum; 4457 } 4458 4459 if (IsVectorCall) { 4460 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4461 // second pass. 4462 for (auto &I : FI.arguments()) 4463 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4464 } 4465 } 4466 4467 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4468 QualType Ty) const { 4469 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4470 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4471 uint64_t Width = getContext().getTypeSize(Ty); 4472 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4473 4474 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4475 CGF.getContext().getTypeInfoInChars(Ty), 4476 CharUnits::fromQuantity(8), 4477 /*allowHigherAlign*/ false); 4478 } 4479 4480 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4481 llvm::Value *Address, bool Is64Bit, 4482 bool IsAIX) { 4483 // This is calculated from the LLVM and GCC tables and verified 4484 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4485 4486 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4487 4488 llvm::IntegerType *i8 = CGF.Int8Ty; 4489 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4490 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4491 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4492 4493 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4494 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4495 4496 // 32-63: fp0-31, the 8-byte floating-point registers 4497 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4498 4499 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4500 // 64: mq 4501 // 65: lr 4502 // 66: ctr 4503 // 67: ap 4504 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4505 4506 // 68-76 are various 4-byte special-purpose registers: 4507 // 68-75 cr0-7 4508 // 76: xer 4509 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4510 4511 // 77-108: v0-31, the 16-byte vector registers 4512 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4513 4514 // 109: vrsave 4515 // 110: vscr 4516 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4517 4518 // AIX does not utilize the rest of the registers. 4519 if (IsAIX) 4520 return false; 4521 4522 // 111: spe_acc 4523 // 112: spefscr 4524 // 113: sfp 4525 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4526 4527 if (!Is64Bit) 4528 return false; 4529 4530 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4531 // or above CPU. 4532 // 64-bit only registers: 4533 // 114: tfhar 4534 // 115: tfiar 4535 // 116: texasr 4536 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4537 4538 return false; 4539 } 4540 4541 // AIX 4542 namespace { 4543 /// AIXABIInfo - The AIX XCOFF ABI information. 4544 class AIXABIInfo : public ABIInfo { 4545 const bool Is64Bit; 4546 const unsigned PtrByteSize; 4547 CharUnits getParamTypeAlignment(QualType Ty) const; 4548 4549 public: 4550 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4551 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4552 4553 bool isPromotableTypeForABI(QualType Ty) const; 4554 4555 ABIArgInfo classifyReturnType(QualType RetTy) const; 4556 ABIArgInfo classifyArgumentType(QualType Ty) const; 4557 4558 void computeInfo(CGFunctionInfo &FI) const override { 4559 if (!getCXXABI().classifyReturnType(FI)) 4560 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4561 4562 for (auto &I : FI.arguments()) 4563 I.info = classifyArgumentType(I.type); 4564 } 4565 4566 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4567 QualType Ty) const override; 4568 }; 4569 4570 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4571 const bool Is64Bit; 4572 4573 public: 4574 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4575 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4576 Is64Bit(Is64Bit) {} 4577 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4578 return 1; // r1 is the dedicated stack pointer 4579 } 4580 4581 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4582 llvm::Value *Address) const override; 4583 }; 4584 } // namespace 4585 4586 // Return true if the ABI requires Ty to be passed sign- or zero- 4587 // extended to 32/64 bits. 4588 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4589 // Treat an enum type as its underlying type. 4590 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4591 Ty = EnumTy->getDecl()->getIntegerType(); 4592 4593 // Promotable integer types are required to be promoted by the ABI. 4594 if (Ty->isPromotableIntegerType()) 4595 return true; 4596 4597 if (!Is64Bit) 4598 return false; 4599 4600 // For 64 bit mode, in addition to the usual promotable integer types, we also 4601 // need to extend all 32-bit types, since the ABI requires promotion to 64 4602 // bits. 4603 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4604 switch (BT->getKind()) { 4605 case BuiltinType::Int: 4606 case BuiltinType::UInt: 4607 return true; 4608 default: 4609 break; 4610 } 4611 4612 return false; 4613 } 4614 4615 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4616 if (RetTy->isAnyComplexType()) 4617 return ABIArgInfo::getDirect(); 4618 4619 if (RetTy->isVectorType()) 4620 return ABIArgInfo::getDirect(); 4621 4622 if (RetTy->isVoidType()) 4623 return ABIArgInfo::getIgnore(); 4624 4625 if (isAggregateTypeForABI(RetTy)) 4626 return getNaturalAlignIndirect(RetTy); 4627 4628 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4629 : ABIArgInfo::getDirect()); 4630 } 4631 4632 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4633 Ty = useFirstFieldIfTransparentUnion(Ty); 4634 4635 if (Ty->isAnyComplexType()) 4636 return ABIArgInfo::getDirect(); 4637 4638 if (Ty->isVectorType()) 4639 return ABIArgInfo::getDirect(); 4640 4641 if (isAggregateTypeForABI(Ty)) { 4642 // Records with non-trivial destructors/copy-constructors should not be 4643 // passed by value. 4644 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4645 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4646 4647 CharUnits CCAlign = getParamTypeAlignment(Ty); 4648 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4649 4650 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4651 /*Realign*/ TyAlign > CCAlign); 4652 } 4653 4654 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4655 : ABIArgInfo::getDirect()); 4656 } 4657 4658 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4659 // Complex types are passed just like their elements. 4660 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4661 Ty = CTy->getElementType(); 4662 4663 if (Ty->isVectorType()) 4664 return CharUnits::fromQuantity(16); 4665 4666 // If the structure contains a vector type, the alignment is 16. 4667 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4668 return CharUnits::fromQuantity(16); 4669 4670 return CharUnits::fromQuantity(PtrByteSize); 4671 } 4672 4673 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4674 QualType Ty) const { 4675 4676 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4677 TypeInfo.Align = getParamTypeAlignment(Ty); 4678 4679 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4680 4681 // If we have a complex type and the base type is smaller than the register 4682 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4683 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4684 // Clang expects us to produce a pointer to a structure with the two parts 4685 // packed tightly. So generate loads of the real and imaginary parts relative 4686 // to the va_list pointer, and store them to a temporary structure. We do the 4687 // same as the PPC64ABI here. 4688 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4689 CharUnits EltSize = TypeInfo.Width / 2; 4690 if (EltSize < SlotSize) 4691 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4692 } 4693 4694 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4695 SlotSize, /*AllowHigher*/ true); 4696 } 4697 4698 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4699 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4700 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4701 } 4702 4703 // PowerPC-32 4704 namespace { 4705 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4706 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4707 bool IsSoftFloatABI; 4708 bool IsRetSmallStructInRegABI; 4709 4710 CharUnits getParamTypeAlignment(QualType Ty) const; 4711 4712 public: 4713 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4714 bool RetSmallStructInRegABI) 4715 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4716 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4717 4718 ABIArgInfo classifyReturnType(QualType RetTy) const; 4719 4720 void computeInfo(CGFunctionInfo &FI) const override { 4721 if (!getCXXABI().classifyReturnType(FI)) 4722 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4723 for (auto &I : FI.arguments()) 4724 I.info = classifyArgumentType(I.type); 4725 } 4726 4727 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4728 QualType Ty) const override; 4729 }; 4730 4731 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4732 public: 4733 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4734 bool RetSmallStructInRegABI) 4735 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4736 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4737 4738 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4739 const CodeGenOptions &Opts); 4740 4741 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4742 // This is recovered from gcc output. 4743 return 1; // r1 is the dedicated stack pointer 4744 } 4745 4746 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4747 llvm::Value *Address) const override; 4748 }; 4749 } 4750 4751 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4752 // Complex types are passed just like their elements. 4753 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4754 Ty = CTy->getElementType(); 4755 4756 if (Ty->isVectorType()) 4757 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4758 : 4); 4759 4760 // For single-element float/vector structs, we consider the whole type 4761 // to have the same alignment requirements as its single element. 4762 const Type *AlignTy = nullptr; 4763 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4764 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4765 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4766 (BT && BT->isFloatingPoint())) 4767 AlignTy = EltType; 4768 } 4769 4770 if (AlignTy) 4771 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4772 return CharUnits::fromQuantity(4); 4773 } 4774 4775 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4776 uint64_t Size; 4777 4778 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4779 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4780 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4781 // System V ABI (1995), page 3-22, specified: 4782 // > A structure or union whose size is less than or equal to 8 bytes 4783 // > shall be returned in r3 and r4, as if it were first stored in the 4784 // > 8-byte aligned memory area and then the low addressed word were 4785 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4786 // > the last member of the structure or union are not defined. 4787 // 4788 // GCC for big-endian PPC32 inserts the pad before the first member, 4789 // not "beyond the last member" of the struct. To stay compatible 4790 // with GCC, we coerce the struct to an integer of the same size. 4791 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4792 if (Size == 0) 4793 return ABIArgInfo::getIgnore(); 4794 else { 4795 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4796 return ABIArgInfo::getDirect(CoerceTy); 4797 } 4798 } 4799 4800 return DefaultABIInfo::classifyReturnType(RetTy); 4801 } 4802 4803 // TODO: this implementation is now likely redundant with 4804 // DefaultABIInfo::EmitVAArg. 4805 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4806 QualType Ty) const { 4807 if (getTarget().getTriple().isOSDarwin()) { 4808 auto TI = getContext().getTypeInfoInChars(Ty); 4809 TI.Align = getParamTypeAlignment(Ty); 4810 4811 CharUnits SlotSize = CharUnits::fromQuantity(4); 4812 return emitVoidPtrVAArg(CGF, VAList, Ty, 4813 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4814 /*AllowHigherAlign=*/true); 4815 } 4816 4817 const unsigned OverflowLimit = 8; 4818 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4819 // TODO: Implement this. For now ignore. 4820 (void)CTy; 4821 return Address::invalid(); // FIXME? 4822 } 4823 4824 // struct __va_list_tag { 4825 // unsigned char gpr; 4826 // unsigned char fpr; 4827 // unsigned short reserved; 4828 // void *overflow_arg_area; 4829 // void *reg_save_area; 4830 // }; 4831 4832 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4833 bool isInt = !Ty->isFloatingType(); 4834 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4835 4836 // All aggregates are passed indirectly? That doesn't seem consistent 4837 // with the argument-lowering code. 4838 bool isIndirect = isAggregateTypeForABI(Ty); 4839 4840 CGBuilderTy &Builder = CGF.Builder; 4841 4842 // The calling convention either uses 1-2 GPRs or 1 FPR. 4843 Address NumRegsAddr = Address::invalid(); 4844 if (isInt || IsSoftFloatABI) { 4845 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4846 } else { 4847 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4848 } 4849 4850 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4851 4852 // "Align" the register count when TY is i64. 4853 if (isI64 || (isF64 && IsSoftFloatABI)) { 4854 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4855 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4856 } 4857 4858 llvm::Value *CC = 4859 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4860 4861 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4862 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4863 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4864 4865 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4866 4867 llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy; 4868 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4869 4870 // Case 1: consume registers. 4871 Address RegAddr = Address::invalid(); 4872 { 4873 CGF.EmitBlock(UsingRegs); 4874 4875 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4876 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty, 4877 CharUnits::fromQuantity(8)); 4878 assert(RegAddr.getElementType() == CGF.Int8Ty); 4879 4880 // Floating-point registers start after the general-purpose registers. 4881 if (!(isInt || IsSoftFloatABI)) { 4882 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4883 CharUnits::fromQuantity(32)); 4884 } 4885 4886 // Get the address of the saved value by scaling the number of 4887 // registers we've used by the number of 4888 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4889 llvm::Value *RegOffset = 4890 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4891 RegAddr = Address( 4892 Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), 4893 CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4894 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4895 4896 // Increase the used-register count. 4897 NumRegs = 4898 Builder.CreateAdd(NumRegs, 4899 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4900 Builder.CreateStore(NumRegs, NumRegsAddr); 4901 4902 CGF.EmitBranch(Cont); 4903 } 4904 4905 // Case 2: consume space in the overflow area. 4906 Address MemAddr = Address::invalid(); 4907 { 4908 CGF.EmitBlock(UsingOverflow); 4909 4910 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4911 4912 // Everything in the overflow area is rounded up to a size of at least 4. 4913 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4914 4915 CharUnits Size; 4916 if (!isIndirect) { 4917 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4918 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4919 } else { 4920 Size = CGF.getPointerSize(); 4921 } 4922 4923 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4924 Address OverflowArea = 4925 Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty, 4926 OverflowAreaAlign); 4927 // Round up address of argument to alignment 4928 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4929 if (Align > OverflowAreaAlign) { 4930 llvm::Value *Ptr = OverflowArea.getPointer(); 4931 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4932 OverflowArea.getElementType(), Align); 4933 } 4934 4935 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4936 4937 // Increase the overflow area. 4938 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4939 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4940 CGF.EmitBranch(Cont); 4941 } 4942 4943 CGF.EmitBlock(Cont); 4944 4945 // Merge the cases with a phi. 4946 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4947 "vaarg.addr"); 4948 4949 // Load the pointer if the argument was passed indirectly. 4950 if (isIndirect) { 4951 Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy, 4952 getContext().getTypeAlignInChars(Ty)); 4953 } 4954 4955 return Result; 4956 } 4957 4958 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4959 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4960 assert(Triple.isPPC32()); 4961 4962 switch (Opts.getStructReturnConvention()) { 4963 case CodeGenOptions::SRCK_Default: 4964 break; 4965 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4966 return false; 4967 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4968 return true; 4969 } 4970 4971 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4972 return true; 4973 4974 return false; 4975 } 4976 4977 bool 4978 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4979 llvm::Value *Address) const { 4980 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4981 /*IsAIX*/ false); 4982 } 4983 4984 // PowerPC-64 4985 4986 namespace { 4987 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4988 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4989 public: 4990 enum ABIKind { 4991 ELFv1 = 0, 4992 ELFv2 4993 }; 4994 4995 private: 4996 static const unsigned GPRBits = 64; 4997 ABIKind Kind; 4998 bool IsSoftFloatABI; 4999 5000 public: 5001 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 5002 bool SoftFloatABI) 5003 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 5004 5005 bool isPromotableTypeForABI(QualType Ty) const; 5006 CharUnits getParamTypeAlignment(QualType Ty) const; 5007 5008 ABIArgInfo classifyReturnType(QualType RetTy) const; 5009 ABIArgInfo classifyArgumentType(QualType Ty) const; 5010 5011 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5012 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5013 uint64_t Members) const override; 5014 5015 // TODO: We can add more logic to computeInfo to improve performance. 5016 // Example: For aggregate arguments that fit in a register, we could 5017 // use getDirectInReg (as is done below for structs containing a single 5018 // floating-point value) to avoid pushing them to memory on function 5019 // entry. This would require changing the logic in PPCISelLowering 5020 // when lowering the parameters in the caller and args in the callee. 5021 void computeInfo(CGFunctionInfo &FI) const override { 5022 if (!getCXXABI().classifyReturnType(FI)) 5023 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5024 for (auto &I : FI.arguments()) { 5025 // We rely on the default argument classification for the most part. 5026 // One exception: An aggregate containing a single floating-point 5027 // or vector item must be passed in a register if one is available. 5028 const Type *T = isSingleElementStruct(I.type, getContext()); 5029 if (T) { 5030 const BuiltinType *BT = T->getAs<BuiltinType>(); 5031 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 5032 (BT && BT->isFloatingPoint())) { 5033 QualType QT(T, 0); 5034 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 5035 continue; 5036 } 5037 } 5038 I.info = classifyArgumentType(I.type); 5039 } 5040 } 5041 5042 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5043 QualType Ty) const override; 5044 5045 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5046 bool asReturnValue) const override { 5047 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5048 } 5049 5050 bool isSwiftErrorInRegister() const override { 5051 return false; 5052 } 5053 }; 5054 5055 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5056 5057 public: 5058 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5059 PPC64_SVR4_ABIInfo::ABIKind Kind, 5060 bool SoftFloatABI) 5061 : TargetCodeGenInfo( 5062 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5063 5064 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5065 // This is recovered from gcc output. 5066 return 1; // r1 is the dedicated stack pointer 5067 } 5068 5069 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5070 llvm::Value *Address) const override; 5071 }; 5072 5073 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5074 public: 5075 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5076 5077 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5078 // This is recovered from gcc output. 5079 return 1; // r1 is the dedicated stack pointer 5080 } 5081 5082 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5083 llvm::Value *Address) const override; 5084 }; 5085 5086 } 5087 5088 // Return true if the ABI requires Ty to be passed sign- or zero- 5089 // extended to 64 bits. 5090 bool 5091 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5092 // Treat an enum type as its underlying type. 5093 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5094 Ty = EnumTy->getDecl()->getIntegerType(); 5095 5096 // Promotable integer types are required to be promoted by the ABI. 5097 if (isPromotableIntegerTypeForABI(Ty)) 5098 return true; 5099 5100 // In addition to the usual promotable integer types, we also need to 5101 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5102 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5103 switch (BT->getKind()) { 5104 case BuiltinType::Int: 5105 case BuiltinType::UInt: 5106 return true; 5107 default: 5108 break; 5109 } 5110 5111 if (const auto *EIT = Ty->getAs<BitIntType>()) 5112 if (EIT->getNumBits() < 64) 5113 return true; 5114 5115 return false; 5116 } 5117 5118 /// isAlignedParamType - Determine whether a type requires 16-byte or 5119 /// higher alignment in the parameter area. Always returns at least 8. 5120 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5121 // Complex types are passed just like their elements. 5122 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5123 Ty = CTy->getElementType(); 5124 5125 auto FloatUsesVector = [this](QualType Ty){ 5126 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5127 Ty) == &llvm::APFloat::IEEEquad(); 5128 }; 5129 5130 // Only vector types of size 16 bytes need alignment (larger types are 5131 // passed via reference, smaller types are not aligned). 5132 if (Ty->isVectorType()) { 5133 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5134 } else if (FloatUsesVector(Ty)) { 5135 // According to ABI document section 'Optional Save Areas': If extended 5136 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5137 // format are supported, map them to a single quadword, quadword aligned. 5138 return CharUnits::fromQuantity(16); 5139 } 5140 5141 // For single-element float/vector structs, we consider the whole type 5142 // to have the same alignment requirements as its single element. 5143 const Type *AlignAsType = nullptr; 5144 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5145 if (EltType) { 5146 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5147 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5148 (BT && BT->isFloatingPoint())) 5149 AlignAsType = EltType; 5150 } 5151 5152 // Likewise for ELFv2 homogeneous aggregates. 5153 const Type *Base = nullptr; 5154 uint64_t Members = 0; 5155 if (!AlignAsType && Kind == ELFv2 && 5156 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5157 AlignAsType = Base; 5158 5159 // With special case aggregates, only vector base types need alignment. 5160 if (AlignAsType) { 5161 bool UsesVector = AlignAsType->isVectorType() || 5162 FloatUsesVector(QualType(AlignAsType, 0)); 5163 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5164 } 5165 5166 // Otherwise, we only need alignment for any aggregate type that 5167 // has an alignment requirement of >= 16 bytes. 5168 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5169 return CharUnits::fromQuantity(16); 5170 } 5171 5172 return CharUnits::fromQuantity(8); 5173 } 5174 5175 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5176 /// aggregate. Base is set to the base element type, and Members is set 5177 /// to the number of base elements. 5178 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5179 uint64_t &Members) const { 5180 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5181 uint64_t NElements = AT->getSize().getZExtValue(); 5182 if (NElements == 0) 5183 return false; 5184 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5185 return false; 5186 Members *= NElements; 5187 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5188 const RecordDecl *RD = RT->getDecl(); 5189 if (RD->hasFlexibleArrayMember()) 5190 return false; 5191 5192 Members = 0; 5193 5194 // If this is a C++ record, check the properties of the record such as 5195 // bases and ABI specific restrictions 5196 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5197 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5198 return false; 5199 5200 for (const auto &I : CXXRD->bases()) { 5201 // Ignore empty records. 5202 if (isEmptyRecord(getContext(), I.getType(), true)) 5203 continue; 5204 5205 uint64_t FldMembers; 5206 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5207 return false; 5208 5209 Members += FldMembers; 5210 } 5211 } 5212 5213 for (const auto *FD : RD->fields()) { 5214 // Ignore (non-zero arrays of) empty records. 5215 QualType FT = FD->getType(); 5216 while (const ConstantArrayType *AT = 5217 getContext().getAsConstantArrayType(FT)) { 5218 if (AT->getSize().getZExtValue() == 0) 5219 return false; 5220 FT = AT->getElementType(); 5221 } 5222 if (isEmptyRecord(getContext(), FT, true)) 5223 continue; 5224 5225 if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() && 5226 FD->isZeroLengthBitField(getContext())) 5227 continue; 5228 5229 uint64_t FldMembers; 5230 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5231 return false; 5232 5233 Members = (RD->isUnion() ? 5234 std::max(Members, FldMembers) : Members + FldMembers); 5235 } 5236 5237 if (!Base) 5238 return false; 5239 5240 // Ensure there is no padding. 5241 if (getContext().getTypeSize(Base) * Members != 5242 getContext().getTypeSize(Ty)) 5243 return false; 5244 } else { 5245 Members = 1; 5246 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5247 Members = 2; 5248 Ty = CT->getElementType(); 5249 } 5250 5251 // Most ABIs only support float, double, and some vector type widths. 5252 if (!isHomogeneousAggregateBaseType(Ty)) 5253 return false; 5254 5255 // The base type must be the same for all members. Types that 5256 // agree in both total size and mode (float vs. vector) are 5257 // treated as being equivalent here. 5258 const Type *TyPtr = Ty.getTypePtr(); 5259 if (!Base) { 5260 Base = TyPtr; 5261 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5262 // so make sure to widen it explicitly. 5263 if (const VectorType *VT = Base->getAs<VectorType>()) { 5264 QualType EltTy = VT->getElementType(); 5265 unsigned NumElements = 5266 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5267 Base = getContext() 5268 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5269 .getTypePtr(); 5270 } 5271 } 5272 5273 if (Base->isVectorType() != TyPtr->isVectorType() || 5274 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5275 return false; 5276 } 5277 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5278 } 5279 5280 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5281 // Homogeneous aggregates for ELFv2 must have base types of float, 5282 // double, long double, or 128-bit vectors. 5283 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5284 if (BT->getKind() == BuiltinType::Float || 5285 BT->getKind() == BuiltinType::Double || 5286 BT->getKind() == BuiltinType::LongDouble || 5287 BT->getKind() == BuiltinType::Ibm128 || 5288 (getContext().getTargetInfo().hasFloat128Type() && 5289 (BT->getKind() == BuiltinType::Float128))) { 5290 if (IsSoftFloatABI) 5291 return false; 5292 return true; 5293 } 5294 } 5295 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5296 if (getContext().getTypeSize(VT) == 128) 5297 return true; 5298 } 5299 return false; 5300 } 5301 5302 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5303 const Type *Base, uint64_t Members) const { 5304 // Vector and fp128 types require one register, other floating point types 5305 // require one or two registers depending on their size. 5306 uint32_t NumRegs = 5307 ((getContext().getTargetInfo().hasFloat128Type() && 5308 Base->isFloat128Type()) || 5309 Base->isVectorType()) ? 1 5310 : (getContext().getTypeSize(Base) + 63) / 64; 5311 5312 // Homogeneous Aggregates may occupy at most 8 registers. 5313 return Members * NumRegs <= 8; 5314 } 5315 5316 ABIArgInfo 5317 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5318 Ty = useFirstFieldIfTransparentUnion(Ty); 5319 5320 if (Ty->isAnyComplexType()) 5321 return ABIArgInfo::getDirect(); 5322 5323 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5324 // or via reference (larger than 16 bytes). 5325 if (Ty->isVectorType()) { 5326 uint64_t Size = getContext().getTypeSize(Ty); 5327 if (Size > 128) 5328 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5329 else if (Size < 128) { 5330 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5331 return ABIArgInfo::getDirect(CoerceTy); 5332 } 5333 } 5334 5335 if (const auto *EIT = Ty->getAs<BitIntType>()) 5336 if (EIT->getNumBits() > 128) 5337 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5338 5339 if (isAggregateTypeForABI(Ty)) { 5340 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5341 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5342 5343 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5344 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5345 5346 // ELFv2 homogeneous aggregates are passed as array types. 5347 const Type *Base = nullptr; 5348 uint64_t Members = 0; 5349 if (Kind == ELFv2 && 5350 isHomogeneousAggregate(Ty, Base, Members)) { 5351 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5352 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5353 return ABIArgInfo::getDirect(CoerceTy); 5354 } 5355 5356 // If an aggregate may end up fully in registers, we do not 5357 // use the ByVal method, but pass the aggregate as array. 5358 // This is usually beneficial since we avoid forcing the 5359 // back-end to store the argument to memory. 5360 uint64_t Bits = getContext().getTypeSize(Ty); 5361 if (Bits > 0 && Bits <= 8 * GPRBits) { 5362 llvm::Type *CoerceTy; 5363 5364 // Types up to 8 bytes are passed as integer type (which will be 5365 // properly aligned in the argument save area doubleword). 5366 if (Bits <= GPRBits) 5367 CoerceTy = 5368 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5369 // Larger types are passed as arrays, with the base type selected 5370 // according to the required alignment in the save area. 5371 else { 5372 uint64_t RegBits = ABIAlign * 8; 5373 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5374 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5375 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5376 } 5377 5378 return ABIArgInfo::getDirect(CoerceTy); 5379 } 5380 5381 // All other aggregates are passed ByVal. 5382 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5383 /*ByVal=*/true, 5384 /*Realign=*/TyAlign > ABIAlign); 5385 } 5386 5387 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5388 : ABIArgInfo::getDirect()); 5389 } 5390 5391 ABIArgInfo 5392 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5393 if (RetTy->isVoidType()) 5394 return ABIArgInfo::getIgnore(); 5395 5396 if (RetTy->isAnyComplexType()) 5397 return ABIArgInfo::getDirect(); 5398 5399 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5400 // or via reference (larger than 16 bytes). 5401 if (RetTy->isVectorType()) { 5402 uint64_t Size = getContext().getTypeSize(RetTy); 5403 if (Size > 128) 5404 return getNaturalAlignIndirect(RetTy); 5405 else if (Size < 128) { 5406 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5407 return ABIArgInfo::getDirect(CoerceTy); 5408 } 5409 } 5410 5411 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5412 if (EIT->getNumBits() > 128) 5413 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5414 5415 if (isAggregateTypeForABI(RetTy)) { 5416 // ELFv2 homogeneous aggregates are returned as array types. 5417 const Type *Base = nullptr; 5418 uint64_t Members = 0; 5419 if (Kind == ELFv2 && 5420 isHomogeneousAggregate(RetTy, Base, Members)) { 5421 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5422 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5423 return ABIArgInfo::getDirect(CoerceTy); 5424 } 5425 5426 // ELFv2 small aggregates are returned in up to two registers. 5427 uint64_t Bits = getContext().getTypeSize(RetTy); 5428 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5429 if (Bits == 0) 5430 return ABIArgInfo::getIgnore(); 5431 5432 llvm::Type *CoerceTy; 5433 if (Bits > GPRBits) { 5434 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5435 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5436 } else 5437 CoerceTy = 5438 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5439 return ABIArgInfo::getDirect(CoerceTy); 5440 } 5441 5442 // All other aggregates are returned indirectly. 5443 return getNaturalAlignIndirect(RetTy); 5444 } 5445 5446 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5447 : ABIArgInfo::getDirect()); 5448 } 5449 5450 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5451 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5452 QualType Ty) const { 5453 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5454 TypeInfo.Align = getParamTypeAlignment(Ty); 5455 5456 CharUnits SlotSize = CharUnits::fromQuantity(8); 5457 5458 // If we have a complex type and the base type is smaller than 8 bytes, 5459 // the ABI calls for the real and imaginary parts to be right-adjusted 5460 // in separate doublewords. However, Clang expects us to produce a 5461 // pointer to a structure with the two parts packed tightly. So generate 5462 // loads of the real and imaginary parts relative to the va_list pointer, 5463 // and store them to a temporary structure. 5464 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5465 CharUnits EltSize = TypeInfo.Width / 2; 5466 if (EltSize < SlotSize) 5467 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5468 } 5469 5470 // Otherwise, just use the general rule. 5471 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5472 TypeInfo, SlotSize, /*AllowHigher*/ true); 5473 } 5474 5475 bool 5476 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5477 CodeGen::CodeGenFunction &CGF, 5478 llvm::Value *Address) const { 5479 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5480 /*IsAIX*/ false); 5481 } 5482 5483 bool 5484 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5485 llvm::Value *Address) const { 5486 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5487 /*IsAIX*/ false); 5488 } 5489 5490 //===----------------------------------------------------------------------===// 5491 // AArch64 ABI Implementation 5492 //===----------------------------------------------------------------------===// 5493 5494 namespace { 5495 5496 class AArch64ABIInfo : public SwiftABIInfo { 5497 public: 5498 enum ABIKind { 5499 AAPCS = 0, 5500 DarwinPCS, 5501 Win64 5502 }; 5503 5504 private: 5505 ABIKind Kind; 5506 5507 public: 5508 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5509 : SwiftABIInfo(CGT), Kind(Kind) {} 5510 5511 private: 5512 ABIKind getABIKind() const { return Kind; } 5513 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5514 5515 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5516 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5517 unsigned CallingConvention) const; 5518 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5519 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5520 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5521 uint64_t Members) const override; 5522 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override; 5523 5524 bool isIllegalVectorType(QualType Ty) const; 5525 5526 void computeInfo(CGFunctionInfo &FI) const override { 5527 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5528 FI.getReturnInfo() = 5529 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5530 5531 for (auto &it : FI.arguments()) 5532 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5533 FI.getCallingConvention()); 5534 } 5535 5536 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5537 CodeGenFunction &CGF) const; 5538 5539 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5540 CodeGenFunction &CGF) const; 5541 5542 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5543 QualType Ty) const override { 5544 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5545 if (isa<llvm::ScalableVectorType>(BaseTy)) 5546 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5547 "currently not supported"); 5548 5549 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5550 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5551 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5552 } 5553 5554 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5555 QualType Ty) const override; 5556 5557 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5558 bool asReturnValue) const override { 5559 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5560 } 5561 bool isSwiftErrorInRegister() const override { 5562 return true; 5563 } 5564 5565 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5566 unsigned elts) const override; 5567 5568 bool allowBFloatArgsAndRet() const override { 5569 return getTarget().hasBFloat16Type(); 5570 } 5571 }; 5572 5573 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5574 public: 5575 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5576 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5577 5578 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5579 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5580 } 5581 5582 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5583 return 31; 5584 } 5585 5586 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5587 5588 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5589 CodeGen::CodeGenModule &CGM) const override { 5590 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5591 if (!FD) 5592 return; 5593 5594 const auto *TA = FD->getAttr<TargetAttr>(); 5595 if (TA == nullptr) 5596 return; 5597 5598 ParsedTargetAttr Attr = TA->parse(); 5599 if (Attr.BranchProtection.empty()) 5600 return; 5601 5602 TargetInfo::BranchProtectionInfo BPI; 5603 StringRef Error; 5604 (void)CGM.getTarget().validateBranchProtection( 5605 Attr.BranchProtection, Attr.Architecture, BPI, Error); 5606 assert(Error.empty()); 5607 5608 auto *Fn = cast<llvm::Function>(GV); 5609 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5610 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5611 5612 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5613 Fn->addFnAttr("sign-return-address-key", 5614 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5615 ? "a_key" 5616 : "b_key"); 5617 } 5618 5619 Fn->addFnAttr("branch-target-enforcement", 5620 BPI.BranchTargetEnforcement ? "true" : "false"); 5621 } 5622 5623 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5624 llvm::Type *Ty) const override { 5625 if (CGF.getTarget().hasFeature("ls64")) { 5626 auto *ST = dyn_cast<llvm::StructType>(Ty); 5627 if (ST && ST->getNumElements() == 1) { 5628 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5629 if (AT && AT->getNumElements() == 8 && 5630 AT->getElementType()->isIntegerTy(64)) 5631 return true; 5632 } 5633 } 5634 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5635 } 5636 }; 5637 5638 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5639 public: 5640 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5641 : AArch64TargetCodeGenInfo(CGT, K) {} 5642 5643 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5644 CodeGen::CodeGenModule &CGM) const override; 5645 5646 void getDependentLibraryOption(llvm::StringRef Lib, 5647 llvm::SmallString<24> &Opt) const override { 5648 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5649 } 5650 5651 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5652 llvm::SmallString<32> &Opt) const override { 5653 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5654 } 5655 }; 5656 5657 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5658 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5659 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5660 if (GV->isDeclaration()) 5661 return; 5662 addStackProbeTargetAttributes(D, GV, CGM); 5663 } 5664 } 5665 5666 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5667 assert(Ty->isVectorType() && "expected vector type!"); 5668 5669 const auto *VT = Ty->castAs<VectorType>(); 5670 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5671 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5672 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5673 BuiltinType::UChar && 5674 "unexpected builtin type for SVE predicate!"); 5675 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5676 llvm::Type::getInt1Ty(getVMContext()), 16)); 5677 } 5678 5679 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5680 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5681 5682 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5683 llvm::ScalableVectorType *ResType = nullptr; 5684 switch (BT->getKind()) { 5685 default: 5686 llvm_unreachable("unexpected builtin type for SVE vector!"); 5687 case BuiltinType::SChar: 5688 case BuiltinType::UChar: 5689 ResType = llvm::ScalableVectorType::get( 5690 llvm::Type::getInt8Ty(getVMContext()), 16); 5691 break; 5692 case BuiltinType::Short: 5693 case BuiltinType::UShort: 5694 ResType = llvm::ScalableVectorType::get( 5695 llvm::Type::getInt16Ty(getVMContext()), 8); 5696 break; 5697 case BuiltinType::Int: 5698 case BuiltinType::UInt: 5699 ResType = llvm::ScalableVectorType::get( 5700 llvm::Type::getInt32Ty(getVMContext()), 4); 5701 break; 5702 case BuiltinType::Long: 5703 case BuiltinType::ULong: 5704 ResType = llvm::ScalableVectorType::get( 5705 llvm::Type::getInt64Ty(getVMContext()), 2); 5706 break; 5707 case BuiltinType::Half: 5708 ResType = llvm::ScalableVectorType::get( 5709 llvm::Type::getHalfTy(getVMContext()), 8); 5710 break; 5711 case BuiltinType::Float: 5712 ResType = llvm::ScalableVectorType::get( 5713 llvm::Type::getFloatTy(getVMContext()), 4); 5714 break; 5715 case BuiltinType::Double: 5716 ResType = llvm::ScalableVectorType::get( 5717 llvm::Type::getDoubleTy(getVMContext()), 2); 5718 break; 5719 case BuiltinType::BFloat16: 5720 ResType = llvm::ScalableVectorType::get( 5721 llvm::Type::getBFloatTy(getVMContext()), 8); 5722 break; 5723 } 5724 return ABIArgInfo::getDirect(ResType); 5725 } 5726 5727 uint64_t Size = getContext().getTypeSize(Ty); 5728 // Android promotes <2 x i8> to i16, not i32 5729 if (isAndroid() && (Size <= 16)) { 5730 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5731 return ABIArgInfo::getDirect(ResType); 5732 } 5733 if (Size <= 32) { 5734 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5735 return ABIArgInfo::getDirect(ResType); 5736 } 5737 if (Size == 64) { 5738 auto *ResType = 5739 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5740 return ABIArgInfo::getDirect(ResType); 5741 } 5742 if (Size == 128) { 5743 auto *ResType = 5744 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5745 return ABIArgInfo::getDirect(ResType); 5746 } 5747 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5748 } 5749 5750 ABIArgInfo 5751 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5752 unsigned CallingConvention) const { 5753 Ty = useFirstFieldIfTransparentUnion(Ty); 5754 5755 // Handle illegal vector types here. 5756 if (isIllegalVectorType(Ty)) 5757 return coerceIllegalVector(Ty); 5758 5759 if (!isAggregateTypeForABI(Ty)) { 5760 // Treat an enum type as its underlying type. 5761 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5762 Ty = EnumTy->getDecl()->getIntegerType(); 5763 5764 if (const auto *EIT = Ty->getAs<BitIntType>()) 5765 if (EIT->getNumBits() > 128) 5766 return getNaturalAlignIndirect(Ty); 5767 5768 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5769 ? ABIArgInfo::getExtend(Ty) 5770 : ABIArgInfo::getDirect()); 5771 } 5772 5773 // Structures with either a non-trivial destructor or a non-trivial 5774 // copy constructor are always indirect. 5775 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5776 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5777 CGCXXABI::RAA_DirectInMemory); 5778 } 5779 5780 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5781 // elsewhere for GNU compatibility. 5782 uint64_t Size = getContext().getTypeSize(Ty); 5783 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5784 if (IsEmpty || Size == 0) { 5785 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5786 return ABIArgInfo::getIgnore(); 5787 5788 // GNU C mode. The only argument that gets ignored is an empty one with size 5789 // 0. 5790 if (IsEmpty && Size == 0) 5791 return ABIArgInfo::getIgnore(); 5792 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5793 } 5794 5795 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5796 const Type *Base = nullptr; 5797 uint64_t Members = 0; 5798 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5799 bool IsWinVariadic = IsWin64 && IsVariadic; 5800 // In variadic functions on Windows, all composite types are treated alike, 5801 // no special handling of HFAs/HVAs. 5802 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5803 if (Kind != AArch64ABIInfo::AAPCS) 5804 return ABIArgInfo::getDirect( 5805 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5806 5807 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5808 // default otherwise. 5809 unsigned Align = 5810 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5811 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5812 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5813 return ABIArgInfo::getDirect( 5814 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5815 nullptr, true, Align); 5816 } 5817 5818 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5819 if (Size <= 128) { 5820 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5821 // same size and alignment. 5822 if (getTarget().isRenderScriptTarget()) { 5823 return coerceToIntArray(Ty, getContext(), getVMContext()); 5824 } 5825 unsigned Alignment; 5826 if (Kind == AArch64ABIInfo::AAPCS) { 5827 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5828 Alignment = Alignment < 128 ? 64 : 128; 5829 } else { 5830 Alignment = std::max(getContext().getTypeAlign(Ty), 5831 (unsigned)getTarget().getPointerWidth(0)); 5832 } 5833 Size = llvm::alignTo(Size, Alignment); 5834 5835 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5836 // For aggregates with 16-byte alignment, we use i128. 5837 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5838 return ABIArgInfo::getDirect( 5839 Size == Alignment ? BaseTy 5840 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5841 } 5842 5843 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5844 } 5845 5846 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5847 bool IsVariadic) const { 5848 if (RetTy->isVoidType()) 5849 return ABIArgInfo::getIgnore(); 5850 5851 if (const auto *VT = RetTy->getAs<VectorType>()) { 5852 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5853 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5854 return coerceIllegalVector(RetTy); 5855 } 5856 5857 // Large vector types should be returned via memory. 5858 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5859 return getNaturalAlignIndirect(RetTy); 5860 5861 if (!isAggregateTypeForABI(RetTy)) { 5862 // Treat an enum type as its underlying type. 5863 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5864 RetTy = EnumTy->getDecl()->getIntegerType(); 5865 5866 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5867 if (EIT->getNumBits() > 128) 5868 return getNaturalAlignIndirect(RetTy); 5869 5870 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5871 ? ABIArgInfo::getExtend(RetTy) 5872 : ABIArgInfo::getDirect()); 5873 } 5874 5875 uint64_t Size = getContext().getTypeSize(RetTy); 5876 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5877 return ABIArgInfo::getIgnore(); 5878 5879 const Type *Base = nullptr; 5880 uint64_t Members = 0; 5881 if (isHomogeneousAggregate(RetTy, Base, Members) && 5882 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5883 IsVariadic)) 5884 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5885 return ABIArgInfo::getDirect(); 5886 5887 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5888 if (Size <= 128) { 5889 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5890 // same size and alignment. 5891 if (getTarget().isRenderScriptTarget()) { 5892 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5893 } 5894 5895 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5896 // Composite types are returned in lower bits of a 64-bit register for LE, 5897 // and in higher bits for BE. However, integer types are always returned 5898 // in lower bits for both LE and BE, and they are not rounded up to 5899 // 64-bits. We can skip rounding up of composite types for LE, but not for 5900 // BE, otherwise composite types will be indistinguishable from integer 5901 // types. 5902 return ABIArgInfo::getDirect( 5903 llvm::IntegerType::get(getVMContext(), Size)); 5904 } 5905 5906 unsigned Alignment = getContext().getTypeAlign(RetTy); 5907 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5908 5909 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5910 // For aggregates with 16-byte alignment, we use i128. 5911 if (Alignment < 128 && Size == 128) { 5912 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5913 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5914 } 5915 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5916 } 5917 5918 return getNaturalAlignIndirect(RetTy); 5919 } 5920 5921 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5922 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5923 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5924 // Check whether VT is a fixed-length SVE vector. These types are 5925 // represented as scalable vectors in function args/return and must be 5926 // coerced from fixed vectors. 5927 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5928 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5929 return true; 5930 5931 // Check whether VT is legal. 5932 unsigned NumElements = VT->getNumElements(); 5933 uint64_t Size = getContext().getTypeSize(VT); 5934 // NumElements should be power of 2. 5935 if (!llvm::isPowerOf2_32(NumElements)) 5936 return true; 5937 5938 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5939 // vectors for some reason. 5940 llvm::Triple Triple = getTarget().getTriple(); 5941 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5942 Triple.isOSBinFormatMachO()) 5943 return Size <= 32; 5944 5945 return Size != 64 && (Size != 128 || NumElements == 1); 5946 } 5947 return false; 5948 } 5949 5950 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5951 llvm::Type *eltTy, 5952 unsigned elts) const { 5953 if (!llvm::isPowerOf2_32(elts)) 5954 return false; 5955 if (totalSize.getQuantity() != 8 && 5956 (totalSize.getQuantity() != 16 || elts == 1)) 5957 return false; 5958 return true; 5959 } 5960 5961 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5962 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5963 // point type or a short-vector type. This is the same as the 32-bit ABI, 5964 // but with the difference that any floating-point type is allowed, 5965 // including __fp16. 5966 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5967 if (BT->isFloatingPoint()) 5968 return true; 5969 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5970 unsigned VecSize = getContext().getTypeSize(VT); 5971 if (VecSize == 64 || VecSize == 128) 5972 return true; 5973 } 5974 return false; 5975 } 5976 5977 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5978 uint64_t Members) const { 5979 return Members <= 4; 5980 } 5981 5982 bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() 5983 const { 5984 // AAPCS64 says that the rule for whether something is a homogeneous 5985 // aggregate is applied to the output of the data layout decision. So 5986 // anything that doesn't affect the data layout also does not affect 5987 // homogeneity. In particular, zero-length bitfields don't stop a struct 5988 // being homogeneous. 5989 return true; 5990 } 5991 5992 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5993 CodeGenFunction &CGF) const { 5994 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5995 CGF.CurFnInfo->getCallingConvention()); 5996 bool IsIndirect = AI.isIndirect(); 5997 5998 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5999 if (IsIndirect) 6000 BaseTy = llvm::PointerType::getUnqual(BaseTy); 6001 else if (AI.getCoerceToType()) 6002 BaseTy = AI.getCoerceToType(); 6003 6004 unsigned NumRegs = 1; 6005 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 6006 BaseTy = ArrTy->getElementType(); 6007 NumRegs = ArrTy->getNumElements(); 6008 } 6009 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 6010 6011 // The AArch64 va_list type and handling is specified in the Procedure Call 6012 // Standard, section B.4: 6013 // 6014 // struct { 6015 // void *__stack; 6016 // void *__gr_top; 6017 // void *__vr_top; 6018 // int __gr_offs; 6019 // int __vr_offs; 6020 // }; 6021 6022 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 6023 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6024 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 6025 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6026 6027 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6028 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 6029 6030 Address reg_offs_p = Address::invalid(); 6031 llvm::Value *reg_offs = nullptr; 6032 int reg_top_index; 6033 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 6034 if (!IsFPR) { 6035 // 3 is the field number of __gr_offs 6036 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 6037 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 6038 reg_top_index = 1; // field number for __gr_top 6039 RegSize = llvm::alignTo(RegSize, 8); 6040 } else { 6041 // 4 is the field number of __vr_offs. 6042 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 6043 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 6044 reg_top_index = 2; // field number for __vr_top 6045 RegSize = 16 * NumRegs; 6046 } 6047 6048 //======================================= 6049 // Find out where argument was passed 6050 //======================================= 6051 6052 // If reg_offs >= 0 we're already using the stack for this type of 6053 // argument. We don't want to keep updating reg_offs (in case it overflows, 6054 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6055 // whatever they get). 6056 llvm::Value *UsingStack = nullptr; 6057 UsingStack = CGF.Builder.CreateICmpSGE( 6058 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6059 6060 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6061 6062 // Otherwise, at least some kind of argument could go in these registers, the 6063 // question is whether this particular type is too big. 6064 CGF.EmitBlock(MaybeRegBlock); 6065 6066 // Integer arguments may need to correct register alignment (for example a 6067 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6068 // align __gr_offs to calculate the potential address. 6069 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6070 int Align = TyAlign.getQuantity(); 6071 6072 reg_offs = CGF.Builder.CreateAdd( 6073 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6074 "align_regoffs"); 6075 reg_offs = CGF.Builder.CreateAnd( 6076 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6077 "aligned_regoffs"); 6078 } 6079 6080 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6081 // The fact that this is done unconditionally reflects the fact that 6082 // allocating an argument to the stack also uses up all the remaining 6083 // registers of the appropriate kind. 6084 llvm::Value *NewOffset = nullptr; 6085 NewOffset = CGF.Builder.CreateAdd( 6086 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6087 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6088 6089 // Now we're in a position to decide whether this argument really was in 6090 // registers or not. 6091 llvm::Value *InRegs = nullptr; 6092 InRegs = CGF.Builder.CreateICmpSLE( 6093 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6094 6095 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6096 6097 //======================================= 6098 // Argument was in registers 6099 //======================================= 6100 6101 // Now we emit the code for if the argument was originally passed in 6102 // registers. First start the appropriate block: 6103 CGF.EmitBlock(InRegBlock); 6104 6105 llvm::Value *reg_top = nullptr; 6106 Address reg_top_p = 6107 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6108 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6109 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6110 CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6111 Address RegAddr = Address::invalid(); 6112 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy; 6113 6114 if (IsIndirect) { 6115 // If it's been passed indirectly (actually a struct), whatever we find from 6116 // stored registers or on the stack will actually be a struct **. 6117 MemTy = llvm::PointerType::getUnqual(MemTy); 6118 } 6119 6120 const Type *Base = nullptr; 6121 uint64_t NumMembers = 0; 6122 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6123 if (IsHFA && NumMembers > 1) { 6124 // Homogeneous aggregates passed in registers will have their elements split 6125 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6126 // qN+1, ...). We reload and store into a temporary local variable 6127 // contiguously. 6128 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6129 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6130 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6131 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6132 Address Tmp = CGF.CreateTempAlloca(HFATy, 6133 std::max(TyAlign, BaseTyInfo.Align)); 6134 6135 // On big-endian platforms, the value will be right-aligned in its slot. 6136 int Offset = 0; 6137 if (CGF.CGM.getDataLayout().isBigEndian() && 6138 BaseTyInfo.Width.getQuantity() < 16) 6139 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6140 6141 for (unsigned i = 0; i < NumMembers; ++i) { 6142 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6143 Address LoadAddr = 6144 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6145 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6146 6147 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6148 6149 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6150 CGF.Builder.CreateStore(Elem, StoreAddr); 6151 } 6152 6153 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6154 } else { 6155 // Otherwise the object is contiguous in memory. 6156 6157 // It might be right-aligned in its slot. 6158 CharUnits SlotSize = BaseAddr.getAlignment(); 6159 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6160 (IsHFA || !isAggregateTypeForABI(Ty)) && 6161 TySize < SlotSize) { 6162 CharUnits Offset = SlotSize - TySize; 6163 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6164 } 6165 6166 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6167 } 6168 6169 CGF.EmitBranch(ContBlock); 6170 6171 //======================================= 6172 // Argument was on the stack 6173 //======================================= 6174 CGF.EmitBlock(OnStackBlock); 6175 6176 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6177 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6178 6179 // Again, stack arguments may need realignment. In this case both integer and 6180 // floating-point ones might be affected. 6181 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6182 int Align = TyAlign.getQuantity(); 6183 6184 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6185 6186 OnStackPtr = CGF.Builder.CreateAdd( 6187 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6188 "align_stack"); 6189 OnStackPtr = CGF.Builder.CreateAnd( 6190 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6191 "align_stack"); 6192 6193 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6194 } 6195 Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty, 6196 std::max(CharUnits::fromQuantity(8), TyAlign)); 6197 6198 // All stack slots are multiples of 8 bytes. 6199 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6200 CharUnits StackSize; 6201 if (IsIndirect) 6202 StackSize = StackSlotSize; 6203 else 6204 StackSize = TySize.alignTo(StackSlotSize); 6205 6206 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6207 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6208 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6209 6210 // Write the new value of __stack for the next call to va_arg 6211 CGF.Builder.CreateStore(NewStack, stack_p); 6212 6213 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6214 TySize < StackSlotSize) { 6215 CharUnits Offset = StackSlotSize - TySize; 6216 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6217 } 6218 6219 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6220 6221 CGF.EmitBranch(ContBlock); 6222 6223 //======================================= 6224 // Tidy up 6225 //======================================= 6226 CGF.EmitBlock(ContBlock); 6227 6228 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr, 6229 OnStackBlock, "vaargs.addr"); 6230 6231 if (IsIndirect) 6232 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy, 6233 TyAlign); 6234 6235 return ResAddr; 6236 } 6237 6238 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6239 CodeGenFunction &CGF) const { 6240 // The backend's lowering doesn't support va_arg for aggregates or 6241 // illegal vector types. Lower VAArg here for these cases and use 6242 // the LLVM va_arg instruction for everything else. 6243 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6244 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6245 6246 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6247 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6248 6249 // Empty records are ignored for parameter passing purposes. 6250 if (isEmptyRecord(getContext(), Ty, true)) { 6251 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), 6252 getVAListElementType(CGF), SlotSize); 6253 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6254 return Addr; 6255 } 6256 6257 // The size of the actual thing passed, which might end up just 6258 // being a pointer for indirect types. 6259 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6260 6261 // Arguments bigger than 16 bytes which aren't homogeneous 6262 // aggregates should be passed indirectly. 6263 bool IsIndirect = false; 6264 if (TyInfo.Width.getQuantity() > 16) { 6265 const Type *Base = nullptr; 6266 uint64_t Members = 0; 6267 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6268 } 6269 6270 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6271 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6272 } 6273 6274 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6275 QualType Ty) const { 6276 bool IsIndirect = false; 6277 6278 // Composites larger than 16 bytes are passed by reference. 6279 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6280 IsIndirect = true; 6281 6282 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6283 CGF.getContext().getTypeInfoInChars(Ty), 6284 CharUnits::fromQuantity(8), 6285 /*allowHigherAlign*/ false); 6286 } 6287 6288 //===----------------------------------------------------------------------===// 6289 // ARM ABI Implementation 6290 //===----------------------------------------------------------------------===// 6291 6292 namespace { 6293 6294 class ARMABIInfo : public SwiftABIInfo { 6295 public: 6296 enum ABIKind { 6297 APCS = 0, 6298 AAPCS = 1, 6299 AAPCS_VFP = 2, 6300 AAPCS16_VFP = 3, 6301 }; 6302 6303 private: 6304 ABIKind Kind; 6305 bool IsFloatABISoftFP; 6306 6307 public: 6308 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6309 : SwiftABIInfo(CGT), Kind(_Kind) { 6310 setCCs(); 6311 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6312 CGT.getCodeGenOpts().FloatABI == ""; // default 6313 } 6314 6315 bool isEABI() const { 6316 switch (getTarget().getTriple().getEnvironment()) { 6317 case llvm::Triple::Android: 6318 case llvm::Triple::EABI: 6319 case llvm::Triple::EABIHF: 6320 case llvm::Triple::GNUEABI: 6321 case llvm::Triple::GNUEABIHF: 6322 case llvm::Triple::MuslEABI: 6323 case llvm::Triple::MuslEABIHF: 6324 return true; 6325 default: 6326 return false; 6327 } 6328 } 6329 6330 bool isEABIHF() const { 6331 switch (getTarget().getTriple().getEnvironment()) { 6332 case llvm::Triple::EABIHF: 6333 case llvm::Triple::GNUEABIHF: 6334 case llvm::Triple::MuslEABIHF: 6335 return true; 6336 default: 6337 return false; 6338 } 6339 } 6340 6341 ABIKind getABIKind() const { return Kind; } 6342 6343 bool allowBFloatArgsAndRet() const override { 6344 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6345 } 6346 6347 private: 6348 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6349 unsigned functionCallConv) const; 6350 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6351 unsigned functionCallConv) const; 6352 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6353 uint64_t Members) const; 6354 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6355 bool isIllegalVectorType(QualType Ty) const; 6356 bool containsAnyFP16Vectors(QualType Ty) const; 6357 6358 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6359 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6360 uint64_t Members) const override; 6361 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override; 6362 6363 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6364 6365 void computeInfo(CGFunctionInfo &FI) const override; 6366 6367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6368 QualType Ty) const override; 6369 6370 llvm::CallingConv::ID getLLVMDefaultCC() const; 6371 llvm::CallingConv::ID getABIDefaultCC() const; 6372 void setCCs(); 6373 6374 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6375 bool asReturnValue) const override { 6376 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6377 } 6378 bool isSwiftErrorInRegister() const override { 6379 return true; 6380 } 6381 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6382 unsigned elts) const override; 6383 }; 6384 6385 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6386 public: 6387 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6388 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6389 6390 const ARMABIInfo &getABIInfo() const { 6391 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6392 } 6393 6394 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6395 return 13; 6396 } 6397 6398 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6399 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6400 } 6401 6402 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6403 llvm::Value *Address) const override { 6404 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6405 6406 // 0-15 are the 16 integer registers. 6407 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6408 return false; 6409 } 6410 6411 unsigned getSizeOfUnwindException() const override { 6412 if (getABIInfo().isEABI()) return 88; 6413 return TargetCodeGenInfo::getSizeOfUnwindException(); 6414 } 6415 6416 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6417 CodeGen::CodeGenModule &CGM) const override { 6418 if (GV->isDeclaration()) 6419 return; 6420 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6421 if (!FD) 6422 return; 6423 auto *Fn = cast<llvm::Function>(GV); 6424 6425 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6426 ParsedTargetAttr Attr = TA->parse(); 6427 if (!Attr.BranchProtection.empty()) { 6428 TargetInfo::BranchProtectionInfo BPI; 6429 StringRef DiagMsg; 6430 StringRef Arch = Attr.Architecture.empty() 6431 ? CGM.getTarget().getTargetOpts().CPU 6432 : Attr.Architecture; 6433 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6434 Arch, BPI, DiagMsg)) { 6435 CGM.getDiags().Report( 6436 D->getLocation(), 6437 diag::warn_target_unsupported_branch_protection_attribute) 6438 << Arch; 6439 } else { 6440 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6441 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6442 "Unexpected SignReturnAddressScopeKind"); 6443 Fn->addFnAttr( 6444 "sign-return-address", 6445 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6446 6447 Fn->addFnAttr("branch-target-enforcement", 6448 BPI.BranchTargetEnforcement ? "true" : "false"); 6449 } 6450 } else if (CGM.getLangOpts().BranchTargetEnforcement || 6451 CGM.getLangOpts().hasSignReturnAddress()) { 6452 // If the Branch Protection attribute is missing, validate the target 6453 // Architecture attribute against Branch Protection command line 6454 // settings. 6455 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture)) 6456 CGM.getDiags().Report( 6457 D->getLocation(), 6458 diag::warn_target_unsupported_branch_protection_attribute) 6459 << Attr.Architecture; 6460 } 6461 } 6462 6463 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6464 if (!Attr) 6465 return; 6466 6467 const char *Kind; 6468 switch (Attr->getInterrupt()) { 6469 case ARMInterruptAttr::Generic: Kind = ""; break; 6470 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6471 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6472 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6473 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6474 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6475 } 6476 6477 Fn->addFnAttr("interrupt", Kind); 6478 6479 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6480 if (ABI == ARMABIInfo::APCS) 6481 return; 6482 6483 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6484 // however this is not necessarily true on taking any interrupt. Instruct 6485 // the backend to perform a realignment as part of the function prologue. 6486 llvm::AttrBuilder B(Fn->getContext()); 6487 B.addStackAlignmentAttr(8); 6488 Fn->addFnAttrs(B); 6489 } 6490 }; 6491 6492 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6493 public: 6494 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6495 : ARMTargetCodeGenInfo(CGT, K) {} 6496 6497 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6498 CodeGen::CodeGenModule &CGM) const override; 6499 6500 void getDependentLibraryOption(llvm::StringRef Lib, 6501 llvm::SmallString<24> &Opt) const override { 6502 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6503 } 6504 6505 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6506 llvm::SmallString<32> &Opt) const override { 6507 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6508 } 6509 }; 6510 6511 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6512 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6513 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6514 if (GV->isDeclaration()) 6515 return; 6516 addStackProbeTargetAttributes(D, GV, CGM); 6517 } 6518 } 6519 6520 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6521 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6522 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6523 FI.getCallingConvention()); 6524 6525 for (auto &I : FI.arguments()) 6526 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6527 FI.getCallingConvention()); 6528 6529 6530 // Always honor user-specified calling convention. 6531 if (FI.getCallingConvention() != llvm::CallingConv::C) 6532 return; 6533 6534 llvm::CallingConv::ID cc = getRuntimeCC(); 6535 if (cc != llvm::CallingConv::C) 6536 FI.setEffectiveCallingConvention(cc); 6537 } 6538 6539 /// Return the default calling convention that LLVM will use. 6540 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6541 // The default calling convention that LLVM will infer. 6542 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6543 return llvm::CallingConv::ARM_AAPCS_VFP; 6544 else if (isEABI()) 6545 return llvm::CallingConv::ARM_AAPCS; 6546 else 6547 return llvm::CallingConv::ARM_APCS; 6548 } 6549 6550 /// Return the calling convention that our ABI would like us to use 6551 /// as the C calling convention. 6552 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6553 switch (getABIKind()) { 6554 case APCS: return llvm::CallingConv::ARM_APCS; 6555 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6556 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6557 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6558 } 6559 llvm_unreachable("bad ABI kind"); 6560 } 6561 6562 void ARMABIInfo::setCCs() { 6563 assert(getRuntimeCC() == llvm::CallingConv::C); 6564 6565 // Don't muddy up the IR with a ton of explicit annotations if 6566 // they'd just match what LLVM will infer from the triple. 6567 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6568 if (abiCC != getLLVMDefaultCC()) 6569 RuntimeCC = abiCC; 6570 } 6571 6572 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6573 uint64_t Size = getContext().getTypeSize(Ty); 6574 if (Size <= 32) { 6575 llvm::Type *ResType = 6576 llvm::Type::getInt32Ty(getVMContext()); 6577 return ABIArgInfo::getDirect(ResType); 6578 } 6579 if (Size == 64 || Size == 128) { 6580 auto *ResType = llvm::FixedVectorType::get( 6581 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6582 return ABIArgInfo::getDirect(ResType); 6583 } 6584 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6585 } 6586 6587 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6588 const Type *Base, 6589 uint64_t Members) const { 6590 assert(Base && "Base class should be set for homogeneous aggregate"); 6591 // Base can be a floating-point or a vector. 6592 if (const VectorType *VT = Base->getAs<VectorType>()) { 6593 // FP16 vectors should be converted to integer vectors 6594 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6595 uint64_t Size = getContext().getTypeSize(VT); 6596 auto *NewVecTy = llvm::FixedVectorType::get( 6597 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6598 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6599 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6600 } 6601 } 6602 unsigned Align = 0; 6603 if (getABIKind() == ARMABIInfo::AAPCS || 6604 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6605 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6606 // default otherwise. 6607 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6608 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6609 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6610 } 6611 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6612 } 6613 6614 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6615 unsigned functionCallConv) const { 6616 // 6.1.2.1 The following argument types are VFP CPRCs: 6617 // A single-precision floating-point type (including promoted 6618 // half-precision types); A double-precision floating-point type; 6619 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6620 // with a Base Type of a single- or double-precision floating-point type, 6621 // 64-bit containerized vectors or 128-bit containerized vectors with one 6622 // to four Elements. 6623 // Variadic functions should always marshal to the base standard. 6624 bool IsAAPCS_VFP = 6625 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6626 6627 Ty = useFirstFieldIfTransparentUnion(Ty); 6628 6629 // Handle illegal vector types here. 6630 if (isIllegalVectorType(Ty)) 6631 return coerceIllegalVector(Ty); 6632 6633 if (!isAggregateTypeForABI(Ty)) { 6634 // Treat an enum type as its underlying type. 6635 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6636 Ty = EnumTy->getDecl()->getIntegerType(); 6637 } 6638 6639 if (const auto *EIT = Ty->getAs<BitIntType>()) 6640 if (EIT->getNumBits() > 64) 6641 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6642 6643 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6644 : ABIArgInfo::getDirect()); 6645 } 6646 6647 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6648 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6649 } 6650 6651 // Ignore empty records. 6652 if (isEmptyRecord(getContext(), Ty, true)) 6653 return ABIArgInfo::getIgnore(); 6654 6655 if (IsAAPCS_VFP) { 6656 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6657 // into VFP registers. 6658 const Type *Base = nullptr; 6659 uint64_t Members = 0; 6660 if (isHomogeneousAggregate(Ty, Base, Members)) 6661 return classifyHomogeneousAggregate(Ty, Base, Members); 6662 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6663 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6664 // this convention even for a variadic function: the backend will use GPRs 6665 // if needed. 6666 const Type *Base = nullptr; 6667 uint64_t Members = 0; 6668 if (isHomogeneousAggregate(Ty, Base, Members)) { 6669 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6670 llvm::Type *Ty = 6671 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6672 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6673 } 6674 } 6675 6676 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6677 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6678 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6679 // bigger than 128-bits, they get placed in space allocated by the caller, 6680 // and a pointer is passed. 6681 return ABIArgInfo::getIndirect( 6682 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6683 } 6684 6685 // Support byval for ARM. 6686 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6687 // most 8-byte. We realign the indirect argument if type alignment is bigger 6688 // than ABI alignment. 6689 uint64_t ABIAlign = 4; 6690 uint64_t TyAlign; 6691 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6692 getABIKind() == ARMABIInfo::AAPCS) { 6693 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6694 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6695 } else { 6696 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6697 } 6698 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6699 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6700 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6701 /*ByVal=*/true, 6702 /*Realign=*/TyAlign > ABIAlign); 6703 } 6704 6705 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6706 // same size and alignment. 6707 if (getTarget().isRenderScriptTarget()) { 6708 return coerceToIntArray(Ty, getContext(), getVMContext()); 6709 } 6710 6711 // Otherwise, pass by coercing to a structure of the appropriate size. 6712 llvm::Type* ElemTy; 6713 unsigned SizeRegs; 6714 // FIXME: Try to match the types of the arguments more accurately where 6715 // we can. 6716 if (TyAlign <= 4) { 6717 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6718 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6719 } else { 6720 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6721 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6722 } 6723 6724 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6725 } 6726 6727 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6728 llvm::LLVMContext &VMContext) { 6729 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6730 // is called integer-like if its size is less than or equal to one word, and 6731 // the offset of each of its addressable sub-fields is zero. 6732 6733 uint64_t Size = Context.getTypeSize(Ty); 6734 6735 // Check that the type fits in a word. 6736 if (Size > 32) 6737 return false; 6738 6739 // FIXME: Handle vector types! 6740 if (Ty->isVectorType()) 6741 return false; 6742 6743 // Float types are never treated as "integer like". 6744 if (Ty->isRealFloatingType()) 6745 return false; 6746 6747 // If this is a builtin or pointer type then it is ok. 6748 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6749 return true; 6750 6751 // Small complex integer types are "integer like". 6752 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6753 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6754 6755 // Single element and zero sized arrays should be allowed, by the definition 6756 // above, but they are not. 6757 6758 // Otherwise, it must be a record type. 6759 const RecordType *RT = Ty->getAs<RecordType>(); 6760 if (!RT) return false; 6761 6762 // Ignore records with flexible arrays. 6763 const RecordDecl *RD = RT->getDecl(); 6764 if (RD->hasFlexibleArrayMember()) 6765 return false; 6766 6767 // Check that all sub-fields are at offset 0, and are themselves "integer 6768 // like". 6769 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6770 6771 bool HadField = false; 6772 unsigned idx = 0; 6773 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6774 i != e; ++i, ++idx) { 6775 const FieldDecl *FD = *i; 6776 6777 // Bit-fields are not addressable, we only need to verify they are "integer 6778 // like". We still have to disallow a subsequent non-bitfield, for example: 6779 // struct { int : 0; int x } 6780 // is non-integer like according to gcc. 6781 if (FD->isBitField()) { 6782 if (!RD->isUnion()) 6783 HadField = true; 6784 6785 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6786 return false; 6787 6788 continue; 6789 } 6790 6791 // Check if this field is at offset 0. 6792 if (Layout.getFieldOffset(idx) != 0) 6793 return false; 6794 6795 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6796 return false; 6797 6798 // Only allow at most one field in a structure. This doesn't match the 6799 // wording above, but follows gcc in situations with a field following an 6800 // empty structure. 6801 if (!RD->isUnion()) { 6802 if (HadField) 6803 return false; 6804 6805 HadField = true; 6806 } 6807 } 6808 6809 return true; 6810 } 6811 6812 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6813 unsigned functionCallConv) const { 6814 6815 // Variadic functions should always marshal to the base standard. 6816 bool IsAAPCS_VFP = 6817 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6818 6819 if (RetTy->isVoidType()) 6820 return ABIArgInfo::getIgnore(); 6821 6822 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6823 // Large vector types should be returned via memory. 6824 if (getContext().getTypeSize(RetTy) > 128) 6825 return getNaturalAlignIndirect(RetTy); 6826 // TODO: FP16/BF16 vectors should be converted to integer vectors 6827 // This check is similar to isIllegalVectorType - refactor? 6828 if ((!getTarget().hasLegalHalfType() && 6829 (VT->getElementType()->isFloat16Type() || 6830 VT->getElementType()->isHalfType())) || 6831 (IsFloatABISoftFP && 6832 VT->getElementType()->isBFloat16Type())) 6833 return coerceIllegalVector(RetTy); 6834 } 6835 6836 if (!isAggregateTypeForABI(RetTy)) { 6837 // Treat an enum type as its underlying type. 6838 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6839 RetTy = EnumTy->getDecl()->getIntegerType(); 6840 6841 if (const auto *EIT = RetTy->getAs<BitIntType>()) 6842 if (EIT->getNumBits() > 64) 6843 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6844 6845 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6846 : ABIArgInfo::getDirect(); 6847 } 6848 6849 // Are we following APCS? 6850 if (getABIKind() == APCS) { 6851 if (isEmptyRecord(getContext(), RetTy, false)) 6852 return ABIArgInfo::getIgnore(); 6853 6854 // Complex types are all returned as packed integers. 6855 // 6856 // FIXME: Consider using 2 x vector types if the back end handles them 6857 // correctly. 6858 if (RetTy->isAnyComplexType()) 6859 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6860 getVMContext(), getContext().getTypeSize(RetTy))); 6861 6862 // Integer like structures are returned in r0. 6863 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6864 // Return in the smallest viable integer type. 6865 uint64_t Size = getContext().getTypeSize(RetTy); 6866 if (Size <= 8) 6867 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6868 if (Size <= 16) 6869 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6870 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6871 } 6872 6873 // Otherwise return in memory. 6874 return getNaturalAlignIndirect(RetTy); 6875 } 6876 6877 // Otherwise this is an AAPCS variant. 6878 6879 if (isEmptyRecord(getContext(), RetTy, true)) 6880 return ABIArgInfo::getIgnore(); 6881 6882 // Check for homogeneous aggregates with AAPCS-VFP. 6883 if (IsAAPCS_VFP) { 6884 const Type *Base = nullptr; 6885 uint64_t Members = 0; 6886 if (isHomogeneousAggregate(RetTy, Base, Members)) 6887 return classifyHomogeneousAggregate(RetTy, Base, Members); 6888 } 6889 6890 // Aggregates <= 4 bytes are returned in r0; other aggregates 6891 // are returned indirectly. 6892 uint64_t Size = getContext().getTypeSize(RetTy); 6893 if (Size <= 32) { 6894 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6895 // same size and alignment. 6896 if (getTarget().isRenderScriptTarget()) { 6897 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6898 } 6899 if (getDataLayout().isBigEndian()) 6900 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6901 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6902 6903 // Return in the smallest viable integer type. 6904 if (Size <= 8) 6905 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6906 if (Size <= 16) 6907 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6908 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6909 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6910 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6911 llvm::Type *CoerceTy = 6912 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6913 return ABIArgInfo::getDirect(CoerceTy); 6914 } 6915 6916 return getNaturalAlignIndirect(RetTy); 6917 } 6918 6919 /// isIllegalVector - check whether Ty is an illegal vector type. 6920 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6921 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6922 // On targets that don't support half, fp16 or bfloat, they are expanded 6923 // into float, and we don't want the ABI to depend on whether or not they 6924 // are supported in hardware. Thus return false to coerce vectors of these 6925 // types into integer vectors. 6926 // We do not depend on hasLegalHalfType for bfloat as it is a 6927 // separate IR type. 6928 if ((!getTarget().hasLegalHalfType() && 6929 (VT->getElementType()->isFloat16Type() || 6930 VT->getElementType()->isHalfType())) || 6931 (IsFloatABISoftFP && 6932 VT->getElementType()->isBFloat16Type())) 6933 return true; 6934 if (isAndroid()) { 6935 // Android shipped using Clang 3.1, which supported a slightly different 6936 // vector ABI. The primary differences were that 3-element vector types 6937 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6938 // accepts that legacy behavior for Android only. 6939 // Check whether VT is legal. 6940 unsigned NumElements = VT->getNumElements(); 6941 // NumElements should be power of 2 or equal to 3. 6942 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6943 return true; 6944 } else { 6945 // Check whether VT is legal. 6946 unsigned NumElements = VT->getNumElements(); 6947 uint64_t Size = getContext().getTypeSize(VT); 6948 // NumElements should be power of 2. 6949 if (!llvm::isPowerOf2_32(NumElements)) 6950 return true; 6951 // Size should be greater than 32 bits. 6952 return Size <= 32; 6953 } 6954 } 6955 return false; 6956 } 6957 6958 /// Return true if a type contains any 16-bit floating point vectors 6959 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6960 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6961 uint64_t NElements = AT->getSize().getZExtValue(); 6962 if (NElements == 0) 6963 return false; 6964 return containsAnyFP16Vectors(AT->getElementType()); 6965 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6966 const RecordDecl *RD = RT->getDecl(); 6967 6968 // If this is a C++ record, check the bases first. 6969 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6970 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6971 return containsAnyFP16Vectors(B.getType()); 6972 })) 6973 return true; 6974 6975 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6976 return FD && containsAnyFP16Vectors(FD->getType()); 6977 })) 6978 return true; 6979 6980 return false; 6981 } else { 6982 if (const VectorType *VT = Ty->getAs<VectorType>()) 6983 return (VT->getElementType()->isFloat16Type() || 6984 VT->getElementType()->isBFloat16Type() || 6985 VT->getElementType()->isHalfType()); 6986 return false; 6987 } 6988 } 6989 6990 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6991 llvm::Type *eltTy, 6992 unsigned numElts) const { 6993 if (!llvm::isPowerOf2_32(numElts)) 6994 return false; 6995 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6996 if (size > 64) 6997 return false; 6998 if (vectorSize.getQuantity() != 8 && 6999 (vectorSize.getQuantity() != 16 || numElts == 1)) 7000 return false; 7001 return true; 7002 } 7003 7004 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7005 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 7006 // double, or 64-bit or 128-bit vectors. 7007 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 7008 if (BT->getKind() == BuiltinType::Float || 7009 BT->getKind() == BuiltinType::Double || 7010 BT->getKind() == BuiltinType::LongDouble) 7011 return true; 7012 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 7013 unsigned VecSize = getContext().getTypeSize(VT); 7014 if (VecSize == 64 || VecSize == 128) 7015 return true; 7016 } 7017 return false; 7018 } 7019 7020 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 7021 uint64_t Members) const { 7022 return Members <= 4; 7023 } 7024 7025 bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const { 7026 // AAPCS32 says that the rule for whether something is a homogeneous 7027 // aggregate is applied to the output of the data layout decision. So 7028 // anything that doesn't affect the data layout also does not affect 7029 // homogeneity. In particular, zero-length bitfields don't stop a struct 7030 // being homogeneous. 7031 return true; 7032 } 7033 7034 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 7035 bool acceptHalf) const { 7036 // Give precedence to user-specified calling conventions. 7037 if (callConvention != llvm::CallingConv::C) 7038 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 7039 else 7040 return (getABIKind() == AAPCS_VFP) || 7041 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 7042 } 7043 7044 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7045 QualType Ty) const { 7046 CharUnits SlotSize = CharUnits::fromQuantity(4); 7047 7048 // Empty records are ignored for parameter passing purposes. 7049 if (isEmptyRecord(getContext(), Ty, true)) { 7050 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 7051 auto *Load = CGF.Builder.CreateLoad(VAListAddr); 7052 Address Addr = Address(Load, CGF.Int8Ty, SlotSize); 7053 return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 7054 } 7055 7056 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 7057 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 7058 7059 // Use indirect if size of the illegal vector is bigger than 16 bytes. 7060 bool IsIndirect = false; 7061 const Type *Base = nullptr; 7062 uint64_t Members = 0; 7063 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 7064 IsIndirect = true; 7065 7066 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 7067 // allocated by the caller. 7068 } else if (TySize > CharUnits::fromQuantity(16) && 7069 getABIKind() == ARMABIInfo::AAPCS16_VFP && 7070 !isHomogeneousAggregate(Ty, Base, Members)) { 7071 IsIndirect = true; 7072 7073 // Otherwise, bound the type's ABI alignment. 7074 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 7075 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 7076 // Our callers should be prepared to handle an under-aligned address. 7077 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 7078 getABIKind() == ARMABIInfo::AAPCS) { 7079 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7080 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7081 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7082 // ARMv7k allows type alignment up to 16 bytes. 7083 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7084 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7085 } else { 7086 TyAlignForABI = CharUnits::fromQuantity(4); 7087 } 7088 7089 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7090 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7091 SlotSize, /*AllowHigherAlign*/ true); 7092 } 7093 7094 //===----------------------------------------------------------------------===// 7095 // NVPTX ABI Implementation 7096 //===----------------------------------------------------------------------===// 7097 7098 namespace { 7099 7100 class NVPTXTargetCodeGenInfo; 7101 7102 class NVPTXABIInfo : public ABIInfo { 7103 NVPTXTargetCodeGenInfo &CGInfo; 7104 7105 public: 7106 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7107 : ABIInfo(CGT), CGInfo(Info) {} 7108 7109 ABIArgInfo classifyReturnType(QualType RetTy) const; 7110 ABIArgInfo classifyArgumentType(QualType Ty) const; 7111 7112 void computeInfo(CGFunctionInfo &FI) const override; 7113 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7114 QualType Ty) const override; 7115 bool isUnsupportedType(QualType T) const; 7116 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7117 }; 7118 7119 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7120 public: 7121 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7122 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7123 7124 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7125 CodeGen::CodeGenModule &M) const override; 7126 bool shouldEmitStaticExternCAliases() const override; 7127 7128 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7129 // On the device side, surface reference is represented as an object handle 7130 // in 64-bit integer. 7131 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7132 } 7133 7134 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7135 // On the device side, texture reference is represented as an object handle 7136 // in 64-bit integer. 7137 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7138 } 7139 7140 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7141 LValue Src) const override { 7142 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7143 return true; 7144 } 7145 7146 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7147 LValue Src) const override { 7148 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7149 return true; 7150 } 7151 7152 private: 7153 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7154 // resulting MDNode to the nvvm.annotations MDNode. 7155 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7156 int Operand); 7157 7158 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7159 LValue Src) { 7160 llvm::Value *Handle = nullptr; 7161 llvm::Constant *C = 7162 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7163 // Lookup `addrspacecast` through the constant pointer if any. 7164 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7165 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7166 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7167 // Load the handle from the specific global variable using 7168 // `nvvm.texsurf.handle.internal` intrinsic. 7169 Handle = CGF.EmitRuntimeCall( 7170 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7171 {GV->getType()}), 7172 {GV}, "texsurf_handle"); 7173 } else 7174 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7175 CGF.EmitStoreOfScalar(Handle, Dst); 7176 } 7177 }; 7178 7179 /// Checks if the type is unsupported directly by the current target. 7180 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7181 ASTContext &Context = getContext(); 7182 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7183 return true; 7184 if (!Context.getTargetInfo().hasFloat128Type() && 7185 (T->isFloat128Type() || 7186 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7187 return true; 7188 if (const auto *EIT = T->getAs<BitIntType>()) 7189 return EIT->getNumBits() > 7190 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7191 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7192 Context.getTypeSize(T) > 64U) 7193 return true; 7194 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7195 return isUnsupportedType(AT->getElementType()); 7196 const auto *RT = T->getAs<RecordType>(); 7197 if (!RT) 7198 return false; 7199 const RecordDecl *RD = RT->getDecl(); 7200 7201 // If this is a C++ record, check the bases first. 7202 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7203 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7204 if (isUnsupportedType(I.getType())) 7205 return true; 7206 7207 for (const FieldDecl *I : RD->fields()) 7208 if (isUnsupportedType(I->getType())) 7209 return true; 7210 return false; 7211 } 7212 7213 /// Coerce the given type into an array with maximum allowed size of elements. 7214 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7215 unsigned MaxSize) const { 7216 // Alignment and Size are measured in bits. 7217 const uint64_t Size = getContext().getTypeSize(Ty); 7218 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7219 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7220 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7221 const uint64_t NumElements = (Size + Div - 1) / Div; 7222 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7223 } 7224 7225 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7226 if (RetTy->isVoidType()) 7227 return ABIArgInfo::getIgnore(); 7228 7229 if (getContext().getLangOpts().OpenMP && 7230 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7231 return coerceToIntArrayWithLimit(RetTy, 64); 7232 7233 // note: this is different from default ABI 7234 if (!RetTy->isScalarType()) 7235 return ABIArgInfo::getDirect(); 7236 7237 // Treat an enum type as its underlying type. 7238 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7239 RetTy = EnumTy->getDecl()->getIntegerType(); 7240 7241 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7242 : ABIArgInfo::getDirect()); 7243 } 7244 7245 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7246 // Treat an enum type as its underlying type. 7247 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7248 Ty = EnumTy->getDecl()->getIntegerType(); 7249 7250 // Return aggregates type as indirect by value 7251 if (isAggregateTypeForABI(Ty)) { 7252 // Under CUDA device compilation, tex/surf builtin types are replaced with 7253 // object types and passed directly. 7254 if (getContext().getLangOpts().CUDAIsDevice) { 7255 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7256 return ABIArgInfo::getDirect( 7257 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7258 if (Ty->isCUDADeviceBuiltinTextureType()) 7259 return ABIArgInfo::getDirect( 7260 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7261 } 7262 return getNaturalAlignIndirect(Ty, /* byval */ true); 7263 } 7264 7265 if (const auto *EIT = Ty->getAs<BitIntType>()) { 7266 if ((EIT->getNumBits() > 128) || 7267 (!getContext().getTargetInfo().hasInt128Type() && 7268 EIT->getNumBits() > 64)) 7269 return getNaturalAlignIndirect(Ty, /* byval */ true); 7270 } 7271 7272 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7273 : ABIArgInfo::getDirect()); 7274 } 7275 7276 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7277 if (!getCXXABI().classifyReturnType(FI)) 7278 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7279 for (auto &I : FI.arguments()) 7280 I.info = classifyArgumentType(I.type); 7281 7282 // Always honor user-specified calling convention. 7283 if (FI.getCallingConvention() != llvm::CallingConv::C) 7284 return; 7285 7286 FI.setEffectiveCallingConvention(getRuntimeCC()); 7287 } 7288 7289 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7290 QualType Ty) const { 7291 llvm_unreachable("NVPTX does not support varargs"); 7292 } 7293 7294 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7295 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7296 if (GV->isDeclaration()) 7297 return; 7298 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7299 if (VD) { 7300 if (M.getLangOpts().CUDA) { 7301 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7302 addNVVMMetadata(GV, "surface", 1); 7303 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7304 addNVVMMetadata(GV, "texture", 1); 7305 return; 7306 } 7307 } 7308 7309 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7310 if (!FD) return; 7311 7312 llvm::Function *F = cast<llvm::Function>(GV); 7313 7314 // Perform special handling in OpenCL mode 7315 if (M.getLangOpts().OpenCL) { 7316 // Use OpenCL function attributes to check for kernel functions 7317 // By default, all functions are device functions 7318 if (FD->hasAttr<OpenCLKernelAttr>()) { 7319 // OpenCL __kernel functions get kernel metadata 7320 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7321 addNVVMMetadata(F, "kernel", 1); 7322 // And kernel functions are not subject to inlining 7323 F->addFnAttr(llvm::Attribute::NoInline); 7324 } 7325 } 7326 7327 // Perform special handling in CUDA mode. 7328 if (M.getLangOpts().CUDA) { 7329 // CUDA __global__ functions get a kernel metadata entry. Since 7330 // __global__ functions cannot be called from the device, we do not 7331 // need to set the noinline attribute. 7332 if (FD->hasAttr<CUDAGlobalAttr>()) { 7333 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7334 addNVVMMetadata(F, "kernel", 1); 7335 } 7336 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7337 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7338 llvm::APSInt MaxThreads(32); 7339 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7340 if (MaxThreads > 0) 7341 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7342 7343 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7344 // not specified in __launch_bounds__ or if the user specified a 0 value, 7345 // we don't have to add a PTX directive. 7346 if (Attr->getMinBlocks()) { 7347 llvm::APSInt MinBlocks(32); 7348 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7349 if (MinBlocks > 0) 7350 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7351 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7352 } 7353 } 7354 } 7355 } 7356 7357 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7358 StringRef Name, int Operand) { 7359 llvm::Module *M = GV->getParent(); 7360 llvm::LLVMContext &Ctx = M->getContext(); 7361 7362 // Get "nvvm.annotations" metadata node 7363 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7364 7365 llvm::Metadata *MDVals[] = { 7366 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7367 llvm::ConstantAsMetadata::get( 7368 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7369 // Append metadata to nvvm.annotations 7370 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7371 } 7372 7373 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7374 return false; 7375 } 7376 } 7377 7378 //===----------------------------------------------------------------------===// 7379 // SystemZ ABI Implementation 7380 //===----------------------------------------------------------------------===// 7381 7382 namespace { 7383 7384 class SystemZABIInfo : public SwiftABIInfo { 7385 bool HasVector; 7386 bool IsSoftFloatABI; 7387 7388 public: 7389 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7390 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7391 7392 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7393 bool isCompoundType(QualType Ty) const; 7394 bool isVectorArgumentType(QualType Ty) const; 7395 bool isFPArgumentType(QualType Ty) const; 7396 QualType GetSingleElementType(QualType Ty) const; 7397 7398 ABIArgInfo classifyReturnType(QualType RetTy) const; 7399 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7400 7401 void computeInfo(CGFunctionInfo &FI) const override { 7402 if (!getCXXABI().classifyReturnType(FI)) 7403 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7404 for (auto &I : FI.arguments()) 7405 I.info = classifyArgumentType(I.type); 7406 } 7407 7408 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7409 QualType Ty) const override; 7410 7411 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7412 bool asReturnValue) const override { 7413 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7414 } 7415 bool isSwiftErrorInRegister() const override { 7416 return false; 7417 } 7418 }; 7419 7420 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7421 public: 7422 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7423 : TargetCodeGenInfo( 7424 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7425 7426 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7427 CGBuilderTy &Builder, 7428 CodeGenModule &CGM) const override { 7429 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7430 // Only use TDC in constrained FP mode. 7431 if (!Builder.getIsFPConstrained()) 7432 return nullptr; 7433 7434 llvm::Type *Ty = V->getType(); 7435 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7436 llvm::Module &M = CGM.getModule(); 7437 auto &Ctx = M.getContext(); 7438 llvm::Function *TDCFunc = 7439 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7440 unsigned TDCBits = 0; 7441 switch (BuiltinID) { 7442 case Builtin::BI__builtin_isnan: 7443 TDCBits = 0xf; 7444 break; 7445 case Builtin::BIfinite: 7446 case Builtin::BI__finite: 7447 case Builtin::BIfinitef: 7448 case Builtin::BI__finitef: 7449 case Builtin::BIfinitel: 7450 case Builtin::BI__finitel: 7451 case Builtin::BI__builtin_isfinite: 7452 TDCBits = 0xfc0; 7453 break; 7454 case Builtin::BI__builtin_isinf: 7455 TDCBits = 0x30; 7456 break; 7457 default: 7458 break; 7459 } 7460 if (TDCBits) 7461 return Builder.CreateCall( 7462 TDCFunc, 7463 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7464 } 7465 return nullptr; 7466 } 7467 }; 7468 } 7469 7470 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7471 // Treat an enum type as its underlying type. 7472 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7473 Ty = EnumTy->getDecl()->getIntegerType(); 7474 7475 // Promotable integer types are required to be promoted by the ABI. 7476 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7477 return true; 7478 7479 if (const auto *EIT = Ty->getAs<BitIntType>()) 7480 if (EIT->getNumBits() < 64) 7481 return true; 7482 7483 // 32-bit values must also be promoted. 7484 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7485 switch (BT->getKind()) { 7486 case BuiltinType::Int: 7487 case BuiltinType::UInt: 7488 return true; 7489 default: 7490 return false; 7491 } 7492 return false; 7493 } 7494 7495 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7496 return (Ty->isAnyComplexType() || 7497 Ty->isVectorType() || 7498 isAggregateTypeForABI(Ty)); 7499 } 7500 7501 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7502 return (HasVector && 7503 Ty->isVectorType() && 7504 getContext().getTypeSize(Ty) <= 128); 7505 } 7506 7507 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7508 if (IsSoftFloatABI) 7509 return false; 7510 7511 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7512 switch (BT->getKind()) { 7513 case BuiltinType::Float: 7514 case BuiltinType::Double: 7515 return true; 7516 default: 7517 return false; 7518 } 7519 7520 return false; 7521 } 7522 7523 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7524 const RecordType *RT = Ty->getAs<RecordType>(); 7525 7526 if (RT && RT->isStructureOrClassType()) { 7527 const RecordDecl *RD = RT->getDecl(); 7528 QualType Found; 7529 7530 // If this is a C++ record, check the bases first. 7531 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7532 for (const auto &I : CXXRD->bases()) { 7533 QualType Base = I.getType(); 7534 7535 // Empty bases don't affect things either way. 7536 if (isEmptyRecord(getContext(), Base, true)) 7537 continue; 7538 7539 if (!Found.isNull()) 7540 return Ty; 7541 Found = GetSingleElementType(Base); 7542 } 7543 7544 // Check the fields. 7545 for (const auto *FD : RD->fields()) { 7546 // Unlike isSingleElementStruct(), empty structure and array fields 7547 // do count. So do anonymous bitfields that aren't zero-sized. 7548 7549 // Like isSingleElementStruct(), ignore C++20 empty data members. 7550 if (FD->hasAttr<NoUniqueAddressAttr>() && 7551 isEmptyRecord(getContext(), FD->getType(), true)) 7552 continue; 7553 7554 // Unlike isSingleElementStruct(), arrays do not count. 7555 // Nested structures still do though. 7556 if (!Found.isNull()) 7557 return Ty; 7558 Found = GetSingleElementType(FD->getType()); 7559 } 7560 7561 // Unlike isSingleElementStruct(), trailing padding is allowed. 7562 // An 8-byte aligned struct s { float f; } is passed as a double. 7563 if (!Found.isNull()) 7564 return Found; 7565 } 7566 7567 return Ty; 7568 } 7569 7570 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7571 QualType Ty) const { 7572 // Assume that va_list type is correct; should be pointer to LLVM type: 7573 // struct { 7574 // i64 __gpr; 7575 // i64 __fpr; 7576 // i8 *__overflow_arg_area; 7577 // i8 *__reg_save_area; 7578 // }; 7579 7580 // Every non-vector argument occupies 8 bytes and is passed by preference 7581 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7582 // always passed on the stack. 7583 Ty = getContext().getCanonicalType(Ty); 7584 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7585 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7586 llvm::Type *DirectTy = ArgTy; 7587 ABIArgInfo AI = classifyArgumentType(Ty); 7588 bool IsIndirect = AI.isIndirect(); 7589 bool InFPRs = false; 7590 bool IsVector = false; 7591 CharUnits UnpaddedSize; 7592 CharUnits DirectAlign; 7593 if (IsIndirect) { 7594 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7595 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7596 } else { 7597 if (AI.getCoerceToType()) 7598 ArgTy = AI.getCoerceToType(); 7599 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7600 IsVector = ArgTy->isVectorTy(); 7601 UnpaddedSize = TyInfo.Width; 7602 DirectAlign = TyInfo.Align; 7603 } 7604 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7605 if (IsVector && UnpaddedSize > PaddedSize) 7606 PaddedSize = CharUnits::fromQuantity(16); 7607 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7608 7609 CharUnits Padding = (PaddedSize - UnpaddedSize); 7610 7611 llvm::Type *IndexTy = CGF.Int64Ty; 7612 llvm::Value *PaddedSizeV = 7613 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7614 7615 if (IsVector) { 7616 // Work out the address of a vector argument on the stack. 7617 // Vector arguments are always passed in the high bits of a 7618 // single (8 byte) or double (16 byte) stack slot. 7619 Address OverflowArgAreaPtr = 7620 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7621 Address OverflowArgArea = 7622 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7623 CGF.Int8Ty, TyInfo.Align); 7624 Address MemAddr = 7625 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7626 7627 // Update overflow_arg_area_ptr pointer 7628 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP( 7629 OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), 7630 PaddedSizeV, "overflow_arg_area"); 7631 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7632 7633 return MemAddr; 7634 } 7635 7636 assert(PaddedSize.getQuantity() == 8); 7637 7638 unsigned MaxRegs, RegCountField, RegSaveIndex; 7639 CharUnits RegPadding; 7640 if (InFPRs) { 7641 MaxRegs = 4; // Maximum of 4 FPR arguments 7642 RegCountField = 1; // __fpr 7643 RegSaveIndex = 16; // save offset for f0 7644 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7645 } else { 7646 MaxRegs = 5; // Maximum of 5 GPR arguments 7647 RegCountField = 0; // __gpr 7648 RegSaveIndex = 2; // save offset for r2 7649 RegPadding = Padding; // values are passed in the low bits of a GPR 7650 } 7651 7652 Address RegCountPtr = 7653 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7654 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7655 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7656 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7657 "fits_in_regs"); 7658 7659 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7660 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7661 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7662 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7663 7664 // Emit code to load the value if it was passed in registers. 7665 CGF.EmitBlock(InRegBlock); 7666 7667 // Work out the address of an argument register. 7668 llvm::Value *ScaledRegCount = 7669 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7670 llvm::Value *RegBase = 7671 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7672 + RegPadding.getQuantity()); 7673 llvm::Value *RegOffset = 7674 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7675 Address RegSaveAreaPtr = 7676 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7677 llvm::Value *RegSaveArea = 7678 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7679 Address RawRegAddr( 7680 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"), 7681 CGF.Int8Ty, PaddedSize); 7682 Address RegAddr = 7683 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7684 7685 // Update the register count 7686 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7687 llvm::Value *NewRegCount = 7688 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7689 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7690 CGF.EmitBranch(ContBlock); 7691 7692 // Emit code to load the value if it was passed in memory. 7693 CGF.EmitBlock(InMemBlock); 7694 7695 // Work out the address of a stack argument. 7696 Address OverflowArgAreaPtr = 7697 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7698 Address OverflowArgArea = 7699 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7700 CGF.Int8Ty, PaddedSize); 7701 Address RawMemAddr = 7702 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7703 Address MemAddr = 7704 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7705 7706 // Update overflow_arg_area_ptr pointer 7707 llvm::Value *NewOverflowArgArea = 7708 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7709 OverflowArgArea.getPointer(), PaddedSizeV, 7710 "overflow_arg_area"); 7711 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7712 CGF.EmitBranch(ContBlock); 7713 7714 // Return the appropriate result. 7715 CGF.EmitBlock(ContBlock); 7716 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 7717 "va_arg.addr"); 7718 7719 if (IsIndirect) 7720 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy, 7721 TyInfo.Align); 7722 7723 return ResAddr; 7724 } 7725 7726 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7727 if (RetTy->isVoidType()) 7728 return ABIArgInfo::getIgnore(); 7729 if (isVectorArgumentType(RetTy)) 7730 return ABIArgInfo::getDirect(); 7731 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7732 return getNaturalAlignIndirect(RetTy); 7733 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7734 : ABIArgInfo::getDirect()); 7735 } 7736 7737 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7738 // Handle the generic C++ ABI. 7739 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7740 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7741 7742 // Integers and enums are extended to full register width. 7743 if (isPromotableIntegerTypeForABI(Ty)) 7744 return ABIArgInfo::getExtend(Ty); 7745 7746 // Handle vector types and vector-like structure types. Note that 7747 // as opposed to float-like structure types, we do not allow any 7748 // padding for vector-like structures, so verify the sizes match. 7749 uint64_t Size = getContext().getTypeSize(Ty); 7750 QualType SingleElementTy = GetSingleElementType(Ty); 7751 if (isVectorArgumentType(SingleElementTy) && 7752 getContext().getTypeSize(SingleElementTy) == Size) 7753 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7754 7755 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7756 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7757 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7758 7759 // Handle small structures. 7760 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7761 // Structures with flexible arrays have variable length, so really 7762 // fail the size test above. 7763 const RecordDecl *RD = RT->getDecl(); 7764 if (RD->hasFlexibleArrayMember()) 7765 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7766 7767 // The structure is passed as an unextended integer, a float, or a double. 7768 llvm::Type *PassTy; 7769 if (isFPArgumentType(SingleElementTy)) { 7770 assert(Size == 32 || Size == 64); 7771 if (Size == 32) 7772 PassTy = llvm::Type::getFloatTy(getVMContext()); 7773 else 7774 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7775 } else 7776 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7777 return ABIArgInfo::getDirect(PassTy); 7778 } 7779 7780 // Non-structure compounds are passed indirectly. 7781 if (isCompoundType(Ty)) 7782 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7783 7784 return ABIArgInfo::getDirect(nullptr); 7785 } 7786 7787 //===----------------------------------------------------------------------===// 7788 // MSP430 ABI Implementation 7789 //===----------------------------------------------------------------------===// 7790 7791 namespace { 7792 7793 class MSP430ABIInfo : public DefaultABIInfo { 7794 static ABIArgInfo complexArgInfo() { 7795 ABIArgInfo Info = ABIArgInfo::getDirect(); 7796 Info.setCanBeFlattened(false); 7797 return Info; 7798 } 7799 7800 public: 7801 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7802 7803 ABIArgInfo classifyReturnType(QualType RetTy) const { 7804 if (RetTy->isAnyComplexType()) 7805 return complexArgInfo(); 7806 7807 return DefaultABIInfo::classifyReturnType(RetTy); 7808 } 7809 7810 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7811 if (RetTy->isAnyComplexType()) 7812 return complexArgInfo(); 7813 7814 return DefaultABIInfo::classifyArgumentType(RetTy); 7815 } 7816 7817 // Just copy the original implementations because 7818 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7819 void computeInfo(CGFunctionInfo &FI) const override { 7820 if (!getCXXABI().classifyReturnType(FI)) 7821 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7822 for (auto &I : FI.arguments()) 7823 I.info = classifyArgumentType(I.type); 7824 } 7825 7826 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7827 QualType Ty) const override { 7828 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7829 } 7830 }; 7831 7832 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7833 public: 7834 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7835 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7836 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7837 CodeGen::CodeGenModule &M) const override; 7838 }; 7839 7840 } 7841 7842 void MSP430TargetCodeGenInfo::setTargetAttributes( 7843 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7844 if (GV->isDeclaration()) 7845 return; 7846 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7847 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7848 if (!InterruptAttr) 7849 return; 7850 7851 // Handle 'interrupt' attribute: 7852 llvm::Function *F = cast<llvm::Function>(GV); 7853 7854 // Step 1: Set ISR calling convention. 7855 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7856 7857 // Step 2: Add attributes goodness. 7858 F->addFnAttr(llvm::Attribute::NoInline); 7859 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7860 } 7861 } 7862 7863 //===----------------------------------------------------------------------===// 7864 // MIPS ABI Implementation. This works for both little-endian and 7865 // big-endian variants. 7866 //===----------------------------------------------------------------------===// 7867 7868 namespace { 7869 class MipsABIInfo : public ABIInfo { 7870 bool IsO32; 7871 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7872 void CoerceToIntArgs(uint64_t TySize, 7873 SmallVectorImpl<llvm::Type *> &ArgList) const; 7874 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7875 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7876 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7877 public: 7878 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7879 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7880 StackAlignInBytes(IsO32 ? 8 : 16) {} 7881 7882 ABIArgInfo classifyReturnType(QualType RetTy) const; 7883 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7884 void computeInfo(CGFunctionInfo &FI) const override; 7885 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7886 QualType Ty) const override; 7887 ABIArgInfo extendType(QualType Ty) const; 7888 }; 7889 7890 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7891 unsigned SizeOfUnwindException; 7892 public: 7893 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7894 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7895 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7896 7897 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7898 return 29; 7899 } 7900 7901 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7902 CodeGen::CodeGenModule &CGM) const override { 7903 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7904 if (!FD) return; 7905 llvm::Function *Fn = cast<llvm::Function>(GV); 7906 7907 if (FD->hasAttr<MipsLongCallAttr>()) 7908 Fn->addFnAttr("long-call"); 7909 else if (FD->hasAttr<MipsShortCallAttr>()) 7910 Fn->addFnAttr("short-call"); 7911 7912 // Other attributes do not have a meaning for declarations. 7913 if (GV->isDeclaration()) 7914 return; 7915 7916 if (FD->hasAttr<Mips16Attr>()) { 7917 Fn->addFnAttr("mips16"); 7918 } 7919 else if (FD->hasAttr<NoMips16Attr>()) { 7920 Fn->addFnAttr("nomips16"); 7921 } 7922 7923 if (FD->hasAttr<MicroMipsAttr>()) 7924 Fn->addFnAttr("micromips"); 7925 else if (FD->hasAttr<NoMicroMipsAttr>()) 7926 Fn->addFnAttr("nomicromips"); 7927 7928 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7929 if (!Attr) 7930 return; 7931 7932 const char *Kind; 7933 switch (Attr->getInterrupt()) { 7934 case MipsInterruptAttr::eic: Kind = "eic"; break; 7935 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7936 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7937 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7938 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7939 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7940 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7941 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7942 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7943 } 7944 7945 Fn->addFnAttr("interrupt", Kind); 7946 7947 } 7948 7949 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7950 llvm::Value *Address) const override; 7951 7952 unsigned getSizeOfUnwindException() const override { 7953 return SizeOfUnwindException; 7954 } 7955 }; 7956 } 7957 7958 void MipsABIInfo::CoerceToIntArgs( 7959 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7960 llvm::IntegerType *IntTy = 7961 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7962 7963 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7964 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7965 ArgList.push_back(IntTy); 7966 7967 // If necessary, add one more integer type to ArgList. 7968 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7969 7970 if (R) 7971 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7972 } 7973 7974 // In N32/64, an aligned double precision floating point field is passed in 7975 // a register. 7976 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7977 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7978 7979 if (IsO32) { 7980 CoerceToIntArgs(TySize, ArgList); 7981 return llvm::StructType::get(getVMContext(), ArgList); 7982 } 7983 7984 if (Ty->isComplexType()) 7985 return CGT.ConvertType(Ty); 7986 7987 const RecordType *RT = Ty->getAs<RecordType>(); 7988 7989 // Unions/vectors are passed in integer registers. 7990 if (!RT || !RT->isStructureOrClassType()) { 7991 CoerceToIntArgs(TySize, ArgList); 7992 return llvm::StructType::get(getVMContext(), ArgList); 7993 } 7994 7995 const RecordDecl *RD = RT->getDecl(); 7996 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7997 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7998 7999 uint64_t LastOffset = 0; 8000 unsigned idx = 0; 8001 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 8002 8003 // Iterate over fields in the struct/class and check if there are any aligned 8004 // double fields. 8005 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 8006 i != e; ++i, ++idx) { 8007 const QualType Ty = i->getType(); 8008 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 8009 8010 if (!BT || BT->getKind() != BuiltinType::Double) 8011 continue; 8012 8013 uint64_t Offset = Layout.getFieldOffset(idx); 8014 if (Offset % 64) // Ignore doubles that are not aligned. 8015 continue; 8016 8017 // Add ((Offset - LastOffset) / 64) args of type i64. 8018 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 8019 ArgList.push_back(I64); 8020 8021 // Add double type. 8022 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 8023 LastOffset = Offset + 64; 8024 } 8025 8026 CoerceToIntArgs(TySize - LastOffset, IntArgList); 8027 ArgList.append(IntArgList.begin(), IntArgList.end()); 8028 8029 return llvm::StructType::get(getVMContext(), ArgList); 8030 } 8031 8032 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 8033 uint64_t Offset) const { 8034 if (OrigOffset + MinABIStackAlignInBytes > Offset) 8035 return nullptr; 8036 8037 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 8038 } 8039 8040 ABIArgInfo 8041 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 8042 Ty = useFirstFieldIfTransparentUnion(Ty); 8043 8044 uint64_t OrigOffset = Offset; 8045 uint64_t TySize = getContext().getTypeSize(Ty); 8046 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 8047 8048 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 8049 (uint64_t)StackAlignInBytes); 8050 unsigned CurrOffset = llvm::alignTo(Offset, Align); 8051 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 8052 8053 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 8054 // Ignore empty aggregates. 8055 if (TySize == 0) 8056 return ABIArgInfo::getIgnore(); 8057 8058 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8059 Offset = OrigOffset + MinABIStackAlignInBytes; 8060 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8061 } 8062 8063 // If we have reached here, aggregates are passed directly by coercing to 8064 // another structure type. Padding is inserted if the offset of the 8065 // aggregate is unaligned. 8066 ABIArgInfo ArgInfo = 8067 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 8068 getPaddingType(OrigOffset, CurrOffset)); 8069 ArgInfo.setInReg(true); 8070 return ArgInfo; 8071 } 8072 8073 // Treat an enum type as its underlying type. 8074 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8075 Ty = EnumTy->getDecl()->getIntegerType(); 8076 8077 // Make sure we pass indirectly things that are too large. 8078 if (const auto *EIT = Ty->getAs<BitIntType>()) 8079 if (EIT->getNumBits() > 128 || 8080 (EIT->getNumBits() > 64 && 8081 !getContext().getTargetInfo().hasInt128Type())) 8082 return getNaturalAlignIndirect(Ty); 8083 8084 // All integral types are promoted to the GPR width. 8085 if (Ty->isIntegralOrEnumerationType()) 8086 return extendType(Ty); 8087 8088 return ABIArgInfo::getDirect( 8089 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8090 } 8091 8092 llvm::Type* 8093 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8094 const RecordType *RT = RetTy->getAs<RecordType>(); 8095 SmallVector<llvm::Type*, 8> RTList; 8096 8097 if (RT && RT->isStructureOrClassType()) { 8098 const RecordDecl *RD = RT->getDecl(); 8099 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8100 unsigned FieldCnt = Layout.getFieldCount(); 8101 8102 // N32/64 returns struct/classes in floating point registers if the 8103 // following conditions are met: 8104 // 1. The size of the struct/class is no larger than 128-bit. 8105 // 2. The struct/class has one or two fields all of which are floating 8106 // point types. 8107 // 3. The offset of the first field is zero (this follows what gcc does). 8108 // 8109 // Any other composite results are returned in integer registers. 8110 // 8111 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8112 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8113 for (; b != e; ++b) { 8114 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8115 8116 if (!BT || !BT->isFloatingPoint()) 8117 break; 8118 8119 RTList.push_back(CGT.ConvertType(b->getType())); 8120 } 8121 8122 if (b == e) 8123 return llvm::StructType::get(getVMContext(), RTList, 8124 RD->hasAttr<PackedAttr>()); 8125 8126 RTList.clear(); 8127 } 8128 } 8129 8130 CoerceToIntArgs(Size, RTList); 8131 return llvm::StructType::get(getVMContext(), RTList); 8132 } 8133 8134 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8135 uint64_t Size = getContext().getTypeSize(RetTy); 8136 8137 if (RetTy->isVoidType()) 8138 return ABIArgInfo::getIgnore(); 8139 8140 // O32 doesn't treat zero-sized structs differently from other structs. 8141 // However, N32/N64 ignores zero sized return values. 8142 if (!IsO32 && Size == 0) 8143 return ABIArgInfo::getIgnore(); 8144 8145 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8146 if (Size <= 128) { 8147 if (RetTy->isAnyComplexType()) 8148 return ABIArgInfo::getDirect(); 8149 8150 // O32 returns integer vectors in registers and N32/N64 returns all small 8151 // aggregates in registers. 8152 if (!IsO32 || 8153 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8154 ABIArgInfo ArgInfo = 8155 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8156 ArgInfo.setInReg(true); 8157 return ArgInfo; 8158 } 8159 } 8160 8161 return getNaturalAlignIndirect(RetTy); 8162 } 8163 8164 // Treat an enum type as its underlying type. 8165 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8166 RetTy = EnumTy->getDecl()->getIntegerType(); 8167 8168 // Make sure we pass indirectly things that are too large. 8169 if (const auto *EIT = RetTy->getAs<BitIntType>()) 8170 if (EIT->getNumBits() > 128 || 8171 (EIT->getNumBits() > 64 && 8172 !getContext().getTargetInfo().hasInt128Type())) 8173 return getNaturalAlignIndirect(RetTy); 8174 8175 if (isPromotableIntegerTypeForABI(RetTy)) 8176 return ABIArgInfo::getExtend(RetTy); 8177 8178 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8179 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8180 return ABIArgInfo::getSignExtend(RetTy); 8181 8182 return ABIArgInfo::getDirect(); 8183 } 8184 8185 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8186 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8187 if (!getCXXABI().classifyReturnType(FI)) 8188 RetInfo = classifyReturnType(FI.getReturnType()); 8189 8190 // Check if a pointer to an aggregate is passed as a hidden argument. 8191 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8192 8193 for (auto &I : FI.arguments()) 8194 I.info = classifyArgumentType(I.type, Offset); 8195 } 8196 8197 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8198 QualType OrigTy) const { 8199 QualType Ty = OrigTy; 8200 8201 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8202 // Pointers are also promoted in the same way but this only matters for N32. 8203 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8204 unsigned PtrWidth = getTarget().getPointerWidth(0); 8205 bool DidPromote = false; 8206 if ((Ty->isIntegerType() && 8207 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8208 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8209 DidPromote = true; 8210 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8211 Ty->isSignedIntegerType()); 8212 } 8213 8214 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8215 8216 // The alignment of things in the argument area is never larger than 8217 // StackAlignInBytes. 8218 TyInfo.Align = 8219 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8220 8221 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8222 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8223 8224 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8225 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8226 8227 8228 // If there was a promotion, "unpromote" into a temporary. 8229 // TODO: can we just use a pointer into a subset of the original slot? 8230 if (DidPromote) { 8231 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8232 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8233 8234 // Truncate down to the right width. 8235 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8236 : CGF.IntPtrTy); 8237 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8238 if (OrigTy->isPointerType()) 8239 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8240 8241 CGF.Builder.CreateStore(V, Temp); 8242 Addr = Temp; 8243 } 8244 8245 return Addr; 8246 } 8247 8248 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8249 int TySize = getContext().getTypeSize(Ty); 8250 8251 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8252 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8253 return ABIArgInfo::getSignExtend(Ty); 8254 8255 return ABIArgInfo::getExtend(Ty); 8256 } 8257 8258 bool 8259 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8260 llvm::Value *Address) const { 8261 // This information comes from gcc's implementation, which seems to 8262 // as canonical as it gets. 8263 8264 // Everything on MIPS is 4 bytes. Double-precision FP registers 8265 // are aliased to pairs of single-precision FP registers. 8266 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8267 8268 // 0-31 are the general purpose registers, $0 - $31. 8269 // 32-63 are the floating-point registers, $f0 - $f31. 8270 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8271 // 66 is the (notional, I think) register for signal-handler return. 8272 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8273 8274 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8275 // They are one bit wide and ignored here. 8276 8277 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8278 // (coprocessor 1 is the FP unit) 8279 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8280 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8281 // 176-181 are the DSP accumulator registers. 8282 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8283 return false; 8284 } 8285 8286 //===----------------------------------------------------------------------===// 8287 // M68k ABI Implementation 8288 //===----------------------------------------------------------------------===// 8289 8290 namespace { 8291 8292 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8293 public: 8294 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8295 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8296 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8297 CodeGen::CodeGenModule &M) const override; 8298 }; 8299 8300 } // namespace 8301 8302 void M68kTargetCodeGenInfo::setTargetAttributes( 8303 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8304 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8305 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8306 // Handle 'interrupt' attribute: 8307 llvm::Function *F = cast<llvm::Function>(GV); 8308 8309 // Step 1: Set ISR calling convention. 8310 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8311 8312 // Step 2: Add attributes goodness. 8313 F->addFnAttr(llvm::Attribute::NoInline); 8314 8315 // Step 3: Emit ISR vector alias. 8316 unsigned Num = attr->getNumber() / 2; 8317 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8318 "__isr_" + Twine(Num), F); 8319 } 8320 } 8321 } 8322 8323 //===----------------------------------------------------------------------===// 8324 // AVR ABI Implementation. Documented at 8325 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8326 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8327 //===----------------------------------------------------------------------===// 8328 8329 namespace { 8330 class AVRABIInfo : public DefaultABIInfo { 8331 private: 8332 // The total amount of registers can be used to pass parameters. It is 18 on 8333 // AVR, or 6 on AVRTiny. 8334 const unsigned ParamRegs; 8335 // The total amount of registers can be used to pass return value. It is 8 on 8336 // AVR, or 4 on AVRTiny. 8337 const unsigned RetRegs; 8338 8339 public: 8340 AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8341 : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {} 8342 8343 ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const { 8344 if (isAggregateTypeForABI(Ty)) { 8345 // On AVR, a return struct with size less than or equals to 8 bytes is 8346 // returned directly via registers R18-R25. On AVRTiny, a return struct 8347 // with size less than or equals to 4 bytes is returned directly via 8348 // registers R22-R25. 8349 if (getContext().getTypeSize(Ty) <= RetRegs * 8) 8350 return ABIArgInfo::getDirect(); 8351 // A return struct with larger size is returned via a stack 8352 // slot, along with a pointer to it as the function's implicit argument. 8353 LargeRet = true; 8354 return getNaturalAlignIndirect(Ty); 8355 } 8356 // Otherwise we follow the default way which is compatible. 8357 return DefaultABIInfo::classifyReturnType(Ty); 8358 } 8359 8360 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const { 8361 unsigned TySize = getContext().getTypeSize(Ty); 8362 8363 // An int8 type argument always costs two registers like an int16. 8364 if (TySize == 8 && NumRegs >= 2) { 8365 NumRegs -= 2; 8366 return ABIArgInfo::getExtend(Ty); 8367 } 8368 8369 // If the argument size is an odd number of bytes, round up the size 8370 // to the next even number. 8371 TySize = llvm::alignTo(TySize, 16); 8372 8373 // Any type including an array/struct type can be passed in rgisters, 8374 // if there are enough registers left. 8375 if (TySize <= NumRegs * 8) { 8376 NumRegs -= TySize / 8; 8377 return ABIArgInfo::getDirect(); 8378 } 8379 8380 // An argument is passed either completely in registers or completely in 8381 // memory. Since there are not enough registers left, current argument 8382 // and all other unprocessed arguments should be passed in memory. 8383 // However we still need to return `ABIArgInfo::getDirect()` other than 8384 // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot 8385 // will be allocated, so the stack frame layout will be incompatible with 8386 // avr-gcc. 8387 NumRegs = 0; 8388 return ABIArgInfo::getDirect(); 8389 } 8390 8391 void computeInfo(CGFunctionInfo &FI) const override { 8392 // Decide the return type. 8393 bool LargeRet = false; 8394 if (!getCXXABI().classifyReturnType(FI)) 8395 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet); 8396 8397 // Decide each argument type. The total number of registers can be used for 8398 // arguments depends on several factors: 8399 // 1. Arguments of varargs functions are passed on the stack. This applies 8400 // even to the named arguments. So no register can be used. 8401 // 2. Total 18 registers can be used on avr and 6 ones on avrtiny. 8402 // 3. If the return type is a struct with too large size, two registers 8403 // (out of 18/6) will be cost as an implicit pointer argument. 8404 unsigned NumRegs = ParamRegs; 8405 if (FI.isVariadic()) 8406 NumRegs = 0; 8407 else if (LargeRet) 8408 NumRegs -= 2; 8409 for (auto &I : FI.arguments()) 8410 I.info = classifyArgumentType(I.type, NumRegs); 8411 } 8412 }; 8413 8414 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8415 public: 8416 AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8417 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {} 8418 8419 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8420 const VarDecl *D) const override { 8421 // Check if global/static variable is defined in address space 8422 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) 8423 // but not constant. 8424 if (D) { 8425 LangAS AS = D->getType().getAddressSpace(); 8426 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && 8427 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) 8428 CGM.getDiags().Report(D->getLocation(), 8429 diag::err_verify_nonconst_addrspace) 8430 << "__flash*"; 8431 } 8432 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8433 } 8434 8435 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8436 CodeGen::CodeGenModule &CGM) const override { 8437 if (GV->isDeclaration()) 8438 return; 8439 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8440 if (!FD) return; 8441 auto *Fn = cast<llvm::Function>(GV); 8442 8443 if (FD->getAttr<AVRInterruptAttr>()) 8444 Fn->addFnAttr("interrupt"); 8445 8446 if (FD->getAttr<AVRSignalAttr>()) 8447 Fn->addFnAttr("signal"); 8448 } 8449 }; 8450 } 8451 8452 //===----------------------------------------------------------------------===// 8453 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8454 // Currently subclassed only to implement custom OpenCL C function attribute 8455 // handling. 8456 //===----------------------------------------------------------------------===// 8457 8458 namespace { 8459 8460 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8461 public: 8462 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8463 : DefaultTargetCodeGenInfo(CGT) {} 8464 8465 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8466 CodeGen::CodeGenModule &M) const override; 8467 }; 8468 8469 void TCETargetCodeGenInfo::setTargetAttributes( 8470 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8471 if (GV->isDeclaration()) 8472 return; 8473 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8474 if (!FD) return; 8475 8476 llvm::Function *F = cast<llvm::Function>(GV); 8477 8478 if (M.getLangOpts().OpenCL) { 8479 if (FD->hasAttr<OpenCLKernelAttr>()) { 8480 // OpenCL C Kernel functions are not subject to inlining 8481 F->addFnAttr(llvm::Attribute::NoInline); 8482 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8483 if (Attr) { 8484 // Convert the reqd_work_group_size() attributes to metadata. 8485 llvm::LLVMContext &Context = F->getContext(); 8486 llvm::NamedMDNode *OpenCLMetadata = 8487 M.getModule().getOrInsertNamedMetadata( 8488 "opencl.kernel_wg_size_info"); 8489 8490 SmallVector<llvm::Metadata *, 5> Operands; 8491 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8492 8493 Operands.push_back( 8494 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8495 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8496 Operands.push_back( 8497 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8498 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8499 Operands.push_back( 8500 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8501 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8502 8503 // Add a boolean constant operand for "required" (true) or "hint" 8504 // (false) for implementing the work_group_size_hint attr later. 8505 // Currently always true as the hint is not yet implemented. 8506 Operands.push_back( 8507 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8508 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8509 } 8510 } 8511 } 8512 } 8513 8514 } 8515 8516 //===----------------------------------------------------------------------===// 8517 // Hexagon ABI Implementation 8518 //===----------------------------------------------------------------------===// 8519 8520 namespace { 8521 8522 class HexagonABIInfo : public DefaultABIInfo { 8523 public: 8524 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8525 8526 private: 8527 ABIArgInfo classifyReturnType(QualType RetTy) const; 8528 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8529 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8530 8531 void computeInfo(CGFunctionInfo &FI) const override; 8532 8533 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8534 QualType Ty) const override; 8535 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8536 QualType Ty) const; 8537 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8538 QualType Ty) const; 8539 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8540 QualType Ty) const; 8541 }; 8542 8543 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8544 public: 8545 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8546 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8547 8548 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8549 return 29; 8550 } 8551 8552 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8553 CodeGen::CodeGenModule &GCM) const override { 8554 if (GV->isDeclaration()) 8555 return; 8556 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8557 if (!FD) 8558 return; 8559 } 8560 }; 8561 8562 } // namespace 8563 8564 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8565 unsigned RegsLeft = 6; 8566 if (!getCXXABI().classifyReturnType(FI)) 8567 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8568 for (auto &I : FI.arguments()) 8569 I.info = classifyArgumentType(I.type, &RegsLeft); 8570 } 8571 8572 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8573 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8574 " through registers"); 8575 8576 if (*RegsLeft == 0) 8577 return false; 8578 8579 if (Size <= 32) { 8580 (*RegsLeft)--; 8581 return true; 8582 } 8583 8584 if (2 <= (*RegsLeft & (~1U))) { 8585 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8586 return true; 8587 } 8588 8589 // Next available register was r5 but candidate was greater than 32-bits so it 8590 // has to go on the stack. However we still consume r5 8591 if (*RegsLeft == 1) 8592 *RegsLeft = 0; 8593 8594 return false; 8595 } 8596 8597 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8598 unsigned *RegsLeft) const { 8599 if (!isAggregateTypeForABI(Ty)) { 8600 // Treat an enum type as its underlying type. 8601 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8602 Ty = EnumTy->getDecl()->getIntegerType(); 8603 8604 uint64_t Size = getContext().getTypeSize(Ty); 8605 if (Size <= 64) 8606 HexagonAdjustRegsLeft(Size, RegsLeft); 8607 8608 if (Size > 64 && Ty->isBitIntType()) 8609 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8610 8611 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8612 : ABIArgInfo::getDirect(); 8613 } 8614 8615 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8616 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8617 8618 // Ignore empty records. 8619 if (isEmptyRecord(getContext(), Ty, true)) 8620 return ABIArgInfo::getIgnore(); 8621 8622 uint64_t Size = getContext().getTypeSize(Ty); 8623 unsigned Align = getContext().getTypeAlign(Ty); 8624 8625 if (Size > 64) 8626 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8627 8628 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8629 Align = Size <= 32 ? 32 : 64; 8630 if (Size <= Align) { 8631 // Pass in the smallest viable integer type. 8632 if (!llvm::isPowerOf2_64(Size)) 8633 Size = llvm::NextPowerOf2(Size); 8634 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8635 } 8636 return DefaultABIInfo::classifyArgumentType(Ty); 8637 } 8638 8639 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8640 if (RetTy->isVoidType()) 8641 return ABIArgInfo::getIgnore(); 8642 8643 const TargetInfo &T = CGT.getTarget(); 8644 uint64_t Size = getContext().getTypeSize(RetTy); 8645 8646 if (RetTy->getAs<VectorType>()) { 8647 // HVX vectors are returned in vector registers or register pairs. 8648 if (T.hasFeature("hvx")) { 8649 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8650 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8651 if (Size == VecSize || Size == 2*VecSize) 8652 return ABIArgInfo::getDirectInReg(); 8653 } 8654 // Large vector types should be returned via memory. 8655 if (Size > 64) 8656 return getNaturalAlignIndirect(RetTy); 8657 } 8658 8659 if (!isAggregateTypeForABI(RetTy)) { 8660 // Treat an enum type as its underlying type. 8661 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8662 RetTy = EnumTy->getDecl()->getIntegerType(); 8663 8664 if (Size > 64 && RetTy->isBitIntType()) 8665 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8666 8667 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8668 : ABIArgInfo::getDirect(); 8669 } 8670 8671 if (isEmptyRecord(getContext(), RetTy, true)) 8672 return ABIArgInfo::getIgnore(); 8673 8674 // Aggregates <= 8 bytes are returned in registers, other aggregates 8675 // are returned indirectly. 8676 if (Size <= 64) { 8677 // Return in the smallest viable integer type. 8678 if (!llvm::isPowerOf2_64(Size)) 8679 Size = llvm::NextPowerOf2(Size); 8680 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8681 } 8682 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8683 } 8684 8685 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8686 Address VAListAddr, 8687 QualType Ty) const { 8688 // Load the overflow area pointer. 8689 Address __overflow_area_pointer_p = 8690 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8691 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8692 __overflow_area_pointer_p, "__overflow_area_pointer"); 8693 8694 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8695 if (Align > 4) { 8696 // Alignment should be a power of 2. 8697 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8698 8699 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8700 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8701 8702 // Add offset to the current pointer to access the argument. 8703 __overflow_area_pointer = 8704 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8705 llvm::Value *AsInt = 8706 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8707 8708 // Create a mask which should be "AND"ed 8709 // with (overflow_arg_area + align - 1) 8710 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8711 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8712 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8713 "__overflow_area_pointer.align"); 8714 } 8715 8716 // Get the type of the argument from memory and bitcast 8717 // overflow area pointer to the argument type. 8718 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8719 Address AddrTyped = CGF.Builder.CreateElementBitCast( 8720 Address(__overflow_area_pointer, CGF.Int8Ty, 8721 CharUnits::fromQuantity(Align)), 8722 PTy); 8723 8724 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8725 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8726 8727 __overflow_area_pointer = CGF.Builder.CreateGEP( 8728 CGF.Int8Ty, __overflow_area_pointer, 8729 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8730 "__overflow_area_pointer.next"); 8731 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8732 8733 return AddrTyped; 8734 } 8735 8736 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8737 Address VAListAddr, 8738 QualType Ty) const { 8739 // FIXME: Need to handle alignment 8740 llvm::Type *BP = CGF.Int8PtrTy; 8741 CGBuilderTy &Builder = CGF.Builder; 8742 Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap"); 8743 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8744 // Handle address alignment for type alignment > 32 bits 8745 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8746 if (TyAlign > 4) { 8747 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8748 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8749 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8750 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8751 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8752 } 8753 Address AddrTyped = Builder.CreateElementBitCast( 8754 Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)), 8755 CGF.ConvertType(Ty)); 8756 8757 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8758 llvm::Value *NextAddr = Builder.CreateGEP( 8759 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8760 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8761 8762 return AddrTyped; 8763 } 8764 8765 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8766 Address VAListAddr, 8767 QualType Ty) const { 8768 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8769 8770 if (ArgSize > 8) 8771 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8772 8773 // Here we have check if the argument is in register area or 8774 // in overflow area. 8775 // If the saved register area pointer + argsize rounded up to alignment > 8776 // saved register area end pointer, argument is in overflow area. 8777 unsigned RegsLeft = 6; 8778 Ty = CGF.getContext().getCanonicalType(Ty); 8779 (void)classifyArgumentType(Ty, &RegsLeft); 8780 8781 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8782 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8783 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8784 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8785 8786 // Get rounded size of the argument.GCC does not allow vararg of 8787 // size < 4 bytes. We follow the same logic here. 8788 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8789 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8790 8791 // Argument may be in saved register area 8792 CGF.EmitBlock(MaybeRegBlock); 8793 8794 // Load the current saved register area pointer. 8795 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8796 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8797 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8798 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8799 8800 // Load the saved register area end pointer. 8801 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8802 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8803 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8804 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8805 8806 // If the size of argument is > 4 bytes, check if the stack 8807 // location is aligned to 8 bytes 8808 if (ArgAlign > 4) { 8809 8810 llvm::Value *__current_saved_reg_area_pointer_int = 8811 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8812 CGF.Int32Ty); 8813 8814 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8815 __current_saved_reg_area_pointer_int, 8816 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8817 "align_current_saved_reg_area_pointer"); 8818 8819 __current_saved_reg_area_pointer_int = 8820 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8821 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8822 "align_current_saved_reg_area_pointer"); 8823 8824 __current_saved_reg_area_pointer = 8825 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8826 __current_saved_reg_area_pointer->getType(), 8827 "align_current_saved_reg_area_pointer"); 8828 } 8829 8830 llvm::Value *__new_saved_reg_area_pointer = 8831 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8832 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8833 "__new_saved_reg_area_pointer"); 8834 8835 llvm::Value *UsingStack = nullptr; 8836 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8837 __saved_reg_area_end_pointer); 8838 8839 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8840 8841 // Argument in saved register area 8842 // Implement the block where argument is in register saved area 8843 CGF.EmitBlock(InRegBlock); 8844 8845 llvm::Type *PTy = CGF.ConvertType(Ty); 8846 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8847 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8848 8849 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8850 __current_saved_reg_area_pointer_p); 8851 8852 CGF.EmitBranch(ContBlock); 8853 8854 // Argument in overflow area 8855 // Implement the block where the argument is in overflow area. 8856 CGF.EmitBlock(OnStackBlock); 8857 8858 // Load the overflow area pointer 8859 Address __overflow_area_pointer_p = 8860 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8861 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8862 __overflow_area_pointer_p, "__overflow_area_pointer"); 8863 8864 // Align the overflow area pointer according to the alignment of the argument 8865 if (ArgAlign > 4) { 8866 llvm::Value *__overflow_area_pointer_int = 8867 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8868 8869 __overflow_area_pointer_int = 8870 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8871 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8872 "align_overflow_area_pointer"); 8873 8874 __overflow_area_pointer_int = 8875 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8876 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8877 "align_overflow_area_pointer"); 8878 8879 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8880 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8881 "align_overflow_area_pointer"); 8882 } 8883 8884 // Get the pointer for next argument in overflow area and store it 8885 // to overflow area pointer. 8886 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8887 CGF.Int8Ty, __overflow_area_pointer, 8888 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8889 "__overflow_area_pointer.next"); 8890 8891 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8892 __overflow_area_pointer_p); 8893 8894 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8895 __current_saved_reg_area_pointer_p); 8896 8897 // Bitcast the overflow area pointer to the type of argument. 8898 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8899 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8900 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8901 8902 CGF.EmitBranch(ContBlock); 8903 8904 // Get the correct pointer to load the variable argument 8905 // Implement the ContBlock 8906 CGF.EmitBlock(ContBlock); 8907 8908 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 8909 llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy); 8910 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8911 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8912 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8913 8914 return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign)); 8915 } 8916 8917 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8918 QualType Ty) const { 8919 8920 if (getTarget().getTriple().isMusl()) 8921 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8922 8923 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8924 } 8925 8926 //===----------------------------------------------------------------------===// 8927 // Lanai ABI Implementation 8928 //===----------------------------------------------------------------------===// 8929 8930 namespace { 8931 class LanaiABIInfo : public DefaultABIInfo { 8932 public: 8933 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8934 8935 bool shouldUseInReg(QualType Ty, CCState &State) const; 8936 8937 void computeInfo(CGFunctionInfo &FI) const override { 8938 CCState State(FI); 8939 // Lanai uses 4 registers to pass arguments unless the function has the 8940 // regparm attribute set. 8941 if (FI.getHasRegParm()) { 8942 State.FreeRegs = FI.getRegParm(); 8943 } else { 8944 State.FreeRegs = 4; 8945 } 8946 8947 if (!getCXXABI().classifyReturnType(FI)) 8948 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8949 for (auto &I : FI.arguments()) 8950 I.info = classifyArgumentType(I.type, State); 8951 } 8952 8953 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8954 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8955 }; 8956 } // end anonymous namespace 8957 8958 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8959 unsigned Size = getContext().getTypeSize(Ty); 8960 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8961 8962 if (SizeInRegs == 0) 8963 return false; 8964 8965 if (SizeInRegs > State.FreeRegs) { 8966 State.FreeRegs = 0; 8967 return false; 8968 } 8969 8970 State.FreeRegs -= SizeInRegs; 8971 8972 return true; 8973 } 8974 8975 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8976 CCState &State) const { 8977 if (!ByVal) { 8978 if (State.FreeRegs) { 8979 --State.FreeRegs; // Non-byval indirects just use one pointer. 8980 return getNaturalAlignIndirectInReg(Ty); 8981 } 8982 return getNaturalAlignIndirect(Ty, false); 8983 } 8984 8985 // Compute the byval alignment. 8986 const unsigned MinABIStackAlignInBytes = 4; 8987 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8988 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8989 /*Realign=*/TypeAlign > 8990 MinABIStackAlignInBytes); 8991 } 8992 8993 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8994 CCState &State) const { 8995 // Check with the C++ ABI first. 8996 const RecordType *RT = Ty->getAs<RecordType>(); 8997 if (RT) { 8998 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8999 if (RAA == CGCXXABI::RAA_Indirect) { 9000 return getIndirectResult(Ty, /*ByVal=*/false, State); 9001 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 9002 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 9003 } 9004 } 9005 9006 if (isAggregateTypeForABI(Ty)) { 9007 // Structures with flexible arrays are always indirect. 9008 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9009 return getIndirectResult(Ty, /*ByVal=*/true, State); 9010 9011 // Ignore empty structs/unions. 9012 if (isEmptyRecord(getContext(), Ty, true)) 9013 return ABIArgInfo::getIgnore(); 9014 9015 llvm::LLVMContext &LLVMContext = getVMContext(); 9016 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 9017 if (SizeInRegs <= State.FreeRegs) { 9018 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9019 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9020 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9021 State.FreeRegs -= SizeInRegs; 9022 return ABIArgInfo::getDirectInReg(Result); 9023 } else { 9024 State.FreeRegs = 0; 9025 } 9026 return getIndirectResult(Ty, true, State); 9027 } 9028 9029 // Treat an enum type as its underlying type. 9030 if (const auto *EnumTy = Ty->getAs<EnumType>()) 9031 Ty = EnumTy->getDecl()->getIntegerType(); 9032 9033 bool InReg = shouldUseInReg(Ty, State); 9034 9035 // Don't pass >64 bit integers in registers. 9036 if (const auto *EIT = Ty->getAs<BitIntType>()) 9037 if (EIT->getNumBits() > 64) 9038 return getIndirectResult(Ty, /*ByVal=*/true, State); 9039 9040 if (isPromotableIntegerTypeForABI(Ty)) { 9041 if (InReg) 9042 return ABIArgInfo::getDirectInReg(); 9043 return ABIArgInfo::getExtend(Ty); 9044 } 9045 if (InReg) 9046 return ABIArgInfo::getDirectInReg(); 9047 return ABIArgInfo::getDirect(); 9048 } 9049 9050 namespace { 9051 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 9052 public: 9053 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9054 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 9055 }; 9056 } 9057 9058 //===----------------------------------------------------------------------===// 9059 // AMDGPU ABI Implementation 9060 //===----------------------------------------------------------------------===// 9061 9062 namespace { 9063 9064 class AMDGPUABIInfo final : public DefaultABIInfo { 9065 private: 9066 static const unsigned MaxNumRegsForArgsRet = 16; 9067 9068 unsigned numRegsForType(QualType Ty) const; 9069 9070 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 9071 bool isHomogeneousAggregateSmallEnough(const Type *Base, 9072 uint64_t Members) const override; 9073 9074 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 9075 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 9076 unsigned ToAS) const { 9077 // Single value types. 9078 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty); 9079 if (PtrTy && PtrTy->getAddressSpace() == FromAS) 9080 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); 9081 return Ty; 9082 } 9083 9084 public: 9085 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 9086 DefaultABIInfo(CGT) {} 9087 9088 ABIArgInfo classifyReturnType(QualType RetTy) const; 9089 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 9090 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 9091 9092 void computeInfo(CGFunctionInfo &FI) const override; 9093 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9094 QualType Ty) const override; 9095 }; 9096 9097 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 9098 return true; 9099 } 9100 9101 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 9102 const Type *Base, uint64_t Members) const { 9103 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 9104 9105 // Homogeneous Aggregates may occupy at most 16 registers. 9106 return Members * NumRegs <= MaxNumRegsForArgsRet; 9107 } 9108 9109 /// Estimate number of registers the type will use when passed in registers. 9110 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 9111 unsigned NumRegs = 0; 9112 9113 if (const VectorType *VT = Ty->getAs<VectorType>()) { 9114 // Compute from the number of elements. The reported size is based on the 9115 // in-memory size, which includes the padding 4th element for 3-vectors. 9116 QualType EltTy = VT->getElementType(); 9117 unsigned EltSize = getContext().getTypeSize(EltTy); 9118 9119 // 16-bit element vectors should be passed as packed. 9120 if (EltSize == 16) 9121 return (VT->getNumElements() + 1) / 2; 9122 9123 unsigned EltNumRegs = (EltSize + 31) / 32; 9124 return EltNumRegs * VT->getNumElements(); 9125 } 9126 9127 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9128 const RecordDecl *RD = RT->getDecl(); 9129 assert(!RD->hasFlexibleArrayMember()); 9130 9131 for (const FieldDecl *Field : RD->fields()) { 9132 QualType FieldTy = Field->getType(); 9133 NumRegs += numRegsForType(FieldTy); 9134 } 9135 9136 return NumRegs; 9137 } 9138 9139 return (getContext().getTypeSize(Ty) + 31) / 32; 9140 } 9141 9142 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9143 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9144 9145 if (!getCXXABI().classifyReturnType(FI)) 9146 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9147 9148 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9149 for (auto &Arg : FI.arguments()) { 9150 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9151 Arg.info = classifyKernelArgumentType(Arg.type); 9152 } else { 9153 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9154 } 9155 } 9156 } 9157 9158 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9159 QualType Ty) const { 9160 llvm_unreachable("AMDGPU does not support varargs"); 9161 } 9162 9163 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9164 if (isAggregateTypeForABI(RetTy)) { 9165 // Records with non-trivial destructors/copy-constructors should not be 9166 // returned by value. 9167 if (!getRecordArgABI(RetTy, getCXXABI())) { 9168 // Ignore empty structs/unions. 9169 if (isEmptyRecord(getContext(), RetTy, true)) 9170 return ABIArgInfo::getIgnore(); 9171 9172 // Lower single-element structs to just return a regular value. 9173 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9174 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9175 9176 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9177 const RecordDecl *RD = RT->getDecl(); 9178 if (RD->hasFlexibleArrayMember()) 9179 return DefaultABIInfo::classifyReturnType(RetTy); 9180 } 9181 9182 // Pack aggregates <= 4 bytes into single VGPR or pair. 9183 uint64_t Size = getContext().getTypeSize(RetTy); 9184 if (Size <= 16) 9185 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9186 9187 if (Size <= 32) 9188 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9189 9190 if (Size <= 64) { 9191 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9192 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9193 } 9194 9195 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9196 return ABIArgInfo::getDirect(); 9197 } 9198 } 9199 9200 // Otherwise just do the default thing. 9201 return DefaultABIInfo::classifyReturnType(RetTy); 9202 } 9203 9204 /// For kernels all parameters are really passed in a special buffer. It doesn't 9205 /// make sense to pass anything byval, so everything must be direct. 9206 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9207 Ty = useFirstFieldIfTransparentUnion(Ty); 9208 9209 // TODO: Can we omit empty structs? 9210 9211 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9212 Ty = QualType(SeltTy, 0); 9213 9214 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9215 llvm::Type *LTy = OrigLTy; 9216 if (getContext().getLangOpts().HIP) { 9217 LTy = coerceKernelArgumentType( 9218 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9219 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9220 } 9221 9222 // FIXME: Should also use this for OpenCL, but it requires addressing the 9223 // problem of kernels being called. 9224 // 9225 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9226 // to global address space when using byref. This would require implementing a 9227 // new kind of coercion of the in-memory type when for indirect arguments. 9228 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9229 isAggregateTypeForABI(Ty)) { 9230 return ABIArgInfo::getIndirectAliased( 9231 getContext().getTypeAlignInChars(Ty), 9232 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9233 false /*Realign*/, nullptr /*Padding*/); 9234 } 9235 9236 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9237 // individual elements, which confuses the Clover OpenCL backend; therefore we 9238 // have to set it to false here. Other args of getDirect() are just defaults. 9239 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9240 } 9241 9242 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9243 unsigned &NumRegsLeft) const { 9244 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9245 9246 Ty = useFirstFieldIfTransparentUnion(Ty); 9247 9248 if (isAggregateTypeForABI(Ty)) { 9249 // Records with non-trivial destructors/copy-constructors should not be 9250 // passed by value. 9251 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9252 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9253 9254 // Ignore empty structs/unions. 9255 if (isEmptyRecord(getContext(), Ty, true)) 9256 return ABIArgInfo::getIgnore(); 9257 9258 // Lower single-element structs to just pass a regular value. TODO: We 9259 // could do reasonable-size multiple-element structs too, using getExpand(), 9260 // though watch out for things like bitfields. 9261 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9262 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9263 9264 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9265 const RecordDecl *RD = RT->getDecl(); 9266 if (RD->hasFlexibleArrayMember()) 9267 return DefaultABIInfo::classifyArgumentType(Ty); 9268 } 9269 9270 // Pack aggregates <= 8 bytes into single VGPR or pair. 9271 uint64_t Size = getContext().getTypeSize(Ty); 9272 if (Size <= 64) { 9273 unsigned NumRegs = (Size + 31) / 32; 9274 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9275 9276 if (Size <= 16) 9277 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9278 9279 if (Size <= 32) 9280 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9281 9282 // XXX: Should this be i64 instead, and should the limit increase? 9283 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9284 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9285 } 9286 9287 if (NumRegsLeft > 0) { 9288 unsigned NumRegs = numRegsForType(Ty); 9289 if (NumRegsLeft >= NumRegs) { 9290 NumRegsLeft -= NumRegs; 9291 return ABIArgInfo::getDirect(); 9292 } 9293 } 9294 } 9295 9296 // Otherwise just do the default thing. 9297 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9298 if (!ArgInfo.isIndirect()) { 9299 unsigned NumRegs = numRegsForType(Ty); 9300 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9301 } 9302 9303 return ArgInfo; 9304 } 9305 9306 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9307 public: 9308 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9309 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9310 9311 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9312 CodeGenModule &CGM) const; 9313 9314 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9315 CodeGen::CodeGenModule &M) const override; 9316 unsigned getOpenCLKernelCallingConv() const override; 9317 9318 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9319 llvm::PointerType *T, QualType QT) const override; 9320 9321 LangAS getASTAllocaAddressSpace() const override { 9322 return getLangASFromTargetAS( 9323 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9324 } 9325 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9326 const VarDecl *D) const override; 9327 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9328 SyncScope Scope, 9329 llvm::AtomicOrdering Ordering, 9330 llvm::LLVMContext &Ctx) const override; 9331 llvm::Function * 9332 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9333 llvm::Function *BlockInvokeFunc, 9334 llvm::Type *BlockTy) const override; 9335 bool shouldEmitStaticExternCAliases() const override; 9336 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9337 }; 9338 } 9339 9340 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9341 llvm::GlobalValue *GV) { 9342 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9343 return false; 9344 9345 return D->hasAttr<OpenCLKernelAttr>() || 9346 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9347 (isa<VarDecl>(D) && 9348 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9349 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9350 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9351 } 9352 9353 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9354 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9355 const auto *ReqdWGS = 9356 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9357 const bool IsOpenCLKernel = 9358 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9359 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9360 9361 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9362 if (ReqdWGS || FlatWGS) { 9363 unsigned Min = 0; 9364 unsigned Max = 0; 9365 if (FlatWGS) { 9366 Min = FlatWGS->getMin() 9367 ->EvaluateKnownConstInt(M.getContext()) 9368 .getExtValue(); 9369 Max = FlatWGS->getMax() 9370 ->EvaluateKnownConstInt(M.getContext()) 9371 .getExtValue(); 9372 } 9373 if (ReqdWGS && Min == 0 && Max == 0) 9374 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9375 9376 if (Min != 0) { 9377 assert(Min <= Max && "Min must be less than or equal Max"); 9378 9379 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9380 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9381 } else 9382 assert(Max == 0 && "Max must be zero"); 9383 } else if (IsOpenCLKernel || IsHIPKernel) { 9384 // By default, restrict the maximum size to a value specified by 9385 // --gpu-max-threads-per-block=n or its default value for HIP. 9386 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9387 const unsigned DefaultMaxWorkGroupSize = 9388 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9389 : M.getLangOpts().GPUMaxThreadsPerBlock; 9390 std::string AttrVal = 9391 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9392 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9393 } 9394 9395 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9396 unsigned Min = 9397 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9398 unsigned Max = Attr->getMax() ? Attr->getMax() 9399 ->EvaluateKnownConstInt(M.getContext()) 9400 .getExtValue() 9401 : 0; 9402 9403 if (Min != 0) { 9404 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9405 9406 std::string AttrVal = llvm::utostr(Min); 9407 if (Max != 0) 9408 AttrVal = AttrVal + "," + llvm::utostr(Max); 9409 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9410 } else 9411 assert(Max == 0 && "Max must be zero"); 9412 } 9413 9414 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9415 unsigned NumSGPR = Attr->getNumSGPR(); 9416 9417 if (NumSGPR != 0) 9418 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9419 } 9420 9421 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9422 uint32_t NumVGPR = Attr->getNumVGPR(); 9423 9424 if (NumVGPR != 0) 9425 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9426 } 9427 } 9428 9429 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9430 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9431 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9432 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9433 GV->setDSOLocal(true); 9434 } 9435 9436 if (GV->isDeclaration()) 9437 return; 9438 9439 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9440 if (!F) 9441 return; 9442 9443 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9444 if (FD) 9445 setFunctionDeclAttributes(FD, F, M); 9446 9447 const bool IsHIPKernel = 9448 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9449 9450 if (IsHIPKernel) 9451 F->addFnAttr("uniform-work-group-size", "true"); 9452 9453 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9454 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9455 9456 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9457 F->addFnAttr("amdgpu-ieee", "false"); 9458 } 9459 9460 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9461 return llvm::CallingConv::AMDGPU_KERNEL; 9462 } 9463 9464 // Currently LLVM assumes null pointers always have value 0, 9465 // which results in incorrectly transformed IR. Therefore, instead of 9466 // emitting null pointers in private and local address spaces, a null 9467 // pointer in generic address space is emitted which is casted to a 9468 // pointer in local or private address space. 9469 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9470 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9471 QualType QT) const { 9472 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9473 return llvm::ConstantPointerNull::get(PT); 9474 9475 auto &Ctx = CGM.getContext(); 9476 auto NPT = llvm::PointerType::getWithSamePointeeType( 9477 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9478 return llvm::ConstantExpr::getAddrSpaceCast( 9479 llvm::ConstantPointerNull::get(NPT), PT); 9480 } 9481 9482 LangAS 9483 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9484 const VarDecl *D) const { 9485 assert(!CGM.getLangOpts().OpenCL && 9486 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9487 "Address space agnostic languages only"); 9488 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9489 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9490 if (!D) 9491 return DefaultGlobalAS; 9492 9493 LangAS AddrSpace = D->getType().getAddressSpace(); 9494 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9495 if (AddrSpace != LangAS::Default) 9496 return AddrSpace; 9497 9498 // Only promote to address space 4 if VarDecl has constant initialization. 9499 if (CGM.isTypeConstant(D->getType(), false) && 9500 D->hasConstantInitialization()) { 9501 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9502 return *ConstAS; 9503 } 9504 return DefaultGlobalAS; 9505 } 9506 9507 llvm::SyncScope::ID 9508 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9509 SyncScope Scope, 9510 llvm::AtomicOrdering Ordering, 9511 llvm::LLVMContext &Ctx) const { 9512 std::string Name; 9513 switch (Scope) { 9514 case SyncScope::HIPSingleThread: 9515 Name = "singlethread"; 9516 break; 9517 case SyncScope::HIPWavefront: 9518 case SyncScope::OpenCLSubGroup: 9519 Name = "wavefront"; 9520 break; 9521 case SyncScope::HIPWorkgroup: 9522 case SyncScope::OpenCLWorkGroup: 9523 Name = "workgroup"; 9524 break; 9525 case SyncScope::HIPAgent: 9526 case SyncScope::OpenCLDevice: 9527 Name = "agent"; 9528 break; 9529 case SyncScope::HIPSystem: 9530 case SyncScope::OpenCLAllSVMDevices: 9531 Name = ""; 9532 break; 9533 } 9534 9535 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9536 if (!Name.empty()) 9537 Name = Twine(Twine(Name) + Twine("-")).str(); 9538 9539 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9540 } 9541 9542 return Ctx.getOrInsertSyncScopeID(Name); 9543 } 9544 9545 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9546 return false; 9547 } 9548 9549 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9550 const FunctionType *&FT) const { 9551 FT = getABIInfo().getContext().adjustFunctionType( 9552 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9553 } 9554 9555 //===----------------------------------------------------------------------===// 9556 // SPARC v8 ABI Implementation. 9557 // Based on the SPARC Compliance Definition version 2.4.1. 9558 // 9559 // Ensures that complex values are passed in registers. 9560 // 9561 namespace { 9562 class SparcV8ABIInfo : public DefaultABIInfo { 9563 public: 9564 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9565 9566 private: 9567 ABIArgInfo classifyReturnType(QualType RetTy) const; 9568 void computeInfo(CGFunctionInfo &FI) const override; 9569 }; 9570 } // end anonymous namespace 9571 9572 9573 ABIArgInfo 9574 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9575 if (Ty->isAnyComplexType()) { 9576 return ABIArgInfo::getDirect(); 9577 } 9578 else { 9579 return DefaultABIInfo::classifyReturnType(Ty); 9580 } 9581 } 9582 9583 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9584 9585 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9586 for (auto &Arg : FI.arguments()) 9587 Arg.info = classifyArgumentType(Arg.type); 9588 } 9589 9590 namespace { 9591 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9592 public: 9593 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9594 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9595 9596 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9597 llvm::Value *Address) const override { 9598 int Offset; 9599 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9600 Offset = 12; 9601 else 9602 Offset = 8; 9603 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9604 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9605 } 9606 9607 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9608 llvm::Value *Address) const override { 9609 int Offset; 9610 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9611 Offset = -12; 9612 else 9613 Offset = -8; 9614 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9615 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9616 } 9617 }; 9618 } // end anonymous namespace 9619 9620 //===----------------------------------------------------------------------===// 9621 // SPARC v9 ABI Implementation. 9622 // Based on the SPARC Compliance Definition version 2.4.1. 9623 // 9624 // Function arguments a mapped to a nominal "parameter array" and promoted to 9625 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9626 // the array, structs larger than 16 bytes are passed indirectly. 9627 // 9628 // One case requires special care: 9629 // 9630 // struct mixed { 9631 // int i; 9632 // float f; 9633 // }; 9634 // 9635 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9636 // parameter array, but the int is passed in an integer register, and the float 9637 // is passed in a floating point register. This is represented as two arguments 9638 // with the LLVM IR inreg attribute: 9639 // 9640 // declare void f(i32 inreg %i, float inreg %f) 9641 // 9642 // The code generator will only allocate 4 bytes from the parameter array for 9643 // the inreg arguments. All other arguments are allocated a multiple of 8 9644 // bytes. 9645 // 9646 namespace { 9647 class SparcV9ABIInfo : public ABIInfo { 9648 public: 9649 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9650 9651 private: 9652 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9653 void computeInfo(CGFunctionInfo &FI) const override; 9654 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9655 QualType Ty) const override; 9656 9657 // Coercion type builder for structs passed in registers. The coercion type 9658 // serves two purposes: 9659 // 9660 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9661 // in registers. 9662 // 2. Expose aligned floating point elements as first-level elements, so the 9663 // code generator knows to pass them in floating point registers. 9664 // 9665 // We also compute the InReg flag which indicates that the struct contains 9666 // aligned 32-bit floats. 9667 // 9668 struct CoerceBuilder { 9669 llvm::LLVMContext &Context; 9670 const llvm::DataLayout &DL; 9671 SmallVector<llvm::Type*, 8> Elems; 9672 uint64_t Size; 9673 bool InReg; 9674 9675 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9676 : Context(c), DL(dl), Size(0), InReg(false) {} 9677 9678 // Pad Elems with integers until Size is ToSize. 9679 void pad(uint64_t ToSize) { 9680 assert(ToSize >= Size && "Cannot remove elements"); 9681 if (ToSize == Size) 9682 return; 9683 9684 // Finish the current 64-bit word. 9685 uint64_t Aligned = llvm::alignTo(Size, 64); 9686 if (Aligned > Size && Aligned <= ToSize) { 9687 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9688 Size = Aligned; 9689 } 9690 9691 // Add whole 64-bit words. 9692 while (Size + 64 <= ToSize) { 9693 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9694 Size += 64; 9695 } 9696 9697 // Final in-word padding. 9698 if (Size < ToSize) { 9699 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9700 Size = ToSize; 9701 } 9702 } 9703 9704 // Add a floating point element at Offset. 9705 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9706 // Unaligned floats are treated as integers. 9707 if (Offset % Bits) 9708 return; 9709 // The InReg flag is only required if there are any floats < 64 bits. 9710 if (Bits < 64) 9711 InReg = true; 9712 pad(Offset); 9713 Elems.push_back(Ty); 9714 Size = Offset + Bits; 9715 } 9716 9717 // Add a struct type to the coercion type, starting at Offset (in bits). 9718 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9719 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9720 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9721 llvm::Type *ElemTy = StrTy->getElementType(i); 9722 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9723 switch (ElemTy->getTypeID()) { 9724 case llvm::Type::StructTyID: 9725 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9726 break; 9727 case llvm::Type::FloatTyID: 9728 addFloat(ElemOffset, ElemTy, 32); 9729 break; 9730 case llvm::Type::DoubleTyID: 9731 addFloat(ElemOffset, ElemTy, 64); 9732 break; 9733 case llvm::Type::FP128TyID: 9734 addFloat(ElemOffset, ElemTy, 128); 9735 break; 9736 case llvm::Type::PointerTyID: 9737 if (ElemOffset % 64 == 0) { 9738 pad(ElemOffset); 9739 Elems.push_back(ElemTy); 9740 Size += 64; 9741 } 9742 break; 9743 default: 9744 break; 9745 } 9746 } 9747 } 9748 9749 // Check if Ty is a usable substitute for the coercion type. 9750 bool isUsableType(llvm::StructType *Ty) const { 9751 return llvm::makeArrayRef(Elems) == Ty->elements(); 9752 } 9753 9754 // Get the coercion type as a literal struct type. 9755 llvm::Type *getType() const { 9756 if (Elems.size() == 1) 9757 return Elems.front(); 9758 else 9759 return llvm::StructType::get(Context, Elems); 9760 } 9761 }; 9762 }; 9763 } // end anonymous namespace 9764 9765 ABIArgInfo 9766 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9767 if (Ty->isVoidType()) 9768 return ABIArgInfo::getIgnore(); 9769 9770 uint64_t Size = getContext().getTypeSize(Ty); 9771 9772 // Anything too big to fit in registers is passed with an explicit indirect 9773 // pointer / sret pointer. 9774 if (Size > SizeLimit) 9775 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9776 9777 // Treat an enum type as its underlying type. 9778 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9779 Ty = EnumTy->getDecl()->getIntegerType(); 9780 9781 // Integer types smaller than a register are extended. 9782 if (Size < 64 && Ty->isIntegerType()) 9783 return ABIArgInfo::getExtend(Ty); 9784 9785 if (const auto *EIT = Ty->getAs<BitIntType>()) 9786 if (EIT->getNumBits() < 64) 9787 return ABIArgInfo::getExtend(Ty); 9788 9789 // Other non-aggregates go in registers. 9790 if (!isAggregateTypeForABI(Ty)) 9791 return ABIArgInfo::getDirect(); 9792 9793 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9794 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9795 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9796 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9797 9798 // This is a small aggregate type that should be passed in registers. 9799 // Build a coercion type from the LLVM struct type. 9800 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9801 if (!StrTy) 9802 return ABIArgInfo::getDirect(); 9803 9804 CoerceBuilder CB(getVMContext(), getDataLayout()); 9805 CB.addStruct(0, StrTy); 9806 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9807 9808 // Try to use the original type for coercion. 9809 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9810 9811 if (CB.InReg) 9812 return ABIArgInfo::getDirectInReg(CoerceTy); 9813 else 9814 return ABIArgInfo::getDirect(CoerceTy); 9815 } 9816 9817 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9818 QualType Ty) const { 9819 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9820 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9821 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9822 AI.setCoerceToType(ArgTy); 9823 9824 CharUnits SlotSize = CharUnits::fromQuantity(8); 9825 9826 CGBuilderTy &Builder = CGF.Builder; 9827 Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"), 9828 getVAListElementType(CGF), SlotSize); 9829 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9830 9831 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9832 9833 Address ArgAddr = Address::invalid(); 9834 CharUnits Stride; 9835 switch (AI.getKind()) { 9836 case ABIArgInfo::Expand: 9837 case ABIArgInfo::CoerceAndExpand: 9838 case ABIArgInfo::InAlloca: 9839 llvm_unreachable("Unsupported ABI kind for va_arg"); 9840 9841 case ABIArgInfo::Extend: { 9842 Stride = SlotSize; 9843 CharUnits Offset = SlotSize - TypeInfo.Width; 9844 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9845 break; 9846 } 9847 9848 case ABIArgInfo::Direct: { 9849 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9850 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9851 ArgAddr = Addr; 9852 break; 9853 } 9854 9855 case ABIArgInfo::Indirect: 9856 case ABIArgInfo::IndirectAliased: 9857 Stride = SlotSize; 9858 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9859 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy, 9860 TypeInfo.Align); 9861 break; 9862 9863 case ABIArgInfo::Ignore: 9864 return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align); 9865 } 9866 9867 // Update VAList. 9868 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9869 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9870 9871 return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr"); 9872 } 9873 9874 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9875 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9876 for (auto &I : FI.arguments()) 9877 I.info = classifyType(I.type, 16 * 8); 9878 } 9879 9880 namespace { 9881 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9882 public: 9883 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9884 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9885 9886 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9887 return 14; 9888 } 9889 9890 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9891 llvm::Value *Address) const override; 9892 9893 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9894 llvm::Value *Address) const override { 9895 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9896 llvm::ConstantInt::get(CGF.Int32Ty, 8)); 9897 } 9898 9899 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9900 llvm::Value *Address) const override { 9901 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9902 llvm::ConstantInt::get(CGF.Int32Ty, -8)); 9903 } 9904 }; 9905 } // end anonymous namespace 9906 9907 bool 9908 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9909 llvm::Value *Address) const { 9910 // This is calculated from the LLVM and GCC tables and verified 9911 // against gcc output. AFAIK all ABIs use the same encoding. 9912 9913 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9914 9915 llvm::IntegerType *i8 = CGF.Int8Ty; 9916 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9917 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9918 9919 // 0-31: the 8-byte general-purpose registers 9920 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9921 9922 // 32-63: f0-31, the 4-byte floating-point registers 9923 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9924 9925 // Y = 64 9926 // PSR = 65 9927 // WIM = 66 9928 // TBR = 67 9929 // PC = 68 9930 // NPC = 69 9931 // FSR = 70 9932 // CSR = 71 9933 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9934 9935 // 72-87: d0-15, the 8-byte floating-point registers 9936 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9937 9938 return false; 9939 } 9940 9941 // ARC ABI implementation. 9942 namespace { 9943 9944 class ARCABIInfo : public DefaultABIInfo { 9945 public: 9946 using DefaultABIInfo::DefaultABIInfo; 9947 9948 private: 9949 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9950 QualType Ty) const override; 9951 9952 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9953 if (!State.FreeRegs) 9954 return; 9955 if (Info.isIndirect() && Info.getInReg()) 9956 State.FreeRegs--; 9957 else if (Info.isDirect() && Info.getInReg()) { 9958 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9959 if (sz < State.FreeRegs) 9960 State.FreeRegs -= sz; 9961 else 9962 State.FreeRegs = 0; 9963 } 9964 } 9965 9966 void computeInfo(CGFunctionInfo &FI) const override { 9967 CCState State(FI); 9968 // ARC uses 8 registers to pass arguments. 9969 State.FreeRegs = 8; 9970 9971 if (!getCXXABI().classifyReturnType(FI)) 9972 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9973 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9974 for (auto &I : FI.arguments()) { 9975 I.info = classifyArgumentType(I.type, State.FreeRegs); 9976 updateState(I.info, I.type, State); 9977 } 9978 } 9979 9980 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9981 ABIArgInfo getIndirectByValue(QualType Ty) const; 9982 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9983 ABIArgInfo classifyReturnType(QualType RetTy) const; 9984 }; 9985 9986 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9987 public: 9988 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9989 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9990 }; 9991 9992 9993 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9994 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9995 getNaturalAlignIndirect(Ty, false); 9996 } 9997 9998 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9999 // Compute the byval alignment. 10000 const unsigned MinABIStackAlignInBytes = 4; 10001 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 10002 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 10003 TypeAlign > MinABIStackAlignInBytes); 10004 } 10005 10006 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10007 QualType Ty) const { 10008 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 10009 getContext().getTypeInfoInChars(Ty), 10010 CharUnits::fromQuantity(4), true); 10011 } 10012 10013 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 10014 uint8_t FreeRegs) const { 10015 // Handle the generic C++ ABI. 10016 const RecordType *RT = Ty->getAs<RecordType>(); 10017 if (RT) { 10018 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 10019 if (RAA == CGCXXABI::RAA_Indirect) 10020 return getIndirectByRef(Ty, FreeRegs > 0); 10021 10022 if (RAA == CGCXXABI::RAA_DirectInMemory) 10023 return getIndirectByValue(Ty); 10024 } 10025 10026 // Treat an enum type as its underlying type. 10027 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10028 Ty = EnumTy->getDecl()->getIntegerType(); 10029 10030 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 10031 10032 if (isAggregateTypeForABI(Ty)) { 10033 // Structures with flexible arrays are always indirect. 10034 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 10035 return getIndirectByValue(Ty); 10036 10037 // Ignore empty structs/unions. 10038 if (isEmptyRecord(getContext(), Ty, true)) 10039 return ABIArgInfo::getIgnore(); 10040 10041 llvm::LLVMContext &LLVMContext = getVMContext(); 10042 10043 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 10044 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 10045 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 10046 10047 return FreeRegs >= SizeInRegs ? 10048 ABIArgInfo::getDirectInReg(Result) : 10049 ABIArgInfo::getDirect(Result, 0, nullptr, false); 10050 } 10051 10052 if (const auto *EIT = Ty->getAs<BitIntType>()) 10053 if (EIT->getNumBits() > 64) 10054 return getIndirectByValue(Ty); 10055 10056 return isPromotableIntegerTypeForABI(Ty) 10057 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 10058 : ABIArgInfo::getExtend(Ty)) 10059 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 10060 : ABIArgInfo::getDirect()); 10061 } 10062 10063 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 10064 if (RetTy->isAnyComplexType()) 10065 return ABIArgInfo::getDirectInReg(); 10066 10067 // Arguments of size > 4 registers are indirect. 10068 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 10069 if (RetSize > 4) 10070 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 10071 10072 return DefaultABIInfo::classifyReturnType(RetTy); 10073 } 10074 10075 } // End anonymous namespace. 10076 10077 //===----------------------------------------------------------------------===// 10078 // XCore ABI Implementation 10079 //===----------------------------------------------------------------------===// 10080 10081 namespace { 10082 10083 /// A SmallStringEnc instance is used to build up the TypeString by passing 10084 /// it by reference between functions that append to it. 10085 typedef llvm::SmallString<128> SmallStringEnc; 10086 10087 /// TypeStringCache caches the meta encodings of Types. 10088 /// 10089 /// The reason for caching TypeStrings is two fold: 10090 /// 1. To cache a type's encoding for later uses; 10091 /// 2. As a means to break recursive member type inclusion. 10092 /// 10093 /// A cache Entry can have a Status of: 10094 /// NonRecursive: The type encoding is not recursive; 10095 /// Recursive: The type encoding is recursive; 10096 /// Incomplete: An incomplete TypeString; 10097 /// IncompleteUsed: An incomplete TypeString that has been used in a 10098 /// Recursive type encoding. 10099 /// 10100 /// A NonRecursive entry will have all of its sub-members expanded as fully 10101 /// as possible. Whilst it may contain types which are recursive, the type 10102 /// itself is not recursive and thus its encoding may be safely used whenever 10103 /// the type is encountered. 10104 /// 10105 /// A Recursive entry will have all of its sub-members expanded as fully as 10106 /// possible. The type itself is recursive and it may contain other types which 10107 /// are recursive. The Recursive encoding must not be used during the expansion 10108 /// of a recursive type's recursive branch. For simplicity the code uses 10109 /// IncompleteCount to reject all usage of Recursive encodings for member types. 10110 /// 10111 /// An Incomplete entry is always a RecordType and only encodes its 10112 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 10113 /// are placed into the cache during type expansion as a means to identify and 10114 /// handle recursive inclusion of types as sub-members. If there is recursion 10115 /// the entry becomes IncompleteUsed. 10116 /// 10117 /// During the expansion of a RecordType's members: 10118 /// 10119 /// If the cache contains a NonRecursive encoding for the member type, the 10120 /// cached encoding is used; 10121 /// 10122 /// If the cache contains a Recursive encoding for the member type, the 10123 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 10124 /// 10125 /// If the member is a RecordType, an Incomplete encoding is placed into the 10126 /// cache to break potential recursive inclusion of itself as a sub-member; 10127 /// 10128 /// Once a member RecordType has been expanded, its temporary incomplete 10129 /// entry is removed from the cache. If a Recursive encoding was swapped out 10130 /// it is swapped back in; 10131 /// 10132 /// If an incomplete entry is used to expand a sub-member, the incomplete 10133 /// entry is marked as IncompleteUsed. The cache keeps count of how many 10134 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 10135 /// 10136 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 10137 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 10138 /// Else the member is part of a recursive type and thus the recursion has 10139 /// been exited too soon for the encoding to be correct for the member. 10140 /// 10141 class TypeStringCache { 10142 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 10143 struct Entry { 10144 std::string Str; // The encoded TypeString for the type. 10145 enum Status State; // Information about the encoding in 'Str'. 10146 std::string Swapped; // A temporary place holder for a Recursive encoding 10147 // during the expansion of RecordType's members. 10148 }; 10149 std::map<const IdentifierInfo *, struct Entry> Map; 10150 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 10151 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 10152 public: 10153 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 10154 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 10155 bool removeIncomplete(const IdentifierInfo *ID); 10156 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 10157 bool IsRecursive); 10158 StringRef lookupStr(const IdentifierInfo *ID); 10159 }; 10160 10161 /// TypeString encodings for enum & union fields must be order. 10162 /// FieldEncoding is a helper for this ordering process. 10163 class FieldEncoding { 10164 bool HasName; 10165 std::string Enc; 10166 public: 10167 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 10168 StringRef str() { return Enc; } 10169 bool operator<(const FieldEncoding &rhs) const { 10170 if (HasName != rhs.HasName) return HasName; 10171 return Enc < rhs.Enc; 10172 } 10173 }; 10174 10175 class XCoreABIInfo : public DefaultABIInfo { 10176 public: 10177 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10178 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10179 QualType Ty) const override; 10180 }; 10181 10182 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10183 mutable TypeStringCache TSC; 10184 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10185 const CodeGen::CodeGenModule &M) const; 10186 10187 public: 10188 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10189 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10190 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10191 const llvm::MapVector<GlobalDecl, StringRef> 10192 &MangledDeclNames) const override; 10193 }; 10194 10195 } // End anonymous namespace. 10196 10197 // TODO: this implementation is likely now redundant with the default 10198 // EmitVAArg. 10199 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10200 QualType Ty) const { 10201 CGBuilderTy &Builder = CGF.Builder; 10202 10203 // Get the VAList. 10204 CharUnits SlotSize = CharUnits::fromQuantity(4); 10205 Address AP = Address(Builder.CreateLoad(VAListAddr), 10206 getVAListElementType(CGF), SlotSize); 10207 10208 // Handle the argument. 10209 ABIArgInfo AI = classifyArgumentType(Ty); 10210 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10211 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10212 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10213 AI.setCoerceToType(ArgTy); 10214 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10215 10216 Address Val = Address::invalid(); 10217 CharUnits ArgSize = CharUnits::Zero(); 10218 switch (AI.getKind()) { 10219 case ABIArgInfo::Expand: 10220 case ABIArgInfo::CoerceAndExpand: 10221 case ABIArgInfo::InAlloca: 10222 llvm_unreachable("Unsupported ABI kind for va_arg"); 10223 case ABIArgInfo::Ignore: 10224 Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign); 10225 ArgSize = CharUnits::Zero(); 10226 break; 10227 case ABIArgInfo::Extend: 10228 case ABIArgInfo::Direct: 10229 Val = Builder.CreateElementBitCast(AP, ArgTy); 10230 ArgSize = CharUnits::fromQuantity( 10231 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10232 ArgSize = ArgSize.alignTo(SlotSize); 10233 break; 10234 case ABIArgInfo::Indirect: 10235 case ABIArgInfo::IndirectAliased: 10236 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10237 Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign); 10238 ArgSize = SlotSize; 10239 break; 10240 } 10241 10242 // Increment the VAList. 10243 if (!ArgSize.isZero()) { 10244 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10245 Builder.CreateStore(APN.getPointer(), VAListAddr); 10246 } 10247 10248 return Val; 10249 } 10250 10251 /// During the expansion of a RecordType, an incomplete TypeString is placed 10252 /// into the cache as a means to identify and break recursion. 10253 /// If there is a Recursive encoding in the cache, it is swapped out and will 10254 /// be reinserted by removeIncomplete(). 10255 /// All other types of encoding should have been used rather than arriving here. 10256 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10257 std::string StubEnc) { 10258 if (!ID) 10259 return; 10260 Entry &E = Map[ID]; 10261 assert( (E.Str.empty() || E.State == Recursive) && 10262 "Incorrectly use of addIncomplete"); 10263 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10264 E.Swapped.swap(E.Str); // swap out the Recursive 10265 E.Str.swap(StubEnc); 10266 E.State = Incomplete; 10267 ++IncompleteCount; 10268 } 10269 10270 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10271 /// must be removed from the cache. 10272 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10273 /// Returns true if the RecordType was defined recursively. 10274 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10275 if (!ID) 10276 return false; 10277 auto I = Map.find(ID); 10278 assert(I != Map.end() && "Entry not present"); 10279 Entry &E = I->second; 10280 assert( (E.State == Incomplete || 10281 E.State == IncompleteUsed) && 10282 "Entry must be an incomplete type"); 10283 bool IsRecursive = false; 10284 if (E.State == IncompleteUsed) { 10285 // We made use of our Incomplete encoding, thus we are recursive. 10286 IsRecursive = true; 10287 --IncompleteUsedCount; 10288 } 10289 if (E.Swapped.empty()) 10290 Map.erase(I); 10291 else { 10292 // Swap the Recursive back. 10293 E.Swapped.swap(E.Str); 10294 E.Swapped.clear(); 10295 E.State = Recursive; 10296 } 10297 --IncompleteCount; 10298 return IsRecursive; 10299 } 10300 10301 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10302 /// Recursive (viz: all sub-members were expanded as fully as possible). 10303 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10304 bool IsRecursive) { 10305 if (!ID || IncompleteUsedCount) 10306 return; // No key or it is is an incomplete sub-type so don't add. 10307 Entry &E = Map[ID]; 10308 if (IsRecursive && !E.Str.empty()) { 10309 assert(E.State==Recursive && E.Str.size() == Str.size() && 10310 "This is not the same Recursive entry"); 10311 // The parent container was not recursive after all, so we could have used 10312 // this Recursive sub-member entry after all, but we assumed the worse when 10313 // we started viz: IncompleteCount!=0. 10314 return; 10315 } 10316 assert(E.Str.empty() && "Entry already present"); 10317 E.Str = Str.str(); 10318 E.State = IsRecursive? Recursive : NonRecursive; 10319 } 10320 10321 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10322 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10323 /// encoding is Recursive, return an empty StringRef. 10324 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10325 if (!ID) 10326 return StringRef(); // We have no key. 10327 auto I = Map.find(ID); 10328 if (I == Map.end()) 10329 return StringRef(); // We have no encoding. 10330 Entry &E = I->second; 10331 if (E.State == Recursive && IncompleteCount) 10332 return StringRef(); // We don't use Recursive encodings for member types. 10333 10334 if (E.State == Incomplete) { 10335 // The incomplete type is being used to break out of recursion. 10336 E.State = IncompleteUsed; 10337 ++IncompleteUsedCount; 10338 } 10339 return E.Str; 10340 } 10341 10342 /// The XCore ABI includes a type information section that communicates symbol 10343 /// type information to the linker. The linker uses this information to verify 10344 /// safety/correctness of things such as array bound and pointers et al. 10345 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10346 /// This type information (TypeString) is emitted into meta data for all global 10347 /// symbols: definitions, declarations, functions & variables. 10348 /// 10349 /// The TypeString carries type, qualifier, name, size & value details. 10350 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10351 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10352 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10353 /// 10354 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10355 const CodeGen::CodeGenModule &CGM, 10356 TypeStringCache &TSC); 10357 10358 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10359 void XCoreTargetCodeGenInfo::emitTargetMD( 10360 const Decl *D, llvm::GlobalValue *GV, 10361 const CodeGen::CodeGenModule &CGM) const { 10362 SmallStringEnc Enc; 10363 if (getTypeString(Enc, D, CGM, TSC)) { 10364 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10365 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10366 llvm::MDString::get(Ctx, Enc.str())}; 10367 llvm::NamedMDNode *MD = 10368 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10369 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10370 } 10371 } 10372 10373 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10374 CodeGen::CodeGenModule &CGM, 10375 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10376 // Warning, new MangledDeclNames may be appended within this loop. 10377 // We rely on MapVector insertions adding new elements to the end 10378 // of the container. 10379 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10380 auto Val = *(MangledDeclNames.begin() + I); 10381 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10382 if (GV) { 10383 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10384 emitTargetMD(D, GV, CGM); 10385 } 10386 } 10387 } 10388 10389 //===----------------------------------------------------------------------===// 10390 // Base ABI and target codegen info implementation common between SPIR and 10391 // SPIR-V. 10392 //===----------------------------------------------------------------------===// 10393 10394 namespace { 10395 class CommonSPIRABIInfo : public DefaultABIInfo { 10396 public: 10397 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10398 10399 private: 10400 void setCCs(); 10401 }; 10402 10403 class SPIRVABIInfo : public CommonSPIRABIInfo { 10404 public: 10405 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} 10406 void computeInfo(CGFunctionInfo &FI) const override; 10407 10408 private: 10409 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 10410 }; 10411 } // end anonymous namespace 10412 namespace { 10413 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10414 public: 10415 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10416 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10417 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo) 10418 : TargetCodeGenInfo(std::move(ABIInfo)) {} 10419 10420 LangAS getASTAllocaAddressSpace() const override { 10421 return getLangASFromTargetAS( 10422 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10423 } 10424 10425 unsigned getOpenCLKernelCallingConv() const override; 10426 }; 10427 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { 10428 public: 10429 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10430 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {} 10431 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 10432 }; 10433 } // End anonymous namespace. 10434 10435 void CommonSPIRABIInfo::setCCs() { 10436 assert(getRuntimeCC() == llvm::CallingConv::C); 10437 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10438 } 10439 10440 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { 10441 if (getContext().getLangOpts().CUDAIsDevice) { 10442 // Coerce pointer arguments with default address space to CrossWorkGroup 10443 // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the 10444 // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space. 10445 llvm::Type *LTy = CGT.ConvertType(Ty); 10446 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); 10447 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); 10448 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy); 10449 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { 10450 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); 10451 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 10452 } 10453 10454 // Force copying aggregate type in kernel arguments by value when 10455 // compiling CUDA targeting SPIR-V. This is required for the object 10456 // copied to be valid on the device. 10457 // This behavior follows the CUDA spec 10458 // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing, 10459 // and matches the NVPTX implementation. 10460 if (isAggregateTypeForABI(Ty)) 10461 return getNaturalAlignIndirect(Ty, /* byval */ true); 10462 } 10463 return classifyArgumentType(Ty); 10464 } 10465 10466 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10467 // The logic is same as in DefaultABIInfo with an exception on the kernel 10468 // arguments handling. 10469 llvm::CallingConv::ID CC = FI.getCallingConvention(); 10470 10471 if (!getCXXABI().classifyReturnType(FI)) 10472 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10473 10474 for (auto &I : FI.arguments()) { 10475 if (CC == llvm::CallingConv::SPIR_KERNEL) { 10476 I.info = classifyKernelArgumentType(I.type); 10477 } else { 10478 I.info = classifyArgumentType(I.type); 10479 } 10480 } 10481 } 10482 10483 namespace clang { 10484 namespace CodeGen { 10485 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10486 if (CGM.getTarget().getTriple().isSPIRV()) 10487 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); 10488 else 10489 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); 10490 } 10491 } 10492 } 10493 10494 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10495 return llvm::CallingConv::SPIR_KERNEL; 10496 } 10497 10498 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( 10499 const FunctionType *&FT) const { 10500 // Convert HIP kernels to SPIR-V kernels. 10501 if (getABIInfo().getContext().getLangOpts().HIP) { 10502 FT = getABIInfo().getContext().adjustFunctionType( 10503 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 10504 return; 10505 } 10506 } 10507 10508 static bool appendType(SmallStringEnc &Enc, QualType QType, 10509 const CodeGen::CodeGenModule &CGM, 10510 TypeStringCache &TSC); 10511 10512 /// Helper function for appendRecordType(). 10513 /// Builds a SmallVector containing the encoded field types in declaration 10514 /// order. 10515 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10516 const RecordDecl *RD, 10517 const CodeGen::CodeGenModule &CGM, 10518 TypeStringCache &TSC) { 10519 for (const auto *Field : RD->fields()) { 10520 SmallStringEnc Enc; 10521 Enc += "m("; 10522 Enc += Field->getName(); 10523 Enc += "){"; 10524 if (Field->isBitField()) { 10525 Enc += "b("; 10526 llvm::raw_svector_ostream OS(Enc); 10527 OS << Field->getBitWidthValue(CGM.getContext()); 10528 Enc += ':'; 10529 } 10530 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10531 return false; 10532 if (Field->isBitField()) 10533 Enc += ')'; 10534 Enc += '}'; 10535 FE.emplace_back(!Field->getName().empty(), Enc); 10536 } 10537 return true; 10538 } 10539 10540 /// Appends structure and union types to Enc and adds encoding to cache. 10541 /// Recursively calls appendType (via extractFieldType) for each field. 10542 /// Union types have their fields ordered according to the ABI. 10543 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10544 const CodeGen::CodeGenModule &CGM, 10545 TypeStringCache &TSC, const IdentifierInfo *ID) { 10546 // Append the cached TypeString if we have one. 10547 StringRef TypeString = TSC.lookupStr(ID); 10548 if (!TypeString.empty()) { 10549 Enc += TypeString; 10550 return true; 10551 } 10552 10553 // Start to emit an incomplete TypeString. 10554 size_t Start = Enc.size(); 10555 Enc += (RT->isUnionType()? 'u' : 's'); 10556 Enc += '('; 10557 if (ID) 10558 Enc += ID->getName(); 10559 Enc += "){"; 10560 10561 // We collect all encoded fields and order as necessary. 10562 bool IsRecursive = false; 10563 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10564 if (RD && !RD->field_empty()) { 10565 // An incomplete TypeString stub is placed in the cache for this RecordType 10566 // so that recursive calls to this RecordType will use it whilst building a 10567 // complete TypeString for this RecordType. 10568 SmallVector<FieldEncoding, 16> FE; 10569 std::string StubEnc(Enc.substr(Start).str()); 10570 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10571 TSC.addIncomplete(ID, std::move(StubEnc)); 10572 if (!extractFieldType(FE, RD, CGM, TSC)) { 10573 (void) TSC.removeIncomplete(ID); 10574 return false; 10575 } 10576 IsRecursive = TSC.removeIncomplete(ID); 10577 // The ABI requires unions to be sorted but not structures. 10578 // See FieldEncoding::operator< for sort algorithm. 10579 if (RT->isUnionType()) 10580 llvm::sort(FE); 10581 // We can now complete the TypeString. 10582 unsigned E = FE.size(); 10583 for (unsigned I = 0; I != E; ++I) { 10584 if (I) 10585 Enc += ','; 10586 Enc += FE[I].str(); 10587 } 10588 } 10589 Enc += '}'; 10590 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10591 return true; 10592 } 10593 10594 /// Appends enum types to Enc and adds the encoding to the cache. 10595 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10596 TypeStringCache &TSC, 10597 const IdentifierInfo *ID) { 10598 // Append the cached TypeString if we have one. 10599 StringRef TypeString = TSC.lookupStr(ID); 10600 if (!TypeString.empty()) { 10601 Enc += TypeString; 10602 return true; 10603 } 10604 10605 size_t Start = Enc.size(); 10606 Enc += "e("; 10607 if (ID) 10608 Enc += ID->getName(); 10609 Enc += "){"; 10610 10611 // We collect all encoded enumerations and order them alphanumerically. 10612 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10613 SmallVector<FieldEncoding, 16> FE; 10614 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10615 ++I) { 10616 SmallStringEnc EnumEnc; 10617 EnumEnc += "m("; 10618 EnumEnc += I->getName(); 10619 EnumEnc += "){"; 10620 I->getInitVal().toString(EnumEnc); 10621 EnumEnc += '}'; 10622 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10623 } 10624 llvm::sort(FE); 10625 unsigned E = FE.size(); 10626 for (unsigned I = 0; I != E; ++I) { 10627 if (I) 10628 Enc += ','; 10629 Enc += FE[I].str(); 10630 } 10631 } 10632 Enc += '}'; 10633 TSC.addIfComplete(ID, Enc.substr(Start), false); 10634 return true; 10635 } 10636 10637 /// Appends type's qualifier to Enc. 10638 /// This is done prior to appending the type's encoding. 10639 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10640 // Qualifiers are emitted in alphabetical order. 10641 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10642 int Lookup = 0; 10643 if (QT.isConstQualified()) 10644 Lookup += 1<<0; 10645 if (QT.isRestrictQualified()) 10646 Lookup += 1<<1; 10647 if (QT.isVolatileQualified()) 10648 Lookup += 1<<2; 10649 Enc += Table[Lookup]; 10650 } 10651 10652 /// Appends built-in types to Enc. 10653 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10654 const char *EncType; 10655 switch (BT->getKind()) { 10656 case BuiltinType::Void: 10657 EncType = "0"; 10658 break; 10659 case BuiltinType::Bool: 10660 EncType = "b"; 10661 break; 10662 case BuiltinType::Char_U: 10663 EncType = "uc"; 10664 break; 10665 case BuiltinType::UChar: 10666 EncType = "uc"; 10667 break; 10668 case BuiltinType::SChar: 10669 EncType = "sc"; 10670 break; 10671 case BuiltinType::UShort: 10672 EncType = "us"; 10673 break; 10674 case BuiltinType::Short: 10675 EncType = "ss"; 10676 break; 10677 case BuiltinType::UInt: 10678 EncType = "ui"; 10679 break; 10680 case BuiltinType::Int: 10681 EncType = "si"; 10682 break; 10683 case BuiltinType::ULong: 10684 EncType = "ul"; 10685 break; 10686 case BuiltinType::Long: 10687 EncType = "sl"; 10688 break; 10689 case BuiltinType::ULongLong: 10690 EncType = "ull"; 10691 break; 10692 case BuiltinType::LongLong: 10693 EncType = "sll"; 10694 break; 10695 case BuiltinType::Float: 10696 EncType = "ft"; 10697 break; 10698 case BuiltinType::Double: 10699 EncType = "d"; 10700 break; 10701 case BuiltinType::LongDouble: 10702 EncType = "ld"; 10703 break; 10704 default: 10705 return false; 10706 } 10707 Enc += EncType; 10708 return true; 10709 } 10710 10711 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10712 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10713 const CodeGen::CodeGenModule &CGM, 10714 TypeStringCache &TSC) { 10715 Enc += "p("; 10716 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10717 return false; 10718 Enc += ')'; 10719 return true; 10720 } 10721 10722 /// Appends array encoding to Enc before calling appendType for the element. 10723 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10724 const ArrayType *AT, 10725 const CodeGen::CodeGenModule &CGM, 10726 TypeStringCache &TSC, StringRef NoSizeEnc) { 10727 if (AT->getSizeModifier() != ArrayType::Normal) 10728 return false; 10729 Enc += "a("; 10730 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10731 CAT->getSize().toStringUnsigned(Enc); 10732 else 10733 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10734 Enc += ':'; 10735 // The Qualifiers should be attached to the type rather than the array. 10736 appendQualifier(Enc, QT); 10737 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10738 return false; 10739 Enc += ')'; 10740 return true; 10741 } 10742 10743 /// Appends a function encoding to Enc, calling appendType for the return type 10744 /// and the arguments. 10745 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10746 const CodeGen::CodeGenModule &CGM, 10747 TypeStringCache &TSC) { 10748 Enc += "f{"; 10749 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10750 return false; 10751 Enc += "}("; 10752 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10753 // N.B. we are only interested in the adjusted param types. 10754 auto I = FPT->param_type_begin(); 10755 auto E = FPT->param_type_end(); 10756 if (I != E) { 10757 do { 10758 if (!appendType(Enc, *I, CGM, TSC)) 10759 return false; 10760 ++I; 10761 if (I != E) 10762 Enc += ','; 10763 } while (I != E); 10764 if (FPT->isVariadic()) 10765 Enc += ",va"; 10766 } else { 10767 if (FPT->isVariadic()) 10768 Enc += "va"; 10769 else 10770 Enc += '0'; 10771 } 10772 } 10773 Enc += ')'; 10774 return true; 10775 } 10776 10777 /// Handles the type's qualifier before dispatching a call to handle specific 10778 /// type encodings. 10779 static bool appendType(SmallStringEnc &Enc, QualType QType, 10780 const CodeGen::CodeGenModule &CGM, 10781 TypeStringCache &TSC) { 10782 10783 QualType QT = QType.getCanonicalType(); 10784 10785 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10786 // The Qualifiers should be attached to the type rather than the array. 10787 // Thus we don't call appendQualifier() here. 10788 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10789 10790 appendQualifier(Enc, QT); 10791 10792 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10793 return appendBuiltinType(Enc, BT); 10794 10795 if (const PointerType *PT = QT->getAs<PointerType>()) 10796 return appendPointerType(Enc, PT, CGM, TSC); 10797 10798 if (const EnumType *ET = QT->getAs<EnumType>()) 10799 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10800 10801 if (const RecordType *RT = QT->getAsStructureType()) 10802 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10803 10804 if (const RecordType *RT = QT->getAsUnionType()) 10805 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10806 10807 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10808 return appendFunctionType(Enc, FT, CGM, TSC); 10809 10810 return false; 10811 } 10812 10813 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10814 const CodeGen::CodeGenModule &CGM, 10815 TypeStringCache &TSC) { 10816 if (!D) 10817 return false; 10818 10819 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10820 if (FD->getLanguageLinkage() != CLanguageLinkage) 10821 return false; 10822 return appendType(Enc, FD->getType(), CGM, TSC); 10823 } 10824 10825 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10826 if (VD->getLanguageLinkage() != CLanguageLinkage) 10827 return false; 10828 QualType QT = VD->getType().getCanonicalType(); 10829 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10830 // Global ArrayTypes are given a size of '*' if the size is unknown. 10831 // The Qualifiers should be attached to the type rather than the array. 10832 // Thus we don't call appendQualifier() here. 10833 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10834 } 10835 return appendType(Enc, QT, CGM, TSC); 10836 } 10837 return false; 10838 } 10839 10840 //===----------------------------------------------------------------------===// 10841 // RISCV ABI Implementation 10842 //===----------------------------------------------------------------------===// 10843 10844 namespace { 10845 class RISCVABIInfo : public DefaultABIInfo { 10846 private: 10847 // Size of the integer ('x') registers in bits. 10848 unsigned XLen; 10849 // Size of the floating point ('f') registers in bits. Note that the target 10850 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10851 // with soft float ABI has FLen==0). 10852 unsigned FLen; 10853 static const int NumArgGPRs = 8; 10854 static const int NumArgFPRs = 8; 10855 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10856 llvm::Type *&Field1Ty, 10857 CharUnits &Field1Off, 10858 llvm::Type *&Field2Ty, 10859 CharUnits &Field2Off) const; 10860 10861 public: 10862 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10863 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10864 10865 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10866 // non-virtual, but computeInfo is virtual, so we overload it. 10867 void computeInfo(CGFunctionInfo &FI) const override; 10868 10869 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10870 int &ArgFPRsLeft) const; 10871 ABIArgInfo classifyReturnType(QualType RetTy) const; 10872 10873 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10874 QualType Ty) const override; 10875 10876 ABIArgInfo extendType(QualType Ty) const; 10877 10878 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10879 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10880 CharUnits &Field2Off, int &NeededArgGPRs, 10881 int &NeededArgFPRs) const; 10882 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10883 CharUnits Field1Off, 10884 llvm::Type *Field2Ty, 10885 CharUnits Field2Off) const; 10886 }; 10887 } // end anonymous namespace 10888 10889 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10890 QualType RetTy = FI.getReturnType(); 10891 if (!getCXXABI().classifyReturnType(FI)) 10892 FI.getReturnInfo() = classifyReturnType(RetTy); 10893 10894 // IsRetIndirect is true if classifyArgumentType indicated the value should 10895 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10896 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10897 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10898 // list and pass indirectly on RV32. 10899 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10900 if (!IsRetIndirect && RetTy->isScalarType() && 10901 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10902 if (RetTy->isComplexType() && FLen) { 10903 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10904 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10905 } else { 10906 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10907 IsRetIndirect = true; 10908 } 10909 } 10910 10911 // We must track the number of GPRs used in order to conform to the RISC-V 10912 // ABI, as integer scalars passed in registers should have signext/zeroext 10913 // when promoted, but are anyext if passed on the stack. As GPR usage is 10914 // different for variadic arguments, we must also track whether we are 10915 // examining a vararg or not. 10916 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10917 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10918 int NumFixedArgs = FI.getNumRequiredArgs(); 10919 10920 int ArgNum = 0; 10921 for (auto &ArgInfo : FI.arguments()) { 10922 bool IsFixed = ArgNum < NumFixedArgs; 10923 ArgInfo.info = 10924 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10925 ArgNum++; 10926 } 10927 } 10928 10929 // Returns true if the struct is a potential candidate for the floating point 10930 // calling convention. If this function returns true, the caller is 10931 // responsible for checking that if there is only a single field then that 10932 // field is a float. 10933 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10934 llvm::Type *&Field1Ty, 10935 CharUnits &Field1Off, 10936 llvm::Type *&Field2Ty, 10937 CharUnits &Field2Off) const { 10938 bool IsInt = Ty->isIntegralOrEnumerationType(); 10939 bool IsFloat = Ty->isRealFloatingType(); 10940 10941 if (IsInt || IsFloat) { 10942 uint64_t Size = getContext().getTypeSize(Ty); 10943 if (IsInt && Size > XLen) 10944 return false; 10945 // Can't be eligible if larger than the FP registers. Half precision isn't 10946 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10947 // default to the integer ABI in that case. 10948 if (IsFloat && (Size > FLen || Size < 32)) 10949 return false; 10950 // Can't be eligible if an integer type was already found (int+int pairs 10951 // are not eligible). 10952 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10953 return false; 10954 if (!Field1Ty) { 10955 Field1Ty = CGT.ConvertType(Ty); 10956 Field1Off = CurOff; 10957 return true; 10958 } 10959 if (!Field2Ty) { 10960 Field2Ty = CGT.ConvertType(Ty); 10961 Field2Off = CurOff; 10962 return true; 10963 } 10964 return false; 10965 } 10966 10967 if (auto CTy = Ty->getAs<ComplexType>()) { 10968 if (Field1Ty) 10969 return false; 10970 QualType EltTy = CTy->getElementType(); 10971 if (getContext().getTypeSize(EltTy) > FLen) 10972 return false; 10973 Field1Ty = CGT.ConvertType(EltTy); 10974 Field1Off = CurOff; 10975 Field2Ty = Field1Ty; 10976 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10977 return true; 10978 } 10979 10980 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10981 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10982 QualType EltTy = ATy->getElementType(); 10983 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10984 for (uint64_t i = 0; i < ArraySize; ++i) { 10985 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10986 Field1Off, Field2Ty, Field2Off); 10987 if (!Ret) 10988 return false; 10989 CurOff += EltSize; 10990 } 10991 return true; 10992 } 10993 10994 if (const auto *RTy = Ty->getAs<RecordType>()) { 10995 // Structures with either a non-trivial destructor or a non-trivial 10996 // copy constructor are not eligible for the FP calling convention. 10997 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10998 return false; 10999 if (isEmptyRecord(getContext(), Ty, true)) 11000 return true; 11001 const RecordDecl *RD = RTy->getDecl(); 11002 // Unions aren't eligible unless they're empty (which is caught above). 11003 if (RD->isUnion()) 11004 return false; 11005 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 11006 // If this is a C++ record, check the bases first. 11007 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 11008 for (const CXXBaseSpecifier &B : CXXRD->bases()) { 11009 const auto *BDecl = 11010 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 11011 CharUnits BaseOff = Layout.getBaseClassOffset(BDecl); 11012 bool Ret = detectFPCCEligibleStructHelper(B.getType(), CurOff + BaseOff, 11013 Field1Ty, Field1Off, Field2Ty, 11014 Field2Off); 11015 if (!Ret) 11016 return false; 11017 } 11018 } 11019 int ZeroWidthBitFieldCount = 0; 11020 for (const FieldDecl *FD : RD->fields()) { 11021 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 11022 QualType QTy = FD->getType(); 11023 if (FD->isBitField()) { 11024 unsigned BitWidth = FD->getBitWidthValue(getContext()); 11025 // Allow a bitfield with a type greater than XLen as long as the 11026 // bitwidth is XLen or less. 11027 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 11028 QTy = getContext().getIntTypeForBitwidth(XLen, false); 11029 if (BitWidth == 0) { 11030 ZeroWidthBitFieldCount++; 11031 continue; 11032 } 11033 } 11034 11035 bool Ret = detectFPCCEligibleStructHelper( 11036 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 11037 Field1Ty, Field1Off, Field2Ty, Field2Off); 11038 if (!Ret) 11039 return false; 11040 11041 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 11042 // or int+fp structs, but are ignored for a struct with an fp field and 11043 // any number of zero-width bitfields. 11044 if (Field2Ty && ZeroWidthBitFieldCount > 0) 11045 return false; 11046 } 11047 return Field1Ty != nullptr; 11048 } 11049 11050 return false; 11051 } 11052 11053 // Determine if a struct is eligible for passing according to the floating 11054 // point calling convention (i.e., when flattened it contains a single fp 11055 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 11056 // NeededArgGPRs are incremented appropriately. 11057 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 11058 CharUnits &Field1Off, 11059 llvm::Type *&Field2Ty, 11060 CharUnits &Field2Off, 11061 int &NeededArgGPRs, 11062 int &NeededArgFPRs) const { 11063 Field1Ty = nullptr; 11064 Field2Ty = nullptr; 11065 NeededArgGPRs = 0; 11066 NeededArgFPRs = 0; 11067 bool IsCandidate = detectFPCCEligibleStructHelper( 11068 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 11069 // Not really a candidate if we have a single int but no float. 11070 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 11071 return false; 11072 if (!IsCandidate) 11073 return false; 11074 if (Field1Ty && Field1Ty->isFloatingPointTy()) 11075 NeededArgFPRs++; 11076 else if (Field1Ty) 11077 NeededArgGPRs++; 11078 if (Field2Ty && Field2Ty->isFloatingPointTy()) 11079 NeededArgFPRs++; 11080 else if (Field2Ty) 11081 NeededArgGPRs++; 11082 return true; 11083 } 11084 11085 // Call getCoerceAndExpand for the two-element flattened struct described by 11086 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 11087 // appropriate coerceToType and unpaddedCoerceToType. 11088 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 11089 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 11090 CharUnits Field2Off) const { 11091 SmallVector<llvm::Type *, 3> CoerceElts; 11092 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 11093 if (!Field1Off.isZero()) 11094 CoerceElts.push_back(llvm::ArrayType::get( 11095 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 11096 11097 CoerceElts.push_back(Field1Ty); 11098 UnpaddedCoerceElts.push_back(Field1Ty); 11099 11100 if (!Field2Ty) { 11101 return ABIArgInfo::getCoerceAndExpand( 11102 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 11103 UnpaddedCoerceElts[0]); 11104 } 11105 11106 CharUnits Field2Align = 11107 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 11108 CharUnits Field1End = Field1Off + 11109 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 11110 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 11111 11112 CharUnits Padding = CharUnits::Zero(); 11113 if (Field2Off > Field2OffNoPadNoPack) 11114 Padding = Field2Off - Field2OffNoPadNoPack; 11115 else if (Field2Off != Field2Align && Field2Off > Field1End) 11116 Padding = Field2Off - Field1End; 11117 11118 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 11119 11120 if (!Padding.isZero()) 11121 CoerceElts.push_back(llvm::ArrayType::get( 11122 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 11123 11124 CoerceElts.push_back(Field2Ty); 11125 UnpaddedCoerceElts.push_back(Field2Ty); 11126 11127 auto CoerceToType = 11128 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 11129 auto UnpaddedCoerceToType = 11130 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 11131 11132 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 11133 } 11134 11135 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 11136 int &ArgGPRsLeft, 11137 int &ArgFPRsLeft) const { 11138 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11139 Ty = useFirstFieldIfTransparentUnion(Ty); 11140 11141 // Structures with either a non-trivial destructor or a non-trivial 11142 // copy constructor are always passed indirectly. 11143 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11144 if (ArgGPRsLeft) 11145 ArgGPRsLeft -= 1; 11146 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11147 CGCXXABI::RAA_DirectInMemory); 11148 } 11149 11150 // Ignore empty structs/unions. 11151 if (isEmptyRecord(getContext(), Ty, true)) 11152 return ABIArgInfo::getIgnore(); 11153 11154 uint64_t Size = getContext().getTypeSize(Ty); 11155 11156 // Pass floating point values via FPRs if possible. 11157 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 11158 FLen >= Size && ArgFPRsLeft) { 11159 ArgFPRsLeft--; 11160 return ABIArgInfo::getDirect(); 11161 } 11162 11163 // Complex types for the hard float ABI must be passed direct rather than 11164 // using CoerceAndExpand. 11165 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 11166 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11167 if (getContext().getTypeSize(EltTy) <= FLen) { 11168 ArgFPRsLeft -= 2; 11169 return ABIArgInfo::getDirect(); 11170 } 11171 } 11172 11173 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 11174 llvm::Type *Field1Ty = nullptr; 11175 llvm::Type *Field2Ty = nullptr; 11176 CharUnits Field1Off = CharUnits::Zero(); 11177 CharUnits Field2Off = CharUnits::Zero(); 11178 int NeededArgGPRs = 0; 11179 int NeededArgFPRs = 0; 11180 bool IsCandidate = 11181 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 11182 NeededArgGPRs, NeededArgFPRs); 11183 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 11184 NeededArgFPRs <= ArgFPRsLeft) { 11185 ArgGPRsLeft -= NeededArgGPRs; 11186 ArgFPRsLeft -= NeededArgFPRs; 11187 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 11188 Field2Off); 11189 } 11190 } 11191 11192 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 11193 bool MustUseStack = false; 11194 // Determine the number of GPRs needed to pass the current argument 11195 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 11196 // register pairs, so may consume 3 registers. 11197 int NeededArgGPRs = 1; 11198 if (!IsFixed && NeededAlign == 2 * XLen) 11199 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 11200 else if (Size > XLen && Size <= 2 * XLen) 11201 NeededArgGPRs = 2; 11202 11203 if (NeededArgGPRs > ArgGPRsLeft) { 11204 MustUseStack = true; 11205 NeededArgGPRs = ArgGPRsLeft; 11206 } 11207 11208 ArgGPRsLeft -= NeededArgGPRs; 11209 11210 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 11211 // Treat an enum type as its underlying type. 11212 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11213 Ty = EnumTy->getDecl()->getIntegerType(); 11214 11215 // All integral types are promoted to XLen width, unless passed on the 11216 // stack. 11217 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 11218 return extendType(Ty); 11219 } 11220 11221 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11222 if (EIT->getNumBits() < XLen && !MustUseStack) 11223 return extendType(Ty); 11224 if (EIT->getNumBits() > 128 || 11225 (!getContext().getTargetInfo().hasInt128Type() && 11226 EIT->getNumBits() > 64)) 11227 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11228 } 11229 11230 return ABIArgInfo::getDirect(); 11231 } 11232 11233 // Aggregates which are <= 2*XLen will be passed in registers if possible, 11234 // so coerce to integers. 11235 if (Size <= 2 * XLen) { 11236 unsigned Alignment = getContext().getTypeAlign(Ty); 11237 11238 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 11239 // required, and a 2-element XLen array if only XLen alignment is required. 11240 if (Size <= XLen) { 11241 return ABIArgInfo::getDirect( 11242 llvm::IntegerType::get(getVMContext(), XLen)); 11243 } else if (Alignment == 2 * XLen) { 11244 return ABIArgInfo::getDirect( 11245 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 11246 } else { 11247 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11248 llvm::IntegerType::get(getVMContext(), XLen), 2)); 11249 } 11250 } 11251 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11252 } 11253 11254 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 11255 if (RetTy->isVoidType()) 11256 return ABIArgInfo::getIgnore(); 11257 11258 int ArgGPRsLeft = 2; 11259 int ArgFPRsLeft = FLen ? 2 : 0; 11260 11261 // The rules for return and argument types are the same, so defer to 11262 // classifyArgumentType. 11263 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11264 ArgFPRsLeft); 11265 } 11266 11267 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11268 QualType Ty) const { 11269 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11270 11271 // Empty records are ignored for parameter passing purposes. 11272 if (isEmptyRecord(getContext(), Ty, true)) { 11273 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11274 getVAListElementType(CGF), SlotSize); 11275 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11276 return Addr; 11277 } 11278 11279 auto TInfo = getContext().getTypeInfoInChars(Ty); 11280 11281 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11282 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11283 11284 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11285 SlotSize, /*AllowHigherAlign=*/true); 11286 } 11287 11288 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11289 int TySize = getContext().getTypeSize(Ty); 11290 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11291 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11292 return ABIArgInfo::getSignExtend(Ty); 11293 return ABIArgInfo::getExtend(Ty); 11294 } 11295 11296 namespace { 11297 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11298 public: 11299 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11300 unsigned FLen) 11301 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11302 11303 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11304 CodeGen::CodeGenModule &CGM) const override { 11305 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11306 if (!FD) return; 11307 11308 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11309 if (!Attr) 11310 return; 11311 11312 const char *Kind; 11313 switch (Attr->getInterrupt()) { 11314 case RISCVInterruptAttr::user: Kind = "user"; break; 11315 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11316 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11317 } 11318 11319 auto *Fn = cast<llvm::Function>(GV); 11320 11321 Fn->addFnAttr("interrupt", Kind); 11322 } 11323 }; 11324 } // namespace 11325 11326 //===----------------------------------------------------------------------===// 11327 // VE ABI Implementation. 11328 // 11329 namespace { 11330 class VEABIInfo : public DefaultABIInfo { 11331 public: 11332 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11333 11334 private: 11335 ABIArgInfo classifyReturnType(QualType RetTy) const; 11336 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11337 void computeInfo(CGFunctionInfo &FI) const override; 11338 }; 11339 } // end anonymous namespace 11340 11341 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11342 if (Ty->isAnyComplexType()) 11343 return ABIArgInfo::getDirect(); 11344 uint64_t Size = getContext().getTypeSize(Ty); 11345 if (Size < 64 && Ty->isIntegerType()) 11346 return ABIArgInfo::getExtend(Ty); 11347 return DefaultABIInfo::classifyReturnType(Ty); 11348 } 11349 11350 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11351 if (Ty->isAnyComplexType()) 11352 return ABIArgInfo::getDirect(); 11353 uint64_t Size = getContext().getTypeSize(Ty); 11354 if (Size < 64 && Ty->isIntegerType()) 11355 return ABIArgInfo::getExtend(Ty); 11356 return DefaultABIInfo::classifyArgumentType(Ty); 11357 } 11358 11359 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11360 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11361 for (auto &Arg : FI.arguments()) 11362 Arg.info = classifyArgumentType(Arg.type); 11363 } 11364 11365 namespace { 11366 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11367 public: 11368 VETargetCodeGenInfo(CodeGenTypes &CGT) 11369 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11370 // VE ABI requires the arguments of variadic and prototype-less functions 11371 // are passed in both registers and memory. 11372 bool isNoProtoCallVariadic(const CallArgList &args, 11373 const FunctionNoProtoType *fnType) const override { 11374 return true; 11375 } 11376 }; 11377 } // end anonymous namespace 11378 11379 //===----------------------------------------------------------------------===// 11380 // CSKY ABI Implementation 11381 //===----------------------------------------------------------------------===// 11382 namespace { 11383 class CSKYABIInfo : public DefaultABIInfo { 11384 static const int NumArgGPRs = 4; 11385 static const int NumArgFPRs = 4; 11386 11387 static const unsigned XLen = 32; 11388 unsigned FLen; 11389 11390 public: 11391 CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen) 11392 : DefaultABIInfo(CGT), FLen(FLen) {} 11393 11394 void computeInfo(CGFunctionInfo &FI) const override; 11395 ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft, 11396 int &ArgFPRsLeft, 11397 bool isReturnType = false) const; 11398 ABIArgInfo classifyReturnType(QualType RetTy) const; 11399 11400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11401 QualType Ty) const override; 11402 }; 11403 11404 } // end anonymous namespace 11405 11406 void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const { 11407 QualType RetTy = FI.getReturnType(); 11408 if (!getCXXABI().classifyReturnType(FI)) 11409 FI.getReturnInfo() = classifyReturnType(RetTy); 11410 11411 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 11412 11413 // We must track the number of GPRs used in order to conform to the CSKY 11414 // ABI, as integer scalars passed in registers should have signext/zeroext 11415 // when promoted. 11416 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 11417 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 11418 11419 for (auto &ArgInfo : FI.arguments()) { 11420 ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft); 11421 } 11422 } 11423 11424 Address CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11425 QualType Ty) const { 11426 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11427 11428 // Empty records are ignored for parameter passing purposes. 11429 if (isEmptyRecord(getContext(), Ty, true)) { 11430 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11431 getVAListElementType(CGF), SlotSize); 11432 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11433 return Addr; 11434 } 11435 11436 auto TInfo = getContext().getTypeInfoInChars(Ty); 11437 11438 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize, 11439 /*AllowHigherAlign=*/true); 11440 } 11441 11442 ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft, 11443 int &ArgFPRsLeft, 11444 bool isReturnType) const { 11445 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11446 Ty = useFirstFieldIfTransparentUnion(Ty); 11447 11448 // Structures with either a non-trivial destructor or a non-trivial 11449 // copy constructor are always passed indirectly. 11450 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11451 if (ArgGPRsLeft) 11452 ArgGPRsLeft -= 1; 11453 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11454 CGCXXABI::RAA_DirectInMemory); 11455 } 11456 11457 // Ignore empty structs/unions. 11458 if (isEmptyRecord(getContext(), Ty, true)) 11459 return ABIArgInfo::getIgnore(); 11460 11461 if (!Ty->getAsUnionType()) 11462 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 11463 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 11464 11465 uint64_t Size = getContext().getTypeSize(Ty); 11466 // Pass floating point values via FPRs if possible. 11467 if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size && 11468 ArgFPRsLeft) { 11469 ArgFPRsLeft--; 11470 return ABIArgInfo::getDirect(); 11471 } 11472 11473 // Complex types for the hard float ABI must be passed direct rather than 11474 // using CoerceAndExpand. 11475 if (Ty->isComplexType() && FLen && !isReturnType) { 11476 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11477 if (getContext().getTypeSize(EltTy) <= FLen) { 11478 ArgFPRsLeft -= 2; 11479 return ABIArgInfo::getDirect(); 11480 } 11481 } 11482 11483 if (!isAggregateTypeForABI(Ty)) { 11484 // Treat an enum type as its underlying type. 11485 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11486 Ty = EnumTy->getDecl()->getIntegerType(); 11487 11488 // All integral types are promoted to XLen width, unless passed on the 11489 // stack. 11490 if (Size < XLen && Ty->isIntegralOrEnumerationType()) 11491 return ABIArgInfo::getExtend(Ty); 11492 11493 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11494 if (EIT->getNumBits() < XLen) 11495 return ABIArgInfo::getExtend(Ty); 11496 } 11497 11498 return ABIArgInfo::getDirect(); 11499 } 11500 11501 // For argument type, the first 4*XLen parts of aggregate will be passed 11502 // in registers, and the rest will be passed in stack. 11503 // So we can coerce to integers directly and let backend handle it correctly. 11504 // For return type, aggregate which <= 2*XLen will be returned in registers. 11505 // Otherwise, aggregate will be returned indirectly. 11506 if (!isReturnType || (isReturnType && Size <= 2 * XLen)) { 11507 if (Size <= XLen) { 11508 return ABIArgInfo::getDirect( 11509 llvm::IntegerType::get(getVMContext(), XLen)); 11510 } else { 11511 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11512 llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen)); 11513 } 11514 } 11515 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11516 } 11517 11518 ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const { 11519 if (RetTy->isVoidType()) 11520 return ABIArgInfo::getIgnore(); 11521 11522 int ArgGPRsLeft = 2; 11523 int ArgFPRsLeft = FLen ? 1 : 0; 11524 11525 // The rules for return and argument types are the same, so defer to 11526 // classifyArgumentType. 11527 return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true); 11528 } 11529 11530 namespace { 11531 class CSKYTargetCodeGenInfo : public TargetCodeGenInfo { 11532 public: 11533 CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen) 11534 : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {} 11535 }; 11536 } // end anonymous namespace 11537 11538 //===----------------------------------------------------------------------===// 11539 // Driver code 11540 //===----------------------------------------------------------------------===// 11541 11542 bool CodeGenModule::supportsCOMDAT() const { 11543 return getTriple().supportsCOMDAT(); 11544 } 11545 11546 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11547 if (TheTargetCodeGenInfo) 11548 return *TheTargetCodeGenInfo; 11549 11550 // Helper to set the unique_ptr while still keeping the return value. 11551 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11552 this->TheTargetCodeGenInfo.reset(P); 11553 return *P; 11554 }; 11555 11556 const llvm::Triple &Triple = getTarget().getTriple(); 11557 switch (Triple.getArch()) { 11558 default: 11559 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11560 11561 case llvm::Triple::le32: 11562 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11563 case llvm::Triple::m68k: 11564 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11565 case llvm::Triple::mips: 11566 case llvm::Triple::mipsel: 11567 if (Triple.getOS() == llvm::Triple::NaCl) 11568 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11569 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11570 11571 case llvm::Triple::mips64: 11572 case llvm::Triple::mips64el: 11573 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11574 11575 case llvm::Triple::avr: { 11576 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 11577 // on avrtiny. For passing return value, R18~R25 are used on avr, and 11578 // R22~R25 are used on avrtiny. 11579 unsigned NPR = getTarget().getABI() == "avrtiny" ? 6 : 18; 11580 unsigned NRR = getTarget().getABI() == "avrtiny" ? 4 : 8; 11581 return SetCGInfo(new AVRTargetCodeGenInfo(Types, NPR, NRR)); 11582 } 11583 11584 case llvm::Triple::aarch64: 11585 case llvm::Triple::aarch64_32: 11586 case llvm::Triple::aarch64_be: { 11587 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11588 if (getTarget().getABI() == "darwinpcs") 11589 Kind = AArch64ABIInfo::DarwinPCS; 11590 else if (Triple.isOSWindows()) 11591 return SetCGInfo( 11592 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11593 11594 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11595 } 11596 11597 case llvm::Triple::wasm32: 11598 case llvm::Triple::wasm64: { 11599 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11600 if (getTarget().getABI() == "experimental-mv") 11601 Kind = WebAssemblyABIInfo::ExperimentalMV; 11602 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11603 } 11604 11605 case llvm::Triple::arm: 11606 case llvm::Triple::armeb: 11607 case llvm::Triple::thumb: 11608 case llvm::Triple::thumbeb: { 11609 if (Triple.getOS() == llvm::Triple::Win32) { 11610 return SetCGInfo( 11611 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11612 } 11613 11614 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11615 StringRef ABIStr = getTarget().getABI(); 11616 if (ABIStr == "apcs-gnu") 11617 Kind = ARMABIInfo::APCS; 11618 else if (ABIStr == "aapcs16") 11619 Kind = ARMABIInfo::AAPCS16_VFP; 11620 else if (CodeGenOpts.FloatABI == "hard" || 11621 (CodeGenOpts.FloatABI != "soft" && 11622 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11623 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11624 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11625 Kind = ARMABIInfo::AAPCS_VFP; 11626 11627 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11628 } 11629 11630 case llvm::Triple::ppc: { 11631 if (Triple.isOSAIX()) 11632 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11633 11634 bool IsSoftFloat = 11635 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11636 bool RetSmallStructInRegABI = 11637 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11638 return SetCGInfo( 11639 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11640 } 11641 case llvm::Triple::ppcle: { 11642 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11643 bool RetSmallStructInRegABI = 11644 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11645 return SetCGInfo( 11646 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11647 } 11648 case llvm::Triple::ppc64: 11649 if (Triple.isOSAIX()) 11650 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11651 11652 if (Triple.isOSBinFormatELF()) { 11653 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11654 if (getTarget().getABI() == "elfv2") 11655 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11656 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11657 11658 return SetCGInfo( 11659 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11660 } 11661 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11662 case llvm::Triple::ppc64le: { 11663 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11664 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11665 if (getTarget().getABI() == "elfv1") 11666 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11667 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11668 11669 return SetCGInfo( 11670 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11671 } 11672 11673 case llvm::Triple::nvptx: 11674 case llvm::Triple::nvptx64: 11675 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11676 11677 case llvm::Triple::msp430: 11678 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11679 11680 case llvm::Triple::riscv32: 11681 case llvm::Triple::riscv64: { 11682 StringRef ABIStr = getTarget().getABI(); 11683 unsigned XLen = getTarget().getPointerWidth(0); 11684 unsigned ABIFLen = 0; 11685 if (ABIStr.endswith("f")) 11686 ABIFLen = 32; 11687 else if (ABIStr.endswith("d")) 11688 ABIFLen = 64; 11689 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11690 } 11691 11692 case llvm::Triple::systemz: { 11693 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11694 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11695 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11696 } 11697 11698 case llvm::Triple::tce: 11699 case llvm::Triple::tcele: 11700 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11701 11702 case llvm::Triple::x86: { 11703 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11704 bool RetSmallStructInRegABI = 11705 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11706 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11707 11708 if (Triple.getOS() == llvm::Triple::Win32) { 11709 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11710 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11711 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11712 } else { 11713 return SetCGInfo(new X86_32TargetCodeGenInfo( 11714 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11715 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11716 CodeGenOpts.FloatABI == "soft")); 11717 } 11718 } 11719 11720 case llvm::Triple::x86_64: { 11721 StringRef ABI = getTarget().getABI(); 11722 X86AVXABILevel AVXLevel = 11723 (ABI == "avx512" 11724 ? X86AVXABILevel::AVX512 11725 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11726 11727 switch (Triple.getOS()) { 11728 case llvm::Triple::Win32: 11729 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11730 default: 11731 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11732 } 11733 } 11734 case llvm::Triple::hexagon: 11735 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11736 case llvm::Triple::lanai: 11737 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11738 case llvm::Triple::r600: 11739 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11740 case llvm::Triple::amdgcn: 11741 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11742 case llvm::Triple::sparc: 11743 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11744 case llvm::Triple::sparcv9: 11745 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11746 case llvm::Triple::xcore: 11747 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11748 case llvm::Triple::arc: 11749 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11750 case llvm::Triple::spir: 11751 case llvm::Triple::spir64: 11752 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11753 case llvm::Triple::spirv32: 11754 case llvm::Triple::spirv64: 11755 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); 11756 case llvm::Triple::ve: 11757 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11758 case llvm::Triple::csky: { 11759 bool IsSoftFloat = !getTarget().hasFeature("hard-float-abi"); 11760 bool hasFP64 = getTarget().hasFeature("fpuv2_df") || 11761 getTarget().hasFeature("fpuv3_df"); 11762 return SetCGInfo(new CSKYTargetCodeGenInfo(Types, IsSoftFloat ? 0 11763 : hasFP64 ? 64 11764 : 32)); 11765 } 11766 } 11767 } 11768 11769 /// Create an OpenCL kernel for an enqueued block. 11770 /// 11771 /// The kernel has the same function type as the block invoke function. Its 11772 /// name is the name of the block invoke function postfixed with "_kernel". 11773 /// It simply calls the block invoke function then returns. 11774 llvm::Function * 11775 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11776 llvm::Function *Invoke, 11777 llvm::Type *BlockTy) const { 11778 auto *InvokeFT = Invoke->getFunctionType(); 11779 auto &C = CGF.getLLVMContext(); 11780 std::string Name = Invoke->getName().str() + "_kernel"; 11781 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), 11782 InvokeFT->params(), false); 11783 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, 11784 &CGF.CGM.getModule()); 11785 auto IP = CGF.Builder.saveIP(); 11786 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11787 auto &Builder = CGF.Builder; 11788 Builder.SetInsertPoint(BB); 11789 llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args())); 11790 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11791 call->setCallingConv(Invoke->getCallingConv()); 11792 Builder.CreateRetVoid(); 11793 Builder.restoreIP(IP); 11794 return F; 11795 } 11796 11797 /// Create an OpenCL kernel for an enqueued block. 11798 /// 11799 /// The type of the first argument (the block literal) is the struct type 11800 /// of the block literal instead of a pointer type. The first argument 11801 /// (block literal) is passed directly by value to the kernel. The kernel 11802 /// allocates the same type of struct on stack and stores the block literal 11803 /// to it and passes its pointer to the block invoke function. The kernel 11804 /// has "enqueued-block" function attribute and kernel argument metadata. 11805 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11806 CodeGenFunction &CGF, llvm::Function *Invoke, 11807 llvm::Type *BlockTy) const { 11808 auto &Builder = CGF.Builder; 11809 auto &C = CGF.getLLVMContext(); 11810 11811 auto *InvokeFT = Invoke->getFunctionType(); 11812 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11813 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11814 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11815 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11816 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11817 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11818 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11819 11820 ArgTys.push_back(BlockTy); 11821 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11822 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11823 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11824 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11825 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11826 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11827 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11828 ArgTys.push_back(InvokeFT->getParamType(I)); 11829 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11830 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11831 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11832 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11833 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11834 ArgNames.push_back( 11835 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11836 } 11837 std::string Name = Invoke->getName().str() + "_kernel"; 11838 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11839 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11840 &CGF.CGM.getModule()); 11841 F->addFnAttr("enqueued-block"); 11842 auto IP = CGF.Builder.saveIP(); 11843 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11844 Builder.SetInsertPoint(BB); 11845 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11846 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11847 BlockPtr->setAlignment(BlockAlign); 11848 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11849 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11850 llvm::SmallVector<llvm::Value *, 2> Args; 11851 Args.push_back(Cast); 11852 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11853 Args.push_back(I); 11854 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11855 call->setCallingConv(Invoke->getCallingConv()); 11856 Builder.CreateRetVoid(); 11857 Builder.restoreIP(IP); 11858 11859 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11860 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11861 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11862 F->setMetadata("kernel_arg_base_type", 11863 llvm::MDNode::get(C, ArgBaseTypeNames)); 11864 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11865 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11866 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11867 11868 return F; 11869 } 11870