1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/CodeGenOptions.h" 24 #include "clang/Basic/DiagnosticFrontend.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/IntrinsicsS390.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 static llvm::Type *getVAListElementType(CodeGenFunction &CGF) { 104 return CGF.ConvertTypeForMem( 105 CGF.getContext().getBuiltinVaListType()->getPointeeType()); 106 } 107 108 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 109 if (getContext().isPromotableIntegerType(Ty)) 110 return true; 111 112 if (const auto *EIT = Ty->getAs<BitIntType>()) 113 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 114 return true; 115 116 return false; 117 } 118 119 ABIInfo::~ABIInfo() = default; 120 121 SwiftABIInfo::~SwiftABIInfo() = default; 122 123 /// Does the given lowering require more than the given number of 124 /// registers when expanded? 125 /// 126 /// This is intended to be the basis of a reasonable basic implementation 127 /// of should{Pass,Return}IndirectlyForSwift. 128 /// 129 /// For most targets, a limit of four total registers is reasonable; this 130 /// limits the amount of code required in order to move around the value 131 /// in case it wasn't produced immediately prior to the call by the caller 132 /// (or wasn't produced in exactly the right registers) or isn't used 133 /// immediately within the callee. But some targets may need to further 134 /// limit the register count due to an inability to support that many 135 /// return registers. 136 static bool occupiesMoreThan(CodeGenTypes &cgt, 137 ArrayRef<llvm::Type*> scalarTypes, 138 unsigned maxAllRegisters) { 139 unsigned intCount = 0, fpCount = 0; 140 for (llvm::Type *type : scalarTypes) { 141 if (type->isPointerTy()) { 142 intCount++; 143 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 144 auto ptrWidth = cgt.getTarget().getPointerWidth(LangAS::Default); 145 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 146 } else { 147 assert(type->isVectorTy() || type->isFloatingPointTy()); 148 fpCount++; 149 } 150 } 151 152 return (intCount + fpCount > maxAllRegisters); 153 } 154 155 bool SwiftABIInfo::shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys, 156 bool AsReturnValue) const { 157 return occupiesMoreThan(CGT, ComponentTys, /*total=*/4); 158 } 159 160 bool SwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy, 161 unsigned NumElts) const { 162 // The default implementation of this assumes that the target guarantees 163 // 128-bit SIMD support but nothing more. 164 return (VectorSize.getQuantity() > 8 && VectorSize.getQuantity() <= 16); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 168 CGCXXABI &CXXABI) { 169 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 170 if (!RD) { 171 if (!RT->getDecl()->canPassInRegisters()) 172 return CGCXXABI::RAA_Indirect; 173 return CGCXXABI::RAA_Default; 174 } 175 return CXXABI.getRecordArgABI(RD); 176 } 177 178 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 179 CGCXXABI &CXXABI) { 180 const RecordType *RT = T->getAs<RecordType>(); 181 if (!RT) 182 return CGCXXABI::RAA_Default; 183 return getRecordArgABI(RT, CXXABI); 184 } 185 186 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 187 const ABIInfo &Info) { 188 QualType Ty = FI.getReturnType(); 189 190 if (const auto *RT = Ty->getAs<RecordType>()) 191 if (!isa<CXXRecordDecl>(RT->getDecl()) && 192 !RT->getDecl()->canPassInRegisters()) { 193 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 194 return true; 195 } 196 197 return CXXABI.classifyReturnType(FI); 198 } 199 200 /// Pass transparent unions as if they were the type of the first element. Sema 201 /// should ensure that all elements of the union have the same "machine type". 202 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 203 if (const RecordType *UT = Ty->getAsUnionType()) { 204 const RecordDecl *UD = UT->getDecl(); 205 if (UD->hasAttr<TransparentUnionAttr>()) { 206 assert(!UD->field_empty() && "sema created an empty transparent union"); 207 return UD->field_begin()->getType(); 208 } 209 } 210 return Ty; 211 } 212 213 CGCXXABI &ABIInfo::getCXXABI() const { 214 return CGT.getCXXABI(); 215 } 216 217 ASTContext &ABIInfo::getContext() const { 218 return CGT.getContext(); 219 } 220 221 llvm::LLVMContext &ABIInfo::getVMContext() const { 222 return CGT.getLLVMContext(); 223 } 224 225 const llvm::DataLayout &ABIInfo::getDataLayout() const { 226 return CGT.getDataLayout(); 227 } 228 229 const TargetInfo &ABIInfo::getTarget() const { 230 return CGT.getTarget(); 231 } 232 233 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 234 return CGT.getCodeGenOpts(); 235 } 236 237 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 238 239 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 240 return false; 241 } 242 243 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 244 uint64_t Members) const { 245 return false; 246 } 247 248 bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const { 249 // For compatibility with GCC, ignore empty bitfields in C++ mode. 250 return getContext().getLangOpts().CPlusPlus; 251 } 252 253 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 254 raw_ostream &OS = llvm::errs(); 255 OS << "(ABIArgInfo Kind="; 256 switch (TheKind) { 257 case Direct: 258 OS << "Direct Type="; 259 if (llvm::Type *Ty = getCoerceToType()) 260 Ty->print(OS); 261 else 262 OS << "null"; 263 break; 264 case Extend: 265 OS << "Extend"; 266 break; 267 case Ignore: 268 OS << "Ignore"; 269 break; 270 case InAlloca: 271 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 272 break; 273 case Indirect: 274 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 275 << " ByVal=" << getIndirectByVal() 276 << " Realign=" << getIndirectRealign(); 277 break; 278 case IndirectAliased: 279 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 280 << " AadrSpace=" << getIndirectAddrSpace() 281 << " Realign=" << getIndirectRealign(); 282 break; 283 case Expand: 284 OS << "Expand"; 285 break; 286 case CoerceAndExpand: 287 OS << "CoerceAndExpand Type="; 288 getCoerceAndExpandType()->print(OS); 289 break; 290 } 291 OS << ")\n"; 292 } 293 294 // Dynamically round a pointer up to a multiple of the given alignment. 295 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 296 llvm::Value *Ptr, 297 CharUnits Align) { 298 llvm::Value *PtrAsInt = Ptr; 299 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 300 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 301 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 302 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 303 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 304 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 305 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 306 Ptr->getType(), 307 Ptr->getName() + ".aligned"); 308 return PtrAsInt; 309 } 310 311 /// Emit va_arg for a platform using the common void* representation, 312 /// where arguments are simply emitted in an array of slots on the stack. 313 /// 314 /// This version implements the core direct-value passing rules. 315 /// 316 /// \param SlotSize - The size and alignment of a stack slot. 317 /// Each argument will be allocated to a multiple of this number of 318 /// slots, and all the slots will be aligned to this value. 319 /// \param AllowHigherAlign - The slot alignment is not a cap; 320 /// an argument type with an alignment greater than the slot size 321 /// will be emitted on a higher-alignment address, potentially 322 /// leaving one or more empty slots behind as padding. If this 323 /// is false, the returned address might be less-aligned than 324 /// DirectAlign. 325 /// \param ForceRightAdjust - Default is false. On big-endian platform and 326 /// if the argument is smaller than a slot, set this flag will force 327 /// right-adjust the argument in its slot irrespective of the type. 328 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 329 Address VAListAddr, 330 llvm::Type *DirectTy, 331 CharUnits DirectSize, 332 CharUnits DirectAlign, 333 CharUnits SlotSize, 334 bool AllowHigherAlign, 335 bool ForceRightAdjust = false) { 336 // Cast the element type to i8* if necessary. Some platforms define 337 // va_list as a struct containing an i8* instead of just an i8*. 338 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 339 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 340 341 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 342 343 // If the CC aligns values higher than the slot size, do so if needed. 344 Address Addr = Address::invalid(); 345 if (AllowHigherAlign && DirectAlign > SlotSize) { 346 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 347 CGF.Int8Ty, DirectAlign); 348 } else { 349 Addr = Address(Ptr, CGF.Int8Ty, SlotSize); 350 } 351 352 // Advance the pointer past the argument, then store that back. 353 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 354 Address NextPtr = 355 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 356 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 357 358 // If the argument is smaller than a slot, and this is a big-endian 359 // target, the argument will be right-adjusted in its slot. 360 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 361 (!DirectTy->isStructTy() || ForceRightAdjust)) { 362 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 363 } 364 365 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 366 return Addr; 367 } 368 369 /// Emit va_arg for a platform using the common void* representation, 370 /// where arguments are simply emitted in an array of slots on the stack. 371 /// 372 /// \param IsIndirect - Values of this type are passed indirectly. 373 /// \param ValueInfo - The size and alignment of this type, generally 374 /// computed with getContext().getTypeInfoInChars(ValueTy). 375 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 376 /// Each argument will be allocated to a multiple of this number of 377 /// slots, and all the slots will be aligned to this value. 378 /// \param AllowHigherAlign - The slot alignment is not a cap; 379 /// an argument type with an alignment greater than the slot size 380 /// will be emitted on a higher-alignment address, potentially 381 /// leaving one or more empty slots behind as padding. 382 /// \param ForceRightAdjust - Default is false. On big-endian platform and 383 /// if the argument is smaller than a slot, set this flag will force 384 /// right-adjust the argument in its slot irrespective of the type. 385 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 386 QualType ValueTy, bool IsIndirect, 387 TypeInfoChars ValueInfo, 388 CharUnits SlotSizeAndAlign, 389 bool AllowHigherAlign, 390 bool ForceRightAdjust = false) { 391 // The size and alignment of the value that was passed directly. 392 CharUnits DirectSize, DirectAlign; 393 if (IsIndirect) { 394 DirectSize = CGF.getPointerSize(); 395 DirectAlign = CGF.getPointerAlign(); 396 } else { 397 DirectSize = ValueInfo.Width; 398 DirectAlign = ValueInfo.Align; 399 } 400 401 // Cast the address we've calculated to the right type. 402 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy; 403 if (IsIndirect) 404 DirectTy = DirectTy->getPointerTo(0); 405 406 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, 407 DirectAlign, SlotSizeAndAlign, 408 AllowHigherAlign, ForceRightAdjust); 409 410 if (IsIndirect) { 411 Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align); 412 } 413 414 return Addr; 415 } 416 417 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 418 QualType Ty, CharUnits SlotSize, 419 CharUnits EltSize, const ComplexType *CTy) { 420 Address Addr = 421 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 422 SlotSize, SlotSize, /*AllowHigher*/ true); 423 424 Address RealAddr = Addr; 425 Address ImagAddr = RealAddr; 426 if (CGF.CGM.getDataLayout().isBigEndian()) { 427 RealAddr = 428 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 429 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 430 2 * SlotSize - EltSize); 431 } else { 432 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 433 } 434 435 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 436 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 437 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 438 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 439 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 440 441 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 442 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 443 /*init*/ true); 444 return Temp; 445 } 446 447 static Address emitMergePHI(CodeGenFunction &CGF, 448 Address Addr1, llvm::BasicBlock *Block1, 449 Address Addr2, llvm::BasicBlock *Block2, 450 const llvm::Twine &Name = "") { 451 assert(Addr1.getType() == Addr2.getType()); 452 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 453 PHI->addIncoming(Addr1.getPointer(), Block1); 454 PHI->addIncoming(Addr2.getPointer(), Block2); 455 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 456 return Address(PHI, Addr1.getElementType(), Align); 457 } 458 459 TargetCodeGenInfo::TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info) 460 : Info(std::move(Info)) {} 461 462 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 463 464 // If someone can figure out a general rule for this, that would be great. 465 // It's probably just doomed to be platform-dependent, though. 466 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 467 // Verified for: 468 // x86-64 FreeBSD, Linux, Darwin 469 // x86-32 FreeBSD, Linux, Darwin 470 // PowerPC Linux, Darwin 471 // ARM Darwin (*not* EABI) 472 // AArch64 Linux 473 return 32; 474 } 475 476 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 477 const FunctionNoProtoType *fnType) const { 478 // The following conventions are known to require this to be false: 479 // x86_stdcall 480 // MIPS 481 // For everything else, we just prefer false unless we opt out. 482 return false; 483 } 484 485 void 486 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 487 llvm::SmallString<24> &Opt) const { 488 // This assumes the user is passing a library name like "rt" instead of a 489 // filename like "librt.a/so", and that they don't care whether it's static or 490 // dynamic. 491 Opt = "-l"; 492 Opt += Lib; 493 } 494 495 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 496 // OpenCL kernels are called via an explicit runtime API with arguments 497 // set with clSetKernelArg(), not as normal sub-functions. 498 // Return SPIR_KERNEL by default as the kernel calling convention to 499 // ensure the fingerprint is fixed such way that each OpenCL argument 500 // gets one matching argument in the produced kernel function argument 501 // list to enable feasible implementation of clSetKernelArg() with 502 // aggregates etc. In case we would use the default C calling conv here, 503 // clSetKernelArg() might break depending on the target-specific 504 // conventions; different targets might split structs passed as values 505 // to multiple function arguments etc. 506 return llvm::CallingConv::SPIR_KERNEL; 507 } 508 509 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 510 llvm::PointerType *T, QualType QT) const { 511 return llvm::ConstantPointerNull::get(T); 512 } 513 514 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 515 const VarDecl *D) const { 516 assert(!CGM.getLangOpts().OpenCL && 517 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 518 "Address space agnostic languages only"); 519 return D ? D->getType().getAddressSpace() : LangAS::Default; 520 } 521 522 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 523 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 524 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 525 // Since target may map different address spaces in AST to the same address 526 // space, an address space conversion may end up as a bitcast. 527 if (auto *C = dyn_cast<llvm::Constant>(Src)) 528 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 529 // Try to preserve the source's name to make IR more readable. 530 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 531 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 532 } 533 534 llvm::Constant * 535 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 536 LangAS SrcAddr, LangAS DestAddr, 537 llvm::Type *DestTy) const { 538 // Since target may map different address spaces in AST to the same address 539 // space, an address space conversion may end up as a bitcast. 540 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 541 } 542 543 llvm::SyncScope::ID 544 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 545 SyncScope Scope, 546 llvm::AtomicOrdering Ordering, 547 llvm::LLVMContext &Ctx) const { 548 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 549 } 550 551 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 552 553 /// isEmptyField - Return true iff a the field is "empty", that is it 554 /// is an unnamed bit-field or an (array of) empty record(s). 555 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 556 bool AllowArrays) { 557 if (FD->isUnnamedBitfield()) 558 return true; 559 560 QualType FT = FD->getType(); 561 562 // Constant arrays of empty records count as empty, strip them off. 563 // Constant arrays of zero length always count as empty. 564 bool WasArray = false; 565 if (AllowArrays) 566 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 567 if (AT->getSize() == 0) 568 return true; 569 FT = AT->getElementType(); 570 // The [[no_unique_address]] special case below does not apply to 571 // arrays of C++ empty records, so we need to remember this fact. 572 WasArray = true; 573 } 574 575 const RecordType *RT = FT->getAs<RecordType>(); 576 if (!RT) 577 return false; 578 579 // C++ record fields are never empty, at least in the Itanium ABI. 580 // 581 // FIXME: We should use a predicate for whether this behavior is true in the 582 // current ABI. 583 // 584 // The exception to the above rule are fields marked with the 585 // [[no_unique_address]] attribute (since C++20). Those do count as empty 586 // according to the Itanium ABI. The exception applies only to records, 587 // not arrays of records, so we must also check whether we stripped off an 588 // array type above. 589 if (isa<CXXRecordDecl>(RT->getDecl()) && 590 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 591 return false; 592 593 return isEmptyRecord(Context, FT, AllowArrays); 594 } 595 596 /// isEmptyRecord - Return true iff a structure contains only empty 597 /// fields. Note that a structure with a flexible array member is not 598 /// considered empty. 599 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 600 const RecordType *RT = T->getAs<RecordType>(); 601 if (!RT) 602 return false; 603 const RecordDecl *RD = RT->getDecl(); 604 if (RD->hasFlexibleArrayMember()) 605 return false; 606 607 // If this is a C++ record, check the bases first. 608 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 609 for (const auto &I : CXXRD->bases()) 610 if (!isEmptyRecord(Context, I.getType(), true)) 611 return false; 612 613 for (const auto *I : RD->fields()) 614 if (!isEmptyField(Context, I, AllowArrays)) 615 return false; 616 return true; 617 } 618 619 /// isSingleElementStruct - Determine if a structure is a "single 620 /// element struct", i.e. it has exactly one non-empty field or 621 /// exactly one field which is itself a single element 622 /// struct. Structures with flexible array members are never 623 /// considered single element structs. 624 /// 625 /// \return The field declaration for the single non-empty field, if 626 /// it exists. 627 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 628 const RecordType *RT = T->getAs<RecordType>(); 629 if (!RT) 630 return nullptr; 631 632 const RecordDecl *RD = RT->getDecl(); 633 if (RD->hasFlexibleArrayMember()) 634 return nullptr; 635 636 const Type *Found = nullptr; 637 638 // If this is a C++ record, check the bases first. 639 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 640 for (const auto &I : CXXRD->bases()) { 641 // Ignore empty records. 642 if (isEmptyRecord(Context, I.getType(), true)) 643 continue; 644 645 // If we already found an element then this isn't a single-element struct. 646 if (Found) 647 return nullptr; 648 649 // If this is non-empty and not a single element struct, the composite 650 // cannot be a single element struct. 651 Found = isSingleElementStruct(I.getType(), Context); 652 if (!Found) 653 return nullptr; 654 } 655 } 656 657 // Check for single element. 658 for (const auto *FD : RD->fields()) { 659 QualType FT = FD->getType(); 660 661 // Ignore empty fields. 662 if (isEmptyField(Context, FD, true)) 663 continue; 664 665 // If we already found an element then this isn't a single-element 666 // struct. 667 if (Found) 668 return nullptr; 669 670 // Treat single element arrays as the element. 671 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 672 if (AT->getSize().getZExtValue() != 1) 673 break; 674 FT = AT->getElementType(); 675 } 676 677 if (!isAggregateTypeForABI(FT)) { 678 Found = FT.getTypePtr(); 679 } else { 680 Found = isSingleElementStruct(FT, Context); 681 if (!Found) 682 return nullptr; 683 } 684 } 685 686 // We don't consider a struct a single-element struct if it has 687 // padding beyond the element type. 688 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 689 return nullptr; 690 691 return Found; 692 } 693 694 namespace { 695 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 696 const ABIArgInfo &AI) { 697 // This default implementation defers to the llvm backend's va_arg 698 // instruction. It can handle only passing arguments directly 699 // (typically only handled in the backend for primitive types), or 700 // aggregates passed indirectly by pointer (NOTE: if the "byval" 701 // flag has ABI impact in the callee, this implementation cannot 702 // work.) 703 704 // Only a few cases are covered here at the moment -- those needed 705 // by the default abi. 706 llvm::Value *Val; 707 708 if (AI.isIndirect()) { 709 assert(!AI.getPaddingType() && 710 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 711 assert( 712 !AI.getIndirectRealign() && 713 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 714 715 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 716 CharUnits TyAlignForABI = TyInfo.Align; 717 718 llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty); 719 llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy); 720 llvm::Value *Addr = 721 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 722 return Address(Addr, ElementTy, TyAlignForABI); 723 } else { 724 assert((AI.isDirect() || AI.isExtend()) && 725 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 726 727 assert(!AI.getInReg() && 728 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 729 assert(!AI.getPaddingType() && 730 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 731 assert(!AI.getDirectOffset() && 732 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 733 assert(!AI.getCoerceToType() && 734 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 735 736 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 737 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), 738 CGF.ConvertTypeForMem(Ty)); 739 CGF.Builder.CreateStore(Val, Temp); 740 return Temp; 741 } 742 } 743 744 /// DefaultABIInfo - The default implementation for ABI specific 745 /// details. This implementation provides information which results in 746 /// self-consistent and sensible LLVM IR generation, but does not 747 /// conform to any particular ABI. 748 class DefaultABIInfo : public ABIInfo { 749 public: 750 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 751 752 ABIArgInfo classifyReturnType(QualType RetTy) const; 753 ABIArgInfo classifyArgumentType(QualType RetTy) const; 754 755 void computeInfo(CGFunctionInfo &FI) const override { 756 if (!getCXXABI().classifyReturnType(FI)) 757 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 758 for (auto &I : FI.arguments()) 759 I.info = classifyArgumentType(I.type); 760 } 761 762 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 763 QualType Ty) const override { 764 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 765 } 766 }; 767 768 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 769 public: 770 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 771 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 772 }; 773 774 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 775 Ty = useFirstFieldIfTransparentUnion(Ty); 776 777 if (isAggregateTypeForABI(Ty)) { 778 // Records with non-trivial destructors/copy-constructors should not be 779 // passed by value. 780 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 781 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 782 783 return getNaturalAlignIndirect(Ty); 784 } 785 786 // Treat an enum type as its underlying type. 787 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 788 Ty = EnumTy->getDecl()->getIntegerType(); 789 790 ASTContext &Context = getContext(); 791 if (const auto *EIT = Ty->getAs<BitIntType>()) 792 if (EIT->getNumBits() > 793 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 794 ? Context.Int128Ty 795 : Context.LongLongTy)) 796 return getNaturalAlignIndirect(Ty); 797 798 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 799 : ABIArgInfo::getDirect()); 800 } 801 802 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 803 if (RetTy->isVoidType()) 804 return ABIArgInfo::getIgnore(); 805 806 if (isAggregateTypeForABI(RetTy)) 807 return getNaturalAlignIndirect(RetTy); 808 809 // Treat an enum type as its underlying type. 810 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 811 RetTy = EnumTy->getDecl()->getIntegerType(); 812 813 if (const auto *EIT = RetTy->getAs<BitIntType>()) 814 if (EIT->getNumBits() > 815 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 816 ? getContext().Int128Ty 817 : getContext().LongLongTy)) 818 return getNaturalAlignIndirect(RetTy); 819 820 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 821 : ABIArgInfo::getDirect()); 822 } 823 824 //===----------------------------------------------------------------------===// 825 // WebAssembly ABI Implementation 826 // 827 // This is a very simple ABI that relies a lot on DefaultABIInfo. 828 //===----------------------------------------------------------------------===// 829 830 class WebAssemblyABIInfo final : public ABIInfo { 831 public: 832 enum ABIKind { 833 MVP = 0, 834 ExperimentalMV = 1, 835 }; 836 837 private: 838 DefaultABIInfo defaultInfo; 839 ABIKind Kind; 840 841 public: 842 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 843 : ABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 844 845 private: 846 ABIArgInfo classifyReturnType(QualType RetTy) const; 847 ABIArgInfo classifyArgumentType(QualType Ty) const; 848 849 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 850 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 851 // overload them. 852 void computeInfo(CGFunctionInfo &FI) const override { 853 if (!getCXXABI().classifyReturnType(FI)) 854 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 855 for (auto &Arg : FI.arguments()) 856 Arg.info = classifyArgumentType(Arg.type); 857 } 858 859 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 860 QualType Ty) const override; 861 }; 862 863 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 864 public: 865 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 866 WebAssemblyABIInfo::ABIKind K) 867 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) { 868 SwiftInfo = 869 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false); 870 } 871 872 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 873 CodeGen::CodeGenModule &CGM) const override { 874 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 875 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 876 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 877 llvm::Function *Fn = cast<llvm::Function>(GV); 878 llvm::AttrBuilder B(GV->getContext()); 879 B.addAttribute("wasm-import-module", Attr->getImportModule()); 880 Fn->addFnAttrs(B); 881 } 882 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 883 llvm::Function *Fn = cast<llvm::Function>(GV); 884 llvm::AttrBuilder B(GV->getContext()); 885 B.addAttribute("wasm-import-name", Attr->getImportName()); 886 Fn->addFnAttrs(B); 887 } 888 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 889 llvm::Function *Fn = cast<llvm::Function>(GV); 890 llvm::AttrBuilder B(GV->getContext()); 891 B.addAttribute("wasm-export-name", Attr->getExportName()); 892 Fn->addFnAttrs(B); 893 } 894 } 895 896 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 897 llvm::Function *Fn = cast<llvm::Function>(GV); 898 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 899 Fn->addFnAttr("no-prototype"); 900 } 901 } 902 }; 903 904 /// Classify argument of given type \p Ty. 905 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 906 Ty = useFirstFieldIfTransparentUnion(Ty); 907 908 if (isAggregateTypeForABI(Ty)) { 909 // Records with non-trivial destructors/copy-constructors should not be 910 // passed by value. 911 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 912 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 913 // Ignore empty structs/unions. 914 if (isEmptyRecord(getContext(), Ty, true)) 915 return ABIArgInfo::getIgnore(); 916 // Lower single-element structs to just pass a regular value. TODO: We 917 // could do reasonable-size multiple-element structs too, using getExpand(), 918 // though watch out for things like bitfields. 919 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 920 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 921 // For the experimental multivalue ABI, fully expand all other aggregates 922 if (Kind == ABIKind::ExperimentalMV) { 923 const RecordType *RT = Ty->getAs<RecordType>(); 924 assert(RT); 925 bool HasBitField = false; 926 for (auto *Field : RT->getDecl()->fields()) { 927 if (Field->isBitField()) { 928 HasBitField = true; 929 break; 930 } 931 } 932 if (!HasBitField) 933 return ABIArgInfo::getExpand(); 934 } 935 } 936 937 // Otherwise just do the default thing. 938 return defaultInfo.classifyArgumentType(Ty); 939 } 940 941 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 942 if (isAggregateTypeForABI(RetTy)) { 943 // Records with non-trivial destructors/copy-constructors should not be 944 // returned by value. 945 if (!getRecordArgABI(RetTy, getCXXABI())) { 946 // Ignore empty structs/unions. 947 if (isEmptyRecord(getContext(), RetTy, true)) 948 return ABIArgInfo::getIgnore(); 949 // Lower single-element structs to just return a regular value. TODO: We 950 // could do reasonable-size multiple-element structs too, using 951 // ABIArgInfo::getDirect(). 952 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 953 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 954 // For the experimental multivalue ABI, return all other aggregates 955 if (Kind == ABIKind::ExperimentalMV) 956 return ABIArgInfo::getDirect(); 957 } 958 } 959 960 // Otherwise just do the default thing. 961 return defaultInfo.classifyReturnType(RetTy); 962 } 963 964 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 965 QualType Ty) const { 966 bool IsIndirect = isAggregateTypeForABI(Ty) && 967 !isEmptyRecord(getContext(), Ty, true) && 968 !isSingleElementStruct(Ty, getContext()); 969 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 970 getContext().getTypeInfoInChars(Ty), 971 CharUnits::fromQuantity(4), 972 /*AllowHigherAlign=*/true); 973 } 974 975 //===----------------------------------------------------------------------===// 976 // le32/PNaCl bitcode ABI Implementation 977 // 978 // This is a simplified version of the x86_32 ABI. Arguments and return values 979 // are always passed on the stack. 980 //===----------------------------------------------------------------------===// 981 982 class PNaClABIInfo : public ABIInfo { 983 public: 984 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 985 986 ABIArgInfo classifyReturnType(QualType RetTy) const; 987 ABIArgInfo classifyArgumentType(QualType RetTy) const; 988 989 void computeInfo(CGFunctionInfo &FI) const override; 990 Address EmitVAArg(CodeGenFunction &CGF, 991 Address VAListAddr, QualType Ty) const override; 992 }; 993 994 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 995 public: 996 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 997 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 998 }; 999 1000 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 1001 if (!getCXXABI().classifyReturnType(FI)) 1002 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 1003 1004 for (auto &I : FI.arguments()) 1005 I.info = classifyArgumentType(I.type); 1006 } 1007 1008 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1009 QualType Ty) const { 1010 // The PNaCL ABI is a bit odd, in that varargs don't use normal 1011 // function classification. Structs get passed directly for varargs 1012 // functions, through a rewriting transform in 1013 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 1014 // this target to actually support a va_arg instructions with an 1015 // aggregate type, unlike other targets. 1016 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 1017 } 1018 1019 /// Classify argument of given type \p Ty. 1020 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1021 if (isAggregateTypeForABI(Ty)) { 1022 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1023 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1024 return getNaturalAlignIndirect(Ty); 1025 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1026 // Treat an enum type as its underlying type. 1027 Ty = EnumTy->getDecl()->getIntegerType(); 1028 } else if (Ty->isFloatingType()) { 1029 // Floating-point types don't go inreg. 1030 return ABIArgInfo::getDirect(); 1031 } else if (const auto *EIT = Ty->getAs<BitIntType>()) { 1032 // Treat bit-precise integers as integers if <= 64, otherwise pass 1033 // indirectly. 1034 if (EIT->getNumBits() > 64) 1035 return getNaturalAlignIndirect(Ty); 1036 return ABIArgInfo::getDirect(); 1037 } 1038 1039 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1040 : ABIArgInfo::getDirect()); 1041 } 1042 1043 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1044 if (RetTy->isVoidType()) 1045 return ABIArgInfo::getIgnore(); 1046 1047 // In the PNaCl ABI we always return records/structures on the stack. 1048 if (isAggregateTypeForABI(RetTy)) 1049 return getNaturalAlignIndirect(RetTy); 1050 1051 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. 1052 if (const auto *EIT = RetTy->getAs<BitIntType>()) { 1053 if (EIT->getNumBits() > 64) 1054 return getNaturalAlignIndirect(RetTy); 1055 return ABIArgInfo::getDirect(); 1056 } 1057 1058 // Treat an enum type as its underlying type. 1059 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1060 RetTy = EnumTy->getDecl()->getIntegerType(); 1061 1062 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1063 : ABIArgInfo::getDirect()); 1064 } 1065 1066 /// IsX86_MMXType - Return true if this is an MMX type. 1067 bool IsX86_MMXType(llvm::Type *IRType) { 1068 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1069 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1070 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1071 IRType->getScalarSizeInBits() != 64; 1072 } 1073 1074 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1075 StringRef Constraint, 1076 llvm::Type* Ty) { 1077 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1078 .Cases("y", "&y", "^Ym", true) 1079 .Default(false); 1080 if (IsMMXCons && Ty->isVectorTy()) { 1081 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() != 1082 64) { 1083 // Invalid MMX constraint 1084 return nullptr; 1085 } 1086 1087 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1088 } 1089 1090 // No operation needed 1091 return Ty; 1092 } 1093 1094 /// Returns true if this type can be passed in SSE registers with the 1095 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1096 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1097 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1098 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1099 if (BT->getKind() == BuiltinType::LongDouble) { 1100 if (&Context.getTargetInfo().getLongDoubleFormat() == 1101 &llvm::APFloat::x87DoubleExtended()) 1102 return false; 1103 } 1104 return true; 1105 } 1106 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1107 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1108 // registers specially. 1109 unsigned VecSize = Context.getTypeSize(VT); 1110 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1111 return true; 1112 } 1113 return false; 1114 } 1115 1116 /// Returns true if this aggregate is small enough to be passed in SSE registers 1117 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1118 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1119 return NumMembers <= 4; 1120 } 1121 1122 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1123 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1124 auto AI = ABIArgInfo::getDirect(T); 1125 AI.setInReg(true); 1126 AI.setCanBeFlattened(false); 1127 return AI; 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // X86-32 ABI Implementation 1132 //===----------------------------------------------------------------------===// 1133 1134 /// Similar to llvm::CCState, but for Clang. 1135 struct CCState { 1136 CCState(CGFunctionInfo &FI) 1137 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1138 1139 llvm::SmallBitVector IsPreassigned; 1140 unsigned CC = CallingConv::CC_C; 1141 unsigned FreeRegs = 0; 1142 unsigned FreeSSERegs = 0; 1143 }; 1144 1145 /// X86_32ABIInfo - The X86-32 ABI information. 1146 class X86_32ABIInfo : public ABIInfo { 1147 enum Class { 1148 Integer, 1149 Float 1150 }; 1151 1152 static const unsigned MinABIStackAlignInBytes = 4; 1153 1154 bool IsDarwinVectorABI; 1155 bool IsRetSmallStructInRegABI; 1156 bool IsWin32StructABI; 1157 bool IsSoftFloatABI; 1158 bool IsMCUABI; 1159 bool IsLinuxABI; 1160 unsigned DefaultNumRegisterParameters; 1161 1162 static bool isRegisterSize(unsigned Size) { 1163 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1164 } 1165 1166 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1167 // FIXME: Assumes vectorcall is in use. 1168 return isX86VectorTypeForVectorCall(getContext(), Ty); 1169 } 1170 1171 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1172 uint64_t NumMembers) const override { 1173 // FIXME: Assumes vectorcall is in use. 1174 return isX86VectorCallAggregateSmallEnough(NumMembers); 1175 } 1176 1177 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1178 1179 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1180 /// such that the argument will be passed in memory. 1181 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1182 1183 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1184 1185 /// Return the alignment to use for the given type on the stack. 1186 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1187 1188 Class classify(QualType Ty) const; 1189 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1190 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1191 1192 /// Updates the number of available free registers, returns 1193 /// true if any registers were allocated. 1194 bool updateFreeRegs(QualType Ty, CCState &State) const; 1195 1196 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1197 bool &NeedsPadding) const; 1198 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1199 1200 bool canExpandIndirectArgument(QualType Ty) const; 1201 1202 /// Rewrite the function info so that all memory arguments use 1203 /// inalloca. 1204 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1205 1206 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1207 CharUnits &StackOffset, ABIArgInfo &Info, 1208 QualType Type) const; 1209 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1210 1211 public: 1212 1213 void computeInfo(CGFunctionInfo &FI) const override; 1214 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1215 QualType Ty) const override; 1216 1217 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1218 bool RetSmallStructInRegABI, bool Win32StructABI, 1219 unsigned NumRegisterParameters, bool SoftFloatABI) 1220 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1221 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1222 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1223 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1224 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1225 CGT.getTarget().getTriple().isOSCygMing()), 1226 DefaultNumRegisterParameters(NumRegisterParameters) {} 1227 }; 1228 1229 class X86_32SwiftABIInfo : public SwiftABIInfo { 1230 public: 1231 explicit X86_32SwiftABIInfo(CodeGenTypes &CGT) 1232 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {} 1233 1234 bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys, 1235 bool AsReturnValue) const override { 1236 // LLVM's x86-32 lowering currently only assigns up to three 1237 // integer registers and three fp registers. Oddly, it'll use up to 1238 // four vector registers for vectors, but those can overlap with the 1239 // scalar registers. 1240 return occupiesMoreThan(CGT, ComponentTys, /*total=*/3); 1241 } 1242 }; 1243 1244 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1245 public: 1246 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1247 bool RetSmallStructInRegABI, bool Win32StructABI, 1248 unsigned NumRegisterParameters, bool SoftFloatABI) 1249 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1250 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1251 NumRegisterParameters, SoftFloatABI)) { 1252 SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT); 1253 } 1254 1255 static bool isStructReturnInRegABI( 1256 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1257 1258 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1259 CodeGen::CodeGenModule &CGM) const override; 1260 1261 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1262 // Darwin uses different dwarf register numbers for EH. 1263 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1264 return 4; 1265 } 1266 1267 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1268 llvm::Value *Address) const override; 1269 1270 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1271 StringRef Constraint, 1272 llvm::Type* Ty) const override { 1273 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1274 } 1275 1276 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1277 std::string &Constraints, 1278 std::vector<llvm::Type *> &ResultRegTypes, 1279 std::vector<llvm::Type *> &ResultTruncRegTypes, 1280 std::vector<LValue> &ResultRegDests, 1281 std::string &AsmString, 1282 unsigned NumOutputs) const override; 1283 1284 llvm::Constant * 1285 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1286 unsigned Sig = (0xeb << 0) | // jmp rel8 1287 (0x06 << 8) | // .+0x08 1288 ('v' << 16) | 1289 ('2' << 24); 1290 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1291 } 1292 1293 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1294 return "movl\t%ebp, %ebp" 1295 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1296 } 1297 }; 1298 1299 } 1300 1301 /// Rewrite input constraint references after adding some output constraints. 1302 /// In the case where there is one output and one input and we add one output, 1303 /// we need to replace all operand references greater than or equal to 1: 1304 /// mov $0, $1 1305 /// mov eax, $1 1306 /// The result will be: 1307 /// mov $0, $2 1308 /// mov eax, $2 1309 static void rewriteInputConstraintReferences(unsigned FirstIn, 1310 unsigned NumNewOuts, 1311 std::string &AsmString) { 1312 std::string Buf; 1313 llvm::raw_string_ostream OS(Buf); 1314 size_t Pos = 0; 1315 while (Pos < AsmString.size()) { 1316 size_t DollarStart = AsmString.find('$', Pos); 1317 if (DollarStart == std::string::npos) 1318 DollarStart = AsmString.size(); 1319 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1320 if (DollarEnd == std::string::npos) 1321 DollarEnd = AsmString.size(); 1322 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1323 Pos = DollarEnd; 1324 size_t NumDollars = DollarEnd - DollarStart; 1325 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1326 // We have an operand reference. 1327 size_t DigitStart = Pos; 1328 if (AsmString[DigitStart] == '{') { 1329 OS << '{'; 1330 ++DigitStart; 1331 } 1332 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1333 if (DigitEnd == std::string::npos) 1334 DigitEnd = AsmString.size(); 1335 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1336 unsigned OperandIndex; 1337 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1338 if (OperandIndex >= FirstIn) 1339 OperandIndex += NumNewOuts; 1340 OS << OperandIndex; 1341 } else { 1342 OS << OperandStr; 1343 } 1344 Pos = DigitEnd; 1345 } 1346 } 1347 AsmString = std::move(OS.str()); 1348 } 1349 1350 /// Add output constraints for EAX:EDX because they are return registers. 1351 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1352 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1353 std::vector<llvm::Type *> &ResultRegTypes, 1354 std::vector<llvm::Type *> &ResultTruncRegTypes, 1355 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1356 unsigned NumOutputs) const { 1357 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1358 1359 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1360 // larger. 1361 if (!Constraints.empty()) 1362 Constraints += ','; 1363 if (RetWidth <= 32) { 1364 Constraints += "={eax}"; 1365 ResultRegTypes.push_back(CGF.Int32Ty); 1366 } else { 1367 // Use the 'A' constraint for EAX:EDX. 1368 Constraints += "=A"; 1369 ResultRegTypes.push_back(CGF.Int64Ty); 1370 } 1371 1372 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1373 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1374 ResultTruncRegTypes.push_back(CoerceTy); 1375 1376 // Coerce the integer by bitcasting the return slot pointer. 1377 ReturnSlot.setAddress( 1378 CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy)); 1379 ResultRegDests.push_back(ReturnSlot); 1380 1381 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1382 } 1383 1384 /// shouldReturnTypeInRegister - Determine if the given type should be 1385 /// returned in a register (for the Darwin and MCU ABI). 1386 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1387 ASTContext &Context) const { 1388 uint64_t Size = Context.getTypeSize(Ty); 1389 1390 // For i386, type must be register sized. 1391 // For the MCU ABI, it only needs to be <= 8-byte 1392 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1393 return false; 1394 1395 if (Ty->isVectorType()) { 1396 // 64- and 128- bit vectors inside structures are not returned in 1397 // registers. 1398 if (Size == 64 || Size == 128) 1399 return false; 1400 1401 return true; 1402 } 1403 1404 // If this is a builtin, pointer, enum, complex type, member pointer, or 1405 // member function pointer it is ok. 1406 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1407 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1408 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1409 return true; 1410 1411 // Arrays are treated like records. 1412 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1413 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1414 1415 // Otherwise, it must be a record type. 1416 const RecordType *RT = Ty->getAs<RecordType>(); 1417 if (!RT) return false; 1418 1419 // FIXME: Traverse bases here too. 1420 1421 // Structure types are passed in register if all fields would be 1422 // passed in a register. 1423 for (const auto *FD : RT->getDecl()->fields()) { 1424 // Empty fields are ignored. 1425 if (isEmptyField(Context, FD, true)) 1426 continue; 1427 1428 // Check fields recursively. 1429 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1430 return false; 1431 } 1432 return true; 1433 } 1434 1435 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1436 // Treat complex types as the element type. 1437 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1438 Ty = CTy->getElementType(); 1439 1440 // Check for a type which we know has a simple scalar argument-passing 1441 // convention without any padding. (We're specifically looking for 32 1442 // and 64-bit integer and integer-equivalents, float, and double.) 1443 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1444 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1445 return false; 1446 1447 uint64_t Size = Context.getTypeSize(Ty); 1448 return Size == 32 || Size == 64; 1449 } 1450 1451 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1452 uint64_t &Size) { 1453 for (const auto *FD : RD->fields()) { 1454 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1455 // argument is smaller than 32-bits, expanding the struct will create 1456 // alignment padding. 1457 if (!is32Or64BitBasicType(FD->getType(), Context)) 1458 return false; 1459 1460 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1461 // how to expand them yet, and the predicate for telling if a bitfield still 1462 // counts as "basic" is more complicated than what we were doing previously. 1463 if (FD->isBitField()) 1464 return false; 1465 1466 Size += Context.getTypeSize(FD->getType()); 1467 } 1468 return true; 1469 } 1470 1471 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1472 uint64_t &Size) { 1473 // Don't do this if there are any non-empty bases. 1474 for (const CXXBaseSpecifier &Base : RD->bases()) { 1475 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1476 Size)) 1477 return false; 1478 } 1479 if (!addFieldSizes(Context, RD, Size)) 1480 return false; 1481 return true; 1482 } 1483 1484 /// Test whether an argument type which is to be passed indirectly (on the 1485 /// stack) would have the equivalent layout if it was expanded into separate 1486 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1487 /// optimizations. 1488 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1489 // We can only expand structure types. 1490 const RecordType *RT = Ty->getAs<RecordType>(); 1491 if (!RT) 1492 return false; 1493 const RecordDecl *RD = RT->getDecl(); 1494 uint64_t Size = 0; 1495 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1496 if (!IsWin32StructABI) { 1497 // On non-Windows, we have to conservatively match our old bitcode 1498 // prototypes in order to be ABI-compatible at the bitcode level. 1499 if (!CXXRD->isCLike()) 1500 return false; 1501 } else { 1502 // Don't do this for dynamic classes. 1503 if (CXXRD->isDynamicClass()) 1504 return false; 1505 } 1506 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1507 return false; 1508 } else { 1509 if (!addFieldSizes(getContext(), RD, Size)) 1510 return false; 1511 } 1512 1513 // We can do this if there was no alignment padding. 1514 return Size == getContext().getTypeSize(Ty); 1515 } 1516 1517 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1518 // If the return value is indirect, then the hidden argument is consuming one 1519 // integer register. 1520 if (State.FreeRegs) { 1521 --State.FreeRegs; 1522 if (!IsMCUABI) 1523 return getNaturalAlignIndirectInReg(RetTy); 1524 } 1525 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1526 } 1527 1528 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1529 CCState &State) const { 1530 if (RetTy->isVoidType()) 1531 return ABIArgInfo::getIgnore(); 1532 1533 const Type *Base = nullptr; 1534 uint64_t NumElts = 0; 1535 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1536 State.CC == llvm::CallingConv::X86_RegCall) && 1537 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1538 // The LLVM struct type for such an aggregate should lower properly. 1539 return ABIArgInfo::getDirect(); 1540 } 1541 1542 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1543 // On Darwin, some vectors are returned in registers. 1544 if (IsDarwinVectorABI) { 1545 uint64_t Size = getContext().getTypeSize(RetTy); 1546 1547 // 128-bit vectors are a special case; they are returned in 1548 // registers and we need to make sure to pick a type the LLVM 1549 // backend will like. 1550 if (Size == 128) 1551 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1552 llvm::Type::getInt64Ty(getVMContext()), 2)); 1553 1554 // Always return in register if it fits in a general purpose 1555 // register, or if it is 64 bits and has a single element. 1556 if ((Size == 8 || Size == 16 || Size == 32) || 1557 (Size == 64 && VT->getNumElements() == 1)) 1558 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1559 Size)); 1560 1561 return getIndirectReturnResult(RetTy, State); 1562 } 1563 1564 return ABIArgInfo::getDirect(); 1565 } 1566 1567 if (isAggregateTypeForABI(RetTy)) { 1568 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1569 // Structures with flexible arrays are always indirect. 1570 if (RT->getDecl()->hasFlexibleArrayMember()) 1571 return getIndirectReturnResult(RetTy, State); 1572 } 1573 1574 // If specified, structs and unions are always indirect. 1575 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1576 return getIndirectReturnResult(RetTy, State); 1577 1578 // Ignore empty structs/unions. 1579 if (isEmptyRecord(getContext(), RetTy, true)) 1580 return ABIArgInfo::getIgnore(); 1581 1582 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1583 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1584 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1585 if (ET->isFloat16Type()) 1586 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1587 llvm::Type::getHalfTy(getVMContext()), 2)); 1588 } 1589 1590 // Small structures which are register sized are generally returned 1591 // in a register. 1592 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1593 uint64_t Size = getContext().getTypeSize(RetTy); 1594 1595 // As a special-case, if the struct is a "single-element" struct, and 1596 // the field is of type "float" or "double", return it in a 1597 // floating-point register. (MSVC does not apply this special case.) 1598 // We apply a similar transformation for pointer types to improve the 1599 // quality of the generated IR. 1600 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1601 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1602 || SeltTy->hasPointerRepresentation()) 1603 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1604 1605 // FIXME: We should be able to narrow this integer in cases with dead 1606 // padding. 1607 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1608 } 1609 1610 return getIndirectReturnResult(RetTy, State); 1611 } 1612 1613 // Treat an enum type as its underlying type. 1614 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1615 RetTy = EnumTy->getDecl()->getIntegerType(); 1616 1617 if (const auto *EIT = RetTy->getAs<BitIntType>()) 1618 if (EIT->getNumBits() > 64) 1619 return getIndirectReturnResult(RetTy, State); 1620 1621 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1622 : ABIArgInfo::getDirect()); 1623 } 1624 1625 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1626 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1627 } 1628 1629 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1630 const RecordType *RT = Ty->getAs<RecordType>(); 1631 if (!RT) 1632 return false; 1633 const RecordDecl *RD = RT->getDecl(); 1634 1635 // If this is a C++ record, check the bases first. 1636 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1637 for (const auto &I : CXXRD->bases()) 1638 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1639 return false; 1640 1641 for (const auto *i : RD->fields()) { 1642 QualType FT = i->getType(); 1643 1644 if (isSIMDVectorType(Context, FT)) 1645 return true; 1646 1647 if (isRecordWithSIMDVectorType(Context, FT)) 1648 return true; 1649 } 1650 1651 return false; 1652 } 1653 1654 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1655 unsigned Align) const { 1656 // Otherwise, if the alignment is less than or equal to the minimum ABI 1657 // alignment, just use the default; the backend will handle this. 1658 if (Align <= MinABIStackAlignInBytes) 1659 return 0; // Use default alignment. 1660 1661 if (IsLinuxABI) { 1662 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1663 // want to spend any effort dealing with the ramifications of ABI breaks. 1664 // 1665 // If the vector type is __m128/__m256/__m512, return the default alignment. 1666 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1667 return Align; 1668 } 1669 // On non-Darwin, the stack type alignment is always 4. 1670 if (!IsDarwinVectorABI) { 1671 // Set explicit alignment, since we may need to realign the top. 1672 return MinABIStackAlignInBytes; 1673 } 1674 1675 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1676 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1677 isRecordWithSIMDVectorType(getContext(), Ty))) 1678 return 16; 1679 1680 return MinABIStackAlignInBytes; 1681 } 1682 1683 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1684 CCState &State) const { 1685 if (!ByVal) { 1686 if (State.FreeRegs) { 1687 --State.FreeRegs; // Non-byval indirects just use one pointer. 1688 if (!IsMCUABI) 1689 return getNaturalAlignIndirectInReg(Ty); 1690 } 1691 return getNaturalAlignIndirect(Ty, false); 1692 } 1693 1694 // Compute the byval alignment. 1695 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1696 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1697 if (StackAlign == 0) 1698 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1699 1700 // If the stack alignment is less than the type alignment, realign the 1701 // argument. 1702 bool Realign = TypeAlign > StackAlign; 1703 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1704 /*ByVal=*/true, Realign); 1705 } 1706 1707 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1708 const Type *T = isSingleElementStruct(Ty, getContext()); 1709 if (!T) 1710 T = Ty.getTypePtr(); 1711 1712 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1713 BuiltinType::Kind K = BT->getKind(); 1714 if (K == BuiltinType::Float || K == BuiltinType::Double) 1715 return Float; 1716 } 1717 return Integer; 1718 } 1719 1720 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1721 if (!IsSoftFloatABI) { 1722 Class C = classify(Ty); 1723 if (C == Float) 1724 return false; 1725 } 1726 1727 unsigned Size = getContext().getTypeSize(Ty); 1728 unsigned SizeInRegs = (Size + 31) / 32; 1729 1730 if (SizeInRegs == 0) 1731 return false; 1732 1733 if (!IsMCUABI) { 1734 if (SizeInRegs > State.FreeRegs) { 1735 State.FreeRegs = 0; 1736 return false; 1737 } 1738 } else { 1739 // The MCU psABI allows passing parameters in-reg even if there are 1740 // earlier parameters that are passed on the stack. Also, 1741 // it does not allow passing >8-byte structs in-register, 1742 // even if there are 3 free registers available. 1743 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1744 return false; 1745 } 1746 1747 State.FreeRegs -= SizeInRegs; 1748 return true; 1749 } 1750 1751 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1752 bool &InReg, 1753 bool &NeedsPadding) const { 1754 // On Windows, aggregates other than HFAs are never passed in registers, and 1755 // they do not consume register slots. Homogenous floating-point aggregates 1756 // (HFAs) have already been dealt with at this point. 1757 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1758 return false; 1759 1760 NeedsPadding = false; 1761 InReg = !IsMCUABI; 1762 1763 if (!updateFreeRegs(Ty, State)) 1764 return false; 1765 1766 if (IsMCUABI) 1767 return true; 1768 1769 if (State.CC == llvm::CallingConv::X86_FastCall || 1770 State.CC == llvm::CallingConv::X86_VectorCall || 1771 State.CC == llvm::CallingConv::X86_RegCall) { 1772 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1773 NeedsPadding = true; 1774 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1782 bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) && 1783 (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1784 Ty->isReferenceType()); 1785 1786 if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall || 1787 State.CC == llvm::CallingConv::X86_VectorCall)) 1788 return false; 1789 1790 if (!updateFreeRegs(Ty, State)) 1791 return false; 1792 1793 if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall) 1794 return false; 1795 1796 // Return true to apply inreg to all legal parameters except for MCU targets. 1797 return !IsMCUABI; 1798 } 1799 1800 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1801 // Vectorcall x86 works subtly different than in x64, so the format is 1802 // a bit different than the x64 version. First, all vector types (not HVAs) 1803 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1804 // This differs from the x64 implementation, where the first 6 by INDEX get 1805 // registers. 1806 // In the second pass over the arguments, HVAs are passed in the remaining 1807 // vector registers if possible, or indirectly by address. The address will be 1808 // passed in ECX/EDX if available. Any other arguments are passed according to 1809 // the usual fastcall rules. 1810 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1811 for (int I = 0, E = Args.size(); I < E; ++I) { 1812 const Type *Base = nullptr; 1813 uint64_t NumElts = 0; 1814 const QualType &Ty = Args[I].type; 1815 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1816 isHomogeneousAggregate(Ty, Base, NumElts)) { 1817 if (State.FreeSSERegs >= NumElts) { 1818 State.FreeSSERegs -= NumElts; 1819 Args[I].info = ABIArgInfo::getDirectInReg(); 1820 State.IsPreassigned.set(I); 1821 } 1822 } 1823 } 1824 } 1825 1826 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1827 CCState &State) const { 1828 // FIXME: Set alignment on indirect arguments. 1829 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1830 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1831 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1832 1833 Ty = useFirstFieldIfTransparentUnion(Ty); 1834 TypeInfo TI = getContext().getTypeInfo(Ty); 1835 1836 // Check with the C++ ABI first. 1837 const RecordType *RT = Ty->getAs<RecordType>(); 1838 if (RT) { 1839 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1840 if (RAA == CGCXXABI::RAA_Indirect) { 1841 return getIndirectResult(Ty, false, State); 1842 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1843 // The field index doesn't matter, we'll fix it up later. 1844 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1845 } 1846 } 1847 1848 // Regcall uses the concept of a homogenous vector aggregate, similar 1849 // to other targets. 1850 const Type *Base = nullptr; 1851 uint64_t NumElts = 0; 1852 if ((IsRegCall || IsVectorCall) && 1853 isHomogeneousAggregate(Ty, Base, NumElts)) { 1854 if (State.FreeSSERegs >= NumElts) { 1855 State.FreeSSERegs -= NumElts; 1856 1857 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1858 // does. 1859 if (IsVectorCall) 1860 return getDirectX86Hva(); 1861 1862 if (Ty->isBuiltinType() || Ty->isVectorType()) 1863 return ABIArgInfo::getDirect(); 1864 return ABIArgInfo::getExpand(); 1865 } 1866 return getIndirectResult(Ty, /*ByVal=*/false, State); 1867 } 1868 1869 if (isAggregateTypeForABI(Ty)) { 1870 // Structures with flexible arrays are always indirect. 1871 // FIXME: This should not be byval! 1872 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1873 return getIndirectResult(Ty, true, State); 1874 1875 // Ignore empty structs/unions on non-Windows. 1876 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1877 return ABIArgInfo::getIgnore(); 1878 1879 llvm::LLVMContext &LLVMContext = getVMContext(); 1880 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1881 bool NeedsPadding = false; 1882 bool InReg; 1883 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1884 unsigned SizeInRegs = (TI.Width + 31) / 32; 1885 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1886 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1887 if (InReg) 1888 return ABIArgInfo::getDirectInReg(Result); 1889 else 1890 return ABIArgInfo::getDirect(Result); 1891 } 1892 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1893 1894 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1895 // added in MSVC 2015. 1896 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1897 return getIndirectResult(Ty, /*ByVal=*/false, State); 1898 1899 // Expand small (<= 128-bit) record types when we know that the stack layout 1900 // of those arguments will match the struct. This is important because the 1901 // LLVM backend isn't smart enough to remove byval, which inhibits many 1902 // optimizations. 1903 // Don't do this for the MCU if there are still free integer registers 1904 // (see X86_64 ABI for full explanation). 1905 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1906 canExpandIndirectArgument(Ty)) 1907 return ABIArgInfo::getExpandWithPadding( 1908 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1909 1910 return getIndirectResult(Ty, true, State); 1911 } 1912 1913 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1914 // On Windows, vectors are passed directly if registers are available, or 1915 // indirectly if not. This avoids the need to align argument memory. Pass 1916 // user-defined vector types larger than 512 bits indirectly for simplicity. 1917 if (IsWin32StructABI) { 1918 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1919 --State.FreeSSERegs; 1920 return ABIArgInfo::getDirectInReg(); 1921 } 1922 return getIndirectResult(Ty, /*ByVal=*/false, State); 1923 } 1924 1925 // On Darwin, some vectors are passed in memory, we handle this by passing 1926 // it as an i8/i16/i32/i64. 1927 if (IsDarwinVectorABI) { 1928 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1929 (TI.Width == 64 && VT->getNumElements() == 1)) 1930 return ABIArgInfo::getDirect( 1931 llvm::IntegerType::get(getVMContext(), TI.Width)); 1932 } 1933 1934 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1935 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1936 1937 return ABIArgInfo::getDirect(); 1938 } 1939 1940 1941 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1942 Ty = EnumTy->getDecl()->getIntegerType(); 1943 1944 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1945 1946 if (isPromotableIntegerTypeForABI(Ty)) { 1947 if (InReg) 1948 return ABIArgInfo::getExtendInReg(Ty); 1949 return ABIArgInfo::getExtend(Ty); 1950 } 1951 1952 if (const auto *EIT = Ty->getAs<BitIntType>()) { 1953 if (EIT->getNumBits() <= 64) { 1954 if (InReg) 1955 return ABIArgInfo::getDirectInReg(); 1956 return ABIArgInfo::getDirect(); 1957 } 1958 return getIndirectResult(Ty, /*ByVal=*/false, State); 1959 } 1960 1961 if (InReg) 1962 return ABIArgInfo::getDirectInReg(); 1963 return ABIArgInfo::getDirect(); 1964 } 1965 1966 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1967 CCState State(FI); 1968 if (IsMCUABI) 1969 State.FreeRegs = 3; 1970 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1971 State.FreeRegs = 2; 1972 State.FreeSSERegs = 3; 1973 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1974 State.FreeRegs = 2; 1975 State.FreeSSERegs = 6; 1976 } else if (FI.getHasRegParm()) 1977 State.FreeRegs = FI.getRegParm(); 1978 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1979 State.FreeRegs = 5; 1980 State.FreeSSERegs = 8; 1981 } else if (IsWin32StructABI) { 1982 // Since MSVC 2015, the first three SSE vectors have been passed in 1983 // registers. The rest are passed indirectly. 1984 State.FreeRegs = DefaultNumRegisterParameters; 1985 State.FreeSSERegs = 3; 1986 } else 1987 State.FreeRegs = DefaultNumRegisterParameters; 1988 1989 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1990 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1991 } else if (FI.getReturnInfo().isIndirect()) { 1992 // The C++ ABI is not aware of register usage, so we have to check if the 1993 // return value was sret and put it in a register ourselves if appropriate. 1994 if (State.FreeRegs) { 1995 --State.FreeRegs; // The sret parameter consumes a register. 1996 if (!IsMCUABI) 1997 FI.getReturnInfo().setInReg(true); 1998 } 1999 } 2000 2001 // The chain argument effectively gives us another free register. 2002 if (FI.isChainCall()) 2003 ++State.FreeRegs; 2004 2005 // For vectorcall, do a first pass over the arguments, assigning FP and vector 2006 // arguments to XMM registers as available. 2007 if (State.CC == llvm::CallingConv::X86_VectorCall) 2008 runVectorCallFirstPass(FI, State); 2009 2010 bool UsedInAlloca = false; 2011 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 2012 for (int I = 0, E = Args.size(); I < E; ++I) { 2013 // Skip arguments that have already been assigned. 2014 if (State.IsPreassigned.test(I)) 2015 continue; 2016 2017 Args[I].info = classifyArgumentType(Args[I].type, State); 2018 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 2019 } 2020 2021 // If we needed to use inalloca for any argument, do a second pass and rewrite 2022 // all the memory arguments to use inalloca. 2023 if (UsedInAlloca) 2024 rewriteWithInAlloca(FI); 2025 } 2026 2027 void 2028 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2029 CharUnits &StackOffset, ABIArgInfo &Info, 2030 QualType Type) const { 2031 // Arguments are always 4-byte-aligned. 2032 CharUnits WordSize = CharUnits::fromQuantity(4); 2033 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2034 2035 // sret pointers and indirect things will require an extra pointer 2036 // indirection, unless they are byval. Most things are byval, and will not 2037 // require this indirection. 2038 bool IsIndirect = false; 2039 if (Info.isIndirect() && !Info.getIndirectByVal()) 2040 IsIndirect = true; 2041 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2042 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2043 if (IsIndirect) 2044 LLTy = LLTy->getPointerTo(0); 2045 FrameFields.push_back(LLTy); 2046 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2047 2048 // Insert padding bytes to respect alignment. 2049 CharUnits FieldEnd = StackOffset; 2050 StackOffset = FieldEnd.alignTo(WordSize); 2051 if (StackOffset != FieldEnd) { 2052 CharUnits NumBytes = StackOffset - FieldEnd; 2053 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2054 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2055 FrameFields.push_back(Ty); 2056 } 2057 } 2058 2059 static bool isArgInAlloca(const ABIArgInfo &Info) { 2060 // Leave ignored and inreg arguments alone. 2061 switch (Info.getKind()) { 2062 case ABIArgInfo::InAlloca: 2063 return true; 2064 case ABIArgInfo::Ignore: 2065 case ABIArgInfo::IndirectAliased: 2066 return false; 2067 case ABIArgInfo::Indirect: 2068 case ABIArgInfo::Direct: 2069 case ABIArgInfo::Extend: 2070 return !Info.getInReg(); 2071 case ABIArgInfo::Expand: 2072 case ABIArgInfo::CoerceAndExpand: 2073 // These are aggregate types which are never passed in registers when 2074 // inalloca is involved. 2075 return true; 2076 } 2077 llvm_unreachable("invalid enum"); 2078 } 2079 2080 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2081 assert(IsWin32StructABI && "inalloca only supported on win32"); 2082 2083 // Build a packed struct type for all of the arguments in memory. 2084 SmallVector<llvm::Type *, 6> FrameFields; 2085 2086 // The stack alignment is always 4. 2087 CharUnits StackAlign = CharUnits::fromQuantity(4); 2088 2089 CharUnits StackOffset; 2090 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2091 2092 // Put 'this' into the struct before 'sret', if necessary. 2093 bool IsThisCall = 2094 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2095 ABIArgInfo &Ret = FI.getReturnInfo(); 2096 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2097 isArgInAlloca(I->info)) { 2098 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2099 ++I; 2100 } 2101 2102 // Put the sret parameter into the inalloca struct if it's in memory. 2103 if (Ret.isIndirect() && !Ret.getInReg()) { 2104 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2105 // On Windows, the hidden sret parameter is always returned in eax. 2106 Ret.setInAllocaSRet(IsWin32StructABI); 2107 } 2108 2109 // Skip the 'this' parameter in ecx. 2110 if (IsThisCall) 2111 ++I; 2112 2113 // Put arguments passed in memory into the struct. 2114 for (; I != E; ++I) { 2115 if (isArgInAlloca(I->info)) 2116 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2117 } 2118 2119 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2120 /*isPacked=*/true), 2121 StackAlign); 2122 } 2123 2124 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2125 Address VAListAddr, QualType Ty) const { 2126 2127 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2128 2129 // x86-32 changes the alignment of certain arguments on the stack. 2130 // 2131 // Just messing with TypeInfo like this works because we never pass 2132 // anything indirectly. 2133 TypeInfo.Align = CharUnits::fromQuantity( 2134 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2135 2136 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2137 TypeInfo, CharUnits::fromQuantity(4), 2138 /*AllowHigherAlign*/ true); 2139 } 2140 2141 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2142 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2143 assert(Triple.getArch() == llvm::Triple::x86); 2144 2145 switch (Opts.getStructReturnConvention()) { 2146 case CodeGenOptions::SRCK_Default: 2147 break; 2148 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2149 return false; 2150 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2151 return true; 2152 } 2153 2154 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2155 return true; 2156 2157 switch (Triple.getOS()) { 2158 case llvm::Triple::DragonFly: 2159 case llvm::Triple::FreeBSD: 2160 case llvm::Triple::OpenBSD: 2161 case llvm::Triple::Win32: 2162 return true; 2163 default: 2164 return false; 2165 } 2166 } 2167 2168 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2169 CodeGen::CodeGenModule &CGM) { 2170 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2171 return; 2172 2173 llvm::Function *Fn = cast<llvm::Function>(GV); 2174 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2175 if (FD->getNumParams() == 0) 2176 return; 2177 2178 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2179 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2180 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2181 Fn->getContext(), ByValTy); 2182 Fn->addParamAttr(0, NewAttr); 2183 } 2184 2185 void X86_32TargetCodeGenInfo::setTargetAttributes( 2186 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2187 if (GV->isDeclaration()) 2188 return; 2189 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2190 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2191 llvm::Function *Fn = cast<llvm::Function>(GV); 2192 Fn->addFnAttr("stackrealign"); 2193 } 2194 2195 addX86InterruptAttrs(FD, GV, CGM); 2196 } 2197 } 2198 2199 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2200 CodeGen::CodeGenFunction &CGF, 2201 llvm::Value *Address) const { 2202 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2203 2204 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2205 2206 // 0-7 are the eight integer registers; the order is different 2207 // on Darwin (for EH), but the range is the same. 2208 // 8 is %eip. 2209 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2210 2211 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2212 // 12-16 are st(0..4). Not sure why we stop at 4. 2213 // These have size 16, which is sizeof(long double) on 2214 // platforms with 8-byte alignment for that type. 2215 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2216 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2217 2218 } else { 2219 // 9 is %eflags, which doesn't get a size on Darwin for some 2220 // reason. 2221 Builder.CreateAlignedStore( 2222 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2223 CharUnits::One()); 2224 2225 // 11-16 are st(0..5). Not sure why we stop at 5. 2226 // These have size 12, which is sizeof(long double) on 2227 // platforms with 4-byte alignment for that type. 2228 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2229 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2230 } 2231 2232 return false; 2233 } 2234 2235 //===----------------------------------------------------------------------===// 2236 // X86-64 ABI Implementation 2237 //===----------------------------------------------------------------------===// 2238 2239 2240 namespace { 2241 /// The AVX ABI level for X86 targets. 2242 enum class X86AVXABILevel { 2243 None, 2244 AVX, 2245 AVX512 2246 }; 2247 2248 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2249 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2250 switch (AVXLevel) { 2251 case X86AVXABILevel::AVX512: 2252 return 512; 2253 case X86AVXABILevel::AVX: 2254 return 256; 2255 case X86AVXABILevel::None: 2256 return 128; 2257 } 2258 llvm_unreachable("Unknown AVXLevel"); 2259 } 2260 2261 /// X86_64ABIInfo - The X86_64 ABI information. 2262 class X86_64ABIInfo : public ABIInfo { 2263 enum Class { 2264 Integer = 0, 2265 SSE, 2266 SSEUp, 2267 X87, 2268 X87Up, 2269 ComplexX87, 2270 NoClass, 2271 Memory 2272 }; 2273 2274 /// merge - Implement the X86_64 ABI merging algorithm. 2275 /// 2276 /// Merge an accumulating classification \arg Accum with a field 2277 /// classification \arg Field. 2278 /// 2279 /// \param Accum - The accumulating classification. This should 2280 /// always be either NoClass or the result of a previous merge 2281 /// call. In addition, this should never be Memory (the caller 2282 /// should just return Memory for the aggregate). 2283 static Class merge(Class Accum, Class Field); 2284 2285 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2286 /// 2287 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2288 /// final MEMORY or SSE classes when necessary. 2289 /// 2290 /// \param AggregateSize - The size of the current aggregate in 2291 /// the classification process. 2292 /// 2293 /// \param Lo - The classification for the parts of the type 2294 /// residing in the low word of the containing object. 2295 /// 2296 /// \param Hi - The classification for the parts of the type 2297 /// residing in the higher words of the containing object. 2298 /// 2299 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2300 2301 /// classify - Determine the x86_64 register classes in which the 2302 /// given type T should be passed. 2303 /// 2304 /// \param Lo - The classification for the parts of the type 2305 /// residing in the low word of the containing object. 2306 /// 2307 /// \param Hi - The classification for the parts of the type 2308 /// residing in the high word of the containing object. 2309 /// 2310 /// \param OffsetBase - The bit offset of this type in the 2311 /// containing object. Some parameters are classified different 2312 /// depending on whether they straddle an eightbyte boundary. 2313 /// 2314 /// \param isNamedArg - Whether the argument in question is a "named" 2315 /// argument, as used in AMD64-ABI 3.5.7. 2316 /// 2317 /// \param IsRegCall - Whether the calling conversion is regcall. 2318 /// 2319 /// If a word is unused its result will be NoClass; if a type should 2320 /// be passed in Memory then at least the classification of \arg Lo 2321 /// will be Memory. 2322 /// 2323 /// The \arg Lo class will be NoClass iff the argument is ignored. 2324 /// 2325 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2326 /// also be ComplexX87. 2327 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2328 bool isNamedArg, bool IsRegCall = false) const; 2329 2330 llvm::Type *GetByteVectorType(QualType Ty) const; 2331 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2332 unsigned IROffset, QualType SourceTy, 2333 unsigned SourceOffset) const; 2334 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2335 unsigned IROffset, QualType SourceTy, 2336 unsigned SourceOffset) const; 2337 2338 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2339 /// such that the argument will be returned in memory. 2340 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2341 2342 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2343 /// such that the argument will be passed in memory. 2344 /// 2345 /// \param freeIntRegs - The number of free integer registers remaining 2346 /// available. 2347 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2348 2349 ABIArgInfo classifyReturnType(QualType RetTy) const; 2350 2351 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2352 unsigned &neededInt, unsigned &neededSSE, 2353 bool isNamedArg, 2354 bool IsRegCall = false) const; 2355 2356 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2357 unsigned &NeededSSE, 2358 unsigned &MaxVectorWidth) const; 2359 2360 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2361 unsigned &NeededSSE, 2362 unsigned &MaxVectorWidth) const; 2363 2364 bool IsIllegalVectorType(QualType Ty) const; 2365 2366 /// The 0.98 ABI revision clarified a lot of ambiguities, 2367 /// unfortunately in ways that were not always consistent with 2368 /// certain previous compilers. In particular, platforms which 2369 /// required strict binary compatibility with older versions of GCC 2370 /// may need to exempt themselves. 2371 bool honorsRevision0_98() const { 2372 return !getTarget().getTriple().isOSDarwin(); 2373 } 2374 2375 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2376 /// classify it as INTEGER (for compatibility with older clang compilers). 2377 bool classifyIntegerMMXAsSSE() const { 2378 // Clang <= 3.8 did not do this. 2379 if (getContext().getLangOpts().getClangABICompat() <= 2380 LangOptions::ClangABI::Ver3_8) 2381 return false; 2382 2383 const llvm::Triple &Triple = getTarget().getTriple(); 2384 if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD()) 2385 return false; 2386 return true; 2387 } 2388 2389 // GCC classifies vectors of __int128 as memory. 2390 bool passInt128VectorsInMem() const { 2391 // Clang <= 9.0 did not do this. 2392 if (getContext().getLangOpts().getClangABICompat() <= 2393 LangOptions::ClangABI::Ver9) 2394 return false; 2395 2396 const llvm::Triple &T = getTarget().getTriple(); 2397 return T.isOSLinux() || T.isOSNetBSD(); 2398 } 2399 2400 X86AVXABILevel AVXLevel; 2401 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2402 // 64-bit hardware. 2403 bool Has64BitPointers; 2404 2405 public: 2406 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2407 : ABIInfo(CGT), AVXLevel(AVXLevel), 2408 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {} 2409 2410 bool isPassedUsingAVXType(QualType type) const { 2411 unsigned neededInt, neededSSE; 2412 // The freeIntRegs argument doesn't matter here. 2413 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2414 /*isNamedArg*/true); 2415 if (info.isDirect()) { 2416 llvm::Type *ty = info.getCoerceToType(); 2417 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2418 return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128; 2419 } 2420 return false; 2421 } 2422 2423 void computeInfo(CGFunctionInfo &FI) const override; 2424 2425 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2426 QualType Ty) const override; 2427 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2428 QualType Ty) const override; 2429 2430 bool has64BitPointers() const { 2431 return Has64BitPointers; 2432 } 2433 }; 2434 2435 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2436 class WinX86_64ABIInfo : public ABIInfo { 2437 public: 2438 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2439 : ABIInfo(CGT), AVXLevel(AVXLevel), 2440 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2441 2442 void computeInfo(CGFunctionInfo &FI) const override; 2443 2444 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2445 QualType Ty) const override; 2446 2447 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2448 // FIXME: Assumes vectorcall is in use. 2449 return isX86VectorTypeForVectorCall(getContext(), Ty); 2450 } 2451 2452 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2453 uint64_t NumMembers) const override { 2454 // FIXME: Assumes vectorcall is in use. 2455 return isX86VectorCallAggregateSmallEnough(NumMembers); 2456 } 2457 2458 private: 2459 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2460 bool IsVectorCall, bool IsRegCall) const; 2461 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2462 const ABIArgInfo ¤t) const; 2463 2464 X86AVXABILevel AVXLevel; 2465 2466 bool IsMingw64; 2467 }; 2468 2469 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2470 public: 2471 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2472 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) { 2473 SwiftInfo = 2474 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 2475 } 2476 2477 const X86_64ABIInfo &getABIInfo() const { 2478 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2479 } 2480 2481 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2482 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2483 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2484 2485 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2486 return 7; 2487 } 2488 2489 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2490 llvm::Value *Address) const override { 2491 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2492 2493 // 0-15 are the 16 integer registers. 2494 // 16 is %rip. 2495 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2496 return false; 2497 } 2498 2499 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2500 StringRef Constraint, 2501 llvm::Type* Ty) const override { 2502 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2503 } 2504 2505 bool isNoProtoCallVariadic(const CallArgList &args, 2506 const FunctionNoProtoType *fnType) const override { 2507 // The default CC on x86-64 sets %al to the number of SSA 2508 // registers used, and GCC sets this when calling an unprototyped 2509 // function, so we override the default behavior. However, don't do 2510 // that when AVX types are involved: the ABI explicitly states it is 2511 // undefined, and it doesn't work in practice because of how the ABI 2512 // defines varargs anyway. 2513 if (fnType->getCallConv() == CC_C) { 2514 bool HasAVXType = false; 2515 for (CallArgList::const_iterator 2516 it = args.begin(), ie = args.end(); it != ie; ++it) { 2517 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2518 HasAVXType = true; 2519 break; 2520 } 2521 } 2522 2523 if (!HasAVXType) 2524 return true; 2525 } 2526 2527 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2528 } 2529 2530 llvm::Constant * 2531 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2532 unsigned Sig = (0xeb << 0) | // jmp rel8 2533 (0x06 << 8) | // .+0x08 2534 ('v' << 16) | 2535 ('2' << 24); 2536 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2537 } 2538 2539 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2540 CodeGen::CodeGenModule &CGM) const override { 2541 if (GV->isDeclaration()) 2542 return; 2543 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2544 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2545 llvm::Function *Fn = cast<llvm::Function>(GV); 2546 Fn->addFnAttr("stackrealign"); 2547 } 2548 2549 addX86InterruptAttrs(FD, GV, CGM); 2550 } 2551 } 2552 2553 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2554 const FunctionDecl *Caller, 2555 const FunctionDecl *Callee, 2556 const CallArgList &Args) const override; 2557 }; 2558 2559 static void initFeatureMaps(const ASTContext &Ctx, 2560 llvm::StringMap<bool> &CallerMap, 2561 const FunctionDecl *Caller, 2562 llvm::StringMap<bool> &CalleeMap, 2563 const FunctionDecl *Callee) { 2564 if (CalleeMap.empty() && CallerMap.empty()) { 2565 // The caller is potentially nullptr in the case where the call isn't in a 2566 // function. In this case, the getFunctionFeatureMap ensures we just get 2567 // the TU level setting (since it cannot be modified by 'target'.. 2568 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2569 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2570 } 2571 } 2572 2573 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2574 SourceLocation CallLoc, 2575 const llvm::StringMap<bool> &CallerMap, 2576 const llvm::StringMap<bool> &CalleeMap, 2577 QualType Ty, StringRef Feature, 2578 bool IsArgument) { 2579 bool CallerHasFeat = CallerMap.lookup(Feature); 2580 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2581 if (!CallerHasFeat && !CalleeHasFeat) 2582 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2583 << IsArgument << Ty << Feature; 2584 2585 // Mixing calling conventions here is very clearly an error. 2586 if (!CallerHasFeat || !CalleeHasFeat) 2587 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2588 << IsArgument << Ty << Feature; 2589 2590 // Else, both caller and callee have the required feature, so there is no need 2591 // to diagnose. 2592 return false; 2593 } 2594 2595 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2596 SourceLocation CallLoc, 2597 const llvm::StringMap<bool> &CallerMap, 2598 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2599 bool IsArgument) { 2600 uint64_t Size = Ctx.getTypeSize(Ty); 2601 if (Size > 256) 2602 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2603 "avx512f", IsArgument); 2604 2605 if (Size > 128) 2606 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2607 IsArgument); 2608 2609 return false; 2610 } 2611 2612 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2613 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2614 const FunctionDecl *Callee, const CallArgList &Args) const { 2615 llvm::StringMap<bool> CallerMap; 2616 llvm::StringMap<bool> CalleeMap; 2617 unsigned ArgIndex = 0; 2618 2619 // We need to loop through the actual call arguments rather than the 2620 // function's parameters, in case this variadic. 2621 for (const CallArg &Arg : Args) { 2622 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2623 // additionally changes how vectors >256 in size are passed. Like GCC, we 2624 // warn when a function is called with an argument where this will change. 2625 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2626 // the caller and callee features are mismatched. 2627 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2628 // change its ABI with attribute-target after this call. 2629 if (Arg.getType()->isVectorType() && 2630 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2631 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2632 QualType Ty = Arg.getType(); 2633 // The CallArg seems to have desugared the type already, so for clearer 2634 // diagnostics, replace it with the type in the FunctionDecl if possible. 2635 if (ArgIndex < Callee->getNumParams()) 2636 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2637 2638 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2639 CalleeMap, Ty, /*IsArgument*/ true)) 2640 return; 2641 } 2642 ++ArgIndex; 2643 } 2644 2645 // Check return always, as we don't have a good way of knowing in codegen 2646 // whether this value is used, tail-called, etc. 2647 if (Callee->getReturnType()->isVectorType() && 2648 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2649 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2650 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2651 CalleeMap, Callee->getReturnType(), 2652 /*IsArgument*/ false); 2653 } 2654 } 2655 2656 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2657 // If the argument does not end in .lib, automatically add the suffix. 2658 // If the argument contains a space, enclose it in quotes. 2659 // This matches the behavior of MSVC. 2660 bool Quote = Lib.contains(' '); 2661 std::string ArgStr = Quote ? "\"" : ""; 2662 ArgStr += Lib; 2663 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2664 ArgStr += ".lib"; 2665 ArgStr += Quote ? "\"" : ""; 2666 return ArgStr; 2667 } 2668 2669 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2670 public: 2671 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2672 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2673 unsigned NumRegisterParameters) 2674 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2675 Win32StructABI, NumRegisterParameters, false) {} 2676 2677 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2678 CodeGen::CodeGenModule &CGM) const override; 2679 2680 void getDependentLibraryOption(llvm::StringRef Lib, 2681 llvm::SmallString<24> &Opt) const override { 2682 Opt = "/DEFAULTLIB:"; 2683 Opt += qualifyWindowsLibrary(Lib); 2684 } 2685 2686 void getDetectMismatchOption(llvm::StringRef Name, 2687 llvm::StringRef Value, 2688 llvm::SmallString<32> &Opt) const override { 2689 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2690 } 2691 }; 2692 2693 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2694 CodeGen::CodeGenModule &CGM) { 2695 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2696 2697 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2698 Fn->addFnAttr("stack-probe-size", 2699 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2700 if (CGM.getCodeGenOpts().NoStackArgProbe) 2701 Fn->addFnAttr("no-stack-arg-probe"); 2702 } 2703 } 2704 2705 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2706 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2707 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2708 if (GV->isDeclaration()) 2709 return; 2710 addStackProbeTargetAttributes(D, GV, CGM); 2711 } 2712 2713 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2714 public: 2715 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2716 X86AVXABILevel AVXLevel) 2717 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) { 2718 SwiftInfo = 2719 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 2720 } 2721 2722 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2723 CodeGen::CodeGenModule &CGM) const override; 2724 2725 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2726 return 7; 2727 } 2728 2729 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2730 llvm::Value *Address) const override { 2731 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2732 2733 // 0-15 are the 16 integer registers. 2734 // 16 is %rip. 2735 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2736 return false; 2737 } 2738 2739 void getDependentLibraryOption(llvm::StringRef Lib, 2740 llvm::SmallString<24> &Opt) const override { 2741 Opt = "/DEFAULTLIB:"; 2742 Opt += qualifyWindowsLibrary(Lib); 2743 } 2744 2745 void getDetectMismatchOption(llvm::StringRef Name, 2746 llvm::StringRef Value, 2747 llvm::SmallString<32> &Opt) const override { 2748 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2749 } 2750 }; 2751 2752 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2753 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2754 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2755 if (GV->isDeclaration()) 2756 return; 2757 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2758 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2759 llvm::Function *Fn = cast<llvm::Function>(GV); 2760 Fn->addFnAttr("stackrealign"); 2761 } 2762 2763 addX86InterruptAttrs(FD, GV, CGM); 2764 } 2765 2766 addStackProbeTargetAttributes(D, GV, CGM); 2767 } 2768 } 2769 2770 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2771 Class &Hi) const { 2772 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2773 // 2774 // (a) If one of the classes is Memory, the whole argument is passed in 2775 // memory. 2776 // 2777 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2778 // memory. 2779 // 2780 // (c) If the size of the aggregate exceeds two eightbytes and the first 2781 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2782 // argument is passed in memory. NOTE: This is necessary to keep the 2783 // ABI working for processors that don't support the __m256 type. 2784 // 2785 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2786 // 2787 // Some of these are enforced by the merging logic. Others can arise 2788 // only with unions; for example: 2789 // union { _Complex double; unsigned; } 2790 // 2791 // Note that clauses (b) and (c) were added in 0.98. 2792 // 2793 if (Hi == Memory) 2794 Lo = Memory; 2795 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2796 Lo = Memory; 2797 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2798 Lo = Memory; 2799 if (Hi == SSEUp && Lo != SSE) 2800 Hi = SSE; 2801 } 2802 2803 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2804 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2805 // classified recursively so that always two fields are 2806 // considered. The resulting class is calculated according to 2807 // the classes of the fields in the eightbyte: 2808 // 2809 // (a) If both classes are equal, this is the resulting class. 2810 // 2811 // (b) If one of the classes is NO_CLASS, the resulting class is 2812 // the other class. 2813 // 2814 // (c) If one of the classes is MEMORY, the result is the MEMORY 2815 // class. 2816 // 2817 // (d) If one of the classes is INTEGER, the result is the 2818 // INTEGER. 2819 // 2820 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2821 // MEMORY is used as class. 2822 // 2823 // (f) Otherwise class SSE is used. 2824 2825 // Accum should never be memory (we should have returned) or 2826 // ComplexX87 (because this cannot be passed in a structure). 2827 assert((Accum != Memory && Accum != ComplexX87) && 2828 "Invalid accumulated classification during merge."); 2829 if (Accum == Field || Field == NoClass) 2830 return Accum; 2831 if (Field == Memory) 2832 return Memory; 2833 if (Accum == NoClass) 2834 return Field; 2835 if (Accum == Integer || Field == Integer) 2836 return Integer; 2837 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2838 Accum == X87 || Accum == X87Up) 2839 return Memory; 2840 return SSE; 2841 } 2842 2843 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, 2844 Class &Hi, bool isNamedArg, bool IsRegCall) const { 2845 // FIXME: This code can be simplified by introducing a simple value class for 2846 // Class pairs with appropriate constructor methods for the various 2847 // situations. 2848 2849 // FIXME: Some of the split computations are wrong; unaligned vectors 2850 // shouldn't be passed in registers for example, so there is no chance they 2851 // can straddle an eightbyte. Verify & simplify. 2852 2853 Lo = Hi = NoClass; 2854 2855 Class &Current = OffsetBase < 64 ? Lo : Hi; 2856 Current = Memory; 2857 2858 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2859 BuiltinType::Kind k = BT->getKind(); 2860 2861 if (k == BuiltinType::Void) { 2862 Current = NoClass; 2863 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2864 Lo = Integer; 2865 Hi = Integer; 2866 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2867 Current = Integer; 2868 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2869 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { 2870 Current = SSE; 2871 } else if (k == BuiltinType::LongDouble) { 2872 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2873 if (LDF == &llvm::APFloat::IEEEquad()) { 2874 Lo = SSE; 2875 Hi = SSEUp; 2876 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2877 Lo = X87; 2878 Hi = X87Up; 2879 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2880 Current = SSE; 2881 } else 2882 llvm_unreachable("unexpected long double representation!"); 2883 } 2884 // FIXME: _Decimal32 and _Decimal64 are SSE. 2885 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2886 return; 2887 } 2888 2889 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2890 // Classify the underlying integer type. 2891 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2892 return; 2893 } 2894 2895 if (Ty->hasPointerRepresentation()) { 2896 Current = Integer; 2897 return; 2898 } 2899 2900 if (Ty->isMemberPointerType()) { 2901 if (Ty->isMemberFunctionPointerType()) { 2902 if (Has64BitPointers) { 2903 // If Has64BitPointers, this is an {i64, i64}, so classify both 2904 // Lo and Hi now. 2905 Lo = Hi = Integer; 2906 } else { 2907 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2908 // straddles an eightbyte boundary, Hi should be classified as well. 2909 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2910 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2911 if (EB_FuncPtr != EB_ThisAdj) { 2912 Lo = Hi = Integer; 2913 } else { 2914 Current = Integer; 2915 } 2916 } 2917 } else { 2918 Current = Integer; 2919 } 2920 return; 2921 } 2922 2923 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2924 uint64_t Size = getContext().getTypeSize(VT); 2925 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2926 // gcc passes the following as integer: 2927 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2928 // 2 bytes - <2 x char>, <1 x short> 2929 // 1 byte - <1 x char> 2930 Current = Integer; 2931 2932 // If this type crosses an eightbyte boundary, it should be 2933 // split. 2934 uint64_t EB_Lo = (OffsetBase) / 64; 2935 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2936 if (EB_Lo != EB_Hi) 2937 Hi = Lo; 2938 } else if (Size == 64) { 2939 QualType ElementType = VT->getElementType(); 2940 2941 // gcc passes <1 x double> in memory. :( 2942 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2943 return; 2944 2945 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2946 // pass them as integer. For platforms where clang is the de facto 2947 // platform compiler, we must continue to use integer. 2948 if (!classifyIntegerMMXAsSSE() && 2949 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2950 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2951 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2952 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2953 Current = Integer; 2954 else 2955 Current = SSE; 2956 2957 // If this type crosses an eightbyte boundary, it should be 2958 // split. 2959 if (OffsetBase && OffsetBase != 64) 2960 Hi = Lo; 2961 } else if (Size == 128 || 2962 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2963 QualType ElementType = VT->getElementType(); 2964 2965 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2966 if (passInt128VectorsInMem() && Size != 128 && 2967 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2968 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2969 return; 2970 2971 // Arguments of 256-bits are split into four eightbyte chunks. The 2972 // least significant one belongs to class SSE and all the others to class 2973 // SSEUP. The original Lo and Hi design considers that types can't be 2974 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2975 // This design isn't correct for 256-bits, but since there're no cases 2976 // where the upper parts would need to be inspected, avoid adding 2977 // complexity and just consider Hi to match the 64-256 part. 2978 // 2979 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2980 // registers if they are "named", i.e. not part of the "..." of a 2981 // variadic function. 2982 // 2983 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2984 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2985 Lo = SSE; 2986 Hi = SSEUp; 2987 } 2988 return; 2989 } 2990 2991 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2992 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2993 2994 uint64_t Size = getContext().getTypeSize(Ty); 2995 if (ET->isIntegralOrEnumerationType()) { 2996 if (Size <= 64) 2997 Current = Integer; 2998 else if (Size <= 128) 2999 Lo = Hi = Integer; 3000 } else if (ET->isFloat16Type() || ET == getContext().FloatTy || 3001 ET->isBFloat16Type()) { 3002 Current = SSE; 3003 } else if (ET == getContext().DoubleTy) { 3004 Lo = Hi = SSE; 3005 } else if (ET == getContext().LongDoubleTy) { 3006 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3007 if (LDF == &llvm::APFloat::IEEEquad()) 3008 Current = Memory; 3009 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 3010 Current = ComplexX87; 3011 else if (LDF == &llvm::APFloat::IEEEdouble()) 3012 Lo = Hi = SSE; 3013 else 3014 llvm_unreachable("unexpected long double representation!"); 3015 } 3016 3017 // If this complex type crosses an eightbyte boundary then it 3018 // should be split. 3019 uint64_t EB_Real = (OffsetBase) / 64; 3020 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3021 if (Hi == NoClass && EB_Real != EB_Imag) 3022 Hi = Lo; 3023 3024 return; 3025 } 3026 3027 if (const auto *EITy = Ty->getAs<BitIntType>()) { 3028 if (EITy->getNumBits() <= 64) 3029 Current = Integer; 3030 else if (EITy->getNumBits() <= 128) 3031 Lo = Hi = Integer; 3032 // Larger values need to get passed in memory. 3033 return; 3034 } 3035 3036 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3037 // Arrays are treated like structures. 3038 3039 uint64_t Size = getContext().getTypeSize(Ty); 3040 3041 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3042 // than eight eightbytes, ..., it has class MEMORY. 3043 // regcall ABI doesn't have limitation to an object. The only limitation 3044 // is the free registers, which will be checked in computeInfo. 3045 if (!IsRegCall && Size > 512) 3046 return; 3047 3048 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3049 // fields, it has class MEMORY. 3050 // 3051 // Only need to check alignment of array base. 3052 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3053 return; 3054 3055 // Otherwise implement simplified merge. We could be smarter about 3056 // this, but it isn't worth it and would be harder to verify. 3057 Current = NoClass; 3058 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3059 uint64_t ArraySize = AT->getSize().getZExtValue(); 3060 3061 // The only case a 256-bit wide vector could be used is when the array 3062 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3063 // to work for sizes wider than 128, early check and fallback to memory. 3064 // 3065 if (Size > 128 && 3066 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3067 return; 3068 3069 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3070 Class FieldLo, FieldHi; 3071 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3072 Lo = merge(Lo, FieldLo); 3073 Hi = merge(Hi, FieldHi); 3074 if (Lo == Memory || Hi == Memory) 3075 break; 3076 } 3077 3078 postMerge(Size, Lo, Hi); 3079 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3080 return; 3081 } 3082 3083 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3084 uint64_t Size = getContext().getTypeSize(Ty); 3085 3086 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3087 // than eight eightbytes, ..., it has class MEMORY. 3088 if (Size > 512) 3089 return; 3090 3091 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3092 // copy constructor or a non-trivial destructor, it is passed by invisible 3093 // reference. 3094 if (getRecordArgABI(RT, getCXXABI())) 3095 return; 3096 3097 const RecordDecl *RD = RT->getDecl(); 3098 3099 // Assume variable sized types are passed in memory. 3100 if (RD->hasFlexibleArrayMember()) 3101 return; 3102 3103 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3104 3105 // Reset Lo class, this will be recomputed. 3106 Current = NoClass; 3107 3108 // If this is a C++ record, classify the bases first. 3109 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3110 for (const auto &I : CXXRD->bases()) { 3111 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3112 "Unexpected base class!"); 3113 const auto *Base = 3114 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3115 3116 // Classify this field. 3117 // 3118 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3119 // single eightbyte, each is classified separately. Each eightbyte gets 3120 // initialized to class NO_CLASS. 3121 Class FieldLo, FieldHi; 3122 uint64_t Offset = 3123 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3124 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3125 Lo = merge(Lo, FieldLo); 3126 Hi = merge(Hi, FieldHi); 3127 if (Lo == Memory || Hi == Memory) { 3128 postMerge(Size, Lo, Hi); 3129 return; 3130 } 3131 } 3132 } 3133 3134 // Classify the fields one at a time, merging the results. 3135 unsigned idx = 0; 3136 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3137 LangOptions::ClangABI::Ver11 || 3138 getContext().getTargetInfo().getTriple().isPS(); 3139 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3140 3141 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3142 i != e; ++i, ++idx) { 3143 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3144 bool BitField = i->isBitField(); 3145 3146 // Ignore padding bit-fields. 3147 if (BitField && i->isUnnamedBitfield()) 3148 continue; 3149 3150 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3151 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3152 // 3153 // The only case a 256-bit or a 512-bit wide vector could be used is when 3154 // the struct contains a single 256-bit or 512-bit element. Early check 3155 // and fallback to memory. 3156 // 3157 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3158 // than 128. 3159 if (Size > 128 && 3160 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3161 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3162 Lo = Memory; 3163 postMerge(Size, Lo, Hi); 3164 return; 3165 } 3166 // Note, skip this test for bit-fields, see below. 3167 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3168 Lo = Memory; 3169 postMerge(Size, Lo, Hi); 3170 return; 3171 } 3172 3173 // Classify this field. 3174 // 3175 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3176 // exceeds a single eightbyte, each is classified 3177 // separately. Each eightbyte gets initialized to class 3178 // NO_CLASS. 3179 Class FieldLo, FieldHi; 3180 3181 // Bit-fields require special handling, they do not force the 3182 // structure to be passed in memory even if unaligned, and 3183 // therefore they can straddle an eightbyte. 3184 if (BitField) { 3185 assert(!i->isUnnamedBitfield()); 3186 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3187 uint64_t Size = i->getBitWidthValue(getContext()); 3188 3189 uint64_t EB_Lo = Offset / 64; 3190 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3191 3192 if (EB_Lo) { 3193 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3194 FieldLo = NoClass; 3195 FieldHi = Integer; 3196 } else { 3197 FieldLo = Integer; 3198 FieldHi = EB_Hi ? Integer : NoClass; 3199 } 3200 } else 3201 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3202 Lo = merge(Lo, FieldLo); 3203 Hi = merge(Hi, FieldHi); 3204 if (Lo == Memory || Hi == Memory) 3205 break; 3206 } 3207 3208 postMerge(Size, Lo, Hi); 3209 } 3210 } 3211 3212 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3213 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3214 // place naturally. 3215 if (!isAggregateTypeForABI(Ty)) { 3216 // Treat an enum type as its underlying type. 3217 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3218 Ty = EnumTy->getDecl()->getIntegerType(); 3219 3220 if (Ty->isBitIntType()) 3221 return getNaturalAlignIndirect(Ty); 3222 3223 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3224 : ABIArgInfo::getDirect()); 3225 } 3226 3227 return getNaturalAlignIndirect(Ty); 3228 } 3229 3230 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3231 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3232 uint64_t Size = getContext().getTypeSize(VecTy); 3233 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3234 if (Size <= 64 || Size > LargestVector) 3235 return true; 3236 QualType EltTy = VecTy->getElementType(); 3237 if (passInt128VectorsInMem() && 3238 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3239 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3240 return true; 3241 } 3242 3243 return false; 3244 } 3245 3246 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3247 unsigned freeIntRegs) const { 3248 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3249 // place naturally. 3250 // 3251 // This assumption is optimistic, as there could be free registers available 3252 // when we need to pass this argument in memory, and LLVM could try to pass 3253 // the argument in the free register. This does not seem to happen currently, 3254 // but this code would be much safer if we could mark the argument with 3255 // 'onstack'. See PR12193. 3256 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3257 !Ty->isBitIntType()) { 3258 // Treat an enum type as its underlying type. 3259 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3260 Ty = EnumTy->getDecl()->getIntegerType(); 3261 3262 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3263 : ABIArgInfo::getDirect()); 3264 } 3265 3266 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3267 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3268 3269 // Compute the byval alignment. We specify the alignment of the byval in all 3270 // cases so that the mid-level optimizer knows the alignment of the byval. 3271 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3272 3273 // Attempt to avoid passing indirect results using byval when possible. This 3274 // is important for good codegen. 3275 // 3276 // We do this by coercing the value into a scalar type which the backend can 3277 // handle naturally (i.e., without using byval). 3278 // 3279 // For simplicity, we currently only do this when we have exhausted all of the 3280 // free integer registers. Doing this when there are free integer registers 3281 // would require more care, as we would have to ensure that the coerced value 3282 // did not claim the unused register. That would require either reording the 3283 // arguments to the function (so that any subsequent inreg values came first), 3284 // or only doing this optimization when there were no following arguments that 3285 // might be inreg. 3286 // 3287 // We currently expect it to be rare (particularly in well written code) for 3288 // arguments to be passed on the stack when there are still free integer 3289 // registers available (this would typically imply large structs being passed 3290 // by value), so this seems like a fair tradeoff for now. 3291 // 3292 // We can revisit this if the backend grows support for 'onstack' parameter 3293 // attributes. See PR12193. 3294 if (freeIntRegs == 0) { 3295 uint64_t Size = getContext().getTypeSize(Ty); 3296 3297 // If this type fits in an eightbyte, coerce it into the matching integral 3298 // type, which will end up on the stack (with alignment 8). 3299 if (Align == 8 && Size <= 64) 3300 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3301 Size)); 3302 } 3303 3304 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3305 } 3306 3307 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3308 /// register. Pick an LLVM IR type that will be passed as a vector register. 3309 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3310 // Wrapper structs/arrays that only contain vectors are passed just like 3311 // vectors; strip them off if present. 3312 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3313 Ty = QualType(InnerTy, 0); 3314 3315 llvm::Type *IRType = CGT.ConvertType(Ty); 3316 if (isa<llvm::VectorType>(IRType)) { 3317 // Don't pass vXi128 vectors in their native type, the backend can't 3318 // legalize them. 3319 if (passInt128VectorsInMem() && 3320 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3321 // Use a vXi64 vector. 3322 uint64_t Size = getContext().getTypeSize(Ty); 3323 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3324 Size / 64); 3325 } 3326 3327 return IRType; 3328 } 3329 3330 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3331 return IRType; 3332 3333 // We couldn't find the preferred IR vector type for 'Ty'. 3334 uint64_t Size = getContext().getTypeSize(Ty); 3335 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3336 3337 3338 // Return a LLVM IR vector type based on the size of 'Ty'. 3339 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3340 Size / 64); 3341 } 3342 3343 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3344 /// is known to either be off the end of the specified type or being in 3345 /// alignment padding. The user type specified is known to be at most 128 bits 3346 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3347 /// classification that put one of the two halves in the INTEGER class. 3348 /// 3349 /// It is conservatively correct to return false. 3350 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3351 unsigned EndBit, ASTContext &Context) { 3352 // If the bytes being queried are off the end of the type, there is no user 3353 // data hiding here. This handles analysis of builtins, vectors and other 3354 // types that don't contain interesting padding. 3355 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3356 if (TySize <= StartBit) 3357 return true; 3358 3359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3360 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3361 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3362 3363 // Check each element to see if the element overlaps with the queried range. 3364 for (unsigned i = 0; i != NumElts; ++i) { 3365 // If the element is after the span we care about, then we're done.. 3366 unsigned EltOffset = i*EltSize; 3367 if (EltOffset >= EndBit) break; 3368 3369 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3370 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3371 EndBit-EltOffset, Context)) 3372 return false; 3373 } 3374 // If it overlaps no elements, then it is safe to process as padding. 3375 return true; 3376 } 3377 3378 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3379 const RecordDecl *RD = RT->getDecl(); 3380 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3381 3382 // If this is a C++ record, check the bases first. 3383 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3384 for (const auto &I : CXXRD->bases()) { 3385 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3386 "Unexpected base class!"); 3387 const auto *Base = 3388 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3389 3390 // If the base is after the span we care about, ignore it. 3391 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3392 if (BaseOffset >= EndBit) continue; 3393 3394 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3395 if (!BitsContainNoUserData(I.getType(), BaseStart, 3396 EndBit-BaseOffset, Context)) 3397 return false; 3398 } 3399 } 3400 3401 // Verify that no field has data that overlaps the region of interest. Yes 3402 // this could be sped up a lot by being smarter about queried fields, 3403 // however we're only looking at structs up to 16 bytes, so we don't care 3404 // much. 3405 unsigned idx = 0; 3406 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3407 i != e; ++i, ++idx) { 3408 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3409 3410 // If we found a field after the region we care about, then we're done. 3411 if (FieldOffset >= EndBit) break; 3412 3413 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3414 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3415 Context)) 3416 return false; 3417 } 3418 3419 // If nothing in this record overlapped the area of interest, then we're 3420 // clean. 3421 return true; 3422 } 3423 3424 return false; 3425 } 3426 3427 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3428 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3429 const llvm::DataLayout &TD) { 3430 if (IROffset == 0 && IRType->isFloatingPointTy()) 3431 return IRType; 3432 3433 // If this is a struct, recurse into the field at the specified offset. 3434 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3435 if (!STy->getNumContainedTypes()) 3436 return nullptr; 3437 3438 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3439 unsigned Elt = SL->getElementContainingOffset(IROffset); 3440 IROffset -= SL->getElementOffset(Elt); 3441 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3442 } 3443 3444 // If this is an array, recurse into the field at the specified offset. 3445 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3446 llvm::Type *EltTy = ATy->getElementType(); 3447 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3448 IROffset -= IROffset / EltSize * EltSize; 3449 return getFPTypeAtOffset(EltTy, IROffset, TD); 3450 } 3451 3452 return nullptr; 3453 } 3454 3455 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3456 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3457 llvm::Type *X86_64ABIInfo:: 3458 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3459 QualType SourceTy, unsigned SourceOffset) const { 3460 const llvm::DataLayout &TD = getDataLayout(); 3461 unsigned SourceSize = 3462 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3463 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3464 if (!T0 || T0->isDoubleTy()) 3465 return llvm::Type::getDoubleTy(getVMContext()); 3466 3467 // Get the adjacent FP type. 3468 llvm::Type *T1 = nullptr; 3469 unsigned T0Size = TD.getTypeAllocSize(T0); 3470 if (SourceSize > T0Size) 3471 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3472 if (T1 == nullptr) { 3473 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due 3474 // to its alignment. 3475 if (T0->is16bitFPTy() && SourceSize > 4) 3476 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3477 // If we can't get a second FP type, return a simple half or float. 3478 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3479 // {float, i8} too. 3480 if (T1 == nullptr) 3481 return T0; 3482 } 3483 3484 if (T0->isFloatTy() && T1->isFloatTy()) 3485 return llvm::FixedVectorType::get(T0, 2); 3486 3487 if (T0->is16bitFPTy() && T1->is16bitFPTy()) { 3488 llvm::Type *T2 = nullptr; 3489 if (SourceSize > 4) 3490 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3491 if (T2 == nullptr) 3492 return llvm::FixedVectorType::get(T0, 2); 3493 return llvm::FixedVectorType::get(T0, 4); 3494 } 3495 3496 if (T0->is16bitFPTy() || T1->is16bitFPTy()) 3497 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3498 3499 return llvm::Type::getDoubleTy(getVMContext()); 3500 } 3501 3502 3503 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3504 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3505 /// about the high or low part of an up-to-16-byte struct. This routine picks 3506 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3507 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3508 /// etc). 3509 /// 3510 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3511 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3512 /// the 8-byte value references. PrefType may be null. 3513 /// 3514 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3515 /// an offset into this that we're processing (which is always either 0 or 8). 3516 /// 3517 llvm::Type *X86_64ABIInfo:: 3518 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3519 QualType SourceTy, unsigned SourceOffset) const { 3520 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3521 // returning an 8-byte unit starting with it. See if we can safely use it. 3522 if (IROffset == 0) { 3523 // Pointers and int64's always fill the 8-byte unit. 3524 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3525 IRType->isIntegerTy(64)) 3526 return IRType; 3527 3528 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3529 // goodness in the source type is just tail padding. This is allowed to 3530 // kick in for struct {double,int} on the int, but not on 3531 // struct{double,int,int} because we wouldn't return the second int. We 3532 // have to do this analysis on the source type because we can't depend on 3533 // unions being lowered a specific way etc. 3534 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3535 IRType->isIntegerTy(32) || 3536 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3537 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3538 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3539 3540 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3541 SourceOffset*8+64, getContext())) 3542 return IRType; 3543 } 3544 } 3545 3546 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3547 // If this is a struct, recurse into the field at the specified offset. 3548 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3549 if (IROffset < SL->getSizeInBytes()) { 3550 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3551 IROffset -= SL->getElementOffset(FieldIdx); 3552 3553 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3554 SourceTy, SourceOffset); 3555 } 3556 } 3557 3558 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3559 llvm::Type *EltTy = ATy->getElementType(); 3560 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3561 unsigned EltOffset = IROffset/EltSize*EltSize; 3562 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3563 SourceOffset); 3564 } 3565 3566 // Okay, we don't have any better idea of what to pass, so we pass this in an 3567 // integer register that isn't too big to fit the rest of the struct. 3568 unsigned TySizeInBytes = 3569 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3570 3571 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3572 3573 // It is always safe to classify this as an integer type up to i64 that 3574 // isn't larger than the structure. 3575 return llvm::IntegerType::get(getVMContext(), 3576 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3577 } 3578 3579 3580 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3581 /// be used as elements of a two register pair to pass or return, return a 3582 /// first class aggregate to represent them. For example, if the low part of 3583 /// a by-value argument should be passed as i32* and the high part as float, 3584 /// return {i32*, float}. 3585 static llvm::Type * 3586 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3587 const llvm::DataLayout &TD) { 3588 // In order to correctly satisfy the ABI, we need to the high part to start 3589 // at offset 8. If the high and low parts we inferred are both 4-byte types 3590 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3591 // the second element at offset 8. Check for this: 3592 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3593 llvm::Align HiAlign = TD.getABITypeAlign(Hi); 3594 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3595 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3596 3597 // To handle this, we have to increase the size of the low part so that the 3598 // second element will start at an 8 byte offset. We can't increase the size 3599 // of the second element because it might make us access off the end of the 3600 // struct. 3601 if (HiStart != 8) { 3602 // There are usually two sorts of types the ABI generation code can produce 3603 // for the low part of a pair that aren't 8 bytes in size: half, float or 3604 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3605 // NaCl). 3606 // Promote these to a larger type. 3607 if (Lo->isHalfTy() || Lo->isFloatTy()) 3608 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3609 else { 3610 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3611 && "Invalid/unknown lo type"); 3612 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3613 } 3614 } 3615 3616 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3617 3618 // Verify that the second element is at an 8-byte offset. 3619 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3620 "Invalid x86-64 argument pair!"); 3621 return Result; 3622 } 3623 3624 ABIArgInfo X86_64ABIInfo:: 3625 classifyReturnType(QualType RetTy) const { 3626 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3627 // classification algorithm. 3628 X86_64ABIInfo::Class Lo, Hi; 3629 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3630 3631 // Check some invariants. 3632 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3633 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3634 3635 llvm::Type *ResType = nullptr; 3636 switch (Lo) { 3637 case NoClass: 3638 if (Hi == NoClass) 3639 return ABIArgInfo::getIgnore(); 3640 // If the low part is just padding, it takes no register, leave ResType 3641 // null. 3642 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3643 "Unknown missing lo part"); 3644 break; 3645 3646 case SSEUp: 3647 case X87Up: 3648 llvm_unreachable("Invalid classification for lo word."); 3649 3650 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3651 // hidden argument. 3652 case Memory: 3653 return getIndirectReturnResult(RetTy); 3654 3655 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3656 // available register of the sequence %rax, %rdx is used. 3657 case Integer: 3658 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3659 3660 // If we have a sign or zero extended integer, make sure to return Extend 3661 // so that the parameter gets the right LLVM IR attributes. 3662 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3663 // Treat an enum type as its underlying type. 3664 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3665 RetTy = EnumTy->getDecl()->getIntegerType(); 3666 3667 if (RetTy->isIntegralOrEnumerationType() && 3668 isPromotableIntegerTypeForABI(RetTy)) 3669 return ABIArgInfo::getExtend(RetTy); 3670 } 3671 break; 3672 3673 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3674 // available SSE register of the sequence %xmm0, %xmm1 is used. 3675 case SSE: 3676 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3677 break; 3678 3679 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3680 // returned on the X87 stack in %st0 as 80-bit x87 number. 3681 case X87: 3682 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3683 break; 3684 3685 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3686 // part of the value is returned in %st0 and the imaginary part in 3687 // %st1. 3688 case ComplexX87: 3689 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3690 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3691 llvm::Type::getX86_FP80Ty(getVMContext())); 3692 break; 3693 } 3694 3695 llvm::Type *HighPart = nullptr; 3696 switch (Hi) { 3697 // Memory was handled previously and X87 should 3698 // never occur as a hi class. 3699 case Memory: 3700 case X87: 3701 llvm_unreachable("Invalid classification for hi word."); 3702 3703 case ComplexX87: // Previously handled. 3704 case NoClass: 3705 break; 3706 3707 case Integer: 3708 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3709 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3710 return ABIArgInfo::getDirect(HighPart, 8); 3711 break; 3712 case SSE: 3713 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3714 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3715 return ABIArgInfo::getDirect(HighPart, 8); 3716 break; 3717 3718 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3719 // is passed in the next available eightbyte chunk if the last used 3720 // vector register. 3721 // 3722 // SSEUP should always be preceded by SSE, just widen. 3723 case SSEUp: 3724 assert(Lo == SSE && "Unexpected SSEUp classification."); 3725 ResType = GetByteVectorType(RetTy); 3726 break; 3727 3728 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3729 // returned together with the previous X87 value in %st0. 3730 case X87Up: 3731 // If X87Up is preceded by X87, we don't need to do 3732 // anything. However, in some cases with unions it may not be 3733 // preceded by X87. In such situations we follow gcc and pass the 3734 // extra bits in an SSE reg. 3735 if (Lo != X87) { 3736 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3737 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3738 return ABIArgInfo::getDirect(HighPart, 8); 3739 } 3740 break; 3741 } 3742 3743 // If a high part was specified, merge it together with the low part. It is 3744 // known to pass in the high eightbyte of the result. We do this by forming a 3745 // first class struct aggregate with the high and low part: {low, high} 3746 if (HighPart) 3747 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3748 3749 return ABIArgInfo::getDirect(ResType); 3750 } 3751 3752 ABIArgInfo 3753 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, 3754 unsigned &neededInt, unsigned &neededSSE, 3755 bool isNamedArg, bool IsRegCall) const { 3756 Ty = useFirstFieldIfTransparentUnion(Ty); 3757 3758 X86_64ABIInfo::Class Lo, Hi; 3759 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); 3760 3761 // Check some invariants. 3762 // FIXME: Enforce these by construction. 3763 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3764 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3765 3766 neededInt = 0; 3767 neededSSE = 0; 3768 llvm::Type *ResType = nullptr; 3769 switch (Lo) { 3770 case NoClass: 3771 if (Hi == NoClass) 3772 return ABIArgInfo::getIgnore(); 3773 // If the low part is just padding, it takes no register, leave ResType 3774 // null. 3775 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3776 "Unknown missing lo part"); 3777 break; 3778 3779 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3780 // on the stack. 3781 case Memory: 3782 3783 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3784 // COMPLEX_X87, it is passed in memory. 3785 case X87: 3786 case ComplexX87: 3787 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3788 ++neededInt; 3789 return getIndirectResult(Ty, freeIntRegs); 3790 3791 case SSEUp: 3792 case X87Up: 3793 llvm_unreachable("Invalid classification for lo word."); 3794 3795 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3796 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3797 // and %r9 is used. 3798 case Integer: 3799 ++neededInt; 3800 3801 // Pick an 8-byte type based on the preferred type. 3802 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3803 3804 // If we have a sign or zero extended integer, make sure to return Extend 3805 // so that the parameter gets the right LLVM IR attributes. 3806 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3807 // Treat an enum type as its underlying type. 3808 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3809 Ty = EnumTy->getDecl()->getIntegerType(); 3810 3811 if (Ty->isIntegralOrEnumerationType() && 3812 isPromotableIntegerTypeForABI(Ty)) 3813 return ABIArgInfo::getExtend(Ty); 3814 } 3815 3816 break; 3817 3818 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3819 // available SSE register is used, the registers are taken in the 3820 // order from %xmm0 to %xmm7. 3821 case SSE: { 3822 llvm::Type *IRType = CGT.ConvertType(Ty); 3823 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3824 ++neededSSE; 3825 break; 3826 } 3827 } 3828 3829 llvm::Type *HighPart = nullptr; 3830 switch (Hi) { 3831 // Memory was handled previously, ComplexX87 and X87 should 3832 // never occur as hi classes, and X87Up must be preceded by X87, 3833 // which is passed in memory. 3834 case Memory: 3835 case X87: 3836 case ComplexX87: 3837 llvm_unreachable("Invalid classification for hi word."); 3838 3839 case NoClass: break; 3840 3841 case Integer: 3842 ++neededInt; 3843 // Pick an 8-byte type based on the preferred type. 3844 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3845 3846 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3847 return ABIArgInfo::getDirect(HighPart, 8); 3848 break; 3849 3850 // X87Up generally doesn't occur here (long double is passed in 3851 // memory), except in situations involving unions. 3852 case X87Up: 3853 case SSE: 3854 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3855 3856 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3857 return ABIArgInfo::getDirect(HighPart, 8); 3858 3859 ++neededSSE; 3860 break; 3861 3862 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3863 // eightbyte is passed in the upper half of the last used SSE 3864 // register. This only happens when 128-bit vectors are passed. 3865 case SSEUp: 3866 assert(Lo == SSE && "Unexpected SSEUp classification"); 3867 ResType = GetByteVectorType(Ty); 3868 break; 3869 } 3870 3871 // If a high part was specified, merge it together with the low part. It is 3872 // known to pass in the high eightbyte of the result. We do this by forming a 3873 // first class struct aggregate with the high and low part: {low, high} 3874 if (HighPart) 3875 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3876 3877 return ABIArgInfo::getDirect(ResType); 3878 } 3879 3880 ABIArgInfo 3881 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3882 unsigned &NeededSSE, 3883 unsigned &MaxVectorWidth) const { 3884 auto RT = Ty->getAs<RecordType>(); 3885 assert(RT && "classifyRegCallStructType only valid with struct types"); 3886 3887 if (RT->getDecl()->hasFlexibleArrayMember()) 3888 return getIndirectReturnResult(Ty); 3889 3890 // Sum up bases 3891 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3892 if (CXXRD->isDynamicClass()) { 3893 NeededInt = NeededSSE = 0; 3894 return getIndirectReturnResult(Ty); 3895 } 3896 3897 for (const auto &I : CXXRD->bases()) 3898 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, 3899 MaxVectorWidth) 3900 .isIndirect()) { 3901 NeededInt = NeededSSE = 0; 3902 return getIndirectReturnResult(Ty); 3903 } 3904 } 3905 3906 // Sum up members 3907 for (const auto *FD : RT->getDecl()->fields()) { 3908 QualType MTy = FD->getType(); 3909 if (MTy->isRecordType() && !MTy->isUnionType()) { 3910 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, 3911 MaxVectorWidth) 3912 .isIndirect()) { 3913 NeededInt = NeededSSE = 0; 3914 return getIndirectReturnResult(Ty); 3915 } 3916 } else { 3917 unsigned LocalNeededInt, LocalNeededSSE; 3918 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, 3919 true, true) 3920 .isIndirect()) { 3921 NeededInt = NeededSSE = 0; 3922 return getIndirectReturnResult(Ty); 3923 } 3924 if (const auto *AT = getContext().getAsConstantArrayType(MTy)) 3925 MTy = AT->getElementType(); 3926 if (const auto *VT = MTy->getAs<VectorType>()) 3927 if (getContext().getTypeSize(VT) > MaxVectorWidth) 3928 MaxVectorWidth = getContext().getTypeSize(VT); 3929 NeededInt += LocalNeededInt; 3930 NeededSSE += LocalNeededSSE; 3931 } 3932 } 3933 3934 return ABIArgInfo::getDirect(); 3935 } 3936 3937 ABIArgInfo 3938 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 3939 unsigned &NeededSSE, 3940 unsigned &MaxVectorWidth) const { 3941 3942 NeededInt = 0; 3943 NeededSSE = 0; 3944 MaxVectorWidth = 0; 3945 3946 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, 3947 MaxVectorWidth); 3948 } 3949 3950 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3951 3952 const unsigned CallingConv = FI.getCallingConvention(); 3953 // It is possible to force Win64 calling convention on any x86_64 target by 3954 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3955 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3956 if (CallingConv == llvm::CallingConv::Win64) { 3957 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3958 Win64ABIInfo.computeInfo(FI); 3959 return; 3960 } 3961 3962 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3963 3964 // Keep track of the number of assigned registers. 3965 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3966 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3967 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; 3968 3969 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3970 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3971 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3972 FI.getReturnInfo() = classifyRegCallStructType( 3973 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); 3974 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3975 FreeIntRegs -= NeededInt; 3976 FreeSSERegs -= NeededSSE; 3977 } else { 3978 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3979 } 3980 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3981 getContext().getCanonicalType(FI.getReturnType() 3982 ->getAs<ComplexType>() 3983 ->getElementType()) == 3984 getContext().LongDoubleTy) 3985 // Complex Long Double Type is passed in Memory when Regcall 3986 // calling convention is used. 3987 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3988 else 3989 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3990 } 3991 3992 // If the return value is indirect, then the hidden argument is consuming one 3993 // integer register. 3994 if (FI.getReturnInfo().isIndirect()) 3995 --FreeIntRegs; 3996 else if (NeededSSE && MaxVectorWidth > 0) 3997 FI.setMaxVectorWidth(MaxVectorWidth); 3998 3999 // The chain argument effectively gives us another free register. 4000 if (FI.isChainCall()) 4001 ++FreeIntRegs; 4002 4003 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 4004 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 4005 // get assigned (in left-to-right order) for passing as follows... 4006 unsigned ArgNo = 0; 4007 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4008 it != ie; ++it, ++ArgNo) { 4009 bool IsNamedArg = ArgNo < NumRequiredArgs; 4010 4011 if (IsRegCall && it->type->isStructureOrClassType()) 4012 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, 4013 MaxVectorWidth); 4014 else 4015 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 4016 NeededSSE, IsNamedArg); 4017 4018 // AMD64-ABI 3.2.3p3: If there are no registers available for any 4019 // eightbyte of an argument, the whole argument is passed on the 4020 // stack. If registers have already been assigned for some 4021 // eightbytes of such an argument, the assignments get reverted. 4022 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 4023 FreeIntRegs -= NeededInt; 4024 FreeSSERegs -= NeededSSE; 4025 if (MaxVectorWidth > FI.getMaxVectorWidth()) 4026 FI.setMaxVectorWidth(MaxVectorWidth); 4027 } else { 4028 it->info = getIndirectResult(it->type, FreeIntRegs); 4029 } 4030 } 4031 } 4032 4033 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4034 Address VAListAddr, QualType Ty) { 4035 Address overflow_arg_area_p = 4036 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4037 llvm::Value *overflow_arg_area = 4038 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4039 4040 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4041 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4042 // It isn't stated explicitly in the standard, but in practice we use 4043 // alignment greater than 16 where necessary. 4044 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4045 if (Align > CharUnits::fromQuantity(8)) { 4046 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4047 Align); 4048 } 4049 4050 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4051 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4052 llvm::Value *Res = 4053 CGF.Builder.CreateBitCast(overflow_arg_area, 4054 llvm::PointerType::getUnqual(LTy)); 4055 4056 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4057 // l->overflow_arg_area + sizeof(type). 4058 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4059 // an 8 byte boundary. 4060 4061 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4062 llvm::Value *Offset = 4063 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4064 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4065 Offset, "overflow_arg_area.next"); 4066 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4067 4068 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4069 return Address(Res, LTy, Align); 4070 } 4071 4072 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4073 QualType Ty) const { 4074 // Assume that va_list type is correct; should be pointer to LLVM type: 4075 // struct { 4076 // i32 gp_offset; 4077 // i32 fp_offset; 4078 // i8* overflow_arg_area; 4079 // i8* reg_save_area; 4080 // }; 4081 unsigned neededInt, neededSSE; 4082 4083 Ty = getContext().getCanonicalType(Ty); 4084 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4085 /*isNamedArg*/false); 4086 4087 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4088 // in the registers. If not go to step 7. 4089 if (!neededInt && !neededSSE) 4090 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4091 4092 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4093 // general purpose registers needed to pass type and num_fp to hold 4094 // the number of floating point registers needed. 4095 4096 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4097 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4098 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4099 // 4100 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4101 // register save space). 4102 4103 llvm::Value *InRegs = nullptr; 4104 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4105 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4106 if (neededInt) { 4107 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4108 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4109 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4110 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4111 } 4112 4113 if (neededSSE) { 4114 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4115 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4116 llvm::Value *FitsInFP = 4117 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4118 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4119 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4120 } 4121 4122 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4123 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4124 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4125 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4126 4127 // Emit code to load the value if it was passed in registers. 4128 4129 CGF.EmitBlock(InRegBlock); 4130 4131 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4132 // an offset of l->gp_offset and/or l->fp_offset. This may require 4133 // copying to a temporary location in case the parameter is passed 4134 // in different register classes or requires an alignment greater 4135 // than 8 for general purpose registers and 16 for XMM registers. 4136 // 4137 // FIXME: This really results in shameful code when we end up needing to 4138 // collect arguments from different places; often what should result in a 4139 // simple assembling of a structure from scattered addresses has many more 4140 // loads than necessary. Can we clean this up? 4141 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4142 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4143 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4144 4145 Address RegAddr = Address::invalid(); 4146 if (neededInt && neededSSE) { 4147 // FIXME: Cleanup. 4148 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4149 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4150 Address Tmp = CGF.CreateMemTemp(Ty); 4151 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4152 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4153 llvm::Type *TyLo = ST->getElementType(0); 4154 llvm::Type *TyHi = ST->getElementType(1); 4155 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4156 "Unexpected ABI info for mixed regs"); 4157 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4158 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4159 llvm::Value *GPAddr = 4160 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4161 llvm::Value *FPAddr = 4162 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4163 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4164 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4165 4166 // Copy the first element. 4167 // FIXME: Our choice of alignment here and below is probably pessimistic. 4168 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4169 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4170 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo))); 4171 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4172 4173 // Copy the second element. 4174 V = CGF.Builder.CreateAlignedLoad( 4175 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4176 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi))); 4177 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4178 4179 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4180 } else if (neededInt) { 4181 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4182 CGF.Int8Ty, CharUnits::fromQuantity(8)); 4183 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4184 4185 // Copy to a temporary if necessary to ensure the appropriate alignment. 4186 auto TInfo = getContext().getTypeInfoInChars(Ty); 4187 uint64_t TySize = TInfo.Width.getQuantity(); 4188 CharUnits TyAlign = TInfo.Align; 4189 4190 // Copy into a temporary if the type is more aligned than the 4191 // register save area. 4192 if (TyAlign.getQuantity() > 8) { 4193 Address Tmp = CGF.CreateMemTemp(Ty); 4194 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4195 RegAddr = Tmp; 4196 } 4197 4198 } else if (neededSSE == 1) { 4199 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4200 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4201 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4202 } else { 4203 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4204 // SSE registers are spaced 16 bytes apart in the register save 4205 // area, we need to collect the two eightbytes together. 4206 // The ABI isn't explicit about this, but it seems reasonable 4207 // to assume that the slots are 16-byte aligned, since the stack is 4208 // naturally 16-byte aligned and the prologue is expected to store 4209 // all the SSE registers to the RSA. 4210 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4211 fp_offset), 4212 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4213 Address RegAddrHi = 4214 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4215 CharUnits::fromQuantity(16)); 4216 llvm::Type *ST = AI.canHaveCoerceToType() 4217 ? AI.getCoerceToType() 4218 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4219 llvm::Value *V; 4220 Address Tmp = CGF.CreateMemTemp(Ty); 4221 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4222 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4223 RegAddrLo, ST->getStructElementType(0))); 4224 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4225 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4226 RegAddrHi, ST->getStructElementType(1))); 4227 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4228 4229 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4230 } 4231 4232 // AMD64-ABI 3.5.7p5: Step 5. Set: 4233 // l->gp_offset = l->gp_offset + num_gp * 8 4234 // l->fp_offset = l->fp_offset + num_fp * 16. 4235 if (neededInt) { 4236 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4237 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4238 gp_offset_p); 4239 } 4240 if (neededSSE) { 4241 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4242 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4243 fp_offset_p); 4244 } 4245 CGF.EmitBranch(ContBlock); 4246 4247 // Emit code to load the value if it was passed in memory. 4248 4249 CGF.EmitBlock(InMemBlock); 4250 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4251 4252 // Return the appropriate result. 4253 4254 CGF.EmitBlock(ContBlock); 4255 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4256 "vaarg.addr"); 4257 return ResAddr; 4258 } 4259 4260 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4261 QualType Ty) const { 4262 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4263 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4264 uint64_t Width = getContext().getTypeSize(Ty); 4265 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4266 4267 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4268 CGF.getContext().getTypeInfoInChars(Ty), 4269 CharUnits::fromQuantity(8), 4270 /*allowHigherAlign*/ false); 4271 } 4272 4273 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4274 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4275 const Type *Base = nullptr; 4276 uint64_t NumElts = 0; 4277 4278 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4279 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4280 FreeSSERegs -= NumElts; 4281 return getDirectX86Hva(); 4282 } 4283 return current; 4284 } 4285 4286 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4287 bool IsReturnType, bool IsVectorCall, 4288 bool IsRegCall) const { 4289 4290 if (Ty->isVoidType()) 4291 return ABIArgInfo::getIgnore(); 4292 4293 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4294 Ty = EnumTy->getDecl()->getIntegerType(); 4295 4296 TypeInfo Info = getContext().getTypeInfo(Ty); 4297 uint64_t Width = Info.Width; 4298 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4299 4300 const RecordType *RT = Ty->getAs<RecordType>(); 4301 if (RT) { 4302 if (!IsReturnType) { 4303 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4304 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4305 } 4306 4307 if (RT->getDecl()->hasFlexibleArrayMember()) 4308 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4309 4310 } 4311 4312 const Type *Base = nullptr; 4313 uint64_t NumElts = 0; 4314 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4315 // other targets. 4316 if ((IsVectorCall || IsRegCall) && 4317 isHomogeneousAggregate(Ty, Base, NumElts)) { 4318 if (IsRegCall) { 4319 if (FreeSSERegs >= NumElts) { 4320 FreeSSERegs -= NumElts; 4321 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4322 return ABIArgInfo::getDirect(); 4323 return ABIArgInfo::getExpand(); 4324 } 4325 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4326 } else if (IsVectorCall) { 4327 if (FreeSSERegs >= NumElts && 4328 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4329 FreeSSERegs -= NumElts; 4330 return ABIArgInfo::getDirect(); 4331 } else if (IsReturnType) { 4332 return ABIArgInfo::getExpand(); 4333 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4334 // HVAs are delayed and reclassified in the 2nd step. 4335 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4336 } 4337 } 4338 } 4339 4340 if (Ty->isMemberPointerType()) { 4341 // If the member pointer is represented by an LLVM int or ptr, pass it 4342 // directly. 4343 llvm::Type *LLTy = CGT.ConvertType(Ty); 4344 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4345 return ABIArgInfo::getDirect(); 4346 } 4347 4348 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4349 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4350 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4351 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4352 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4353 4354 // Otherwise, coerce it to a small integer. 4355 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4356 } 4357 4358 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4359 switch (BT->getKind()) { 4360 case BuiltinType::Bool: 4361 // Bool type is always extended to the ABI, other builtin types are not 4362 // extended. 4363 return ABIArgInfo::getExtend(Ty); 4364 4365 case BuiltinType::LongDouble: 4366 // Mingw64 GCC uses the old 80 bit extended precision floating point 4367 // unit. It passes them indirectly through memory. 4368 if (IsMingw64) { 4369 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4370 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4371 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4372 } 4373 break; 4374 4375 case BuiltinType::Int128: 4376 case BuiltinType::UInt128: 4377 // If it's a parameter type, the normal ABI rule is that arguments larger 4378 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4379 // even though it isn't particularly efficient. 4380 if (!IsReturnType) 4381 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4382 4383 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4384 // Clang matches them for compatibility. 4385 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4386 llvm::Type::getInt64Ty(getVMContext()), 2)); 4387 4388 default: 4389 break; 4390 } 4391 } 4392 4393 if (Ty->isBitIntType()) { 4394 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4395 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4396 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 4397 // or 8 bytes anyway as long is it fits in them, so we don't have to check 4398 // the power of 2. 4399 if (Width <= 64) 4400 return ABIArgInfo::getDirect(); 4401 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4402 } 4403 4404 return ABIArgInfo::getDirect(); 4405 } 4406 4407 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4408 const unsigned CC = FI.getCallingConvention(); 4409 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4410 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4411 4412 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4413 // classification rules. 4414 if (CC == llvm::CallingConv::X86_64_SysV) { 4415 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4416 SysVABIInfo.computeInfo(FI); 4417 return; 4418 } 4419 4420 unsigned FreeSSERegs = 0; 4421 if (IsVectorCall) { 4422 // We can use up to 4 SSE return registers with vectorcall. 4423 FreeSSERegs = 4; 4424 } else if (IsRegCall) { 4425 // RegCall gives us 16 SSE registers. 4426 FreeSSERegs = 16; 4427 } 4428 4429 if (!getCXXABI().classifyReturnType(FI)) 4430 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4431 IsVectorCall, IsRegCall); 4432 4433 if (IsVectorCall) { 4434 // We can use up to 6 SSE register parameters with vectorcall. 4435 FreeSSERegs = 6; 4436 } else if (IsRegCall) { 4437 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4438 FreeSSERegs = 16; 4439 } 4440 4441 unsigned ArgNum = 0; 4442 unsigned ZeroSSERegs = 0; 4443 for (auto &I : FI.arguments()) { 4444 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4445 // XMM/YMM registers. After the sixth argument, pretend no vector 4446 // registers are left. 4447 unsigned *MaybeFreeSSERegs = 4448 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4449 I.info = 4450 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4451 ++ArgNum; 4452 } 4453 4454 if (IsVectorCall) { 4455 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4456 // second pass. 4457 for (auto &I : FI.arguments()) 4458 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4459 } 4460 } 4461 4462 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4463 QualType Ty) const { 4464 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4465 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4466 uint64_t Width = getContext().getTypeSize(Ty); 4467 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4468 4469 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4470 CGF.getContext().getTypeInfoInChars(Ty), 4471 CharUnits::fromQuantity(8), 4472 /*allowHigherAlign*/ false); 4473 } 4474 4475 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4476 llvm::Value *Address, bool Is64Bit, 4477 bool IsAIX) { 4478 // This is calculated from the LLVM and GCC tables and verified 4479 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4480 4481 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4482 4483 llvm::IntegerType *i8 = CGF.Int8Ty; 4484 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4485 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4486 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4487 4488 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4489 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4490 4491 // 32-63: fp0-31, the 8-byte floating-point registers 4492 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4493 4494 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4495 // 64: mq 4496 // 65: lr 4497 // 66: ctr 4498 // 67: ap 4499 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4500 4501 // 68-76 are various 4-byte special-purpose registers: 4502 // 68-75 cr0-7 4503 // 76: xer 4504 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4505 4506 // 77-108: v0-31, the 16-byte vector registers 4507 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4508 4509 // 109: vrsave 4510 // 110: vscr 4511 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4512 4513 // AIX does not utilize the rest of the registers. 4514 if (IsAIX) 4515 return false; 4516 4517 // 111: spe_acc 4518 // 112: spefscr 4519 // 113: sfp 4520 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4521 4522 if (!Is64Bit) 4523 return false; 4524 4525 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4526 // or above CPU. 4527 // 64-bit only registers: 4528 // 114: tfhar 4529 // 115: tfiar 4530 // 116: texasr 4531 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4532 4533 return false; 4534 } 4535 4536 // AIX 4537 namespace { 4538 /// AIXABIInfo - The AIX XCOFF ABI information. 4539 class AIXABIInfo : public ABIInfo { 4540 const bool Is64Bit; 4541 const unsigned PtrByteSize; 4542 CharUnits getParamTypeAlignment(QualType Ty) const; 4543 4544 public: 4545 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4546 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4547 4548 bool isPromotableTypeForABI(QualType Ty) const; 4549 4550 ABIArgInfo classifyReturnType(QualType RetTy) const; 4551 ABIArgInfo classifyArgumentType(QualType Ty) const; 4552 4553 void computeInfo(CGFunctionInfo &FI) const override { 4554 if (!getCXXABI().classifyReturnType(FI)) 4555 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4556 4557 for (auto &I : FI.arguments()) 4558 I.info = classifyArgumentType(I.type); 4559 } 4560 4561 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4562 QualType Ty) const override; 4563 }; 4564 4565 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4566 const bool Is64Bit; 4567 4568 public: 4569 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4570 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4571 Is64Bit(Is64Bit) {} 4572 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4573 return 1; // r1 is the dedicated stack pointer 4574 } 4575 4576 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4577 llvm::Value *Address) const override; 4578 }; 4579 } // namespace 4580 4581 // Return true if the ABI requires Ty to be passed sign- or zero- 4582 // extended to 32/64 bits. 4583 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4584 // Treat an enum type as its underlying type. 4585 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4586 Ty = EnumTy->getDecl()->getIntegerType(); 4587 4588 // Promotable integer types are required to be promoted by the ABI. 4589 if (getContext().isPromotableIntegerType(Ty)) 4590 return true; 4591 4592 if (!Is64Bit) 4593 return false; 4594 4595 // For 64 bit mode, in addition to the usual promotable integer types, we also 4596 // need to extend all 32-bit types, since the ABI requires promotion to 64 4597 // bits. 4598 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4599 switch (BT->getKind()) { 4600 case BuiltinType::Int: 4601 case BuiltinType::UInt: 4602 return true; 4603 default: 4604 break; 4605 } 4606 4607 return false; 4608 } 4609 4610 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4611 if (RetTy->isAnyComplexType()) 4612 return ABIArgInfo::getDirect(); 4613 4614 if (RetTy->isVectorType()) 4615 return ABIArgInfo::getDirect(); 4616 4617 if (RetTy->isVoidType()) 4618 return ABIArgInfo::getIgnore(); 4619 4620 if (isAggregateTypeForABI(RetTy)) 4621 return getNaturalAlignIndirect(RetTy); 4622 4623 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4624 : ABIArgInfo::getDirect()); 4625 } 4626 4627 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4628 Ty = useFirstFieldIfTransparentUnion(Ty); 4629 4630 if (Ty->isAnyComplexType()) 4631 return ABIArgInfo::getDirect(); 4632 4633 if (Ty->isVectorType()) 4634 return ABIArgInfo::getDirect(); 4635 4636 if (isAggregateTypeForABI(Ty)) { 4637 // Records with non-trivial destructors/copy-constructors should not be 4638 // passed by value. 4639 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4640 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4641 4642 CharUnits CCAlign = getParamTypeAlignment(Ty); 4643 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4644 4645 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4646 /*Realign*/ TyAlign > CCAlign); 4647 } 4648 4649 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4650 : ABIArgInfo::getDirect()); 4651 } 4652 4653 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4654 // Complex types are passed just like their elements. 4655 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4656 Ty = CTy->getElementType(); 4657 4658 if (Ty->isVectorType()) 4659 return CharUnits::fromQuantity(16); 4660 4661 // If the structure contains a vector type, the alignment is 16. 4662 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4663 return CharUnits::fromQuantity(16); 4664 4665 return CharUnits::fromQuantity(PtrByteSize); 4666 } 4667 4668 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4669 QualType Ty) const { 4670 4671 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4672 TypeInfo.Align = getParamTypeAlignment(Ty); 4673 4674 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4675 4676 // If we have a complex type and the base type is smaller than the register 4677 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4678 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4679 // Clang expects us to produce a pointer to a structure with the two parts 4680 // packed tightly. So generate loads of the real and imaginary parts relative 4681 // to the va_list pointer, and store them to a temporary structure. We do the 4682 // same as the PPC64ABI here. 4683 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4684 CharUnits EltSize = TypeInfo.Width / 2; 4685 if (EltSize < SlotSize) 4686 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4687 } 4688 4689 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4690 SlotSize, /*AllowHigher*/ true); 4691 } 4692 4693 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4694 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4695 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4696 } 4697 4698 // PowerPC-32 4699 namespace { 4700 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4701 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4702 bool IsSoftFloatABI; 4703 bool IsRetSmallStructInRegABI; 4704 4705 CharUnits getParamTypeAlignment(QualType Ty) const; 4706 4707 public: 4708 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4709 bool RetSmallStructInRegABI) 4710 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4711 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4712 4713 ABIArgInfo classifyReturnType(QualType RetTy) const; 4714 4715 void computeInfo(CGFunctionInfo &FI) const override { 4716 if (!getCXXABI().classifyReturnType(FI)) 4717 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4718 for (auto &I : FI.arguments()) 4719 I.info = classifyArgumentType(I.type); 4720 } 4721 4722 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4723 QualType Ty) const override; 4724 }; 4725 4726 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4727 public: 4728 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4729 bool RetSmallStructInRegABI) 4730 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4731 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4732 4733 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4734 const CodeGenOptions &Opts); 4735 4736 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4737 // This is recovered from gcc output. 4738 return 1; // r1 is the dedicated stack pointer 4739 } 4740 4741 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4742 llvm::Value *Address) const override; 4743 }; 4744 } 4745 4746 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4747 // Complex types are passed just like their elements. 4748 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4749 Ty = CTy->getElementType(); 4750 4751 if (Ty->isVectorType()) 4752 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4753 : 4); 4754 4755 // For single-element float/vector structs, we consider the whole type 4756 // to have the same alignment requirements as its single element. 4757 const Type *AlignTy = nullptr; 4758 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4759 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4760 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4761 (BT && BT->isFloatingPoint())) 4762 AlignTy = EltType; 4763 } 4764 4765 if (AlignTy) 4766 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4767 return CharUnits::fromQuantity(4); 4768 } 4769 4770 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4771 uint64_t Size; 4772 4773 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4774 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4775 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4776 // System V ABI (1995), page 3-22, specified: 4777 // > A structure or union whose size is less than or equal to 8 bytes 4778 // > shall be returned in r3 and r4, as if it were first stored in the 4779 // > 8-byte aligned memory area and then the low addressed word were 4780 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4781 // > the last member of the structure or union are not defined. 4782 // 4783 // GCC for big-endian PPC32 inserts the pad before the first member, 4784 // not "beyond the last member" of the struct. To stay compatible 4785 // with GCC, we coerce the struct to an integer of the same size. 4786 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4787 if (Size == 0) 4788 return ABIArgInfo::getIgnore(); 4789 else { 4790 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4791 return ABIArgInfo::getDirect(CoerceTy); 4792 } 4793 } 4794 4795 return DefaultABIInfo::classifyReturnType(RetTy); 4796 } 4797 4798 // TODO: this implementation is now likely redundant with 4799 // DefaultABIInfo::EmitVAArg. 4800 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4801 QualType Ty) const { 4802 if (getTarget().getTriple().isOSDarwin()) { 4803 auto TI = getContext().getTypeInfoInChars(Ty); 4804 TI.Align = getParamTypeAlignment(Ty); 4805 4806 CharUnits SlotSize = CharUnits::fromQuantity(4); 4807 return emitVoidPtrVAArg(CGF, VAList, Ty, 4808 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4809 /*AllowHigherAlign=*/true); 4810 } 4811 4812 const unsigned OverflowLimit = 8; 4813 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4814 // TODO: Implement this. For now ignore. 4815 (void)CTy; 4816 return Address::invalid(); // FIXME? 4817 } 4818 4819 // struct __va_list_tag { 4820 // unsigned char gpr; 4821 // unsigned char fpr; 4822 // unsigned short reserved; 4823 // void *overflow_arg_area; 4824 // void *reg_save_area; 4825 // }; 4826 4827 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4828 bool isInt = !Ty->isFloatingType(); 4829 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4830 4831 // All aggregates are passed indirectly? That doesn't seem consistent 4832 // with the argument-lowering code. 4833 bool isIndirect = isAggregateTypeForABI(Ty); 4834 4835 CGBuilderTy &Builder = CGF.Builder; 4836 4837 // The calling convention either uses 1-2 GPRs or 1 FPR. 4838 Address NumRegsAddr = Address::invalid(); 4839 if (isInt || IsSoftFloatABI) { 4840 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4841 } else { 4842 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4843 } 4844 4845 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4846 4847 // "Align" the register count when TY is i64. 4848 if (isI64 || (isF64 && IsSoftFloatABI)) { 4849 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4850 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4851 } 4852 4853 llvm::Value *CC = 4854 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4855 4856 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4857 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4858 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4859 4860 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4861 4862 llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy; 4863 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4864 4865 // Case 1: consume registers. 4866 Address RegAddr = Address::invalid(); 4867 { 4868 CGF.EmitBlock(UsingRegs); 4869 4870 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4871 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty, 4872 CharUnits::fromQuantity(8)); 4873 assert(RegAddr.getElementType() == CGF.Int8Ty); 4874 4875 // Floating-point registers start after the general-purpose registers. 4876 if (!(isInt || IsSoftFloatABI)) { 4877 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4878 CharUnits::fromQuantity(32)); 4879 } 4880 4881 // Get the address of the saved value by scaling the number of 4882 // registers we've used by the number of 4883 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4884 llvm::Value *RegOffset = 4885 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4886 RegAddr = Address( 4887 Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), 4888 CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4889 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4890 4891 // Increase the used-register count. 4892 NumRegs = 4893 Builder.CreateAdd(NumRegs, 4894 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4895 Builder.CreateStore(NumRegs, NumRegsAddr); 4896 4897 CGF.EmitBranch(Cont); 4898 } 4899 4900 // Case 2: consume space in the overflow area. 4901 Address MemAddr = Address::invalid(); 4902 { 4903 CGF.EmitBlock(UsingOverflow); 4904 4905 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4906 4907 // Everything in the overflow area is rounded up to a size of at least 4. 4908 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4909 4910 CharUnits Size; 4911 if (!isIndirect) { 4912 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4913 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4914 } else { 4915 Size = CGF.getPointerSize(); 4916 } 4917 4918 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4919 Address OverflowArea = 4920 Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty, 4921 OverflowAreaAlign); 4922 // Round up address of argument to alignment 4923 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4924 if (Align > OverflowAreaAlign) { 4925 llvm::Value *Ptr = OverflowArea.getPointer(); 4926 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4927 OverflowArea.getElementType(), Align); 4928 } 4929 4930 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4931 4932 // Increase the overflow area. 4933 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4934 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4935 CGF.EmitBranch(Cont); 4936 } 4937 4938 CGF.EmitBlock(Cont); 4939 4940 // Merge the cases with a phi. 4941 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4942 "vaarg.addr"); 4943 4944 // Load the pointer if the argument was passed indirectly. 4945 if (isIndirect) { 4946 Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy, 4947 getContext().getTypeAlignInChars(Ty)); 4948 } 4949 4950 return Result; 4951 } 4952 4953 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4954 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4955 assert(Triple.isPPC32()); 4956 4957 switch (Opts.getStructReturnConvention()) { 4958 case CodeGenOptions::SRCK_Default: 4959 break; 4960 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4961 return false; 4962 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4963 return true; 4964 } 4965 4966 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4967 return true; 4968 4969 return false; 4970 } 4971 4972 bool 4973 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4974 llvm::Value *Address) const { 4975 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4976 /*IsAIX*/ false); 4977 } 4978 4979 // PowerPC-64 4980 4981 namespace { 4982 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4983 class PPC64_SVR4_ABIInfo : public ABIInfo { 4984 public: 4985 enum ABIKind { 4986 ELFv1 = 0, 4987 ELFv2 4988 }; 4989 4990 private: 4991 static const unsigned GPRBits = 64; 4992 ABIKind Kind; 4993 bool IsSoftFloatABI; 4994 4995 public: 4996 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4997 bool SoftFloatABI) 4998 : ABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4999 5000 bool isPromotableTypeForABI(QualType Ty) const; 5001 CharUnits getParamTypeAlignment(QualType Ty) const; 5002 5003 ABIArgInfo classifyReturnType(QualType RetTy) const; 5004 ABIArgInfo classifyArgumentType(QualType Ty) const; 5005 5006 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5007 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5008 uint64_t Members) const override; 5009 5010 // TODO: We can add more logic to computeInfo to improve performance. 5011 // Example: For aggregate arguments that fit in a register, we could 5012 // use getDirectInReg (as is done below for structs containing a single 5013 // floating-point value) to avoid pushing them to memory on function 5014 // entry. This would require changing the logic in PPCISelLowering 5015 // when lowering the parameters in the caller and args in the callee. 5016 void computeInfo(CGFunctionInfo &FI) const override { 5017 if (!getCXXABI().classifyReturnType(FI)) 5018 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5019 for (auto &I : FI.arguments()) { 5020 // We rely on the default argument classification for the most part. 5021 // One exception: An aggregate containing a single floating-point 5022 // or vector item must be passed in a register if one is available. 5023 const Type *T = isSingleElementStruct(I.type, getContext()); 5024 if (T) { 5025 const BuiltinType *BT = T->getAs<BuiltinType>(); 5026 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 5027 (BT && BT->isFloatingPoint())) { 5028 QualType QT(T, 0); 5029 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 5030 continue; 5031 } 5032 } 5033 I.info = classifyArgumentType(I.type); 5034 } 5035 } 5036 5037 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5038 QualType Ty) const override; 5039 }; 5040 5041 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5042 5043 public: 5044 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5045 PPC64_SVR4_ABIInfo::ABIKind Kind, 5046 bool SoftFloatABI) 5047 : TargetCodeGenInfo( 5048 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) { 5049 SwiftInfo = 5050 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false); 5051 } 5052 5053 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5054 // This is recovered from gcc output. 5055 return 1; // r1 is the dedicated stack pointer 5056 } 5057 5058 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5059 llvm::Value *Address) const override; 5060 }; 5061 5062 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5063 public: 5064 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5065 5066 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5067 // This is recovered from gcc output. 5068 return 1; // r1 is the dedicated stack pointer 5069 } 5070 5071 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5072 llvm::Value *Address) const override; 5073 }; 5074 5075 } 5076 5077 // Return true if the ABI requires Ty to be passed sign- or zero- 5078 // extended to 64 bits. 5079 bool 5080 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5081 // Treat an enum type as its underlying type. 5082 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5083 Ty = EnumTy->getDecl()->getIntegerType(); 5084 5085 // Promotable integer types are required to be promoted by the ABI. 5086 if (isPromotableIntegerTypeForABI(Ty)) 5087 return true; 5088 5089 // In addition to the usual promotable integer types, we also need to 5090 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5091 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5092 switch (BT->getKind()) { 5093 case BuiltinType::Int: 5094 case BuiltinType::UInt: 5095 return true; 5096 default: 5097 break; 5098 } 5099 5100 if (const auto *EIT = Ty->getAs<BitIntType>()) 5101 if (EIT->getNumBits() < 64) 5102 return true; 5103 5104 return false; 5105 } 5106 5107 /// isAlignedParamType - Determine whether a type requires 16-byte or 5108 /// higher alignment in the parameter area. Always returns at least 8. 5109 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5110 // Complex types are passed just like their elements. 5111 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5112 Ty = CTy->getElementType(); 5113 5114 auto FloatUsesVector = [this](QualType Ty){ 5115 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5116 Ty) == &llvm::APFloat::IEEEquad(); 5117 }; 5118 5119 // Only vector types of size 16 bytes need alignment (larger types are 5120 // passed via reference, smaller types are not aligned). 5121 if (Ty->isVectorType()) { 5122 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5123 } else if (FloatUsesVector(Ty)) { 5124 // According to ABI document section 'Optional Save Areas': If extended 5125 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5126 // format are supported, map them to a single quadword, quadword aligned. 5127 return CharUnits::fromQuantity(16); 5128 } 5129 5130 // For single-element float/vector structs, we consider the whole type 5131 // to have the same alignment requirements as its single element. 5132 const Type *AlignAsType = nullptr; 5133 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5134 if (EltType) { 5135 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5136 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5137 (BT && BT->isFloatingPoint())) 5138 AlignAsType = EltType; 5139 } 5140 5141 // Likewise for ELFv2 homogeneous aggregates. 5142 const Type *Base = nullptr; 5143 uint64_t Members = 0; 5144 if (!AlignAsType && Kind == ELFv2 && 5145 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5146 AlignAsType = Base; 5147 5148 // With special case aggregates, only vector base types need alignment. 5149 if (AlignAsType) { 5150 bool UsesVector = AlignAsType->isVectorType() || 5151 FloatUsesVector(QualType(AlignAsType, 0)); 5152 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5153 } 5154 5155 // Otherwise, we only need alignment for any aggregate type that 5156 // has an alignment requirement of >= 16 bytes. 5157 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5158 return CharUnits::fromQuantity(16); 5159 } 5160 5161 return CharUnits::fromQuantity(8); 5162 } 5163 5164 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5165 /// aggregate. Base is set to the base element type, and Members is set 5166 /// to the number of base elements. 5167 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5168 uint64_t &Members) const { 5169 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5170 uint64_t NElements = AT->getSize().getZExtValue(); 5171 if (NElements == 0) 5172 return false; 5173 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5174 return false; 5175 Members *= NElements; 5176 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5177 const RecordDecl *RD = RT->getDecl(); 5178 if (RD->hasFlexibleArrayMember()) 5179 return false; 5180 5181 Members = 0; 5182 5183 // If this is a C++ record, check the properties of the record such as 5184 // bases and ABI specific restrictions 5185 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5186 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5187 return false; 5188 5189 for (const auto &I : CXXRD->bases()) { 5190 // Ignore empty records. 5191 if (isEmptyRecord(getContext(), I.getType(), true)) 5192 continue; 5193 5194 uint64_t FldMembers; 5195 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5196 return false; 5197 5198 Members += FldMembers; 5199 } 5200 } 5201 5202 for (const auto *FD : RD->fields()) { 5203 // Ignore (non-zero arrays of) empty records. 5204 QualType FT = FD->getType(); 5205 while (const ConstantArrayType *AT = 5206 getContext().getAsConstantArrayType(FT)) { 5207 if (AT->getSize().getZExtValue() == 0) 5208 return false; 5209 FT = AT->getElementType(); 5210 } 5211 if (isEmptyRecord(getContext(), FT, true)) 5212 continue; 5213 5214 if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() && 5215 FD->isZeroLengthBitField(getContext())) 5216 continue; 5217 5218 uint64_t FldMembers; 5219 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5220 return false; 5221 5222 Members = (RD->isUnion() ? 5223 std::max(Members, FldMembers) : Members + FldMembers); 5224 } 5225 5226 if (!Base) 5227 return false; 5228 5229 // Ensure there is no padding. 5230 if (getContext().getTypeSize(Base) * Members != 5231 getContext().getTypeSize(Ty)) 5232 return false; 5233 } else { 5234 Members = 1; 5235 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5236 Members = 2; 5237 Ty = CT->getElementType(); 5238 } 5239 5240 // Most ABIs only support float, double, and some vector type widths. 5241 if (!isHomogeneousAggregateBaseType(Ty)) 5242 return false; 5243 5244 // The base type must be the same for all members. Types that 5245 // agree in both total size and mode (float vs. vector) are 5246 // treated as being equivalent here. 5247 const Type *TyPtr = Ty.getTypePtr(); 5248 if (!Base) { 5249 Base = TyPtr; 5250 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5251 // so make sure to widen it explicitly. 5252 if (const VectorType *VT = Base->getAs<VectorType>()) { 5253 QualType EltTy = VT->getElementType(); 5254 unsigned NumElements = 5255 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5256 Base = getContext() 5257 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5258 .getTypePtr(); 5259 } 5260 } 5261 5262 if (Base->isVectorType() != TyPtr->isVectorType() || 5263 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5264 return false; 5265 } 5266 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5267 } 5268 5269 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5270 // Homogeneous aggregates for ELFv2 must have base types of float, 5271 // double, long double, or 128-bit vectors. 5272 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5273 if (BT->getKind() == BuiltinType::Float || 5274 BT->getKind() == BuiltinType::Double || 5275 BT->getKind() == BuiltinType::LongDouble || 5276 BT->getKind() == BuiltinType::Ibm128 || 5277 (getContext().getTargetInfo().hasFloat128Type() && 5278 (BT->getKind() == BuiltinType::Float128))) { 5279 if (IsSoftFloatABI) 5280 return false; 5281 return true; 5282 } 5283 } 5284 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5285 if (getContext().getTypeSize(VT) == 128) 5286 return true; 5287 } 5288 return false; 5289 } 5290 5291 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5292 const Type *Base, uint64_t Members) const { 5293 // Vector and fp128 types require one register, other floating point types 5294 // require one or two registers depending on their size. 5295 uint32_t NumRegs = 5296 ((getContext().getTargetInfo().hasFloat128Type() && 5297 Base->isFloat128Type()) || 5298 Base->isVectorType()) ? 1 5299 : (getContext().getTypeSize(Base) + 63) / 64; 5300 5301 // Homogeneous Aggregates may occupy at most 8 registers. 5302 return Members * NumRegs <= 8; 5303 } 5304 5305 ABIArgInfo 5306 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5307 Ty = useFirstFieldIfTransparentUnion(Ty); 5308 5309 if (Ty->isAnyComplexType()) 5310 return ABIArgInfo::getDirect(); 5311 5312 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5313 // or via reference (larger than 16 bytes). 5314 if (Ty->isVectorType()) { 5315 uint64_t Size = getContext().getTypeSize(Ty); 5316 if (Size > 128) 5317 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5318 else if (Size < 128) { 5319 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5320 return ABIArgInfo::getDirect(CoerceTy); 5321 } 5322 } 5323 5324 if (const auto *EIT = Ty->getAs<BitIntType>()) 5325 if (EIT->getNumBits() > 128) 5326 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5327 5328 if (isAggregateTypeForABI(Ty)) { 5329 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5330 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5331 5332 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5333 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5334 5335 // ELFv2 homogeneous aggregates are passed as array types. 5336 const Type *Base = nullptr; 5337 uint64_t Members = 0; 5338 if (Kind == ELFv2 && 5339 isHomogeneousAggregate(Ty, Base, Members)) { 5340 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5341 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5342 return ABIArgInfo::getDirect(CoerceTy); 5343 } 5344 5345 // If an aggregate may end up fully in registers, we do not 5346 // use the ByVal method, but pass the aggregate as array. 5347 // This is usually beneficial since we avoid forcing the 5348 // back-end to store the argument to memory. 5349 uint64_t Bits = getContext().getTypeSize(Ty); 5350 if (Bits > 0 && Bits <= 8 * GPRBits) { 5351 llvm::Type *CoerceTy; 5352 5353 // Types up to 8 bytes are passed as integer type (which will be 5354 // properly aligned in the argument save area doubleword). 5355 if (Bits <= GPRBits) 5356 CoerceTy = 5357 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5358 // Larger types are passed as arrays, with the base type selected 5359 // according to the required alignment in the save area. 5360 else { 5361 uint64_t RegBits = ABIAlign * 8; 5362 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5363 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5364 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5365 } 5366 5367 return ABIArgInfo::getDirect(CoerceTy); 5368 } 5369 5370 // All other aggregates are passed ByVal. 5371 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5372 /*ByVal=*/true, 5373 /*Realign=*/TyAlign > ABIAlign); 5374 } 5375 5376 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5377 : ABIArgInfo::getDirect()); 5378 } 5379 5380 ABIArgInfo 5381 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5382 if (RetTy->isVoidType()) 5383 return ABIArgInfo::getIgnore(); 5384 5385 if (RetTy->isAnyComplexType()) 5386 return ABIArgInfo::getDirect(); 5387 5388 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5389 // or via reference (larger than 16 bytes). 5390 if (RetTy->isVectorType()) { 5391 uint64_t Size = getContext().getTypeSize(RetTy); 5392 if (Size > 128) 5393 return getNaturalAlignIndirect(RetTy); 5394 else if (Size < 128) { 5395 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5396 return ABIArgInfo::getDirect(CoerceTy); 5397 } 5398 } 5399 5400 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5401 if (EIT->getNumBits() > 128) 5402 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5403 5404 if (isAggregateTypeForABI(RetTy)) { 5405 // ELFv2 homogeneous aggregates are returned as array types. 5406 const Type *Base = nullptr; 5407 uint64_t Members = 0; 5408 if (Kind == ELFv2 && 5409 isHomogeneousAggregate(RetTy, Base, Members)) { 5410 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5411 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5412 return ABIArgInfo::getDirect(CoerceTy); 5413 } 5414 5415 // ELFv2 small aggregates are returned in up to two registers. 5416 uint64_t Bits = getContext().getTypeSize(RetTy); 5417 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5418 if (Bits == 0) 5419 return ABIArgInfo::getIgnore(); 5420 5421 llvm::Type *CoerceTy; 5422 if (Bits > GPRBits) { 5423 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5424 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5425 } else 5426 CoerceTy = 5427 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5428 return ABIArgInfo::getDirect(CoerceTy); 5429 } 5430 5431 // All other aggregates are returned indirectly. 5432 return getNaturalAlignIndirect(RetTy); 5433 } 5434 5435 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5436 : ABIArgInfo::getDirect()); 5437 } 5438 5439 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5440 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5441 QualType Ty) const { 5442 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5443 TypeInfo.Align = getParamTypeAlignment(Ty); 5444 5445 CharUnits SlotSize = CharUnits::fromQuantity(8); 5446 5447 // If we have a complex type and the base type is smaller than 8 bytes, 5448 // the ABI calls for the real and imaginary parts to be right-adjusted 5449 // in separate doublewords. However, Clang expects us to produce a 5450 // pointer to a structure with the two parts packed tightly. So generate 5451 // loads of the real and imaginary parts relative to the va_list pointer, 5452 // and store them to a temporary structure. 5453 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5454 CharUnits EltSize = TypeInfo.Width / 2; 5455 if (EltSize < SlotSize) 5456 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5457 } 5458 5459 // Otherwise, just use the general rule. 5460 // 5461 // The PPC64 ABI passes some arguments in integer registers, even to variadic 5462 // functions. To allow va_list to use the simple "void*" representation, 5463 // variadic calls allocate space in the argument area for the integer argument 5464 // registers, and variadic functions spill their integer argument registers to 5465 // this area in their prologues. When aggregates smaller than a register are 5466 // passed this way, they are passed in the least significant bits of the 5467 // register, which means that after spilling on big-endian targets they will 5468 // be right-aligned in their argument slot. This is uncommon; for a variety of 5469 // reasons, other big-endian targets don't end up right-aligning aggregate 5470 // types this way, and so right-alignment only applies to fundamental types. 5471 // So on PPC64, we must force the use of right-alignment even for aggregates. 5472 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 5473 SlotSize, /*AllowHigher*/ true, 5474 /*ForceRightAdjust*/ true); 5475 } 5476 5477 bool 5478 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5479 CodeGen::CodeGenFunction &CGF, 5480 llvm::Value *Address) const { 5481 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5482 /*IsAIX*/ false); 5483 } 5484 5485 bool 5486 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5487 llvm::Value *Address) const { 5488 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5489 /*IsAIX*/ false); 5490 } 5491 5492 //===----------------------------------------------------------------------===// 5493 // AArch64 ABI Implementation 5494 //===----------------------------------------------------------------------===// 5495 5496 namespace { 5497 5498 class AArch64ABIInfo : public ABIInfo { 5499 public: 5500 enum ABIKind { 5501 AAPCS = 0, 5502 DarwinPCS, 5503 Win64 5504 }; 5505 5506 private: 5507 ABIKind Kind; 5508 5509 public: 5510 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 5511 5512 private: 5513 ABIKind getABIKind() const { return Kind; } 5514 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5515 5516 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5517 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5518 unsigned CallingConvention) const; 5519 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5520 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5521 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5522 uint64_t Members) const override; 5523 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override; 5524 5525 bool isIllegalVectorType(QualType Ty) const; 5526 5527 void computeInfo(CGFunctionInfo &FI) const override { 5528 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5529 FI.getReturnInfo() = 5530 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5531 5532 for (auto &it : FI.arguments()) 5533 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5534 FI.getCallingConvention()); 5535 } 5536 5537 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5538 CodeGenFunction &CGF) const; 5539 5540 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5541 CodeGenFunction &CGF) const; 5542 5543 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5544 QualType Ty) const override { 5545 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5546 if (isa<llvm::ScalableVectorType>(BaseTy)) 5547 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5548 "currently not supported"); 5549 5550 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5551 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5552 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5553 } 5554 5555 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5556 QualType Ty) const override; 5557 5558 bool allowBFloatArgsAndRet() const override { 5559 return getTarget().hasBFloat16Type(); 5560 } 5561 }; 5562 5563 class AArch64SwiftABIInfo : public SwiftABIInfo { 5564 public: 5565 explicit AArch64SwiftABIInfo(CodeGenTypes &CGT) 5566 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {} 5567 5568 bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy, 5569 unsigned NumElts) const override; 5570 }; 5571 5572 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5573 public: 5574 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5575 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) { 5576 SwiftInfo = std::make_unique<AArch64SwiftABIInfo>(CGT); 5577 } 5578 5579 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5580 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5581 } 5582 5583 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5584 return 31; 5585 } 5586 5587 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5588 5589 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5590 CodeGen::CodeGenModule &CGM) const override { 5591 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5592 if (!FD) 5593 return; 5594 5595 const auto *TA = FD->getAttr<TargetAttr>(); 5596 if (TA == nullptr) 5597 return; 5598 5599 ParsedTargetAttr Attr = 5600 CGM.getTarget().parseTargetAttr(TA->getFeaturesStr()); 5601 if (Attr.BranchProtection.empty()) 5602 return; 5603 5604 TargetInfo::BranchProtectionInfo BPI; 5605 StringRef Error; 5606 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5607 Attr.CPU, BPI, Error); 5608 assert(Error.empty()); 5609 5610 auto *Fn = cast<llvm::Function>(GV); 5611 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5612 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5613 5614 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5615 Fn->addFnAttr("sign-return-address-key", 5616 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5617 ? "a_key" 5618 : "b_key"); 5619 } 5620 5621 Fn->addFnAttr("branch-target-enforcement", 5622 BPI.BranchTargetEnforcement ? "true" : "false"); 5623 } 5624 5625 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5626 llvm::Type *Ty) const override { 5627 if (CGF.getTarget().hasFeature("ls64")) { 5628 auto *ST = dyn_cast<llvm::StructType>(Ty); 5629 if (ST && ST->getNumElements() == 1) { 5630 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5631 if (AT && AT->getNumElements() == 8 && 5632 AT->getElementType()->isIntegerTy(64)) 5633 return true; 5634 } 5635 } 5636 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5637 } 5638 }; 5639 5640 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5641 public: 5642 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5643 : AArch64TargetCodeGenInfo(CGT, K) {} 5644 5645 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5646 CodeGen::CodeGenModule &CGM) const override; 5647 5648 void getDependentLibraryOption(llvm::StringRef Lib, 5649 llvm::SmallString<24> &Opt) const override { 5650 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5651 } 5652 5653 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5654 llvm::SmallString<32> &Opt) const override { 5655 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5656 } 5657 }; 5658 5659 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5660 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5661 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5662 if (GV->isDeclaration()) 5663 return; 5664 addStackProbeTargetAttributes(D, GV, CGM); 5665 } 5666 } 5667 5668 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5669 assert(Ty->isVectorType() && "expected vector type!"); 5670 5671 const auto *VT = Ty->castAs<VectorType>(); 5672 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5673 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5674 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5675 BuiltinType::UChar && 5676 "unexpected builtin type for SVE predicate!"); 5677 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5678 llvm::Type::getInt1Ty(getVMContext()), 16)); 5679 } 5680 5681 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5682 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5683 5684 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5685 llvm::ScalableVectorType *ResType = nullptr; 5686 switch (BT->getKind()) { 5687 default: 5688 llvm_unreachable("unexpected builtin type for SVE vector!"); 5689 case BuiltinType::SChar: 5690 case BuiltinType::UChar: 5691 ResType = llvm::ScalableVectorType::get( 5692 llvm::Type::getInt8Ty(getVMContext()), 16); 5693 break; 5694 case BuiltinType::Short: 5695 case BuiltinType::UShort: 5696 ResType = llvm::ScalableVectorType::get( 5697 llvm::Type::getInt16Ty(getVMContext()), 8); 5698 break; 5699 case BuiltinType::Int: 5700 case BuiltinType::UInt: 5701 ResType = llvm::ScalableVectorType::get( 5702 llvm::Type::getInt32Ty(getVMContext()), 4); 5703 break; 5704 case BuiltinType::Long: 5705 case BuiltinType::ULong: 5706 ResType = llvm::ScalableVectorType::get( 5707 llvm::Type::getInt64Ty(getVMContext()), 2); 5708 break; 5709 case BuiltinType::Half: 5710 ResType = llvm::ScalableVectorType::get( 5711 llvm::Type::getHalfTy(getVMContext()), 8); 5712 break; 5713 case BuiltinType::Float: 5714 ResType = llvm::ScalableVectorType::get( 5715 llvm::Type::getFloatTy(getVMContext()), 4); 5716 break; 5717 case BuiltinType::Double: 5718 ResType = llvm::ScalableVectorType::get( 5719 llvm::Type::getDoubleTy(getVMContext()), 2); 5720 break; 5721 case BuiltinType::BFloat16: 5722 ResType = llvm::ScalableVectorType::get( 5723 llvm::Type::getBFloatTy(getVMContext()), 8); 5724 break; 5725 } 5726 return ABIArgInfo::getDirect(ResType); 5727 } 5728 5729 uint64_t Size = getContext().getTypeSize(Ty); 5730 // Android promotes <2 x i8> to i16, not i32 5731 if (isAndroid() && (Size <= 16)) { 5732 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5733 return ABIArgInfo::getDirect(ResType); 5734 } 5735 if (Size <= 32) { 5736 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5737 return ABIArgInfo::getDirect(ResType); 5738 } 5739 if (Size == 64) { 5740 auto *ResType = 5741 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5742 return ABIArgInfo::getDirect(ResType); 5743 } 5744 if (Size == 128) { 5745 auto *ResType = 5746 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5747 return ABIArgInfo::getDirect(ResType); 5748 } 5749 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5750 } 5751 5752 ABIArgInfo 5753 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5754 unsigned CallingConvention) const { 5755 Ty = useFirstFieldIfTransparentUnion(Ty); 5756 5757 // Handle illegal vector types here. 5758 if (isIllegalVectorType(Ty)) 5759 return coerceIllegalVector(Ty); 5760 5761 if (!isAggregateTypeForABI(Ty)) { 5762 // Treat an enum type as its underlying type. 5763 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5764 Ty = EnumTy->getDecl()->getIntegerType(); 5765 5766 if (const auto *EIT = Ty->getAs<BitIntType>()) 5767 if (EIT->getNumBits() > 128) 5768 return getNaturalAlignIndirect(Ty); 5769 5770 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5771 ? ABIArgInfo::getExtend(Ty) 5772 : ABIArgInfo::getDirect()); 5773 } 5774 5775 // Structures with either a non-trivial destructor or a non-trivial 5776 // copy constructor are always indirect. 5777 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5778 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5779 CGCXXABI::RAA_DirectInMemory); 5780 } 5781 5782 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5783 // elsewhere for GNU compatibility. 5784 uint64_t Size = getContext().getTypeSize(Ty); 5785 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5786 if (IsEmpty || Size == 0) { 5787 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5788 return ABIArgInfo::getIgnore(); 5789 5790 // GNU C mode. The only argument that gets ignored is an empty one with size 5791 // 0. 5792 if (IsEmpty && Size == 0) 5793 return ABIArgInfo::getIgnore(); 5794 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5795 } 5796 5797 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5798 const Type *Base = nullptr; 5799 uint64_t Members = 0; 5800 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5801 bool IsWinVariadic = IsWin64 && IsVariadic; 5802 // In variadic functions on Windows, all composite types are treated alike, 5803 // no special handling of HFAs/HVAs. 5804 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5805 if (Kind != AArch64ABIInfo::AAPCS) 5806 return ABIArgInfo::getDirect( 5807 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5808 5809 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5810 // default otherwise. 5811 unsigned Align = 5812 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5813 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5814 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5815 return ABIArgInfo::getDirect( 5816 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5817 nullptr, true, Align); 5818 } 5819 5820 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5821 if (Size <= 128) { 5822 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5823 // same size and alignment. 5824 if (getTarget().isRenderScriptTarget()) { 5825 return coerceToIntArray(Ty, getContext(), getVMContext()); 5826 } 5827 unsigned Alignment; 5828 if (Kind == AArch64ABIInfo::AAPCS) { 5829 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5830 Alignment = Alignment < 128 ? 64 : 128; 5831 } else { 5832 Alignment = 5833 std::max(getContext().getTypeAlign(Ty), 5834 (unsigned)getTarget().getPointerWidth(LangAS::Default)); 5835 } 5836 Size = llvm::alignTo(Size, Alignment); 5837 5838 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5839 // For aggregates with 16-byte alignment, we use i128. 5840 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5841 return ABIArgInfo::getDirect( 5842 Size == Alignment ? BaseTy 5843 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5844 } 5845 5846 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5847 } 5848 5849 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5850 bool IsVariadic) const { 5851 if (RetTy->isVoidType()) 5852 return ABIArgInfo::getIgnore(); 5853 5854 if (const auto *VT = RetTy->getAs<VectorType>()) { 5855 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5856 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5857 return coerceIllegalVector(RetTy); 5858 } 5859 5860 // Large vector types should be returned via memory. 5861 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5862 return getNaturalAlignIndirect(RetTy); 5863 5864 if (!isAggregateTypeForABI(RetTy)) { 5865 // Treat an enum type as its underlying type. 5866 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5867 RetTy = EnumTy->getDecl()->getIntegerType(); 5868 5869 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5870 if (EIT->getNumBits() > 128) 5871 return getNaturalAlignIndirect(RetTy); 5872 5873 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5874 ? ABIArgInfo::getExtend(RetTy) 5875 : ABIArgInfo::getDirect()); 5876 } 5877 5878 uint64_t Size = getContext().getTypeSize(RetTy); 5879 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5880 return ABIArgInfo::getIgnore(); 5881 5882 const Type *Base = nullptr; 5883 uint64_t Members = 0; 5884 if (isHomogeneousAggregate(RetTy, Base, Members) && 5885 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5886 IsVariadic)) 5887 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5888 return ABIArgInfo::getDirect(); 5889 5890 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5891 if (Size <= 128) { 5892 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5893 // same size and alignment. 5894 if (getTarget().isRenderScriptTarget()) { 5895 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5896 } 5897 5898 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5899 // Composite types are returned in lower bits of a 64-bit register for LE, 5900 // and in higher bits for BE. However, integer types are always returned 5901 // in lower bits for both LE and BE, and they are not rounded up to 5902 // 64-bits. We can skip rounding up of composite types for LE, but not for 5903 // BE, otherwise composite types will be indistinguishable from integer 5904 // types. 5905 return ABIArgInfo::getDirect( 5906 llvm::IntegerType::get(getVMContext(), Size)); 5907 } 5908 5909 unsigned Alignment = getContext().getTypeAlign(RetTy); 5910 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5911 5912 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5913 // For aggregates with 16-byte alignment, we use i128. 5914 if (Alignment < 128 && Size == 128) { 5915 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5916 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5917 } 5918 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5919 } 5920 5921 return getNaturalAlignIndirect(RetTy); 5922 } 5923 5924 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5925 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5926 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5927 // Check whether VT is a fixed-length SVE vector. These types are 5928 // represented as scalable vectors in function args/return and must be 5929 // coerced from fixed vectors. 5930 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5931 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5932 return true; 5933 5934 // Check whether VT is legal. 5935 unsigned NumElements = VT->getNumElements(); 5936 uint64_t Size = getContext().getTypeSize(VT); 5937 // NumElements should be power of 2. 5938 if (!llvm::isPowerOf2_32(NumElements)) 5939 return true; 5940 5941 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5942 // vectors for some reason. 5943 llvm::Triple Triple = getTarget().getTriple(); 5944 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5945 Triple.isOSBinFormatMachO()) 5946 return Size <= 32; 5947 5948 return Size != 64 && (Size != 128 || NumElements == 1); 5949 } 5950 return false; 5951 } 5952 5953 bool AArch64SwiftABIInfo::isLegalVectorType(CharUnits VectorSize, 5954 llvm::Type *EltTy, 5955 unsigned NumElts) const { 5956 if (!llvm::isPowerOf2_32(NumElts)) 5957 return false; 5958 if (VectorSize.getQuantity() != 8 && 5959 (VectorSize.getQuantity() != 16 || NumElts == 1)) 5960 return false; 5961 return true; 5962 } 5963 5964 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5965 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5966 // point type or a short-vector type. This is the same as the 32-bit ABI, 5967 // but with the difference that any floating-point type is allowed, 5968 // including __fp16. 5969 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5970 if (BT->isFloatingPoint()) 5971 return true; 5972 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5973 unsigned VecSize = getContext().getTypeSize(VT); 5974 if (VecSize == 64 || VecSize == 128) 5975 return true; 5976 } 5977 return false; 5978 } 5979 5980 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5981 uint64_t Members) const { 5982 return Members <= 4; 5983 } 5984 5985 bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() 5986 const { 5987 // AAPCS64 says that the rule for whether something is a homogeneous 5988 // aggregate is applied to the output of the data layout decision. So 5989 // anything that doesn't affect the data layout also does not affect 5990 // homogeneity. In particular, zero-length bitfields don't stop a struct 5991 // being homogeneous. 5992 return true; 5993 } 5994 5995 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5996 CodeGenFunction &CGF) const { 5997 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5998 CGF.CurFnInfo->getCallingConvention()); 5999 // Empty records are ignored for parameter passing purposes. 6000 if (AI.isIgnore()) { 6001 uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8; 6002 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6003 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 6004 auto *Load = CGF.Builder.CreateLoad(VAListAddr); 6005 Address Addr = Address(Load, CGF.Int8Ty, SlotSize); 6006 return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6007 } 6008 6009 bool IsIndirect = AI.isIndirect(); 6010 6011 llvm::Type *BaseTy = CGF.ConvertType(Ty); 6012 if (IsIndirect) 6013 BaseTy = llvm::PointerType::getUnqual(BaseTy); 6014 else if (AI.getCoerceToType()) 6015 BaseTy = AI.getCoerceToType(); 6016 6017 unsigned NumRegs = 1; 6018 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 6019 BaseTy = ArrTy->getElementType(); 6020 NumRegs = ArrTy->getNumElements(); 6021 } 6022 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 6023 6024 // The AArch64 va_list type and handling is specified in the Procedure Call 6025 // Standard, section B.4: 6026 // 6027 // struct { 6028 // void *__stack; 6029 // void *__gr_top; 6030 // void *__vr_top; 6031 // int __gr_offs; 6032 // int __vr_offs; 6033 // }; 6034 6035 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 6036 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6037 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 6038 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6039 6040 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6041 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 6042 6043 Address reg_offs_p = Address::invalid(); 6044 llvm::Value *reg_offs = nullptr; 6045 int reg_top_index; 6046 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 6047 if (!IsFPR) { 6048 // 3 is the field number of __gr_offs 6049 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 6050 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 6051 reg_top_index = 1; // field number for __gr_top 6052 RegSize = llvm::alignTo(RegSize, 8); 6053 } else { 6054 // 4 is the field number of __vr_offs. 6055 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 6056 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 6057 reg_top_index = 2; // field number for __vr_top 6058 RegSize = 16 * NumRegs; 6059 } 6060 6061 //======================================= 6062 // Find out where argument was passed 6063 //======================================= 6064 6065 // If reg_offs >= 0 we're already using the stack for this type of 6066 // argument. We don't want to keep updating reg_offs (in case it overflows, 6067 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6068 // whatever they get). 6069 llvm::Value *UsingStack = nullptr; 6070 UsingStack = CGF.Builder.CreateICmpSGE( 6071 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6072 6073 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6074 6075 // Otherwise, at least some kind of argument could go in these registers, the 6076 // question is whether this particular type is too big. 6077 CGF.EmitBlock(MaybeRegBlock); 6078 6079 // Integer arguments may need to correct register alignment (for example a 6080 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6081 // align __gr_offs to calculate the potential address. 6082 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6083 int Align = TyAlign.getQuantity(); 6084 6085 reg_offs = CGF.Builder.CreateAdd( 6086 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6087 "align_regoffs"); 6088 reg_offs = CGF.Builder.CreateAnd( 6089 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6090 "aligned_regoffs"); 6091 } 6092 6093 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6094 // The fact that this is done unconditionally reflects the fact that 6095 // allocating an argument to the stack also uses up all the remaining 6096 // registers of the appropriate kind. 6097 llvm::Value *NewOffset = nullptr; 6098 NewOffset = CGF.Builder.CreateAdd( 6099 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6100 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6101 6102 // Now we're in a position to decide whether this argument really was in 6103 // registers or not. 6104 llvm::Value *InRegs = nullptr; 6105 InRegs = CGF.Builder.CreateICmpSLE( 6106 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6107 6108 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6109 6110 //======================================= 6111 // Argument was in registers 6112 //======================================= 6113 6114 // Now we emit the code for if the argument was originally passed in 6115 // registers. First start the appropriate block: 6116 CGF.EmitBlock(InRegBlock); 6117 6118 llvm::Value *reg_top = nullptr; 6119 Address reg_top_p = 6120 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6121 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6122 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6123 CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6124 Address RegAddr = Address::invalid(); 6125 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy; 6126 6127 if (IsIndirect) { 6128 // If it's been passed indirectly (actually a struct), whatever we find from 6129 // stored registers or on the stack will actually be a struct **. 6130 MemTy = llvm::PointerType::getUnqual(MemTy); 6131 } 6132 6133 const Type *Base = nullptr; 6134 uint64_t NumMembers = 0; 6135 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6136 if (IsHFA && NumMembers > 1) { 6137 // Homogeneous aggregates passed in registers will have their elements split 6138 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6139 // qN+1, ...). We reload and store into a temporary local variable 6140 // contiguously. 6141 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6142 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6143 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6144 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6145 Address Tmp = CGF.CreateTempAlloca(HFATy, 6146 std::max(TyAlign, BaseTyInfo.Align)); 6147 6148 // On big-endian platforms, the value will be right-aligned in its slot. 6149 int Offset = 0; 6150 if (CGF.CGM.getDataLayout().isBigEndian() && 6151 BaseTyInfo.Width.getQuantity() < 16) 6152 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6153 6154 for (unsigned i = 0; i < NumMembers; ++i) { 6155 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6156 Address LoadAddr = 6157 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6158 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6159 6160 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6161 6162 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6163 CGF.Builder.CreateStore(Elem, StoreAddr); 6164 } 6165 6166 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6167 } else { 6168 // Otherwise the object is contiguous in memory. 6169 6170 // It might be right-aligned in its slot. 6171 CharUnits SlotSize = BaseAddr.getAlignment(); 6172 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6173 (IsHFA || !isAggregateTypeForABI(Ty)) && 6174 TySize < SlotSize) { 6175 CharUnits Offset = SlotSize - TySize; 6176 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6177 } 6178 6179 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6180 } 6181 6182 CGF.EmitBranch(ContBlock); 6183 6184 //======================================= 6185 // Argument was on the stack 6186 //======================================= 6187 CGF.EmitBlock(OnStackBlock); 6188 6189 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6190 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6191 6192 // Again, stack arguments may need realignment. In this case both integer and 6193 // floating-point ones might be affected. 6194 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6195 int Align = TyAlign.getQuantity(); 6196 6197 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6198 6199 OnStackPtr = CGF.Builder.CreateAdd( 6200 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6201 "align_stack"); 6202 OnStackPtr = CGF.Builder.CreateAnd( 6203 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6204 "align_stack"); 6205 6206 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6207 } 6208 Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty, 6209 std::max(CharUnits::fromQuantity(8), TyAlign)); 6210 6211 // All stack slots are multiples of 8 bytes. 6212 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6213 CharUnits StackSize; 6214 if (IsIndirect) 6215 StackSize = StackSlotSize; 6216 else 6217 StackSize = TySize.alignTo(StackSlotSize); 6218 6219 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6220 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6221 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6222 6223 // Write the new value of __stack for the next call to va_arg 6224 CGF.Builder.CreateStore(NewStack, stack_p); 6225 6226 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6227 TySize < StackSlotSize) { 6228 CharUnits Offset = StackSlotSize - TySize; 6229 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6230 } 6231 6232 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6233 6234 CGF.EmitBranch(ContBlock); 6235 6236 //======================================= 6237 // Tidy up 6238 //======================================= 6239 CGF.EmitBlock(ContBlock); 6240 6241 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr, 6242 OnStackBlock, "vaargs.addr"); 6243 6244 if (IsIndirect) 6245 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy, 6246 TyAlign); 6247 6248 return ResAddr; 6249 } 6250 6251 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6252 CodeGenFunction &CGF) const { 6253 // The backend's lowering doesn't support va_arg for aggregates or 6254 // illegal vector types. Lower VAArg here for these cases and use 6255 // the LLVM va_arg instruction for everything else. 6256 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6257 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6258 6259 uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8; 6260 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6261 6262 // Empty records are ignored for parameter passing purposes. 6263 if (isEmptyRecord(getContext(), Ty, true)) { 6264 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), 6265 getVAListElementType(CGF), SlotSize); 6266 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6267 return Addr; 6268 } 6269 6270 // The size of the actual thing passed, which might end up just 6271 // being a pointer for indirect types. 6272 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6273 6274 // Arguments bigger than 16 bytes which aren't homogeneous 6275 // aggregates should be passed indirectly. 6276 bool IsIndirect = false; 6277 if (TyInfo.Width.getQuantity() > 16) { 6278 const Type *Base = nullptr; 6279 uint64_t Members = 0; 6280 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6281 } 6282 6283 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6284 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6285 } 6286 6287 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6288 QualType Ty) const { 6289 bool IsIndirect = false; 6290 6291 // Composites larger than 16 bytes are passed by reference. 6292 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6293 IsIndirect = true; 6294 6295 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6296 CGF.getContext().getTypeInfoInChars(Ty), 6297 CharUnits::fromQuantity(8), 6298 /*allowHigherAlign*/ false); 6299 } 6300 6301 //===----------------------------------------------------------------------===// 6302 // ARM ABI Implementation 6303 //===----------------------------------------------------------------------===// 6304 6305 namespace { 6306 6307 class ARMABIInfo : public ABIInfo { 6308 public: 6309 enum ABIKind { 6310 APCS = 0, 6311 AAPCS = 1, 6312 AAPCS_VFP = 2, 6313 AAPCS16_VFP = 3, 6314 }; 6315 6316 private: 6317 ABIKind Kind; 6318 bool IsFloatABISoftFP; 6319 6320 public: 6321 ARMABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) { 6322 setCCs(); 6323 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6324 CGT.getCodeGenOpts().FloatABI == ""; // default 6325 } 6326 6327 bool isEABI() const { 6328 switch (getTarget().getTriple().getEnvironment()) { 6329 case llvm::Triple::Android: 6330 case llvm::Triple::EABI: 6331 case llvm::Triple::EABIHF: 6332 case llvm::Triple::GNUEABI: 6333 case llvm::Triple::GNUEABIHF: 6334 case llvm::Triple::MuslEABI: 6335 case llvm::Triple::MuslEABIHF: 6336 return true; 6337 default: 6338 return false; 6339 } 6340 } 6341 6342 bool isEABIHF() const { 6343 switch (getTarget().getTriple().getEnvironment()) { 6344 case llvm::Triple::EABIHF: 6345 case llvm::Triple::GNUEABIHF: 6346 case llvm::Triple::MuslEABIHF: 6347 return true; 6348 default: 6349 return false; 6350 } 6351 } 6352 6353 ABIKind getABIKind() const { return Kind; } 6354 6355 bool allowBFloatArgsAndRet() const override { 6356 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6357 } 6358 6359 private: 6360 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6361 unsigned functionCallConv) const; 6362 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6363 unsigned functionCallConv) const; 6364 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6365 uint64_t Members) const; 6366 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6367 bool isIllegalVectorType(QualType Ty) const; 6368 bool containsAnyFP16Vectors(QualType Ty) const; 6369 6370 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6371 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6372 uint64_t Members) const override; 6373 bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override; 6374 6375 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6376 6377 void computeInfo(CGFunctionInfo &FI) const override; 6378 6379 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6380 QualType Ty) const override; 6381 6382 llvm::CallingConv::ID getLLVMDefaultCC() const; 6383 llvm::CallingConv::ID getABIDefaultCC() const; 6384 void setCCs(); 6385 }; 6386 6387 class ARMSwiftABIInfo : public SwiftABIInfo { 6388 public: 6389 explicit ARMSwiftABIInfo(CodeGenTypes &CGT) 6390 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {} 6391 6392 bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy, 6393 unsigned NumElts) const override; 6394 }; 6395 6396 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6397 public: 6398 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6399 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) { 6400 SwiftInfo = std::make_unique<ARMSwiftABIInfo>(CGT); 6401 } 6402 6403 const ARMABIInfo &getABIInfo() const { 6404 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6405 } 6406 6407 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6408 return 13; 6409 } 6410 6411 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6412 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6413 } 6414 6415 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6416 llvm::Value *Address) const override { 6417 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6418 6419 // 0-15 are the 16 integer registers. 6420 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6421 return false; 6422 } 6423 6424 unsigned getSizeOfUnwindException() const override { 6425 if (getABIInfo().isEABI()) return 88; 6426 return TargetCodeGenInfo::getSizeOfUnwindException(); 6427 } 6428 6429 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6430 CodeGen::CodeGenModule &CGM) const override { 6431 if (GV->isDeclaration()) 6432 return; 6433 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6434 if (!FD) 6435 return; 6436 auto *Fn = cast<llvm::Function>(GV); 6437 6438 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6439 ParsedTargetAttr Attr = 6440 CGM.getTarget().parseTargetAttr(TA->getFeaturesStr()); 6441 if (!Attr.BranchProtection.empty()) { 6442 TargetInfo::BranchProtectionInfo BPI; 6443 StringRef DiagMsg; 6444 StringRef Arch = 6445 Attr.CPU.empty() ? CGM.getTarget().getTargetOpts().CPU : Attr.CPU; 6446 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6447 Arch, BPI, DiagMsg)) { 6448 CGM.getDiags().Report( 6449 D->getLocation(), 6450 diag::warn_target_unsupported_branch_protection_attribute) 6451 << Arch; 6452 } else { 6453 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6454 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6455 "Unexpected SignReturnAddressScopeKind"); 6456 Fn->addFnAttr( 6457 "sign-return-address", 6458 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6459 6460 Fn->addFnAttr("branch-target-enforcement", 6461 BPI.BranchTargetEnforcement ? "true" : "false"); 6462 } 6463 } else if (CGM.getLangOpts().BranchTargetEnforcement || 6464 CGM.getLangOpts().hasSignReturnAddress()) { 6465 // If the Branch Protection attribute is missing, validate the target 6466 // Architecture attribute against Branch Protection command line 6467 // settings. 6468 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.CPU)) 6469 CGM.getDiags().Report( 6470 D->getLocation(), 6471 diag::warn_target_unsupported_branch_protection_attribute) 6472 << Attr.CPU; 6473 } 6474 } 6475 6476 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6477 if (!Attr) 6478 return; 6479 6480 const char *Kind; 6481 switch (Attr->getInterrupt()) { 6482 case ARMInterruptAttr::Generic: Kind = ""; break; 6483 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6484 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6485 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6486 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6487 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6488 } 6489 6490 Fn->addFnAttr("interrupt", Kind); 6491 6492 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6493 if (ABI == ARMABIInfo::APCS) 6494 return; 6495 6496 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6497 // however this is not necessarily true on taking any interrupt. Instruct 6498 // the backend to perform a realignment as part of the function prologue. 6499 llvm::AttrBuilder B(Fn->getContext()); 6500 B.addStackAlignmentAttr(8); 6501 Fn->addFnAttrs(B); 6502 } 6503 }; 6504 6505 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6506 public: 6507 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6508 : ARMTargetCodeGenInfo(CGT, K) {} 6509 6510 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6511 CodeGen::CodeGenModule &CGM) const override; 6512 6513 void getDependentLibraryOption(llvm::StringRef Lib, 6514 llvm::SmallString<24> &Opt) const override { 6515 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6516 } 6517 6518 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6519 llvm::SmallString<32> &Opt) const override { 6520 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6521 } 6522 }; 6523 6524 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6525 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6526 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6527 if (GV->isDeclaration()) 6528 return; 6529 addStackProbeTargetAttributes(D, GV, CGM); 6530 } 6531 } 6532 6533 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6534 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6535 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6536 FI.getCallingConvention()); 6537 6538 for (auto &I : FI.arguments()) 6539 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6540 FI.getCallingConvention()); 6541 6542 6543 // Always honor user-specified calling convention. 6544 if (FI.getCallingConvention() != llvm::CallingConv::C) 6545 return; 6546 6547 llvm::CallingConv::ID cc = getRuntimeCC(); 6548 if (cc != llvm::CallingConv::C) 6549 FI.setEffectiveCallingConvention(cc); 6550 } 6551 6552 /// Return the default calling convention that LLVM will use. 6553 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6554 // The default calling convention that LLVM will infer. 6555 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6556 return llvm::CallingConv::ARM_AAPCS_VFP; 6557 else if (isEABI()) 6558 return llvm::CallingConv::ARM_AAPCS; 6559 else 6560 return llvm::CallingConv::ARM_APCS; 6561 } 6562 6563 /// Return the calling convention that our ABI would like us to use 6564 /// as the C calling convention. 6565 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6566 switch (getABIKind()) { 6567 case APCS: return llvm::CallingConv::ARM_APCS; 6568 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6569 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6570 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6571 } 6572 llvm_unreachable("bad ABI kind"); 6573 } 6574 6575 void ARMABIInfo::setCCs() { 6576 assert(getRuntimeCC() == llvm::CallingConv::C); 6577 6578 // Don't muddy up the IR with a ton of explicit annotations if 6579 // they'd just match what LLVM will infer from the triple. 6580 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6581 if (abiCC != getLLVMDefaultCC()) 6582 RuntimeCC = abiCC; 6583 } 6584 6585 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6586 uint64_t Size = getContext().getTypeSize(Ty); 6587 if (Size <= 32) { 6588 llvm::Type *ResType = 6589 llvm::Type::getInt32Ty(getVMContext()); 6590 return ABIArgInfo::getDirect(ResType); 6591 } 6592 if (Size == 64 || Size == 128) { 6593 auto *ResType = llvm::FixedVectorType::get( 6594 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6595 return ABIArgInfo::getDirect(ResType); 6596 } 6597 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6598 } 6599 6600 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6601 const Type *Base, 6602 uint64_t Members) const { 6603 assert(Base && "Base class should be set for homogeneous aggregate"); 6604 // Base can be a floating-point or a vector. 6605 if (const VectorType *VT = Base->getAs<VectorType>()) { 6606 // FP16 vectors should be converted to integer vectors 6607 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6608 uint64_t Size = getContext().getTypeSize(VT); 6609 auto *NewVecTy = llvm::FixedVectorType::get( 6610 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6611 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6612 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6613 } 6614 } 6615 unsigned Align = 0; 6616 if (getABIKind() == ARMABIInfo::AAPCS || 6617 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6618 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6619 // default otherwise. 6620 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6621 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6622 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6623 } 6624 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6625 } 6626 6627 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6628 unsigned functionCallConv) const { 6629 // 6.1.2.1 The following argument types are VFP CPRCs: 6630 // A single-precision floating-point type (including promoted 6631 // half-precision types); A double-precision floating-point type; 6632 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6633 // with a Base Type of a single- or double-precision floating-point type, 6634 // 64-bit containerized vectors or 128-bit containerized vectors with one 6635 // to four Elements. 6636 // Variadic functions should always marshal to the base standard. 6637 bool IsAAPCS_VFP = 6638 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6639 6640 Ty = useFirstFieldIfTransparentUnion(Ty); 6641 6642 // Handle illegal vector types here. 6643 if (isIllegalVectorType(Ty)) 6644 return coerceIllegalVector(Ty); 6645 6646 if (!isAggregateTypeForABI(Ty)) { 6647 // Treat an enum type as its underlying type. 6648 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6649 Ty = EnumTy->getDecl()->getIntegerType(); 6650 } 6651 6652 if (const auto *EIT = Ty->getAs<BitIntType>()) 6653 if (EIT->getNumBits() > 64) 6654 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6655 6656 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6657 : ABIArgInfo::getDirect()); 6658 } 6659 6660 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6661 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6662 } 6663 6664 // Ignore empty records. 6665 if (isEmptyRecord(getContext(), Ty, true)) 6666 return ABIArgInfo::getIgnore(); 6667 6668 if (IsAAPCS_VFP) { 6669 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6670 // into VFP registers. 6671 const Type *Base = nullptr; 6672 uint64_t Members = 0; 6673 if (isHomogeneousAggregate(Ty, Base, Members)) 6674 return classifyHomogeneousAggregate(Ty, Base, Members); 6675 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6676 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6677 // this convention even for a variadic function: the backend will use GPRs 6678 // if needed. 6679 const Type *Base = nullptr; 6680 uint64_t Members = 0; 6681 if (isHomogeneousAggregate(Ty, Base, Members)) { 6682 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6683 llvm::Type *Ty = 6684 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6685 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6686 } 6687 } 6688 6689 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6690 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6691 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6692 // bigger than 128-bits, they get placed in space allocated by the caller, 6693 // and a pointer is passed. 6694 return ABIArgInfo::getIndirect( 6695 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6696 } 6697 6698 // Support byval for ARM. 6699 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6700 // most 8-byte. We realign the indirect argument if type alignment is bigger 6701 // than ABI alignment. 6702 uint64_t ABIAlign = 4; 6703 uint64_t TyAlign; 6704 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6705 getABIKind() == ARMABIInfo::AAPCS) { 6706 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6707 ABIAlign = std::clamp(TyAlign, (uint64_t)4, (uint64_t)8); 6708 } else { 6709 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6710 } 6711 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6712 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6713 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6714 /*ByVal=*/true, 6715 /*Realign=*/TyAlign > ABIAlign); 6716 } 6717 6718 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6719 // same size and alignment. 6720 if (getTarget().isRenderScriptTarget()) { 6721 return coerceToIntArray(Ty, getContext(), getVMContext()); 6722 } 6723 6724 // Otherwise, pass by coercing to a structure of the appropriate size. 6725 llvm::Type* ElemTy; 6726 unsigned SizeRegs; 6727 // FIXME: Try to match the types of the arguments more accurately where 6728 // we can. 6729 if (TyAlign <= 4) { 6730 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6731 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6732 } else { 6733 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6734 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6735 } 6736 6737 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6738 } 6739 6740 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6741 llvm::LLVMContext &VMContext) { 6742 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6743 // is called integer-like if its size is less than or equal to one word, and 6744 // the offset of each of its addressable sub-fields is zero. 6745 6746 uint64_t Size = Context.getTypeSize(Ty); 6747 6748 // Check that the type fits in a word. 6749 if (Size > 32) 6750 return false; 6751 6752 // FIXME: Handle vector types! 6753 if (Ty->isVectorType()) 6754 return false; 6755 6756 // Float types are never treated as "integer like". 6757 if (Ty->isRealFloatingType()) 6758 return false; 6759 6760 // If this is a builtin or pointer type then it is ok. 6761 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6762 return true; 6763 6764 // Small complex integer types are "integer like". 6765 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6766 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6767 6768 // Single element and zero sized arrays should be allowed, by the definition 6769 // above, but they are not. 6770 6771 // Otherwise, it must be a record type. 6772 const RecordType *RT = Ty->getAs<RecordType>(); 6773 if (!RT) return false; 6774 6775 // Ignore records with flexible arrays. 6776 const RecordDecl *RD = RT->getDecl(); 6777 if (RD->hasFlexibleArrayMember()) 6778 return false; 6779 6780 // Check that all sub-fields are at offset 0, and are themselves "integer 6781 // like". 6782 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6783 6784 bool HadField = false; 6785 unsigned idx = 0; 6786 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6787 i != e; ++i, ++idx) { 6788 const FieldDecl *FD = *i; 6789 6790 // Bit-fields are not addressable, we only need to verify they are "integer 6791 // like". We still have to disallow a subsequent non-bitfield, for example: 6792 // struct { int : 0; int x } 6793 // is non-integer like according to gcc. 6794 if (FD->isBitField()) { 6795 if (!RD->isUnion()) 6796 HadField = true; 6797 6798 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6799 return false; 6800 6801 continue; 6802 } 6803 6804 // Check if this field is at offset 0. 6805 if (Layout.getFieldOffset(idx) != 0) 6806 return false; 6807 6808 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6809 return false; 6810 6811 // Only allow at most one field in a structure. This doesn't match the 6812 // wording above, but follows gcc in situations with a field following an 6813 // empty structure. 6814 if (!RD->isUnion()) { 6815 if (HadField) 6816 return false; 6817 6818 HadField = true; 6819 } 6820 } 6821 6822 return true; 6823 } 6824 6825 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6826 unsigned functionCallConv) const { 6827 6828 // Variadic functions should always marshal to the base standard. 6829 bool IsAAPCS_VFP = 6830 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6831 6832 if (RetTy->isVoidType()) 6833 return ABIArgInfo::getIgnore(); 6834 6835 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6836 // Large vector types should be returned via memory. 6837 if (getContext().getTypeSize(RetTy) > 128) 6838 return getNaturalAlignIndirect(RetTy); 6839 // TODO: FP16/BF16 vectors should be converted to integer vectors 6840 // This check is similar to isIllegalVectorType - refactor? 6841 if ((!getTarget().hasLegalHalfType() && 6842 (VT->getElementType()->isFloat16Type() || 6843 VT->getElementType()->isHalfType())) || 6844 (IsFloatABISoftFP && 6845 VT->getElementType()->isBFloat16Type())) 6846 return coerceIllegalVector(RetTy); 6847 } 6848 6849 if (!isAggregateTypeForABI(RetTy)) { 6850 // Treat an enum type as its underlying type. 6851 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6852 RetTy = EnumTy->getDecl()->getIntegerType(); 6853 6854 if (const auto *EIT = RetTy->getAs<BitIntType>()) 6855 if (EIT->getNumBits() > 64) 6856 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6857 6858 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6859 : ABIArgInfo::getDirect(); 6860 } 6861 6862 // Are we following APCS? 6863 if (getABIKind() == APCS) { 6864 if (isEmptyRecord(getContext(), RetTy, false)) 6865 return ABIArgInfo::getIgnore(); 6866 6867 // Complex types are all returned as packed integers. 6868 // 6869 // FIXME: Consider using 2 x vector types if the back end handles them 6870 // correctly. 6871 if (RetTy->isAnyComplexType()) 6872 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6873 getVMContext(), getContext().getTypeSize(RetTy))); 6874 6875 // Integer like structures are returned in r0. 6876 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6877 // Return in the smallest viable integer type. 6878 uint64_t Size = getContext().getTypeSize(RetTy); 6879 if (Size <= 8) 6880 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6881 if (Size <= 16) 6882 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6883 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6884 } 6885 6886 // Otherwise return in memory. 6887 return getNaturalAlignIndirect(RetTy); 6888 } 6889 6890 // Otherwise this is an AAPCS variant. 6891 6892 if (isEmptyRecord(getContext(), RetTy, true)) 6893 return ABIArgInfo::getIgnore(); 6894 6895 // Check for homogeneous aggregates with AAPCS-VFP. 6896 if (IsAAPCS_VFP) { 6897 const Type *Base = nullptr; 6898 uint64_t Members = 0; 6899 if (isHomogeneousAggregate(RetTy, Base, Members)) 6900 return classifyHomogeneousAggregate(RetTy, Base, Members); 6901 } 6902 6903 // Aggregates <= 4 bytes are returned in r0; other aggregates 6904 // are returned indirectly. 6905 uint64_t Size = getContext().getTypeSize(RetTy); 6906 if (Size <= 32) { 6907 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6908 // same size and alignment. 6909 if (getTarget().isRenderScriptTarget()) { 6910 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6911 } 6912 if (getDataLayout().isBigEndian()) 6913 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6914 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6915 6916 // Return in the smallest viable integer type. 6917 if (Size <= 8) 6918 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6919 if (Size <= 16) 6920 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6921 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6922 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6923 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6924 llvm::Type *CoerceTy = 6925 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6926 return ABIArgInfo::getDirect(CoerceTy); 6927 } 6928 6929 return getNaturalAlignIndirect(RetTy); 6930 } 6931 6932 /// isIllegalVector - check whether Ty is an illegal vector type. 6933 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6934 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6935 // On targets that don't support half, fp16 or bfloat, they are expanded 6936 // into float, and we don't want the ABI to depend on whether or not they 6937 // are supported in hardware. Thus return false to coerce vectors of these 6938 // types into integer vectors. 6939 // We do not depend on hasLegalHalfType for bfloat as it is a 6940 // separate IR type. 6941 if ((!getTarget().hasLegalHalfType() && 6942 (VT->getElementType()->isFloat16Type() || 6943 VT->getElementType()->isHalfType())) || 6944 (IsFloatABISoftFP && 6945 VT->getElementType()->isBFloat16Type())) 6946 return true; 6947 if (isAndroid()) { 6948 // Android shipped using Clang 3.1, which supported a slightly different 6949 // vector ABI. The primary differences were that 3-element vector types 6950 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6951 // accepts that legacy behavior for Android only. 6952 // Check whether VT is legal. 6953 unsigned NumElements = VT->getNumElements(); 6954 // NumElements should be power of 2 or equal to 3. 6955 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6956 return true; 6957 } else { 6958 // Check whether VT is legal. 6959 unsigned NumElements = VT->getNumElements(); 6960 uint64_t Size = getContext().getTypeSize(VT); 6961 // NumElements should be power of 2. 6962 if (!llvm::isPowerOf2_32(NumElements)) 6963 return true; 6964 // Size should be greater than 32 bits. 6965 return Size <= 32; 6966 } 6967 } 6968 return false; 6969 } 6970 6971 /// Return true if a type contains any 16-bit floating point vectors 6972 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6973 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6974 uint64_t NElements = AT->getSize().getZExtValue(); 6975 if (NElements == 0) 6976 return false; 6977 return containsAnyFP16Vectors(AT->getElementType()); 6978 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6979 const RecordDecl *RD = RT->getDecl(); 6980 6981 // If this is a C++ record, check the bases first. 6982 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6983 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6984 return containsAnyFP16Vectors(B.getType()); 6985 })) 6986 return true; 6987 6988 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6989 return FD && containsAnyFP16Vectors(FD->getType()); 6990 })) 6991 return true; 6992 6993 return false; 6994 } else { 6995 if (const VectorType *VT = Ty->getAs<VectorType>()) 6996 return (VT->getElementType()->isFloat16Type() || 6997 VT->getElementType()->isBFloat16Type() || 6998 VT->getElementType()->isHalfType()); 6999 return false; 7000 } 7001 } 7002 7003 bool ARMSwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy, 7004 unsigned NumElts) const { 7005 if (!llvm::isPowerOf2_32(NumElts)) 7006 return false; 7007 unsigned size = CGT.getDataLayout().getTypeStoreSizeInBits(EltTy); 7008 if (size > 64) 7009 return false; 7010 if (VectorSize.getQuantity() != 8 && 7011 (VectorSize.getQuantity() != 16 || NumElts == 1)) 7012 return false; 7013 return true; 7014 } 7015 7016 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7017 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 7018 // double, or 64-bit or 128-bit vectors. 7019 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 7020 if (BT->getKind() == BuiltinType::Float || 7021 BT->getKind() == BuiltinType::Double || 7022 BT->getKind() == BuiltinType::LongDouble) 7023 return true; 7024 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 7025 unsigned VecSize = getContext().getTypeSize(VT); 7026 if (VecSize == 64 || VecSize == 128) 7027 return true; 7028 } 7029 return false; 7030 } 7031 7032 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 7033 uint64_t Members) const { 7034 return Members <= 4; 7035 } 7036 7037 bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const { 7038 // AAPCS32 says that the rule for whether something is a homogeneous 7039 // aggregate is applied to the output of the data layout decision. So 7040 // anything that doesn't affect the data layout also does not affect 7041 // homogeneity. In particular, zero-length bitfields don't stop a struct 7042 // being homogeneous. 7043 return true; 7044 } 7045 7046 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 7047 bool acceptHalf) const { 7048 // Give precedence to user-specified calling conventions. 7049 if (callConvention != llvm::CallingConv::C) 7050 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 7051 else 7052 return (getABIKind() == AAPCS_VFP) || 7053 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 7054 } 7055 7056 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7057 QualType Ty) const { 7058 CharUnits SlotSize = CharUnits::fromQuantity(4); 7059 7060 // Empty records are ignored for parameter passing purposes. 7061 if (isEmptyRecord(getContext(), Ty, true)) { 7062 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 7063 auto *Load = CGF.Builder.CreateLoad(VAListAddr); 7064 Address Addr = Address(Load, CGF.Int8Ty, SlotSize); 7065 return CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 7066 } 7067 7068 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 7069 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 7070 7071 // Use indirect if size of the illegal vector is bigger than 16 bytes. 7072 bool IsIndirect = false; 7073 const Type *Base = nullptr; 7074 uint64_t Members = 0; 7075 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 7076 IsIndirect = true; 7077 7078 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 7079 // allocated by the caller. 7080 } else if (TySize > CharUnits::fromQuantity(16) && 7081 getABIKind() == ARMABIInfo::AAPCS16_VFP && 7082 !isHomogeneousAggregate(Ty, Base, Members)) { 7083 IsIndirect = true; 7084 7085 // Otherwise, bound the type's ABI alignment. 7086 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 7087 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 7088 // Our callers should be prepared to handle an under-aligned address. 7089 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 7090 getABIKind() == ARMABIInfo::AAPCS) { 7091 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7092 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7093 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7094 // ARMv7k allows type alignment up to 16 bytes. 7095 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7096 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7097 } else { 7098 TyAlignForABI = CharUnits::fromQuantity(4); 7099 } 7100 7101 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7102 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7103 SlotSize, /*AllowHigherAlign*/ true); 7104 } 7105 7106 //===----------------------------------------------------------------------===// 7107 // NVPTX ABI Implementation 7108 //===----------------------------------------------------------------------===// 7109 7110 namespace { 7111 7112 class NVPTXTargetCodeGenInfo; 7113 7114 class NVPTXABIInfo : public ABIInfo { 7115 NVPTXTargetCodeGenInfo &CGInfo; 7116 7117 public: 7118 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7119 : ABIInfo(CGT), CGInfo(Info) {} 7120 7121 ABIArgInfo classifyReturnType(QualType RetTy) const; 7122 ABIArgInfo classifyArgumentType(QualType Ty) const; 7123 7124 void computeInfo(CGFunctionInfo &FI) const override; 7125 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7126 QualType Ty) const override; 7127 bool isUnsupportedType(QualType T) const; 7128 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7129 }; 7130 7131 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7132 public: 7133 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7134 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7135 7136 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7137 CodeGen::CodeGenModule &M) const override; 7138 bool shouldEmitStaticExternCAliases() const override; 7139 7140 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7141 // On the device side, surface reference is represented as an object handle 7142 // in 64-bit integer. 7143 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7144 } 7145 7146 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7147 // On the device side, texture reference is represented as an object handle 7148 // in 64-bit integer. 7149 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7150 } 7151 7152 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7153 LValue Src) const override { 7154 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7155 return true; 7156 } 7157 7158 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7159 LValue Src) const override { 7160 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7161 return true; 7162 } 7163 7164 private: 7165 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7166 // resulting MDNode to the nvvm.annotations MDNode. 7167 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7168 int Operand); 7169 7170 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7171 LValue Src) { 7172 llvm::Value *Handle = nullptr; 7173 llvm::Constant *C = 7174 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7175 // Lookup `addrspacecast` through the constant pointer if any. 7176 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7177 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7178 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7179 // Load the handle from the specific global variable using 7180 // `nvvm.texsurf.handle.internal` intrinsic. 7181 Handle = CGF.EmitRuntimeCall( 7182 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7183 {GV->getType()}), 7184 {GV}, "texsurf_handle"); 7185 } else 7186 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7187 CGF.EmitStoreOfScalar(Handle, Dst); 7188 } 7189 }; 7190 7191 /// Checks if the type is unsupported directly by the current target. 7192 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7193 ASTContext &Context = getContext(); 7194 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7195 return true; 7196 if (!Context.getTargetInfo().hasFloat128Type() && 7197 (T->isFloat128Type() || 7198 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7199 return true; 7200 if (const auto *EIT = T->getAs<BitIntType>()) 7201 return EIT->getNumBits() > 7202 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7203 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7204 Context.getTypeSize(T) > 64U) 7205 return true; 7206 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7207 return isUnsupportedType(AT->getElementType()); 7208 const auto *RT = T->getAs<RecordType>(); 7209 if (!RT) 7210 return false; 7211 const RecordDecl *RD = RT->getDecl(); 7212 7213 // If this is a C++ record, check the bases first. 7214 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7215 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7216 if (isUnsupportedType(I.getType())) 7217 return true; 7218 7219 for (const FieldDecl *I : RD->fields()) 7220 if (isUnsupportedType(I->getType())) 7221 return true; 7222 return false; 7223 } 7224 7225 /// Coerce the given type into an array with maximum allowed size of elements. 7226 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7227 unsigned MaxSize) const { 7228 // Alignment and Size are measured in bits. 7229 const uint64_t Size = getContext().getTypeSize(Ty); 7230 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7231 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7232 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7233 const uint64_t NumElements = (Size + Div - 1) / Div; 7234 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7235 } 7236 7237 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7238 if (RetTy->isVoidType()) 7239 return ABIArgInfo::getIgnore(); 7240 7241 if (getContext().getLangOpts().OpenMP && 7242 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7243 return coerceToIntArrayWithLimit(RetTy, 64); 7244 7245 // note: this is different from default ABI 7246 if (!RetTy->isScalarType()) 7247 return ABIArgInfo::getDirect(); 7248 7249 // Treat an enum type as its underlying type. 7250 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7251 RetTy = EnumTy->getDecl()->getIntegerType(); 7252 7253 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7254 : ABIArgInfo::getDirect()); 7255 } 7256 7257 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7258 // Treat an enum type as its underlying type. 7259 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7260 Ty = EnumTy->getDecl()->getIntegerType(); 7261 7262 // Return aggregates type as indirect by value 7263 if (isAggregateTypeForABI(Ty)) { 7264 // Under CUDA device compilation, tex/surf builtin types are replaced with 7265 // object types and passed directly. 7266 if (getContext().getLangOpts().CUDAIsDevice) { 7267 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7268 return ABIArgInfo::getDirect( 7269 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7270 if (Ty->isCUDADeviceBuiltinTextureType()) 7271 return ABIArgInfo::getDirect( 7272 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7273 } 7274 return getNaturalAlignIndirect(Ty, /* byval */ true); 7275 } 7276 7277 if (const auto *EIT = Ty->getAs<BitIntType>()) { 7278 if ((EIT->getNumBits() > 128) || 7279 (!getContext().getTargetInfo().hasInt128Type() && 7280 EIT->getNumBits() > 64)) 7281 return getNaturalAlignIndirect(Ty, /* byval */ true); 7282 } 7283 7284 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7285 : ABIArgInfo::getDirect()); 7286 } 7287 7288 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7289 if (!getCXXABI().classifyReturnType(FI)) 7290 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7291 for (auto &I : FI.arguments()) 7292 I.info = classifyArgumentType(I.type); 7293 7294 // Always honor user-specified calling convention. 7295 if (FI.getCallingConvention() != llvm::CallingConv::C) 7296 return; 7297 7298 FI.setEffectiveCallingConvention(getRuntimeCC()); 7299 } 7300 7301 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7302 QualType Ty) const { 7303 llvm_unreachable("NVPTX does not support varargs"); 7304 } 7305 7306 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7307 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7308 if (GV->isDeclaration()) 7309 return; 7310 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7311 if (VD) { 7312 if (M.getLangOpts().CUDA) { 7313 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7314 addNVVMMetadata(GV, "surface", 1); 7315 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7316 addNVVMMetadata(GV, "texture", 1); 7317 return; 7318 } 7319 } 7320 7321 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7322 if (!FD) return; 7323 7324 llvm::Function *F = cast<llvm::Function>(GV); 7325 7326 // Perform special handling in OpenCL mode 7327 if (M.getLangOpts().OpenCL) { 7328 // Use OpenCL function attributes to check for kernel functions 7329 // By default, all functions are device functions 7330 if (FD->hasAttr<OpenCLKernelAttr>()) { 7331 // OpenCL __kernel functions get kernel metadata 7332 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7333 addNVVMMetadata(F, "kernel", 1); 7334 // And kernel functions are not subject to inlining 7335 F->addFnAttr(llvm::Attribute::NoInline); 7336 } 7337 } 7338 7339 // Perform special handling in CUDA mode. 7340 if (M.getLangOpts().CUDA) { 7341 // CUDA __global__ functions get a kernel metadata entry. Since 7342 // __global__ functions cannot be called from the device, we do not 7343 // need to set the noinline attribute. 7344 if (FD->hasAttr<CUDAGlobalAttr>()) { 7345 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7346 addNVVMMetadata(F, "kernel", 1); 7347 } 7348 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7349 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7350 llvm::APSInt MaxThreads(32); 7351 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7352 if (MaxThreads > 0) 7353 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7354 7355 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7356 // not specified in __launch_bounds__ or if the user specified a 0 value, 7357 // we don't have to add a PTX directive. 7358 if (Attr->getMinBlocks()) { 7359 llvm::APSInt MinBlocks(32); 7360 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7361 if (MinBlocks > 0) 7362 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7363 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7364 } 7365 } 7366 } 7367 } 7368 7369 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7370 StringRef Name, int Operand) { 7371 llvm::Module *M = GV->getParent(); 7372 llvm::LLVMContext &Ctx = M->getContext(); 7373 7374 // Get "nvvm.annotations" metadata node 7375 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7376 7377 llvm::Metadata *MDVals[] = { 7378 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7379 llvm::ConstantAsMetadata::get( 7380 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7381 // Append metadata to nvvm.annotations 7382 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7383 } 7384 7385 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7386 return false; 7387 } 7388 } 7389 7390 //===----------------------------------------------------------------------===// 7391 // SystemZ ABI Implementation 7392 //===----------------------------------------------------------------------===// 7393 7394 namespace { 7395 7396 class SystemZABIInfo : public ABIInfo { 7397 bool HasVector; 7398 bool IsSoftFloatABI; 7399 7400 public: 7401 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7402 : ABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7403 7404 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7405 bool isCompoundType(QualType Ty) const; 7406 bool isVectorArgumentType(QualType Ty) const; 7407 bool isFPArgumentType(QualType Ty) const; 7408 QualType GetSingleElementType(QualType Ty) const; 7409 7410 ABIArgInfo classifyReturnType(QualType RetTy) const; 7411 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7412 7413 void computeInfo(CGFunctionInfo &FI) const override; 7414 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7415 QualType Ty) const override; 7416 }; 7417 7418 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7419 ASTContext &Ctx; 7420 7421 const SystemZABIInfo &getABIInfo() const { 7422 return static_cast<const SystemZABIInfo&>(TargetCodeGenInfo::getABIInfo()); 7423 } 7424 7425 // These are used for speeding up the search for a visible vector ABI. 7426 mutable bool HasVisibleVecABIFlag = false; 7427 mutable std::set<const Type *> SeenTypes; 7428 7429 // Returns true (the first time) if Ty is, or is found to include, a vector 7430 // type that exposes the vector ABI. This is any vector >=16 bytes which 7431 // with vector support are aligned to only 8 bytes. When IsParam is true, 7432 // the type belongs to a value as passed between functions. If it is a 7433 // vector <=16 bytes it will be passed in a vector register (if supported). 7434 bool isVectorTypeBased(const Type *Ty, bool IsParam) const; 7435 7436 public: 7437 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7438 : TargetCodeGenInfo( 7439 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)), 7440 Ctx(CGT.getContext()) { 7441 SwiftInfo = 7442 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false); 7443 } 7444 7445 // The vector ABI is different when the vector facility is present and when 7446 // a module e.g. defines an externally visible vector variable, a flag 7447 // indicating a visible vector ABI is added. Eventually this will result in 7448 // a GNU attribute indicating the vector ABI of the module. Ty is the type 7449 // of a variable or function parameter that is globally visible. 7450 void handleExternallyVisibleObjABI(const Type *Ty, CodeGen::CodeGenModule &M, 7451 bool IsParam) const { 7452 if (!HasVisibleVecABIFlag && isVectorTypeBased(Ty, IsParam)) { 7453 M.getModule().addModuleFlag(llvm::Module::Warning, 7454 "s390x-visible-vector-ABI", 1); 7455 HasVisibleVecABIFlag = true; 7456 } 7457 } 7458 7459 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7460 CodeGen::CodeGenModule &M) const override { 7461 if (!D) 7462 return; 7463 7464 // Check if the vector ABI becomes visible by an externally visible 7465 // variable or function. 7466 if (const auto *VD = dyn_cast<VarDecl>(D)) { 7467 if (VD->isExternallyVisible()) 7468 handleExternallyVisibleObjABI(VD->getType().getTypePtr(), M, 7469 /*IsParam*/false); 7470 } 7471 else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7472 if (FD->isExternallyVisible()) 7473 handleExternallyVisibleObjABI(FD->getType().getTypePtr(), M, 7474 /*IsParam*/false); 7475 } 7476 } 7477 7478 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7479 CGBuilderTy &Builder, 7480 CodeGenModule &CGM) const override { 7481 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7482 // Only use TDC in constrained FP mode. 7483 if (!Builder.getIsFPConstrained()) 7484 return nullptr; 7485 7486 llvm::Type *Ty = V->getType(); 7487 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7488 llvm::Module &M = CGM.getModule(); 7489 auto &Ctx = M.getContext(); 7490 llvm::Function *TDCFunc = 7491 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7492 unsigned TDCBits = 0; 7493 switch (BuiltinID) { 7494 case Builtin::BI__builtin_isnan: 7495 TDCBits = 0xf; 7496 break; 7497 case Builtin::BIfinite: 7498 case Builtin::BI__finite: 7499 case Builtin::BIfinitef: 7500 case Builtin::BI__finitef: 7501 case Builtin::BIfinitel: 7502 case Builtin::BI__finitel: 7503 case Builtin::BI__builtin_isfinite: 7504 TDCBits = 0xfc0; 7505 break; 7506 case Builtin::BI__builtin_isinf: 7507 TDCBits = 0x30; 7508 break; 7509 default: 7510 break; 7511 } 7512 if (TDCBits) 7513 return Builder.CreateCall( 7514 TDCFunc, 7515 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7516 } 7517 return nullptr; 7518 } 7519 }; 7520 } 7521 7522 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7523 // Treat an enum type as its underlying type. 7524 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7525 Ty = EnumTy->getDecl()->getIntegerType(); 7526 7527 // Promotable integer types are required to be promoted by the ABI. 7528 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7529 return true; 7530 7531 if (const auto *EIT = Ty->getAs<BitIntType>()) 7532 if (EIT->getNumBits() < 64) 7533 return true; 7534 7535 // 32-bit values must also be promoted. 7536 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7537 switch (BT->getKind()) { 7538 case BuiltinType::Int: 7539 case BuiltinType::UInt: 7540 return true; 7541 default: 7542 return false; 7543 } 7544 return false; 7545 } 7546 7547 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7548 return (Ty->isAnyComplexType() || 7549 Ty->isVectorType() || 7550 isAggregateTypeForABI(Ty)); 7551 } 7552 7553 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7554 return (HasVector && 7555 Ty->isVectorType() && 7556 getContext().getTypeSize(Ty) <= 128); 7557 } 7558 7559 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7560 if (IsSoftFloatABI) 7561 return false; 7562 7563 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7564 switch (BT->getKind()) { 7565 case BuiltinType::Float: 7566 case BuiltinType::Double: 7567 return true; 7568 default: 7569 return false; 7570 } 7571 7572 return false; 7573 } 7574 7575 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7576 const RecordType *RT = Ty->getAs<RecordType>(); 7577 7578 if (RT && RT->isStructureOrClassType()) { 7579 const RecordDecl *RD = RT->getDecl(); 7580 QualType Found; 7581 7582 // If this is a C++ record, check the bases first. 7583 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7584 if (CXXRD->hasDefinition()) 7585 for (const auto &I : CXXRD->bases()) { 7586 QualType Base = I.getType(); 7587 7588 // Empty bases don't affect things either way. 7589 if (isEmptyRecord(getContext(), Base, true)) 7590 continue; 7591 7592 if (!Found.isNull()) 7593 return Ty; 7594 Found = GetSingleElementType(Base); 7595 } 7596 7597 // Check the fields. 7598 for (const auto *FD : RD->fields()) { 7599 // Unlike isSingleElementStruct(), empty structure and array fields 7600 // do count. So do anonymous bitfields that aren't zero-sized. 7601 7602 // Like isSingleElementStruct(), ignore C++20 empty data members. 7603 if (FD->hasAttr<NoUniqueAddressAttr>() && 7604 isEmptyRecord(getContext(), FD->getType(), true)) 7605 continue; 7606 7607 // Unlike isSingleElementStruct(), arrays do not count. 7608 // Nested structures still do though. 7609 if (!Found.isNull()) 7610 return Ty; 7611 Found = GetSingleElementType(FD->getType()); 7612 } 7613 7614 // Unlike isSingleElementStruct(), trailing padding is allowed. 7615 // An 8-byte aligned struct s { float f; } is passed as a double. 7616 if (!Found.isNull()) 7617 return Found; 7618 } 7619 7620 return Ty; 7621 } 7622 7623 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7624 QualType Ty) const { 7625 // Assume that va_list type is correct; should be pointer to LLVM type: 7626 // struct { 7627 // i64 __gpr; 7628 // i64 __fpr; 7629 // i8 *__overflow_arg_area; 7630 // i8 *__reg_save_area; 7631 // }; 7632 7633 // Every non-vector argument occupies 8 bytes and is passed by preference 7634 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7635 // always passed on the stack. 7636 const SystemZTargetCodeGenInfo &SZCGI = 7637 static_cast<const SystemZTargetCodeGenInfo &>( 7638 CGT.getCGM().getTargetCodeGenInfo()); 7639 Ty = getContext().getCanonicalType(Ty); 7640 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7641 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7642 llvm::Type *DirectTy = ArgTy; 7643 ABIArgInfo AI = classifyArgumentType(Ty); 7644 bool IsIndirect = AI.isIndirect(); 7645 bool InFPRs = false; 7646 bool IsVector = false; 7647 CharUnits UnpaddedSize; 7648 CharUnits DirectAlign; 7649 SZCGI.handleExternallyVisibleObjABI(Ty.getTypePtr(), CGT.getCGM(), 7650 /*IsParam*/true); 7651 if (IsIndirect) { 7652 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7653 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7654 } else { 7655 if (AI.getCoerceToType()) 7656 ArgTy = AI.getCoerceToType(); 7657 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7658 IsVector = ArgTy->isVectorTy(); 7659 UnpaddedSize = TyInfo.Width; 7660 DirectAlign = TyInfo.Align; 7661 } 7662 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7663 if (IsVector && UnpaddedSize > PaddedSize) 7664 PaddedSize = CharUnits::fromQuantity(16); 7665 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7666 7667 CharUnits Padding = (PaddedSize - UnpaddedSize); 7668 7669 llvm::Type *IndexTy = CGF.Int64Ty; 7670 llvm::Value *PaddedSizeV = 7671 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7672 7673 if (IsVector) { 7674 // Work out the address of a vector argument on the stack. 7675 // Vector arguments are always passed in the high bits of a 7676 // single (8 byte) or double (16 byte) stack slot. 7677 Address OverflowArgAreaPtr = 7678 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7679 Address OverflowArgArea = 7680 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7681 CGF.Int8Ty, TyInfo.Align); 7682 Address MemAddr = 7683 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7684 7685 // Update overflow_arg_area_ptr pointer 7686 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP( 7687 OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), 7688 PaddedSizeV, "overflow_arg_area"); 7689 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7690 7691 return MemAddr; 7692 } 7693 7694 assert(PaddedSize.getQuantity() == 8); 7695 7696 unsigned MaxRegs, RegCountField, RegSaveIndex; 7697 CharUnits RegPadding; 7698 if (InFPRs) { 7699 MaxRegs = 4; // Maximum of 4 FPR arguments 7700 RegCountField = 1; // __fpr 7701 RegSaveIndex = 16; // save offset for f0 7702 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7703 } else { 7704 MaxRegs = 5; // Maximum of 5 GPR arguments 7705 RegCountField = 0; // __gpr 7706 RegSaveIndex = 2; // save offset for r2 7707 RegPadding = Padding; // values are passed in the low bits of a GPR 7708 } 7709 7710 Address RegCountPtr = 7711 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7712 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7713 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7714 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7715 "fits_in_regs"); 7716 7717 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7718 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7719 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7720 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7721 7722 // Emit code to load the value if it was passed in registers. 7723 CGF.EmitBlock(InRegBlock); 7724 7725 // Work out the address of an argument register. 7726 llvm::Value *ScaledRegCount = 7727 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7728 llvm::Value *RegBase = 7729 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7730 + RegPadding.getQuantity()); 7731 llvm::Value *RegOffset = 7732 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7733 Address RegSaveAreaPtr = 7734 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7735 llvm::Value *RegSaveArea = 7736 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7737 Address RawRegAddr( 7738 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"), 7739 CGF.Int8Ty, PaddedSize); 7740 Address RegAddr = 7741 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7742 7743 // Update the register count 7744 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7745 llvm::Value *NewRegCount = 7746 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7747 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7748 CGF.EmitBranch(ContBlock); 7749 7750 // Emit code to load the value if it was passed in memory. 7751 CGF.EmitBlock(InMemBlock); 7752 7753 // Work out the address of a stack argument. 7754 Address OverflowArgAreaPtr = 7755 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7756 Address OverflowArgArea = 7757 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7758 CGF.Int8Ty, PaddedSize); 7759 Address RawMemAddr = 7760 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7761 Address MemAddr = 7762 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7763 7764 // Update overflow_arg_area_ptr pointer 7765 llvm::Value *NewOverflowArgArea = 7766 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7767 OverflowArgArea.getPointer(), PaddedSizeV, 7768 "overflow_arg_area"); 7769 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7770 CGF.EmitBranch(ContBlock); 7771 7772 // Return the appropriate result. 7773 CGF.EmitBlock(ContBlock); 7774 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 7775 "va_arg.addr"); 7776 7777 if (IsIndirect) 7778 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy, 7779 TyInfo.Align); 7780 7781 return ResAddr; 7782 } 7783 7784 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7785 if (RetTy->isVoidType()) 7786 return ABIArgInfo::getIgnore(); 7787 if (isVectorArgumentType(RetTy)) 7788 return ABIArgInfo::getDirect(); 7789 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7790 return getNaturalAlignIndirect(RetTy); 7791 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7792 : ABIArgInfo::getDirect()); 7793 } 7794 7795 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7796 // Handle the generic C++ ABI. 7797 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7798 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7799 7800 // Integers and enums are extended to full register width. 7801 if (isPromotableIntegerTypeForABI(Ty)) 7802 return ABIArgInfo::getExtend(Ty); 7803 7804 // Handle vector types and vector-like structure types. Note that 7805 // as opposed to float-like structure types, we do not allow any 7806 // padding for vector-like structures, so verify the sizes match. 7807 uint64_t Size = getContext().getTypeSize(Ty); 7808 QualType SingleElementTy = GetSingleElementType(Ty); 7809 if (isVectorArgumentType(SingleElementTy) && 7810 getContext().getTypeSize(SingleElementTy) == Size) 7811 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7812 7813 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7814 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7815 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7816 7817 // Handle small structures. 7818 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7819 // Structures with flexible arrays have variable length, so really 7820 // fail the size test above. 7821 const RecordDecl *RD = RT->getDecl(); 7822 if (RD->hasFlexibleArrayMember()) 7823 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7824 7825 // The structure is passed as an unextended integer, a float, or a double. 7826 llvm::Type *PassTy; 7827 if (isFPArgumentType(SingleElementTy)) { 7828 assert(Size == 32 || Size == 64); 7829 if (Size == 32) 7830 PassTy = llvm::Type::getFloatTy(getVMContext()); 7831 else 7832 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7833 } else 7834 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7835 return ABIArgInfo::getDirect(PassTy); 7836 } 7837 7838 // Non-structure compounds are passed indirectly. 7839 if (isCompoundType(Ty)) 7840 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7841 7842 return ABIArgInfo::getDirect(nullptr); 7843 } 7844 7845 void SystemZABIInfo::computeInfo(CGFunctionInfo &FI) const { 7846 const SystemZTargetCodeGenInfo &SZCGI = 7847 static_cast<const SystemZTargetCodeGenInfo &>( 7848 CGT.getCGM().getTargetCodeGenInfo()); 7849 if (!getCXXABI().classifyReturnType(FI)) 7850 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7851 unsigned Idx = 0; 7852 for (auto &I : FI.arguments()) { 7853 I.info = classifyArgumentType(I.type); 7854 if (FI.isVariadic() && Idx++ >= FI.getNumRequiredArgs()) 7855 // Check if a vararg vector argument is passed, in which case the 7856 // vector ABI becomes visible as the va_list could be passed on to 7857 // other functions. 7858 SZCGI.handleExternallyVisibleObjABI(I.type.getTypePtr(), CGT.getCGM(), 7859 /*IsParam*/true); 7860 } 7861 } 7862 7863 bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty, 7864 bool IsParam) const { 7865 if (!SeenTypes.insert(Ty).second) 7866 return false; 7867 7868 if (IsParam) { 7869 // A narrow (<16 bytes) vector will as a parameter also expose the ABI as 7870 // it will be passed in a vector register. A wide (>16 bytes) vector will 7871 // be passed via "hidden" pointer where any extra alignment is not 7872 // required (per GCC). 7873 const Type *SingleEltTy = 7874 getABIInfo().GetSingleElementType(QualType(Ty, 0)).getTypePtr(); 7875 bool SingleVecEltStruct = SingleEltTy != Ty && SingleEltTy->isVectorType() && 7876 Ctx.getTypeSize(SingleEltTy) == Ctx.getTypeSize(Ty); 7877 if (Ty->isVectorType() || SingleVecEltStruct) 7878 return Ctx.getTypeSize(Ty) / 8 <= 16; 7879 } 7880 7881 // Assume pointers are dereferenced. 7882 while (Ty->isPointerType() || Ty->isArrayType()) 7883 Ty = Ty->getPointeeOrArrayElementType(); 7884 7885 // Vectors >= 16 bytes expose the ABI through alignment requirements. 7886 if (Ty->isVectorType() && Ctx.getTypeSize(Ty) / 8 >= 16) 7887 return true; 7888 7889 if (const auto *RecordTy = Ty->getAs<RecordType>()) { 7890 const RecordDecl *RD = RecordTy->getDecl(); 7891 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7892 if (CXXRD->hasDefinition()) 7893 for (const auto &I : CXXRD->bases()) 7894 if (isVectorTypeBased(I.getType().getTypePtr(), /*IsParam*/false)) 7895 return true; 7896 for (const auto *FD : RD->fields()) 7897 if (isVectorTypeBased(FD->getType().getTypePtr(), /*IsParam*/false)) 7898 return true; 7899 } 7900 7901 if (const auto *FT = Ty->getAs<FunctionType>()) 7902 if (isVectorTypeBased(FT->getReturnType().getTypePtr(), /*IsParam*/true)) 7903 return true; 7904 if (const FunctionProtoType *Proto = Ty->getAs<FunctionProtoType>()) 7905 for (auto ParamType : Proto->getParamTypes()) 7906 if (isVectorTypeBased(ParamType.getTypePtr(), /*IsParam*/true)) 7907 return true; 7908 7909 return false; 7910 } 7911 7912 //===----------------------------------------------------------------------===// 7913 // MSP430 ABI Implementation 7914 //===----------------------------------------------------------------------===// 7915 7916 namespace { 7917 7918 class MSP430ABIInfo : public DefaultABIInfo { 7919 static ABIArgInfo complexArgInfo() { 7920 ABIArgInfo Info = ABIArgInfo::getDirect(); 7921 Info.setCanBeFlattened(false); 7922 return Info; 7923 } 7924 7925 public: 7926 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7927 7928 ABIArgInfo classifyReturnType(QualType RetTy) const { 7929 if (RetTy->isAnyComplexType()) 7930 return complexArgInfo(); 7931 7932 return DefaultABIInfo::classifyReturnType(RetTy); 7933 } 7934 7935 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7936 if (RetTy->isAnyComplexType()) 7937 return complexArgInfo(); 7938 7939 return DefaultABIInfo::classifyArgumentType(RetTy); 7940 } 7941 7942 // Just copy the original implementations because 7943 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7944 void computeInfo(CGFunctionInfo &FI) const override { 7945 if (!getCXXABI().classifyReturnType(FI)) 7946 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7947 for (auto &I : FI.arguments()) 7948 I.info = classifyArgumentType(I.type); 7949 } 7950 7951 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7952 QualType Ty) const override { 7953 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7954 } 7955 }; 7956 7957 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7958 public: 7959 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7960 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7961 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7962 CodeGen::CodeGenModule &M) const override; 7963 }; 7964 7965 } 7966 7967 void MSP430TargetCodeGenInfo::setTargetAttributes( 7968 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7969 if (GV->isDeclaration()) 7970 return; 7971 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7972 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7973 if (!InterruptAttr) 7974 return; 7975 7976 // Handle 'interrupt' attribute: 7977 llvm::Function *F = cast<llvm::Function>(GV); 7978 7979 // Step 1: Set ISR calling convention. 7980 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7981 7982 // Step 2: Add attributes goodness. 7983 F->addFnAttr(llvm::Attribute::NoInline); 7984 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7985 } 7986 } 7987 7988 //===----------------------------------------------------------------------===// 7989 // MIPS ABI Implementation. This works for both little-endian and 7990 // big-endian variants. 7991 //===----------------------------------------------------------------------===// 7992 7993 namespace { 7994 class MipsABIInfo : public ABIInfo { 7995 bool IsO32; 7996 const unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7997 void CoerceToIntArgs(uint64_t TySize, 7998 SmallVectorImpl<llvm::Type *> &ArgList) const; 7999 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 8000 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 8001 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 8002 public: 8003 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 8004 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 8005 StackAlignInBytes(IsO32 ? 8 : 16) {} 8006 8007 ABIArgInfo classifyReturnType(QualType RetTy) const; 8008 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 8009 void computeInfo(CGFunctionInfo &FI) const override; 8010 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8011 QualType Ty) const override; 8012 ABIArgInfo extendType(QualType Ty) const; 8013 }; 8014 8015 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 8016 unsigned SizeOfUnwindException; 8017 public: 8018 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 8019 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 8020 SizeOfUnwindException(IsO32 ? 24 : 32) {} 8021 8022 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 8023 return 29; 8024 } 8025 8026 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8027 CodeGen::CodeGenModule &CGM) const override { 8028 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8029 if (!FD) return; 8030 llvm::Function *Fn = cast<llvm::Function>(GV); 8031 8032 if (FD->hasAttr<MipsLongCallAttr>()) 8033 Fn->addFnAttr("long-call"); 8034 else if (FD->hasAttr<MipsShortCallAttr>()) 8035 Fn->addFnAttr("short-call"); 8036 8037 // Other attributes do not have a meaning for declarations. 8038 if (GV->isDeclaration()) 8039 return; 8040 8041 if (FD->hasAttr<Mips16Attr>()) { 8042 Fn->addFnAttr("mips16"); 8043 } 8044 else if (FD->hasAttr<NoMips16Attr>()) { 8045 Fn->addFnAttr("nomips16"); 8046 } 8047 8048 if (FD->hasAttr<MicroMipsAttr>()) 8049 Fn->addFnAttr("micromips"); 8050 else if (FD->hasAttr<NoMicroMipsAttr>()) 8051 Fn->addFnAttr("nomicromips"); 8052 8053 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 8054 if (!Attr) 8055 return; 8056 8057 const char *Kind; 8058 switch (Attr->getInterrupt()) { 8059 case MipsInterruptAttr::eic: Kind = "eic"; break; 8060 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 8061 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 8062 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 8063 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 8064 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 8065 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 8066 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 8067 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 8068 } 8069 8070 Fn->addFnAttr("interrupt", Kind); 8071 8072 } 8073 8074 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8075 llvm::Value *Address) const override; 8076 8077 unsigned getSizeOfUnwindException() const override { 8078 return SizeOfUnwindException; 8079 } 8080 }; 8081 } 8082 8083 void MipsABIInfo::CoerceToIntArgs( 8084 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 8085 llvm::IntegerType *IntTy = 8086 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 8087 8088 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 8089 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 8090 ArgList.push_back(IntTy); 8091 8092 // If necessary, add one more integer type to ArgList. 8093 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 8094 8095 if (R) 8096 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 8097 } 8098 8099 // In N32/64, an aligned double precision floating point field is passed in 8100 // a register. 8101 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 8102 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 8103 8104 if (IsO32) { 8105 CoerceToIntArgs(TySize, ArgList); 8106 return llvm::StructType::get(getVMContext(), ArgList); 8107 } 8108 8109 if (Ty->isComplexType()) 8110 return CGT.ConvertType(Ty); 8111 8112 const RecordType *RT = Ty->getAs<RecordType>(); 8113 8114 // Unions/vectors are passed in integer registers. 8115 if (!RT || !RT->isStructureOrClassType()) { 8116 CoerceToIntArgs(TySize, ArgList); 8117 return llvm::StructType::get(getVMContext(), ArgList); 8118 } 8119 8120 const RecordDecl *RD = RT->getDecl(); 8121 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8122 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 8123 8124 uint64_t LastOffset = 0; 8125 unsigned idx = 0; 8126 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 8127 8128 // Iterate over fields in the struct/class and check if there are any aligned 8129 // double fields. 8130 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 8131 i != e; ++i, ++idx) { 8132 const QualType Ty = i->getType(); 8133 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 8134 8135 if (!BT || BT->getKind() != BuiltinType::Double) 8136 continue; 8137 8138 uint64_t Offset = Layout.getFieldOffset(idx); 8139 if (Offset % 64) // Ignore doubles that are not aligned. 8140 continue; 8141 8142 // Add ((Offset - LastOffset) / 64) args of type i64. 8143 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 8144 ArgList.push_back(I64); 8145 8146 // Add double type. 8147 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 8148 LastOffset = Offset + 64; 8149 } 8150 8151 CoerceToIntArgs(TySize - LastOffset, IntArgList); 8152 ArgList.append(IntArgList.begin(), IntArgList.end()); 8153 8154 return llvm::StructType::get(getVMContext(), ArgList); 8155 } 8156 8157 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 8158 uint64_t Offset) const { 8159 if (OrigOffset + MinABIStackAlignInBytes > Offset) 8160 return nullptr; 8161 8162 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 8163 } 8164 8165 ABIArgInfo 8166 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 8167 Ty = useFirstFieldIfTransparentUnion(Ty); 8168 8169 uint64_t OrigOffset = Offset; 8170 uint64_t TySize = getContext().getTypeSize(Ty); 8171 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 8172 8173 Align = std::clamp(Align, (uint64_t)MinABIStackAlignInBytes, 8174 (uint64_t)StackAlignInBytes); 8175 unsigned CurrOffset = llvm::alignTo(Offset, Align); 8176 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 8177 8178 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 8179 // Ignore empty aggregates. 8180 if (TySize == 0) 8181 return ABIArgInfo::getIgnore(); 8182 8183 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8184 Offset = OrigOffset + MinABIStackAlignInBytes; 8185 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8186 } 8187 8188 // If we have reached here, aggregates are passed directly by coercing to 8189 // another structure type. Padding is inserted if the offset of the 8190 // aggregate is unaligned. 8191 ABIArgInfo ArgInfo = 8192 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 8193 getPaddingType(OrigOffset, CurrOffset)); 8194 ArgInfo.setInReg(true); 8195 return ArgInfo; 8196 } 8197 8198 // Treat an enum type as its underlying type. 8199 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8200 Ty = EnumTy->getDecl()->getIntegerType(); 8201 8202 // Make sure we pass indirectly things that are too large. 8203 if (const auto *EIT = Ty->getAs<BitIntType>()) 8204 if (EIT->getNumBits() > 128 || 8205 (EIT->getNumBits() > 64 && 8206 !getContext().getTargetInfo().hasInt128Type())) 8207 return getNaturalAlignIndirect(Ty); 8208 8209 // All integral types are promoted to the GPR width. 8210 if (Ty->isIntegralOrEnumerationType()) 8211 return extendType(Ty); 8212 8213 return ABIArgInfo::getDirect( 8214 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8215 } 8216 8217 llvm::Type* 8218 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8219 const RecordType *RT = RetTy->getAs<RecordType>(); 8220 SmallVector<llvm::Type*, 8> RTList; 8221 8222 if (RT && RT->isStructureOrClassType()) { 8223 const RecordDecl *RD = RT->getDecl(); 8224 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8225 unsigned FieldCnt = Layout.getFieldCount(); 8226 8227 // N32/64 returns struct/classes in floating point registers if the 8228 // following conditions are met: 8229 // 1. The size of the struct/class is no larger than 128-bit. 8230 // 2. The struct/class has one or two fields all of which are floating 8231 // point types. 8232 // 3. The offset of the first field is zero (this follows what gcc does). 8233 // 8234 // Any other composite results are returned in integer registers. 8235 // 8236 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8237 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8238 for (; b != e; ++b) { 8239 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8240 8241 if (!BT || !BT->isFloatingPoint()) 8242 break; 8243 8244 RTList.push_back(CGT.ConvertType(b->getType())); 8245 } 8246 8247 if (b == e) 8248 return llvm::StructType::get(getVMContext(), RTList, 8249 RD->hasAttr<PackedAttr>()); 8250 8251 RTList.clear(); 8252 } 8253 } 8254 8255 CoerceToIntArgs(Size, RTList); 8256 return llvm::StructType::get(getVMContext(), RTList); 8257 } 8258 8259 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8260 uint64_t Size = getContext().getTypeSize(RetTy); 8261 8262 if (RetTy->isVoidType()) 8263 return ABIArgInfo::getIgnore(); 8264 8265 // O32 doesn't treat zero-sized structs differently from other structs. 8266 // However, N32/N64 ignores zero sized return values. 8267 if (!IsO32 && Size == 0) 8268 return ABIArgInfo::getIgnore(); 8269 8270 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8271 if (Size <= 128) { 8272 if (RetTy->isAnyComplexType()) 8273 return ABIArgInfo::getDirect(); 8274 8275 // O32 returns integer vectors in registers and N32/N64 returns all small 8276 // aggregates in registers. 8277 if (!IsO32 || 8278 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8279 ABIArgInfo ArgInfo = 8280 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8281 ArgInfo.setInReg(true); 8282 return ArgInfo; 8283 } 8284 } 8285 8286 return getNaturalAlignIndirect(RetTy); 8287 } 8288 8289 // Treat an enum type as its underlying type. 8290 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8291 RetTy = EnumTy->getDecl()->getIntegerType(); 8292 8293 // Make sure we pass indirectly things that are too large. 8294 if (const auto *EIT = RetTy->getAs<BitIntType>()) 8295 if (EIT->getNumBits() > 128 || 8296 (EIT->getNumBits() > 64 && 8297 !getContext().getTargetInfo().hasInt128Type())) 8298 return getNaturalAlignIndirect(RetTy); 8299 8300 if (isPromotableIntegerTypeForABI(RetTy)) 8301 return ABIArgInfo::getExtend(RetTy); 8302 8303 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8304 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8305 return ABIArgInfo::getSignExtend(RetTy); 8306 8307 return ABIArgInfo::getDirect(); 8308 } 8309 8310 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8311 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8312 if (!getCXXABI().classifyReturnType(FI)) 8313 RetInfo = classifyReturnType(FI.getReturnType()); 8314 8315 // Check if a pointer to an aggregate is passed as a hidden argument. 8316 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8317 8318 for (auto &I : FI.arguments()) 8319 I.info = classifyArgumentType(I.type, Offset); 8320 } 8321 8322 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8323 QualType OrigTy) const { 8324 QualType Ty = OrigTy; 8325 8326 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8327 // Pointers are also promoted in the same way but this only matters for N32. 8328 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8329 unsigned PtrWidth = getTarget().getPointerWidth(LangAS::Default); 8330 bool DidPromote = false; 8331 if ((Ty->isIntegerType() && 8332 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8333 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8334 DidPromote = true; 8335 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8336 Ty->isSignedIntegerType()); 8337 } 8338 8339 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8340 8341 // The alignment of things in the argument area is never larger than 8342 // StackAlignInBytes. 8343 TyInfo.Align = 8344 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8345 8346 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8347 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8348 8349 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8350 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8351 8352 8353 // If there was a promotion, "unpromote" into a temporary. 8354 // TODO: can we just use a pointer into a subset of the original slot? 8355 if (DidPromote) { 8356 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8357 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8358 8359 // Truncate down to the right width. 8360 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8361 : CGF.IntPtrTy); 8362 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8363 if (OrigTy->isPointerType()) 8364 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8365 8366 CGF.Builder.CreateStore(V, Temp); 8367 Addr = Temp; 8368 } 8369 8370 return Addr; 8371 } 8372 8373 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8374 int TySize = getContext().getTypeSize(Ty); 8375 8376 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8377 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8378 return ABIArgInfo::getSignExtend(Ty); 8379 8380 return ABIArgInfo::getExtend(Ty); 8381 } 8382 8383 bool 8384 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8385 llvm::Value *Address) const { 8386 // This information comes from gcc's implementation, which seems to 8387 // as canonical as it gets. 8388 8389 // Everything on MIPS is 4 bytes. Double-precision FP registers 8390 // are aliased to pairs of single-precision FP registers. 8391 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8392 8393 // 0-31 are the general purpose registers, $0 - $31. 8394 // 32-63 are the floating-point registers, $f0 - $f31. 8395 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8396 // 66 is the (notional, I think) register for signal-handler return. 8397 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8398 8399 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8400 // They are one bit wide and ignored here. 8401 8402 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8403 // (coprocessor 1 is the FP unit) 8404 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8405 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8406 // 176-181 are the DSP accumulator registers. 8407 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8408 return false; 8409 } 8410 8411 //===----------------------------------------------------------------------===// 8412 // M68k ABI Implementation 8413 //===----------------------------------------------------------------------===// 8414 8415 namespace { 8416 8417 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8418 public: 8419 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8420 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8421 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8422 CodeGen::CodeGenModule &M) const override; 8423 }; 8424 8425 } // namespace 8426 8427 void M68kTargetCodeGenInfo::setTargetAttributes( 8428 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8429 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8430 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8431 // Handle 'interrupt' attribute: 8432 llvm::Function *F = cast<llvm::Function>(GV); 8433 8434 // Step 1: Set ISR calling convention. 8435 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8436 8437 // Step 2: Add attributes goodness. 8438 F->addFnAttr(llvm::Attribute::NoInline); 8439 8440 // Step 3: Emit ISR vector alias. 8441 unsigned Num = attr->getNumber() / 2; 8442 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8443 "__isr_" + Twine(Num), F); 8444 } 8445 } 8446 } 8447 8448 //===----------------------------------------------------------------------===// 8449 // AVR ABI Implementation. Documented at 8450 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8451 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8452 //===----------------------------------------------------------------------===// 8453 8454 namespace { 8455 class AVRABIInfo : public DefaultABIInfo { 8456 private: 8457 // The total amount of registers can be used to pass parameters. It is 18 on 8458 // AVR, or 6 on AVRTiny. 8459 const unsigned ParamRegs; 8460 // The total amount of registers can be used to pass return value. It is 8 on 8461 // AVR, or 4 on AVRTiny. 8462 const unsigned RetRegs; 8463 8464 public: 8465 AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8466 : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {} 8467 8468 ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const { 8469 // On AVR, a return struct with size less than or equals to 8 bytes is 8470 // returned directly via registers R18-R25. On AVRTiny, a return struct 8471 // with size less than or equals to 4 bytes is returned directly via 8472 // registers R22-R25. 8473 if (isAggregateTypeForABI(Ty) && 8474 getContext().getTypeSize(Ty) <= RetRegs * 8) 8475 return ABIArgInfo::getDirect(); 8476 // A return value (struct or scalar) with larger size is returned via a 8477 // stack slot, along with a pointer as the function's implicit argument. 8478 if (getContext().getTypeSize(Ty) > RetRegs * 8) { 8479 LargeRet = true; 8480 return getNaturalAlignIndirect(Ty); 8481 } 8482 // An i8 return value should not be extended to i16, since AVR has 8-bit 8483 // registers. 8484 if (Ty->isIntegralOrEnumerationType() && getContext().getTypeSize(Ty) <= 8) 8485 return ABIArgInfo::getDirect(); 8486 // Otherwise we follow the default way which is compatible. 8487 return DefaultABIInfo::classifyReturnType(Ty); 8488 } 8489 8490 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const { 8491 unsigned TySize = getContext().getTypeSize(Ty); 8492 8493 // An int8 type argument always costs two registers like an int16. 8494 if (TySize == 8 && NumRegs >= 2) { 8495 NumRegs -= 2; 8496 return ABIArgInfo::getExtend(Ty); 8497 } 8498 8499 // If the argument size is an odd number of bytes, round up the size 8500 // to the next even number. 8501 TySize = llvm::alignTo(TySize, 16); 8502 8503 // Any type including an array/struct type can be passed in rgisters, 8504 // if there are enough registers left. 8505 if (TySize <= NumRegs * 8) { 8506 NumRegs -= TySize / 8; 8507 return ABIArgInfo::getDirect(); 8508 } 8509 8510 // An argument is passed either completely in registers or completely in 8511 // memory. Since there are not enough registers left, current argument 8512 // and all other unprocessed arguments should be passed in memory. 8513 // However we still need to return `ABIArgInfo::getDirect()` other than 8514 // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot 8515 // will be allocated, so the stack frame layout will be incompatible with 8516 // avr-gcc. 8517 NumRegs = 0; 8518 return ABIArgInfo::getDirect(); 8519 } 8520 8521 void computeInfo(CGFunctionInfo &FI) const override { 8522 // Decide the return type. 8523 bool LargeRet = false; 8524 if (!getCXXABI().classifyReturnType(FI)) 8525 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet); 8526 8527 // Decide each argument type. The total number of registers can be used for 8528 // arguments depends on several factors: 8529 // 1. Arguments of varargs functions are passed on the stack. This applies 8530 // even to the named arguments. So no register can be used. 8531 // 2. Total 18 registers can be used on avr and 6 ones on avrtiny. 8532 // 3. If the return type is a struct with too large size, two registers 8533 // (out of 18/6) will be cost as an implicit pointer argument. 8534 unsigned NumRegs = ParamRegs; 8535 if (FI.isVariadic()) 8536 NumRegs = 0; 8537 else if (LargeRet) 8538 NumRegs -= 2; 8539 for (auto &I : FI.arguments()) 8540 I.info = classifyArgumentType(I.type, NumRegs); 8541 } 8542 }; 8543 8544 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8545 public: 8546 AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) 8547 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {} 8548 8549 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8550 const VarDecl *D) const override { 8551 // Check if global/static variable is defined in address space 8552 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) 8553 // but not constant. 8554 if (D) { 8555 LangAS AS = D->getType().getAddressSpace(); 8556 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && 8557 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) 8558 CGM.getDiags().Report(D->getLocation(), 8559 diag::err_verify_nonconst_addrspace) 8560 << "__flash*"; 8561 } 8562 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8563 } 8564 8565 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8566 CodeGen::CodeGenModule &CGM) const override { 8567 if (GV->isDeclaration()) 8568 return; 8569 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8570 if (!FD) return; 8571 auto *Fn = cast<llvm::Function>(GV); 8572 8573 if (FD->getAttr<AVRInterruptAttr>()) 8574 Fn->addFnAttr("interrupt"); 8575 8576 if (FD->getAttr<AVRSignalAttr>()) 8577 Fn->addFnAttr("signal"); 8578 } 8579 }; 8580 } 8581 8582 //===----------------------------------------------------------------------===// 8583 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8584 // Currently subclassed only to implement custom OpenCL C function attribute 8585 // handling. 8586 //===----------------------------------------------------------------------===// 8587 8588 namespace { 8589 8590 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8591 public: 8592 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8593 : DefaultTargetCodeGenInfo(CGT) {} 8594 8595 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8596 CodeGen::CodeGenModule &M) const override; 8597 }; 8598 8599 void TCETargetCodeGenInfo::setTargetAttributes( 8600 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8601 if (GV->isDeclaration()) 8602 return; 8603 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8604 if (!FD) return; 8605 8606 llvm::Function *F = cast<llvm::Function>(GV); 8607 8608 if (M.getLangOpts().OpenCL) { 8609 if (FD->hasAttr<OpenCLKernelAttr>()) { 8610 // OpenCL C Kernel functions are not subject to inlining 8611 F->addFnAttr(llvm::Attribute::NoInline); 8612 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8613 if (Attr) { 8614 // Convert the reqd_work_group_size() attributes to metadata. 8615 llvm::LLVMContext &Context = F->getContext(); 8616 llvm::NamedMDNode *OpenCLMetadata = 8617 M.getModule().getOrInsertNamedMetadata( 8618 "opencl.kernel_wg_size_info"); 8619 8620 SmallVector<llvm::Metadata *, 5> Operands; 8621 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8622 8623 Operands.push_back( 8624 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8625 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8626 Operands.push_back( 8627 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8628 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8629 Operands.push_back( 8630 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8631 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8632 8633 // Add a boolean constant operand for "required" (true) or "hint" 8634 // (false) for implementing the work_group_size_hint attr later. 8635 // Currently always true as the hint is not yet implemented. 8636 Operands.push_back( 8637 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8638 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8639 } 8640 } 8641 } 8642 } 8643 8644 } 8645 8646 //===----------------------------------------------------------------------===// 8647 // Hexagon ABI Implementation 8648 //===----------------------------------------------------------------------===// 8649 8650 namespace { 8651 8652 class HexagonABIInfo : public DefaultABIInfo { 8653 public: 8654 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8655 8656 private: 8657 ABIArgInfo classifyReturnType(QualType RetTy) const; 8658 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8659 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8660 8661 void computeInfo(CGFunctionInfo &FI) const override; 8662 8663 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8664 QualType Ty) const override; 8665 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8666 QualType Ty) const; 8667 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8668 QualType Ty) const; 8669 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8670 QualType Ty) const; 8671 }; 8672 8673 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8674 public: 8675 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8676 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8677 8678 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8679 return 29; 8680 } 8681 8682 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8683 CodeGen::CodeGenModule &GCM) const override { 8684 if (GV->isDeclaration()) 8685 return; 8686 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8687 if (!FD) 8688 return; 8689 } 8690 }; 8691 8692 } // namespace 8693 8694 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8695 unsigned RegsLeft = 6; 8696 if (!getCXXABI().classifyReturnType(FI)) 8697 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8698 for (auto &I : FI.arguments()) 8699 I.info = classifyArgumentType(I.type, &RegsLeft); 8700 } 8701 8702 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8703 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8704 " through registers"); 8705 8706 if (*RegsLeft == 0) 8707 return false; 8708 8709 if (Size <= 32) { 8710 (*RegsLeft)--; 8711 return true; 8712 } 8713 8714 if (2 <= (*RegsLeft & (~1U))) { 8715 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8716 return true; 8717 } 8718 8719 // Next available register was r5 but candidate was greater than 32-bits so it 8720 // has to go on the stack. However we still consume r5 8721 if (*RegsLeft == 1) 8722 *RegsLeft = 0; 8723 8724 return false; 8725 } 8726 8727 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8728 unsigned *RegsLeft) const { 8729 if (!isAggregateTypeForABI(Ty)) { 8730 // Treat an enum type as its underlying type. 8731 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8732 Ty = EnumTy->getDecl()->getIntegerType(); 8733 8734 uint64_t Size = getContext().getTypeSize(Ty); 8735 if (Size <= 64) 8736 HexagonAdjustRegsLeft(Size, RegsLeft); 8737 8738 if (Size > 64 && Ty->isBitIntType()) 8739 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8740 8741 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8742 : ABIArgInfo::getDirect(); 8743 } 8744 8745 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8746 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8747 8748 // Ignore empty records. 8749 if (isEmptyRecord(getContext(), Ty, true)) 8750 return ABIArgInfo::getIgnore(); 8751 8752 uint64_t Size = getContext().getTypeSize(Ty); 8753 unsigned Align = getContext().getTypeAlign(Ty); 8754 8755 if (Size > 64) 8756 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8757 8758 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8759 Align = Size <= 32 ? 32 : 64; 8760 if (Size <= Align) { 8761 // Pass in the smallest viable integer type. 8762 if (!llvm::isPowerOf2_64(Size)) 8763 Size = llvm::NextPowerOf2(Size); 8764 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8765 } 8766 return DefaultABIInfo::classifyArgumentType(Ty); 8767 } 8768 8769 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8770 if (RetTy->isVoidType()) 8771 return ABIArgInfo::getIgnore(); 8772 8773 const TargetInfo &T = CGT.getTarget(); 8774 uint64_t Size = getContext().getTypeSize(RetTy); 8775 8776 if (RetTy->getAs<VectorType>()) { 8777 // HVX vectors are returned in vector registers or register pairs. 8778 if (T.hasFeature("hvx")) { 8779 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8780 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8781 if (Size == VecSize || Size == 2*VecSize) 8782 return ABIArgInfo::getDirectInReg(); 8783 } 8784 // Large vector types should be returned via memory. 8785 if (Size > 64) 8786 return getNaturalAlignIndirect(RetTy); 8787 } 8788 8789 if (!isAggregateTypeForABI(RetTy)) { 8790 // Treat an enum type as its underlying type. 8791 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8792 RetTy = EnumTy->getDecl()->getIntegerType(); 8793 8794 if (Size > 64 && RetTy->isBitIntType()) 8795 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8796 8797 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8798 : ABIArgInfo::getDirect(); 8799 } 8800 8801 if (isEmptyRecord(getContext(), RetTy, true)) 8802 return ABIArgInfo::getIgnore(); 8803 8804 // Aggregates <= 8 bytes are returned in registers, other aggregates 8805 // are returned indirectly. 8806 if (Size <= 64) { 8807 // Return in the smallest viable integer type. 8808 if (!llvm::isPowerOf2_64(Size)) 8809 Size = llvm::NextPowerOf2(Size); 8810 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8811 } 8812 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8813 } 8814 8815 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8816 Address VAListAddr, 8817 QualType Ty) const { 8818 // Load the overflow area pointer. 8819 Address __overflow_area_pointer_p = 8820 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8821 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8822 __overflow_area_pointer_p, "__overflow_area_pointer"); 8823 8824 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8825 if (Align > 4) { 8826 // Alignment should be a power of 2. 8827 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8828 8829 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8830 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8831 8832 // Add offset to the current pointer to access the argument. 8833 __overflow_area_pointer = 8834 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8835 llvm::Value *AsInt = 8836 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8837 8838 // Create a mask which should be "AND"ed 8839 // with (overflow_arg_area + align - 1) 8840 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8841 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8842 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8843 "__overflow_area_pointer.align"); 8844 } 8845 8846 // Get the type of the argument from memory and bitcast 8847 // overflow area pointer to the argument type. 8848 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8849 Address AddrTyped = CGF.Builder.CreateElementBitCast( 8850 Address(__overflow_area_pointer, CGF.Int8Ty, 8851 CharUnits::fromQuantity(Align)), 8852 PTy); 8853 8854 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8855 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8856 8857 __overflow_area_pointer = CGF.Builder.CreateGEP( 8858 CGF.Int8Ty, __overflow_area_pointer, 8859 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8860 "__overflow_area_pointer.next"); 8861 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8862 8863 return AddrTyped; 8864 } 8865 8866 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8867 Address VAListAddr, 8868 QualType Ty) const { 8869 // FIXME: Need to handle alignment 8870 llvm::Type *BP = CGF.Int8PtrTy; 8871 CGBuilderTy &Builder = CGF.Builder; 8872 Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap"); 8873 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8874 // Handle address alignment for type alignment > 32 bits 8875 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8876 if (TyAlign > 4) { 8877 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8878 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8879 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8880 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8881 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8882 } 8883 Address AddrTyped = Builder.CreateElementBitCast( 8884 Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)), 8885 CGF.ConvertType(Ty)); 8886 8887 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8888 llvm::Value *NextAddr = Builder.CreateGEP( 8889 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8890 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8891 8892 return AddrTyped; 8893 } 8894 8895 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8896 Address VAListAddr, 8897 QualType Ty) const { 8898 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8899 8900 if (ArgSize > 8) 8901 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8902 8903 // Here we have check if the argument is in register area or 8904 // in overflow area. 8905 // If the saved register area pointer + argsize rounded up to alignment > 8906 // saved register area end pointer, argument is in overflow area. 8907 unsigned RegsLeft = 6; 8908 Ty = CGF.getContext().getCanonicalType(Ty); 8909 (void)classifyArgumentType(Ty, &RegsLeft); 8910 8911 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8912 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8913 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8914 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8915 8916 // Get rounded size of the argument.GCC does not allow vararg of 8917 // size < 4 bytes. We follow the same logic here. 8918 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8919 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8920 8921 // Argument may be in saved register area 8922 CGF.EmitBlock(MaybeRegBlock); 8923 8924 // Load the current saved register area pointer. 8925 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8926 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8927 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8928 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8929 8930 // Load the saved register area end pointer. 8931 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8932 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8933 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8934 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8935 8936 // If the size of argument is > 4 bytes, check if the stack 8937 // location is aligned to 8 bytes 8938 if (ArgAlign > 4) { 8939 8940 llvm::Value *__current_saved_reg_area_pointer_int = 8941 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8942 CGF.Int32Ty); 8943 8944 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8945 __current_saved_reg_area_pointer_int, 8946 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8947 "align_current_saved_reg_area_pointer"); 8948 8949 __current_saved_reg_area_pointer_int = 8950 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8951 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8952 "align_current_saved_reg_area_pointer"); 8953 8954 __current_saved_reg_area_pointer = 8955 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8956 __current_saved_reg_area_pointer->getType(), 8957 "align_current_saved_reg_area_pointer"); 8958 } 8959 8960 llvm::Value *__new_saved_reg_area_pointer = 8961 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8962 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8963 "__new_saved_reg_area_pointer"); 8964 8965 llvm::Value *UsingStack = nullptr; 8966 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8967 __saved_reg_area_end_pointer); 8968 8969 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8970 8971 // Argument in saved register area 8972 // Implement the block where argument is in register saved area 8973 CGF.EmitBlock(InRegBlock); 8974 8975 llvm::Type *PTy = CGF.ConvertType(Ty); 8976 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8977 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8978 8979 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8980 __current_saved_reg_area_pointer_p); 8981 8982 CGF.EmitBranch(ContBlock); 8983 8984 // Argument in overflow area 8985 // Implement the block where the argument is in overflow area. 8986 CGF.EmitBlock(OnStackBlock); 8987 8988 // Load the overflow area pointer 8989 Address __overflow_area_pointer_p = 8990 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8991 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8992 __overflow_area_pointer_p, "__overflow_area_pointer"); 8993 8994 // Align the overflow area pointer according to the alignment of the argument 8995 if (ArgAlign > 4) { 8996 llvm::Value *__overflow_area_pointer_int = 8997 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8998 8999 __overflow_area_pointer_int = 9000 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 9001 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 9002 "align_overflow_area_pointer"); 9003 9004 __overflow_area_pointer_int = 9005 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 9006 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 9007 "align_overflow_area_pointer"); 9008 9009 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 9010 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 9011 "align_overflow_area_pointer"); 9012 } 9013 9014 // Get the pointer for next argument in overflow area and store it 9015 // to overflow area pointer. 9016 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 9017 CGF.Int8Ty, __overflow_area_pointer, 9018 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 9019 "__overflow_area_pointer.next"); 9020 9021 CGF.Builder.CreateStore(__new_overflow_area_pointer, 9022 __overflow_area_pointer_p); 9023 9024 CGF.Builder.CreateStore(__new_overflow_area_pointer, 9025 __current_saved_reg_area_pointer_p); 9026 9027 // Bitcast the overflow area pointer to the type of argument. 9028 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 9029 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 9030 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 9031 9032 CGF.EmitBranch(ContBlock); 9033 9034 // Get the correct pointer to load the variable argument 9035 // Implement the ContBlock 9036 CGF.EmitBlock(ContBlock); 9037 9038 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 9039 llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy); 9040 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 9041 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 9042 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 9043 9044 return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign)); 9045 } 9046 9047 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9048 QualType Ty) const { 9049 9050 if (getTarget().getTriple().isMusl()) 9051 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 9052 9053 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 9054 } 9055 9056 //===----------------------------------------------------------------------===// 9057 // Lanai ABI Implementation 9058 //===----------------------------------------------------------------------===// 9059 9060 namespace { 9061 class LanaiABIInfo : public DefaultABIInfo { 9062 public: 9063 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9064 9065 bool shouldUseInReg(QualType Ty, CCState &State) const; 9066 9067 void computeInfo(CGFunctionInfo &FI) const override { 9068 CCState State(FI); 9069 // Lanai uses 4 registers to pass arguments unless the function has the 9070 // regparm attribute set. 9071 if (FI.getHasRegParm()) { 9072 State.FreeRegs = FI.getRegParm(); 9073 } else { 9074 State.FreeRegs = 4; 9075 } 9076 9077 if (!getCXXABI().classifyReturnType(FI)) 9078 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9079 for (auto &I : FI.arguments()) 9080 I.info = classifyArgumentType(I.type, State); 9081 } 9082 9083 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 9084 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 9085 }; 9086 } // end anonymous namespace 9087 9088 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 9089 unsigned Size = getContext().getTypeSize(Ty); 9090 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 9091 9092 if (SizeInRegs == 0) 9093 return false; 9094 9095 if (SizeInRegs > State.FreeRegs) { 9096 State.FreeRegs = 0; 9097 return false; 9098 } 9099 9100 State.FreeRegs -= SizeInRegs; 9101 9102 return true; 9103 } 9104 9105 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 9106 CCState &State) const { 9107 if (!ByVal) { 9108 if (State.FreeRegs) { 9109 --State.FreeRegs; // Non-byval indirects just use one pointer. 9110 return getNaturalAlignIndirectInReg(Ty); 9111 } 9112 return getNaturalAlignIndirect(Ty, false); 9113 } 9114 9115 // Compute the byval alignment. 9116 const unsigned MinABIStackAlignInBytes = 4; 9117 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9118 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9119 /*Realign=*/TypeAlign > 9120 MinABIStackAlignInBytes); 9121 } 9122 9123 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 9124 CCState &State) const { 9125 // Check with the C++ ABI first. 9126 const RecordType *RT = Ty->getAs<RecordType>(); 9127 if (RT) { 9128 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9129 if (RAA == CGCXXABI::RAA_Indirect) { 9130 return getIndirectResult(Ty, /*ByVal=*/false, State); 9131 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 9132 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 9133 } 9134 } 9135 9136 if (isAggregateTypeForABI(Ty)) { 9137 // Structures with flexible arrays are always indirect. 9138 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9139 return getIndirectResult(Ty, /*ByVal=*/true, State); 9140 9141 // Ignore empty structs/unions. 9142 if (isEmptyRecord(getContext(), Ty, true)) 9143 return ABIArgInfo::getIgnore(); 9144 9145 llvm::LLVMContext &LLVMContext = getVMContext(); 9146 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 9147 if (SizeInRegs <= State.FreeRegs) { 9148 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9149 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9150 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9151 State.FreeRegs -= SizeInRegs; 9152 return ABIArgInfo::getDirectInReg(Result); 9153 } else { 9154 State.FreeRegs = 0; 9155 } 9156 return getIndirectResult(Ty, true, State); 9157 } 9158 9159 // Treat an enum type as its underlying type. 9160 if (const auto *EnumTy = Ty->getAs<EnumType>()) 9161 Ty = EnumTy->getDecl()->getIntegerType(); 9162 9163 bool InReg = shouldUseInReg(Ty, State); 9164 9165 // Don't pass >64 bit integers in registers. 9166 if (const auto *EIT = Ty->getAs<BitIntType>()) 9167 if (EIT->getNumBits() > 64) 9168 return getIndirectResult(Ty, /*ByVal=*/true, State); 9169 9170 if (isPromotableIntegerTypeForABI(Ty)) { 9171 if (InReg) 9172 return ABIArgInfo::getDirectInReg(); 9173 return ABIArgInfo::getExtend(Ty); 9174 } 9175 if (InReg) 9176 return ABIArgInfo::getDirectInReg(); 9177 return ABIArgInfo::getDirect(); 9178 } 9179 9180 namespace { 9181 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 9182 public: 9183 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9184 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 9185 }; 9186 } 9187 9188 //===----------------------------------------------------------------------===// 9189 // AMDGPU ABI Implementation 9190 //===----------------------------------------------------------------------===// 9191 9192 namespace { 9193 9194 class AMDGPUABIInfo final : public DefaultABIInfo { 9195 private: 9196 static const unsigned MaxNumRegsForArgsRet = 16; 9197 9198 unsigned numRegsForType(QualType Ty) const; 9199 9200 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 9201 bool isHomogeneousAggregateSmallEnough(const Type *Base, 9202 uint64_t Members) const override; 9203 9204 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 9205 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 9206 unsigned ToAS) const { 9207 // Single value types. 9208 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty); 9209 if (PtrTy && PtrTy->getAddressSpace() == FromAS) 9210 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); 9211 return Ty; 9212 } 9213 9214 public: 9215 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 9216 DefaultABIInfo(CGT) {} 9217 9218 ABIArgInfo classifyReturnType(QualType RetTy) const; 9219 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 9220 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 9221 9222 void computeInfo(CGFunctionInfo &FI) const override; 9223 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9224 QualType Ty) const override; 9225 }; 9226 9227 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 9228 return true; 9229 } 9230 9231 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 9232 const Type *Base, uint64_t Members) const { 9233 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 9234 9235 // Homogeneous Aggregates may occupy at most 16 registers. 9236 return Members * NumRegs <= MaxNumRegsForArgsRet; 9237 } 9238 9239 /// Estimate number of registers the type will use when passed in registers. 9240 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 9241 unsigned NumRegs = 0; 9242 9243 if (const VectorType *VT = Ty->getAs<VectorType>()) { 9244 // Compute from the number of elements. The reported size is based on the 9245 // in-memory size, which includes the padding 4th element for 3-vectors. 9246 QualType EltTy = VT->getElementType(); 9247 unsigned EltSize = getContext().getTypeSize(EltTy); 9248 9249 // 16-bit element vectors should be passed as packed. 9250 if (EltSize == 16) 9251 return (VT->getNumElements() + 1) / 2; 9252 9253 unsigned EltNumRegs = (EltSize + 31) / 32; 9254 return EltNumRegs * VT->getNumElements(); 9255 } 9256 9257 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9258 const RecordDecl *RD = RT->getDecl(); 9259 assert(!RD->hasFlexibleArrayMember()); 9260 9261 for (const FieldDecl *Field : RD->fields()) { 9262 QualType FieldTy = Field->getType(); 9263 NumRegs += numRegsForType(FieldTy); 9264 } 9265 9266 return NumRegs; 9267 } 9268 9269 return (getContext().getTypeSize(Ty) + 31) / 32; 9270 } 9271 9272 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9273 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9274 9275 if (!getCXXABI().classifyReturnType(FI)) 9276 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9277 9278 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9279 for (auto &Arg : FI.arguments()) { 9280 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9281 Arg.info = classifyKernelArgumentType(Arg.type); 9282 } else { 9283 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9284 } 9285 } 9286 } 9287 9288 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9289 QualType Ty) const { 9290 llvm_unreachable("AMDGPU does not support varargs"); 9291 } 9292 9293 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9294 if (isAggregateTypeForABI(RetTy)) { 9295 // Records with non-trivial destructors/copy-constructors should not be 9296 // returned by value. 9297 if (!getRecordArgABI(RetTy, getCXXABI())) { 9298 // Ignore empty structs/unions. 9299 if (isEmptyRecord(getContext(), RetTy, true)) 9300 return ABIArgInfo::getIgnore(); 9301 9302 // Lower single-element structs to just return a regular value. 9303 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9304 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9305 9306 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9307 const RecordDecl *RD = RT->getDecl(); 9308 if (RD->hasFlexibleArrayMember()) 9309 return DefaultABIInfo::classifyReturnType(RetTy); 9310 } 9311 9312 // Pack aggregates <= 4 bytes into single VGPR or pair. 9313 uint64_t Size = getContext().getTypeSize(RetTy); 9314 if (Size <= 16) 9315 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9316 9317 if (Size <= 32) 9318 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9319 9320 if (Size <= 64) { 9321 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9322 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9323 } 9324 9325 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9326 return ABIArgInfo::getDirect(); 9327 } 9328 } 9329 9330 // Otherwise just do the default thing. 9331 return DefaultABIInfo::classifyReturnType(RetTy); 9332 } 9333 9334 /// For kernels all parameters are really passed in a special buffer. It doesn't 9335 /// make sense to pass anything byval, so everything must be direct. 9336 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9337 Ty = useFirstFieldIfTransparentUnion(Ty); 9338 9339 // TODO: Can we omit empty structs? 9340 9341 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9342 Ty = QualType(SeltTy, 0); 9343 9344 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9345 llvm::Type *LTy = OrigLTy; 9346 if (getContext().getLangOpts().HIP) { 9347 LTy = coerceKernelArgumentType( 9348 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9349 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9350 } 9351 9352 // FIXME: Should also use this for OpenCL, but it requires addressing the 9353 // problem of kernels being called. 9354 // 9355 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9356 // to global address space when using byref. This would require implementing a 9357 // new kind of coercion of the in-memory type when for indirect arguments. 9358 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9359 isAggregateTypeForABI(Ty)) { 9360 return ABIArgInfo::getIndirectAliased( 9361 getContext().getTypeAlignInChars(Ty), 9362 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9363 false /*Realign*/, nullptr /*Padding*/); 9364 } 9365 9366 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9367 // individual elements, which confuses the Clover OpenCL backend; therefore we 9368 // have to set it to false here. Other args of getDirect() are just defaults. 9369 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9370 } 9371 9372 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9373 unsigned &NumRegsLeft) const { 9374 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9375 9376 Ty = useFirstFieldIfTransparentUnion(Ty); 9377 9378 if (isAggregateTypeForABI(Ty)) { 9379 // Records with non-trivial destructors/copy-constructors should not be 9380 // passed by value. 9381 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9382 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9383 9384 // Ignore empty structs/unions. 9385 if (isEmptyRecord(getContext(), Ty, true)) 9386 return ABIArgInfo::getIgnore(); 9387 9388 // Lower single-element structs to just pass a regular value. TODO: We 9389 // could do reasonable-size multiple-element structs too, using getExpand(), 9390 // though watch out for things like bitfields. 9391 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9392 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9393 9394 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9395 const RecordDecl *RD = RT->getDecl(); 9396 if (RD->hasFlexibleArrayMember()) 9397 return DefaultABIInfo::classifyArgumentType(Ty); 9398 } 9399 9400 // Pack aggregates <= 8 bytes into single VGPR or pair. 9401 uint64_t Size = getContext().getTypeSize(Ty); 9402 if (Size <= 64) { 9403 unsigned NumRegs = (Size + 31) / 32; 9404 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9405 9406 if (Size <= 16) 9407 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9408 9409 if (Size <= 32) 9410 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9411 9412 // XXX: Should this be i64 instead, and should the limit increase? 9413 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9414 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9415 } 9416 9417 if (NumRegsLeft > 0) { 9418 unsigned NumRegs = numRegsForType(Ty); 9419 if (NumRegsLeft >= NumRegs) { 9420 NumRegsLeft -= NumRegs; 9421 return ABIArgInfo::getDirect(); 9422 } 9423 } 9424 } 9425 9426 // Otherwise just do the default thing. 9427 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9428 if (!ArgInfo.isIndirect()) { 9429 unsigned NumRegs = numRegsForType(Ty); 9430 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9431 } 9432 9433 return ArgInfo; 9434 } 9435 9436 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9437 public: 9438 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9439 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9440 9441 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9442 CodeGenModule &CGM) const; 9443 9444 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9445 CodeGen::CodeGenModule &M) const override; 9446 unsigned getOpenCLKernelCallingConv() const override; 9447 9448 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9449 llvm::PointerType *T, QualType QT) const override; 9450 9451 LangAS getASTAllocaAddressSpace() const override { 9452 return getLangASFromTargetAS( 9453 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9454 } 9455 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9456 const VarDecl *D) const override; 9457 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9458 SyncScope Scope, 9459 llvm::AtomicOrdering Ordering, 9460 llvm::LLVMContext &Ctx) const override; 9461 llvm::Function * 9462 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9463 llvm::Function *BlockInvokeFunc, 9464 llvm::Type *BlockTy) const override; 9465 bool shouldEmitStaticExternCAliases() const override; 9466 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9467 }; 9468 } 9469 9470 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9471 llvm::GlobalValue *GV) { 9472 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9473 return false; 9474 9475 return D->hasAttr<OpenCLKernelAttr>() || 9476 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9477 (isa<VarDecl>(D) && 9478 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9479 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9480 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9481 } 9482 9483 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9484 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9485 const auto *ReqdWGS = 9486 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9487 const bool IsOpenCLKernel = 9488 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9489 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9490 9491 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9492 if (ReqdWGS || FlatWGS) { 9493 unsigned Min = 0; 9494 unsigned Max = 0; 9495 if (FlatWGS) { 9496 Min = FlatWGS->getMin() 9497 ->EvaluateKnownConstInt(M.getContext()) 9498 .getExtValue(); 9499 Max = FlatWGS->getMax() 9500 ->EvaluateKnownConstInt(M.getContext()) 9501 .getExtValue(); 9502 } 9503 if (ReqdWGS && Min == 0 && Max == 0) 9504 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9505 9506 if (Min != 0) { 9507 assert(Min <= Max && "Min must be less than or equal Max"); 9508 9509 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9510 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9511 } else 9512 assert(Max == 0 && "Max must be zero"); 9513 } else if (IsOpenCLKernel || IsHIPKernel) { 9514 // By default, restrict the maximum size to a value specified by 9515 // --gpu-max-threads-per-block=n or its default value for HIP. 9516 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9517 const unsigned DefaultMaxWorkGroupSize = 9518 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9519 : M.getLangOpts().GPUMaxThreadsPerBlock; 9520 std::string AttrVal = 9521 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9522 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9523 } 9524 9525 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9526 unsigned Min = 9527 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9528 unsigned Max = Attr->getMax() ? Attr->getMax() 9529 ->EvaluateKnownConstInt(M.getContext()) 9530 .getExtValue() 9531 : 0; 9532 9533 if (Min != 0) { 9534 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9535 9536 std::string AttrVal = llvm::utostr(Min); 9537 if (Max != 0) 9538 AttrVal = AttrVal + "," + llvm::utostr(Max); 9539 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9540 } else 9541 assert(Max == 0 && "Max must be zero"); 9542 } 9543 9544 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9545 unsigned NumSGPR = Attr->getNumSGPR(); 9546 9547 if (NumSGPR != 0) 9548 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9549 } 9550 9551 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9552 uint32_t NumVGPR = Attr->getNumVGPR(); 9553 9554 if (NumVGPR != 0) 9555 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9556 } 9557 } 9558 9559 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9560 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9561 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9562 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9563 GV->setDSOLocal(true); 9564 } 9565 9566 if (GV->isDeclaration()) 9567 return; 9568 9569 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9570 if (!F) 9571 return; 9572 9573 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9574 if (FD) 9575 setFunctionDeclAttributes(FD, F, M); 9576 9577 const bool IsHIPKernel = 9578 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9579 const bool IsOpenMPkernel = 9580 M.getLangOpts().OpenMPIsDevice && 9581 (F->getCallingConv() == llvm::CallingConv::AMDGPU_KERNEL); 9582 9583 // TODO: This should be moved to language specific attributes instead. 9584 if (IsHIPKernel || IsOpenMPkernel) 9585 F->addFnAttr("uniform-work-group-size", "true"); 9586 9587 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9588 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9589 9590 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9591 F->addFnAttr("amdgpu-ieee", "false"); 9592 } 9593 9594 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9595 return llvm::CallingConv::AMDGPU_KERNEL; 9596 } 9597 9598 // Currently LLVM assumes null pointers always have value 0, 9599 // which results in incorrectly transformed IR. Therefore, instead of 9600 // emitting null pointers in private and local address spaces, a null 9601 // pointer in generic address space is emitted which is casted to a 9602 // pointer in local or private address space. 9603 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9604 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9605 QualType QT) const { 9606 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9607 return llvm::ConstantPointerNull::get(PT); 9608 9609 auto &Ctx = CGM.getContext(); 9610 auto NPT = llvm::PointerType::getWithSamePointeeType( 9611 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9612 return llvm::ConstantExpr::getAddrSpaceCast( 9613 llvm::ConstantPointerNull::get(NPT), PT); 9614 } 9615 9616 LangAS 9617 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9618 const VarDecl *D) const { 9619 assert(!CGM.getLangOpts().OpenCL && 9620 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9621 "Address space agnostic languages only"); 9622 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9623 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9624 if (!D) 9625 return DefaultGlobalAS; 9626 9627 LangAS AddrSpace = D->getType().getAddressSpace(); 9628 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9629 if (AddrSpace != LangAS::Default) 9630 return AddrSpace; 9631 9632 // Only promote to address space 4 if VarDecl has constant initialization. 9633 if (CGM.isTypeConstant(D->getType(), false) && 9634 D->hasConstantInitialization()) { 9635 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9636 return *ConstAS; 9637 } 9638 return DefaultGlobalAS; 9639 } 9640 9641 llvm::SyncScope::ID 9642 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9643 SyncScope Scope, 9644 llvm::AtomicOrdering Ordering, 9645 llvm::LLVMContext &Ctx) const { 9646 std::string Name; 9647 switch (Scope) { 9648 case SyncScope::HIPSingleThread: 9649 Name = "singlethread"; 9650 break; 9651 case SyncScope::HIPWavefront: 9652 case SyncScope::OpenCLSubGroup: 9653 Name = "wavefront"; 9654 break; 9655 case SyncScope::HIPWorkgroup: 9656 case SyncScope::OpenCLWorkGroup: 9657 Name = "workgroup"; 9658 break; 9659 case SyncScope::HIPAgent: 9660 case SyncScope::OpenCLDevice: 9661 Name = "agent"; 9662 break; 9663 case SyncScope::HIPSystem: 9664 case SyncScope::OpenCLAllSVMDevices: 9665 Name = ""; 9666 break; 9667 } 9668 9669 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9670 if (!Name.empty()) 9671 Name = Twine(Twine(Name) + Twine("-")).str(); 9672 9673 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9674 } 9675 9676 return Ctx.getOrInsertSyncScopeID(Name); 9677 } 9678 9679 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9680 return false; 9681 } 9682 9683 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9684 const FunctionType *&FT) const { 9685 FT = getABIInfo().getContext().adjustFunctionType( 9686 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9687 } 9688 9689 //===----------------------------------------------------------------------===// 9690 // SPARC v8 ABI Implementation. 9691 // Based on the SPARC Compliance Definition version 2.4.1. 9692 // 9693 // Ensures that complex values are passed in registers. 9694 // 9695 namespace { 9696 class SparcV8ABIInfo : public DefaultABIInfo { 9697 public: 9698 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9699 9700 private: 9701 ABIArgInfo classifyReturnType(QualType RetTy) const; 9702 void computeInfo(CGFunctionInfo &FI) const override; 9703 }; 9704 } // end anonymous namespace 9705 9706 9707 ABIArgInfo 9708 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9709 if (Ty->isAnyComplexType()) { 9710 return ABIArgInfo::getDirect(); 9711 } 9712 else { 9713 return DefaultABIInfo::classifyReturnType(Ty); 9714 } 9715 } 9716 9717 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9718 9719 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9720 for (auto &Arg : FI.arguments()) 9721 Arg.info = classifyArgumentType(Arg.type); 9722 } 9723 9724 namespace { 9725 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9726 public: 9727 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9728 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9729 9730 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9731 llvm::Value *Address) const override { 9732 int Offset; 9733 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9734 Offset = 12; 9735 else 9736 Offset = 8; 9737 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9738 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9739 } 9740 9741 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9742 llvm::Value *Address) const override { 9743 int Offset; 9744 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9745 Offset = -12; 9746 else 9747 Offset = -8; 9748 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9749 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9750 } 9751 }; 9752 } // end anonymous namespace 9753 9754 //===----------------------------------------------------------------------===// 9755 // SPARC v9 ABI Implementation. 9756 // Based on the SPARC Compliance Definition version 2.4.1. 9757 // 9758 // Function arguments a mapped to a nominal "parameter array" and promoted to 9759 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9760 // the array, structs larger than 16 bytes are passed indirectly. 9761 // 9762 // One case requires special care: 9763 // 9764 // struct mixed { 9765 // int i; 9766 // float f; 9767 // }; 9768 // 9769 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9770 // parameter array, but the int is passed in an integer register, and the float 9771 // is passed in a floating point register. This is represented as two arguments 9772 // with the LLVM IR inreg attribute: 9773 // 9774 // declare void f(i32 inreg %i, float inreg %f) 9775 // 9776 // The code generator will only allocate 4 bytes from the parameter array for 9777 // the inreg arguments. All other arguments are allocated a multiple of 8 9778 // bytes. 9779 // 9780 namespace { 9781 class SparcV9ABIInfo : public ABIInfo { 9782 public: 9783 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9784 9785 private: 9786 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9787 void computeInfo(CGFunctionInfo &FI) const override; 9788 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9789 QualType Ty) const override; 9790 9791 // Coercion type builder for structs passed in registers. The coercion type 9792 // serves two purposes: 9793 // 9794 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9795 // in registers. 9796 // 2. Expose aligned floating point elements as first-level elements, so the 9797 // code generator knows to pass them in floating point registers. 9798 // 9799 // We also compute the InReg flag which indicates that the struct contains 9800 // aligned 32-bit floats. 9801 // 9802 struct CoerceBuilder { 9803 llvm::LLVMContext &Context; 9804 const llvm::DataLayout &DL; 9805 SmallVector<llvm::Type*, 8> Elems; 9806 uint64_t Size; 9807 bool InReg; 9808 9809 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9810 : Context(c), DL(dl), Size(0), InReg(false) {} 9811 9812 // Pad Elems with integers until Size is ToSize. 9813 void pad(uint64_t ToSize) { 9814 assert(ToSize >= Size && "Cannot remove elements"); 9815 if (ToSize == Size) 9816 return; 9817 9818 // Finish the current 64-bit word. 9819 uint64_t Aligned = llvm::alignTo(Size, 64); 9820 if (Aligned > Size && Aligned <= ToSize) { 9821 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9822 Size = Aligned; 9823 } 9824 9825 // Add whole 64-bit words. 9826 while (Size + 64 <= ToSize) { 9827 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9828 Size += 64; 9829 } 9830 9831 // Final in-word padding. 9832 if (Size < ToSize) { 9833 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9834 Size = ToSize; 9835 } 9836 } 9837 9838 // Add a floating point element at Offset. 9839 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9840 // Unaligned floats are treated as integers. 9841 if (Offset % Bits) 9842 return; 9843 // The InReg flag is only required if there are any floats < 64 bits. 9844 if (Bits < 64) 9845 InReg = true; 9846 pad(Offset); 9847 Elems.push_back(Ty); 9848 Size = Offset + Bits; 9849 } 9850 9851 // Add a struct type to the coercion type, starting at Offset (in bits). 9852 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9853 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9854 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9855 llvm::Type *ElemTy = StrTy->getElementType(i); 9856 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9857 switch (ElemTy->getTypeID()) { 9858 case llvm::Type::StructTyID: 9859 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9860 break; 9861 case llvm::Type::FloatTyID: 9862 addFloat(ElemOffset, ElemTy, 32); 9863 break; 9864 case llvm::Type::DoubleTyID: 9865 addFloat(ElemOffset, ElemTy, 64); 9866 break; 9867 case llvm::Type::FP128TyID: 9868 addFloat(ElemOffset, ElemTy, 128); 9869 break; 9870 case llvm::Type::PointerTyID: 9871 if (ElemOffset % 64 == 0) { 9872 pad(ElemOffset); 9873 Elems.push_back(ElemTy); 9874 Size += 64; 9875 } 9876 break; 9877 default: 9878 break; 9879 } 9880 } 9881 } 9882 9883 // Check if Ty is a usable substitute for the coercion type. 9884 bool isUsableType(llvm::StructType *Ty) const { 9885 return llvm::ArrayRef(Elems) == Ty->elements(); 9886 } 9887 9888 // Get the coercion type as a literal struct type. 9889 llvm::Type *getType() const { 9890 if (Elems.size() == 1) 9891 return Elems.front(); 9892 else 9893 return llvm::StructType::get(Context, Elems); 9894 } 9895 }; 9896 }; 9897 } // end anonymous namespace 9898 9899 ABIArgInfo 9900 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9901 if (Ty->isVoidType()) 9902 return ABIArgInfo::getIgnore(); 9903 9904 uint64_t Size = getContext().getTypeSize(Ty); 9905 9906 // Anything too big to fit in registers is passed with an explicit indirect 9907 // pointer / sret pointer. 9908 if (Size > SizeLimit) 9909 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9910 9911 // Treat an enum type as its underlying type. 9912 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9913 Ty = EnumTy->getDecl()->getIntegerType(); 9914 9915 // Integer types smaller than a register are extended. 9916 if (Size < 64 && Ty->isIntegerType()) 9917 return ABIArgInfo::getExtend(Ty); 9918 9919 if (const auto *EIT = Ty->getAs<BitIntType>()) 9920 if (EIT->getNumBits() < 64) 9921 return ABIArgInfo::getExtend(Ty); 9922 9923 // Other non-aggregates go in registers. 9924 if (!isAggregateTypeForABI(Ty)) 9925 return ABIArgInfo::getDirect(); 9926 9927 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9928 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9929 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9930 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9931 9932 // This is a small aggregate type that should be passed in registers. 9933 // Build a coercion type from the LLVM struct type. 9934 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9935 if (!StrTy) 9936 return ABIArgInfo::getDirect(); 9937 9938 CoerceBuilder CB(getVMContext(), getDataLayout()); 9939 CB.addStruct(0, StrTy); 9940 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9941 9942 // Try to use the original type for coercion. 9943 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9944 9945 if (CB.InReg) 9946 return ABIArgInfo::getDirectInReg(CoerceTy); 9947 else 9948 return ABIArgInfo::getDirect(CoerceTy); 9949 } 9950 9951 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9952 QualType Ty) const { 9953 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9954 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9955 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9956 AI.setCoerceToType(ArgTy); 9957 9958 CharUnits SlotSize = CharUnits::fromQuantity(8); 9959 9960 CGBuilderTy &Builder = CGF.Builder; 9961 Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"), 9962 getVAListElementType(CGF), SlotSize); 9963 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9964 9965 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9966 9967 Address ArgAddr = Address::invalid(); 9968 CharUnits Stride; 9969 switch (AI.getKind()) { 9970 case ABIArgInfo::Expand: 9971 case ABIArgInfo::CoerceAndExpand: 9972 case ABIArgInfo::InAlloca: 9973 llvm_unreachable("Unsupported ABI kind for va_arg"); 9974 9975 case ABIArgInfo::Extend: { 9976 Stride = SlotSize; 9977 CharUnits Offset = SlotSize - TypeInfo.Width; 9978 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9979 break; 9980 } 9981 9982 case ABIArgInfo::Direct: { 9983 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9984 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9985 ArgAddr = Addr; 9986 break; 9987 } 9988 9989 case ABIArgInfo::Indirect: 9990 case ABIArgInfo::IndirectAliased: 9991 Stride = SlotSize; 9992 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9993 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy, 9994 TypeInfo.Align); 9995 break; 9996 9997 case ABIArgInfo::Ignore: 9998 return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align); 9999 } 10000 10001 // Update VAList. 10002 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 10003 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 10004 10005 return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr"); 10006 } 10007 10008 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 10009 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 10010 for (auto &I : FI.arguments()) 10011 I.info = classifyType(I.type, 16 * 8); 10012 } 10013 10014 namespace { 10015 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 10016 public: 10017 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 10018 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 10019 10020 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 10021 return 14; 10022 } 10023 10024 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 10025 llvm::Value *Address) const override; 10026 10027 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 10028 llvm::Value *Address) const override { 10029 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 10030 llvm::ConstantInt::get(CGF.Int32Ty, 8)); 10031 } 10032 10033 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 10034 llvm::Value *Address) const override { 10035 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 10036 llvm::ConstantInt::get(CGF.Int32Ty, -8)); 10037 } 10038 }; 10039 } // end anonymous namespace 10040 10041 bool 10042 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 10043 llvm::Value *Address) const { 10044 // This is calculated from the LLVM and GCC tables and verified 10045 // against gcc output. AFAIK all ABIs use the same encoding. 10046 10047 CodeGen::CGBuilderTy &Builder = CGF.Builder; 10048 10049 llvm::IntegerType *i8 = CGF.Int8Ty; 10050 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 10051 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 10052 10053 // 0-31: the 8-byte general-purpose registers 10054 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 10055 10056 // 32-63: f0-31, the 4-byte floating-point registers 10057 AssignToArrayRange(Builder, Address, Four8, 32, 63); 10058 10059 // Y = 64 10060 // PSR = 65 10061 // WIM = 66 10062 // TBR = 67 10063 // PC = 68 10064 // NPC = 69 10065 // FSR = 70 10066 // CSR = 71 10067 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 10068 10069 // 72-87: d0-15, the 8-byte floating-point registers 10070 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 10071 10072 return false; 10073 } 10074 10075 // ARC ABI implementation. 10076 namespace { 10077 10078 class ARCABIInfo : public DefaultABIInfo { 10079 public: 10080 using DefaultABIInfo::DefaultABIInfo; 10081 10082 private: 10083 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10084 QualType Ty) const override; 10085 10086 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 10087 if (!State.FreeRegs) 10088 return; 10089 if (Info.isIndirect() && Info.getInReg()) 10090 State.FreeRegs--; 10091 else if (Info.isDirect() && Info.getInReg()) { 10092 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 10093 if (sz < State.FreeRegs) 10094 State.FreeRegs -= sz; 10095 else 10096 State.FreeRegs = 0; 10097 } 10098 } 10099 10100 void computeInfo(CGFunctionInfo &FI) const override { 10101 CCState State(FI); 10102 // ARC uses 8 registers to pass arguments. 10103 State.FreeRegs = 8; 10104 10105 if (!getCXXABI().classifyReturnType(FI)) 10106 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10107 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 10108 for (auto &I : FI.arguments()) { 10109 I.info = classifyArgumentType(I.type, State.FreeRegs); 10110 updateState(I.info, I.type, State); 10111 } 10112 } 10113 10114 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 10115 ABIArgInfo getIndirectByValue(QualType Ty) const; 10116 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 10117 ABIArgInfo classifyReturnType(QualType RetTy) const; 10118 }; 10119 10120 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 10121 public: 10122 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 10123 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 10124 }; 10125 10126 10127 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 10128 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 10129 getNaturalAlignIndirect(Ty, false); 10130 } 10131 10132 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 10133 // Compute the byval alignment. 10134 const unsigned MinABIStackAlignInBytes = 4; 10135 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 10136 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 10137 TypeAlign > MinABIStackAlignInBytes); 10138 } 10139 10140 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10141 QualType Ty) const { 10142 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 10143 getContext().getTypeInfoInChars(Ty), 10144 CharUnits::fromQuantity(4), true); 10145 } 10146 10147 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 10148 uint8_t FreeRegs) const { 10149 // Handle the generic C++ ABI. 10150 const RecordType *RT = Ty->getAs<RecordType>(); 10151 if (RT) { 10152 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 10153 if (RAA == CGCXXABI::RAA_Indirect) 10154 return getIndirectByRef(Ty, FreeRegs > 0); 10155 10156 if (RAA == CGCXXABI::RAA_DirectInMemory) 10157 return getIndirectByValue(Ty); 10158 } 10159 10160 // Treat an enum type as its underlying type. 10161 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10162 Ty = EnumTy->getDecl()->getIntegerType(); 10163 10164 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 10165 10166 if (isAggregateTypeForABI(Ty)) { 10167 // Structures with flexible arrays are always indirect. 10168 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 10169 return getIndirectByValue(Ty); 10170 10171 // Ignore empty structs/unions. 10172 if (isEmptyRecord(getContext(), Ty, true)) 10173 return ABIArgInfo::getIgnore(); 10174 10175 llvm::LLVMContext &LLVMContext = getVMContext(); 10176 10177 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 10178 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 10179 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 10180 10181 return FreeRegs >= SizeInRegs ? 10182 ABIArgInfo::getDirectInReg(Result) : 10183 ABIArgInfo::getDirect(Result, 0, nullptr, false); 10184 } 10185 10186 if (const auto *EIT = Ty->getAs<BitIntType>()) 10187 if (EIT->getNumBits() > 64) 10188 return getIndirectByValue(Ty); 10189 10190 return isPromotableIntegerTypeForABI(Ty) 10191 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 10192 : ABIArgInfo::getExtend(Ty)) 10193 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 10194 : ABIArgInfo::getDirect()); 10195 } 10196 10197 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 10198 if (RetTy->isAnyComplexType()) 10199 return ABIArgInfo::getDirectInReg(); 10200 10201 // Arguments of size > 4 registers are indirect. 10202 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 10203 if (RetSize > 4) 10204 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 10205 10206 return DefaultABIInfo::classifyReturnType(RetTy); 10207 } 10208 10209 } // End anonymous namespace. 10210 10211 //===----------------------------------------------------------------------===// 10212 // XCore ABI Implementation 10213 //===----------------------------------------------------------------------===// 10214 10215 namespace { 10216 10217 /// A SmallStringEnc instance is used to build up the TypeString by passing 10218 /// it by reference between functions that append to it. 10219 typedef llvm::SmallString<128> SmallStringEnc; 10220 10221 /// TypeStringCache caches the meta encodings of Types. 10222 /// 10223 /// The reason for caching TypeStrings is two fold: 10224 /// 1. To cache a type's encoding for later uses; 10225 /// 2. As a means to break recursive member type inclusion. 10226 /// 10227 /// A cache Entry can have a Status of: 10228 /// NonRecursive: The type encoding is not recursive; 10229 /// Recursive: The type encoding is recursive; 10230 /// Incomplete: An incomplete TypeString; 10231 /// IncompleteUsed: An incomplete TypeString that has been used in a 10232 /// Recursive type encoding. 10233 /// 10234 /// A NonRecursive entry will have all of its sub-members expanded as fully 10235 /// as possible. Whilst it may contain types which are recursive, the type 10236 /// itself is not recursive and thus its encoding may be safely used whenever 10237 /// the type is encountered. 10238 /// 10239 /// A Recursive entry will have all of its sub-members expanded as fully as 10240 /// possible. The type itself is recursive and it may contain other types which 10241 /// are recursive. The Recursive encoding must not be used during the expansion 10242 /// of a recursive type's recursive branch. For simplicity the code uses 10243 /// IncompleteCount to reject all usage of Recursive encodings for member types. 10244 /// 10245 /// An Incomplete entry is always a RecordType and only encodes its 10246 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 10247 /// are placed into the cache during type expansion as a means to identify and 10248 /// handle recursive inclusion of types as sub-members. If there is recursion 10249 /// the entry becomes IncompleteUsed. 10250 /// 10251 /// During the expansion of a RecordType's members: 10252 /// 10253 /// If the cache contains a NonRecursive encoding for the member type, the 10254 /// cached encoding is used; 10255 /// 10256 /// If the cache contains a Recursive encoding for the member type, the 10257 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 10258 /// 10259 /// If the member is a RecordType, an Incomplete encoding is placed into the 10260 /// cache to break potential recursive inclusion of itself as a sub-member; 10261 /// 10262 /// Once a member RecordType has been expanded, its temporary incomplete 10263 /// entry is removed from the cache. If a Recursive encoding was swapped out 10264 /// it is swapped back in; 10265 /// 10266 /// If an incomplete entry is used to expand a sub-member, the incomplete 10267 /// entry is marked as IncompleteUsed. The cache keeps count of how many 10268 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 10269 /// 10270 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 10271 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 10272 /// Else the member is part of a recursive type and thus the recursion has 10273 /// been exited too soon for the encoding to be correct for the member. 10274 /// 10275 class TypeStringCache { 10276 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 10277 struct Entry { 10278 std::string Str; // The encoded TypeString for the type. 10279 enum Status State; // Information about the encoding in 'Str'. 10280 std::string Swapped; // A temporary place holder for a Recursive encoding 10281 // during the expansion of RecordType's members. 10282 }; 10283 std::map<const IdentifierInfo *, struct Entry> Map; 10284 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 10285 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 10286 public: 10287 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 10288 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 10289 bool removeIncomplete(const IdentifierInfo *ID); 10290 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 10291 bool IsRecursive); 10292 StringRef lookupStr(const IdentifierInfo *ID); 10293 }; 10294 10295 /// TypeString encodings for enum & union fields must be order. 10296 /// FieldEncoding is a helper for this ordering process. 10297 class FieldEncoding { 10298 bool HasName; 10299 std::string Enc; 10300 public: 10301 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 10302 StringRef str() { return Enc; } 10303 bool operator<(const FieldEncoding &rhs) const { 10304 if (HasName != rhs.HasName) return HasName; 10305 return Enc < rhs.Enc; 10306 } 10307 }; 10308 10309 class XCoreABIInfo : public DefaultABIInfo { 10310 public: 10311 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10312 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10313 QualType Ty) const override; 10314 }; 10315 10316 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10317 mutable TypeStringCache TSC; 10318 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10319 const CodeGen::CodeGenModule &M) const; 10320 10321 public: 10322 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10323 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10324 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10325 const llvm::MapVector<GlobalDecl, StringRef> 10326 &MangledDeclNames) const override; 10327 }; 10328 10329 } // End anonymous namespace. 10330 10331 // TODO: this implementation is likely now redundant with the default 10332 // EmitVAArg. 10333 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10334 QualType Ty) const { 10335 CGBuilderTy &Builder = CGF.Builder; 10336 10337 // Get the VAList. 10338 CharUnits SlotSize = CharUnits::fromQuantity(4); 10339 Address AP = Address(Builder.CreateLoad(VAListAddr), 10340 getVAListElementType(CGF), SlotSize); 10341 10342 // Handle the argument. 10343 ABIArgInfo AI = classifyArgumentType(Ty); 10344 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10345 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10346 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10347 AI.setCoerceToType(ArgTy); 10348 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10349 10350 Address Val = Address::invalid(); 10351 CharUnits ArgSize = CharUnits::Zero(); 10352 switch (AI.getKind()) { 10353 case ABIArgInfo::Expand: 10354 case ABIArgInfo::CoerceAndExpand: 10355 case ABIArgInfo::InAlloca: 10356 llvm_unreachable("Unsupported ABI kind for va_arg"); 10357 case ABIArgInfo::Ignore: 10358 Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign); 10359 ArgSize = CharUnits::Zero(); 10360 break; 10361 case ABIArgInfo::Extend: 10362 case ABIArgInfo::Direct: 10363 Val = Builder.CreateElementBitCast(AP, ArgTy); 10364 ArgSize = CharUnits::fromQuantity( 10365 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10366 ArgSize = ArgSize.alignTo(SlotSize); 10367 break; 10368 case ABIArgInfo::Indirect: 10369 case ABIArgInfo::IndirectAliased: 10370 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10371 Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign); 10372 ArgSize = SlotSize; 10373 break; 10374 } 10375 10376 // Increment the VAList. 10377 if (!ArgSize.isZero()) { 10378 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10379 Builder.CreateStore(APN.getPointer(), VAListAddr); 10380 } 10381 10382 return Val; 10383 } 10384 10385 /// During the expansion of a RecordType, an incomplete TypeString is placed 10386 /// into the cache as a means to identify and break recursion. 10387 /// If there is a Recursive encoding in the cache, it is swapped out and will 10388 /// be reinserted by removeIncomplete(). 10389 /// All other types of encoding should have been used rather than arriving here. 10390 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10391 std::string StubEnc) { 10392 if (!ID) 10393 return; 10394 Entry &E = Map[ID]; 10395 assert( (E.Str.empty() || E.State == Recursive) && 10396 "Incorrectly use of addIncomplete"); 10397 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10398 E.Swapped.swap(E.Str); // swap out the Recursive 10399 E.Str.swap(StubEnc); 10400 E.State = Incomplete; 10401 ++IncompleteCount; 10402 } 10403 10404 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10405 /// must be removed from the cache. 10406 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10407 /// Returns true if the RecordType was defined recursively. 10408 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10409 if (!ID) 10410 return false; 10411 auto I = Map.find(ID); 10412 assert(I != Map.end() && "Entry not present"); 10413 Entry &E = I->second; 10414 assert( (E.State == Incomplete || 10415 E.State == IncompleteUsed) && 10416 "Entry must be an incomplete type"); 10417 bool IsRecursive = false; 10418 if (E.State == IncompleteUsed) { 10419 // We made use of our Incomplete encoding, thus we are recursive. 10420 IsRecursive = true; 10421 --IncompleteUsedCount; 10422 } 10423 if (E.Swapped.empty()) 10424 Map.erase(I); 10425 else { 10426 // Swap the Recursive back. 10427 E.Swapped.swap(E.Str); 10428 E.Swapped.clear(); 10429 E.State = Recursive; 10430 } 10431 --IncompleteCount; 10432 return IsRecursive; 10433 } 10434 10435 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10436 /// Recursive (viz: all sub-members were expanded as fully as possible). 10437 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10438 bool IsRecursive) { 10439 if (!ID || IncompleteUsedCount) 10440 return; // No key or it is an incomplete sub-type so don't add. 10441 Entry &E = Map[ID]; 10442 if (IsRecursive && !E.Str.empty()) { 10443 assert(E.State==Recursive && E.Str.size() == Str.size() && 10444 "This is not the same Recursive entry"); 10445 // The parent container was not recursive after all, so we could have used 10446 // this Recursive sub-member entry after all, but we assumed the worse when 10447 // we started viz: IncompleteCount!=0. 10448 return; 10449 } 10450 assert(E.Str.empty() && "Entry already present"); 10451 E.Str = Str.str(); 10452 E.State = IsRecursive? Recursive : NonRecursive; 10453 } 10454 10455 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10456 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10457 /// encoding is Recursive, return an empty StringRef. 10458 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10459 if (!ID) 10460 return StringRef(); // We have no key. 10461 auto I = Map.find(ID); 10462 if (I == Map.end()) 10463 return StringRef(); // We have no encoding. 10464 Entry &E = I->second; 10465 if (E.State == Recursive && IncompleteCount) 10466 return StringRef(); // We don't use Recursive encodings for member types. 10467 10468 if (E.State == Incomplete) { 10469 // The incomplete type is being used to break out of recursion. 10470 E.State = IncompleteUsed; 10471 ++IncompleteUsedCount; 10472 } 10473 return E.Str; 10474 } 10475 10476 /// The XCore ABI includes a type information section that communicates symbol 10477 /// type information to the linker. The linker uses this information to verify 10478 /// safety/correctness of things such as array bound and pointers et al. 10479 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10480 /// This type information (TypeString) is emitted into meta data for all global 10481 /// symbols: definitions, declarations, functions & variables. 10482 /// 10483 /// The TypeString carries type, qualifier, name, size & value details. 10484 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10485 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10486 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10487 /// 10488 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10489 const CodeGen::CodeGenModule &CGM, 10490 TypeStringCache &TSC); 10491 10492 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10493 void XCoreTargetCodeGenInfo::emitTargetMD( 10494 const Decl *D, llvm::GlobalValue *GV, 10495 const CodeGen::CodeGenModule &CGM) const { 10496 SmallStringEnc Enc; 10497 if (getTypeString(Enc, D, CGM, TSC)) { 10498 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10499 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10500 llvm::MDString::get(Ctx, Enc.str())}; 10501 llvm::NamedMDNode *MD = 10502 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10503 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10504 } 10505 } 10506 10507 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10508 CodeGen::CodeGenModule &CGM, 10509 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10510 // Warning, new MangledDeclNames may be appended within this loop. 10511 // We rely on MapVector insertions adding new elements to the end 10512 // of the container. 10513 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10514 auto Val = *(MangledDeclNames.begin() + I); 10515 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10516 if (GV) { 10517 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10518 emitTargetMD(D, GV, CGM); 10519 } 10520 } 10521 } 10522 10523 //===----------------------------------------------------------------------===// 10524 // Base ABI and target codegen info implementation common between SPIR and 10525 // SPIR-V. 10526 //===----------------------------------------------------------------------===// 10527 10528 namespace { 10529 class CommonSPIRABIInfo : public DefaultABIInfo { 10530 public: 10531 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10532 10533 private: 10534 void setCCs(); 10535 }; 10536 10537 class SPIRVABIInfo : public CommonSPIRABIInfo { 10538 public: 10539 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} 10540 void computeInfo(CGFunctionInfo &FI) const override; 10541 10542 private: 10543 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 10544 }; 10545 } // end anonymous namespace 10546 namespace { 10547 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10548 public: 10549 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10550 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10551 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo) 10552 : TargetCodeGenInfo(std::move(ABIInfo)) {} 10553 10554 LangAS getASTAllocaAddressSpace() const override { 10555 return getLangASFromTargetAS( 10556 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10557 } 10558 10559 unsigned getOpenCLKernelCallingConv() const override; 10560 }; 10561 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { 10562 public: 10563 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10564 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {} 10565 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 10566 }; 10567 } // End anonymous namespace. 10568 10569 void CommonSPIRABIInfo::setCCs() { 10570 assert(getRuntimeCC() == llvm::CallingConv::C); 10571 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10572 } 10573 10574 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { 10575 if (getContext().getLangOpts().CUDAIsDevice) { 10576 // Coerce pointer arguments with default address space to CrossWorkGroup 10577 // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the 10578 // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space. 10579 llvm::Type *LTy = CGT.ConvertType(Ty); 10580 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); 10581 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); 10582 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy); 10583 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { 10584 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); 10585 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 10586 } 10587 10588 // Force copying aggregate type in kernel arguments by value when 10589 // compiling CUDA targeting SPIR-V. This is required for the object 10590 // copied to be valid on the device. 10591 // This behavior follows the CUDA spec 10592 // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing, 10593 // and matches the NVPTX implementation. 10594 if (isAggregateTypeForABI(Ty)) 10595 return getNaturalAlignIndirect(Ty, /* byval */ true); 10596 } 10597 return classifyArgumentType(Ty); 10598 } 10599 10600 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10601 // The logic is same as in DefaultABIInfo with an exception on the kernel 10602 // arguments handling. 10603 llvm::CallingConv::ID CC = FI.getCallingConvention(); 10604 10605 if (!getCXXABI().classifyReturnType(FI)) 10606 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10607 10608 for (auto &I : FI.arguments()) { 10609 if (CC == llvm::CallingConv::SPIR_KERNEL) { 10610 I.info = classifyKernelArgumentType(I.type); 10611 } else { 10612 I.info = classifyArgumentType(I.type); 10613 } 10614 } 10615 } 10616 10617 namespace clang { 10618 namespace CodeGen { 10619 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10620 if (CGM.getTarget().getTriple().isSPIRV()) 10621 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); 10622 else 10623 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); 10624 } 10625 } 10626 } 10627 10628 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10629 return llvm::CallingConv::SPIR_KERNEL; 10630 } 10631 10632 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( 10633 const FunctionType *&FT) const { 10634 // Convert HIP kernels to SPIR-V kernels. 10635 if (getABIInfo().getContext().getLangOpts().HIP) { 10636 FT = getABIInfo().getContext().adjustFunctionType( 10637 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 10638 return; 10639 } 10640 } 10641 10642 static bool appendType(SmallStringEnc &Enc, QualType QType, 10643 const CodeGen::CodeGenModule &CGM, 10644 TypeStringCache &TSC); 10645 10646 /// Helper function for appendRecordType(). 10647 /// Builds a SmallVector containing the encoded field types in declaration 10648 /// order. 10649 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10650 const RecordDecl *RD, 10651 const CodeGen::CodeGenModule &CGM, 10652 TypeStringCache &TSC) { 10653 for (const auto *Field : RD->fields()) { 10654 SmallStringEnc Enc; 10655 Enc += "m("; 10656 Enc += Field->getName(); 10657 Enc += "){"; 10658 if (Field->isBitField()) { 10659 Enc += "b("; 10660 llvm::raw_svector_ostream OS(Enc); 10661 OS << Field->getBitWidthValue(CGM.getContext()); 10662 Enc += ':'; 10663 } 10664 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10665 return false; 10666 if (Field->isBitField()) 10667 Enc += ')'; 10668 Enc += '}'; 10669 FE.emplace_back(!Field->getName().empty(), Enc); 10670 } 10671 return true; 10672 } 10673 10674 /// Appends structure and union types to Enc and adds encoding to cache. 10675 /// Recursively calls appendType (via extractFieldType) for each field. 10676 /// Union types have their fields ordered according to the ABI. 10677 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10678 const CodeGen::CodeGenModule &CGM, 10679 TypeStringCache &TSC, const IdentifierInfo *ID) { 10680 // Append the cached TypeString if we have one. 10681 StringRef TypeString = TSC.lookupStr(ID); 10682 if (!TypeString.empty()) { 10683 Enc += TypeString; 10684 return true; 10685 } 10686 10687 // Start to emit an incomplete TypeString. 10688 size_t Start = Enc.size(); 10689 Enc += (RT->isUnionType()? 'u' : 's'); 10690 Enc += '('; 10691 if (ID) 10692 Enc += ID->getName(); 10693 Enc += "){"; 10694 10695 // We collect all encoded fields and order as necessary. 10696 bool IsRecursive = false; 10697 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10698 if (RD && !RD->field_empty()) { 10699 // An incomplete TypeString stub is placed in the cache for this RecordType 10700 // so that recursive calls to this RecordType will use it whilst building a 10701 // complete TypeString for this RecordType. 10702 SmallVector<FieldEncoding, 16> FE; 10703 std::string StubEnc(Enc.substr(Start).str()); 10704 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10705 TSC.addIncomplete(ID, std::move(StubEnc)); 10706 if (!extractFieldType(FE, RD, CGM, TSC)) { 10707 (void) TSC.removeIncomplete(ID); 10708 return false; 10709 } 10710 IsRecursive = TSC.removeIncomplete(ID); 10711 // The ABI requires unions to be sorted but not structures. 10712 // See FieldEncoding::operator< for sort algorithm. 10713 if (RT->isUnionType()) 10714 llvm::sort(FE); 10715 // We can now complete the TypeString. 10716 unsigned E = FE.size(); 10717 for (unsigned I = 0; I != E; ++I) { 10718 if (I) 10719 Enc += ','; 10720 Enc += FE[I].str(); 10721 } 10722 } 10723 Enc += '}'; 10724 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10725 return true; 10726 } 10727 10728 /// Appends enum types to Enc and adds the encoding to the cache. 10729 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10730 TypeStringCache &TSC, 10731 const IdentifierInfo *ID) { 10732 // Append the cached TypeString if we have one. 10733 StringRef TypeString = TSC.lookupStr(ID); 10734 if (!TypeString.empty()) { 10735 Enc += TypeString; 10736 return true; 10737 } 10738 10739 size_t Start = Enc.size(); 10740 Enc += "e("; 10741 if (ID) 10742 Enc += ID->getName(); 10743 Enc += "){"; 10744 10745 // We collect all encoded enumerations and order them alphanumerically. 10746 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10747 SmallVector<FieldEncoding, 16> FE; 10748 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10749 ++I) { 10750 SmallStringEnc EnumEnc; 10751 EnumEnc += "m("; 10752 EnumEnc += I->getName(); 10753 EnumEnc += "){"; 10754 I->getInitVal().toString(EnumEnc); 10755 EnumEnc += '}'; 10756 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10757 } 10758 llvm::sort(FE); 10759 unsigned E = FE.size(); 10760 for (unsigned I = 0; I != E; ++I) { 10761 if (I) 10762 Enc += ','; 10763 Enc += FE[I].str(); 10764 } 10765 } 10766 Enc += '}'; 10767 TSC.addIfComplete(ID, Enc.substr(Start), false); 10768 return true; 10769 } 10770 10771 /// Appends type's qualifier to Enc. 10772 /// This is done prior to appending the type's encoding. 10773 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10774 // Qualifiers are emitted in alphabetical order. 10775 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10776 int Lookup = 0; 10777 if (QT.isConstQualified()) 10778 Lookup += 1<<0; 10779 if (QT.isRestrictQualified()) 10780 Lookup += 1<<1; 10781 if (QT.isVolatileQualified()) 10782 Lookup += 1<<2; 10783 Enc += Table[Lookup]; 10784 } 10785 10786 /// Appends built-in types to Enc. 10787 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10788 const char *EncType; 10789 switch (BT->getKind()) { 10790 case BuiltinType::Void: 10791 EncType = "0"; 10792 break; 10793 case BuiltinType::Bool: 10794 EncType = "b"; 10795 break; 10796 case BuiltinType::Char_U: 10797 EncType = "uc"; 10798 break; 10799 case BuiltinType::UChar: 10800 EncType = "uc"; 10801 break; 10802 case BuiltinType::SChar: 10803 EncType = "sc"; 10804 break; 10805 case BuiltinType::UShort: 10806 EncType = "us"; 10807 break; 10808 case BuiltinType::Short: 10809 EncType = "ss"; 10810 break; 10811 case BuiltinType::UInt: 10812 EncType = "ui"; 10813 break; 10814 case BuiltinType::Int: 10815 EncType = "si"; 10816 break; 10817 case BuiltinType::ULong: 10818 EncType = "ul"; 10819 break; 10820 case BuiltinType::Long: 10821 EncType = "sl"; 10822 break; 10823 case BuiltinType::ULongLong: 10824 EncType = "ull"; 10825 break; 10826 case BuiltinType::LongLong: 10827 EncType = "sll"; 10828 break; 10829 case BuiltinType::Float: 10830 EncType = "ft"; 10831 break; 10832 case BuiltinType::Double: 10833 EncType = "d"; 10834 break; 10835 case BuiltinType::LongDouble: 10836 EncType = "ld"; 10837 break; 10838 default: 10839 return false; 10840 } 10841 Enc += EncType; 10842 return true; 10843 } 10844 10845 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10846 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10847 const CodeGen::CodeGenModule &CGM, 10848 TypeStringCache &TSC) { 10849 Enc += "p("; 10850 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10851 return false; 10852 Enc += ')'; 10853 return true; 10854 } 10855 10856 /// Appends array encoding to Enc before calling appendType for the element. 10857 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10858 const ArrayType *AT, 10859 const CodeGen::CodeGenModule &CGM, 10860 TypeStringCache &TSC, StringRef NoSizeEnc) { 10861 if (AT->getSizeModifier() != ArrayType::Normal) 10862 return false; 10863 Enc += "a("; 10864 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10865 CAT->getSize().toStringUnsigned(Enc); 10866 else 10867 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10868 Enc += ':'; 10869 // The Qualifiers should be attached to the type rather than the array. 10870 appendQualifier(Enc, QT); 10871 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10872 return false; 10873 Enc += ')'; 10874 return true; 10875 } 10876 10877 /// Appends a function encoding to Enc, calling appendType for the return type 10878 /// and the arguments. 10879 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10880 const CodeGen::CodeGenModule &CGM, 10881 TypeStringCache &TSC) { 10882 Enc += "f{"; 10883 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10884 return false; 10885 Enc += "}("; 10886 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10887 // N.B. we are only interested in the adjusted param types. 10888 auto I = FPT->param_type_begin(); 10889 auto E = FPT->param_type_end(); 10890 if (I != E) { 10891 do { 10892 if (!appendType(Enc, *I, CGM, TSC)) 10893 return false; 10894 ++I; 10895 if (I != E) 10896 Enc += ','; 10897 } while (I != E); 10898 if (FPT->isVariadic()) 10899 Enc += ",va"; 10900 } else { 10901 if (FPT->isVariadic()) 10902 Enc += "va"; 10903 else 10904 Enc += '0'; 10905 } 10906 } 10907 Enc += ')'; 10908 return true; 10909 } 10910 10911 /// Handles the type's qualifier before dispatching a call to handle specific 10912 /// type encodings. 10913 static bool appendType(SmallStringEnc &Enc, QualType QType, 10914 const CodeGen::CodeGenModule &CGM, 10915 TypeStringCache &TSC) { 10916 10917 QualType QT = QType.getCanonicalType(); 10918 10919 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10920 // The Qualifiers should be attached to the type rather than the array. 10921 // Thus we don't call appendQualifier() here. 10922 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10923 10924 appendQualifier(Enc, QT); 10925 10926 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10927 return appendBuiltinType(Enc, BT); 10928 10929 if (const PointerType *PT = QT->getAs<PointerType>()) 10930 return appendPointerType(Enc, PT, CGM, TSC); 10931 10932 if (const EnumType *ET = QT->getAs<EnumType>()) 10933 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10934 10935 if (const RecordType *RT = QT->getAsStructureType()) 10936 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10937 10938 if (const RecordType *RT = QT->getAsUnionType()) 10939 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10940 10941 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10942 return appendFunctionType(Enc, FT, CGM, TSC); 10943 10944 return false; 10945 } 10946 10947 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10948 const CodeGen::CodeGenModule &CGM, 10949 TypeStringCache &TSC) { 10950 if (!D) 10951 return false; 10952 10953 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10954 if (FD->getLanguageLinkage() != CLanguageLinkage) 10955 return false; 10956 return appendType(Enc, FD->getType(), CGM, TSC); 10957 } 10958 10959 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10960 if (VD->getLanguageLinkage() != CLanguageLinkage) 10961 return false; 10962 QualType QT = VD->getType().getCanonicalType(); 10963 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10964 // Global ArrayTypes are given a size of '*' if the size is unknown. 10965 // The Qualifiers should be attached to the type rather than the array. 10966 // Thus we don't call appendQualifier() here. 10967 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10968 } 10969 return appendType(Enc, QT, CGM, TSC); 10970 } 10971 return false; 10972 } 10973 10974 //===----------------------------------------------------------------------===// 10975 // RISCV ABI Implementation 10976 //===----------------------------------------------------------------------===// 10977 10978 namespace { 10979 class RISCVABIInfo : public DefaultABIInfo { 10980 private: 10981 // Size of the integer ('x') registers in bits. 10982 unsigned XLen; 10983 // Size of the floating point ('f') registers in bits. Note that the target 10984 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10985 // with soft float ABI has FLen==0). 10986 unsigned FLen; 10987 static const int NumArgGPRs = 8; 10988 static const int NumArgFPRs = 8; 10989 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10990 llvm::Type *&Field1Ty, 10991 CharUnits &Field1Off, 10992 llvm::Type *&Field2Ty, 10993 CharUnits &Field2Off) const; 10994 10995 public: 10996 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10997 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10998 10999 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 11000 // non-virtual, but computeInfo is virtual, so we overload it. 11001 void computeInfo(CGFunctionInfo &FI) const override; 11002 11003 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 11004 int &ArgFPRsLeft) const; 11005 ABIArgInfo classifyReturnType(QualType RetTy) const; 11006 11007 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11008 QualType Ty) const override; 11009 11010 ABIArgInfo extendType(QualType Ty) const; 11011 11012 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 11013 CharUnits &Field1Off, llvm::Type *&Field2Ty, 11014 CharUnits &Field2Off, int &NeededArgGPRs, 11015 int &NeededArgFPRs) const; 11016 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 11017 CharUnits Field1Off, 11018 llvm::Type *Field2Ty, 11019 CharUnits Field2Off) const; 11020 }; 11021 } // end anonymous namespace 11022 11023 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 11024 QualType RetTy = FI.getReturnType(); 11025 if (!getCXXABI().classifyReturnType(FI)) 11026 FI.getReturnInfo() = classifyReturnType(RetTy); 11027 11028 // IsRetIndirect is true if classifyArgumentType indicated the value should 11029 // be passed indirect, or if the type size is a scalar greater than 2*XLen 11030 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 11031 // in LLVM IR, relying on the backend lowering code to rewrite the argument 11032 // list and pass indirectly on RV32. 11033 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 11034 if (!IsRetIndirect && RetTy->isScalarType() && 11035 getContext().getTypeSize(RetTy) > (2 * XLen)) { 11036 if (RetTy->isComplexType() && FLen) { 11037 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 11038 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 11039 } else { 11040 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 11041 IsRetIndirect = true; 11042 } 11043 } 11044 11045 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 11046 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 11047 int NumFixedArgs = FI.getNumRequiredArgs(); 11048 11049 int ArgNum = 0; 11050 for (auto &ArgInfo : FI.arguments()) { 11051 bool IsFixed = ArgNum < NumFixedArgs; 11052 ArgInfo.info = 11053 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 11054 ArgNum++; 11055 } 11056 } 11057 11058 // Returns true if the struct is a potential candidate for the floating point 11059 // calling convention. If this function returns true, the caller is 11060 // responsible for checking that if there is only a single field then that 11061 // field is a float. 11062 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 11063 llvm::Type *&Field1Ty, 11064 CharUnits &Field1Off, 11065 llvm::Type *&Field2Ty, 11066 CharUnits &Field2Off) const { 11067 bool IsInt = Ty->isIntegralOrEnumerationType(); 11068 bool IsFloat = Ty->isRealFloatingType(); 11069 11070 if (IsInt || IsFloat) { 11071 uint64_t Size = getContext().getTypeSize(Ty); 11072 if (IsInt && Size > XLen) 11073 return false; 11074 // Can't be eligible if larger than the FP registers. Half precision isn't 11075 // currently supported on RISC-V and the ABI hasn't been confirmed, so 11076 // default to the integer ABI in that case. 11077 if (IsFloat && (Size > FLen || Size < 32)) 11078 return false; 11079 // Can't be eligible if an integer type was already found (int+int pairs 11080 // are not eligible). 11081 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 11082 return false; 11083 if (!Field1Ty) { 11084 Field1Ty = CGT.ConvertType(Ty); 11085 Field1Off = CurOff; 11086 return true; 11087 } 11088 if (!Field2Ty) { 11089 Field2Ty = CGT.ConvertType(Ty); 11090 Field2Off = CurOff; 11091 return true; 11092 } 11093 return false; 11094 } 11095 11096 if (auto CTy = Ty->getAs<ComplexType>()) { 11097 if (Field1Ty) 11098 return false; 11099 QualType EltTy = CTy->getElementType(); 11100 if (getContext().getTypeSize(EltTy) > FLen) 11101 return false; 11102 Field1Ty = CGT.ConvertType(EltTy); 11103 Field1Off = CurOff; 11104 Field2Ty = Field1Ty; 11105 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 11106 return true; 11107 } 11108 11109 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 11110 uint64_t ArraySize = ATy->getSize().getZExtValue(); 11111 QualType EltTy = ATy->getElementType(); 11112 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 11113 for (uint64_t i = 0; i < ArraySize; ++i) { 11114 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 11115 Field1Off, Field2Ty, Field2Off); 11116 if (!Ret) 11117 return false; 11118 CurOff += EltSize; 11119 } 11120 return true; 11121 } 11122 11123 if (const auto *RTy = Ty->getAs<RecordType>()) { 11124 // Structures with either a non-trivial destructor or a non-trivial 11125 // copy constructor are not eligible for the FP calling convention. 11126 if (getRecordArgABI(Ty, CGT.getCXXABI())) 11127 return false; 11128 if (isEmptyRecord(getContext(), Ty, true)) 11129 return true; 11130 const RecordDecl *RD = RTy->getDecl(); 11131 // Unions aren't eligible unless they're empty (which is caught above). 11132 if (RD->isUnion()) 11133 return false; 11134 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 11135 // If this is a C++ record, check the bases first. 11136 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 11137 for (const CXXBaseSpecifier &B : CXXRD->bases()) { 11138 const auto *BDecl = 11139 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 11140 CharUnits BaseOff = Layout.getBaseClassOffset(BDecl); 11141 bool Ret = detectFPCCEligibleStructHelper(B.getType(), CurOff + BaseOff, 11142 Field1Ty, Field1Off, Field2Ty, 11143 Field2Off); 11144 if (!Ret) 11145 return false; 11146 } 11147 } 11148 int ZeroWidthBitFieldCount = 0; 11149 for (const FieldDecl *FD : RD->fields()) { 11150 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 11151 QualType QTy = FD->getType(); 11152 if (FD->isBitField()) { 11153 unsigned BitWidth = FD->getBitWidthValue(getContext()); 11154 // Allow a bitfield with a type greater than XLen as long as the 11155 // bitwidth is XLen or less. 11156 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 11157 QTy = getContext().getIntTypeForBitwidth(XLen, false); 11158 if (BitWidth == 0) { 11159 ZeroWidthBitFieldCount++; 11160 continue; 11161 } 11162 } 11163 11164 bool Ret = detectFPCCEligibleStructHelper( 11165 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 11166 Field1Ty, Field1Off, Field2Ty, Field2Off); 11167 if (!Ret) 11168 return false; 11169 11170 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 11171 // or int+fp structs, but are ignored for a struct with an fp field and 11172 // any number of zero-width bitfields. 11173 if (Field2Ty && ZeroWidthBitFieldCount > 0) 11174 return false; 11175 } 11176 return Field1Ty != nullptr; 11177 } 11178 11179 return false; 11180 } 11181 11182 // Determine if a struct is eligible for passing according to the floating 11183 // point calling convention (i.e., when flattened it contains a single fp 11184 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 11185 // NeededArgGPRs are incremented appropriately. 11186 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 11187 CharUnits &Field1Off, 11188 llvm::Type *&Field2Ty, 11189 CharUnits &Field2Off, 11190 int &NeededArgGPRs, 11191 int &NeededArgFPRs) const { 11192 Field1Ty = nullptr; 11193 Field2Ty = nullptr; 11194 NeededArgGPRs = 0; 11195 NeededArgFPRs = 0; 11196 bool IsCandidate = detectFPCCEligibleStructHelper( 11197 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 11198 // Not really a candidate if we have a single int but no float. 11199 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 11200 return false; 11201 if (!IsCandidate) 11202 return false; 11203 if (Field1Ty && Field1Ty->isFloatingPointTy()) 11204 NeededArgFPRs++; 11205 else if (Field1Ty) 11206 NeededArgGPRs++; 11207 if (Field2Ty && Field2Ty->isFloatingPointTy()) 11208 NeededArgFPRs++; 11209 else if (Field2Ty) 11210 NeededArgGPRs++; 11211 return true; 11212 } 11213 11214 // Call getCoerceAndExpand for the two-element flattened struct described by 11215 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 11216 // appropriate coerceToType and unpaddedCoerceToType. 11217 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 11218 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 11219 CharUnits Field2Off) const { 11220 SmallVector<llvm::Type *, 3> CoerceElts; 11221 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 11222 if (!Field1Off.isZero()) 11223 CoerceElts.push_back(llvm::ArrayType::get( 11224 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 11225 11226 CoerceElts.push_back(Field1Ty); 11227 UnpaddedCoerceElts.push_back(Field1Ty); 11228 11229 if (!Field2Ty) { 11230 return ABIArgInfo::getCoerceAndExpand( 11231 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 11232 UnpaddedCoerceElts[0]); 11233 } 11234 11235 CharUnits Field2Align = 11236 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty)); 11237 CharUnits Field1End = Field1Off + 11238 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 11239 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 11240 11241 CharUnits Padding = CharUnits::Zero(); 11242 if (Field2Off > Field2OffNoPadNoPack) 11243 Padding = Field2Off - Field2OffNoPadNoPack; 11244 else if (Field2Off != Field2Align && Field2Off > Field1End) 11245 Padding = Field2Off - Field1End; 11246 11247 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 11248 11249 if (!Padding.isZero()) 11250 CoerceElts.push_back(llvm::ArrayType::get( 11251 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 11252 11253 CoerceElts.push_back(Field2Ty); 11254 UnpaddedCoerceElts.push_back(Field2Ty); 11255 11256 auto CoerceToType = 11257 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 11258 auto UnpaddedCoerceToType = 11259 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 11260 11261 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 11262 } 11263 11264 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 11265 int &ArgGPRsLeft, 11266 int &ArgFPRsLeft) const { 11267 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11268 Ty = useFirstFieldIfTransparentUnion(Ty); 11269 11270 // Structures with either a non-trivial destructor or a non-trivial 11271 // copy constructor are always passed indirectly. 11272 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11273 if (ArgGPRsLeft) 11274 ArgGPRsLeft -= 1; 11275 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11276 CGCXXABI::RAA_DirectInMemory); 11277 } 11278 11279 // Ignore empty structs/unions. 11280 if (isEmptyRecord(getContext(), Ty, true)) 11281 return ABIArgInfo::getIgnore(); 11282 11283 uint64_t Size = getContext().getTypeSize(Ty); 11284 11285 // Pass floating point values via FPRs if possible. 11286 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 11287 FLen >= Size && ArgFPRsLeft) { 11288 ArgFPRsLeft--; 11289 return ABIArgInfo::getDirect(); 11290 } 11291 11292 // Complex types for the hard float ABI must be passed direct rather than 11293 // using CoerceAndExpand. 11294 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 11295 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11296 if (getContext().getTypeSize(EltTy) <= FLen) { 11297 ArgFPRsLeft -= 2; 11298 return ABIArgInfo::getDirect(); 11299 } 11300 } 11301 11302 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 11303 llvm::Type *Field1Ty = nullptr; 11304 llvm::Type *Field2Ty = nullptr; 11305 CharUnits Field1Off = CharUnits::Zero(); 11306 CharUnits Field2Off = CharUnits::Zero(); 11307 int NeededArgGPRs = 0; 11308 int NeededArgFPRs = 0; 11309 bool IsCandidate = 11310 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 11311 NeededArgGPRs, NeededArgFPRs); 11312 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 11313 NeededArgFPRs <= ArgFPRsLeft) { 11314 ArgGPRsLeft -= NeededArgGPRs; 11315 ArgFPRsLeft -= NeededArgFPRs; 11316 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 11317 Field2Off); 11318 } 11319 } 11320 11321 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 11322 // Determine the number of GPRs needed to pass the current argument 11323 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 11324 // register pairs, so may consume 3 registers. 11325 int NeededArgGPRs = 1; 11326 if (!IsFixed && NeededAlign == 2 * XLen) 11327 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 11328 else if (Size > XLen && Size <= 2 * XLen) 11329 NeededArgGPRs = 2; 11330 11331 if (NeededArgGPRs > ArgGPRsLeft) { 11332 NeededArgGPRs = ArgGPRsLeft; 11333 } 11334 11335 ArgGPRsLeft -= NeededArgGPRs; 11336 11337 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 11338 // Treat an enum type as its underlying type. 11339 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11340 Ty = EnumTy->getDecl()->getIntegerType(); 11341 11342 // All integral types are promoted to XLen width 11343 if (Size < XLen && Ty->isIntegralOrEnumerationType()) { 11344 return extendType(Ty); 11345 } 11346 11347 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11348 if (EIT->getNumBits() < XLen) 11349 return extendType(Ty); 11350 if (EIT->getNumBits() > 128 || 11351 (!getContext().getTargetInfo().hasInt128Type() && 11352 EIT->getNumBits() > 64)) 11353 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11354 } 11355 11356 return ABIArgInfo::getDirect(); 11357 } 11358 11359 // Aggregates which are <= 2*XLen will be passed in registers if possible, 11360 // so coerce to integers. 11361 if (Size <= 2 * XLen) { 11362 unsigned Alignment = getContext().getTypeAlign(Ty); 11363 11364 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 11365 // required, and a 2-element XLen array if only XLen alignment is required. 11366 if (Size <= XLen) { 11367 return ABIArgInfo::getDirect( 11368 llvm::IntegerType::get(getVMContext(), XLen)); 11369 } else if (Alignment == 2 * XLen) { 11370 return ABIArgInfo::getDirect( 11371 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 11372 } else { 11373 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11374 llvm::IntegerType::get(getVMContext(), XLen), 2)); 11375 } 11376 } 11377 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11378 } 11379 11380 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 11381 if (RetTy->isVoidType()) 11382 return ABIArgInfo::getIgnore(); 11383 11384 int ArgGPRsLeft = 2; 11385 int ArgFPRsLeft = FLen ? 2 : 0; 11386 11387 // The rules for return and argument types are the same, so defer to 11388 // classifyArgumentType. 11389 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11390 ArgFPRsLeft); 11391 } 11392 11393 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11394 QualType Ty) const { 11395 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11396 11397 // Empty records are ignored for parameter passing purposes. 11398 if (isEmptyRecord(getContext(), Ty, true)) { 11399 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11400 getVAListElementType(CGF), SlotSize); 11401 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11402 return Addr; 11403 } 11404 11405 auto TInfo = getContext().getTypeInfoInChars(Ty); 11406 11407 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11408 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11409 11410 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11411 SlotSize, /*AllowHigherAlign=*/true); 11412 } 11413 11414 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11415 int TySize = getContext().getTypeSize(Ty); 11416 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11417 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11418 return ABIArgInfo::getSignExtend(Ty); 11419 return ABIArgInfo::getExtend(Ty); 11420 } 11421 11422 namespace { 11423 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11424 public: 11425 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11426 unsigned FLen) 11427 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11428 11429 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11430 CodeGen::CodeGenModule &CGM) const override { 11431 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11432 if (!FD) return; 11433 11434 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11435 if (!Attr) 11436 return; 11437 11438 const char *Kind; 11439 switch (Attr->getInterrupt()) { 11440 case RISCVInterruptAttr::user: Kind = "user"; break; 11441 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11442 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11443 } 11444 11445 auto *Fn = cast<llvm::Function>(GV); 11446 11447 Fn->addFnAttr("interrupt", Kind); 11448 } 11449 }; 11450 } // namespace 11451 11452 //===----------------------------------------------------------------------===// 11453 // VE ABI Implementation. 11454 // 11455 namespace { 11456 class VEABIInfo : public DefaultABIInfo { 11457 public: 11458 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11459 11460 private: 11461 ABIArgInfo classifyReturnType(QualType RetTy) const; 11462 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11463 void computeInfo(CGFunctionInfo &FI) const override; 11464 }; 11465 } // end anonymous namespace 11466 11467 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11468 if (Ty->isAnyComplexType()) 11469 return ABIArgInfo::getDirect(); 11470 uint64_t Size = getContext().getTypeSize(Ty); 11471 if (Size < 64 && Ty->isIntegerType()) 11472 return ABIArgInfo::getExtend(Ty); 11473 return DefaultABIInfo::classifyReturnType(Ty); 11474 } 11475 11476 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11477 if (Ty->isAnyComplexType()) 11478 return ABIArgInfo::getDirect(); 11479 uint64_t Size = getContext().getTypeSize(Ty); 11480 if (Size < 64 && Ty->isIntegerType()) 11481 return ABIArgInfo::getExtend(Ty); 11482 return DefaultABIInfo::classifyArgumentType(Ty); 11483 } 11484 11485 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11486 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11487 for (auto &Arg : FI.arguments()) 11488 Arg.info = classifyArgumentType(Arg.type); 11489 } 11490 11491 namespace { 11492 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11493 public: 11494 VETargetCodeGenInfo(CodeGenTypes &CGT) 11495 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11496 // VE ABI requires the arguments of variadic and prototype-less functions 11497 // are passed in both registers and memory. 11498 bool isNoProtoCallVariadic(const CallArgList &args, 11499 const FunctionNoProtoType *fnType) const override { 11500 return true; 11501 } 11502 }; 11503 } // end anonymous namespace 11504 11505 //===----------------------------------------------------------------------===// 11506 // CSKY ABI Implementation 11507 //===----------------------------------------------------------------------===// 11508 namespace { 11509 class CSKYABIInfo : public DefaultABIInfo { 11510 static const int NumArgGPRs = 4; 11511 static const int NumArgFPRs = 4; 11512 11513 static const unsigned XLen = 32; 11514 unsigned FLen; 11515 11516 public: 11517 CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen) 11518 : DefaultABIInfo(CGT), FLen(FLen) {} 11519 11520 void computeInfo(CGFunctionInfo &FI) const override; 11521 ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft, 11522 int &ArgFPRsLeft, 11523 bool isReturnType = false) const; 11524 ABIArgInfo classifyReturnType(QualType RetTy) const; 11525 11526 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11527 QualType Ty) const override; 11528 }; 11529 11530 } // end anonymous namespace 11531 11532 void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const { 11533 QualType RetTy = FI.getReturnType(); 11534 if (!getCXXABI().classifyReturnType(FI)) 11535 FI.getReturnInfo() = classifyReturnType(RetTy); 11536 11537 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 11538 11539 // We must track the number of GPRs used in order to conform to the CSKY 11540 // ABI, as integer scalars passed in registers should have signext/zeroext 11541 // when promoted. 11542 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 11543 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 11544 11545 for (auto &ArgInfo : FI.arguments()) { 11546 ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft); 11547 } 11548 } 11549 11550 Address CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11551 QualType Ty) const { 11552 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11553 11554 // Empty records are ignored for parameter passing purposes. 11555 if (isEmptyRecord(getContext(), Ty, true)) { 11556 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11557 getVAListElementType(CGF), SlotSize); 11558 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11559 return Addr; 11560 } 11561 11562 auto TInfo = getContext().getTypeInfoInChars(Ty); 11563 11564 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize, 11565 /*AllowHigherAlign=*/true); 11566 } 11567 11568 ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft, 11569 int &ArgFPRsLeft, 11570 bool isReturnType) const { 11571 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11572 Ty = useFirstFieldIfTransparentUnion(Ty); 11573 11574 // Structures with either a non-trivial destructor or a non-trivial 11575 // copy constructor are always passed indirectly. 11576 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11577 if (ArgGPRsLeft) 11578 ArgGPRsLeft -= 1; 11579 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11580 CGCXXABI::RAA_DirectInMemory); 11581 } 11582 11583 // Ignore empty structs/unions. 11584 if (isEmptyRecord(getContext(), Ty, true)) 11585 return ABIArgInfo::getIgnore(); 11586 11587 if (!Ty->getAsUnionType()) 11588 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 11589 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 11590 11591 uint64_t Size = getContext().getTypeSize(Ty); 11592 // Pass floating point values via FPRs if possible. 11593 if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size && 11594 ArgFPRsLeft) { 11595 ArgFPRsLeft--; 11596 return ABIArgInfo::getDirect(); 11597 } 11598 11599 // Complex types for the hard float ABI must be passed direct rather than 11600 // using CoerceAndExpand. 11601 if (Ty->isComplexType() && FLen && !isReturnType) { 11602 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11603 if (getContext().getTypeSize(EltTy) <= FLen) { 11604 ArgFPRsLeft -= 2; 11605 return ABIArgInfo::getDirect(); 11606 } 11607 } 11608 11609 if (!isAggregateTypeForABI(Ty)) { 11610 // Treat an enum type as its underlying type. 11611 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11612 Ty = EnumTy->getDecl()->getIntegerType(); 11613 11614 // All integral types are promoted to XLen width, unless passed on the 11615 // stack. 11616 if (Size < XLen && Ty->isIntegralOrEnumerationType()) 11617 return ABIArgInfo::getExtend(Ty); 11618 11619 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11620 if (EIT->getNumBits() < XLen) 11621 return ABIArgInfo::getExtend(Ty); 11622 } 11623 11624 return ABIArgInfo::getDirect(); 11625 } 11626 11627 // For argument type, the first 4*XLen parts of aggregate will be passed 11628 // in registers, and the rest will be passed in stack. 11629 // So we can coerce to integers directly and let backend handle it correctly. 11630 // For return type, aggregate which <= 2*XLen will be returned in registers. 11631 // Otherwise, aggregate will be returned indirectly. 11632 if (!isReturnType || (isReturnType && Size <= 2 * XLen)) { 11633 if (Size <= XLen) { 11634 return ABIArgInfo::getDirect( 11635 llvm::IntegerType::get(getVMContext(), XLen)); 11636 } else { 11637 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11638 llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen)); 11639 } 11640 } 11641 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11642 } 11643 11644 ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const { 11645 if (RetTy->isVoidType()) 11646 return ABIArgInfo::getIgnore(); 11647 11648 int ArgGPRsLeft = 2; 11649 int ArgFPRsLeft = FLen ? 1 : 0; 11650 11651 // The rules for return and argument types are the same, so defer to 11652 // classifyArgumentType. 11653 return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true); 11654 } 11655 11656 namespace { 11657 class CSKYTargetCodeGenInfo : public TargetCodeGenInfo { 11658 public: 11659 CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen) 11660 : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {} 11661 }; 11662 } // end anonymous namespace 11663 11664 //===----------------------------------------------------------------------===// 11665 // BPF ABI Implementation 11666 //===----------------------------------------------------------------------===// 11667 11668 namespace { 11669 11670 class BPFABIInfo : public DefaultABIInfo { 11671 public: 11672 BPFABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11673 11674 ABIArgInfo classifyArgumentType(QualType Ty) const { 11675 Ty = useFirstFieldIfTransparentUnion(Ty); 11676 11677 if (isAggregateTypeForABI(Ty)) { 11678 uint64_t Bits = getContext().getTypeSize(Ty); 11679 if (Bits == 0) 11680 return ABIArgInfo::getIgnore(); 11681 11682 // If the aggregate needs 1 or 2 registers, do not use reference. 11683 if (Bits <= 128) { 11684 llvm::Type *CoerceTy; 11685 if (Bits <= 64) { 11686 CoerceTy = 11687 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 11688 } else { 11689 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), 64); 11690 CoerceTy = llvm::ArrayType::get(RegTy, 2); 11691 } 11692 return ABIArgInfo::getDirect(CoerceTy); 11693 } else { 11694 return getNaturalAlignIndirect(Ty); 11695 } 11696 } 11697 11698 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11699 Ty = EnumTy->getDecl()->getIntegerType(); 11700 11701 ASTContext &Context = getContext(); 11702 if (const auto *EIT = Ty->getAs<BitIntType>()) 11703 if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty)) 11704 return getNaturalAlignIndirect(Ty); 11705 11706 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 11707 : ABIArgInfo::getDirect()); 11708 } 11709 11710 ABIArgInfo classifyReturnType(QualType RetTy) const { 11711 if (RetTy->isVoidType()) 11712 return ABIArgInfo::getIgnore(); 11713 11714 if (isAggregateTypeForABI(RetTy)) 11715 return getNaturalAlignIndirect(RetTy); 11716 11717 // Treat an enum type as its underlying type. 11718 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 11719 RetTy = EnumTy->getDecl()->getIntegerType(); 11720 11721 ASTContext &Context = getContext(); 11722 if (const auto *EIT = RetTy->getAs<BitIntType>()) 11723 if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty)) 11724 return getNaturalAlignIndirect(RetTy); 11725 11726 // Caller will do necessary sign/zero extension. 11727 return ABIArgInfo::getDirect(); 11728 } 11729 11730 void computeInfo(CGFunctionInfo &FI) const override { 11731 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11732 for (auto &I : FI.arguments()) 11733 I.info = classifyArgumentType(I.type); 11734 } 11735 11736 }; 11737 11738 class BPFTargetCodeGenInfo : public TargetCodeGenInfo { 11739 public: 11740 BPFTargetCodeGenInfo(CodeGenTypes &CGT) 11741 : TargetCodeGenInfo(std::make_unique<BPFABIInfo>(CGT)) {} 11742 11743 const BPFABIInfo &getABIInfo() const { 11744 return static_cast<const BPFABIInfo&>(TargetCodeGenInfo::getABIInfo()); 11745 } 11746 }; 11747 11748 } 11749 11750 // LoongArch ABI Implementation. Documented at 11751 // https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html 11752 // 11753 //===----------------------------------------------------------------------===// 11754 11755 namespace { 11756 class LoongArchABIInfo : public DefaultABIInfo { 11757 private: 11758 // Size of the integer ('r') registers in bits. 11759 unsigned GRLen; 11760 // Size of the floating point ('f') registers in bits. 11761 unsigned FRLen; 11762 // Number of general-purpose argument registers. 11763 static const int NumGARs = 8; 11764 // Number of floating-point argument registers. 11765 static const int NumFARs = 8; 11766 bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff, 11767 llvm::Type *&Field1Ty, 11768 CharUnits &Field1Off, 11769 llvm::Type *&Field2Ty, 11770 CharUnits &Field2Off) const; 11771 11772 public: 11773 LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen) 11774 : DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {} 11775 11776 void computeInfo(CGFunctionInfo &FI) const override; 11777 11778 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft, 11779 int &FARsLeft) const; 11780 ABIArgInfo classifyReturnType(QualType RetTy) const; 11781 11782 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11783 QualType Ty) const override; 11784 11785 ABIArgInfo extendType(QualType Ty) const; 11786 11787 bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 11788 CharUnits &Field1Off, llvm::Type *&Field2Ty, 11789 CharUnits &Field2Off, int &NeededArgGPRs, 11790 int &NeededArgFPRs) const; 11791 ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty, 11792 CharUnits Field1Off, 11793 llvm::Type *Field2Ty, 11794 CharUnits Field2Off) const; 11795 }; 11796 } // end anonymous namespace 11797 11798 void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const { 11799 QualType RetTy = FI.getReturnType(); 11800 if (!getCXXABI().classifyReturnType(FI)) 11801 FI.getReturnInfo() = classifyReturnType(RetTy); 11802 11803 // IsRetIndirect is true if classifyArgumentType indicated the value should 11804 // be passed indirect, or if the type size is a scalar greater than 2*GRLen 11805 // and not a complex type with elements <= FRLen. e.g. fp128 is passed direct 11806 // in LLVM IR, relying on the backend lowering code to rewrite the argument 11807 // list and pass indirectly on LA32. 11808 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 11809 if (!IsRetIndirect && RetTy->isScalarType() && 11810 getContext().getTypeSize(RetTy) > (2 * GRLen)) { 11811 if (RetTy->isComplexType() && FRLen) { 11812 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 11813 IsRetIndirect = getContext().getTypeSize(EltTy) > FRLen; 11814 } else { 11815 // This is a normal scalar > 2*GRLen, such as fp128 on LA32. 11816 IsRetIndirect = true; 11817 } 11818 } 11819 11820 // We must track the number of GARs and FARs used in order to conform to the 11821 // LoongArch ABI. As GAR usage is different for variadic arguments, we must 11822 // also track whether we are examining a vararg or not. 11823 int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs; 11824 int FARsLeft = FRLen ? NumFARs : 0; 11825 int NumFixedArgs = FI.getNumRequiredArgs(); 11826 11827 int ArgNum = 0; 11828 for (auto &ArgInfo : FI.arguments()) { 11829 ArgInfo.info = classifyArgumentType( 11830 ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft); 11831 ArgNum++; 11832 } 11833 } 11834 11835 // Returns true if the struct is a potential candidate to be passed in FARs (and 11836 // GARs). If this function returns true, the caller is responsible for checking 11837 // that if there is only a single field then that field is a float. 11838 bool LoongArchABIInfo::detectFARsEligibleStructHelper( 11839 QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, 11840 llvm::Type *&Field2Ty, CharUnits &Field2Off) const { 11841 bool IsInt = Ty->isIntegralOrEnumerationType(); 11842 bool IsFloat = Ty->isRealFloatingType(); 11843 11844 if (IsInt || IsFloat) { 11845 uint64_t Size = getContext().getTypeSize(Ty); 11846 if (IsInt && Size > GRLen) 11847 return false; 11848 // Can't be eligible if larger than the FP registers. Half precision isn't 11849 // currently supported on LoongArch and the ABI hasn't been confirmed, so 11850 // default to the integer ABI in that case. 11851 if (IsFloat && (Size > FRLen || Size < 32)) 11852 return false; 11853 // Can't be eligible if an integer type was already found (int+int pairs 11854 // are not eligible). 11855 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 11856 return false; 11857 if (!Field1Ty) { 11858 Field1Ty = CGT.ConvertType(Ty); 11859 Field1Off = CurOff; 11860 return true; 11861 } 11862 if (!Field2Ty) { 11863 Field2Ty = CGT.ConvertType(Ty); 11864 Field2Off = CurOff; 11865 return true; 11866 } 11867 return false; 11868 } 11869 11870 if (auto CTy = Ty->getAs<ComplexType>()) { 11871 if (Field1Ty) 11872 return false; 11873 QualType EltTy = CTy->getElementType(); 11874 if (getContext().getTypeSize(EltTy) > FRLen) 11875 return false; 11876 Field1Ty = CGT.ConvertType(EltTy); 11877 Field1Off = CurOff; 11878 Field2Ty = Field1Ty; 11879 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 11880 return true; 11881 } 11882 11883 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 11884 uint64_t ArraySize = ATy->getSize().getZExtValue(); 11885 QualType EltTy = ATy->getElementType(); 11886 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 11887 for (uint64_t i = 0; i < ArraySize; ++i) { 11888 if (!detectFARsEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off, 11889 Field2Ty, Field2Off)) 11890 return false; 11891 CurOff += EltSize; 11892 } 11893 return true; 11894 } 11895 11896 if (const auto *RTy = Ty->getAs<RecordType>()) { 11897 // Structures with either a non-trivial destructor or a non-trivial 11898 // copy constructor are not eligible for the FP calling convention. 11899 if (getRecordArgABI(Ty, CGT.getCXXABI())) 11900 return false; 11901 if (isEmptyRecord(getContext(), Ty, true)) 11902 return true; 11903 const RecordDecl *RD = RTy->getDecl(); 11904 // Unions aren't eligible unless they're empty (which is caught above). 11905 if (RD->isUnion()) 11906 return false; 11907 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 11908 // If this is a C++ record, check the bases first. 11909 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 11910 for (const CXXBaseSpecifier &B : CXXRD->bases()) { 11911 const auto *BDecl = 11912 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); 11913 if (!detectFARsEligibleStructHelper( 11914 B.getType(), CurOff + Layout.getBaseClassOffset(BDecl), 11915 Field1Ty, Field1Off, Field2Ty, Field2Off)) 11916 return false; 11917 } 11918 } 11919 for (const FieldDecl *FD : RD->fields()) { 11920 QualType QTy = FD->getType(); 11921 if (FD->isBitField()) { 11922 unsigned BitWidth = FD->getBitWidthValue(getContext()); 11923 // Zero-width bitfields are ignored. 11924 if (BitWidth == 0) 11925 continue; 11926 // Allow a bitfield with a type greater than GRLen as long as the 11927 // bitwidth is GRLen or less. 11928 if (getContext().getTypeSize(QTy) > GRLen && BitWidth <= GRLen) { 11929 QTy = getContext().getIntTypeForBitwidth(GRLen, false); 11930 } 11931 } 11932 11933 if (!detectFARsEligibleStructHelper( 11934 QTy, 11935 CurOff + getContext().toCharUnitsFromBits( 11936 Layout.getFieldOffset(FD->getFieldIndex())), 11937 Field1Ty, Field1Off, Field2Ty, Field2Off)) 11938 return false; 11939 } 11940 return Field1Ty != nullptr; 11941 } 11942 11943 return false; 11944 } 11945 11946 // Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when 11947 // flattened it contains a single fp value, fp+fp, or int+fp of appropriate 11948 // size). If so, NeededFARs and NeededGARs are incremented appropriately. 11949 bool LoongArchABIInfo::detectFARsEligibleStruct( 11950 QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, 11951 llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs, 11952 int &NeededFARs) const { 11953 Field1Ty = nullptr; 11954 Field2Ty = nullptr; 11955 NeededGARs = 0; 11956 NeededFARs = 0; 11957 if (!detectFARsEligibleStructHelper(Ty, CharUnits::Zero(), Field1Ty, 11958 Field1Off, Field2Ty, Field2Off)) 11959 return false; 11960 // Not really a candidate if we have a single int but no float. 11961 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 11962 return false; 11963 if (Field1Ty && Field1Ty->isFloatingPointTy()) 11964 NeededFARs++; 11965 else if (Field1Ty) 11966 NeededGARs++; 11967 if (Field2Ty && Field2Ty->isFloatingPointTy()) 11968 NeededFARs++; 11969 else if (Field2Ty) 11970 NeededGARs++; 11971 return true; 11972 } 11973 11974 // Call getCoerceAndExpand for the two-element flattened struct described by 11975 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 11976 // appropriate coerceToType and unpaddedCoerceToType. 11977 ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct( 11978 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 11979 CharUnits Field2Off) const { 11980 SmallVector<llvm::Type *, 3> CoerceElts; 11981 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 11982 if (!Field1Off.isZero()) 11983 CoerceElts.push_back(llvm::ArrayType::get( 11984 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 11985 11986 CoerceElts.push_back(Field1Ty); 11987 UnpaddedCoerceElts.push_back(Field1Ty); 11988 11989 if (!Field2Ty) { 11990 return ABIArgInfo::getCoerceAndExpand( 11991 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 11992 UnpaddedCoerceElts[0]); 11993 } 11994 11995 CharUnits Field2Align = 11996 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty)); 11997 CharUnits Field1End = 11998 Field1Off + 11999 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 12000 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 12001 12002 CharUnits Padding = CharUnits::Zero(); 12003 if (Field2Off > Field2OffNoPadNoPack) 12004 Padding = Field2Off - Field2OffNoPadNoPack; 12005 else if (Field2Off != Field2Align && Field2Off > Field1End) 12006 Padding = Field2Off - Field1End; 12007 12008 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 12009 12010 if (!Padding.isZero()) 12011 CoerceElts.push_back(llvm::ArrayType::get( 12012 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 12013 12014 CoerceElts.push_back(Field2Ty); 12015 UnpaddedCoerceElts.push_back(Field2Ty); 12016 12017 return ABIArgInfo::getCoerceAndExpand( 12018 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked), 12019 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked)); 12020 } 12021 12022 ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 12023 int &GARsLeft, 12024 int &FARsLeft) const { 12025 assert(GARsLeft <= NumGARs && "GAR tracking underflow"); 12026 Ty = useFirstFieldIfTransparentUnion(Ty); 12027 12028 // Structures with either a non-trivial destructor or a non-trivial 12029 // copy constructor are always passed indirectly. 12030 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 12031 if (GARsLeft) 12032 GARsLeft -= 1; 12033 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 12034 CGCXXABI::RAA_DirectInMemory); 12035 } 12036 12037 // Ignore empty structs/unions. 12038 if (isEmptyRecord(getContext(), Ty, true)) 12039 return ABIArgInfo::getIgnore(); 12040 12041 uint64_t Size = getContext().getTypeSize(Ty); 12042 12043 // Pass floating point values via FARs if possible. 12044 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 12045 FRLen >= Size && FARsLeft) { 12046 FARsLeft--; 12047 return ABIArgInfo::getDirect(); 12048 } 12049 12050 // Complex types for the *f or *d ABI must be passed directly rather than 12051 // using CoerceAndExpand. 12052 if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) { 12053 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 12054 if (getContext().getTypeSize(EltTy) <= FRLen) { 12055 FARsLeft -= 2; 12056 return ABIArgInfo::getDirect(); 12057 } 12058 } 12059 12060 if (IsFixed && FRLen && Ty->isStructureOrClassType()) { 12061 llvm::Type *Field1Ty = nullptr; 12062 llvm::Type *Field2Ty = nullptr; 12063 CharUnits Field1Off = CharUnits::Zero(); 12064 CharUnits Field2Off = CharUnits::Zero(); 12065 int NeededGARs = 0; 12066 int NeededFARs = 0; 12067 bool IsCandidate = detectFARsEligibleStruct( 12068 Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs); 12069 if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) { 12070 GARsLeft -= NeededGARs; 12071 FARsLeft -= NeededFARs; 12072 return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty, 12073 Field2Off); 12074 } 12075 } 12076 12077 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 12078 // Determine the number of GARs needed to pass the current argument 12079 // according to the ABI. 2*GRLen-aligned varargs are passed in "aligned" 12080 // register pairs, so may consume 3 registers. 12081 int NeededGARs = 1; 12082 if (!IsFixed && NeededAlign == 2 * GRLen) 12083 NeededGARs = 2 + (GARsLeft % 2); 12084 else if (Size > GRLen && Size <= 2 * GRLen) 12085 NeededGARs = 2; 12086 12087 if (NeededGARs > GARsLeft) 12088 NeededGARs = GARsLeft; 12089 12090 GARsLeft -= NeededGARs; 12091 12092 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 12093 // Treat an enum type as its underlying type. 12094 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 12095 Ty = EnumTy->getDecl()->getIntegerType(); 12096 12097 // All integral types are promoted to GRLen width. 12098 if (Size < GRLen && Ty->isIntegralOrEnumerationType()) 12099 return extendType(Ty); 12100 12101 if (const auto *EIT = Ty->getAs<BitIntType>()) { 12102 if (EIT->getNumBits() < GRLen) 12103 return extendType(Ty); 12104 if (EIT->getNumBits() > 128 || 12105 (!getContext().getTargetInfo().hasInt128Type() && 12106 EIT->getNumBits() > 64)) 12107 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 12108 } 12109 12110 return ABIArgInfo::getDirect(); 12111 } 12112 12113 // Aggregates which are <= 2*GRLen will be passed in registers if possible, 12114 // so coerce to integers. 12115 if (Size <= 2 * GRLen) { 12116 // Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is 12117 // required, and a 2-element GRLen array if only GRLen alignment is 12118 // required. 12119 if (Size <= GRLen) { 12120 return ABIArgInfo::getDirect( 12121 llvm::IntegerType::get(getVMContext(), GRLen)); 12122 } 12123 if (getContext().getTypeAlign(Ty) == 2 * GRLen) { 12124 return ABIArgInfo::getDirect( 12125 llvm::IntegerType::get(getVMContext(), 2 * GRLen)); 12126 } 12127 return ABIArgInfo::getDirect( 12128 llvm::ArrayType::get(llvm::IntegerType::get(getVMContext(), GRLen), 2)); 12129 } 12130 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 12131 } 12132 12133 ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const { 12134 if (RetTy->isVoidType()) 12135 return ABIArgInfo::getIgnore(); 12136 // The rules for return and argument types are the same, so defer to 12137 // classifyArgumentType. 12138 int GARsLeft = 2; 12139 int FARsLeft = FRLen ? 2 : 0; 12140 return classifyArgumentType(RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft); 12141 } 12142 12143 Address LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 12144 QualType Ty) const { 12145 CharUnits SlotSize = CharUnits::fromQuantity(GRLen / 8); 12146 12147 // Empty records are ignored for parameter passing purposes. 12148 if (isEmptyRecord(getContext(), Ty, true)) { 12149 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 12150 getVAListElementType(CGF), SlotSize); 12151 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 12152 return Addr; 12153 } 12154 12155 auto TInfo = getContext().getTypeInfoInChars(Ty); 12156 12157 // Arguments bigger than 2*GRLen bytes are passed indirectly. 12158 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, 12159 /*IsIndirect=*/TInfo.Width > 2 * SlotSize, TInfo, 12160 SlotSize, 12161 /*AllowHigherAlign=*/true); 12162 } 12163 12164 ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const { 12165 int TySize = getContext().getTypeSize(Ty); 12166 // LA64 ABI requires unsigned 32 bit integers to be sign extended. 12167 if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 12168 return ABIArgInfo::getSignExtend(Ty); 12169 return ABIArgInfo::getExtend(Ty); 12170 } 12171 12172 namespace { 12173 class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo { 12174 public: 12175 LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, 12176 unsigned FRLen) 12177 : TargetCodeGenInfo( 12178 std::make_unique<LoongArchABIInfo>(CGT, GRLen, FRLen)) {} 12179 }; 12180 } // namespace 12181 12182 //===----------------------------------------------------------------------===// 12183 // Driver code 12184 //===----------------------------------------------------------------------===// 12185 12186 bool CodeGenModule::supportsCOMDAT() const { 12187 return getTriple().supportsCOMDAT(); 12188 } 12189 12190 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 12191 if (TheTargetCodeGenInfo) 12192 return *TheTargetCodeGenInfo; 12193 12194 // Helper to set the unique_ptr while still keeping the return value. 12195 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 12196 this->TheTargetCodeGenInfo.reset(P); 12197 return *P; 12198 }; 12199 12200 const llvm::Triple &Triple = getTarget().getTriple(); 12201 switch (Triple.getArch()) { 12202 default: 12203 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 12204 12205 case llvm::Triple::le32: 12206 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 12207 case llvm::Triple::m68k: 12208 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 12209 case llvm::Triple::mips: 12210 case llvm::Triple::mipsel: 12211 if (Triple.getOS() == llvm::Triple::NaCl) 12212 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 12213 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 12214 12215 case llvm::Triple::mips64: 12216 case llvm::Triple::mips64el: 12217 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 12218 12219 case llvm::Triple::avr: { 12220 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 12221 // on avrtiny. For passing return value, R18~R25 are used on avr, and 12222 // R22~R25 are used on avrtiny. 12223 unsigned NPR = getTarget().getABI() == "avrtiny" ? 6 : 18; 12224 unsigned NRR = getTarget().getABI() == "avrtiny" ? 4 : 8; 12225 return SetCGInfo(new AVRTargetCodeGenInfo(Types, NPR, NRR)); 12226 } 12227 12228 case llvm::Triple::aarch64: 12229 case llvm::Triple::aarch64_32: 12230 case llvm::Triple::aarch64_be: { 12231 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 12232 if (getTarget().getABI() == "darwinpcs") 12233 Kind = AArch64ABIInfo::DarwinPCS; 12234 else if (Triple.isOSWindows()) 12235 return SetCGInfo( 12236 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 12237 12238 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 12239 } 12240 12241 case llvm::Triple::wasm32: 12242 case llvm::Triple::wasm64: { 12243 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 12244 if (getTarget().getABI() == "experimental-mv") 12245 Kind = WebAssemblyABIInfo::ExperimentalMV; 12246 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 12247 } 12248 12249 case llvm::Triple::arm: 12250 case llvm::Triple::armeb: 12251 case llvm::Triple::thumb: 12252 case llvm::Triple::thumbeb: { 12253 if (Triple.getOS() == llvm::Triple::Win32) { 12254 return SetCGInfo( 12255 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 12256 } 12257 12258 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 12259 StringRef ABIStr = getTarget().getABI(); 12260 if (ABIStr == "apcs-gnu") 12261 Kind = ARMABIInfo::APCS; 12262 else if (ABIStr == "aapcs16") 12263 Kind = ARMABIInfo::AAPCS16_VFP; 12264 else if (CodeGenOpts.FloatABI == "hard" || 12265 (CodeGenOpts.FloatABI != "soft" && 12266 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 12267 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 12268 Triple.getEnvironment() == llvm::Triple::EABIHF))) 12269 Kind = ARMABIInfo::AAPCS_VFP; 12270 12271 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 12272 } 12273 12274 case llvm::Triple::ppc: { 12275 if (Triple.isOSAIX()) 12276 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 12277 12278 bool IsSoftFloat = 12279 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 12280 bool RetSmallStructInRegABI = 12281 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 12282 return SetCGInfo( 12283 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 12284 } 12285 case llvm::Triple::ppcle: { 12286 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 12287 bool RetSmallStructInRegABI = 12288 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 12289 return SetCGInfo( 12290 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 12291 } 12292 case llvm::Triple::ppc64: 12293 if (Triple.isOSAIX()) 12294 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 12295 12296 if (Triple.isOSBinFormatELF()) { 12297 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 12298 if (getTarget().getABI() == "elfv2") 12299 Kind = PPC64_SVR4_ABIInfo::ELFv2; 12300 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 12301 12302 return SetCGInfo( 12303 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 12304 } 12305 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 12306 case llvm::Triple::ppc64le: { 12307 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 12308 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 12309 if (getTarget().getABI() == "elfv1") 12310 Kind = PPC64_SVR4_ABIInfo::ELFv1; 12311 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 12312 12313 return SetCGInfo( 12314 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 12315 } 12316 12317 case llvm::Triple::nvptx: 12318 case llvm::Triple::nvptx64: 12319 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 12320 12321 case llvm::Triple::msp430: 12322 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 12323 12324 case llvm::Triple::riscv32: 12325 case llvm::Triple::riscv64: { 12326 StringRef ABIStr = getTarget().getABI(); 12327 unsigned XLen = getTarget().getPointerWidth(LangAS::Default); 12328 unsigned ABIFLen = 0; 12329 if (ABIStr.endswith("f")) 12330 ABIFLen = 32; 12331 else if (ABIStr.endswith("d")) 12332 ABIFLen = 64; 12333 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 12334 } 12335 12336 case llvm::Triple::systemz: { 12337 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 12338 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 12339 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 12340 } 12341 12342 case llvm::Triple::tce: 12343 case llvm::Triple::tcele: 12344 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 12345 12346 case llvm::Triple::x86: { 12347 bool IsDarwinVectorABI = Triple.isOSDarwin(); 12348 bool RetSmallStructInRegABI = 12349 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 12350 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 12351 12352 if (Triple.getOS() == llvm::Triple::Win32) { 12353 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 12354 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 12355 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 12356 } else { 12357 return SetCGInfo(new X86_32TargetCodeGenInfo( 12358 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 12359 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 12360 CodeGenOpts.FloatABI == "soft")); 12361 } 12362 } 12363 12364 case llvm::Triple::x86_64: { 12365 StringRef ABI = getTarget().getABI(); 12366 X86AVXABILevel AVXLevel = 12367 (ABI == "avx512" 12368 ? X86AVXABILevel::AVX512 12369 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 12370 12371 switch (Triple.getOS()) { 12372 case llvm::Triple::Win32: 12373 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 12374 default: 12375 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 12376 } 12377 } 12378 case llvm::Triple::hexagon: 12379 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 12380 case llvm::Triple::lanai: 12381 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 12382 case llvm::Triple::r600: 12383 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 12384 case llvm::Triple::amdgcn: 12385 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 12386 case llvm::Triple::sparc: 12387 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 12388 case llvm::Triple::sparcv9: 12389 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 12390 case llvm::Triple::xcore: 12391 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 12392 case llvm::Triple::arc: 12393 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 12394 case llvm::Triple::spir: 12395 case llvm::Triple::spir64: 12396 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 12397 case llvm::Triple::spirv32: 12398 case llvm::Triple::spirv64: 12399 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); 12400 case llvm::Triple::ve: 12401 return SetCGInfo(new VETargetCodeGenInfo(Types)); 12402 case llvm::Triple::csky: { 12403 bool IsSoftFloat = !getTarget().hasFeature("hard-float-abi"); 12404 bool hasFP64 = getTarget().hasFeature("fpuv2_df") || 12405 getTarget().hasFeature("fpuv3_df"); 12406 return SetCGInfo(new CSKYTargetCodeGenInfo(Types, IsSoftFloat ? 0 12407 : hasFP64 ? 64 12408 : 32)); 12409 } 12410 case llvm::Triple::bpfeb: 12411 case llvm::Triple::bpfel: 12412 return SetCGInfo(new BPFTargetCodeGenInfo(Types)); 12413 case llvm::Triple::loongarch32: 12414 case llvm::Triple::loongarch64: { 12415 StringRef ABIStr = getTarget().getABI(); 12416 unsigned ABIFRLen = 0; 12417 if (ABIStr.endswith("f")) 12418 ABIFRLen = 32; 12419 else if (ABIStr.endswith("d")) 12420 ABIFRLen = 64; 12421 return SetCGInfo(new LoongArchTargetCodeGenInfo( 12422 Types, getTarget().getPointerWidth(LangAS::Default), ABIFRLen)); 12423 } 12424 } 12425 } 12426 12427 /// Create an OpenCL kernel for an enqueued block. 12428 /// 12429 /// The kernel has the same function type as the block invoke function. Its 12430 /// name is the name of the block invoke function postfixed with "_kernel". 12431 /// It simply calls the block invoke function then returns. 12432 llvm::Function * 12433 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 12434 llvm::Function *Invoke, 12435 llvm::Type *BlockTy) const { 12436 auto *InvokeFT = Invoke->getFunctionType(); 12437 auto &C = CGF.getLLVMContext(); 12438 std::string Name = Invoke->getName().str() + "_kernel"; 12439 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), 12440 InvokeFT->params(), false); 12441 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, 12442 &CGF.CGM.getModule()); 12443 auto IP = CGF.Builder.saveIP(); 12444 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 12445 auto &Builder = CGF.Builder; 12446 Builder.SetInsertPoint(BB); 12447 llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args())); 12448 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 12449 call->setCallingConv(Invoke->getCallingConv()); 12450 Builder.CreateRetVoid(); 12451 Builder.restoreIP(IP); 12452 return F; 12453 } 12454 12455 /// Create an OpenCL kernel for an enqueued block. 12456 /// 12457 /// The type of the first argument (the block literal) is the struct type 12458 /// of the block literal instead of a pointer type. The first argument 12459 /// (block literal) is passed directly by value to the kernel. The kernel 12460 /// allocates the same type of struct on stack and stores the block literal 12461 /// to it and passes its pointer to the block invoke function. The kernel 12462 /// has "enqueued-block" function attribute and kernel argument metadata. 12463 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 12464 CodeGenFunction &CGF, llvm::Function *Invoke, 12465 llvm::Type *BlockTy) const { 12466 auto &Builder = CGF.Builder; 12467 auto &C = CGF.getLLVMContext(); 12468 12469 auto *InvokeFT = Invoke->getFunctionType(); 12470 llvm::SmallVector<llvm::Type *, 2> ArgTys; 12471 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 12472 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 12473 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 12474 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 12475 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 12476 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 12477 12478 ArgTys.push_back(BlockTy); 12479 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 12480 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 12481 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 12482 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 12483 AccessQuals.push_back(llvm::MDString::get(C, "none")); 12484 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 12485 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 12486 ArgTys.push_back(InvokeFT->getParamType(I)); 12487 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 12488 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 12489 AccessQuals.push_back(llvm::MDString::get(C, "none")); 12490 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 12491 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 12492 ArgNames.push_back( 12493 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 12494 } 12495 std::string Name = Invoke->getName().str() + "_kernel"; 12496 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 12497 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 12498 &CGF.CGM.getModule()); 12499 F->addFnAttr("enqueued-block"); 12500 auto IP = CGF.Builder.saveIP(); 12501 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 12502 Builder.SetInsertPoint(BB); 12503 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 12504 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 12505 BlockPtr->setAlignment(BlockAlign); 12506 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 12507 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 12508 llvm::SmallVector<llvm::Value *, 2> Args; 12509 Args.push_back(Cast); 12510 for (llvm::Argument &A : llvm::drop_begin(F->args())) 12511 Args.push_back(&A); 12512 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 12513 call->setCallingConv(Invoke->getCallingConv()); 12514 Builder.CreateRetVoid(); 12515 Builder.restoreIP(IP); 12516 12517 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 12518 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 12519 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 12520 F->setMetadata("kernel_arg_base_type", 12521 llvm::MDNode::get(C, ArgBaseTypeNames)); 12522 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 12523 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 12524 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 12525 12526 return F; 12527 } 12528