1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 396 QualType Ty, CharUnits SlotSize, 397 CharUnits EltSize, const ComplexType *CTy) { 398 Address Addr = 399 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 400 SlotSize, SlotSize, /*AllowHigher*/ true); 401 402 Address RealAddr = Addr; 403 Address ImagAddr = RealAddr; 404 if (CGF.CGM.getDataLayout().isBigEndian()) { 405 RealAddr = 406 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 407 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 408 2 * SlotSize - EltSize); 409 } else { 410 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 411 } 412 413 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 414 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 415 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 416 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 417 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 418 419 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 420 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 421 /*init*/ true); 422 return Temp; 423 } 424 425 static Address emitMergePHI(CodeGenFunction &CGF, 426 Address Addr1, llvm::BasicBlock *Block1, 427 Address Addr2, llvm::BasicBlock *Block2, 428 const llvm::Twine &Name = "") { 429 assert(Addr1.getType() == Addr2.getType()); 430 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 431 PHI->addIncoming(Addr1.getPointer(), Block1); 432 PHI->addIncoming(Addr2.getPointer(), Block2); 433 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 434 return Address(PHI, Align); 435 } 436 437 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 438 439 // If someone can figure out a general rule for this, that would be great. 440 // It's probably just doomed to be platform-dependent, though. 441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 442 // Verified for: 443 // x86-64 FreeBSD, Linux, Darwin 444 // x86-32 FreeBSD, Linux, Darwin 445 // PowerPC Linux, Darwin 446 // ARM Darwin (*not* EABI) 447 // AArch64 Linux 448 return 32; 449 } 450 451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 452 const FunctionNoProtoType *fnType) const { 453 // The following conventions are known to require this to be false: 454 // x86_stdcall 455 // MIPS 456 // For everything else, we just prefer false unless we opt out. 457 return false; 458 } 459 460 void 461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 462 llvm::SmallString<24> &Opt) const { 463 // This assumes the user is passing a library name like "rt" instead of a 464 // filename like "librt.a/so", and that they don't care whether it's static or 465 // dynamic. 466 Opt = "-l"; 467 Opt += Lib; 468 } 469 470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 471 // OpenCL kernels are called via an explicit runtime API with arguments 472 // set with clSetKernelArg(), not as normal sub-functions. 473 // Return SPIR_KERNEL by default as the kernel calling convention to 474 // ensure the fingerprint is fixed such way that each OpenCL argument 475 // gets one matching argument in the produced kernel function argument 476 // list to enable feasible implementation of clSetKernelArg() with 477 // aggregates etc. In case we would use the default C calling conv here, 478 // clSetKernelArg() might break depending on the target-specific 479 // conventions; different targets might split structs passed as values 480 // to multiple function arguments etc. 481 return llvm::CallingConv::SPIR_KERNEL; 482 } 483 484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 485 llvm::PointerType *T, QualType QT) const { 486 return llvm::ConstantPointerNull::get(T); 487 } 488 489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 490 const VarDecl *D) const { 491 assert(!CGM.getLangOpts().OpenCL && 492 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 493 "Address space agnostic languages only"); 494 return D ? D->getType().getAddressSpace() : LangAS::Default; 495 } 496 497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 498 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 499 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 500 // Since target may map different address spaces in AST to the same address 501 // space, an address space conversion may end up as a bitcast. 502 if (auto *C = dyn_cast<llvm::Constant>(Src)) 503 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 504 // Try to preserve the source's name to make IR more readable. 505 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 506 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 507 } 508 509 llvm::Constant * 510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 511 LangAS SrcAddr, LangAS DestAddr, 512 llvm::Type *DestTy) const { 513 // Since target may map different address spaces in AST to the same address 514 // space, an address space conversion may end up as a bitcast. 515 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 516 } 517 518 llvm::SyncScope::ID 519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 520 SyncScope Scope, 521 llvm::AtomicOrdering Ordering, 522 llvm::LLVMContext &Ctx) const { 523 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 524 } 525 526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 527 528 /// isEmptyField - Return true iff a the field is "empty", that is it 529 /// is an unnamed bit-field or an (array of) empty record(s). 530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 531 bool AllowArrays) { 532 if (FD->isUnnamedBitfield()) 533 return true; 534 535 QualType FT = FD->getType(); 536 537 // Constant arrays of empty records count as empty, strip them off. 538 // Constant arrays of zero length always count as empty. 539 bool WasArray = false; 540 if (AllowArrays) 541 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 542 if (AT->getSize() == 0) 543 return true; 544 FT = AT->getElementType(); 545 // The [[no_unique_address]] special case below does not apply to 546 // arrays of C++ empty records, so we need to remember this fact. 547 WasArray = true; 548 } 549 550 const RecordType *RT = FT->getAs<RecordType>(); 551 if (!RT) 552 return false; 553 554 // C++ record fields are never empty, at least in the Itanium ABI. 555 // 556 // FIXME: We should use a predicate for whether this behavior is true in the 557 // current ABI. 558 // 559 // The exception to the above rule are fields marked with the 560 // [[no_unique_address]] attribute (since C++20). Those do count as empty 561 // according to the Itanium ABI. The exception applies only to records, 562 // not arrays of records, so we must also check whether we stripped off an 563 // array type above. 564 if (isa<CXXRecordDecl>(RT->getDecl()) && 565 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 566 return false; 567 568 return isEmptyRecord(Context, FT, AllowArrays); 569 } 570 571 /// isEmptyRecord - Return true iff a structure contains only empty 572 /// fields. Note that a structure with a flexible array member is not 573 /// considered empty. 574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 575 const RecordType *RT = T->getAs<RecordType>(); 576 if (!RT) 577 return false; 578 const RecordDecl *RD = RT->getDecl(); 579 if (RD->hasFlexibleArrayMember()) 580 return false; 581 582 // If this is a C++ record, check the bases first. 583 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 584 for (const auto &I : CXXRD->bases()) 585 if (!isEmptyRecord(Context, I.getType(), true)) 586 return false; 587 588 for (const auto *I : RD->fields()) 589 if (!isEmptyField(Context, I, AllowArrays)) 590 return false; 591 return true; 592 } 593 594 /// isSingleElementStruct - Determine if a structure is a "single 595 /// element struct", i.e. it has exactly one non-empty field or 596 /// exactly one field which is itself a single element 597 /// struct. Structures with flexible array members are never 598 /// considered single element structs. 599 /// 600 /// \return The field declaration for the single non-empty field, if 601 /// it exists. 602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 603 const RecordType *RT = T->getAs<RecordType>(); 604 if (!RT) 605 return nullptr; 606 607 const RecordDecl *RD = RT->getDecl(); 608 if (RD->hasFlexibleArrayMember()) 609 return nullptr; 610 611 const Type *Found = nullptr; 612 613 // If this is a C++ record, check the bases first. 614 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 615 for (const auto &I : CXXRD->bases()) { 616 // Ignore empty records. 617 if (isEmptyRecord(Context, I.getType(), true)) 618 continue; 619 620 // If we already found an element then this isn't a single-element struct. 621 if (Found) 622 return nullptr; 623 624 // If this is non-empty and not a single element struct, the composite 625 // cannot be a single element struct. 626 Found = isSingleElementStruct(I.getType(), Context); 627 if (!Found) 628 return nullptr; 629 } 630 } 631 632 // Check for single element. 633 for (const auto *FD : RD->fields()) { 634 QualType FT = FD->getType(); 635 636 // Ignore empty fields. 637 if (isEmptyField(Context, FD, true)) 638 continue; 639 640 // If we already found an element then this isn't a single-element 641 // struct. 642 if (Found) 643 return nullptr; 644 645 // Treat single element arrays as the element. 646 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 647 if (AT->getSize().getZExtValue() != 1) 648 break; 649 FT = AT->getElementType(); 650 } 651 652 if (!isAggregateTypeForABI(FT)) { 653 Found = FT.getTypePtr(); 654 } else { 655 Found = isSingleElementStruct(FT, Context); 656 if (!Found) 657 return nullptr; 658 } 659 } 660 661 // We don't consider a struct a single-element struct if it has 662 // padding beyond the element type. 663 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 664 return nullptr; 665 666 return Found; 667 } 668 669 namespace { 670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 671 const ABIArgInfo &AI) { 672 // This default implementation defers to the llvm backend's va_arg 673 // instruction. It can handle only passing arguments directly 674 // (typically only handled in the backend for primitive types), or 675 // aggregates passed indirectly by pointer (NOTE: if the "byval" 676 // flag has ABI impact in the callee, this implementation cannot 677 // work.) 678 679 // Only a few cases are covered here at the moment -- those needed 680 // by the default abi. 681 llvm::Value *Val; 682 683 if (AI.isIndirect()) { 684 assert(!AI.getPaddingType() && 685 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 686 assert( 687 !AI.getIndirectRealign() && 688 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 689 690 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 691 CharUnits TyAlignForABI = TyInfo.Align; 692 693 llvm::Type *BaseTy = 694 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 695 llvm::Value *Addr = 696 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 697 return Address(Addr, TyAlignForABI); 698 } else { 699 assert((AI.isDirect() || AI.isExtend()) && 700 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 701 702 assert(!AI.getInReg() && 703 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 704 assert(!AI.getPaddingType() && 705 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 706 assert(!AI.getDirectOffset() && 707 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 708 assert(!AI.getCoerceToType() && 709 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 710 711 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 712 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 713 CGF.Builder.CreateStore(Val, Temp); 714 return Temp; 715 } 716 } 717 718 /// DefaultABIInfo - The default implementation for ABI specific 719 /// details. This implementation provides information which results in 720 /// self-consistent and sensible LLVM IR generation, but does not 721 /// conform to any particular ABI. 722 class DefaultABIInfo : public ABIInfo { 723 public: 724 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 725 726 ABIArgInfo classifyReturnType(QualType RetTy) const; 727 ABIArgInfo classifyArgumentType(QualType RetTy) const; 728 729 void computeInfo(CGFunctionInfo &FI) const override { 730 if (!getCXXABI().classifyReturnType(FI)) 731 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 732 for (auto &I : FI.arguments()) 733 I.info = classifyArgumentType(I.type); 734 } 735 736 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 737 QualType Ty) const override { 738 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 739 } 740 }; 741 742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 743 public: 744 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 745 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 746 }; 747 748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 749 Ty = useFirstFieldIfTransparentUnion(Ty); 750 751 if (isAggregateTypeForABI(Ty)) { 752 // Records with non-trivial destructors/copy-constructors should not be 753 // passed by value. 754 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 755 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 756 757 return getNaturalAlignIndirect(Ty); 758 } 759 760 // Treat an enum type as its underlying type. 761 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 762 Ty = EnumTy->getDecl()->getIntegerType(); 763 764 ASTContext &Context = getContext(); 765 if (const auto *EIT = Ty->getAs<ExtIntType>()) 766 if (EIT->getNumBits() > 767 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 768 ? Context.Int128Ty 769 : Context.LongLongTy)) 770 return getNaturalAlignIndirect(Ty); 771 772 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 773 : ABIArgInfo::getDirect()); 774 } 775 776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 777 if (RetTy->isVoidType()) 778 return ABIArgInfo::getIgnore(); 779 780 if (isAggregateTypeForABI(RetTy)) 781 return getNaturalAlignIndirect(RetTy); 782 783 // Treat an enum type as its underlying type. 784 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 785 RetTy = EnumTy->getDecl()->getIntegerType(); 786 787 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 788 if (EIT->getNumBits() > 789 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 790 ? getContext().Int128Ty 791 : getContext().LongLongTy)) 792 return getNaturalAlignIndirect(RetTy); 793 794 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 795 : ABIArgInfo::getDirect()); 796 } 797 798 //===----------------------------------------------------------------------===// 799 // WebAssembly ABI Implementation 800 // 801 // This is a very simple ABI that relies a lot on DefaultABIInfo. 802 //===----------------------------------------------------------------------===// 803 804 class WebAssemblyABIInfo final : public SwiftABIInfo { 805 public: 806 enum ABIKind { 807 MVP = 0, 808 ExperimentalMV = 1, 809 }; 810 811 private: 812 DefaultABIInfo defaultInfo; 813 ABIKind Kind; 814 815 public: 816 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 817 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 818 819 private: 820 ABIArgInfo classifyReturnType(QualType RetTy) const; 821 ABIArgInfo classifyArgumentType(QualType Ty) const; 822 823 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 824 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 825 // overload them. 826 void computeInfo(CGFunctionInfo &FI) const override { 827 if (!getCXXABI().classifyReturnType(FI)) 828 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 829 for (auto &Arg : FI.arguments()) 830 Arg.info = classifyArgumentType(Arg.type); 831 } 832 833 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 834 QualType Ty) const override; 835 836 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 837 bool asReturnValue) const override { 838 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 839 } 840 841 bool isSwiftErrorInRegister() const override { 842 return false; 843 } 844 }; 845 846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 847 public: 848 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 849 WebAssemblyABIInfo::ABIKind K) 850 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 851 852 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 853 CodeGen::CodeGenModule &CGM) const override { 854 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 855 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 856 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 857 llvm::Function *Fn = cast<llvm::Function>(GV); 858 llvm::AttrBuilder B; 859 B.addAttribute("wasm-import-module", Attr->getImportModule()); 860 Fn->addFnAttrs(B); 861 } 862 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 863 llvm::Function *Fn = cast<llvm::Function>(GV); 864 llvm::AttrBuilder B; 865 B.addAttribute("wasm-import-name", Attr->getImportName()); 866 Fn->addFnAttrs(B); 867 } 868 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 869 llvm::Function *Fn = cast<llvm::Function>(GV); 870 llvm::AttrBuilder B; 871 B.addAttribute("wasm-export-name", Attr->getExportName()); 872 Fn->addFnAttrs(B); 873 } 874 } 875 876 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 877 llvm::Function *Fn = cast<llvm::Function>(GV); 878 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 879 Fn->addFnAttr("no-prototype"); 880 } 881 } 882 }; 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 886 Ty = useFirstFieldIfTransparentUnion(Ty); 887 888 if (isAggregateTypeForABI(Ty)) { 889 // Records with non-trivial destructors/copy-constructors should not be 890 // passed by value. 891 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 892 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 893 // Ignore empty structs/unions. 894 if (isEmptyRecord(getContext(), Ty, true)) 895 return ABIArgInfo::getIgnore(); 896 // Lower single-element structs to just pass a regular value. TODO: We 897 // could do reasonable-size multiple-element structs too, using getExpand(), 898 // though watch out for things like bitfields. 899 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 900 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 901 // For the experimental multivalue ABI, fully expand all other aggregates 902 if (Kind == ABIKind::ExperimentalMV) { 903 const RecordType *RT = Ty->getAs<RecordType>(); 904 assert(RT); 905 bool HasBitField = false; 906 for (auto *Field : RT->getDecl()->fields()) { 907 if (Field->isBitField()) { 908 HasBitField = true; 909 break; 910 } 911 } 912 if (!HasBitField) 913 return ABIArgInfo::getExpand(); 914 } 915 } 916 917 // Otherwise just do the default thing. 918 return defaultInfo.classifyArgumentType(Ty); 919 } 920 921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 922 if (isAggregateTypeForABI(RetTy)) { 923 // Records with non-trivial destructors/copy-constructors should not be 924 // returned by value. 925 if (!getRecordArgABI(RetTy, getCXXABI())) { 926 // Ignore empty structs/unions. 927 if (isEmptyRecord(getContext(), RetTy, true)) 928 return ABIArgInfo::getIgnore(); 929 // Lower single-element structs to just return a regular value. TODO: We 930 // could do reasonable-size multiple-element structs too, using 931 // ABIArgInfo::getDirect(). 932 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 933 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 934 // For the experimental multivalue ABI, return all other aggregates 935 if (Kind == ABIKind::ExperimentalMV) 936 return ABIArgInfo::getDirect(); 937 } 938 } 939 940 // Otherwise just do the default thing. 941 return defaultInfo.classifyReturnType(RetTy); 942 } 943 944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 945 QualType Ty) const { 946 bool IsIndirect = isAggregateTypeForABI(Ty) && 947 !isEmptyRecord(getContext(), Ty, true) && 948 !isSingleElementStruct(Ty, getContext()); 949 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 950 getContext().getTypeInfoInChars(Ty), 951 CharUnits::fromQuantity(4), 952 /*AllowHigherAlign=*/true); 953 } 954 955 //===----------------------------------------------------------------------===// 956 // le32/PNaCl bitcode ABI Implementation 957 // 958 // This is a simplified version of the x86_32 ABI. Arguments and return values 959 // are always passed on the stack. 960 //===----------------------------------------------------------------------===// 961 962 class PNaClABIInfo : public ABIInfo { 963 public: 964 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 965 966 ABIArgInfo classifyReturnType(QualType RetTy) const; 967 ABIArgInfo classifyArgumentType(QualType RetTy) const; 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, 971 Address VAListAddr, QualType Ty) const override; 972 }; 973 974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 975 public: 976 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 977 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 978 }; 979 980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 981 if (!getCXXABI().classifyReturnType(FI)) 982 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 983 984 for (auto &I : FI.arguments()) 985 I.info = classifyArgumentType(I.type); 986 } 987 988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 989 QualType Ty) const { 990 // The PNaCL ABI is a bit odd, in that varargs don't use normal 991 // function classification. Structs get passed directly for varargs 992 // functions, through a rewriting transform in 993 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 994 // this target to actually support a va_arg instructions with an 995 // aggregate type, unlike other targets. 996 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 997 } 998 999 /// Classify argument of given type \p Ty. 1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1001 if (isAggregateTypeForABI(Ty)) { 1002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1003 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1004 return getNaturalAlignIndirect(Ty); 1005 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1006 // Treat an enum type as its underlying type. 1007 Ty = EnumTy->getDecl()->getIntegerType(); 1008 } else if (Ty->isFloatingType()) { 1009 // Floating-point types don't go inreg. 1010 return ABIArgInfo::getDirect(); 1011 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 1012 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1013 if (EIT->getNumBits() > 64) 1014 return getNaturalAlignIndirect(Ty); 1015 return ABIArgInfo::getDirect(); 1016 } 1017 1018 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1019 : ABIArgInfo::getDirect()); 1020 } 1021 1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1023 if (RetTy->isVoidType()) 1024 return ABIArgInfo::getIgnore(); 1025 1026 // In the PNaCl ABI we always return records/structures on the stack. 1027 if (isAggregateTypeForABI(RetTy)) 1028 return getNaturalAlignIndirect(RetTy); 1029 1030 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1031 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1032 if (EIT->getNumBits() > 64) 1033 return getNaturalAlignIndirect(RetTy); 1034 return ABIArgInfo::getDirect(); 1035 } 1036 1037 // Treat an enum type as its underlying type. 1038 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1039 RetTy = EnumTy->getDecl()->getIntegerType(); 1040 1041 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1042 : ABIArgInfo::getDirect()); 1043 } 1044 1045 /// IsX86_MMXType - Return true if this is an MMX type. 1046 bool IsX86_MMXType(llvm::Type *IRType) { 1047 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1048 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1049 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1050 IRType->getScalarSizeInBits() != 64; 1051 } 1052 1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1054 StringRef Constraint, 1055 llvm::Type* Ty) { 1056 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1057 .Cases("y", "&y", "^Ym", true) 1058 .Default(false); 1059 if (IsMMXCons && Ty->isVectorTy()) { 1060 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1061 64) { 1062 // Invalid MMX constraint 1063 return nullptr; 1064 } 1065 1066 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1067 } 1068 1069 // No operation needed 1070 return Ty; 1071 } 1072 1073 /// Returns true if this type can be passed in SSE registers with the 1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1076 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1077 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1078 if (BT->getKind() == BuiltinType::LongDouble) { 1079 if (&Context.getTargetInfo().getLongDoubleFormat() == 1080 &llvm::APFloat::x87DoubleExtended()) 1081 return false; 1082 } 1083 return true; 1084 } 1085 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1086 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1087 // registers specially. 1088 unsigned VecSize = Context.getTypeSize(VT); 1089 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 /// Returns true if this aggregate is small enough to be passed in SSE registers 1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1098 return NumMembers <= 4; 1099 } 1100 1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1103 auto AI = ABIArgInfo::getDirect(T); 1104 AI.setInReg(true); 1105 AI.setCanBeFlattened(false); 1106 return AI; 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // X86-32 ABI Implementation 1111 //===----------------------------------------------------------------------===// 1112 1113 /// Similar to llvm::CCState, but for Clang. 1114 struct CCState { 1115 CCState(CGFunctionInfo &FI) 1116 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1117 1118 llvm::SmallBitVector IsPreassigned; 1119 unsigned CC = CallingConv::CC_C; 1120 unsigned FreeRegs = 0; 1121 unsigned FreeSSERegs = 0; 1122 }; 1123 1124 /// X86_32ABIInfo - The X86-32 ABI information. 1125 class X86_32ABIInfo : public SwiftABIInfo { 1126 enum Class { 1127 Integer, 1128 Float 1129 }; 1130 1131 static const unsigned MinABIStackAlignInBytes = 4; 1132 1133 bool IsDarwinVectorABI; 1134 bool IsRetSmallStructInRegABI; 1135 bool IsWin32StructABI; 1136 bool IsSoftFloatABI; 1137 bool IsMCUABI; 1138 bool IsLinuxABI; 1139 unsigned DefaultNumRegisterParameters; 1140 1141 static bool isRegisterSize(unsigned Size) { 1142 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1143 } 1144 1145 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1146 // FIXME: Assumes vectorcall is in use. 1147 return isX86VectorTypeForVectorCall(getContext(), Ty); 1148 } 1149 1150 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1151 uint64_t NumMembers) const override { 1152 // FIXME: Assumes vectorcall is in use. 1153 return isX86VectorCallAggregateSmallEnough(NumMembers); 1154 } 1155 1156 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1157 1158 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1159 /// such that the argument will be passed in memory. 1160 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1161 1162 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1163 1164 /// Return the alignment to use for the given type on the stack. 1165 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1166 1167 Class classify(QualType Ty) const; 1168 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1169 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1170 1171 /// Updates the number of available free registers, returns 1172 /// true if any registers were allocated. 1173 bool updateFreeRegs(QualType Ty, CCState &State) const; 1174 1175 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1176 bool &NeedsPadding) const; 1177 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1178 1179 bool canExpandIndirectArgument(QualType Ty) const; 1180 1181 /// Rewrite the function info so that all memory arguments use 1182 /// inalloca. 1183 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1184 1185 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1186 CharUnits &StackOffset, ABIArgInfo &Info, 1187 QualType Type) const; 1188 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1189 1190 public: 1191 1192 void computeInfo(CGFunctionInfo &FI) const override; 1193 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1194 QualType Ty) const override; 1195 1196 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1197 bool RetSmallStructInRegABI, bool Win32StructABI, 1198 unsigned NumRegisterParameters, bool SoftFloatABI) 1199 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1200 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1201 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1202 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1203 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1204 CGT.getTarget().getTriple().isOSCygMing()), 1205 DefaultNumRegisterParameters(NumRegisterParameters) {} 1206 1207 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1208 bool asReturnValue) const override { 1209 // LLVM's x86-32 lowering currently only assigns up to three 1210 // integer registers and three fp registers. Oddly, it'll use up to 1211 // four vector registers for vectors, but those can overlap with the 1212 // scalar registers. 1213 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1214 } 1215 1216 bool isSwiftErrorInRegister() const override { 1217 // x86-32 lowering does not support passing swifterror in a register. 1218 return false; 1219 } 1220 }; 1221 1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1223 public: 1224 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1225 bool RetSmallStructInRegABI, bool Win32StructABI, 1226 unsigned NumRegisterParameters, bool SoftFloatABI) 1227 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1228 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1229 NumRegisterParameters, SoftFloatABI)) {} 1230 1231 static bool isStructReturnInRegABI( 1232 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1233 1234 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1235 CodeGen::CodeGenModule &CGM) const override; 1236 1237 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1238 // Darwin uses different dwarf register numbers for EH. 1239 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1240 return 4; 1241 } 1242 1243 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *Address) const override; 1245 1246 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1247 StringRef Constraint, 1248 llvm::Type* Ty) const override { 1249 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1250 } 1251 1252 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1253 std::string &Constraints, 1254 std::vector<llvm::Type *> &ResultRegTypes, 1255 std::vector<llvm::Type *> &ResultTruncRegTypes, 1256 std::vector<LValue> &ResultRegDests, 1257 std::string &AsmString, 1258 unsigned NumOutputs) const override; 1259 1260 llvm::Constant * 1261 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1262 unsigned Sig = (0xeb << 0) | // jmp rel8 1263 (0x06 << 8) | // .+0x08 1264 ('v' << 16) | 1265 ('2' << 24); 1266 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1267 } 1268 1269 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1270 return "movl\t%ebp, %ebp" 1271 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1272 } 1273 }; 1274 1275 } 1276 1277 /// Rewrite input constraint references after adding some output constraints. 1278 /// In the case where there is one output and one input and we add one output, 1279 /// we need to replace all operand references greater than or equal to 1: 1280 /// mov $0, $1 1281 /// mov eax, $1 1282 /// The result will be: 1283 /// mov $0, $2 1284 /// mov eax, $2 1285 static void rewriteInputConstraintReferences(unsigned FirstIn, 1286 unsigned NumNewOuts, 1287 std::string &AsmString) { 1288 std::string Buf; 1289 llvm::raw_string_ostream OS(Buf); 1290 size_t Pos = 0; 1291 while (Pos < AsmString.size()) { 1292 size_t DollarStart = AsmString.find('$', Pos); 1293 if (DollarStart == std::string::npos) 1294 DollarStart = AsmString.size(); 1295 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1296 if (DollarEnd == std::string::npos) 1297 DollarEnd = AsmString.size(); 1298 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1299 Pos = DollarEnd; 1300 size_t NumDollars = DollarEnd - DollarStart; 1301 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1302 // We have an operand reference. 1303 size_t DigitStart = Pos; 1304 if (AsmString[DigitStart] == '{') { 1305 OS << '{'; 1306 ++DigitStart; 1307 } 1308 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1309 if (DigitEnd == std::string::npos) 1310 DigitEnd = AsmString.size(); 1311 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1312 unsigned OperandIndex; 1313 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1314 if (OperandIndex >= FirstIn) 1315 OperandIndex += NumNewOuts; 1316 OS << OperandIndex; 1317 } else { 1318 OS << OperandStr; 1319 } 1320 Pos = DigitEnd; 1321 } 1322 } 1323 AsmString = std::move(OS.str()); 1324 } 1325 1326 /// Add output constraints for EAX:EDX because they are return registers. 1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1328 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1329 std::vector<llvm::Type *> &ResultRegTypes, 1330 std::vector<llvm::Type *> &ResultTruncRegTypes, 1331 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1332 unsigned NumOutputs) const { 1333 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1334 1335 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1336 // larger. 1337 if (!Constraints.empty()) 1338 Constraints += ','; 1339 if (RetWidth <= 32) { 1340 Constraints += "={eax}"; 1341 ResultRegTypes.push_back(CGF.Int32Ty); 1342 } else { 1343 // Use the 'A' constraint for EAX:EDX. 1344 Constraints += "=A"; 1345 ResultRegTypes.push_back(CGF.Int64Ty); 1346 } 1347 1348 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1349 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1350 ResultTruncRegTypes.push_back(CoerceTy); 1351 1352 // Coerce the integer by bitcasting the return slot pointer. 1353 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1354 CoerceTy->getPointerTo())); 1355 ResultRegDests.push_back(ReturnSlot); 1356 1357 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1358 } 1359 1360 /// shouldReturnTypeInRegister - Determine if the given type should be 1361 /// returned in a register (for the Darwin and MCU ABI). 1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1363 ASTContext &Context) const { 1364 uint64_t Size = Context.getTypeSize(Ty); 1365 1366 // For i386, type must be register sized. 1367 // For the MCU ABI, it only needs to be <= 8-byte 1368 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1369 return false; 1370 1371 if (Ty->isVectorType()) { 1372 // 64- and 128- bit vectors inside structures are not returned in 1373 // registers. 1374 if (Size == 64 || Size == 128) 1375 return false; 1376 1377 return true; 1378 } 1379 1380 // If this is a builtin, pointer, enum, complex type, member pointer, or 1381 // member function pointer it is ok. 1382 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1383 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1384 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1385 return true; 1386 1387 // Arrays are treated like records. 1388 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1389 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1390 1391 // Otherwise, it must be a record type. 1392 const RecordType *RT = Ty->getAs<RecordType>(); 1393 if (!RT) return false; 1394 1395 // FIXME: Traverse bases here too. 1396 1397 // Structure types are passed in register if all fields would be 1398 // passed in a register. 1399 for (const auto *FD : RT->getDecl()->fields()) { 1400 // Empty fields are ignored. 1401 if (isEmptyField(Context, FD, true)) 1402 continue; 1403 1404 // Check fields recursively. 1405 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1406 return false; 1407 } 1408 return true; 1409 } 1410 1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1412 // Treat complex types as the element type. 1413 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1414 Ty = CTy->getElementType(); 1415 1416 // Check for a type which we know has a simple scalar argument-passing 1417 // convention without any padding. (We're specifically looking for 32 1418 // and 64-bit integer and integer-equivalents, float, and double.) 1419 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1420 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1421 return false; 1422 1423 uint64_t Size = Context.getTypeSize(Ty); 1424 return Size == 32 || Size == 64; 1425 } 1426 1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1428 uint64_t &Size) { 1429 for (const auto *FD : RD->fields()) { 1430 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1431 // argument is smaller than 32-bits, expanding the struct will create 1432 // alignment padding. 1433 if (!is32Or64BitBasicType(FD->getType(), Context)) 1434 return false; 1435 1436 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1437 // how to expand them yet, and the predicate for telling if a bitfield still 1438 // counts as "basic" is more complicated than what we were doing previously. 1439 if (FD->isBitField()) 1440 return false; 1441 1442 Size += Context.getTypeSize(FD->getType()); 1443 } 1444 return true; 1445 } 1446 1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1448 uint64_t &Size) { 1449 // Don't do this if there are any non-empty bases. 1450 for (const CXXBaseSpecifier &Base : RD->bases()) { 1451 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1452 Size)) 1453 return false; 1454 } 1455 if (!addFieldSizes(Context, RD, Size)) 1456 return false; 1457 return true; 1458 } 1459 1460 /// Test whether an argument type which is to be passed indirectly (on the 1461 /// stack) would have the equivalent layout if it was expanded into separate 1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1463 /// optimizations. 1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1465 // We can only expand structure types. 1466 const RecordType *RT = Ty->getAs<RecordType>(); 1467 if (!RT) 1468 return false; 1469 const RecordDecl *RD = RT->getDecl(); 1470 uint64_t Size = 0; 1471 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1472 if (!IsWin32StructABI) { 1473 // On non-Windows, we have to conservatively match our old bitcode 1474 // prototypes in order to be ABI-compatible at the bitcode level. 1475 if (!CXXRD->isCLike()) 1476 return false; 1477 } else { 1478 // Don't do this for dynamic classes. 1479 if (CXXRD->isDynamicClass()) 1480 return false; 1481 } 1482 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1483 return false; 1484 } else { 1485 if (!addFieldSizes(getContext(), RD, Size)) 1486 return false; 1487 } 1488 1489 // We can do this if there was no alignment padding. 1490 return Size == getContext().getTypeSize(Ty); 1491 } 1492 1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1494 // If the return value is indirect, then the hidden argument is consuming one 1495 // integer register. 1496 if (State.FreeRegs) { 1497 --State.FreeRegs; 1498 if (!IsMCUABI) 1499 return getNaturalAlignIndirectInReg(RetTy); 1500 } 1501 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1502 } 1503 1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1505 CCState &State) const { 1506 if (RetTy->isVoidType()) 1507 return ABIArgInfo::getIgnore(); 1508 1509 const Type *Base = nullptr; 1510 uint64_t NumElts = 0; 1511 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1512 State.CC == llvm::CallingConv::X86_RegCall) && 1513 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1514 // The LLVM struct type for such an aggregate should lower properly. 1515 return ABIArgInfo::getDirect(); 1516 } 1517 1518 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1519 // On Darwin, some vectors are returned in registers. 1520 if (IsDarwinVectorABI) { 1521 uint64_t Size = getContext().getTypeSize(RetTy); 1522 1523 // 128-bit vectors are a special case; they are returned in 1524 // registers and we need to make sure to pick a type the LLVM 1525 // backend will like. 1526 if (Size == 128) 1527 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1528 llvm::Type::getInt64Ty(getVMContext()), 2)); 1529 1530 // Always return in register if it fits in a general purpose 1531 // register, or if it is 64 bits and has a single element. 1532 if ((Size == 8 || Size == 16 || Size == 32) || 1533 (Size == 64 && VT->getNumElements() == 1)) 1534 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1535 Size)); 1536 1537 return getIndirectReturnResult(RetTy, State); 1538 } 1539 1540 return ABIArgInfo::getDirect(); 1541 } 1542 1543 if (isAggregateTypeForABI(RetTy)) { 1544 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1545 // Structures with flexible arrays are always indirect. 1546 if (RT->getDecl()->hasFlexibleArrayMember()) 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // If specified, structs and unions are always indirect. 1551 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1552 return getIndirectReturnResult(RetTy, State); 1553 1554 // Ignore empty structs/unions. 1555 if (isEmptyRecord(getContext(), RetTy, true)) 1556 return ABIArgInfo::getIgnore(); 1557 1558 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1559 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1560 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1561 if (ET->isFloat16Type()) 1562 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1563 llvm::Type::getHalfTy(getVMContext()), 2)); 1564 } 1565 1566 // Small structures which are register sized are generally returned 1567 // in a register. 1568 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1569 uint64_t Size = getContext().getTypeSize(RetTy); 1570 1571 // As a special-case, if the struct is a "single-element" struct, and 1572 // the field is of type "float" or "double", return it in a 1573 // floating-point register. (MSVC does not apply this special case.) 1574 // We apply a similar transformation for pointer types to improve the 1575 // quality of the generated IR. 1576 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1577 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1578 || SeltTy->hasPointerRepresentation()) 1579 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1580 1581 // FIXME: We should be able to narrow this integer in cases with dead 1582 // padding. 1583 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1584 } 1585 1586 return getIndirectReturnResult(RetTy, State); 1587 } 1588 1589 // Treat an enum type as its underlying type. 1590 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1591 RetTy = EnumTy->getDecl()->getIntegerType(); 1592 1593 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1594 if (EIT->getNumBits() > 64) 1595 return getIndirectReturnResult(RetTy, State); 1596 1597 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1598 : ABIArgInfo::getDirect()); 1599 } 1600 1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1602 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1603 } 1604 1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1606 const RecordType *RT = Ty->getAs<RecordType>(); 1607 if (!RT) 1608 return 0; 1609 const RecordDecl *RD = RT->getDecl(); 1610 1611 // If this is a C++ record, check the bases first. 1612 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1613 for (const auto &I : CXXRD->bases()) 1614 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1615 return false; 1616 1617 for (const auto *i : RD->fields()) { 1618 QualType FT = i->getType(); 1619 1620 if (isSIMDVectorType(Context, FT)) 1621 return true; 1622 1623 if (isRecordWithSIMDVectorType(Context, FT)) 1624 return true; 1625 } 1626 1627 return false; 1628 } 1629 1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1631 unsigned Align) const { 1632 // Otherwise, if the alignment is less than or equal to the minimum ABI 1633 // alignment, just use the default; the backend will handle this. 1634 if (Align <= MinABIStackAlignInBytes) 1635 return 0; // Use default alignment. 1636 1637 if (IsLinuxABI) { 1638 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1639 // want to spend any effort dealing with the ramifications of ABI breaks. 1640 // 1641 // If the vector type is __m128/__m256/__m512, return the default alignment. 1642 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1643 return Align; 1644 } 1645 // On non-Darwin, the stack type alignment is always 4. 1646 if (!IsDarwinVectorABI) { 1647 // Set explicit alignment, since we may need to realign the top. 1648 return MinABIStackAlignInBytes; 1649 } 1650 1651 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1652 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1653 isRecordWithSIMDVectorType(getContext(), Ty))) 1654 return 16; 1655 1656 return MinABIStackAlignInBytes; 1657 } 1658 1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1660 CCState &State) const { 1661 if (!ByVal) { 1662 if (State.FreeRegs) { 1663 --State.FreeRegs; // Non-byval indirects just use one pointer. 1664 if (!IsMCUABI) 1665 return getNaturalAlignIndirectInReg(Ty); 1666 } 1667 return getNaturalAlignIndirect(Ty, false); 1668 } 1669 1670 // Compute the byval alignment. 1671 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1672 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1673 if (StackAlign == 0) 1674 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1675 1676 // If the stack alignment is less than the type alignment, realign the 1677 // argument. 1678 bool Realign = TypeAlign > StackAlign; 1679 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1680 /*ByVal=*/true, Realign); 1681 } 1682 1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1684 const Type *T = isSingleElementStruct(Ty, getContext()); 1685 if (!T) 1686 T = Ty.getTypePtr(); 1687 1688 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1689 BuiltinType::Kind K = BT->getKind(); 1690 if (K == BuiltinType::Float || K == BuiltinType::Double) 1691 return Float; 1692 } 1693 return Integer; 1694 } 1695 1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1697 if (!IsSoftFloatABI) { 1698 Class C = classify(Ty); 1699 if (C == Float) 1700 return false; 1701 } 1702 1703 unsigned Size = getContext().getTypeSize(Ty); 1704 unsigned SizeInRegs = (Size + 31) / 32; 1705 1706 if (SizeInRegs == 0) 1707 return false; 1708 1709 if (!IsMCUABI) { 1710 if (SizeInRegs > State.FreeRegs) { 1711 State.FreeRegs = 0; 1712 return false; 1713 } 1714 } else { 1715 // The MCU psABI allows passing parameters in-reg even if there are 1716 // earlier parameters that are passed on the stack. Also, 1717 // it does not allow passing >8-byte structs in-register, 1718 // even if there are 3 free registers available. 1719 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1720 return false; 1721 } 1722 1723 State.FreeRegs -= SizeInRegs; 1724 return true; 1725 } 1726 1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1728 bool &InReg, 1729 bool &NeedsPadding) const { 1730 // On Windows, aggregates other than HFAs are never passed in registers, and 1731 // they do not consume register slots. Homogenous floating-point aggregates 1732 // (HFAs) have already been dealt with at this point. 1733 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1734 return false; 1735 1736 NeedsPadding = false; 1737 InReg = !IsMCUABI; 1738 1739 if (!updateFreeRegs(Ty, State)) 1740 return false; 1741 1742 if (IsMCUABI) 1743 return true; 1744 1745 if (State.CC == llvm::CallingConv::X86_FastCall || 1746 State.CC == llvm::CallingConv::X86_VectorCall || 1747 State.CC == llvm::CallingConv::X86_RegCall) { 1748 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1749 NeedsPadding = true; 1750 1751 return false; 1752 } 1753 1754 return true; 1755 } 1756 1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1758 if (!updateFreeRegs(Ty, State)) 1759 return false; 1760 1761 if (IsMCUABI) 1762 return false; 1763 1764 if (State.CC == llvm::CallingConv::X86_FastCall || 1765 State.CC == llvm::CallingConv::X86_VectorCall || 1766 State.CC == llvm::CallingConv::X86_RegCall) { 1767 if (getContext().getTypeSize(Ty) > 32) 1768 return false; 1769 1770 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1771 Ty->isReferenceType()); 1772 } 1773 1774 return true; 1775 } 1776 1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1778 // Vectorcall x86 works subtly different than in x64, so the format is 1779 // a bit different than the x64 version. First, all vector types (not HVAs) 1780 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1781 // This differs from the x64 implementation, where the first 6 by INDEX get 1782 // registers. 1783 // In the second pass over the arguments, HVAs are passed in the remaining 1784 // vector registers if possible, or indirectly by address. The address will be 1785 // passed in ECX/EDX if available. Any other arguments are passed according to 1786 // the usual fastcall rules. 1787 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1788 for (int I = 0, E = Args.size(); I < E; ++I) { 1789 const Type *Base = nullptr; 1790 uint64_t NumElts = 0; 1791 const QualType &Ty = Args[I].type; 1792 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1793 isHomogeneousAggregate(Ty, Base, NumElts)) { 1794 if (State.FreeSSERegs >= NumElts) { 1795 State.FreeSSERegs -= NumElts; 1796 Args[I].info = ABIArgInfo::getDirectInReg(); 1797 State.IsPreassigned.set(I); 1798 } 1799 } 1800 } 1801 } 1802 1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1804 CCState &State) const { 1805 // FIXME: Set alignment on indirect arguments. 1806 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1807 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1808 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1809 1810 Ty = useFirstFieldIfTransparentUnion(Ty); 1811 TypeInfo TI = getContext().getTypeInfo(Ty); 1812 1813 // Check with the C++ ABI first. 1814 const RecordType *RT = Ty->getAs<RecordType>(); 1815 if (RT) { 1816 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1817 if (RAA == CGCXXABI::RAA_Indirect) { 1818 return getIndirectResult(Ty, false, State); 1819 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1820 // The field index doesn't matter, we'll fix it up later. 1821 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1822 } 1823 } 1824 1825 // Regcall uses the concept of a homogenous vector aggregate, similar 1826 // to other targets. 1827 const Type *Base = nullptr; 1828 uint64_t NumElts = 0; 1829 if ((IsRegCall || IsVectorCall) && 1830 isHomogeneousAggregate(Ty, Base, NumElts)) { 1831 if (State.FreeSSERegs >= NumElts) { 1832 State.FreeSSERegs -= NumElts; 1833 1834 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1835 // does. 1836 if (IsVectorCall) 1837 return getDirectX86Hva(); 1838 1839 if (Ty->isBuiltinType() || Ty->isVectorType()) 1840 return ABIArgInfo::getDirect(); 1841 return ABIArgInfo::getExpand(); 1842 } 1843 return getIndirectResult(Ty, /*ByVal=*/false, State); 1844 } 1845 1846 if (isAggregateTypeForABI(Ty)) { 1847 // Structures with flexible arrays are always indirect. 1848 // FIXME: This should not be byval! 1849 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1850 return getIndirectResult(Ty, true, State); 1851 1852 // Ignore empty structs/unions on non-Windows. 1853 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1854 return ABIArgInfo::getIgnore(); 1855 1856 llvm::LLVMContext &LLVMContext = getVMContext(); 1857 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1858 bool NeedsPadding = false; 1859 bool InReg; 1860 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1861 unsigned SizeInRegs = (TI.Width + 31) / 32; 1862 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1863 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1864 if (InReg) 1865 return ABIArgInfo::getDirectInReg(Result); 1866 else 1867 return ABIArgInfo::getDirect(Result); 1868 } 1869 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1870 1871 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1872 // added in MSVC 2015. 1873 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1874 return getIndirectResult(Ty, /*ByVal=*/false, State); 1875 1876 // Expand small (<= 128-bit) record types when we know that the stack layout 1877 // of those arguments will match the struct. This is important because the 1878 // LLVM backend isn't smart enough to remove byval, which inhibits many 1879 // optimizations. 1880 // Don't do this for the MCU if there are still free integer registers 1881 // (see X86_64 ABI for full explanation). 1882 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1883 canExpandIndirectArgument(Ty)) 1884 return ABIArgInfo::getExpandWithPadding( 1885 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1886 1887 return getIndirectResult(Ty, true, State); 1888 } 1889 1890 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1891 // On Windows, vectors are passed directly if registers are available, or 1892 // indirectly if not. This avoids the need to align argument memory. Pass 1893 // user-defined vector types larger than 512 bits indirectly for simplicity. 1894 if (IsWin32StructABI) { 1895 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1896 --State.FreeSSERegs; 1897 return ABIArgInfo::getDirectInReg(); 1898 } 1899 return getIndirectResult(Ty, /*ByVal=*/false, State); 1900 } 1901 1902 // On Darwin, some vectors are passed in memory, we handle this by passing 1903 // it as an i8/i16/i32/i64. 1904 if (IsDarwinVectorABI) { 1905 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1906 (TI.Width == 64 && VT->getNumElements() == 1)) 1907 return ABIArgInfo::getDirect( 1908 llvm::IntegerType::get(getVMContext(), TI.Width)); 1909 } 1910 1911 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1912 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1913 1914 return ABIArgInfo::getDirect(); 1915 } 1916 1917 1918 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1919 Ty = EnumTy->getDecl()->getIntegerType(); 1920 1921 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1922 1923 if (isPromotableIntegerTypeForABI(Ty)) { 1924 if (InReg) 1925 return ABIArgInfo::getExtendInReg(Ty); 1926 return ABIArgInfo::getExtend(Ty); 1927 } 1928 1929 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1930 if (EIT->getNumBits() <= 64) { 1931 if (InReg) 1932 return ABIArgInfo::getDirectInReg(); 1933 return ABIArgInfo::getDirect(); 1934 } 1935 return getIndirectResult(Ty, /*ByVal=*/false, State); 1936 } 1937 1938 if (InReg) 1939 return ABIArgInfo::getDirectInReg(); 1940 return ABIArgInfo::getDirect(); 1941 } 1942 1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1944 CCState State(FI); 1945 if (IsMCUABI) 1946 State.FreeRegs = 3; 1947 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1948 State.FreeRegs = 2; 1949 State.FreeSSERegs = 3; 1950 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1951 State.FreeRegs = 2; 1952 State.FreeSSERegs = 6; 1953 } else if (FI.getHasRegParm()) 1954 State.FreeRegs = FI.getRegParm(); 1955 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1956 State.FreeRegs = 5; 1957 State.FreeSSERegs = 8; 1958 } else if (IsWin32StructABI) { 1959 // Since MSVC 2015, the first three SSE vectors have been passed in 1960 // registers. The rest are passed indirectly. 1961 State.FreeRegs = DefaultNumRegisterParameters; 1962 State.FreeSSERegs = 3; 1963 } else 1964 State.FreeRegs = DefaultNumRegisterParameters; 1965 1966 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1968 } else if (FI.getReturnInfo().isIndirect()) { 1969 // The C++ ABI is not aware of register usage, so we have to check if the 1970 // return value was sret and put it in a register ourselves if appropriate. 1971 if (State.FreeRegs) { 1972 --State.FreeRegs; // The sret parameter consumes a register. 1973 if (!IsMCUABI) 1974 FI.getReturnInfo().setInReg(true); 1975 } 1976 } 1977 1978 // The chain argument effectively gives us another free register. 1979 if (FI.isChainCall()) 1980 ++State.FreeRegs; 1981 1982 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1983 // arguments to XMM registers as available. 1984 if (State.CC == llvm::CallingConv::X86_VectorCall) 1985 runVectorCallFirstPass(FI, State); 1986 1987 bool UsedInAlloca = false; 1988 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1989 for (int I = 0, E = Args.size(); I < E; ++I) { 1990 // Skip arguments that have already been assigned. 1991 if (State.IsPreassigned.test(I)) 1992 continue; 1993 1994 Args[I].info = classifyArgumentType(Args[I].type, State); 1995 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1996 } 1997 1998 // If we needed to use inalloca for any argument, do a second pass and rewrite 1999 // all the memory arguments to use inalloca. 2000 if (UsedInAlloca) 2001 rewriteWithInAlloca(FI); 2002 } 2003 2004 void 2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2006 CharUnits &StackOffset, ABIArgInfo &Info, 2007 QualType Type) const { 2008 // Arguments are always 4-byte-aligned. 2009 CharUnits WordSize = CharUnits::fromQuantity(4); 2010 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2011 2012 // sret pointers and indirect things will require an extra pointer 2013 // indirection, unless they are byval. Most things are byval, and will not 2014 // require this indirection. 2015 bool IsIndirect = false; 2016 if (Info.isIndirect() && !Info.getIndirectByVal()) 2017 IsIndirect = true; 2018 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2019 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2020 if (IsIndirect) 2021 LLTy = LLTy->getPointerTo(0); 2022 FrameFields.push_back(LLTy); 2023 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2024 2025 // Insert padding bytes to respect alignment. 2026 CharUnits FieldEnd = StackOffset; 2027 StackOffset = FieldEnd.alignTo(WordSize); 2028 if (StackOffset != FieldEnd) { 2029 CharUnits NumBytes = StackOffset - FieldEnd; 2030 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2031 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2032 FrameFields.push_back(Ty); 2033 } 2034 } 2035 2036 static bool isArgInAlloca(const ABIArgInfo &Info) { 2037 // Leave ignored and inreg arguments alone. 2038 switch (Info.getKind()) { 2039 case ABIArgInfo::InAlloca: 2040 return true; 2041 case ABIArgInfo::Ignore: 2042 case ABIArgInfo::IndirectAliased: 2043 return false; 2044 case ABIArgInfo::Indirect: 2045 case ABIArgInfo::Direct: 2046 case ABIArgInfo::Extend: 2047 return !Info.getInReg(); 2048 case ABIArgInfo::Expand: 2049 case ABIArgInfo::CoerceAndExpand: 2050 // These are aggregate types which are never passed in registers when 2051 // inalloca is involved. 2052 return true; 2053 } 2054 llvm_unreachable("invalid enum"); 2055 } 2056 2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2058 assert(IsWin32StructABI && "inalloca only supported on win32"); 2059 2060 // Build a packed struct type for all of the arguments in memory. 2061 SmallVector<llvm::Type *, 6> FrameFields; 2062 2063 // The stack alignment is always 4. 2064 CharUnits StackAlign = CharUnits::fromQuantity(4); 2065 2066 CharUnits StackOffset; 2067 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2068 2069 // Put 'this' into the struct before 'sret', if necessary. 2070 bool IsThisCall = 2071 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2072 ABIArgInfo &Ret = FI.getReturnInfo(); 2073 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2074 isArgInAlloca(I->info)) { 2075 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2076 ++I; 2077 } 2078 2079 // Put the sret parameter into the inalloca struct if it's in memory. 2080 if (Ret.isIndirect() && !Ret.getInReg()) { 2081 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2082 // On Windows, the hidden sret parameter is always returned in eax. 2083 Ret.setInAllocaSRet(IsWin32StructABI); 2084 } 2085 2086 // Skip the 'this' parameter in ecx. 2087 if (IsThisCall) 2088 ++I; 2089 2090 // Put arguments passed in memory into the struct. 2091 for (; I != E; ++I) { 2092 if (isArgInAlloca(I->info)) 2093 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2094 } 2095 2096 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2097 /*isPacked=*/true), 2098 StackAlign); 2099 } 2100 2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2102 Address VAListAddr, QualType Ty) const { 2103 2104 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2105 2106 // x86-32 changes the alignment of certain arguments on the stack. 2107 // 2108 // Just messing with TypeInfo like this works because we never pass 2109 // anything indirectly. 2110 TypeInfo.Align = CharUnits::fromQuantity( 2111 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2112 2113 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2114 TypeInfo, CharUnits::fromQuantity(4), 2115 /*AllowHigherAlign*/ true); 2116 } 2117 2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2119 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2120 assert(Triple.getArch() == llvm::Triple::x86); 2121 2122 switch (Opts.getStructReturnConvention()) { 2123 case CodeGenOptions::SRCK_Default: 2124 break; 2125 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2126 return false; 2127 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2128 return true; 2129 } 2130 2131 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2132 return true; 2133 2134 switch (Triple.getOS()) { 2135 case llvm::Triple::DragonFly: 2136 case llvm::Triple::FreeBSD: 2137 case llvm::Triple::OpenBSD: 2138 case llvm::Triple::Win32: 2139 return true; 2140 default: 2141 return false; 2142 } 2143 } 2144 2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2146 CodeGen::CodeGenModule &CGM) { 2147 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2148 return; 2149 2150 llvm::Function *Fn = cast<llvm::Function>(GV); 2151 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2152 if (FD->getNumParams() == 0) 2153 return; 2154 2155 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2156 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2157 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2158 Fn->getContext(), ByValTy); 2159 Fn->addParamAttr(0, NewAttr); 2160 } 2161 2162 void X86_32TargetCodeGenInfo::setTargetAttributes( 2163 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2164 if (GV->isDeclaration()) 2165 return; 2166 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2167 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2168 llvm::Function *Fn = cast<llvm::Function>(GV); 2169 Fn->addFnAttr("stackrealign"); 2170 } 2171 2172 addX86InterruptAttrs(FD, GV, CGM); 2173 } 2174 } 2175 2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2177 CodeGen::CodeGenFunction &CGF, 2178 llvm::Value *Address) const { 2179 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2180 2181 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2182 2183 // 0-7 are the eight integer registers; the order is different 2184 // on Darwin (for EH), but the range is the same. 2185 // 8 is %eip. 2186 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2187 2188 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2189 // 12-16 are st(0..4). Not sure why we stop at 4. 2190 // These have size 16, which is sizeof(long double) on 2191 // platforms with 8-byte alignment for that type. 2192 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2193 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2194 2195 } else { 2196 // 9 is %eflags, which doesn't get a size on Darwin for some 2197 // reason. 2198 Builder.CreateAlignedStore( 2199 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2200 CharUnits::One()); 2201 2202 // 11-16 are st(0..5). Not sure why we stop at 5. 2203 // These have size 12, which is sizeof(long double) on 2204 // platforms with 4-byte alignment for that type. 2205 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2206 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2207 } 2208 2209 return false; 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // X86-64 ABI Implementation 2214 //===----------------------------------------------------------------------===// 2215 2216 2217 namespace { 2218 /// The AVX ABI level for X86 targets. 2219 enum class X86AVXABILevel { 2220 None, 2221 AVX, 2222 AVX512 2223 }; 2224 2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2227 switch (AVXLevel) { 2228 case X86AVXABILevel::AVX512: 2229 return 512; 2230 case X86AVXABILevel::AVX: 2231 return 256; 2232 case X86AVXABILevel::None: 2233 return 128; 2234 } 2235 llvm_unreachable("Unknown AVXLevel"); 2236 } 2237 2238 /// X86_64ABIInfo - The X86_64 ABI information. 2239 class X86_64ABIInfo : public SwiftABIInfo { 2240 enum Class { 2241 Integer = 0, 2242 SSE, 2243 SSEUp, 2244 X87, 2245 X87Up, 2246 ComplexX87, 2247 NoClass, 2248 Memory 2249 }; 2250 2251 /// merge - Implement the X86_64 ABI merging algorithm. 2252 /// 2253 /// Merge an accumulating classification \arg Accum with a field 2254 /// classification \arg Field. 2255 /// 2256 /// \param Accum - The accumulating classification. This should 2257 /// always be either NoClass or the result of a previous merge 2258 /// call. In addition, this should never be Memory (the caller 2259 /// should just return Memory for the aggregate). 2260 static Class merge(Class Accum, Class Field); 2261 2262 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2263 /// 2264 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2265 /// final MEMORY or SSE classes when necessary. 2266 /// 2267 /// \param AggregateSize - The size of the current aggregate in 2268 /// the classification process. 2269 /// 2270 /// \param Lo - The classification for the parts of the type 2271 /// residing in the low word of the containing object. 2272 /// 2273 /// \param Hi - The classification for the parts of the type 2274 /// residing in the higher words of the containing object. 2275 /// 2276 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2277 2278 /// classify - Determine the x86_64 register classes in which the 2279 /// given type T should be passed. 2280 /// 2281 /// \param Lo - The classification for the parts of the type 2282 /// residing in the low word of the containing object. 2283 /// 2284 /// \param Hi - The classification for the parts of the type 2285 /// residing in the high word of the containing object. 2286 /// 2287 /// \param OffsetBase - The bit offset of this type in the 2288 /// containing object. Some parameters are classified different 2289 /// depending on whether they straddle an eightbyte boundary. 2290 /// 2291 /// \param isNamedArg - Whether the argument in question is a "named" 2292 /// argument, as used in AMD64-ABI 3.5.7. 2293 /// 2294 /// If a word is unused its result will be NoClass; if a type should 2295 /// be passed in Memory then at least the classification of \arg Lo 2296 /// will be Memory. 2297 /// 2298 /// The \arg Lo class will be NoClass iff the argument is ignored. 2299 /// 2300 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2301 /// also be ComplexX87. 2302 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2303 bool isNamedArg) const; 2304 2305 llvm::Type *GetByteVectorType(QualType Ty) const; 2306 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2307 unsigned IROffset, QualType SourceTy, 2308 unsigned SourceOffset) const; 2309 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2310 unsigned IROffset, QualType SourceTy, 2311 unsigned SourceOffset) const; 2312 2313 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2314 /// such that the argument will be returned in memory. 2315 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2316 2317 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2318 /// such that the argument will be passed in memory. 2319 /// 2320 /// \param freeIntRegs - The number of free integer registers remaining 2321 /// available. 2322 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2323 2324 ABIArgInfo classifyReturnType(QualType RetTy) const; 2325 2326 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2327 unsigned &neededInt, unsigned &neededSSE, 2328 bool isNamedArg) const; 2329 2330 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2331 unsigned &NeededSSE) const; 2332 2333 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2334 unsigned &NeededSSE) const; 2335 2336 bool IsIllegalVectorType(QualType Ty) const; 2337 2338 /// The 0.98 ABI revision clarified a lot of ambiguities, 2339 /// unfortunately in ways that were not always consistent with 2340 /// certain previous compilers. In particular, platforms which 2341 /// required strict binary compatibility with older versions of GCC 2342 /// may need to exempt themselves. 2343 bool honorsRevision0_98() const { 2344 return !getTarget().getTriple().isOSDarwin(); 2345 } 2346 2347 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2348 /// classify it as INTEGER (for compatibility with older clang compilers). 2349 bool classifyIntegerMMXAsSSE() const { 2350 // Clang <= 3.8 did not do this. 2351 if (getContext().getLangOpts().getClangABICompat() <= 2352 LangOptions::ClangABI::Ver3_8) 2353 return false; 2354 2355 const llvm::Triple &Triple = getTarget().getTriple(); 2356 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2357 return false; 2358 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2359 return false; 2360 return true; 2361 } 2362 2363 // GCC classifies vectors of __int128 as memory. 2364 bool passInt128VectorsInMem() const { 2365 // Clang <= 9.0 did not do this. 2366 if (getContext().getLangOpts().getClangABICompat() <= 2367 LangOptions::ClangABI::Ver9) 2368 return false; 2369 2370 const llvm::Triple &T = getTarget().getTriple(); 2371 return T.isOSLinux() || T.isOSNetBSD(); 2372 } 2373 2374 X86AVXABILevel AVXLevel; 2375 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2376 // 64-bit hardware. 2377 bool Has64BitPointers; 2378 2379 public: 2380 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2381 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2382 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2383 } 2384 2385 bool isPassedUsingAVXType(QualType type) const { 2386 unsigned neededInt, neededSSE; 2387 // The freeIntRegs argument doesn't matter here. 2388 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2389 /*isNamedArg*/true); 2390 if (info.isDirect()) { 2391 llvm::Type *ty = info.getCoerceToType(); 2392 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2393 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2394 } 2395 return false; 2396 } 2397 2398 void computeInfo(CGFunctionInfo &FI) const override; 2399 2400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2401 QualType Ty) const override; 2402 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2403 QualType Ty) const override; 2404 2405 bool has64BitPointers() const { 2406 return Has64BitPointers; 2407 } 2408 2409 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2410 bool asReturnValue) const override { 2411 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2412 } 2413 bool isSwiftErrorInRegister() const override { 2414 return true; 2415 } 2416 }; 2417 2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2419 class WinX86_64ABIInfo : public SwiftABIInfo { 2420 public: 2421 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2422 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2423 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2424 2425 void computeInfo(CGFunctionInfo &FI) const override; 2426 2427 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2428 QualType Ty) const override; 2429 2430 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2431 // FIXME: Assumes vectorcall is in use. 2432 return isX86VectorTypeForVectorCall(getContext(), Ty); 2433 } 2434 2435 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2436 uint64_t NumMembers) const override { 2437 // FIXME: Assumes vectorcall is in use. 2438 return isX86VectorCallAggregateSmallEnough(NumMembers); 2439 } 2440 2441 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2442 bool asReturnValue) const override { 2443 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2444 } 2445 2446 bool isSwiftErrorInRegister() const override { 2447 return true; 2448 } 2449 2450 private: 2451 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2452 bool IsVectorCall, bool IsRegCall) const; 2453 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2454 const ABIArgInfo ¤t) const; 2455 2456 X86AVXABILevel AVXLevel; 2457 2458 bool IsMingw64; 2459 }; 2460 2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2462 public: 2463 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2464 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2465 2466 const X86_64ABIInfo &getABIInfo() const { 2467 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2468 } 2469 2470 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2471 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2472 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2473 2474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2475 return 7; 2476 } 2477 2478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2479 llvm::Value *Address) const override { 2480 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2481 2482 // 0-15 are the 16 integer registers. 2483 // 16 is %rip. 2484 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2485 return false; 2486 } 2487 2488 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2489 StringRef Constraint, 2490 llvm::Type* Ty) const override { 2491 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2492 } 2493 2494 bool isNoProtoCallVariadic(const CallArgList &args, 2495 const FunctionNoProtoType *fnType) const override { 2496 // The default CC on x86-64 sets %al to the number of SSA 2497 // registers used, and GCC sets this when calling an unprototyped 2498 // function, so we override the default behavior. However, don't do 2499 // that when AVX types are involved: the ABI explicitly states it is 2500 // undefined, and it doesn't work in practice because of how the ABI 2501 // defines varargs anyway. 2502 if (fnType->getCallConv() == CC_C) { 2503 bool HasAVXType = false; 2504 for (CallArgList::const_iterator 2505 it = args.begin(), ie = args.end(); it != ie; ++it) { 2506 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2507 HasAVXType = true; 2508 break; 2509 } 2510 } 2511 2512 if (!HasAVXType) 2513 return true; 2514 } 2515 2516 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2517 } 2518 2519 llvm::Constant * 2520 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2521 unsigned Sig = (0xeb << 0) | // jmp rel8 2522 (0x06 << 8) | // .+0x08 2523 ('v' << 16) | 2524 ('2' << 24); 2525 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2526 } 2527 2528 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2529 CodeGen::CodeGenModule &CGM) const override { 2530 if (GV->isDeclaration()) 2531 return; 2532 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2533 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2534 llvm::Function *Fn = cast<llvm::Function>(GV); 2535 Fn->addFnAttr("stackrealign"); 2536 } 2537 2538 addX86InterruptAttrs(FD, GV, CGM); 2539 } 2540 } 2541 2542 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2543 const FunctionDecl *Caller, 2544 const FunctionDecl *Callee, 2545 const CallArgList &Args) const override; 2546 }; 2547 2548 static void initFeatureMaps(const ASTContext &Ctx, 2549 llvm::StringMap<bool> &CallerMap, 2550 const FunctionDecl *Caller, 2551 llvm::StringMap<bool> &CalleeMap, 2552 const FunctionDecl *Callee) { 2553 if (CalleeMap.empty() && CallerMap.empty()) { 2554 // The caller is potentially nullptr in the case where the call isn't in a 2555 // function. In this case, the getFunctionFeatureMap ensures we just get 2556 // the TU level setting (since it cannot be modified by 'target'.. 2557 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2558 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2559 } 2560 } 2561 2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2563 SourceLocation CallLoc, 2564 const llvm::StringMap<bool> &CallerMap, 2565 const llvm::StringMap<bool> &CalleeMap, 2566 QualType Ty, StringRef Feature, 2567 bool IsArgument) { 2568 bool CallerHasFeat = CallerMap.lookup(Feature); 2569 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2570 if (!CallerHasFeat && !CalleeHasFeat) 2571 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2572 << IsArgument << Ty << Feature; 2573 2574 // Mixing calling conventions here is very clearly an error. 2575 if (!CallerHasFeat || !CalleeHasFeat) 2576 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2577 << IsArgument << Ty << Feature; 2578 2579 // Else, both caller and callee have the required feature, so there is no need 2580 // to diagnose. 2581 return false; 2582 } 2583 2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2585 SourceLocation CallLoc, 2586 const llvm::StringMap<bool> &CallerMap, 2587 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2588 bool IsArgument) { 2589 uint64_t Size = Ctx.getTypeSize(Ty); 2590 if (Size > 256) 2591 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2592 "avx512f", IsArgument); 2593 2594 if (Size > 128) 2595 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2596 IsArgument); 2597 2598 return false; 2599 } 2600 2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2602 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2603 const FunctionDecl *Callee, const CallArgList &Args) const { 2604 llvm::StringMap<bool> CallerMap; 2605 llvm::StringMap<bool> CalleeMap; 2606 unsigned ArgIndex = 0; 2607 2608 // We need to loop through the actual call arguments rather than the the 2609 // function's parameters, in case this variadic. 2610 for (const CallArg &Arg : Args) { 2611 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2612 // additionally changes how vectors >256 in size are passed. Like GCC, we 2613 // warn when a function is called with an argument where this will change. 2614 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2615 // the caller and callee features are mismatched. 2616 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2617 // change its ABI with attribute-target after this call. 2618 if (Arg.getType()->isVectorType() && 2619 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2620 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2621 QualType Ty = Arg.getType(); 2622 // The CallArg seems to have desugared the type already, so for clearer 2623 // diagnostics, replace it with the type in the FunctionDecl if possible. 2624 if (ArgIndex < Callee->getNumParams()) 2625 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2626 2627 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2628 CalleeMap, Ty, /*IsArgument*/ true)) 2629 return; 2630 } 2631 ++ArgIndex; 2632 } 2633 2634 // Check return always, as we don't have a good way of knowing in codegen 2635 // whether this value is used, tail-called, etc. 2636 if (Callee->getReturnType()->isVectorType() && 2637 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2638 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2639 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2640 CalleeMap, Callee->getReturnType(), 2641 /*IsArgument*/ false); 2642 } 2643 } 2644 2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2646 // If the argument does not end in .lib, automatically add the suffix. 2647 // If the argument contains a space, enclose it in quotes. 2648 // This matches the behavior of MSVC. 2649 bool Quote = Lib.contains(' '); 2650 std::string ArgStr = Quote ? "\"" : ""; 2651 ArgStr += Lib; 2652 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2653 ArgStr += ".lib"; 2654 ArgStr += Quote ? "\"" : ""; 2655 return ArgStr; 2656 } 2657 2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2659 public: 2660 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2661 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2662 unsigned NumRegisterParameters) 2663 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2664 Win32StructABI, NumRegisterParameters, false) {} 2665 2666 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2667 CodeGen::CodeGenModule &CGM) const override; 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2683 CodeGen::CodeGenModule &CGM) { 2684 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2685 2686 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2687 Fn->addFnAttr("stack-probe-size", 2688 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2689 if (CGM.getCodeGenOpts().NoStackArgProbe) 2690 Fn->addFnAttr("no-stack-arg-probe"); 2691 } 2692 } 2693 2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2695 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2696 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2697 if (GV->isDeclaration()) 2698 return; 2699 addStackProbeTargetAttributes(D, GV, CGM); 2700 } 2701 2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2703 public: 2704 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2705 X86AVXABILevel AVXLevel) 2706 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2707 2708 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2709 CodeGen::CodeGenModule &CGM) const override; 2710 2711 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2712 return 7; 2713 } 2714 2715 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2716 llvm::Value *Address) const override { 2717 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2718 2719 // 0-15 are the 16 integer registers. 2720 // 16 is %rip. 2721 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2722 return false; 2723 } 2724 2725 void getDependentLibraryOption(llvm::StringRef Lib, 2726 llvm::SmallString<24> &Opt) const override { 2727 Opt = "/DEFAULTLIB:"; 2728 Opt += qualifyWindowsLibrary(Lib); 2729 } 2730 2731 void getDetectMismatchOption(llvm::StringRef Name, 2732 llvm::StringRef Value, 2733 llvm::SmallString<32> &Opt) const override { 2734 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2735 } 2736 }; 2737 2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2739 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2740 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2741 if (GV->isDeclaration()) 2742 return; 2743 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2744 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2745 llvm::Function *Fn = cast<llvm::Function>(GV); 2746 Fn->addFnAttr("stackrealign"); 2747 } 2748 2749 addX86InterruptAttrs(FD, GV, CGM); 2750 } 2751 2752 addStackProbeTargetAttributes(D, GV, CGM); 2753 } 2754 } 2755 2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2757 Class &Hi) const { 2758 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2759 // 2760 // (a) If one of the classes is Memory, the whole argument is passed in 2761 // memory. 2762 // 2763 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2764 // memory. 2765 // 2766 // (c) If the size of the aggregate exceeds two eightbytes and the first 2767 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2768 // argument is passed in memory. NOTE: This is necessary to keep the 2769 // ABI working for processors that don't support the __m256 type. 2770 // 2771 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2772 // 2773 // Some of these are enforced by the merging logic. Others can arise 2774 // only with unions; for example: 2775 // union { _Complex double; unsigned; } 2776 // 2777 // Note that clauses (b) and (c) were added in 0.98. 2778 // 2779 if (Hi == Memory) 2780 Lo = Memory; 2781 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2782 Lo = Memory; 2783 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2784 Lo = Memory; 2785 if (Hi == SSEUp && Lo != SSE) 2786 Hi = SSE; 2787 } 2788 2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2790 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2791 // classified recursively so that always two fields are 2792 // considered. The resulting class is calculated according to 2793 // the classes of the fields in the eightbyte: 2794 // 2795 // (a) If both classes are equal, this is the resulting class. 2796 // 2797 // (b) If one of the classes is NO_CLASS, the resulting class is 2798 // the other class. 2799 // 2800 // (c) If one of the classes is MEMORY, the result is the MEMORY 2801 // class. 2802 // 2803 // (d) If one of the classes is INTEGER, the result is the 2804 // INTEGER. 2805 // 2806 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2807 // MEMORY is used as class. 2808 // 2809 // (f) Otherwise class SSE is used. 2810 2811 // Accum should never be memory (we should have returned) or 2812 // ComplexX87 (because this cannot be passed in a structure). 2813 assert((Accum != Memory && Accum != ComplexX87) && 2814 "Invalid accumulated classification during merge."); 2815 if (Accum == Field || Field == NoClass) 2816 return Accum; 2817 if (Field == Memory) 2818 return Memory; 2819 if (Accum == NoClass) 2820 return Field; 2821 if (Accum == Integer || Field == Integer) 2822 return Integer; 2823 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2824 Accum == X87 || Accum == X87Up) 2825 return Memory; 2826 return SSE; 2827 } 2828 2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2830 Class &Lo, Class &Hi, bool isNamedArg) const { 2831 // FIXME: This code can be simplified by introducing a simple value class for 2832 // Class pairs with appropriate constructor methods for the various 2833 // situations. 2834 2835 // FIXME: Some of the split computations are wrong; unaligned vectors 2836 // shouldn't be passed in registers for example, so there is no chance they 2837 // can straddle an eightbyte. Verify & simplify. 2838 2839 Lo = Hi = NoClass; 2840 2841 Class &Current = OffsetBase < 64 ? Lo : Hi; 2842 Current = Memory; 2843 2844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2845 BuiltinType::Kind k = BT->getKind(); 2846 2847 if (k == BuiltinType::Void) { 2848 Current = NoClass; 2849 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2850 Lo = Integer; 2851 Hi = Integer; 2852 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2853 Current = Integer; 2854 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2855 k == BuiltinType::Float16) { 2856 Current = SSE; 2857 } else if (k == BuiltinType::LongDouble) { 2858 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2859 if (LDF == &llvm::APFloat::IEEEquad()) { 2860 Lo = SSE; 2861 Hi = SSEUp; 2862 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2863 Lo = X87; 2864 Hi = X87Up; 2865 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2866 Current = SSE; 2867 } else 2868 llvm_unreachable("unexpected long double representation!"); 2869 } 2870 // FIXME: _Decimal32 and _Decimal64 are SSE. 2871 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2872 return; 2873 } 2874 2875 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2876 // Classify the underlying integer type. 2877 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2878 return; 2879 } 2880 2881 if (Ty->hasPointerRepresentation()) { 2882 Current = Integer; 2883 return; 2884 } 2885 2886 if (Ty->isMemberPointerType()) { 2887 if (Ty->isMemberFunctionPointerType()) { 2888 if (Has64BitPointers) { 2889 // If Has64BitPointers, this is an {i64, i64}, so classify both 2890 // Lo and Hi now. 2891 Lo = Hi = Integer; 2892 } else { 2893 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2894 // straddles an eightbyte boundary, Hi should be classified as well. 2895 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2896 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2897 if (EB_FuncPtr != EB_ThisAdj) { 2898 Lo = Hi = Integer; 2899 } else { 2900 Current = Integer; 2901 } 2902 } 2903 } else { 2904 Current = Integer; 2905 } 2906 return; 2907 } 2908 2909 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2910 uint64_t Size = getContext().getTypeSize(VT); 2911 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2912 // gcc passes the following as integer: 2913 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2914 // 2 bytes - <2 x char>, <1 x short> 2915 // 1 byte - <1 x char> 2916 Current = Integer; 2917 2918 // If this type crosses an eightbyte boundary, it should be 2919 // split. 2920 uint64_t EB_Lo = (OffsetBase) / 64; 2921 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2922 if (EB_Lo != EB_Hi) 2923 Hi = Lo; 2924 } else if (Size == 64) { 2925 QualType ElementType = VT->getElementType(); 2926 2927 // gcc passes <1 x double> in memory. :( 2928 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2929 return; 2930 2931 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2932 // pass them as integer. For platforms where clang is the de facto 2933 // platform compiler, we must continue to use integer. 2934 if (!classifyIntegerMMXAsSSE() && 2935 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2936 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2937 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2938 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2939 Current = Integer; 2940 else 2941 Current = SSE; 2942 2943 // If this type crosses an eightbyte boundary, it should be 2944 // split. 2945 if (OffsetBase && OffsetBase != 64) 2946 Hi = Lo; 2947 } else if (Size == 128 || 2948 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2949 QualType ElementType = VT->getElementType(); 2950 2951 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2952 if (passInt128VectorsInMem() && Size != 128 && 2953 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2954 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2955 return; 2956 2957 // Arguments of 256-bits are split into four eightbyte chunks. The 2958 // least significant one belongs to class SSE and all the others to class 2959 // SSEUP. The original Lo and Hi design considers that types can't be 2960 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2961 // This design isn't correct for 256-bits, but since there're no cases 2962 // where the upper parts would need to be inspected, avoid adding 2963 // complexity and just consider Hi to match the 64-256 part. 2964 // 2965 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2966 // registers if they are "named", i.e. not part of the "..." of a 2967 // variadic function. 2968 // 2969 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2970 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2971 Lo = SSE; 2972 Hi = SSEUp; 2973 } 2974 return; 2975 } 2976 2977 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2978 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2979 2980 uint64_t Size = getContext().getTypeSize(Ty); 2981 if (ET->isIntegralOrEnumerationType()) { 2982 if (Size <= 64) 2983 Current = Integer; 2984 else if (Size <= 128) 2985 Lo = Hi = Integer; 2986 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2987 Current = SSE; 2988 } else if (ET == getContext().DoubleTy) { 2989 Lo = Hi = SSE; 2990 } else if (ET == getContext().LongDoubleTy) { 2991 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2992 if (LDF == &llvm::APFloat::IEEEquad()) 2993 Current = Memory; 2994 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2995 Current = ComplexX87; 2996 else if (LDF == &llvm::APFloat::IEEEdouble()) 2997 Lo = Hi = SSE; 2998 else 2999 llvm_unreachable("unexpected long double representation!"); 3000 } 3001 3002 // If this complex type crosses an eightbyte boundary then it 3003 // should be split. 3004 uint64_t EB_Real = (OffsetBase) / 64; 3005 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3006 if (Hi == NoClass && EB_Real != EB_Imag) 3007 Hi = Lo; 3008 3009 return; 3010 } 3011 3012 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 3013 if (EITy->getNumBits() <= 64) 3014 Current = Integer; 3015 else if (EITy->getNumBits() <= 128) 3016 Lo = Hi = Integer; 3017 // Larger values need to get passed in memory. 3018 return; 3019 } 3020 3021 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3022 // Arrays are treated like structures. 3023 3024 uint64_t Size = getContext().getTypeSize(Ty); 3025 3026 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3027 // than eight eightbytes, ..., it has class MEMORY. 3028 if (Size > 512) 3029 return; 3030 3031 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3032 // fields, it has class MEMORY. 3033 // 3034 // Only need to check alignment of array base. 3035 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3036 return; 3037 3038 // Otherwise implement simplified merge. We could be smarter about 3039 // this, but it isn't worth it and would be harder to verify. 3040 Current = NoClass; 3041 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3042 uint64_t ArraySize = AT->getSize().getZExtValue(); 3043 3044 // The only case a 256-bit wide vector could be used is when the array 3045 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3046 // to work for sizes wider than 128, early check and fallback to memory. 3047 // 3048 if (Size > 128 && 3049 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3050 return; 3051 3052 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3053 Class FieldLo, FieldHi; 3054 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3055 Lo = merge(Lo, FieldLo); 3056 Hi = merge(Hi, FieldHi); 3057 if (Lo == Memory || Hi == Memory) 3058 break; 3059 } 3060 3061 postMerge(Size, Lo, Hi); 3062 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3063 return; 3064 } 3065 3066 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3067 uint64_t Size = getContext().getTypeSize(Ty); 3068 3069 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3070 // than eight eightbytes, ..., it has class MEMORY. 3071 if (Size > 512) 3072 return; 3073 3074 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3075 // copy constructor or a non-trivial destructor, it is passed by invisible 3076 // reference. 3077 if (getRecordArgABI(RT, getCXXABI())) 3078 return; 3079 3080 const RecordDecl *RD = RT->getDecl(); 3081 3082 // Assume variable sized types are passed in memory. 3083 if (RD->hasFlexibleArrayMember()) 3084 return; 3085 3086 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3087 3088 // Reset Lo class, this will be recomputed. 3089 Current = NoClass; 3090 3091 // If this is a C++ record, classify the bases first. 3092 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3093 for (const auto &I : CXXRD->bases()) { 3094 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3095 "Unexpected base class!"); 3096 const auto *Base = 3097 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3098 3099 // Classify this field. 3100 // 3101 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3102 // single eightbyte, each is classified separately. Each eightbyte gets 3103 // initialized to class NO_CLASS. 3104 Class FieldLo, FieldHi; 3105 uint64_t Offset = 3106 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3107 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3108 Lo = merge(Lo, FieldLo); 3109 Hi = merge(Hi, FieldHi); 3110 if (Lo == Memory || Hi == Memory) { 3111 postMerge(Size, Lo, Hi); 3112 return; 3113 } 3114 } 3115 } 3116 3117 // Classify the fields one at a time, merging the results. 3118 unsigned idx = 0; 3119 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3120 LangOptions::ClangABI::Ver11 || 3121 getContext().getTargetInfo().getTriple().isPS4(); 3122 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3123 3124 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3125 i != e; ++i, ++idx) { 3126 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3127 bool BitField = i->isBitField(); 3128 3129 // Ignore padding bit-fields. 3130 if (BitField && i->isUnnamedBitfield()) 3131 continue; 3132 3133 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3134 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3135 // 3136 // The only case a 256-bit or a 512-bit wide vector could be used is when 3137 // the struct contains a single 256-bit or 512-bit element. Early check 3138 // and fallback to memory. 3139 // 3140 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3141 // than 128. 3142 if (Size > 128 && 3143 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3144 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3145 Lo = Memory; 3146 postMerge(Size, Lo, Hi); 3147 return; 3148 } 3149 // Note, skip this test for bit-fields, see below. 3150 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3151 Lo = Memory; 3152 postMerge(Size, Lo, Hi); 3153 return; 3154 } 3155 3156 // Classify this field. 3157 // 3158 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3159 // exceeds a single eightbyte, each is classified 3160 // separately. Each eightbyte gets initialized to class 3161 // NO_CLASS. 3162 Class FieldLo, FieldHi; 3163 3164 // Bit-fields require special handling, they do not force the 3165 // structure to be passed in memory even if unaligned, and 3166 // therefore they can straddle an eightbyte. 3167 if (BitField) { 3168 assert(!i->isUnnamedBitfield()); 3169 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3170 uint64_t Size = i->getBitWidthValue(getContext()); 3171 3172 uint64_t EB_Lo = Offset / 64; 3173 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3174 3175 if (EB_Lo) { 3176 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3177 FieldLo = NoClass; 3178 FieldHi = Integer; 3179 } else { 3180 FieldLo = Integer; 3181 FieldHi = EB_Hi ? Integer : NoClass; 3182 } 3183 } else 3184 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3185 Lo = merge(Lo, FieldLo); 3186 Hi = merge(Hi, FieldHi); 3187 if (Lo == Memory || Hi == Memory) 3188 break; 3189 } 3190 3191 postMerge(Size, Lo, Hi); 3192 } 3193 } 3194 3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3196 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3197 // place naturally. 3198 if (!isAggregateTypeForABI(Ty)) { 3199 // Treat an enum type as its underlying type. 3200 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3201 Ty = EnumTy->getDecl()->getIntegerType(); 3202 3203 if (Ty->isExtIntType()) 3204 return getNaturalAlignIndirect(Ty); 3205 3206 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3207 : ABIArgInfo::getDirect()); 3208 } 3209 3210 return getNaturalAlignIndirect(Ty); 3211 } 3212 3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3214 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3215 uint64_t Size = getContext().getTypeSize(VecTy); 3216 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3217 if (Size <= 64 || Size > LargestVector) 3218 return true; 3219 QualType EltTy = VecTy->getElementType(); 3220 if (passInt128VectorsInMem() && 3221 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3222 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3230 unsigned freeIntRegs) const { 3231 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3232 // place naturally. 3233 // 3234 // This assumption is optimistic, as there could be free registers available 3235 // when we need to pass this argument in memory, and LLVM could try to pass 3236 // the argument in the free register. This does not seem to happen currently, 3237 // but this code would be much safer if we could mark the argument with 3238 // 'onstack'. See PR12193. 3239 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3240 !Ty->isExtIntType()) { 3241 // Treat an enum type as its underlying type. 3242 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3243 Ty = EnumTy->getDecl()->getIntegerType(); 3244 3245 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3246 : ABIArgInfo::getDirect()); 3247 } 3248 3249 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3250 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3251 3252 // Compute the byval alignment. We specify the alignment of the byval in all 3253 // cases so that the mid-level optimizer knows the alignment of the byval. 3254 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3255 3256 // Attempt to avoid passing indirect results using byval when possible. This 3257 // is important for good codegen. 3258 // 3259 // We do this by coercing the value into a scalar type which the backend can 3260 // handle naturally (i.e., without using byval). 3261 // 3262 // For simplicity, we currently only do this when we have exhausted all of the 3263 // free integer registers. Doing this when there are free integer registers 3264 // would require more care, as we would have to ensure that the coerced value 3265 // did not claim the unused register. That would require either reording the 3266 // arguments to the function (so that any subsequent inreg values came first), 3267 // or only doing this optimization when there were no following arguments that 3268 // might be inreg. 3269 // 3270 // We currently expect it to be rare (particularly in well written code) for 3271 // arguments to be passed on the stack when there are still free integer 3272 // registers available (this would typically imply large structs being passed 3273 // by value), so this seems like a fair tradeoff for now. 3274 // 3275 // We can revisit this if the backend grows support for 'onstack' parameter 3276 // attributes. See PR12193. 3277 if (freeIntRegs == 0) { 3278 uint64_t Size = getContext().getTypeSize(Ty); 3279 3280 // If this type fits in an eightbyte, coerce it into the matching integral 3281 // type, which will end up on the stack (with alignment 8). 3282 if (Align == 8 && Size <= 64) 3283 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3284 Size)); 3285 } 3286 3287 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3288 } 3289 3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3291 /// register. Pick an LLVM IR type that will be passed as a vector register. 3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3293 // Wrapper structs/arrays that only contain vectors are passed just like 3294 // vectors; strip them off if present. 3295 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3296 Ty = QualType(InnerTy, 0); 3297 3298 llvm::Type *IRType = CGT.ConvertType(Ty); 3299 if (isa<llvm::VectorType>(IRType)) { 3300 // Don't pass vXi128 vectors in their native type, the backend can't 3301 // legalize them. 3302 if (passInt128VectorsInMem() && 3303 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3304 // Use a vXi64 vector. 3305 uint64_t Size = getContext().getTypeSize(Ty); 3306 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3307 Size / 64); 3308 } 3309 3310 return IRType; 3311 } 3312 3313 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3314 return IRType; 3315 3316 // We couldn't find the preferred IR vector type for 'Ty'. 3317 uint64_t Size = getContext().getTypeSize(Ty); 3318 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3319 3320 3321 // Return a LLVM IR vector type based on the size of 'Ty'. 3322 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3323 Size / 64); 3324 } 3325 3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3327 /// is known to either be off the end of the specified type or being in 3328 /// alignment padding. The user type specified is known to be at most 128 bits 3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3330 /// classification that put one of the two halves in the INTEGER class. 3331 /// 3332 /// It is conservatively correct to return false. 3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3334 unsigned EndBit, ASTContext &Context) { 3335 // If the bytes being queried are off the end of the type, there is no user 3336 // data hiding here. This handles analysis of builtins, vectors and other 3337 // types that don't contain interesting padding. 3338 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3339 if (TySize <= StartBit) 3340 return true; 3341 3342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3343 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3344 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3345 3346 // Check each element to see if the element overlaps with the queried range. 3347 for (unsigned i = 0; i != NumElts; ++i) { 3348 // If the element is after the span we care about, then we're done.. 3349 unsigned EltOffset = i*EltSize; 3350 if (EltOffset >= EndBit) break; 3351 3352 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3353 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3354 EndBit-EltOffset, Context)) 3355 return false; 3356 } 3357 // If it overlaps no elements, then it is safe to process as padding. 3358 return true; 3359 } 3360 3361 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3362 const RecordDecl *RD = RT->getDecl(); 3363 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3364 3365 // If this is a C++ record, check the bases first. 3366 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3367 for (const auto &I : CXXRD->bases()) { 3368 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3369 "Unexpected base class!"); 3370 const auto *Base = 3371 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3372 3373 // If the base is after the span we care about, ignore it. 3374 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3375 if (BaseOffset >= EndBit) continue; 3376 3377 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3378 if (!BitsContainNoUserData(I.getType(), BaseStart, 3379 EndBit-BaseOffset, Context)) 3380 return false; 3381 } 3382 } 3383 3384 // Verify that no field has data that overlaps the region of interest. Yes 3385 // this could be sped up a lot by being smarter about queried fields, 3386 // however we're only looking at structs up to 16 bytes, so we don't care 3387 // much. 3388 unsigned idx = 0; 3389 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3390 i != e; ++i, ++idx) { 3391 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3392 3393 // If we found a field after the region we care about, then we're done. 3394 if (FieldOffset >= EndBit) break; 3395 3396 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3397 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3398 Context)) 3399 return false; 3400 } 3401 3402 // If nothing in this record overlapped the area of interest, then we're 3403 // clean. 3404 return true; 3405 } 3406 3407 return false; 3408 } 3409 3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3412 const llvm::DataLayout &TD) { 3413 if (IROffset == 0 && IRType->isFloatingPointTy()) 3414 return IRType; 3415 3416 // If this is a struct, recurse into the field at the specified offset. 3417 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3418 if (!STy->getNumContainedTypes()) 3419 return nullptr; 3420 3421 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3422 unsigned Elt = SL->getElementContainingOffset(IROffset); 3423 IROffset -= SL->getElementOffset(Elt); 3424 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3425 } 3426 3427 // If this is an array, recurse into the field at the specified offset. 3428 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3429 llvm::Type *EltTy = ATy->getElementType(); 3430 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3431 IROffset -= IROffset / EltSize * EltSize; 3432 return getFPTypeAtOffset(EltTy, IROffset, TD); 3433 } 3434 3435 return nullptr; 3436 } 3437 3438 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3439 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3440 llvm::Type *X86_64ABIInfo:: 3441 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3442 QualType SourceTy, unsigned SourceOffset) const { 3443 const llvm::DataLayout &TD = getDataLayout(); 3444 unsigned SourceSize = 3445 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3446 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3447 if (!T0 || T0->isDoubleTy()) 3448 return llvm::Type::getDoubleTy(getVMContext()); 3449 3450 // Get the adjacent FP type. 3451 llvm::Type *T1 = nullptr; 3452 unsigned T0Size = TD.getTypeAllocSize(T0); 3453 if (SourceSize > T0Size) 3454 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3455 if (T1 == nullptr) { 3456 // Check if IRType is a half + float. float type will be in IROffset+4 due 3457 // to its alignment. 3458 if (T0->isHalfTy() && SourceSize > 4) 3459 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3460 // If we can't get a second FP type, return a simple half or float. 3461 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3462 // {float, i8} too. 3463 if (T1 == nullptr) 3464 return T0; 3465 } 3466 3467 if (T0->isFloatTy() && T1->isFloatTy()) 3468 return llvm::FixedVectorType::get(T0, 2); 3469 3470 if (T0->isHalfTy() && T1->isHalfTy()) { 3471 llvm::Type *T2 = nullptr; 3472 if (SourceSize > 4) 3473 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3474 if (T2 == nullptr) 3475 return llvm::FixedVectorType::get(T0, 2); 3476 return llvm::FixedVectorType::get(T0, 4); 3477 } 3478 3479 if (T0->isHalfTy() || T1->isHalfTy()) 3480 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3481 3482 return llvm::Type::getDoubleTy(getVMContext()); 3483 } 3484 3485 3486 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3487 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3488 /// about the high or low part of an up-to-16-byte struct. This routine picks 3489 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3490 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3491 /// etc). 3492 /// 3493 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3494 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3495 /// the 8-byte value references. PrefType may be null. 3496 /// 3497 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3498 /// an offset into this that we're processing (which is always either 0 or 8). 3499 /// 3500 llvm::Type *X86_64ABIInfo:: 3501 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3502 QualType SourceTy, unsigned SourceOffset) const { 3503 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3504 // returning an 8-byte unit starting with it. See if we can safely use it. 3505 if (IROffset == 0) { 3506 // Pointers and int64's always fill the 8-byte unit. 3507 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3508 IRType->isIntegerTy(64)) 3509 return IRType; 3510 3511 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3512 // goodness in the source type is just tail padding. This is allowed to 3513 // kick in for struct {double,int} on the int, but not on 3514 // struct{double,int,int} because we wouldn't return the second int. We 3515 // have to do this analysis on the source type because we can't depend on 3516 // unions being lowered a specific way etc. 3517 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3518 IRType->isIntegerTy(32) || 3519 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3520 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3521 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3522 3523 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3524 SourceOffset*8+64, getContext())) 3525 return IRType; 3526 } 3527 } 3528 3529 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3530 // If this is a struct, recurse into the field at the specified offset. 3531 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3532 if (IROffset < SL->getSizeInBytes()) { 3533 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3534 IROffset -= SL->getElementOffset(FieldIdx); 3535 3536 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3537 SourceTy, SourceOffset); 3538 } 3539 } 3540 3541 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3542 llvm::Type *EltTy = ATy->getElementType(); 3543 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3544 unsigned EltOffset = IROffset/EltSize*EltSize; 3545 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3546 SourceOffset); 3547 } 3548 3549 // Okay, we don't have any better idea of what to pass, so we pass this in an 3550 // integer register that isn't too big to fit the rest of the struct. 3551 unsigned TySizeInBytes = 3552 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3553 3554 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3555 3556 // It is always safe to classify this as an integer type up to i64 that 3557 // isn't larger than the structure. 3558 return llvm::IntegerType::get(getVMContext(), 3559 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3560 } 3561 3562 3563 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3564 /// be used as elements of a two register pair to pass or return, return a 3565 /// first class aggregate to represent them. For example, if the low part of 3566 /// a by-value argument should be passed as i32* and the high part as float, 3567 /// return {i32*, float}. 3568 static llvm::Type * 3569 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3570 const llvm::DataLayout &TD) { 3571 // In order to correctly satisfy the ABI, we need to the high part to start 3572 // at offset 8. If the high and low parts we inferred are both 4-byte types 3573 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3574 // the second element at offset 8. Check for this: 3575 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3576 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3577 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3578 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3579 3580 // To handle this, we have to increase the size of the low part so that the 3581 // second element will start at an 8 byte offset. We can't increase the size 3582 // of the second element because it might make us access off the end of the 3583 // struct. 3584 if (HiStart != 8) { 3585 // There are usually two sorts of types the ABI generation code can produce 3586 // for the low part of a pair that aren't 8 bytes in size: half, float or 3587 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3588 // NaCl). 3589 // Promote these to a larger type. 3590 if (Lo->isHalfTy() || Lo->isFloatTy()) 3591 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3592 else { 3593 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3594 && "Invalid/unknown lo type"); 3595 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3596 } 3597 } 3598 3599 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3600 3601 // Verify that the second element is at an 8-byte offset. 3602 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3603 "Invalid x86-64 argument pair!"); 3604 return Result; 3605 } 3606 3607 ABIArgInfo X86_64ABIInfo:: 3608 classifyReturnType(QualType RetTy) const { 3609 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3610 // classification algorithm. 3611 X86_64ABIInfo::Class Lo, Hi; 3612 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3613 3614 // Check some invariants. 3615 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3616 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3617 3618 llvm::Type *ResType = nullptr; 3619 switch (Lo) { 3620 case NoClass: 3621 if (Hi == NoClass) 3622 return ABIArgInfo::getIgnore(); 3623 // If the low part is just padding, it takes no register, leave ResType 3624 // null. 3625 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3626 "Unknown missing lo part"); 3627 break; 3628 3629 case SSEUp: 3630 case X87Up: 3631 llvm_unreachable("Invalid classification for lo word."); 3632 3633 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3634 // hidden argument. 3635 case Memory: 3636 return getIndirectReturnResult(RetTy); 3637 3638 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3639 // available register of the sequence %rax, %rdx is used. 3640 case Integer: 3641 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3642 3643 // If we have a sign or zero extended integer, make sure to return Extend 3644 // so that the parameter gets the right LLVM IR attributes. 3645 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3646 // Treat an enum type as its underlying type. 3647 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3648 RetTy = EnumTy->getDecl()->getIntegerType(); 3649 3650 if (RetTy->isIntegralOrEnumerationType() && 3651 isPromotableIntegerTypeForABI(RetTy)) 3652 return ABIArgInfo::getExtend(RetTy); 3653 } 3654 break; 3655 3656 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3657 // available SSE register of the sequence %xmm0, %xmm1 is used. 3658 case SSE: 3659 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3660 break; 3661 3662 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3663 // returned on the X87 stack in %st0 as 80-bit x87 number. 3664 case X87: 3665 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3666 break; 3667 3668 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3669 // part of the value is returned in %st0 and the imaginary part in 3670 // %st1. 3671 case ComplexX87: 3672 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3673 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3674 llvm::Type::getX86_FP80Ty(getVMContext())); 3675 break; 3676 } 3677 3678 llvm::Type *HighPart = nullptr; 3679 switch (Hi) { 3680 // Memory was handled previously and X87 should 3681 // never occur as a hi class. 3682 case Memory: 3683 case X87: 3684 llvm_unreachable("Invalid classification for hi word."); 3685 3686 case ComplexX87: // Previously handled. 3687 case NoClass: 3688 break; 3689 3690 case Integer: 3691 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3692 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3693 return ABIArgInfo::getDirect(HighPart, 8); 3694 break; 3695 case SSE: 3696 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3697 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3698 return ABIArgInfo::getDirect(HighPart, 8); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3702 // is passed in the next available eightbyte chunk if the last used 3703 // vector register. 3704 // 3705 // SSEUP should always be preceded by SSE, just widen. 3706 case SSEUp: 3707 assert(Lo == SSE && "Unexpected SSEUp classification."); 3708 ResType = GetByteVectorType(RetTy); 3709 break; 3710 3711 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3712 // returned together with the previous X87 value in %st0. 3713 case X87Up: 3714 // If X87Up is preceded by X87, we don't need to do 3715 // anything. However, in some cases with unions it may not be 3716 // preceded by X87. In such situations we follow gcc and pass the 3717 // extra bits in an SSE reg. 3718 if (Lo != X87) { 3719 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3720 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3721 return ABIArgInfo::getDirect(HighPart, 8); 3722 } 3723 break; 3724 } 3725 3726 // If a high part was specified, merge it together with the low part. It is 3727 // known to pass in the high eightbyte of the result. We do this by forming a 3728 // first class struct aggregate with the high and low part: {low, high} 3729 if (HighPart) 3730 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3731 3732 return ABIArgInfo::getDirect(ResType); 3733 } 3734 3735 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3736 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3737 bool isNamedArg) 3738 const 3739 { 3740 Ty = useFirstFieldIfTransparentUnion(Ty); 3741 3742 X86_64ABIInfo::Class Lo, Hi; 3743 classify(Ty, 0, Lo, Hi, isNamedArg); 3744 3745 // Check some invariants. 3746 // FIXME: Enforce these by construction. 3747 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3748 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3749 3750 neededInt = 0; 3751 neededSSE = 0; 3752 llvm::Type *ResType = nullptr; 3753 switch (Lo) { 3754 case NoClass: 3755 if (Hi == NoClass) 3756 return ABIArgInfo::getIgnore(); 3757 // If the low part is just padding, it takes no register, leave ResType 3758 // null. 3759 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3760 "Unknown missing lo part"); 3761 break; 3762 3763 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3764 // on the stack. 3765 case Memory: 3766 3767 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3768 // COMPLEX_X87, it is passed in memory. 3769 case X87: 3770 case ComplexX87: 3771 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3772 ++neededInt; 3773 return getIndirectResult(Ty, freeIntRegs); 3774 3775 case SSEUp: 3776 case X87Up: 3777 llvm_unreachable("Invalid classification for lo word."); 3778 3779 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3780 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3781 // and %r9 is used. 3782 case Integer: 3783 ++neededInt; 3784 3785 // Pick an 8-byte type based on the preferred type. 3786 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3787 3788 // If we have a sign or zero extended integer, make sure to return Extend 3789 // so that the parameter gets the right LLVM IR attributes. 3790 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3791 // Treat an enum type as its underlying type. 3792 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3793 Ty = EnumTy->getDecl()->getIntegerType(); 3794 3795 if (Ty->isIntegralOrEnumerationType() && 3796 isPromotableIntegerTypeForABI(Ty)) 3797 return ABIArgInfo::getExtend(Ty); 3798 } 3799 3800 break; 3801 3802 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3803 // available SSE register is used, the registers are taken in the 3804 // order from %xmm0 to %xmm7. 3805 case SSE: { 3806 llvm::Type *IRType = CGT.ConvertType(Ty); 3807 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3808 ++neededSSE; 3809 break; 3810 } 3811 } 3812 3813 llvm::Type *HighPart = nullptr; 3814 switch (Hi) { 3815 // Memory was handled previously, ComplexX87 and X87 should 3816 // never occur as hi classes, and X87Up must be preceded by X87, 3817 // which is passed in memory. 3818 case Memory: 3819 case X87: 3820 case ComplexX87: 3821 llvm_unreachable("Invalid classification for hi word."); 3822 3823 case NoClass: break; 3824 3825 case Integer: 3826 ++neededInt; 3827 // Pick an 8-byte type based on the preferred type. 3828 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3829 3830 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3831 return ABIArgInfo::getDirect(HighPart, 8); 3832 break; 3833 3834 // X87Up generally doesn't occur here (long double is passed in 3835 // memory), except in situations involving unions. 3836 case X87Up: 3837 case SSE: 3838 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3839 3840 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3841 return ABIArgInfo::getDirect(HighPart, 8); 3842 3843 ++neededSSE; 3844 break; 3845 3846 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3847 // eightbyte is passed in the upper half of the last used SSE 3848 // register. This only happens when 128-bit vectors are passed. 3849 case SSEUp: 3850 assert(Lo == SSE && "Unexpected SSEUp classification"); 3851 ResType = GetByteVectorType(Ty); 3852 break; 3853 } 3854 3855 // If a high part was specified, merge it together with the low part. It is 3856 // known to pass in the high eightbyte of the result. We do this by forming a 3857 // first class struct aggregate with the high and low part: {low, high} 3858 if (HighPart) 3859 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3860 3861 return ABIArgInfo::getDirect(ResType); 3862 } 3863 3864 ABIArgInfo 3865 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3866 unsigned &NeededSSE) const { 3867 auto RT = Ty->getAs<RecordType>(); 3868 assert(RT && "classifyRegCallStructType only valid with struct types"); 3869 3870 if (RT->getDecl()->hasFlexibleArrayMember()) 3871 return getIndirectReturnResult(Ty); 3872 3873 // Sum up bases 3874 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3875 if (CXXRD->isDynamicClass()) { 3876 NeededInt = NeededSSE = 0; 3877 return getIndirectReturnResult(Ty); 3878 } 3879 3880 for (const auto &I : CXXRD->bases()) 3881 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3882 .isIndirect()) { 3883 NeededInt = NeededSSE = 0; 3884 return getIndirectReturnResult(Ty); 3885 } 3886 } 3887 3888 // Sum up members 3889 for (const auto *FD : RT->getDecl()->fields()) { 3890 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3891 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3892 .isIndirect()) { 3893 NeededInt = NeededSSE = 0; 3894 return getIndirectReturnResult(Ty); 3895 } 3896 } else { 3897 unsigned LocalNeededInt, LocalNeededSSE; 3898 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3899 LocalNeededSSE, true) 3900 .isIndirect()) { 3901 NeededInt = NeededSSE = 0; 3902 return getIndirectReturnResult(Ty); 3903 } 3904 NeededInt += LocalNeededInt; 3905 NeededSSE += LocalNeededSSE; 3906 } 3907 } 3908 3909 return ABIArgInfo::getDirect(); 3910 } 3911 3912 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3913 unsigned &NeededInt, 3914 unsigned &NeededSSE) const { 3915 3916 NeededInt = 0; 3917 NeededSSE = 0; 3918 3919 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3920 } 3921 3922 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3923 3924 const unsigned CallingConv = FI.getCallingConvention(); 3925 // It is possible to force Win64 calling convention on any x86_64 target by 3926 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3927 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3928 if (CallingConv == llvm::CallingConv::Win64) { 3929 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3930 Win64ABIInfo.computeInfo(FI); 3931 return; 3932 } 3933 3934 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3935 3936 // Keep track of the number of assigned registers. 3937 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3938 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3939 unsigned NeededInt, NeededSSE; 3940 3941 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3942 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3943 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3944 FI.getReturnInfo() = 3945 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3946 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3947 FreeIntRegs -= NeededInt; 3948 FreeSSERegs -= NeededSSE; 3949 } else { 3950 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3951 } 3952 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3953 getContext().getCanonicalType(FI.getReturnType() 3954 ->getAs<ComplexType>() 3955 ->getElementType()) == 3956 getContext().LongDoubleTy) 3957 // Complex Long Double Type is passed in Memory when Regcall 3958 // calling convention is used. 3959 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3960 else 3961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3962 } 3963 3964 // If the return value is indirect, then the hidden argument is consuming one 3965 // integer register. 3966 if (FI.getReturnInfo().isIndirect()) 3967 --FreeIntRegs; 3968 3969 // The chain argument effectively gives us another free register. 3970 if (FI.isChainCall()) 3971 ++FreeIntRegs; 3972 3973 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3974 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3975 // get assigned (in left-to-right order) for passing as follows... 3976 unsigned ArgNo = 0; 3977 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3978 it != ie; ++it, ++ArgNo) { 3979 bool IsNamedArg = ArgNo < NumRequiredArgs; 3980 3981 if (IsRegCall && it->type->isStructureOrClassType()) 3982 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3983 else 3984 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3985 NeededSSE, IsNamedArg); 3986 3987 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3988 // eightbyte of an argument, the whole argument is passed on the 3989 // stack. If registers have already been assigned for some 3990 // eightbytes of such an argument, the assignments get reverted. 3991 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3992 FreeIntRegs -= NeededInt; 3993 FreeSSERegs -= NeededSSE; 3994 } else { 3995 it->info = getIndirectResult(it->type, FreeIntRegs); 3996 } 3997 } 3998 } 3999 4000 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4001 Address VAListAddr, QualType Ty) { 4002 Address overflow_arg_area_p = 4003 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4004 llvm::Value *overflow_arg_area = 4005 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4006 4007 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4008 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4009 // It isn't stated explicitly in the standard, but in practice we use 4010 // alignment greater than 16 where necessary. 4011 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4012 if (Align > CharUnits::fromQuantity(8)) { 4013 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4014 Align); 4015 } 4016 4017 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4018 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4019 llvm::Value *Res = 4020 CGF.Builder.CreateBitCast(overflow_arg_area, 4021 llvm::PointerType::getUnqual(LTy)); 4022 4023 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4024 // l->overflow_arg_area + sizeof(type). 4025 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4026 // an 8 byte boundary. 4027 4028 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4029 llvm::Value *Offset = 4030 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4031 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4032 Offset, "overflow_arg_area.next"); 4033 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4034 4035 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4036 return Address(Res, Align); 4037 } 4038 4039 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4040 QualType Ty) const { 4041 // Assume that va_list type is correct; should be pointer to LLVM type: 4042 // struct { 4043 // i32 gp_offset; 4044 // i32 fp_offset; 4045 // i8* overflow_arg_area; 4046 // i8* reg_save_area; 4047 // }; 4048 unsigned neededInt, neededSSE; 4049 4050 Ty = getContext().getCanonicalType(Ty); 4051 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4052 /*isNamedArg*/false); 4053 4054 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4055 // in the registers. If not go to step 7. 4056 if (!neededInt && !neededSSE) 4057 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4058 4059 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4060 // general purpose registers needed to pass type and num_fp to hold 4061 // the number of floating point registers needed. 4062 4063 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4064 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4065 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4066 // 4067 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4068 // register save space). 4069 4070 llvm::Value *InRegs = nullptr; 4071 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4072 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4073 if (neededInt) { 4074 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4075 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4076 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4077 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4078 } 4079 4080 if (neededSSE) { 4081 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4082 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4083 llvm::Value *FitsInFP = 4084 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4085 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4086 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4087 } 4088 4089 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4090 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4091 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4092 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4093 4094 // Emit code to load the value if it was passed in registers. 4095 4096 CGF.EmitBlock(InRegBlock); 4097 4098 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4099 // an offset of l->gp_offset and/or l->fp_offset. This may require 4100 // copying to a temporary location in case the parameter is passed 4101 // in different register classes or requires an alignment greater 4102 // than 8 for general purpose registers and 16 for XMM registers. 4103 // 4104 // FIXME: This really results in shameful code when we end up needing to 4105 // collect arguments from different places; often what should result in a 4106 // simple assembling of a structure from scattered addresses has many more 4107 // loads than necessary. Can we clean this up? 4108 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4109 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4110 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4111 4112 Address RegAddr = Address::invalid(); 4113 if (neededInt && neededSSE) { 4114 // FIXME: Cleanup. 4115 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4116 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4117 Address Tmp = CGF.CreateMemTemp(Ty); 4118 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4119 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4120 llvm::Type *TyLo = ST->getElementType(0); 4121 llvm::Type *TyHi = ST->getElementType(1); 4122 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4123 "Unexpected ABI info for mixed regs"); 4124 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4125 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4126 llvm::Value *GPAddr = 4127 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4128 llvm::Value *FPAddr = 4129 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4130 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4131 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4132 4133 // Copy the first element. 4134 // FIXME: Our choice of alignment here and below is probably pessimistic. 4135 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4136 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4137 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4138 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4139 4140 // Copy the second element. 4141 V = CGF.Builder.CreateAlignedLoad( 4142 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4143 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4144 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4145 4146 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4147 } else if (neededInt) { 4148 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4149 CharUnits::fromQuantity(8)); 4150 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4151 4152 // Copy to a temporary if necessary to ensure the appropriate alignment. 4153 auto TInfo = getContext().getTypeInfoInChars(Ty); 4154 uint64_t TySize = TInfo.Width.getQuantity(); 4155 CharUnits TyAlign = TInfo.Align; 4156 4157 // Copy into a temporary if the type is more aligned than the 4158 // register save area. 4159 if (TyAlign.getQuantity() > 8) { 4160 Address Tmp = CGF.CreateMemTemp(Ty); 4161 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4162 RegAddr = Tmp; 4163 } 4164 4165 } else if (neededSSE == 1) { 4166 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4167 CharUnits::fromQuantity(16)); 4168 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4169 } else { 4170 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4171 // SSE registers are spaced 16 bytes apart in the register save 4172 // area, we need to collect the two eightbytes together. 4173 // The ABI isn't explicit about this, but it seems reasonable 4174 // to assume that the slots are 16-byte aligned, since the stack is 4175 // naturally 16-byte aligned and the prologue is expected to store 4176 // all the SSE registers to the RSA. 4177 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4178 fp_offset), 4179 CharUnits::fromQuantity(16)); 4180 Address RegAddrHi = 4181 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4182 CharUnits::fromQuantity(16)); 4183 llvm::Type *ST = AI.canHaveCoerceToType() 4184 ? AI.getCoerceToType() 4185 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4186 llvm::Value *V; 4187 Address Tmp = CGF.CreateMemTemp(Ty); 4188 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4189 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4190 RegAddrLo, ST->getStructElementType(0))); 4191 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4192 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4193 RegAddrHi, ST->getStructElementType(1))); 4194 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4195 4196 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4197 } 4198 4199 // AMD64-ABI 3.5.7p5: Step 5. Set: 4200 // l->gp_offset = l->gp_offset + num_gp * 8 4201 // l->fp_offset = l->fp_offset + num_fp * 16. 4202 if (neededInt) { 4203 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4204 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4205 gp_offset_p); 4206 } 4207 if (neededSSE) { 4208 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4209 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4210 fp_offset_p); 4211 } 4212 CGF.EmitBranch(ContBlock); 4213 4214 // Emit code to load the value if it was passed in memory. 4215 4216 CGF.EmitBlock(InMemBlock); 4217 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4218 4219 // Return the appropriate result. 4220 4221 CGF.EmitBlock(ContBlock); 4222 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4223 "vaarg.addr"); 4224 return ResAddr; 4225 } 4226 4227 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4228 QualType Ty) const { 4229 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4230 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4231 uint64_t Width = getContext().getTypeSize(Ty); 4232 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4233 4234 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4235 CGF.getContext().getTypeInfoInChars(Ty), 4236 CharUnits::fromQuantity(8), 4237 /*allowHigherAlign*/ false); 4238 } 4239 4240 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4241 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4242 const Type *Base = nullptr; 4243 uint64_t NumElts = 0; 4244 4245 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4246 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4247 FreeSSERegs -= NumElts; 4248 return getDirectX86Hva(); 4249 } 4250 return current; 4251 } 4252 4253 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4254 bool IsReturnType, bool IsVectorCall, 4255 bool IsRegCall) const { 4256 4257 if (Ty->isVoidType()) 4258 return ABIArgInfo::getIgnore(); 4259 4260 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4261 Ty = EnumTy->getDecl()->getIntegerType(); 4262 4263 TypeInfo Info = getContext().getTypeInfo(Ty); 4264 uint64_t Width = Info.Width; 4265 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4266 4267 const RecordType *RT = Ty->getAs<RecordType>(); 4268 if (RT) { 4269 if (!IsReturnType) { 4270 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4271 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4272 } 4273 4274 if (RT->getDecl()->hasFlexibleArrayMember()) 4275 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4276 4277 } 4278 4279 const Type *Base = nullptr; 4280 uint64_t NumElts = 0; 4281 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4282 // other targets. 4283 if ((IsVectorCall || IsRegCall) && 4284 isHomogeneousAggregate(Ty, Base, NumElts)) { 4285 if (IsRegCall) { 4286 if (FreeSSERegs >= NumElts) { 4287 FreeSSERegs -= NumElts; 4288 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4289 return ABIArgInfo::getDirect(); 4290 return ABIArgInfo::getExpand(); 4291 } 4292 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4293 } else if (IsVectorCall) { 4294 if (FreeSSERegs >= NumElts && 4295 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4296 FreeSSERegs -= NumElts; 4297 return ABIArgInfo::getDirect(); 4298 } else if (IsReturnType) { 4299 return ABIArgInfo::getExpand(); 4300 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4301 // HVAs are delayed and reclassified in the 2nd step. 4302 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4303 } 4304 } 4305 } 4306 4307 if (Ty->isMemberPointerType()) { 4308 // If the member pointer is represented by an LLVM int or ptr, pass it 4309 // directly. 4310 llvm::Type *LLTy = CGT.ConvertType(Ty); 4311 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4312 return ABIArgInfo::getDirect(); 4313 } 4314 4315 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4316 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4317 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4318 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4319 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4320 4321 // Otherwise, coerce it to a small integer. 4322 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4323 } 4324 4325 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4326 switch (BT->getKind()) { 4327 case BuiltinType::Bool: 4328 // Bool type is always extended to the ABI, other builtin types are not 4329 // extended. 4330 return ABIArgInfo::getExtend(Ty); 4331 4332 case BuiltinType::LongDouble: 4333 // Mingw64 GCC uses the old 80 bit extended precision floating point 4334 // unit. It passes them indirectly through memory. 4335 if (IsMingw64) { 4336 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4337 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4338 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4339 } 4340 break; 4341 4342 case BuiltinType::Int128: 4343 case BuiltinType::UInt128: 4344 // If it's a parameter type, the normal ABI rule is that arguments larger 4345 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4346 // even though it isn't particularly efficient. 4347 if (!IsReturnType) 4348 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4349 4350 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4351 // Clang matches them for compatibility. 4352 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4353 llvm::Type::getInt64Ty(getVMContext()), 2)); 4354 4355 default: 4356 break; 4357 } 4358 } 4359 4360 if (Ty->isExtIntType()) { 4361 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4362 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4363 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4364 // anyway as long is it fits in them, so we don't have to check the power of 4365 // 2. 4366 if (Width <= 64) 4367 return ABIArgInfo::getDirect(); 4368 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4369 } 4370 4371 return ABIArgInfo::getDirect(); 4372 } 4373 4374 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4375 const unsigned CC = FI.getCallingConvention(); 4376 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4377 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4378 4379 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4380 // classification rules. 4381 if (CC == llvm::CallingConv::X86_64_SysV) { 4382 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4383 SysVABIInfo.computeInfo(FI); 4384 return; 4385 } 4386 4387 unsigned FreeSSERegs = 0; 4388 if (IsVectorCall) { 4389 // We can use up to 4 SSE return registers with vectorcall. 4390 FreeSSERegs = 4; 4391 } else if (IsRegCall) { 4392 // RegCall gives us 16 SSE registers. 4393 FreeSSERegs = 16; 4394 } 4395 4396 if (!getCXXABI().classifyReturnType(FI)) 4397 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4398 IsVectorCall, IsRegCall); 4399 4400 if (IsVectorCall) { 4401 // We can use up to 6 SSE register parameters with vectorcall. 4402 FreeSSERegs = 6; 4403 } else if (IsRegCall) { 4404 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4405 FreeSSERegs = 16; 4406 } 4407 4408 unsigned ArgNum = 0; 4409 unsigned ZeroSSERegs = 0; 4410 for (auto &I : FI.arguments()) { 4411 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4412 // XMM/YMM registers. After the sixth argument, pretend no vector 4413 // registers are left. 4414 unsigned *MaybeFreeSSERegs = 4415 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4416 I.info = 4417 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4418 ++ArgNum; 4419 } 4420 4421 if (IsVectorCall) { 4422 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4423 // second pass. 4424 for (auto &I : FI.arguments()) 4425 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4426 } 4427 } 4428 4429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4430 QualType Ty) const { 4431 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4432 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4433 uint64_t Width = getContext().getTypeSize(Ty); 4434 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4435 4436 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4437 CGF.getContext().getTypeInfoInChars(Ty), 4438 CharUnits::fromQuantity(8), 4439 /*allowHigherAlign*/ false); 4440 } 4441 4442 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4443 llvm::Value *Address, bool Is64Bit, 4444 bool IsAIX) { 4445 // This is calculated from the LLVM and GCC tables and verified 4446 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4447 4448 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4449 4450 llvm::IntegerType *i8 = CGF.Int8Ty; 4451 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4452 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4453 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4454 4455 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4456 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4457 4458 // 32-63: fp0-31, the 8-byte floating-point registers 4459 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4460 4461 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4462 // 64: mq 4463 // 65: lr 4464 // 66: ctr 4465 // 67: ap 4466 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4467 4468 // 68-76 are various 4-byte special-purpose registers: 4469 // 68-75 cr0-7 4470 // 76: xer 4471 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4472 4473 // 77-108: v0-31, the 16-byte vector registers 4474 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4475 4476 // 109: vrsave 4477 // 110: vscr 4478 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4479 4480 // AIX does not utilize the rest of the registers. 4481 if (IsAIX) 4482 return false; 4483 4484 // 111: spe_acc 4485 // 112: spefscr 4486 // 113: sfp 4487 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4488 4489 if (!Is64Bit) 4490 return false; 4491 4492 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4493 // or above CPU. 4494 // 64-bit only registers: 4495 // 114: tfhar 4496 // 115: tfiar 4497 // 116: texasr 4498 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4499 4500 return false; 4501 } 4502 4503 // AIX 4504 namespace { 4505 /// AIXABIInfo - The AIX XCOFF ABI information. 4506 class AIXABIInfo : public ABIInfo { 4507 const bool Is64Bit; 4508 const unsigned PtrByteSize; 4509 CharUnits getParamTypeAlignment(QualType Ty) const; 4510 4511 public: 4512 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4513 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4514 4515 bool isPromotableTypeForABI(QualType Ty) const; 4516 4517 ABIArgInfo classifyReturnType(QualType RetTy) const; 4518 ABIArgInfo classifyArgumentType(QualType Ty) const; 4519 4520 void computeInfo(CGFunctionInfo &FI) const override { 4521 if (!getCXXABI().classifyReturnType(FI)) 4522 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4523 4524 for (auto &I : FI.arguments()) 4525 I.info = classifyArgumentType(I.type); 4526 } 4527 4528 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4529 QualType Ty) const override; 4530 }; 4531 4532 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4533 const bool Is64Bit; 4534 4535 public: 4536 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4537 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4538 Is64Bit(Is64Bit) {} 4539 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4540 return 1; // r1 is the dedicated stack pointer 4541 } 4542 4543 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4544 llvm::Value *Address) const override; 4545 }; 4546 } // namespace 4547 4548 // Return true if the ABI requires Ty to be passed sign- or zero- 4549 // extended to 32/64 bits. 4550 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4551 // Treat an enum type as its underlying type. 4552 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4553 Ty = EnumTy->getDecl()->getIntegerType(); 4554 4555 // Promotable integer types are required to be promoted by the ABI. 4556 if (Ty->isPromotableIntegerType()) 4557 return true; 4558 4559 if (!Is64Bit) 4560 return false; 4561 4562 // For 64 bit mode, in addition to the usual promotable integer types, we also 4563 // need to extend all 32-bit types, since the ABI requires promotion to 64 4564 // bits. 4565 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4566 switch (BT->getKind()) { 4567 case BuiltinType::Int: 4568 case BuiltinType::UInt: 4569 return true; 4570 default: 4571 break; 4572 } 4573 4574 return false; 4575 } 4576 4577 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4578 if (RetTy->isAnyComplexType()) 4579 return ABIArgInfo::getDirect(); 4580 4581 if (RetTy->isVectorType()) 4582 return ABIArgInfo::getDirect(); 4583 4584 if (RetTy->isVoidType()) 4585 return ABIArgInfo::getIgnore(); 4586 4587 if (isAggregateTypeForABI(RetTy)) 4588 return getNaturalAlignIndirect(RetTy); 4589 4590 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4591 : ABIArgInfo::getDirect()); 4592 } 4593 4594 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4595 Ty = useFirstFieldIfTransparentUnion(Ty); 4596 4597 if (Ty->isAnyComplexType()) 4598 return ABIArgInfo::getDirect(); 4599 4600 if (Ty->isVectorType()) 4601 return ABIArgInfo::getDirect(); 4602 4603 if (isAggregateTypeForABI(Ty)) { 4604 // Records with non-trivial destructors/copy-constructors should not be 4605 // passed by value. 4606 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4607 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4608 4609 CharUnits CCAlign = getParamTypeAlignment(Ty); 4610 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4611 4612 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4613 /*Realign*/ TyAlign > CCAlign); 4614 } 4615 4616 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4617 : ABIArgInfo::getDirect()); 4618 } 4619 4620 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4621 // Complex types are passed just like their elements. 4622 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4623 Ty = CTy->getElementType(); 4624 4625 if (Ty->isVectorType()) 4626 return CharUnits::fromQuantity(16); 4627 4628 // If the structure contains a vector type, the alignment is 16. 4629 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4630 return CharUnits::fromQuantity(16); 4631 4632 return CharUnits::fromQuantity(PtrByteSize); 4633 } 4634 4635 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4636 QualType Ty) const { 4637 4638 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4639 TypeInfo.Align = getParamTypeAlignment(Ty); 4640 4641 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4642 4643 // If we have a complex type and the base type is smaller than the register 4644 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4645 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4646 // Clang expects us to produce a pointer to a structure with the two parts 4647 // packed tightly. So generate loads of the real and imaginary parts relative 4648 // to the va_list pointer, and store them to a temporary structure. We do the 4649 // same as the PPC64ABI here. 4650 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4651 CharUnits EltSize = TypeInfo.Width / 2; 4652 if (EltSize < SlotSize) 4653 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4654 } 4655 4656 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4657 SlotSize, /*AllowHigher*/ true); 4658 } 4659 4660 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4661 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4662 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4663 } 4664 4665 // PowerPC-32 4666 namespace { 4667 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4668 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4669 bool IsSoftFloatABI; 4670 bool IsRetSmallStructInRegABI; 4671 4672 CharUnits getParamTypeAlignment(QualType Ty) const; 4673 4674 public: 4675 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4676 bool RetSmallStructInRegABI) 4677 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4678 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4679 4680 ABIArgInfo classifyReturnType(QualType RetTy) const; 4681 4682 void computeInfo(CGFunctionInfo &FI) const override { 4683 if (!getCXXABI().classifyReturnType(FI)) 4684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4685 for (auto &I : FI.arguments()) 4686 I.info = classifyArgumentType(I.type); 4687 } 4688 4689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4690 QualType Ty) const override; 4691 }; 4692 4693 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4694 public: 4695 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4696 bool RetSmallStructInRegABI) 4697 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4698 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4699 4700 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4701 const CodeGenOptions &Opts); 4702 4703 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4704 // This is recovered from gcc output. 4705 return 1; // r1 is the dedicated stack pointer 4706 } 4707 4708 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4709 llvm::Value *Address) const override; 4710 }; 4711 } 4712 4713 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4714 // Complex types are passed just like their elements. 4715 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4716 Ty = CTy->getElementType(); 4717 4718 if (Ty->isVectorType()) 4719 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4720 : 4); 4721 4722 // For single-element float/vector structs, we consider the whole type 4723 // to have the same alignment requirements as its single element. 4724 const Type *AlignTy = nullptr; 4725 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4726 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4727 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4728 (BT && BT->isFloatingPoint())) 4729 AlignTy = EltType; 4730 } 4731 4732 if (AlignTy) 4733 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4734 return CharUnits::fromQuantity(4); 4735 } 4736 4737 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4738 uint64_t Size; 4739 4740 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4741 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4742 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4743 // System V ABI (1995), page 3-22, specified: 4744 // > A structure or union whose size is less than or equal to 8 bytes 4745 // > shall be returned in r3 and r4, as if it were first stored in the 4746 // > 8-byte aligned memory area and then the low addressed word were 4747 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4748 // > the last member of the structure or union are not defined. 4749 // 4750 // GCC for big-endian PPC32 inserts the pad before the first member, 4751 // not "beyond the last member" of the struct. To stay compatible 4752 // with GCC, we coerce the struct to an integer of the same size. 4753 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4754 if (Size == 0) 4755 return ABIArgInfo::getIgnore(); 4756 else { 4757 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4758 return ABIArgInfo::getDirect(CoerceTy); 4759 } 4760 } 4761 4762 return DefaultABIInfo::classifyReturnType(RetTy); 4763 } 4764 4765 // TODO: this implementation is now likely redundant with 4766 // DefaultABIInfo::EmitVAArg. 4767 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4768 QualType Ty) const { 4769 if (getTarget().getTriple().isOSDarwin()) { 4770 auto TI = getContext().getTypeInfoInChars(Ty); 4771 TI.Align = getParamTypeAlignment(Ty); 4772 4773 CharUnits SlotSize = CharUnits::fromQuantity(4); 4774 return emitVoidPtrVAArg(CGF, VAList, Ty, 4775 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4776 /*AllowHigherAlign=*/true); 4777 } 4778 4779 const unsigned OverflowLimit = 8; 4780 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4781 // TODO: Implement this. For now ignore. 4782 (void)CTy; 4783 return Address::invalid(); // FIXME? 4784 } 4785 4786 // struct __va_list_tag { 4787 // unsigned char gpr; 4788 // unsigned char fpr; 4789 // unsigned short reserved; 4790 // void *overflow_arg_area; 4791 // void *reg_save_area; 4792 // }; 4793 4794 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4795 bool isInt = !Ty->isFloatingType(); 4796 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4797 4798 // All aggregates are passed indirectly? That doesn't seem consistent 4799 // with the argument-lowering code. 4800 bool isIndirect = isAggregateTypeForABI(Ty); 4801 4802 CGBuilderTy &Builder = CGF.Builder; 4803 4804 // The calling convention either uses 1-2 GPRs or 1 FPR. 4805 Address NumRegsAddr = Address::invalid(); 4806 if (isInt || IsSoftFloatABI) { 4807 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4808 } else { 4809 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4810 } 4811 4812 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4813 4814 // "Align" the register count when TY is i64. 4815 if (isI64 || (isF64 && IsSoftFloatABI)) { 4816 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4817 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4818 } 4819 4820 llvm::Value *CC = 4821 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4822 4823 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4824 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4825 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4826 4827 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4828 4829 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4830 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4831 4832 // Case 1: consume registers. 4833 Address RegAddr = Address::invalid(); 4834 { 4835 CGF.EmitBlock(UsingRegs); 4836 4837 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4838 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4839 CharUnits::fromQuantity(8)); 4840 assert(RegAddr.getElementType() == CGF.Int8Ty); 4841 4842 // Floating-point registers start after the general-purpose registers. 4843 if (!(isInt || IsSoftFloatABI)) { 4844 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4845 CharUnits::fromQuantity(32)); 4846 } 4847 4848 // Get the address of the saved value by scaling the number of 4849 // registers we've used by the number of 4850 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4851 llvm::Value *RegOffset = 4852 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4853 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4854 RegAddr.getPointer(), RegOffset), 4855 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4856 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4857 4858 // Increase the used-register count. 4859 NumRegs = 4860 Builder.CreateAdd(NumRegs, 4861 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4862 Builder.CreateStore(NumRegs, NumRegsAddr); 4863 4864 CGF.EmitBranch(Cont); 4865 } 4866 4867 // Case 2: consume space in the overflow area. 4868 Address MemAddr = Address::invalid(); 4869 { 4870 CGF.EmitBlock(UsingOverflow); 4871 4872 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4873 4874 // Everything in the overflow area is rounded up to a size of at least 4. 4875 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4876 4877 CharUnits Size; 4878 if (!isIndirect) { 4879 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4880 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4881 } else { 4882 Size = CGF.getPointerSize(); 4883 } 4884 4885 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4886 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4887 OverflowAreaAlign); 4888 // Round up address of argument to alignment 4889 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4890 if (Align > OverflowAreaAlign) { 4891 llvm::Value *Ptr = OverflowArea.getPointer(); 4892 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4893 Align); 4894 } 4895 4896 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4897 4898 // Increase the overflow area. 4899 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4900 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4901 CGF.EmitBranch(Cont); 4902 } 4903 4904 CGF.EmitBlock(Cont); 4905 4906 // Merge the cases with a phi. 4907 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4908 "vaarg.addr"); 4909 4910 // Load the pointer if the argument was passed indirectly. 4911 if (isIndirect) { 4912 Result = Address(Builder.CreateLoad(Result, "aggr"), 4913 getContext().getTypeAlignInChars(Ty)); 4914 } 4915 4916 return Result; 4917 } 4918 4919 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4920 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4921 assert(Triple.isPPC32()); 4922 4923 switch (Opts.getStructReturnConvention()) { 4924 case CodeGenOptions::SRCK_Default: 4925 break; 4926 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4927 return false; 4928 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4929 return true; 4930 } 4931 4932 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4933 return true; 4934 4935 return false; 4936 } 4937 4938 bool 4939 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4940 llvm::Value *Address) const { 4941 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4942 /*IsAIX*/ false); 4943 } 4944 4945 // PowerPC-64 4946 4947 namespace { 4948 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4949 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4950 public: 4951 enum ABIKind { 4952 ELFv1 = 0, 4953 ELFv2 4954 }; 4955 4956 private: 4957 static const unsigned GPRBits = 64; 4958 ABIKind Kind; 4959 bool IsSoftFloatABI; 4960 4961 public: 4962 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4963 bool SoftFloatABI) 4964 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4965 4966 bool isPromotableTypeForABI(QualType Ty) const; 4967 CharUnits getParamTypeAlignment(QualType Ty) const; 4968 4969 ABIArgInfo classifyReturnType(QualType RetTy) const; 4970 ABIArgInfo classifyArgumentType(QualType Ty) const; 4971 4972 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4973 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4974 uint64_t Members) const override; 4975 4976 // TODO: We can add more logic to computeInfo to improve performance. 4977 // Example: For aggregate arguments that fit in a register, we could 4978 // use getDirectInReg (as is done below for structs containing a single 4979 // floating-point value) to avoid pushing them to memory on function 4980 // entry. This would require changing the logic in PPCISelLowering 4981 // when lowering the parameters in the caller and args in the callee. 4982 void computeInfo(CGFunctionInfo &FI) const override { 4983 if (!getCXXABI().classifyReturnType(FI)) 4984 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4985 for (auto &I : FI.arguments()) { 4986 // We rely on the default argument classification for the most part. 4987 // One exception: An aggregate containing a single floating-point 4988 // or vector item must be passed in a register if one is available. 4989 const Type *T = isSingleElementStruct(I.type, getContext()); 4990 if (T) { 4991 const BuiltinType *BT = T->getAs<BuiltinType>(); 4992 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4993 (BT && BT->isFloatingPoint())) { 4994 QualType QT(T, 0); 4995 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4996 continue; 4997 } 4998 } 4999 I.info = classifyArgumentType(I.type); 5000 } 5001 } 5002 5003 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5004 QualType Ty) const override; 5005 5006 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5007 bool asReturnValue) const override { 5008 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5009 } 5010 5011 bool isSwiftErrorInRegister() const override { 5012 return false; 5013 } 5014 }; 5015 5016 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5017 5018 public: 5019 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5020 PPC64_SVR4_ABIInfo::ABIKind Kind, 5021 bool SoftFloatABI) 5022 : TargetCodeGenInfo( 5023 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5024 5025 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5026 // This is recovered from gcc output. 5027 return 1; // r1 is the dedicated stack pointer 5028 } 5029 5030 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5031 llvm::Value *Address) const override; 5032 }; 5033 5034 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5035 public: 5036 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5037 5038 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5039 // This is recovered from gcc output. 5040 return 1; // r1 is the dedicated stack pointer 5041 } 5042 5043 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5044 llvm::Value *Address) const override; 5045 }; 5046 5047 } 5048 5049 // Return true if the ABI requires Ty to be passed sign- or zero- 5050 // extended to 64 bits. 5051 bool 5052 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5053 // Treat an enum type as its underlying type. 5054 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5055 Ty = EnumTy->getDecl()->getIntegerType(); 5056 5057 // Promotable integer types are required to be promoted by the ABI. 5058 if (isPromotableIntegerTypeForABI(Ty)) 5059 return true; 5060 5061 // In addition to the usual promotable integer types, we also need to 5062 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5063 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5064 switch (BT->getKind()) { 5065 case BuiltinType::Int: 5066 case BuiltinType::UInt: 5067 return true; 5068 default: 5069 break; 5070 } 5071 5072 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5073 if (EIT->getNumBits() < 64) 5074 return true; 5075 5076 return false; 5077 } 5078 5079 /// isAlignedParamType - Determine whether a type requires 16-byte or 5080 /// higher alignment in the parameter area. Always returns at least 8. 5081 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5082 // Complex types are passed just like their elements. 5083 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5084 Ty = CTy->getElementType(); 5085 5086 // Only vector types of size 16 bytes need alignment (larger types are 5087 // passed via reference, smaller types are not aligned). 5088 if (Ty->isVectorType()) { 5089 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5090 } else if (Ty->isRealFloatingType() && 5091 &getContext().getFloatTypeSemantics(Ty) == 5092 &llvm::APFloat::IEEEquad()) { 5093 // According to ABI document section 'Optional Save Areas': If extended 5094 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5095 // format are supported, map them to a single quadword, quadword aligned. 5096 return CharUnits::fromQuantity(16); 5097 } 5098 5099 // For single-element float/vector structs, we consider the whole type 5100 // to have the same alignment requirements as its single element. 5101 const Type *AlignAsType = nullptr; 5102 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5103 if (EltType) { 5104 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5105 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5106 (BT && BT->isFloatingPoint())) 5107 AlignAsType = EltType; 5108 } 5109 5110 // Likewise for ELFv2 homogeneous aggregates. 5111 const Type *Base = nullptr; 5112 uint64_t Members = 0; 5113 if (!AlignAsType && Kind == ELFv2 && 5114 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5115 AlignAsType = Base; 5116 5117 // With special case aggregates, only vector base types need alignment. 5118 if (AlignAsType) { 5119 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5120 } 5121 5122 // Otherwise, we only need alignment for any aggregate type that 5123 // has an alignment requirement of >= 16 bytes. 5124 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5125 return CharUnits::fromQuantity(16); 5126 } 5127 5128 return CharUnits::fromQuantity(8); 5129 } 5130 5131 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5132 /// aggregate. Base is set to the base element type, and Members is set 5133 /// to the number of base elements. 5134 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5135 uint64_t &Members) const { 5136 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5137 uint64_t NElements = AT->getSize().getZExtValue(); 5138 if (NElements == 0) 5139 return false; 5140 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5141 return false; 5142 Members *= NElements; 5143 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5144 const RecordDecl *RD = RT->getDecl(); 5145 if (RD->hasFlexibleArrayMember()) 5146 return false; 5147 5148 Members = 0; 5149 5150 // If this is a C++ record, check the properties of the record such as 5151 // bases and ABI specific restrictions 5152 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5153 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5154 return false; 5155 5156 for (const auto &I : CXXRD->bases()) { 5157 // Ignore empty records. 5158 if (isEmptyRecord(getContext(), I.getType(), true)) 5159 continue; 5160 5161 uint64_t FldMembers; 5162 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5163 return false; 5164 5165 Members += FldMembers; 5166 } 5167 } 5168 5169 for (const auto *FD : RD->fields()) { 5170 // Ignore (non-zero arrays of) empty records. 5171 QualType FT = FD->getType(); 5172 while (const ConstantArrayType *AT = 5173 getContext().getAsConstantArrayType(FT)) { 5174 if (AT->getSize().getZExtValue() == 0) 5175 return false; 5176 FT = AT->getElementType(); 5177 } 5178 if (isEmptyRecord(getContext(), FT, true)) 5179 continue; 5180 5181 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5182 if (getContext().getLangOpts().CPlusPlus && 5183 FD->isZeroLengthBitField(getContext())) 5184 continue; 5185 5186 uint64_t FldMembers; 5187 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5188 return false; 5189 5190 Members = (RD->isUnion() ? 5191 std::max(Members, FldMembers) : Members + FldMembers); 5192 } 5193 5194 if (!Base) 5195 return false; 5196 5197 // Ensure there is no padding. 5198 if (getContext().getTypeSize(Base) * Members != 5199 getContext().getTypeSize(Ty)) 5200 return false; 5201 } else { 5202 Members = 1; 5203 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5204 Members = 2; 5205 Ty = CT->getElementType(); 5206 } 5207 5208 // Most ABIs only support float, double, and some vector type widths. 5209 if (!isHomogeneousAggregateBaseType(Ty)) 5210 return false; 5211 5212 // The base type must be the same for all members. Types that 5213 // agree in both total size and mode (float vs. vector) are 5214 // treated as being equivalent here. 5215 const Type *TyPtr = Ty.getTypePtr(); 5216 if (!Base) { 5217 Base = TyPtr; 5218 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5219 // so make sure to widen it explicitly. 5220 if (const VectorType *VT = Base->getAs<VectorType>()) { 5221 QualType EltTy = VT->getElementType(); 5222 unsigned NumElements = 5223 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5224 Base = getContext() 5225 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5226 .getTypePtr(); 5227 } 5228 } 5229 5230 if (Base->isVectorType() != TyPtr->isVectorType() || 5231 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5232 return false; 5233 } 5234 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5235 } 5236 5237 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5238 // Homogeneous aggregates for ELFv2 must have base types of float, 5239 // double, long double, or 128-bit vectors. 5240 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5241 if (BT->getKind() == BuiltinType::Float || 5242 BT->getKind() == BuiltinType::Double || 5243 BT->getKind() == BuiltinType::LongDouble || 5244 BT->getKind() == BuiltinType::Ibm128 || 5245 (getContext().getTargetInfo().hasFloat128Type() && 5246 (BT->getKind() == BuiltinType::Float128))) { 5247 if (IsSoftFloatABI) 5248 return false; 5249 return true; 5250 } 5251 } 5252 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5253 if (getContext().getTypeSize(VT) == 128) 5254 return true; 5255 } 5256 return false; 5257 } 5258 5259 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5260 const Type *Base, uint64_t Members) const { 5261 // Vector and fp128 types require one register, other floating point types 5262 // require one or two registers depending on their size. 5263 uint32_t NumRegs = 5264 ((getContext().getTargetInfo().hasFloat128Type() && 5265 Base->isFloat128Type()) || 5266 Base->isVectorType()) ? 1 5267 : (getContext().getTypeSize(Base) + 63) / 64; 5268 5269 // Homogeneous Aggregates may occupy at most 8 registers. 5270 return Members * NumRegs <= 8; 5271 } 5272 5273 ABIArgInfo 5274 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5275 Ty = useFirstFieldIfTransparentUnion(Ty); 5276 5277 if (Ty->isAnyComplexType()) 5278 return ABIArgInfo::getDirect(); 5279 5280 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5281 // or via reference (larger than 16 bytes). 5282 if (Ty->isVectorType()) { 5283 uint64_t Size = getContext().getTypeSize(Ty); 5284 if (Size > 128) 5285 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5286 else if (Size < 128) { 5287 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5288 return ABIArgInfo::getDirect(CoerceTy); 5289 } 5290 } 5291 5292 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5293 if (EIT->getNumBits() > 128) 5294 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5295 5296 if (isAggregateTypeForABI(Ty)) { 5297 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5298 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5299 5300 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5301 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5302 5303 // ELFv2 homogeneous aggregates are passed as array types. 5304 const Type *Base = nullptr; 5305 uint64_t Members = 0; 5306 if (Kind == ELFv2 && 5307 isHomogeneousAggregate(Ty, Base, Members)) { 5308 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5309 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5310 return ABIArgInfo::getDirect(CoerceTy); 5311 } 5312 5313 // If an aggregate may end up fully in registers, we do not 5314 // use the ByVal method, but pass the aggregate as array. 5315 // This is usually beneficial since we avoid forcing the 5316 // back-end to store the argument to memory. 5317 uint64_t Bits = getContext().getTypeSize(Ty); 5318 if (Bits > 0 && Bits <= 8 * GPRBits) { 5319 llvm::Type *CoerceTy; 5320 5321 // Types up to 8 bytes are passed as integer type (which will be 5322 // properly aligned in the argument save area doubleword). 5323 if (Bits <= GPRBits) 5324 CoerceTy = 5325 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5326 // Larger types are passed as arrays, with the base type selected 5327 // according to the required alignment in the save area. 5328 else { 5329 uint64_t RegBits = ABIAlign * 8; 5330 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5331 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5332 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5333 } 5334 5335 return ABIArgInfo::getDirect(CoerceTy); 5336 } 5337 5338 // All other aggregates are passed ByVal. 5339 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5340 /*ByVal=*/true, 5341 /*Realign=*/TyAlign > ABIAlign); 5342 } 5343 5344 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5345 : ABIArgInfo::getDirect()); 5346 } 5347 5348 ABIArgInfo 5349 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5350 if (RetTy->isVoidType()) 5351 return ABIArgInfo::getIgnore(); 5352 5353 if (RetTy->isAnyComplexType()) 5354 return ABIArgInfo::getDirect(); 5355 5356 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5357 // or via reference (larger than 16 bytes). 5358 if (RetTy->isVectorType()) { 5359 uint64_t Size = getContext().getTypeSize(RetTy); 5360 if (Size > 128) 5361 return getNaturalAlignIndirect(RetTy); 5362 else if (Size < 128) { 5363 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5364 return ABIArgInfo::getDirect(CoerceTy); 5365 } 5366 } 5367 5368 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5369 if (EIT->getNumBits() > 128) 5370 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5371 5372 if (isAggregateTypeForABI(RetTy)) { 5373 // ELFv2 homogeneous aggregates are returned as array types. 5374 const Type *Base = nullptr; 5375 uint64_t Members = 0; 5376 if (Kind == ELFv2 && 5377 isHomogeneousAggregate(RetTy, Base, Members)) { 5378 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5379 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5380 return ABIArgInfo::getDirect(CoerceTy); 5381 } 5382 5383 // ELFv2 small aggregates are returned in up to two registers. 5384 uint64_t Bits = getContext().getTypeSize(RetTy); 5385 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5386 if (Bits == 0) 5387 return ABIArgInfo::getIgnore(); 5388 5389 llvm::Type *CoerceTy; 5390 if (Bits > GPRBits) { 5391 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5392 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5393 } else 5394 CoerceTy = 5395 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5396 return ABIArgInfo::getDirect(CoerceTy); 5397 } 5398 5399 // All other aggregates are returned indirectly. 5400 return getNaturalAlignIndirect(RetTy); 5401 } 5402 5403 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5404 : ABIArgInfo::getDirect()); 5405 } 5406 5407 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5408 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5409 QualType Ty) const { 5410 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5411 TypeInfo.Align = getParamTypeAlignment(Ty); 5412 5413 CharUnits SlotSize = CharUnits::fromQuantity(8); 5414 5415 // If we have a complex type and the base type is smaller than 8 bytes, 5416 // the ABI calls for the real and imaginary parts to be right-adjusted 5417 // in separate doublewords. However, Clang expects us to produce a 5418 // pointer to a structure with the two parts packed tightly. So generate 5419 // loads of the real and imaginary parts relative to the va_list pointer, 5420 // and store them to a temporary structure. 5421 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5422 CharUnits EltSize = TypeInfo.Width / 2; 5423 if (EltSize < SlotSize) 5424 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5425 } 5426 5427 // Otherwise, just use the general rule. 5428 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5429 TypeInfo, SlotSize, /*AllowHigher*/ true); 5430 } 5431 5432 bool 5433 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5434 CodeGen::CodeGenFunction &CGF, 5435 llvm::Value *Address) const { 5436 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5437 /*IsAIX*/ false); 5438 } 5439 5440 bool 5441 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5442 llvm::Value *Address) const { 5443 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5444 /*IsAIX*/ false); 5445 } 5446 5447 //===----------------------------------------------------------------------===// 5448 // AArch64 ABI Implementation 5449 //===----------------------------------------------------------------------===// 5450 5451 namespace { 5452 5453 class AArch64ABIInfo : public SwiftABIInfo { 5454 public: 5455 enum ABIKind { 5456 AAPCS = 0, 5457 DarwinPCS, 5458 Win64 5459 }; 5460 5461 private: 5462 ABIKind Kind; 5463 5464 public: 5465 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5466 : SwiftABIInfo(CGT), Kind(Kind) {} 5467 5468 private: 5469 ABIKind getABIKind() const { return Kind; } 5470 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5471 5472 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5473 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5474 unsigned CallingConvention) const; 5475 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5476 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5477 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5478 uint64_t Members) const override; 5479 5480 bool isIllegalVectorType(QualType Ty) const; 5481 5482 void computeInfo(CGFunctionInfo &FI) const override { 5483 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5484 FI.getReturnInfo() = 5485 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5486 5487 for (auto &it : FI.arguments()) 5488 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5489 FI.getCallingConvention()); 5490 } 5491 5492 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5493 CodeGenFunction &CGF) const; 5494 5495 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5496 CodeGenFunction &CGF) const; 5497 5498 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5499 QualType Ty) const override { 5500 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5501 if (isa<llvm::ScalableVectorType>(BaseTy)) 5502 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5503 "currently not supported"); 5504 5505 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5506 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5507 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5508 } 5509 5510 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5511 QualType Ty) const override; 5512 5513 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5514 bool asReturnValue) const override { 5515 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5516 } 5517 bool isSwiftErrorInRegister() const override { 5518 return true; 5519 } 5520 5521 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5522 unsigned elts) const override; 5523 5524 bool allowBFloatArgsAndRet() const override { 5525 return getTarget().hasBFloat16Type(); 5526 } 5527 }; 5528 5529 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5530 public: 5531 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5532 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5533 5534 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5535 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5536 } 5537 5538 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5539 return 31; 5540 } 5541 5542 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5543 5544 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5545 CodeGen::CodeGenModule &CGM) const override { 5546 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5547 if (!FD) 5548 return; 5549 5550 const auto *TA = FD->getAttr<TargetAttr>(); 5551 if (TA == nullptr) 5552 return; 5553 5554 ParsedTargetAttr Attr = TA->parse(); 5555 if (Attr.BranchProtection.empty()) 5556 return; 5557 5558 TargetInfo::BranchProtectionInfo BPI; 5559 StringRef Error; 5560 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5561 BPI, Error); 5562 assert(Error.empty()); 5563 5564 auto *Fn = cast<llvm::Function>(GV); 5565 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5566 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5567 5568 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5569 Fn->addFnAttr("sign-return-address-key", 5570 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5571 ? "a_key" 5572 : "b_key"); 5573 } 5574 5575 Fn->addFnAttr("branch-target-enforcement", 5576 BPI.BranchTargetEnforcement ? "true" : "false"); 5577 } 5578 5579 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5580 llvm::Type *Ty) const override { 5581 if (CGF.getTarget().hasFeature("ls64")) { 5582 auto *ST = dyn_cast<llvm::StructType>(Ty); 5583 if (ST && ST->getNumElements() == 1) { 5584 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5585 if (AT && AT->getNumElements() == 8 && 5586 AT->getElementType()->isIntegerTy(64)) 5587 return true; 5588 } 5589 } 5590 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5591 } 5592 }; 5593 5594 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5595 public: 5596 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5597 : AArch64TargetCodeGenInfo(CGT, K) {} 5598 5599 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5600 CodeGen::CodeGenModule &CGM) const override; 5601 5602 void getDependentLibraryOption(llvm::StringRef Lib, 5603 llvm::SmallString<24> &Opt) const override { 5604 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5605 } 5606 5607 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5608 llvm::SmallString<32> &Opt) const override { 5609 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5610 } 5611 }; 5612 5613 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5614 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5615 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5616 if (GV->isDeclaration()) 5617 return; 5618 addStackProbeTargetAttributes(D, GV, CGM); 5619 } 5620 } 5621 5622 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5623 assert(Ty->isVectorType() && "expected vector type!"); 5624 5625 const auto *VT = Ty->castAs<VectorType>(); 5626 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5627 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5628 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5629 BuiltinType::UChar && 5630 "unexpected builtin type for SVE predicate!"); 5631 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5632 llvm::Type::getInt1Ty(getVMContext()), 16)); 5633 } 5634 5635 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5636 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5637 5638 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5639 llvm::ScalableVectorType *ResType = nullptr; 5640 switch (BT->getKind()) { 5641 default: 5642 llvm_unreachable("unexpected builtin type for SVE vector!"); 5643 case BuiltinType::SChar: 5644 case BuiltinType::UChar: 5645 ResType = llvm::ScalableVectorType::get( 5646 llvm::Type::getInt8Ty(getVMContext()), 16); 5647 break; 5648 case BuiltinType::Short: 5649 case BuiltinType::UShort: 5650 ResType = llvm::ScalableVectorType::get( 5651 llvm::Type::getInt16Ty(getVMContext()), 8); 5652 break; 5653 case BuiltinType::Int: 5654 case BuiltinType::UInt: 5655 ResType = llvm::ScalableVectorType::get( 5656 llvm::Type::getInt32Ty(getVMContext()), 4); 5657 break; 5658 case BuiltinType::Long: 5659 case BuiltinType::ULong: 5660 ResType = llvm::ScalableVectorType::get( 5661 llvm::Type::getInt64Ty(getVMContext()), 2); 5662 break; 5663 case BuiltinType::Half: 5664 ResType = llvm::ScalableVectorType::get( 5665 llvm::Type::getHalfTy(getVMContext()), 8); 5666 break; 5667 case BuiltinType::Float: 5668 ResType = llvm::ScalableVectorType::get( 5669 llvm::Type::getFloatTy(getVMContext()), 4); 5670 break; 5671 case BuiltinType::Double: 5672 ResType = llvm::ScalableVectorType::get( 5673 llvm::Type::getDoubleTy(getVMContext()), 2); 5674 break; 5675 case BuiltinType::BFloat16: 5676 ResType = llvm::ScalableVectorType::get( 5677 llvm::Type::getBFloatTy(getVMContext()), 8); 5678 break; 5679 } 5680 return ABIArgInfo::getDirect(ResType); 5681 } 5682 5683 uint64_t Size = getContext().getTypeSize(Ty); 5684 // Android promotes <2 x i8> to i16, not i32 5685 if (isAndroid() && (Size <= 16)) { 5686 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5687 return ABIArgInfo::getDirect(ResType); 5688 } 5689 if (Size <= 32) { 5690 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5691 return ABIArgInfo::getDirect(ResType); 5692 } 5693 if (Size == 64) { 5694 auto *ResType = 5695 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5696 return ABIArgInfo::getDirect(ResType); 5697 } 5698 if (Size == 128) { 5699 auto *ResType = 5700 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5701 return ABIArgInfo::getDirect(ResType); 5702 } 5703 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5704 } 5705 5706 ABIArgInfo 5707 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5708 unsigned CallingConvention) const { 5709 Ty = useFirstFieldIfTransparentUnion(Ty); 5710 5711 // Handle illegal vector types here. 5712 if (isIllegalVectorType(Ty)) 5713 return coerceIllegalVector(Ty); 5714 5715 if (!isAggregateTypeForABI(Ty)) { 5716 // Treat an enum type as its underlying type. 5717 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5718 Ty = EnumTy->getDecl()->getIntegerType(); 5719 5720 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5721 if (EIT->getNumBits() > 128) 5722 return getNaturalAlignIndirect(Ty); 5723 5724 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5725 ? ABIArgInfo::getExtend(Ty) 5726 : ABIArgInfo::getDirect()); 5727 } 5728 5729 // Structures with either a non-trivial destructor or a non-trivial 5730 // copy constructor are always indirect. 5731 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5732 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5733 CGCXXABI::RAA_DirectInMemory); 5734 } 5735 5736 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5737 // elsewhere for GNU compatibility. 5738 uint64_t Size = getContext().getTypeSize(Ty); 5739 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5740 if (IsEmpty || Size == 0) { 5741 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5742 return ABIArgInfo::getIgnore(); 5743 5744 // GNU C mode. The only argument that gets ignored is an empty one with size 5745 // 0. 5746 if (IsEmpty && Size == 0) 5747 return ABIArgInfo::getIgnore(); 5748 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5749 } 5750 5751 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5752 const Type *Base = nullptr; 5753 uint64_t Members = 0; 5754 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5755 bool IsWinVariadic = IsWin64 && IsVariadic; 5756 // In variadic functions on Windows, all composite types are treated alike, 5757 // no special handling of HFAs/HVAs. 5758 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5759 if (Kind != AArch64ABIInfo::AAPCS) 5760 return ABIArgInfo::getDirect( 5761 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5762 5763 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5764 // default otherwise. 5765 unsigned Align = 5766 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5767 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5768 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5769 return ABIArgInfo::getDirect( 5770 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5771 nullptr, true, Align); 5772 } 5773 5774 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5775 if (Size <= 128) { 5776 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5777 // same size and alignment. 5778 if (getTarget().isRenderScriptTarget()) { 5779 return coerceToIntArray(Ty, getContext(), getVMContext()); 5780 } 5781 unsigned Alignment; 5782 if (Kind == AArch64ABIInfo::AAPCS) { 5783 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5784 Alignment = Alignment < 128 ? 64 : 128; 5785 } else { 5786 Alignment = std::max(getContext().getTypeAlign(Ty), 5787 (unsigned)getTarget().getPointerWidth(0)); 5788 } 5789 Size = llvm::alignTo(Size, Alignment); 5790 5791 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5792 // For aggregates with 16-byte alignment, we use i128. 5793 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5794 return ABIArgInfo::getDirect( 5795 Size == Alignment ? BaseTy 5796 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5797 } 5798 5799 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5800 } 5801 5802 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5803 bool IsVariadic) const { 5804 if (RetTy->isVoidType()) 5805 return ABIArgInfo::getIgnore(); 5806 5807 if (const auto *VT = RetTy->getAs<VectorType>()) { 5808 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5809 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5810 return coerceIllegalVector(RetTy); 5811 } 5812 5813 // Large vector types should be returned via memory. 5814 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5815 return getNaturalAlignIndirect(RetTy); 5816 5817 if (!isAggregateTypeForABI(RetTy)) { 5818 // Treat an enum type as its underlying type. 5819 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5820 RetTy = EnumTy->getDecl()->getIntegerType(); 5821 5822 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5823 if (EIT->getNumBits() > 128) 5824 return getNaturalAlignIndirect(RetTy); 5825 5826 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5827 ? ABIArgInfo::getExtend(RetTy) 5828 : ABIArgInfo::getDirect()); 5829 } 5830 5831 uint64_t Size = getContext().getTypeSize(RetTy); 5832 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5833 return ABIArgInfo::getIgnore(); 5834 5835 const Type *Base = nullptr; 5836 uint64_t Members = 0; 5837 if (isHomogeneousAggregate(RetTy, Base, Members) && 5838 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5839 IsVariadic)) 5840 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5841 return ABIArgInfo::getDirect(); 5842 5843 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5844 if (Size <= 128) { 5845 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5846 // same size and alignment. 5847 if (getTarget().isRenderScriptTarget()) { 5848 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5849 } 5850 5851 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5852 // Composite types are returned in lower bits of a 64-bit register for LE, 5853 // and in higher bits for BE. However, integer types are always returned 5854 // in lower bits for both LE and BE, and they are not rounded up to 5855 // 64-bits. We can skip rounding up of composite types for LE, but not for 5856 // BE, otherwise composite types will be indistinguishable from integer 5857 // types. 5858 return ABIArgInfo::getDirect( 5859 llvm::IntegerType::get(getVMContext(), Size)); 5860 } 5861 5862 unsigned Alignment = getContext().getTypeAlign(RetTy); 5863 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5864 5865 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5866 // For aggregates with 16-byte alignment, we use i128. 5867 if (Alignment < 128 && Size == 128) { 5868 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5869 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5870 } 5871 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5872 } 5873 5874 return getNaturalAlignIndirect(RetTy); 5875 } 5876 5877 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5878 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5879 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5880 // Check whether VT is a fixed-length SVE vector. These types are 5881 // represented as scalable vectors in function args/return and must be 5882 // coerced from fixed vectors. 5883 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5884 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5885 return true; 5886 5887 // Check whether VT is legal. 5888 unsigned NumElements = VT->getNumElements(); 5889 uint64_t Size = getContext().getTypeSize(VT); 5890 // NumElements should be power of 2. 5891 if (!llvm::isPowerOf2_32(NumElements)) 5892 return true; 5893 5894 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5895 // vectors for some reason. 5896 llvm::Triple Triple = getTarget().getTriple(); 5897 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5898 Triple.isOSBinFormatMachO()) 5899 return Size <= 32; 5900 5901 return Size != 64 && (Size != 128 || NumElements == 1); 5902 } 5903 return false; 5904 } 5905 5906 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5907 llvm::Type *eltTy, 5908 unsigned elts) const { 5909 if (!llvm::isPowerOf2_32(elts)) 5910 return false; 5911 if (totalSize.getQuantity() != 8 && 5912 (totalSize.getQuantity() != 16 || elts == 1)) 5913 return false; 5914 return true; 5915 } 5916 5917 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5918 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5919 // point type or a short-vector type. This is the same as the 32-bit ABI, 5920 // but with the difference that any floating-point type is allowed, 5921 // including __fp16. 5922 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5923 if (BT->isFloatingPoint()) 5924 return true; 5925 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5926 unsigned VecSize = getContext().getTypeSize(VT); 5927 if (VecSize == 64 || VecSize == 128) 5928 return true; 5929 } 5930 return false; 5931 } 5932 5933 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5934 uint64_t Members) const { 5935 return Members <= 4; 5936 } 5937 5938 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5939 CodeGenFunction &CGF) const { 5940 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5941 CGF.CurFnInfo->getCallingConvention()); 5942 bool IsIndirect = AI.isIndirect(); 5943 5944 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5945 if (IsIndirect) 5946 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5947 else if (AI.getCoerceToType()) 5948 BaseTy = AI.getCoerceToType(); 5949 5950 unsigned NumRegs = 1; 5951 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5952 BaseTy = ArrTy->getElementType(); 5953 NumRegs = ArrTy->getNumElements(); 5954 } 5955 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5956 5957 // The AArch64 va_list type and handling is specified in the Procedure Call 5958 // Standard, section B.4: 5959 // 5960 // struct { 5961 // void *__stack; 5962 // void *__gr_top; 5963 // void *__vr_top; 5964 // int __gr_offs; 5965 // int __vr_offs; 5966 // }; 5967 5968 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5969 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5970 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5971 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5972 5973 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5974 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5975 5976 Address reg_offs_p = Address::invalid(); 5977 llvm::Value *reg_offs = nullptr; 5978 int reg_top_index; 5979 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5980 if (!IsFPR) { 5981 // 3 is the field number of __gr_offs 5982 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5983 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5984 reg_top_index = 1; // field number for __gr_top 5985 RegSize = llvm::alignTo(RegSize, 8); 5986 } else { 5987 // 4 is the field number of __vr_offs. 5988 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5989 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5990 reg_top_index = 2; // field number for __vr_top 5991 RegSize = 16 * NumRegs; 5992 } 5993 5994 //======================================= 5995 // Find out where argument was passed 5996 //======================================= 5997 5998 // If reg_offs >= 0 we're already using the stack for this type of 5999 // argument. We don't want to keep updating reg_offs (in case it overflows, 6000 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6001 // whatever they get). 6002 llvm::Value *UsingStack = nullptr; 6003 UsingStack = CGF.Builder.CreateICmpSGE( 6004 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6005 6006 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6007 6008 // Otherwise, at least some kind of argument could go in these registers, the 6009 // question is whether this particular type is too big. 6010 CGF.EmitBlock(MaybeRegBlock); 6011 6012 // Integer arguments may need to correct register alignment (for example a 6013 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6014 // align __gr_offs to calculate the potential address. 6015 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6016 int Align = TyAlign.getQuantity(); 6017 6018 reg_offs = CGF.Builder.CreateAdd( 6019 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6020 "align_regoffs"); 6021 reg_offs = CGF.Builder.CreateAnd( 6022 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6023 "aligned_regoffs"); 6024 } 6025 6026 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6027 // The fact that this is done unconditionally reflects the fact that 6028 // allocating an argument to the stack also uses up all the remaining 6029 // registers of the appropriate kind. 6030 llvm::Value *NewOffset = nullptr; 6031 NewOffset = CGF.Builder.CreateAdd( 6032 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6033 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6034 6035 // Now we're in a position to decide whether this argument really was in 6036 // registers or not. 6037 llvm::Value *InRegs = nullptr; 6038 InRegs = CGF.Builder.CreateICmpSLE( 6039 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6040 6041 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6042 6043 //======================================= 6044 // Argument was in registers 6045 //======================================= 6046 6047 // Now we emit the code for if the argument was originally passed in 6048 // registers. First start the appropriate block: 6049 CGF.EmitBlock(InRegBlock); 6050 6051 llvm::Value *reg_top = nullptr; 6052 Address reg_top_p = 6053 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6054 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6055 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6056 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6057 Address RegAddr = Address::invalid(); 6058 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 6059 6060 if (IsIndirect) { 6061 // If it's been passed indirectly (actually a struct), whatever we find from 6062 // stored registers or on the stack will actually be a struct **. 6063 MemTy = llvm::PointerType::getUnqual(MemTy); 6064 } 6065 6066 const Type *Base = nullptr; 6067 uint64_t NumMembers = 0; 6068 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6069 if (IsHFA && NumMembers > 1) { 6070 // Homogeneous aggregates passed in registers will have their elements split 6071 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6072 // qN+1, ...). We reload and store into a temporary local variable 6073 // contiguously. 6074 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6075 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6076 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6077 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6078 Address Tmp = CGF.CreateTempAlloca(HFATy, 6079 std::max(TyAlign, BaseTyInfo.Align)); 6080 6081 // On big-endian platforms, the value will be right-aligned in its slot. 6082 int Offset = 0; 6083 if (CGF.CGM.getDataLayout().isBigEndian() && 6084 BaseTyInfo.Width.getQuantity() < 16) 6085 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6086 6087 for (unsigned i = 0; i < NumMembers; ++i) { 6088 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6089 Address LoadAddr = 6090 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6091 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6092 6093 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6094 6095 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6096 CGF.Builder.CreateStore(Elem, StoreAddr); 6097 } 6098 6099 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6100 } else { 6101 // Otherwise the object is contiguous in memory. 6102 6103 // It might be right-aligned in its slot. 6104 CharUnits SlotSize = BaseAddr.getAlignment(); 6105 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6106 (IsHFA || !isAggregateTypeForABI(Ty)) && 6107 TySize < SlotSize) { 6108 CharUnits Offset = SlotSize - TySize; 6109 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6110 } 6111 6112 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6113 } 6114 6115 CGF.EmitBranch(ContBlock); 6116 6117 //======================================= 6118 // Argument was on the stack 6119 //======================================= 6120 CGF.EmitBlock(OnStackBlock); 6121 6122 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6123 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6124 6125 // Again, stack arguments may need realignment. In this case both integer and 6126 // floating-point ones might be affected. 6127 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6128 int Align = TyAlign.getQuantity(); 6129 6130 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6131 6132 OnStackPtr = CGF.Builder.CreateAdd( 6133 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6134 "align_stack"); 6135 OnStackPtr = CGF.Builder.CreateAnd( 6136 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6137 "align_stack"); 6138 6139 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6140 } 6141 Address OnStackAddr(OnStackPtr, 6142 std::max(CharUnits::fromQuantity(8), TyAlign)); 6143 6144 // All stack slots are multiples of 8 bytes. 6145 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6146 CharUnits StackSize; 6147 if (IsIndirect) 6148 StackSize = StackSlotSize; 6149 else 6150 StackSize = TySize.alignTo(StackSlotSize); 6151 6152 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6153 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6154 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6155 6156 // Write the new value of __stack for the next call to va_arg 6157 CGF.Builder.CreateStore(NewStack, stack_p); 6158 6159 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6160 TySize < StackSlotSize) { 6161 CharUnits Offset = StackSlotSize - TySize; 6162 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6163 } 6164 6165 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6166 6167 CGF.EmitBranch(ContBlock); 6168 6169 //======================================= 6170 // Tidy up 6171 //======================================= 6172 CGF.EmitBlock(ContBlock); 6173 6174 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6175 OnStackAddr, OnStackBlock, "vaargs.addr"); 6176 6177 if (IsIndirect) 6178 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6179 TyAlign); 6180 6181 return ResAddr; 6182 } 6183 6184 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6185 CodeGenFunction &CGF) const { 6186 // The backend's lowering doesn't support va_arg for aggregates or 6187 // illegal vector types. Lower VAArg here for these cases and use 6188 // the LLVM va_arg instruction for everything else. 6189 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6190 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6191 6192 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6193 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6194 6195 // Empty records are ignored for parameter passing purposes. 6196 if (isEmptyRecord(getContext(), Ty, true)) { 6197 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6198 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6199 return Addr; 6200 } 6201 6202 // The size of the actual thing passed, which might end up just 6203 // being a pointer for indirect types. 6204 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6205 6206 // Arguments bigger than 16 bytes which aren't homogeneous 6207 // aggregates should be passed indirectly. 6208 bool IsIndirect = false; 6209 if (TyInfo.Width.getQuantity() > 16) { 6210 const Type *Base = nullptr; 6211 uint64_t Members = 0; 6212 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6213 } 6214 6215 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6216 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6217 } 6218 6219 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6220 QualType Ty) const { 6221 bool IsIndirect = false; 6222 6223 // Composites larger than 16 bytes are passed by reference. 6224 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6225 IsIndirect = true; 6226 6227 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6228 CGF.getContext().getTypeInfoInChars(Ty), 6229 CharUnits::fromQuantity(8), 6230 /*allowHigherAlign*/ false); 6231 } 6232 6233 //===----------------------------------------------------------------------===// 6234 // ARM ABI Implementation 6235 //===----------------------------------------------------------------------===// 6236 6237 namespace { 6238 6239 class ARMABIInfo : public SwiftABIInfo { 6240 public: 6241 enum ABIKind { 6242 APCS = 0, 6243 AAPCS = 1, 6244 AAPCS_VFP = 2, 6245 AAPCS16_VFP = 3, 6246 }; 6247 6248 private: 6249 ABIKind Kind; 6250 bool IsFloatABISoftFP; 6251 6252 public: 6253 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6254 : SwiftABIInfo(CGT), Kind(_Kind) { 6255 setCCs(); 6256 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6257 CGT.getCodeGenOpts().FloatABI == ""; // default 6258 } 6259 6260 bool isEABI() const { 6261 switch (getTarget().getTriple().getEnvironment()) { 6262 case llvm::Triple::Android: 6263 case llvm::Triple::EABI: 6264 case llvm::Triple::EABIHF: 6265 case llvm::Triple::GNUEABI: 6266 case llvm::Triple::GNUEABIHF: 6267 case llvm::Triple::MuslEABI: 6268 case llvm::Triple::MuslEABIHF: 6269 return true; 6270 default: 6271 return false; 6272 } 6273 } 6274 6275 bool isEABIHF() const { 6276 switch (getTarget().getTriple().getEnvironment()) { 6277 case llvm::Triple::EABIHF: 6278 case llvm::Triple::GNUEABIHF: 6279 case llvm::Triple::MuslEABIHF: 6280 return true; 6281 default: 6282 return false; 6283 } 6284 } 6285 6286 ABIKind getABIKind() const { return Kind; } 6287 6288 bool allowBFloatArgsAndRet() const override { 6289 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6290 } 6291 6292 private: 6293 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6294 unsigned functionCallConv) const; 6295 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6296 unsigned functionCallConv) const; 6297 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6298 uint64_t Members) const; 6299 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6300 bool isIllegalVectorType(QualType Ty) const; 6301 bool containsAnyFP16Vectors(QualType Ty) const; 6302 6303 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6304 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6305 uint64_t Members) const override; 6306 6307 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6308 6309 void computeInfo(CGFunctionInfo &FI) const override; 6310 6311 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6312 QualType Ty) const override; 6313 6314 llvm::CallingConv::ID getLLVMDefaultCC() const; 6315 llvm::CallingConv::ID getABIDefaultCC() const; 6316 void setCCs(); 6317 6318 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6319 bool asReturnValue) const override { 6320 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6321 } 6322 bool isSwiftErrorInRegister() const override { 6323 return true; 6324 } 6325 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6326 unsigned elts) const override; 6327 }; 6328 6329 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6330 public: 6331 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6332 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6333 6334 const ARMABIInfo &getABIInfo() const { 6335 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6336 } 6337 6338 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6339 return 13; 6340 } 6341 6342 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6343 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6344 } 6345 6346 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6347 llvm::Value *Address) const override { 6348 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6349 6350 // 0-15 are the 16 integer registers. 6351 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6352 return false; 6353 } 6354 6355 unsigned getSizeOfUnwindException() const override { 6356 if (getABIInfo().isEABI()) return 88; 6357 return TargetCodeGenInfo::getSizeOfUnwindException(); 6358 } 6359 6360 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6361 CodeGen::CodeGenModule &CGM) const override { 6362 if (GV->isDeclaration()) 6363 return; 6364 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6365 if (!FD) 6366 return; 6367 6368 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6369 if (!Attr) 6370 return; 6371 6372 const char *Kind; 6373 switch (Attr->getInterrupt()) { 6374 case ARMInterruptAttr::Generic: Kind = ""; break; 6375 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6376 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6377 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6378 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6379 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6380 } 6381 6382 llvm::Function *Fn = cast<llvm::Function>(GV); 6383 6384 Fn->addFnAttr("interrupt", Kind); 6385 6386 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6387 if (ABI == ARMABIInfo::APCS) 6388 return; 6389 6390 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6391 // however this is not necessarily true on taking any interrupt. Instruct 6392 // the backend to perform a realignment as part of the function prologue. 6393 llvm::AttrBuilder B; 6394 B.addStackAlignmentAttr(8); 6395 Fn->addFnAttrs(B); 6396 } 6397 }; 6398 6399 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6400 public: 6401 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6402 : ARMTargetCodeGenInfo(CGT, K) {} 6403 6404 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6405 CodeGen::CodeGenModule &CGM) const override; 6406 6407 void getDependentLibraryOption(llvm::StringRef Lib, 6408 llvm::SmallString<24> &Opt) const override { 6409 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6410 } 6411 6412 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6413 llvm::SmallString<32> &Opt) const override { 6414 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6415 } 6416 }; 6417 6418 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6419 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6420 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6421 if (GV->isDeclaration()) 6422 return; 6423 addStackProbeTargetAttributes(D, GV, CGM); 6424 } 6425 } 6426 6427 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6428 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6429 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6430 FI.getCallingConvention()); 6431 6432 for (auto &I : FI.arguments()) 6433 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6434 FI.getCallingConvention()); 6435 6436 6437 // Always honor user-specified calling convention. 6438 if (FI.getCallingConvention() != llvm::CallingConv::C) 6439 return; 6440 6441 llvm::CallingConv::ID cc = getRuntimeCC(); 6442 if (cc != llvm::CallingConv::C) 6443 FI.setEffectiveCallingConvention(cc); 6444 } 6445 6446 /// Return the default calling convention that LLVM will use. 6447 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6448 // The default calling convention that LLVM will infer. 6449 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6450 return llvm::CallingConv::ARM_AAPCS_VFP; 6451 else if (isEABI()) 6452 return llvm::CallingConv::ARM_AAPCS; 6453 else 6454 return llvm::CallingConv::ARM_APCS; 6455 } 6456 6457 /// Return the calling convention that our ABI would like us to use 6458 /// as the C calling convention. 6459 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6460 switch (getABIKind()) { 6461 case APCS: return llvm::CallingConv::ARM_APCS; 6462 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6463 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6464 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6465 } 6466 llvm_unreachable("bad ABI kind"); 6467 } 6468 6469 void ARMABIInfo::setCCs() { 6470 assert(getRuntimeCC() == llvm::CallingConv::C); 6471 6472 // Don't muddy up the IR with a ton of explicit annotations if 6473 // they'd just match what LLVM will infer from the triple. 6474 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6475 if (abiCC != getLLVMDefaultCC()) 6476 RuntimeCC = abiCC; 6477 } 6478 6479 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6480 uint64_t Size = getContext().getTypeSize(Ty); 6481 if (Size <= 32) { 6482 llvm::Type *ResType = 6483 llvm::Type::getInt32Ty(getVMContext()); 6484 return ABIArgInfo::getDirect(ResType); 6485 } 6486 if (Size == 64 || Size == 128) { 6487 auto *ResType = llvm::FixedVectorType::get( 6488 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6489 return ABIArgInfo::getDirect(ResType); 6490 } 6491 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6492 } 6493 6494 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6495 const Type *Base, 6496 uint64_t Members) const { 6497 assert(Base && "Base class should be set for homogeneous aggregate"); 6498 // Base can be a floating-point or a vector. 6499 if (const VectorType *VT = Base->getAs<VectorType>()) { 6500 // FP16 vectors should be converted to integer vectors 6501 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6502 uint64_t Size = getContext().getTypeSize(VT); 6503 auto *NewVecTy = llvm::FixedVectorType::get( 6504 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6505 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6506 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6507 } 6508 } 6509 unsigned Align = 0; 6510 if (getABIKind() == ARMABIInfo::AAPCS || 6511 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6512 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6513 // default otherwise. 6514 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6515 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6516 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6517 } 6518 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6519 } 6520 6521 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6522 unsigned functionCallConv) const { 6523 // 6.1.2.1 The following argument types are VFP CPRCs: 6524 // A single-precision floating-point type (including promoted 6525 // half-precision types); A double-precision floating-point type; 6526 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6527 // with a Base Type of a single- or double-precision floating-point type, 6528 // 64-bit containerized vectors or 128-bit containerized vectors with one 6529 // to four Elements. 6530 // Variadic functions should always marshal to the base standard. 6531 bool IsAAPCS_VFP = 6532 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6533 6534 Ty = useFirstFieldIfTransparentUnion(Ty); 6535 6536 // Handle illegal vector types here. 6537 if (isIllegalVectorType(Ty)) 6538 return coerceIllegalVector(Ty); 6539 6540 if (!isAggregateTypeForABI(Ty)) { 6541 // Treat an enum type as its underlying type. 6542 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6543 Ty = EnumTy->getDecl()->getIntegerType(); 6544 } 6545 6546 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6547 if (EIT->getNumBits() > 64) 6548 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6549 6550 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6551 : ABIArgInfo::getDirect()); 6552 } 6553 6554 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6555 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6556 } 6557 6558 // Ignore empty records. 6559 if (isEmptyRecord(getContext(), Ty, true)) 6560 return ABIArgInfo::getIgnore(); 6561 6562 if (IsAAPCS_VFP) { 6563 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6564 // into VFP registers. 6565 const Type *Base = nullptr; 6566 uint64_t Members = 0; 6567 if (isHomogeneousAggregate(Ty, Base, Members)) 6568 return classifyHomogeneousAggregate(Ty, Base, Members); 6569 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6570 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6571 // this convention even for a variadic function: the backend will use GPRs 6572 // if needed. 6573 const Type *Base = nullptr; 6574 uint64_t Members = 0; 6575 if (isHomogeneousAggregate(Ty, Base, Members)) { 6576 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6577 llvm::Type *Ty = 6578 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6579 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6580 } 6581 } 6582 6583 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6584 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6585 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6586 // bigger than 128-bits, they get placed in space allocated by the caller, 6587 // and a pointer is passed. 6588 return ABIArgInfo::getIndirect( 6589 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6590 } 6591 6592 // Support byval for ARM. 6593 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6594 // most 8-byte. We realign the indirect argument if type alignment is bigger 6595 // than ABI alignment. 6596 uint64_t ABIAlign = 4; 6597 uint64_t TyAlign; 6598 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6599 getABIKind() == ARMABIInfo::AAPCS) { 6600 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6601 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6602 } else { 6603 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6604 } 6605 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6606 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6607 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6608 /*ByVal=*/true, 6609 /*Realign=*/TyAlign > ABIAlign); 6610 } 6611 6612 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6613 // same size and alignment. 6614 if (getTarget().isRenderScriptTarget()) { 6615 return coerceToIntArray(Ty, getContext(), getVMContext()); 6616 } 6617 6618 // Otherwise, pass by coercing to a structure of the appropriate size. 6619 llvm::Type* ElemTy; 6620 unsigned SizeRegs; 6621 // FIXME: Try to match the types of the arguments more accurately where 6622 // we can. 6623 if (TyAlign <= 4) { 6624 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6625 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6626 } else { 6627 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6628 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6629 } 6630 6631 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6632 } 6633 6634 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6635 llvm::LLVMContext &VMContext) { 6636 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6637 // is called integer-like if its size is less than or equal to one word, and 6638 // the offset of each of its addressable sub-fields is zero. 6639 6640 uint64_t Size = Context.getTypeSize(Ty); 6641 6642 // Check that the type fits in a word. 6643 if (Size > 32) 6644 return false; 6645 6646 // FIXME: Handle vector types! 6647 if (Ty->isVectorType()) 6648 return false; 6649 6650 // Float types are never treated as "integer like". 6651 if (Ty->isRealFloatingType()) 6652 return false; 6653 6654 // If this is a builtin or pointer type then it is ok. 6655 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6656 return true; 6657 6658 // Small complex integer types are "integer like". 6659 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6660 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6661 6662 // Single element and zero sized arrays should be allowed, by the definition 6663 // above, but they are not. 6664 6665 // Otherwise, it must be a record type. 6666 const RecordType *RT = Ty->getAs<RecordType>(); 6667 if (!RT) return false; 6668 6669 // Ignore records with flexible arrays. 6670 const RecordDecl *RD = RT->getDecl(); 6671 if (RD->hasFlexibleArrayMember()) 6672 return false; 6673 6674 // Check that all sub-fields are at offset 0, and are themselves "integer 6675 // like". 6676 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6677 6678 bool HadField = false; 6679 unsigned idx = 0; 6680 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6681 i != e; ++i, ++idx) { 6682 const FieldDecl *FD = *i; 6683 6684 // Bit-fields are not addressable, we only need to verify they are "integer 6685 // like". We still have to disallow a subsequent non-bitfield, for example: 6686 // struct { int : 0; int x } 6687 // is non-integer like according to gcc. 6688 if (FD->isBitField()) { 6689 if (!RD->isUnion()) 6690 HadField = true; 6691 6692 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6693 return false; 6694 6695 continue; 6696 } 6697 6698 // Check if this field is at offset 0. 6699 if (Layout.getFieldOffset(idx) != 0) 6700 return false; 6701 6702 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6703 return false; 6704 6705 // Only allow at most one field in a structure. This doesn't match the 6706 // wording above, but follows gcc in situations with a field following an 6707 // empty structure. 6708 if (!RD->isUnion()) { 6709 if (HadField) 6710 return false; 6711 6712 HadField = true; 6713 } 6714 } 6715 6716 return true; 6717 } 6718 6719 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6720 unsigned functionCallConv) const { 6721 6722 // Variadic functions should always marshal to the base standard. 6723 bool IsAAPCS_VFP = 6724 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6725 6726 if (RetTy->isVoidType()) 6727 return ABIArgInfo::getIgnore(); 6728 6729 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6730 // Large vector types should be returned via memory. 6731 if (getContext().getTypeSize(RetTy) > 128) 6732 return getNaturalAlignIndirect(RetTy); 6733 // TODO: FP16/BF16 vectors should be converted to integer vectors 6734 // This check is similar to isIllegalVectorType - refactor? 6735 if ((!getTarget().hasLegalHalfType() && 6736 (VT->getElementType()->isFloat16Type() || 6737 VT->getElementType()->isHalfType())) || 6738 (IsFloatABISoftFP && 6739 VT->getElementType()->isBFloat16Type())) 6740 return coerceIllegalVector(RetTy); 6741 } 6742 6743 if (!isAggregateTypeForABI(RetTy)) { 6744 // Treat an enum type as its underlying type. 6745 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6746 RetTy = EnumTy->getDecl()->getIntegerType(); 6747 6748 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6749 if (EIT->getNumBits() > 64) 6750 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6751 6752 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6753 : ABIArgInfo::getDirect(); 6754 } 6755 6756 // Are we following APCS? 6757 if (getABIKind() == APCS) { 6758 if (isEmptyRecord(getContext(), RetTy, false)) 6759 return ABIArgInfo::getIgnore(); 6760 6761 // Complex types are all returned as packed integers. 6762 // 6763 // FIXME: Consider using 2 x vector types if the back end handles them 6764 // correctly. 6765 if (RetTy->isAnyComplexType()) 6766 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6767 getVMContext(), getContext().getTypeSize(RetTy))); 6768 6769 // Integer like structures are returned in r0. 6770 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6771 // Return in the smallest viable integer type. 6772 uint64_t Size = getContext().getTypeSize(RetTy); 6773 if (Size <= 8) 6774 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6775 if (Size <= 16) 6776 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6777 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6778 } 6779 6780 // Otherwise return in memory. 6781 return getNaturalAlignIndirect(RetTy); 6782 } 6783 6784 // Otherwise this is an AAPCS variant. 6785 6786 if (isEmptyRecord(getContext(), RetTy, true)) 6787 return ABIArgInfo::getIgnore(); 6788 6789 // Check for homogeneous aggregates with AAPCS-VFP. 6790 if (IsAAPCS_VFP) { 6791 const Type *Base = nullptr; 6792 uint64_t Members = 0; 6793 if (isHomogeneousAggregate(RetTy, Base, Members)) 6794 return classifyHomogeneousAggregate(RetTy, Base, Members); 6795 } 6796 6797 // Aggregates <= 4 bytes are returned in r0; other aggregates 6798 // are returned indirectly. 6799 uint64_t Size = getContext().getTypeSize(RetTy); 6800 if (Size <= 32) { 6801 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6802 // same size and alignment. 6803 if (getTarget().isRenderScriptTarget()) { 6804 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6805 } 6806 if (getDataLayout().isBigEndian()) 6807 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6808 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6809 6810 // Return in the smallest viable integer type. 6811 if (Size <= 8) 6812 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6813 if (Size <= 16) 6814 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6815 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6816 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6817 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6818 llvm::Type *CoerceTy = 6819 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6820 return ABIArgInfo::getDirect(CoerceTy); 6821 } 6822 6823 return getNaturalAlignIndirect(RetTy); 6824 } 6825 6826 /// isIllegalVector - check whether Ty is an illegal vector type. 6827 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6828 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6829 // On targets that don't support half, fp16 or bfloat, they are expanded 6830 // into float, and we don't want the ABI to depend on whether or not they 6831 // are supported in hardware. Thus return false to coerce vectors of these 6832 // types into integer vectors. 6833 // We do not depend on hasLegalHalfType for bfloat as it is a 6834 // separate IR type. 6835 if ((!getTarget().hasLegalHalfType() && 6836 (VT->getElementType()->isFloat16Type() || 6837 VT->getElementType()->isHalfType())) || 6838 (IsFloatABISoftFP && 6839 VT->getElementType()->isBFloat16Type())) 6840 return true; 6841 if (isAndroid()) { 6842 // Android shipped using Clang 3.1, which supported a slightly different 6843 // vector ABI. The primary differences were that 3-element vector types 6844 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6845 // accepts that legacy behavior for Android only. 6846 // Check whether VT is legal. 6847 unsigned NumElements = VT->getNumElements(); 6848 // NumElements should be power of 2 or equal to 3. 6849 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6850 return true; 6851 } else { 6852 // Check whether VT is legal. 6853 unsigned NumElements = VT->getNumElements(); 6854 uint64_t Size = getContext().getTypeSize(VT); 6855 // NumElements should be power of 2. 6856 if (!llvm::isPowerOf2_32(NumElements)) 6857 return true; 6858 // Size should be greater than 32 bits. 6859 return Size <= 32; 6860 } 6861 } 6862 return false; 6863 } 6864 6865 /// Return true if a type contains any 16-bit floating point vectors 6866 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6867 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6868 uint64_t NElements = AT->getSize().getZExtValue(); 6869 if (NElements == 0) 6870 return false; 6871 return containsAnyFP16Vectors(AT->getElementType()); 6872 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6873 const RecordDecl *RD = RT->getDecl(); 6874 6875 // If this is a C++ record, check the bases first. 6876 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6877 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6878 return containsAnyFP16Vectors(B.getType()); 6879 })) 6880 return true; 6881 6882 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6883 return FD && containsAnyFP16Vectors(FD->getType()); 6884 })) 6885 return true; 6886 6887 return false; 6888 } else { 6889 if (const VectorType *VT = Ty->getAs<VectorType>()) 6890 return (VT->getElementType()->isFloat16Type() || 6891 VT->getElementType()->isBFloat16Type() || 6892 VT->getElementType()->isHalfType()); 6893 return false; 6894 } 6895 } 6896 6897 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6898 llvm::Type *eltTy, 6899 unsigned numElts) const { 6900 if (!llvm::isPowerOf2_32(numElts)) 6901 return false; 6902 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6903 if (size > 64) 6904 return false; 6905 if (vectorSize.getQuantity() != 8 && 6906 (vectorSize.getQuantity() != 16 || numElts == 1)) 6907 return false; 6908 return true; 6909 } 6910 6911 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6912 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6913 // double, or 64-bit or 128-bit vectors. 6914 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6915 if (BT->getKind() == BuiltinType::Float || 6916 BT->getKind() == BuiltinType::Double || 6917 BT->getKind() == BuiltinType::LongDouble) 6918 return true; 6919 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6920 unsigned VecSize = getContext().getTypeSize(VT); 6921 if (VecSize == 64 || VecSize == 128) 6922 return true; 6923 } 6924 return false; 6925 } 6926 6927 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6928 uint64_t Members) const { 6929 return Members <= 4; 6930 } 6931 6932 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6933 bool acceptHalf) const { 6934 // Give precedence to user-specified calling conventions. 6935 if (callConvention != llvm::CallingConv::C) 6936 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6937 else 6938 return (getABIKind() == AAPCS_VFP) || 6939 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6940 } 6941 6942 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6943 QualType Ty) const { 6944 CharUnits SlotSize = CharUnits::fromQuantity(4); 6945 6946 // Empty records are ignored for parameter passing purposes. 6947 if (isEmptyRecord(getContext(), Ty, true)) { 6948 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6949 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6950 return Addr; 6951 } 6952 6953 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6954 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6955 6956 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6957 bool IsIndirect = false; 6958 const Type *Base = nullptr; 6959 uint64_t Members = 0; 6960 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6961 IsIndirect = true; 6962 6963 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6964 // allocated by the caller. 6965 } else if (TySize > CharUnits::fromQuantity(16) && 6966 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6967 !isHomogeneousAggregate(Ty, Base, Members)) { 6968 IsIndirect = true; 6969 6970 // Otherwise, bound the type's ABI alignment. 6971 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6972 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6973 // Our callers should be prepared to handle an under-aligned address. 6974 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6975 getABIKind() == ARMABIInfo::AAPCS) { 6976 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6977 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6978 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6979 // ARMv7k allows type alignment up to 16 bytes. 6980 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6981 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6982 } else { 6983 TyAlignForABI = CharUnits::fromQuantity(4); 6984 } 6985 6986 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 6987 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6988 SlotSize, /*AllowHigherAlign*/ true); 6989 } 6990 6991 //===----------------------------------------------------------------------===// 6992 // NVPTX ABI Implementation 6993 //===----------------------------------------------------------------------===// 6994 6995 namespace { 6996 6997 class NVPTXTargetCodeGenInfo; 6998 6999 class NVPTXABIInfo : public ABIInfo { 7000 NVPTXTargetCodeGenInfo &CGInfo; 7001 7002 public: 7003 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7004 : ABIInfo(CGT), CGInfo(Info) {} 7005 7006 ABIArgInfo classifyReturnType(QualType RetTy) const; 7007 ABIArgInfo classifyArgumentType(QualType Ty) const; 7008 7009 void computeInfo(CGFunctionInfo &FI) const override; 7010 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7011 QualType Ty) const override; 7012 bool isUnsupportedType(QualType T) const; 7013 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7014 }; 7015 7016 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7017 public: 7018 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7019 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7020 7021 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7022 CodeGen::CodeGenModule &M) const override; 7023 bool shouldEmitStaticExternCAliases() const override; 7024 7025 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7026 // On the device side, surface reference is represented as an object handle 7027 // in 64-bit integer. 7028 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7029 } 7030 7031 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7032 // On the device side, texture reference is represented as an object handle 7033 // in 64-bit integer. 7034 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7035 } 7036 7037 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7038 LValue Src) const override { 7039 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7040 return true; 7041 } 7042 7043 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7044 LValue Src) const override { 7045 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7046 return true; 7047 } 7048 7049 private: 7050 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7051 // resulting MDNode to the nvvm.annotations MDNode. 7052 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7053 int Operand); 7054 7055 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7056 LValue Src) { 7057 llvm::Value *Handle = nullptr; 7058 llvm::Constant *C = 7059 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7060 // Lookup `addrspacecast` through the constant pointer if any. 7061 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7062 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7063 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7064 // Load the handle from the specific global variable using 7065 // `nvvm.texsurf.handle.internal` intrinsic. 7066 Handle = CGF.EmitRuntimeCall( 7067 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7068 {GV->getType()}), 7069 {GV}, "texsurf_handle"); 7070 } else 7071 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7072 CGF.EmitStoreOfScalar(Handle, Dst); 7073 } 7074 }; 7075 7076 /// Checks if the type is unsupported directly by the current target. 7077 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7078 ASTContext &Context = getContext(); 7079 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7080 return true; 7081 if (!Context.getTargetInfo().hasFloat128Type() && 7082 (T->isFloat128Type() || 7083 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7084 return true; 7085 if (const auto *EIT = T->getAs<ExtIntType>()) 7086 return EIT->getNumBits() > 7087 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7088 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7089 Context.getTypeSize(T) > 64U) 7090 return true; 7091 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7092 return isUnsupportedType(AT->getElementType()); 7093 const auto *RT = T->getAs<RecordType>(); 7094 if (!RT) 7095 return false; 7096 const RecordDecl *RD = RT->getDecl(); 7097 7098 // If this is a C++ record, check the bases first. 7099 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7100 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7101 if (isUnsupportedType(I.getType())) 7102 return true; 7103 7104 for (const FieldDecl *I : RD->fields()) 7105 if (isUnsupportedType(I->getType())) 7106 return true; 7107 return false; 7108 } 7109 7110 /// Coerce the given type into an array with maximum allowed size of elements. 7111 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7112 unsigned MaxSize) const { 7113 // Alignment and Size are measured in bits. 7114 const uint64_t Size = getContext().getTypeSize(Ty); 7115 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7116 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7117 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7118 const uint64_t NumElements = (Size + Div - 1) / Div; 7119 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7120 } 7121 7122 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7123 if (RetTy->isVoidType()) 7124 return ABIArgInfo::getIgnore(); 7125 7126 if (getContext().getLangOpts().OpenMP && 7127 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7128 return coerceToIntArrayWithLimit(RetTy, 64); 7129 7130 // note: this is different from default ABI 7131 if (!RetTy->isScalarType()) 7132 return ABIArgInfo::getDirect(); 7133 7134 // Treat an enum type as its underlying type. 7135 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7136 RetTy = EnumTy->getDecl()->getIntegerType(); 7137 7138 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7139 : ABIArgInfo::getDirect()); 7140 } 7141 7142 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7143 // Treat an enum type as its underlying type. 7144 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7145 Ty = EnumTy->getDecl()->getIntegerType(); 7146 7147 // Return aggregates type as indirect by value 7148 if (isAggregateTypeForABI(Ty)) { 7149 // Under CUDA device compilation, tex/surf builtin types are replaced with 7150 // object types and passed directly. 7151 if (getContext().getLangOpts().CUDAIsDevice) { 7152 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7153 return ABIArgInfo::getDirect( 7154 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7155 if (Ty->isCUDADeviceBuiltinTextureType()) 7156 return ABIArgInfo::getDirect( 7157 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7158 } 7159 return getNaturalAlignIndirect(Ty, /* byval */ true); 7160 } 7161 7162 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7163 if ((EIT->getNumBits() > 128) || 7164 (!getContext().getTargetInfo().hasInt128Type() && 7165 EIT->getNumBits() > 64)) 7166 return getNaturalAlignIndirect(Ty, /* byval */ true); 7167 } 7168 7169 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7170 : ABIArgInfo::getDirect()); 7171 } 7172 7173 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7174 if (!getCXXABI().classifyReturnType(FI)) 7175 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7176 for (auto &I : FI.arguments()) 7177 I.info = classifyArgumentType(I.type); 7178 7179 // Always honor user-specified calling convention. 7180 if (FI.getCallingConvention() != llvm::CallingConv::C) 7181 return; 7182 7183 FI.setEffectiveCallingConvention(getRuntimeCC()); 7184 } 7185 7186 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7187 QualType Ty) const { 7188 llvm_unreachable("NVPTX does not support varargs"); 7189 } 7190 7191 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7192 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7193 if (GV->isDeclaration()) 7194 return; 7195 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7196 if (VD) { 7197 if (M.getLangOpts().CUDA) { 7198 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7199 addNVVMMetadata(GV, "surface", 1); 7200 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7201 addNVVMMetadata(GV, "texture", 1); 7202 return; 7203 } 7204 } 7205 7206 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7207 if (!FD) return; 7208 7209 llvm::Function *F = cast<llvm::Function>(GV); 7210 7211 // Perform special handling in OpenCL mode 7212 if (M.getLangOpts().OpenCL) { 7213 // Use OpenCL function attributes to check for kernel functions 7214 // By default, all functions are device functions 7215 if (FD->hasAttr<OpenCLKernelAttr>()) { 7216 // OpenCL __kernel functions get kernel metadata 7217 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7218 addNVVMMetadata(F, "kernel", 1); 7219 // And kernel functions are not subject to inlining 7220 F->addFnAttr(llvm::Attribute::NoInline); 7221 } 7222 } 7223 7224 // Perform special handling in CUDA mode. 7225 if (M.getLangOpts().CUDA) { 7226 // CUDA __global__ functions get a kernel metadata entry. Since 7227 // __global__ functions cannot be called from the device, we do not 7228 // need to set the noinline attribute. 7229 if (FD->hasAttr<CUDAGlobalAttr>()) { 7230 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7231 addNVVMMetadata(F, "kernel", 1); 7232 } 7233 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7234 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7235 llvm::APSInt MaxThreads(32); 7236 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7237 if (MaxThreads > 0) 7238 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7239 7240 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7241 // not specified in __launch_bounds__ or if the user specified a 0 value, 7242 // we don't have to add a PTX directive. 7243 if (Attr->getMinBlocks()) { 7244 llvm::APSInt MinBlocks(32); 7245 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7246 if (MinBlocks > 0) 7247 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7248 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7249 } 7250 } 7251 } 7252 } 7253 7254 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7255 StringRef Name, int Operand) { 7256 llvm::Module *M = GV->getParent(); 7257 llvm::LLVMContext &Ctx = M->getContext(); 7258 7259 // Get "nvvm.annotations" metadata node 7260 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7261 7262 llvm::Metadata *MDVals[] = { 7263 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7264 llvm::ConstantAsMetadata::get( 7265 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7266 // Append metadata to nvvm.annotations 7267 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7268 } 7269 7270 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7271 return false; 7272 } 7273 } 7274 7275 //===----------------------------------------------------------------------===// 7276 // SystemZ ABI Implementation 7277 //===----------------------------------------------------------------------===// 7278 7279 namespace { 7280 7281 class SystemZABIInfo : public SwiftABIInfo { 7282 bool HasVector; 7283 bool IsSoftFloatABI; 7284 7285 public: 7286 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7287 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7288 7289 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7290 bool isCompoundType(QualType Ty) const; 7291 bool isVectorArgumentType(QualType Ty) const; 7292 bool isFPArgumentType(QualType Ty) const; 7293 QualType GetSingleElementType(QualType Ty) const; 7294 7295 ABIArgInfo classifyReturnType(QualType RetTy) const; 7296 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7297 7298 void computeInfo(CGFunctionInfo &FI) const override { 7299 if (!getCXXABI().classifyReturnType(FI)) 7300 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7301 for (auto &I : FI.arguments()) 7302 I.info = classifyArgumentType(I.type); 7303 } 7304 7305 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7306 QualType Ty) const override; 7307 7308 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7309 bool asReturnValue) const override { 7310 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7311 } 7312 bool isSwiftErrorInRegister() const override { 7313 return false; 7314 } 7315 }; 7316 7317 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7318 public: 7319 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7320 : TargetCodeGenInfo( 7321 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7322 7323 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7324 CGBuilderTy &Builder, 7325 CodeGenModule &CGM) const override { 7326 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7327 // Only use TDC in constrained FP mode. 7328 if (!Builder.getIsFPConstrained()) 7329 return nullptr; 7330 7331 llvm::Type *Ty = V->getType(); 7332 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7333 llvm::Module &M = CGM.getModule(); 7334 auto &Ctx = M.getContext(); 7335 llvm::Function *TDCFunc = 7336 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7337 unsigned TDCBits = 0; 7338 switch (BuiltinID) { 7339 case Builtin::BI__builtin_isnan: 7340 TDCBits = 0xf; 7341 break; 7342 case Builtin::BIfinite: 7343 case Builtin::BI__finite: 7344 case Builtin::BIfinitef: 7345 case Builtin::BI__finitef: 7346 case Builtin::BIfinitel: 7347 case Builtin::BI__finitel: 7348 case Builtin::BI__builtin_isfinite: 7349 TDCBits = 0xfc0; 7350 break; 7351 case Builtin::BI__builtin_isinf: 7352 TDCBits = 0x30; 7353 break; 7354 default: 7355 break; 7356 } 7357 if (TDCBits) 7358 return Builder.CreateCall( 7359 TDCFunc, 7360 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7361 } 7362 return nullptr; 7363 } 7364 }; 7365 } 7366 7367 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7368 // Treat an enum type as its underlying type. 7369 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7370 Ty = EnumTy->getDecl()->getIntegerType(); 7371 7372 // Promotable integer types are required to be promoted by the ABI. 7373 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7374 return true; 7375 7376 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7377 if (EIT->getNumBits() < 64) 7378 return true; 7379 7380 // 32-bit values must also be promoted. 7381 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7382 switch (BT->getKind()) { 7383 case BuiltinType::Int: 7384 case BuiltinType::UInt: 7385 return true; 7386 default: 7387 return false; 7388 } 7389 return false; 7390 } 7391 7392 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7393 return (Ty->isAnyComplexType() || 7394 Ty->isVectorType() || 7395 isAggregateTypeForABI(Ty)); 7396 } 7397 7398 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7399 return (HasVector && 7400 Ty->isVectorType() && 7401 getContext().getTypeSize(Ty) <= 128); 7402 } 7403 7404 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7405 if (IsSoftFloatABI) 7406 return false; 7407 7408 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7409 switch (BT->getKind()) { 7410 case BuiltinType::Float: 7411 case BuiltinType::Double: 7412 return true; 7413 default: 7414 return false; 7415 } 7416 7417 return false; 7418 } 7419 7420 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7421 const RecordType *RT = Ty->getAs<RecordType>(); 7422 7423 if (RT && RT->isStructureOrClassType()) { 7424 const RecordDecl *RD = RT->getDecl(); 7425 QualType Found; 7426 7427 // If this is a C++ record, check the bases first. 7428 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7429 for (const auto &I : CXXRD->bases()) { 7430 QualType Base = I.getType(); 7431 7432 // Empty bases don't affect things either way. 7433 if (isEmptyRecord(getContext(), Base, true)) 7434 continue; 7435 7436 if (!Found.isNull()) 7437 return Ty; 7438 Found = GetSingleElementType(Base); 7439 } 7440 7441 // Check the fields. 7442 for (const auto *FD : RD->fields()) { 7443 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7444 // Unlike isSingleElementStruct(), empty structure and array fields 7445 // do count. So do anonymous bitfields that aren't zero-sized. 7446 if (getContext().getLangOpts().CPlusPlus && 7447 FD->isZeroLengthBitField(getContext())) 7448 continue; 7449 // Like isSingleElementStruct(), ignore C++20 empty data members. 7450 if (FD->hasAttr<NoUniqueAddressAttr>() && 7451 isEmptyRecord(getContext(), FD->getType(), true)) 7452 continue; 7453 7454 // Unlike isSingleElementStruct(), arrays do not count. 7455 // Nested structures still do though. 7456 if (!Found.isNull()) 7457 return Ty; 7458 Found = GetSingleElementType(FD->getType()); 7459 } 7460 7461 // Unlike isSingleElementStruct(), trailing padding is allowed. 7462 // An 8-byte aligned struct s { float f; } is passed as a double. 7463 if (!Found.isNull()) 7464 return Found; 7465 } 7466 7467 return Ty; 7468 } 7469 7470 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7471 QualType Ty) const { 7472 // Assume that va_list type is correct; should be pointer to LLVM type: 7473 // struct { 7474 // i64 __gpr; 7475 // i64 __fpr; 7476 // i8 *__overflow_arg_area; 7477 // i8 *__reg_save_area; 7478 // }; 7479 7480 // Every non-vector argument occupies 8 bytes and is passed by preference 7481 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7482 // always passed on the stack. 7483 Ty = getContext().getCanonicalType(Ty); 7484 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7485 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7486 llvm::Type *DirectTy = ArgTy; 7487 ABIArgInfo AI = classifyArgumentType(Ty); 7488 bool IsIndirect = AI.isIndirect(); 7489 bool InFPRs = false; 7490 bool IsVector = false; 7491 CharUnits UnpaddedSize; 7492 CharUnits DirectAlign; 7493 if (IsIndirect) { 7494 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7495 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7496 } else { 7497 if (AI.getCoerceToType()) 7498 ArgTy = AI.getCoerceToType(); 7499 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7500 IsVector = ArgTy->isVectorTy(); 7501 UnpaddedSize = TyInfo.Width; 7502 DirectAlign = TyInfo.Align; 7503 } 7504 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7505 if (IsVector && UnpaddedSize > PaddedSize) 7506 PaddedSize = CharUnits::fromQuantity(16); 7507 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7508 7509 CharUnits Padding = (PaddedSize - UnpaddedSize); 7510 7511 llvm::Type *IndexTy = CGF.Int64Ty; 7512 llvm::Value *PaddedSizeV = 7513 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7514 7515 if (IsVector) { 7516 // Work out the address of a vector argument on the stack. 7517 // Vector arguments are always passed in the high bits of a 7518 // single (8 byte) or double (16 byte) stack slot. 7519 Address OverflowArgAreaPtr = 7520 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7521 Address OverflowArgArea = 7522 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7523 TyInfo.Align); 7524 Address MemAddr = 7525 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7526 7527 // Update overflow_arg_area_ptr pointer 7528 llvm::Value *NewOverflowArgArea = 7529 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7530 OverflowArgArea.getPointer(), PaddedSizeV, 7531 "overflow_arg_area"); 7532 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7533 7534 return MemAddr; 7535 } 7536 7537 assert(PaddedSize.getQuantity() == 8); 7538 7539 unsigned MaxRegs, RegCountField, RegSaveIndex; 7540 CharUnits RegPadding; 7541 if (InFPRs) { 7542 MaxRegs = 4; // Maximum of 4 FPR arguments 7543 RegCountField = 1; // __fpr 7544 RegSaveIndex = 16; // save offset for f0 7545 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7546 } else { 7547 MaxRegs = 5; // Maximum of 5 GPR arguments 7548 RegCountField = 0; // __gpr 7549 RegSaveIndex = 2; // save offset for r2 7550 RegPadding = Padding; // values are passed in the low bits of a GPR 7551 } 7552 7553 Address RegCountPtr = 7554 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7555 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7556 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7557 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7558 "fits_in_regs"); 7559 7560 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7561 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7562 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7563 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7564 7565 // Emit code to load the value if it was passed in registers. 7566 CGF.EmitBlock(InRegBlock); 7567 7568 // Work out the address of an argument register. 7569 llvm::Value *ScaledRegCount = 7570 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7571 llvm::Value *RegBase = 7572 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7573 + RegPadding.getQuantity()); 7574 llvm::Value *RegOffset = 7575 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7576 Address RegSaveAreaPtr = 7577 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7578 llvm::Value *RegSaveArea = 7579 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7580 Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, 7581 "raw_reg_addr"), 7582 PaddedSize); 7583 Address RegAddr = 7584 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7585 7586 // Update the register count 7587 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7588 llvm::Value *NewRegCount = 7589 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7590 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7591 CGF.EmitBranch(ContBlock); 7592 7593 // Emit code to load the value if it was passed in memory. 7594 CGF.EmitBlock(InMemBlock); 7595 7596 // Work out the address of a stack argument. 7597 Address OverflowArgAreaPtr = 7598 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7599 Address OverflowArgArea = 7600 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7601 PaddedSize); 7602 Address RawMemAddr = 7603 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7604 Address MemAddr = 7605 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7606 7607 // Update overflow_arg_area_ptr pointer 7608 llvm::Value *NewOverflowArgArea = 7609 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7610 OverflowArgArea.getPointer(), PaddedSizeV, 7611 "overflow_arg_area"); 7612 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7613 CGF.EmitBranch(ContBlock); 7614 7615 // Return the appropriate result. 7616 CGF.EmitBlock(ContBlock); 7617 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7618 MemAddr, InMemBlock, "va_arg.addr"); 7619 7620 if (IsIndirect) 7621 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7622 TyInfo.Align); 7623 7624 return ResAddr; 7625 } 7626 7627 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7628 if (RetTy->isVoidType()) 7629 return ABIArgInfo::getIgnore(); 7630 if (isVectorArgumentType(RetTy)) 7631 return ABIArgInfo::getDirect(); 7632 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7633 return getNaturalAlignIndirect(RetTy); 7634 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7635 : ABIArgInfo::getDirect()); 7636 } 7637 7638 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7639 // Handle the generic C++ ABI. 7640 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7641 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7642 7643 // Integers and enums are extended to full register width. 7644 if (isPromotableIntegerTypeForABI(Ty)) 7645 return ABIArgInfo::getExtend(Ty); 7646 7647 // Handle vector types and vector-like structure types. Note that 7648 // as opposed to float-like structure types, we do not allow any 7649 // padding for vector-like structures, so verify the sizes match. 7650 uint64_t Size = getContext().getTypeSize(Ty); 7651 QualType SingleElementTy = GetSingleElementType(Ty); 7652 if (isVectorArgumentType(SingleElementTy) && 7653 getContext().getTypeSize(SingleElementTy) == Size) 7654 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7655 7656 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7657 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7658 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7659 7660 // Handle small structures. 7661 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7662 // Structures with flexible arrays have variable length, so really 7663 // fail the size test above. 7664 const RecordDecl *RD = RT->getDecl(); 7665 if (RD->hasFlexibleArrayMember()) 7666 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7667 7668 // The structure is passed as an unextended integer, a float, or a double. 7669 llvm::Type *PassTy; 7670 if (isFPArgumentType(SingleElementTy)) { 7671 assert(Size == 32 || Size == 64); 7672 if (Size == 32) 7673 PassTy = llvm::Type::getFloatTy(getVMContext()); 7674 else 7675 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7676 } else 7677 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7678 return ABIArgInfo::getDirect(PassTy); 7679 } 7680 7681 // Non-structure compounds are passed indirectly. 7682 if (isCompoundType(Ty)) 7683 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7684 7685 return ABIArgInfo::getDirect(nullptr); 7686 } 7687 7688 //===----------------------------------------------------------------------===// 7689 // MSP430 ABI Implementation 7690 //===----------------------------------------------------------------------===// 7691 7692 namespace { 7693 7694 class MSP430ABIInfo : public DefaultABIInfo { 7695 static ABIArgInfo complexArgInfo() { 7696 ABIArgInfo Info = ABIArgInfo::getDirect(); 7697 Info.setCanBeFlattened(false); 7698 return Info; 7699 } 7700 7701 public: 7702 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7703 7704 ABIArgInfo classifyReturnType(QualType RetTy) const { 7705 if (RetTy->isAnyComplexType()) 7706 return complexArgInfo(); 7707 7708 return DefaultABIInfo::classifyReturnType(RetTy); 7709 } 7710 7711 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7712 if (RetTy->isAnyComplexType()) 7713 return complexArgInfo(); 7714 7715 return DefaultABIInfo::classifyArgumentType(RetTy); 7716 } 7717 7718 // Just copy the original implementations because 7719 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7720 void computeInfo(CGFunctionInfo &FI) const override { 7721 if (!getCXXABI().classifyReturnType(FI)) 7722 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7723 for (auto &I : FI.arguments()) 7724 I.info = classifyArgumentType(I.type); 7725 } 7726 7727 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7728 QualType Ty) const override { 7729 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7730 } 7731 }; 7732 7733 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7734 public: 7735 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7736 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7737 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7738 CodeGen::CodeGenModule &M) const override; 7739 }; 7740 7741 } 7742 7743 void MSP430TargetCodeGenInfo::setTargetAttributes( 7744 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7745 if (GV->isDeclaration()) 7746 return; 7747 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7748 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7749 if (!InterruptAttr) 7750 return; 7751 7752 // Handle 'interrupt' attribute: 7753 llvm::Function *F = cast<llvm::Function>(GV); 7754 7755 // Step 1: Set ISR calling convention. 7756 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7757 7758 // Step 2: Add attributes goodness. 7759 F->addFnAttr(llvm::Attribute::NoInline); 7760 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7761 } 7762 } 7763 7764 //===----------------------------------------------------------------------===// 7765 // MIPS ABI Implementation. This works for both little-endian and 7766 // big-endian variants. 7767 //===----------------------------------------------------------------------===// 7768 7769 namespace { 7770 class MipsABIInfo : public ABIInfo { 7771 bool IsO32; 7772 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7773 void CoerceToIntArgs(uint64_t TySize, 7774 SmallVectorImpl<llvm::Type *> &ArgList) const; 7775 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7776 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7777 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7778 public: 7779 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7780 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7781 StackAlignInBytes(IsO32 ? 8 : 16) {} 7782 7783 ABIArgInfo classifyReturnType(QualType RetTy) const; 7784 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7785 void computeInfo(CGFunctionInfo &FI) const override; 7786 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7787 QualType Ty) const override; 7788 ABIArgInfo extendType(QualType Ty) const; 7789 }; 7790 7791 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7792 unsigned SizeOfUnwindException; 7793 public: 7794 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7795 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7796 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7797 7798 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7799 return 29; 7800 } 7801 7802 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7803 CodeGen::CodeGenModule &CGM) const override { 7804 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7805 if (!FD) return; 7806 llvm::Function *Fn = cast<llvm::Function>(GV); 7807 7808 if (FD->hasAttr<MipsLongCallAttr>()) 7809 Fn->addFnAttr("long-call"); 7810 else if (FD->hasAttr<MipsShortCallAttr>()) 7811 Fn->addFnAttr("short-call"); 7812 7813 // Other attributes do not have a meaning for declarations. 7814 if (GV->isDeclaration()) 7815 return; 7816 7817 if (FD->hasAttr<Mips16Attr>()) { 7818 Fn->addFnAttr("mips16"); 7819 } 7820 else if (FD->hasAttr<NoMips16Attr>()) { 7821 Fn->addFnAttr("nomips16"); 7822 } 7823 7824 if (FD->hasAttr<MicroMipsAttr>()) 7825 Fn->addFnAttr("micromips"); 7826 else if (FD->hasAttr<NoMicroMipsAttr>()) 7827 Fn->addFnAttr("nomicromips"); 7828 7829 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7830 if (!Attr) 7831 return; 7832 7833 const char *Kind; 7834 switch (Attr->getInterrupt()) { 7835 case MipsInterruptAttr::eic: Kind = "eic"; break; 7836 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7837 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7838 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7839 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7840 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7841 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7842 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7843 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7844 } 7845 7846 Fn->addFnAttr("interrupt", Kind); 7847 7848 } 7849 7850 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7851 llvm::Value *Address) const override; 7852 7853 unsigned getSizeOfUnwindException() const override { 7854 return SizeOfUnwindException; 7855 } 7856 }; 7857 } 7858 7859 void MipsABIInfo::CoerceToIntArgs( 7860 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7861 llvm::IntegerType *IntTy = 7862 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7863 7864 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7865 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7866 ArgList.push_back(IntTy); 7867 7868 // If necessary, add one more integer type to ArgList. 7869 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7870 7871 if (R) 7872 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7873 } 7874 7875 // In N32/64, an aligned double precision floating point field is passed in 7876 // a register. 7877 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7878 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7879 7880 if (IsO32) { 7881 CoerceToIntArgs(TySize, ArgList); 7882 return llvm::StructType::get(getVMContext(), ArgList); 7883 } 7884 7885 if (Ty->isComplexType()) 7886 return CGT.ConvertType(Ty); 7887 7888 const RecordType *RT = Ty->getAs<RecordType>(); 7889 7890 // Unions/vectors are passed in integer registers. 7891 if (!RT || !RT->isStructureOrClassType()) { 7892 CoerceToIntArgs(TySize, ArgList); 7893 return llvm::StructType::get(getVMContext(), ArgList); 7894 } 7895 7896 const RecordDecl *RD = RT->getDecl(); 7897 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7898 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7899 7900 uint64_t LastOffset = 0; 7901 unsigned idx = 0; 7902 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7903 7904 // Iterate over fields in the struct/class and check if there are any aligned 7905 // double fields. 7906 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7907 i != e; ++i, ++idx) { 7908 const QualType Ty = i->getType(); 7909 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7910 7911 if (!BT || BT->getKind() != BuiltinType::Double) 7912 continue; 7913 7914 uint64_t Offset = Layout.getFieldOffset(idx); 7915 if (Offset % 64) // Ignore doubles that are not aligned. 7916 continue; 7917 7918 // Add ((Offset - LastOffset) / 64) args of type i64. 7919 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7920 ArgList.push_back(I64); 7921 7922 // Add double type. 7923 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7924 LastOffset = Offset + 64; 7925 } 7926 7927 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7928 ArgList.append(IntArgList.begin(), IntArgList.end()); 7929 7930 return llvm::StructType::get(getVMContext(), ArgList); 7931 } 7932 7933 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7934 uint64_t Offset) const { 7935 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7936 return nullptr; 7937 7938 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7939 } 7940 7941 ABIArgInfo 7942 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7943 Ty = useFirstFieldIfTransparentUnion(Ty); 7944 7945 uint64_t OrigOffset = Offset; 7946 uint64_t TySize = getContext().getTypeSize(Ty); 7947 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7948 7949 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7950 (uint64_t)StackAlignInBytes); 7951 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7952 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7953 7954 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7955 // Ignore empty aggregates. 7956 if (TySize == 0) 7957 return ABIArgInfo::getIgnore(); 7958 7959 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7960 Offset = OrigOffset + MinABIStackAlignInBytes; 7961 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7962 } 7963 7964 // If we have reached here, aggregates are passed directly by coercing to 7965 // another structure type. Padding is inserted if the offset of the 7966 // aggregate is unaligned. 7967 ABIArgInfo ArgInfo = 7968 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7969 getPaddingType(OrigOffset, CurrOffset)); 7970 ArgInfo.setInReg(true); 7971 return ArgInfo; 7972 } 7973 7974 // Treat an enum type as its underlying type. 7975 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7976 Ty = EnumTy->getDecl()->getIntegerType(); 7977 7978 // Make sure we pass indirectly things that are too large. 7979 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7980 if (EIT->getNumBits() > 128 || 7981 (EIT->getNumBits() > 64 && 7982 !getContext().getTargetInfo().hasInt128Type())) 7983 return getNaturalAlignIndirect(Ty); 7984 7985 // All integral types are promoted to the GPR width. 7986 if (Ty->isIntegralOrEnumerationType()) 7987 return extendType(Ty); 7988 7989 return ABIArgInfo::getDirect( 7990 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7991 } 7992 7993 llvm::Type* 7994 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7995 const RecordType *RT = RetTy->getAs<RecordType>(); 7996 SmallVector<llvm::Type*, 8> RTList; 7997 7998 if (RT && RT->isStructureOrClassType()) { 7999 const RecordDecl *RD = RT->getDecl(); 8000 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8001 unsigned FieldCnt = Layout.getFieldCount(); 8002 8003 // N32/64 returns struct/classes in floating point registers if the 8004 // following conditions are met: 8005 // 1. The size of the struct/class is no larger than 128-bit. 8006 // 2. The struct/class has one or two fields all of which are floating 8007 // point types. 8008 // 3. The offset of the first field is zero (this follows what gcc does). 8009 // 8010 // Any other composite results are returned in integer registers. 8011 // 8012 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8013 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8014 for (; b != e; ++b) { 8015 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8016 8017 if (!BT || !BT->isFloatingPoint()) 8018 break; 8019 8020 RTList.push_back(CGT.ConvertType(b->getType())); 8021 } 8022 8023 if (b == e) 8024 return llvm::StructType::get(getVMContext(), RTList, 8025 RD->hasAttr<PackedAttr>()); 8026 8027 RTList.clear(); 8028 } 8029 } 8030 8031 CoerceToIntArgs(Size, RTList); 8032 return llvm::StructType::get(getVMContext(), RTList); 8033 } 8034 8035 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8036 uint64_t Size = getContext().getTypeSize(RetTy); 8037 8038 if (RetTy->isVoidType()) 8039 return ABIArgInfo::getIgnore(); 8040 8041 // O32 doesn't treat zero-sized structs differently from other structs. 8042 // However, N32/N64 ignores zero sized return values. 8043 if (!IsO32 && Size == 0) 8044 return ABIArgInfo::getIgnore(); 8045 8046 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8047 if (Size <= 128) { 8048 if (RetTy->isAnyComplexType()) 8049 return ABIArgInfo::getDirect(); 8050 8051 // O32 returns integer vectors in registers and N32/N64 returns all small 8052 // aggregates in registers. 8053 if (!IsO32 || 8054 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8055 ABIArgInfo ArgInfo = 8056 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8057 ArgInfo.setInReg(true); 8058 return ArgInfo; 8059 } 8060 } 8061 8062 return getNaturalAlignIndirect(RetTy); 8063 } 8064 8065 // Treat an enum type as its underlying type. 8066 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8067 RetTy = EnumTy->getDecl()->getIntegerType(); 8068 8069 // Make sure we pass indirectly things that are too large. 8070 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 8071 if (EIT->getNumBits() > 128 || 8072 (EIT->getNumBits() > 64 && 8073 !getContext().getTargetInfo().hasInt128Type())) 8074 return getNaturalAlignIndirect(RetTy); 8075 8076 if (isPromotableIntegerTypeForABI(RetTy)) 8077 return ABIArgInfo::getExtend(RetTy); 8078 8079 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8080 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8081 return ABIArgInfo::getSignExtend(RetTy); 8082 8083 return ABIArgInfo::getDirect(); 8084 } 8085 8086 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8087 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8088 if (!getCXXABI().classifyReturnType(FI)) 8089 RetInfo = classifyReturnType(FI.getReturnType()); 8090 8091 // Check if a pointer to an aggregate is passed as a hidden argument. 8092 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8093 8094 for (auto &I : FI.arguments()) 8095 I.info = classifyArgumentType(I.type, Offset); 8096 } 8097 8098 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8099 QualType OrigTy) const { 8100 QualType Ty = OrigTy; 8101 8102 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8103 // Pointers are also promoted in the same way but this only matters for N32. 8104 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8105 unsigned PtrWidth = getTarget().getPointerWidth(0); 8106 bool DidPromote = false; 8107 if ((Ty->isIntegerType() && 8108 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8109 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8110 DidPromote = true; 8111 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8112 Ty->isSignedIntegerType()); 8113 } 8114 8115 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8116 8117 // The alignment of things in the argument area is never larger than 8118 // StackAlignInBytes. 8119 TyInfo.Align = 8120 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8121 8122 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8123 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8124 8125 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8126 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8127 8128 8129 // If there was a promotion, "unpromote" into a temporary. 8130 // TODO: can we just use a pointer into a subset of the original slot? 8131 if (DidPromote) { 8132 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8133 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8134 8135 // Truncate down to the right width. 8136 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8137 : CGF.IntPtrTy); 8138 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8139 if (OrigTy->isPointerType()) 8140 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8141 8142 CGF.Builder.CreateStore(V, Temp); 8143 Addr = Temp; 8144 } 8145 8146 return Addr; 8147 } 8148 8149 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8150 int TySize = getContext().getTypeSize(Ty); 8151 8152 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8153 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8154 return ABIArgInfo::getSignExtend(Ty); 8155 8156 return ABIArgInfo::getExtend(Ty); 8157 } 8158 8159 bool 8160 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8161 llvm::Value *Address) const { 8162 // This information comes from gcc's implementation, which seems to 8163 // as canonical as it gets. 8164 8165 // Everything on MIPS is 4 bytes. Double-precision FP registers 8166 // are aliased to pairs of single-precision FP registers. 8167 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8168 8169 // 0-31 are the general purpose registers, $0 - $31. 8170 // 32-63 are the floating-point registers, $f0 - $f31. 8171 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8172 // 66 is the (notional, I think) register for signal-handler return. 8173 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8174 8175 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8176 // They are one bit wide and ignored here. 8177 8178 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8179 // (coprocessor 1 is the FP unit) 8180 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8181 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8182 // 176-181 are the DSP accumulator registers. 8183 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8184 return false; 8185 } 8186 8187 //===----------------------------------------------------------------------===// 8188 // M68k ABI Implementation 8189 //===----------------------------------------------------------------------===// 8190 8191 namespace { 8192 8193 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8194 public: 8195 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8196 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8197 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8198 CodeGen::CodeGenModule &M) const override; 8199 }; 8200 8201 } // namespace 8202 8203 void M68kTargetCodeGenInfo::setTargetAttributes( 8204 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8205 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8206 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8207 // Handle 'interrupt' attribute: 8208 llvm::Function *F = cast<llvm::Function>(GV); 8209 8210 // Step 1: Set ISR calling convention. 8211 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8212 8213 // Step 2: Add attributes goodness. 8214 F->addFnAttr(llvm::Attribute::NoInline); 8215 8216 // Step 3: Emit ISR vector alias. 8217 unsigned Num = attr->getNumber() / 2; 8218 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8219 "__isr_" + Twine(Num), F); 8220 } 8221 } 8222 } 8223 8224 //===----------------------------------------------------------------------===// 8225 // AVR ABI Implementation. Documented at 8226 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8227 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8228 //===----------------------------------------------------------------------===// 8229 8230 namespace { 8231 class AVRABIInfo : public DefaultABIInfo { 8232 public: 8233 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8234 8235 ABIArgInfo classifyReturnType(QualType Ty) const { 8236 // A return struct with size less than or equal to 8 bytes is returned 8237 // directly via registers R18-R25. 8238 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8239 return ABIArgInfo::getDirect(); 8240 else 8241 return DefaultABIInfo::classifyReturnType(Ty); 8242 } 8243 8244 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8245 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8246 void computeInfo(CGFunctionInfo &FI) const override { 8247 if (!getCXXABI().classifyReturnType(FI)) 8248 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8249 for (auto &I : FI.arguments()) 8250 I.info = classifyArgumentType(I.type); 8251 } 8252 }; 8253 8254 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8255 public: 8256 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8257 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8258 8259 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8260 const VarDecl *D) const override { 8261 // Check if a global/static variable is defined within address space 1 8262 // but not constant. 8263 LangAS AS = D->getType().getAddressSpace(); 8264 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8265 !D->getType().isConstQualified()) 8266 CGM.getDiags().Report(D->getLocation(), 8267 diag::err_verify_nonconst_addrspace) 8268 << "__flash"; 8269 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8270 } 8271 8272 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8273 CodeGen::CodeGenModule &CGM) const override { 8274 if (GV->isDeclaration()) 8275 return; 8276 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8277 if (!FD) return; 8278 auto *Fn = cast<llvm::Function>(GV); 8279 8280 if (FD->getAttr<AVRInterruptAttr>()) 8281 Fn->addFnAttr("interrupt"); 8282 8283 if (FD->getAttr<AVRSignalAttr>()) 8284 Fn->addFnAttr("signal"); 8285 } 8286 }; 8287 } 8288 8289 //===----------------------------------------------------------------------===// 8290 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8291 // Currently subclassed only to implement custom OpenCL C function attribute 8292 // handling. 8293 //===----------------------------------------------------------------------===// 8294 8295 namespace { 8296 8297 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8298 public: 8299 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8300 : DefaultTargetCodeGenInfo(CGT) {} 8301 8302 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8303 CodeGen::CodeGenModule &M) const override; 8304 }; 8305 8306 void TCETargetCodeGenInfo::setTargetAttributes( 8307 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8308 if (GV->isDeclaration()) 8309 return; 8310 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8311 if (!FD) return; 8312 8313 llvm::Function *F = cast<llvm::Function>(GV); 8314 8315 if (M.getLangOpts().OpenCL) { 8316 if (FD->hasAttr<OpenCLKernelAttr>()) { 8317 // OpenCL C Kernel functions are not subject to inlining 8318 F->addFnAttr(llvm::Attribute::NoInline); 8319 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8320 if (Attr) { 8321 // Convert the reqd_work_group_size() attributes to metadata. 8322 llvm::LLVMContext &Context = F->getContext(); 8323 llvm::NamedMDNode *OpenCLMetadata = 8324 M.getModule().getOrInsertNamedMetadata( 8325 "opencl.kernel_wg_size_info"); 8326 8327 SmallVector<llvm::Metadata *, 5> Operands; 8328 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8329 8330 Operands.push_back( 8331 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8332 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8333 Operands.push_back( 8334 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8335 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8336 Operands.push_back( 8337 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8338 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8339 8340 // Add a boolean constant operand for "required" (true) or "hint" 8341 // (false) for implementing the work_group_size_hint attr later. 8342 // Currently always true as the hint is not yet implemented. 8343 Operands.push_back( 8344 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8345 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8346 } 8347 } 8348 } 8349 } 8350 8351 } 8352 8353 //===----------------------------------------------------------------------===// 8354 // Hexagon ABI Implementation 8355 //===----------------------------------------------------------------------===// 8356 8357 namespace { 8358 8359 class HexagonABIInfo : public DefaultABIInfo { 8360 public: 8361 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8362 8363 private: 8364 ABIArgInfo classifyReturnType(QualType RetTy) const; 8365 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8366 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8367 8368 void computeInfo(CGFunctionInfo &FI) const override; 8369 8370 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8371 QualType Ty) const override; 8372 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8373 QualType Ty) const; 8374 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8375 QualType Ty) const; 8376 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8377 QualType Ty) const; 8378 }; 8379 8380 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8381 public: 8382 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8383 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8384 8385 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8386 return 29; 8387 } 8388 8389 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8390 CodeGen::CodeGenModule &GCM) const override { 8391 if (GV->isDeclaration()) 8392 return; 8393 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8394 if (!FD) 8395 return; 8396 } 8397 }; 8398 8399 } // namespace 8400 8401 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8402 unsigned RegsLeft = 6; 8403 if (!getCXXABI().classifyReturnType(FI)) 8404 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8405 for (auto &I : FI.arguments()) 8406 I.info = classifyArgumentType(I.type, &RegsLeft); 8407 } 8408 8409 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8410 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8411 " through registers"); 8412 8413 if (*RegsLeft == 0) 8414 return false; 8415 8416 if (Size <= 32) { 8417 (*RegsLeft)--; 8418 return true; 8419 } 8420 8421 if (2 <= (*RegsLeft & (~1U))) { 8422 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8423 return true; 8424 } 8425 8426 // Next available register was r5 but candidate was greater than 32-bits so it 8427 // has to go on the stack. However we still consume r5 8428 if (*RegsLeft == 1) 8429 *RegsLeft = 0; 8430 8431 return false; 8432 } 8433 8434 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8435 unsigned *RegsLeft) const { 8436 if (!isAggregateTypeForABI(Ty)) { 8437 // Treat an enum type as its underlying type. 8438 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8439 Ty = EnumTy->getDecl()->getIntegerType(); 8440 8441 uint64_t Size = getContext().getTypeSize(Ty); 8442 if (Size <= 64) 8443 HexagonAdjustRegsLeft(Size, RegsLeft); 8444 8445 if (Size > 64 && Ty->isExtIntType()) 8446 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8447 8448 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8449 : ABIArgInfo::getDirect(); 8450 } 8451 8452 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8453 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8454 8455 // Ignore empty records. 8456 if (isEmptyRecord(getContext(), Ty, true)) 8457 return ABIArgInfo::getIgnore(); 8458 8459 uint64_t Size = getContext().getTypeSize(Ty); 8460 unsigned Align = getContext().getTypeAlign(Ty); 8461 8462 if (Size > 64) 8463 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8464 8465 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8466 Align = Size <= 32 ? 32 : 64; 8467 if (Size <= Align) { 8468 // Pass in the smallest viable integer type. 8469 if (!llvm::isPowerOf2_64(Size)) 8470 Size = llvm::NextPowerOf2(Size); 8471 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8472 } 8473 return DefaultABIInfo::classifyArgumentType(Ty); 8474 } 8475 8476 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8477 if (RetTy->isVoidType()) 8478 return ABIArgInfo::getIgnore(); 8479 8480 const TargetInfo &T = CGT.getTarget(); 8481 uint64_t Size = getContext().getTypeSize(RetTy); 8482 8483 if (RetTy->getAs<VectorType>()) { 8484 // HVX vectors are returned in vector registers or register pairs. 8485 if (T.hasFeature("hvx")) { 8486 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8487 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8488 if (Size == VecSize || Size == 2*VecSize) 8489 return ABIArgInfo::getDirectInReg(); 8490 } 8491 // Large vector types should be returned via memory. 8492 if (Size > 64) 8493 return getNaturalAlignIndirect(RetTy); 8494 } 8495 8496 if (!isAggregateTypeForABI(RetTy)) { 8497 // Treat an enum type as its underlying type. 8498 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8499 RetTy = EnumTy->getDecl()->getIntegerType(); 8500 8501 if (Size > 64 && RetTy->isExtIntType()) 8502 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8503 8504 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8505 : ABIArgInfo::getDirect(); 8506 } 8507 8508 if (isEmptyRecord(getContext(), RetTy, true)) 8509 return ABIArgInfo::getIgnore(); 8510 8511 // Aggregates <= 8 bytes are returned in registers, other aggregates 8512 // are returned indirectly. 8513 if (Size <= 64) { 8514 // Return in the smallest viable integer type. 8515 if (!llvm::isPowerOf2_64(Size)) 8516 Size = llvm::NextPowerOf2(Size); 8517 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8518 } 8519 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8520 } 8521 8522 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8523 Address VAListAddr, 8524 QualType Ty) const { 8525 // Load the overflow area pointer. 8526 Address __overflow_area_pointer_p = 8527 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8528 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8529 __overflow_area_pointer_p, "__overflow_area_pointer"); 8530 8531 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8532 if (Align > 4) { 8533 // Alignment should be a power of 2. 8534 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8535 8536 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8537 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8538 8539 // Add offset to the current pointer to access the argument. 8540 __overflow_area_pointer = 8541 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8542 llvm::Value *AsInt = 8543 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8544 8545 // Create a mask which should be "AND"ed 8546 // with (overflow_arg_area + align - 1) 8547 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8548 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8549 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8550 "__overflow_area_pointer.align"); 8551 } 8552 8553 // Get the type of the argument from memory and bitcast 8554 // overflow area pointer to the argument type. 8555 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8556 Address AddrTyped = CGF.Builder.CreateBitCast( 8557 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8558 llvm::PointerType::getUnqual(PTy)); 8559 8560 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8561 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8562 8563 __overflow_area_pointer = CGF.Builder.CreateGEP( 8564 CGF.Int8Ty, __overflow_area_pointer, 8565 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8566 "__overflow_area_pointer.next"); 8567 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8568 8569 return AddrTyped; 8570 } 8571 8572 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8573 Address VAListAddr, 8574 QualType Ty) const { 8575 // FIXME: Need to handle alignment 8576 llvm::Type *BP = CGF.Int8PtrTy; 8577 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8578 CGBuilderTy &Builder = CGF.Builder; 8579 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8580 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8581 // Handle address alignment for type alignment > 32 bits 8582 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8583 if (TyAlign > 4) { 8584 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8585 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8586 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8587 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8588 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8589 } 8590 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8591 Address AddrTyped = Builder.CreateBitCast( 8592 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8593 8594 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8595 llvm::Value *NextAddr = Builder.CreateGEP( 8596 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8597 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8598 8599 return AddrTyped; 8600 } 8601 8602 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8603 Address VAListAddr, 8604 QualType Ty) const { 8605 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8606 8607 if (ArgSize > 8) 8608 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8609 8610 // Here we have check if the argument is in register area or 8611 // in overflow area. 8612 // If the saved register area pointer + argsize rounded up to alignment > 8613 // saved register area end pointer, argument is in overflow area. 8614 unsigned RegsLeft = 6; 8615 Ty = CGF.getContext().getCanonicalType(Ty); 8616 (void)classifyArgumentType(Ty, &RegsLeft); 8617 8618 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8619 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8620 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8621 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8622 8623 // Get rounded size of the argument.GCC does not allow vararg of 8624 // size < 4 bytes. We follow the same logic here. 8625 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8626 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8627 8628 // Argument may be in saved register area 8629 CGF.EmitBlock(MaybeRegBlock); 8630 8631 // Load the current saved register area pointer. 8632 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8633 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8634 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8635 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8636 8637 // Load the saved register area end pointer. 8638 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8639 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8640 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8641 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8642 8643 // If the size of argument is > 4 bytes, check if the stack 8644 // location is aligned to 8 bytes 8645 if (ArgAlign > 4) { 8646 8647 llvm::Value *__current_saved_reg_area_pointer_int = 8648 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8649 CGF.Int32Ty); 8650 8651 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8652 __current_saved_reg_area_pointer_int, 8653 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8654 "align_current_saved_reg_area_pointer"); 8655 8656 __current_saved_reg_area_pointer_int = 8657 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8658 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8659 "align_current_saved_reg_area_pointer"); 8660 8661 __current_saved_reg_area_pointer = 8662 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8663 __current_saved_reg_area_pointer->getType(), 8664 "align_current_saved_reg_area_pointer"); 8665 } 8666 8667 llvm::Value *__new_saved_reg_area_pointer = 8668 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8669 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8670 "__new_saved_reg_area_pointer"); 8671 8672 llvm::Value *UsingStack = 0; 8673 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8674 __saved_reg_area_end_pointer); 8675 8676 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8677 8678 // Argument in saved register area 8679 // Implement the block where argument is in register saved area 8680 CGF.EmitBlock(InRegBlock); 8681 8682 llvm::Type *PTy = CGF.ConvertType(Ty); 8683 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8684 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8685 8686 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8687 __current_saved_reg_area_pointer_p); 8688 8689 CGF.EmitBranch(ContBlock); 8690 8691 // Argument in overflow area 8692 // Implement the block where the argument is in overflow area. 8693 CGF.EmitBlock(OnStackBlock); 8694 8695 // Load the overflow area pointer 8696 Address __overflow_area_pointer_p = 8697 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8698 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8699 __overflow_area_pointer_p, "__overflow_area_pointer"); 8700 8701 // Align the overflow area pointer according to the alignment of the argument 8702 if (ArgAlign > 4) { 8703 llvm::Value *__overflow_area_pointer_int = 8704 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8705 8706 __overflow_area_pointer_int = 8707 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8708 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8709 "align_overflow_area_pointer"); 8710 8711 __overflow_area_pointer_int = 8712 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8713 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8714 "align_overflow_area_pointer"); 8715 8716 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8717 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8718 "align_overflow_area_pointer"); 8719 } 8720 8721 // Get the pointer for next argument in overflow area and store it 8722 // to overflow area pointer. 8723 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8724 CGF.Int8Ty, __overflow_area_pointer, 8725 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8726 "__overflow_area_pointer.next"); 8727 8728 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8729 __overflow_area_pointer_p); 8730 8731 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8732 __current_saved_reg_area_pointer_p); 8733 8734 // Bitcast the overflow area pointer to the type of argument. 8735 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8736 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8737 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8738 8739 CGF.EmitBranch(ContBlock); 8740 8741 // Get the correct pointer to load the variable argument 8742 // Implement the ContBlock 8743 CGF.EmitBlock(ContBlock); 8744 8745 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8746 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8747 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8748 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8749 8750 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8751 } 8752 8753 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8754 QualType Ty) const { 8755 8756 if (getTarget().getTriple().isMusl()) 8757 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8758 8759 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8760 } 8761 8762 //===----------------------------------------------------------------------===// 8763 // Lanai ABI Implementation 8764 //===----------------------------------------------------------------------===// 8765 8766 namespace { 8767 class LanaiABIInfo : public DefaultABIInfo { 8768 public: 8769 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8770 8771 bool shouldUseInReg(QualType Ty, CCState &State) const; 8772 8773 void computeInfo(CGFunctionInfo &FI) const override { 8774 CCState State(FI); 8775 // Lanai uses 4 registers to pass arguments unless the function has the 8776 // regparm attribute set. 8777 if (FI.getHasRegParm()) { 8778 State.FreeRegs = FI.getRegParm(); 8779 } else { 8780 State.FreeRegs = 4; 8781 } 8782 8783 if (!getCXXABI().classifyReturnType(FI)) 8784 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8785 for (auto &I : FI.arguments()) 8786 I.info = classifyArgumentType(I.type, State); 8787 } 8788 8789 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8790 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8791 }; 8792 } // end anonymous namespace 8793 8794 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8795 unsigned Size = getContext().getTypeSize(Ty); 8796 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8797 8798 if (SizeInRegs == 0) 8799 return false; 8800 8801 if (SizeInRegs > State.FreeRegs) { 8802 State.FreeRegs = 0; 8803 return false; 8804 } 8805 8806 State.FreeRegs -= SizeInRegs; 8807 8808 return true; 8809 } 8810 8811 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8812 CCState &State) const { 8813 if (!ByVal) { 8814 if (State.FreeRegs) { 8815 --State.FreeRegs; // Non-byval indirects just use one pointer. 8816 return getNaturalAlignIndirectInReg(Ty); 8817 } 8818 return getNaturalAlignIndirect(Ty, false); 8819 } 8820 8821 // Compute the byval alignment. 8822 const unsigned MinABIStackAlignInBytes = 4; 8823 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8824 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8825 /*Realign=*/TypeAlign > 8826 MinABIStackAlignInBytes); 8827 } 8828 8829 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8830 CCState &State) const { 8831 // Check with the C++ ABI first. 8832 const RecordType *RT = Ty->getAs<RecordType>(); 8833 if (RT) { 8834 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8835 if (RAA == CGCXXABI::RAA_Indirect) { 8836 return getIndirectResult(Ty, /*ByVal=*/false, State); 8837 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8838 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8839 } 8840 } 8841 8842 if (isAggregateTypeForABI(Ty)) { 8843 // Structures with flexible arrays are always indirect. 8844 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8845 return getIndirectResult(Ty, /*ByVal=*/true, State); 8846 8847 // Ignore empty structs/unions. 8848 if (isEmptyRecord(getContext(), Ty, true)) 8849 return ABIArgInfo::getIgnore(); 8850 8851 llvm::LLVMContext &LLVMContext = getVMContext(); 8852 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8853 if (SizeInRegs <= State.FreeRegs) { 8854 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8855 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8856 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8857 State.FreeRegs -= SizeInRegs; 8858 return ABIArgInfo::getDirectInReg(Result); 8859 } else { 8860 State.FreeRegs = 0; 8861 } 8862 return getIndirectResult(Ty, true, State); 8863 } 8864 8865 // Treat an enum type as its underlying type. 8866 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8867 Ty = EnumTy->getDecl()->getIntegerType(); 8868 8869 bool InReg = shouldUseInReg(Ty, State); 8870 8871 // Don't pass >64 bit integers in registers. 8872 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8873 if (EIT->getNumBits() > 64) 8874 return getIndirectResult(Ty, /*ByVal=*/true, State); 8875 8876 if (isPromotableIntegerTypeForABI(Ty)) { 8877 if (InReg) 8878 return ABIArgInfo::getDirectInReg(); 8879 return ABIArgInfo::getExtend(Ty); 8880 } 8881 if (InReg) 8882 return ABIArgInfo::getDirectInReg(); 8883 return ABIArgInfo::getDirect(); 8884 } 8885 8886 namespace { 8887 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8888 public: 8889 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8890 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8891 }; 8892 } 8893 8894 //===----------------------------------------------------------------------===// 8895 // AMDGPU ABI Implementation 8896 //===----------------------------------------------------------------------===// 8897 8898 namespace { 8899 8900 class AMDGPUABIInfo final : public DefaultABIInfo { 8901 private: 8902 static const unsigned MaxNumRegsForArgsRet = 16; 8903 8904 unsigned numRegsForType(QualType Ty) const; 8905 8906 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8907 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8908 uint64_t Members) const override; 8909 8910 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8911 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8912 unsigned ToAS) const { 8913 // Single value types. 8914 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8915 return llvm::PointerType::get( 8916 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8917 return Ty; 8918 } 8919 8920 public: 8921 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8922 DefaultABIInfo(CGT) {} 8923 8924 ABIArgInfo classifyReturnType(QualType RetTy) const; 8925 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8926 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8927 8928 void computeInfo(CGFunctionInfo &FI) const override; 8929 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8930 QualType Ty) const override; 8931 }; 8932 8933 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8934 return true; 8935 } 8936 8937 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8938 const Type *Base, uint64_t Members) const { 8939 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8940 8941 // Homogeneous Aggregates may occupy at most 16 registers. 8942 return Members * NumRegs <= MaxNumRegsForArgsRet; 8943 } 8944 8945 /// Estimate number of registers the type will use when passed in registers. 8946 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8947 unsigned NumRegs = 0; 8948 8949 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8950 // Compute from the number of elements. The reported size is based on the 8951 // in-memory size, which includes the padding 4th element for 3-vectors. 8952 QualType EltTy = VT->getElementType(); 8953 unsigned EltSize = getContext().getTypeSize(EltTy); 8954 8955 // 16-bit element vectors should be passed as packed. 8956 if (EltSize == 16) 8957 return (VT->getNumElements() + 1) / 2; 8958 8959 unsigned EltNumRegs = (EltSize + 31) / 32; 8960 return EltNumRegs * VT->getNumElements(); 8961 } 8962 8963 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8964 const RecordDecl *RD = RT->getDecl(); 8965 assert(!RD->hasFlexibleArrayMember()); 8966 8967 for (const FieldDecl *Field : RD->fields()) { 8968 QualType FieldTy = Field->getType(); 8969 NumRegs += numRegsForType(FieldTy); 8970 } 8971 8972 return NumRegs; 8973 } 8974 8975 return (getContext().getTypeSize(Ty) + 31) / 32; 8976 } 8977 8978 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8979 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8980 8981 if (!getCXXABI().classifyReturnType(FI)) 8982 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8983 8984 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8985 for (auto &Arg : FI.arguments()) { 8986 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8987 Arg.info = classifyKernelArgumentType(Arg.type); 8988 } else { 8989 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8990 } 8991 } 8992 } 8993 8994 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8995 QualType Ty) const { 8996 llvm_unreachable("AMDGPU does not support varargs"); 8997 } 8998 8999 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9000 if (isAggregateTypeForABI(RetTy)) { 9001 // Records with non-trivial destructors/copy-constructors should not be 9002 // returned by value. 9003 if (!getRecordArgABI(RetTy, getCXXABI())) { 9004 // Ignore empty structs/unions. 9005 if (isEmptyRecord(getContext(), RetTy, true)) 9006 return ABIArgInfo::getIgnore(); 9007 9008 // Lower single-element structs to just return a regular value. 9009 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9010 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9011 9012 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9013 const RecordDecl *RD = RT->getDecl(); 9014 if (RD->hasFlexibleArrayMember()) 9015 return DefaultABIInfo::classifyReturnType(RetTy); 9016 } 9017 9018 // Pack aggregates <= 4 bytes into single VGPR or pair. 9019 uint64_t Size = getContext().getTypeSize(RetTy); 9020 if (Size <= 16) 9021 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9022 9023 if (Size <= 32) 9024 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9025 9026 if (Size <= 64) { 9027 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9028 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9029 } 9030 9031 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9032 return ABIArgInfo::getDirect(); 9033 } 9034 } 9035 9036 // Otherwise just do the default thing. 9037 return DefaultABIInfo::classifyReturnType(RetTy); 9038 } 9039 9040 /// For kernels all parameters are really passed in a special buffer. It doesn't 9041 /// make sense to pass anything byval, so everything must be direct. 9042 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9043 Ty = useFirstFieldIfTransparentUnion(Ty); 9044 9045 // TODO: Can we omit empty structs? 9046 9047 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9048 Ty = QualType(SeltTy, 0); 9049 9050 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9051 llvm::Type *LTy = OrigLTy; 9052 if (getContext().getLangOpts().HIP) { 9053 LTy = coerceKernelArgumentType( 9054 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9055 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9056 } 9057 9058 // FIXME: Should also use this for OpenCL, but it requires addressing the 9059 // problem of kernels being called. 9060 // 9061 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9062 // to global address space when using byref. This would require implementing a 9063 // new kind of coercion of the in-memory type when for indirect arguments. 9064 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9065 isAggregateTypeForABI(Ty)) { 9066 return ABIArgInfo::getIndirectAliased( 9067 getContext().getTypeAlignInChars(Ty), 9068 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9069 false /*Realign*/, nullptr /*Padding*/); 9070 } 9071 9072 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9073 // individual elements, which confuses the Clover OpenCL backend; therefore we 9074 // have to set it to false here. Other args of getDirect() are just defaults. 9075 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9076 } 9077 9078 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9079 unsigned &NumRegsLeft) const { 9080 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9081 9082 Ty = useFirstFieldIfTransparentUnion(Ty); 9083 9084 if (isAggregateTypeForABI(Ty)) { 9085 // Records with non-trivial destructors/copy-constructors should not be 9086 // passed by value. 9087 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9088 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9089 9090 // Ignore empty structs/unions. 9091 if (isEmptyRecord(getContext(), Ty, true)) 9092 return ABIArgInfo::getIgnore(); 9093 9094 // Lower single-element structs to just pass a regular value. TODO: We 9095 // could do reasonable-size multiple-element structs too, using getExpand(), 9096 // though watch out for things like bitfields. 9097 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9098 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9099 9100 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9101 const RecordDecl *RD = RT->getDecl(); 9102 if (RD->hasFlexibleArrayMember()) 9103 return DefaultABIInfo::classifyArgumentType(Ty); 9104 } 9105 9106 // Pack aggregates <= 8 bytes into single VGPR or pair. 9107 uint64_t Size = getContext().getTypeSize(Ty); 9108 if (Size <= 64) { 9109 unsigned NumRegs = (Size + 31) / 32; 9110 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9111 9112 if (Size <= 16) 9113 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9114 9115 if (Size <= 32) 9116 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9117 9118 // XXX: Should this be i64 instead, and should the limit increase? 9119 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9120 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9121 } 9122 9123 if (NumRegsLeft > 0) { 9124 unsigned NumRegs = numRegsForType(Ty); 9125 if (NumRegsLeft >= NumRegs) { 9126 NumRegsLeft -= NumRegs; 9127 return ABIArgInfo::getDirect(); 9128 } 9129 } 9130 } 9131 9132 // Otherwise just do the default thing. 9133 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9134 if (!ArgInfo.isIndirect()) { 9135 unsigned NumRegs = numRegsForType(Ty); 9136 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9137 } 9138 9139 return ArgInfo; 9140 } 9141 9142 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9143 public: 9144 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9145 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9146 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9147 CodeGen::CodeGenModule &M) const override; 9148 unsigned getOpenCLKernelCallingConv() const override; 9149 9150 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9151 llvm::PointerType *T, QualType QT) const override; 9152 9153 LangAS getASTAllocaAddressSpace() const override { 9154 return getLangASFromTargetAS( 9155 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9156 } 9157 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9158 const VarDecl *D) const override; 9159 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9160 SyncScope Scope, 9161 llvm::AtomicOrdering Ordering, 9162 llvm::LLVMContext &Ctx) const override; 9163 llvm::Function * 9164 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9165 llvm::Function *BlockInvokeFunc, 9166 llvm::Value *BlockLiteral) const override; 9167 bool shouldEmitStaticExternCAliases() const override; 9168 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9169 }; 9170 } 9171 9172 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9173 llvm::GlobalValue *GV) { 9174 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9175 return false; 9176 9177 return D->hasAttr<OpenCLKernelAttr>() || 9178 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9179 (isa<VarDecl>(D) && 9180 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9181 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9182 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9183 } 9184 9185 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9186 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9187 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9188 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9189 GV->setDSOLocal(true); 9190 } 9191 9192 if (GV->isDeclaration()) 9193 return; 9194 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9195 if (!FD) 9196 return; 9197 9198 llvm::Function *F = cast<llvm::Function>(GV); 9199 9200 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9201 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9202 9203 9204 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9205 FD->hasAttr<OpenCLKernelAttr>(); 9206 const bool IsHIPKernel = M.getLangOpts().HIP && 9207 FD->hasAttr<CUDAGlobalAttr>(); 9208 if ((IsOpenCLKernel || IsHIPKernel) && 9209 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9210 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9211 9212 if (IsHIPKernel) 9213 F->addFnAttr("uniform-work-group-size", "true"); 9214 9215 9216 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9217 if (ReqdWGS || FlatWGS) { 9218 unsigned Min = 0; 9219 unsigned Max = 0; 9220 if (FlatWGS) { 9221 Min = FlatWGS->getMin() 9222 ->EvaluateKnownConstInt(M.getContext()) 9223 .getExtValue(); 9224 Max = FlatWGS->getMax() 9225 ->EvaluateKnownConstInt(M.getContext()) 9226 .getExtValue(); 9227 } 9228 if (ReqdWGS && Min == 0 && Max == 0) 9229 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9230 9231 if (Min != 0) { 9232 assert(Min <= Max && "Min must be less than or equal Max"); 9233 9234 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9235 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9236 } else 9237 assert(Max == 0 && "Max must be zero"); 9238 } else if (IsOpenCLKernel || IsHIPKernel) { 9239 // By default, restrict the maximum size to a value specified by 9240 // --gpu-max-threads-per-block=n or its default value for HIP. 9241 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9242 const unsigned DefaultMaxWorkGroupSize = 9243 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9244 : M.getLangOpts().GPUMaxThreadsPerBlock; 9245 std::string AttrVal = 9246 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9247 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9248 } 9249 9250 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9251 unsigned Min = 9252 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9253 unsigned Max = Attr->getMax() ? Attr->getMax() 9254 ->EvaluateKnownConstInt(M.getContext()) 9255 .getExtValue() 9256 : 0; 9257 9258 if (Min != 0) { 9259 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9260 9261 std::string AttrVal = llvm::utostr(Min); 9262 if (Max != 0) 9263 AttrVal = AttrVal + "," + llvm::utostr(Max); 9264 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9265 } else 9266 assert(Max == 0 && "Max must be zero"); 9267 } 9268 9269 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9270 unsigned NumSGPR = Attr->getNumSGPR(); 9271 9272 if (NumSGPR != 0) 9273 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9274 } 9275 9276 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9277 uint32_t NumVGPR = Attr->getNumVGPR(); 9278 9279 if (NumVGPR != 0) 9280 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9281 } 9282 9283 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9284 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9285 9286 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9287 F->addFnAttr("amdgpu-ieee", "false"); 9288 } 9289 9290 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9291 return llvm::CallingConv::AMDGPU_KERNEL; 9292 } 9293 9294 // Currently LLVM assumes null pointers always have value 0, 9295 // which results in incorrectly transformed IR. Therefore, instead of 9296 // emitting null pointers in private and local address spaces, a null 9297 // pointer in generic address space is emitted which is casted to a 9298 // pointer in local or private address space. 9299 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9300 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9301 QualType QT) const { 9302 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9303 return llvm::ConstantPointerNull::get(PT); 9304 9305 auto &Ctx = CGM.getContext(); 9306 auto NPT = llvm::PointerType::get(PT->getElementType(), 9307 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9308 return llvm::ConstantExpr::getAddrSpaceCast( 9309 llvm::ConstantPointerNull::get(NPT), PT); 9310 } 9311 9312 LangAS 9313 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9314 const VarDecl *D) const { 9315 assert(!CGM.getLangOpts().OpenCL && 9316 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9317 "Address space agnostic languages only"); 9318 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9319 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9320 if (!D) 9321 return DefaultGlobalAS; 9322 9323 LangAS AddrSpace = D->getType().getAddressSpace(); 9324 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9325 if (AddrSpace != LangAS::Default) 9326 return AddrSpace; 9327 9328 if (CGM.isTypeConstant(D->getType(), false)) { 9329 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9330 return ConstAS.getValue(); 9331 } 9332 return DefaultGlobalAS; 9333 } 9334 9335 llvm::SyncScope::ID 9336 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9337 SyncScope Scope, 9338 llvm::AtomicOrdering Ordering, 9339 llvm::LLVMContext &Ctx) const { 9340 std::string Name; 9341 switch (Scope) { 9342 case SyncScope::OpenCLWorkGroup: 9343 Name = "workgroup"; 9344 break; 9345 case SyncScope::OpenCLDevice: 9346 Name = "agent"; 9347 break; 9348 case SyncScope::OpenCLAllSVMDevices: 9349 Name = ""; 9350 break; 9351 case SyncScope::OpenCLSubGroup: 9352 Name = "wavefront"; 9353 } 9354 9355 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9356 if (!Name.empty()) 9357 Name = Twine(Twine(Name) + Twine("-")).str(); 9358 9359 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9360 } 9361 9362 return Ctx.getOrInsertSyncScopeID(Name); 9363 } 9364 9365 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9366 return false; 9367 } 9368 9369 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9370 const FunctionType *&FT) const { 9371 FT = getABIInfo().getContext().adjustFunctionType( 9372 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9373 } 9374 9375 //===----------------------------------------------------------------------===// 9376 // SPARC v8 ABI Implementation. 9377 // Based on the SPARC Compliance Definition version 2.4.1. 9378 // 9379 // Ensures that complex values are passed in registers. 9380 // 9381 namespace { 9382 class SparcV8ABIInfo : public DefaultABIInfo { 9383 public: 9384 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9385 9386 private: 9387 ABIArgInfo classifyReturnType(QualType RetTy) const; 9388 void computeInfo(CGFunctionInfo &FI) const override; 9389 }; 9390 } // end anonymous namespace 9391 9392 9393 ABIArgInfo 9394 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9395 if (Ty->isAnyComplexType()) { 9396 return ABIArgInfo::getDirect(); 9397 } 9398 else { 9399 return DefaultABIInfo::classifyReturnType(Ty); 9400 } 9401 } 9402 9403 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9404 9405 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9406 for (auto &Arg : FI.arguments()) 9407 Arg.info = classifyArgumentType(Arg.type); 9408 } 9409 9410 namespace { 9411 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9412 public: 9413 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9414 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9415 }; 9416 } // end anonymous namespace 9417 9418 //===----------------------------------------------------------------------===// 9419 // SPARC v9 ABI Implementation. 9420 // Based on the SPARC Compliance Definition version 2.4.1. 9421 // 9422 // Function arguments a mapped to a nominal "parameter array" and promoted to 9423 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9424 // the array, structs larger than 16 bytes are passed indirectly. 9425 // 9426 // One case requires special care: 9427 // 9428 // struct mixed { 9429 // int i; 9430 // float f; 9431 // }; 9432 // 9433 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9434 // parameter array, but the int is passed in an integer register, and the float 9435 // is passed in a floating point register. This is represented as two arguments 9436 // with the LLVM IR inreg attribute: 9437 // 9438 // declare void f(i32 inreg %i, float inreg %f) 9439 // 9440 // The code generator will only allocate 4 bytes from the parameter array for 9441 // the inreg arguments. All other arguments are allocated a multiple of 8 9442 // bytes. 9443 // 9444 namespace { 9445 class SparcV9ABIInfo : public ABIInfo { 9446 public: 9447 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9448 9449 private: 9450 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9451 void computeInfo(CGFunctionInfo &FI) const override; 9452 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9453 QualType Ty) const override; 9454 9455 // Coercion type builder for structs passed in registers. The coercion type 9456 // serves two purposes: 9457 // 9458 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9459 // in registers. 9460 // 2. Expose aligned floating point elements as first-level elements, so the 9461 // code generator knows to pass them in floating point registers. 9462 // 9463 // We also compute the InReg flag which indicates that the struct contains 9464 // aligned 32-bit floats. 9465 // 9466 struct CoerceBuilder { 9467 llvm::LLVMContext &Context; 9468 const llvm::DataLayout &DL; 9469 SmallVector<llvm::Type*, 8> Elems; 9470 uint64_t Size; 9471 bool InReg; 9472 9473 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9474 : Context(c), DL(dl), Size(0), InReg(false) {} 9475 9476 // Pad Elems with integers until Size is ToSize. 9477 void pad(uint64_t ToSize) { 9478 assert(ToSize >= Size && "Cannot remove elements"); 9479 if (ToSize == Size) 9480 return; 9481 9482 // Finish the current 64-bit word. 9483 uint64_t Aligned = llvm::alignTo(Size, 64); 9484 if (Aligned > Size && Aligned <= ToSize) { 9485 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9486 Size = Aligned; 9487 } 9488 9489 // Add whole 64-bit words. 9490 while (Size + 64 <= ToSize) { 9491 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9492 Size += 64; 9493 } 9494 9495 // Final in-word padding. 9496 if (Size < ToSize) { 9497 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9498 Size = ToSize; 9499 } 9500 } 9501 9502 // Add a floating point element at Offset. 9503 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9504 // Unaligned floats are treated as integers. 9505 if (Offset % Bits) 9506 return; 9507 // The InReg flag is only required if there are any floats < 64 bits. 9508 if (Bits < 64) 9509 InReg = true; 9510 pad(Offset); 9511 Elems.push_back(Ty); 9512 Size = Offset + Bits; 9513 } 9514 9515 // Add a struct type to the coercion type, starting at Offset (in bits). 9516 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9517 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9518 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9519 llvm::Type *ElemTy = StrTy->getElementType(i); 9520 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9521 switch (ElemTy->getTypeID()) { 9522 case llvm::Type::StructTyID: 9523 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9524 break; 9525 case llvm::Type::FloatTyID: 9526 addFloat(ElemOffset, ElemTy, 32); 9527 break; 9528 case llvm::Type::DoubleTyID: 9529 addFloat(ElemOffset, ElemTy, 64); 9530 break; 9531 case llvm::Type::FP128TyID: 9532 addFloat(ElemOffset, ElemTy, 128); 9533 break; 9534 case llvm::Type::PointerTyID: 9535 if (ElemOffset % 64 == 0) { 9536 pad(ElemOffset); 9537 Elems.push_back(ElemTy); 9538 Size += 64; 9539 } 9540 break; 9541 default: 9542 break; 9543 } 9544 } 9545 } 9546 9547 // Check if Ty is a usable substitute for the coercion type. 9548 bool isUsableType(llvm::StructType *Ty) const { 9549 return llvm::makeArrayRef(Elems) == Ty->elements(); 9550 } 9551 9552 // Get the coercion type as a literal struct type. 9553 llvm::Type *getType() const { 9554 if (Elems.size() == 1) 9555 return Elems.front(); 9556 else 9557 return llvm::StructType::get(Context, Elems); 9558 } 9559 }; 9560 }; 9561 } // end anonymous namespace 9562 9563 ABIArgInfo 9564 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9565 if (Ty->isVoidType()) 9566 return ABIArgInfo::getIgnore(); 9567 9568 uint64_t Size = getContext().getTypeSize(Ty); 9569 9570 // Anything too big to fit in registers is passed with an explicit indirect 9571 // pointer / sret pointer. 9572 if (Size > SizeLimit) 9573 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9574 9575 // Treat an enum type as its underlying type. 9576 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9577 Ty = EnumTy->getDecl()->getIntegerType(); 9578 9579 // Integer types smaller than a register are extended. 9580 if (Size < 64 && Ty->isIntegerType()) 9581 return ABIArgInfo::getExtend(Ty); 9582 9583 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9584 if (EIT->getNumBits() < 64) 9585 return ABIArgInfo::getExtend(Ty); 9586 9587 // Other non-aggregates go in registers. 9588 if (!isAggregateTypeForABI(Ty)) 9589 return ABIArgInfo::getDirect(); 9590 9591 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9592 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9593 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9594 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9595 9596 // This is a small aggregate type that should be passed in registers. 9597 // Build a coercion type from the LLVM struct type. 9598 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9599 if (!StrTy) 9600 return ABIArgInfo::getDirect(); 9601 9602 CoerceBuilder CB(getVMContext(), getDataLayout()); 9603 CB.addStruct(0, StrTy); 9604 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9605 9606 // Try to use the original type for coercion. 9607 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9608 9609 if (CB.InReg) 9610 return ABIArgInfo::getDirectInReg(CoerceTy); 9611 else 9612 return ABIArgInfo::getDirect(CoerceTy); 9613 } 9614 9615 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9616 QualType Ty) const { 9617 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9618 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9619 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9620 AI.setCoerceToType(ArgTy); 9621 9622 CharUnits SlotSize = CharUnits::fromQuantity(8); 9623 9624 CGBuilderTy &Builder = CGF.Builder; 9625 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9626 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9627 9628 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9629 9630 Address ArgAddr = Address::invalid(); 9631 CharUnits Stride; 9632 switch (AI.getKind()) { 9633 case ABIArgInfo::Expand: 9634 case ABIArgInfo::CoerceAndExpand: 9635 case ABIArgInfo::InAlloca: 9636 llvm_unreachable("Unsupported ABI kind for va_arg"); 9637 9638 case ABIArgInfo::Extend: { 9639 Stride = SlotSize; 9640 CharUnits Offset = SlotSize - TypeInfo.Width; 9641 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9642 break; 9643 } 9644 9645 case ABIArgInfo::Direct: { 9646 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9647 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9648 ArgAddr = Addr; 9649 break; 9650 } 9651 9652 case ABIArgInfo::Indirect: 9653 case ABIArgInfo::IndirectAliased: 9654 Stride = SlotSize; 9655 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9656 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9657 TypeInfo.Align); 9658 break; 9659 9660 case ABIArgInfo::Ignore: 9661 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9662 } 9663 9664 // Update VAList. 9665 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9666 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9667 9668 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9669 } 9670 9671 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9672 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9673 for (auto &I : FI.arguments()) 9674 I.info = classifyType(I.type, 16 * 8); 9675 } 9676 9677 namespace { 9678 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9679 public: 9680 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9681 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9682 9683 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9684 return 14; 9685 } 9686 9687 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9688 llvm::Value *Address) const override; 9689 }; 9690 } // end anonymous namespace 9691 9692 bool 9693 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9694 llvm::Value *Address) const { 9695 // This is calculated from the LLVM and GCC tables and verified 9696 // against gcc output. AFAIK all ABIs use the same encoding. 9697 9698 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9699 9700 llvm::IntegerType *i8 = CGF.Int8Ty; 9701 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9702 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9703 9704 // 0-31: the 8-byte general-purpose registers 9705 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9706 9707 // 32-63: f0-31, the 4-byte floating-point registers 9708 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9709 9710 // Y = 64 9711 // PSR = 65 9712 // WIM = 66 9713 // TBR = 67 9714 // PC = 68 9715 // NPC = 69 9716 // FSR = 70 9717 // CSR = 71 9718 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9719 9720 // 72-87: d0-15, the 8-byte floating-point registers 9721 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9722 9723 return false; 9724 } 9725 9726 // ARC ABI implementation. 9727 namespace { 9728 9729 class ARCABIInfo : public DefaultABIInfo { 9730 public: 9731 using DefaultABIInfo::DefaultABIInfo; 9732 9733 private: 9734 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9735 QualType Ty) const override; 9736 9737 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9738 if (!State.FreeRegs) 9739 return; 9740 if (Info.isIndirect() && Info.getInReg()) 9741 State.FreeRegs--; 9742 else if (Info.isDirect() && Info.getInReg()) { 9743 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9744 if (sz < State.FreeRegs) 9745 State.FreeRegs -= sz; 9746 else 9747 State.FreeRegs = 0; 9748 } 9749 } 9750 9751 void computeInfo(CGFunctionInfo &FI) const override { 9752 CCState State(FI); 9753 // ARC uses 8 registers to pass arguments. 9754 State.FreeRegs = 8; 9755 9756 if (!getCXXABI().classifyReturnType(FI)) 9757 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9758 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9759 for (auto &I : FI.arguments()) { 9760 I.info = classifyArgumentType(I.type, State.FreeRegs); 9761 updateState(I.info, I.type, State); 9762 } 9763 } 9764 9765 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9766 ABIArgInfo getIndirectByValue(QualType Ty) const; 9767 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9768 ABIArgInfo classifyReturnType(QualType RetTy) const; 9769 }; 9770 9771 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9772 public: 9773 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9774 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9775 }; 9776 9777 9778 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9779 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9780 getNaturalAlignIndirect(Ty, false); 9781 } 9782 9783 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9784 // Compute the byval alignment. 9785 const unsigned MinABIStackAlignInBytes = 4; 9786 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9787 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9788 TypeAlign > MinABIStackAlignInBytes); 9789 } 9790 9791 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9792 QualType Ty) const { 9793 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9794 getContext().getTypeInfoInChars(Ty), 9795 CharUnits::fromQuantity(4), true); 9796 } 9797 9798 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9799 uint8_t FreeRegs) const { 9800 // Handle the generic C++ ABI. 9801 const RecordType *RT = Ty->getAs<RecordType>(); 9802 if (RT) { 9803 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9804 if (RAA == CGCXXABI::RAA_Indirect) 9805 return getIndirectByRef(Ty, FreeRegs > 0); 9806 9807 if (RAA == CGCXXABI::RAA_DirectInMemory) 9808 return getIndirectByValue(Ty); 9809 } 9810 9811 // Treat an enum type as its underlying type. 9812 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9813 Ty = EnumTy->getDecl()->getIntegerType(); 9814 9815 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9816 9817 if (isAggregateTypeForABI(Ty)) { 9818 // Structures with flexible arrays are always indirect. 9819 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9820 return getIndirectByValue(Ty); 9821 9822 // Ignore empty structs/unions. 9823 if (isEmptyRecord(getContext(), Ty, true)) 9824 return ABIArgInfo::getIgnore(); 9825 9826 llvm::LLVMContext &LLVMContext = getVMContext(); 9827 9828 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9829 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9830 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9831 9832 return FreeRegs >= SizeInRegs ? 9833 ABIArgInfo::getDirectInReg(Result) : 9834 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9835 } 9836 9837 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9838 if (EIT->getNumBits() > 64) 9839 return getIndirectByValue(Ty); 9840 9841 return isPromotableIntegerTypeForABI(Ty) 9842 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9843 : ABIArgInfo::getExtend(Ty)) 9844 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9845 : ABIArgInfo::getDirect()); 9846 } 9847 9848 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9849 if (RetTy->isAnyComplexType()) 9850 return ABIArgInfo::getDirectInReg(); 9851 9852 // Arguments of size > 4 registers are indirect. 9853 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9854 if (RetSize > 4) 9855 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9856 9857 return DefaultABIInfo::classifyReturnType(RetTy); 9858 } 9859 9860 } // End anonymous namespace. 9861 9862 //===----------------------------------------------------------------------===// 9863 // XCore ABI Implementation 9864 //===----------------------------------------------------------------------===// 9865 9866 namespace { 9867 9868 /// A SmallStringEnc instance is used to build up the TypeString by passing 9869 /// it by reference between functions that append to it. 9870 typedef llvm::SmallString<128> SmallStringEnc; 9871 9872 /// TypeStringCache caches the meta encodings of Types. 9873 /// 9874 /// The reason for caching TypeStrings is two fold: 9875 /// 1. To cache a type's encoding for later uses; 9876 /// 2. As a means to break recursive member type inclusion. 9877 /// 9878 /// A cache Entry can have a Status of: 9879 /// NonRecursive: The type encoding is not recursive; 9880 /// Recursive: The type encoding is recursive; 9881 /// Incomplete: An incomplete TypeString; 9882 /// IncompleteUsed: An incomplete TypeString that has been used in a 9883 /// Recursive type encoding. 9884 /// 9885 /// A NonRecursive entry will have all of its sub-members expanded as fully 9886 /// as possible. Whilst it may contain types which are recursive, the type 9887 /// itself is not recursive and thus its encoding may be safely used whenever 9888 /// the type is encountered. 9889 /// 9890 /// A Recursive entry will have all of its sub-members expanded as fully as 9891 /// possible. The type itself is recursive and it may contain other types which 9892 /// are recursive. The Recursive encoding must not be used during the expansion 9893 /// of a recursive type's recursive branch. For simplicity the code uses 9894 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9895 /// 9896 /// An Incomplete entry is always a RecordType and only encodes its 9897 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9898 /// are placed into the cache during type expansion as a means to identify and 9899 /// handle recursive inclusion of types as sub-members. If there is recursion 9900 /// the entry becomes IncompleteUsed. 9901 /// 9902 /// During the expansion of a RecordType's members: 9903 /// 9904 /// If the cache contains a NonRecursive encoding for the member type, the 9905 /// cached encoding is used; 9906 /// 9907 /// If the cache contains a Recursive encoding for the member type, the 9908 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9909 /// 9910 /// If the member is a RecordType, an Incomplete encoding is placed into the 9911 /// cache to break potential recursive inclusion of itself as a sub-member; 9912 /// 9913 /// Once a member RecordType has been expanded, its temporary incomplete 9914 /// entry is removed from the cache. If a Recursive encoding was swapped out 9915 /// it is swapped back in; 9916 /// 9917 /// If an incomplete entry is used to expand a sub-member, the incomplete 9918 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9919 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9920 /// 9921 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9922 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9923 /// Else the member is part of a recursive type and thus the recursion has 9924 /// been exited too soon for the encoding to be correct for the member. 9925 /// 9926 class TypeStringCache { 9927 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9928 struct Entry { 9929 std::string Str; // The encoded TypeString for the type. 9930 enum Status State; // Information about the encoding in 'Str'. 9931 std::string Swapped; // A temporary place holder for a Recursive encoding 9932 // during the expansion of RecordType's members. 9933 }; 9934 std::map<const IdentifierInfo *, struct Entry> Map; 9935 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9936 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9937 public: 9938 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9939 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9940 bool removeIncomplete(const IdentifierInfo *ID); 9941 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9942 bool IsRecursive); 9943 StringRef lookupStr(const IdentifierInfo *ID); 9944 }; 9945 9946 /// TypeString encodings for enum & union fields must be order. 9947 /// FieldEncoding is a helper for this ordering process. 9948 class FieldEncoding { 9949 bool HasName; 9950 std::string Enc; 9951 public: 9952 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9953 StringRef str() { return Enc; } 9954 bool operator<(const FieldEncoding &rhs) const { 9955 if (HasName != rhs.HasName) return HasName; 9956 return Enc < rhs.Enc; 9957 } 9958 }; 9959 9960 class XCoreABIInfo : public DefaultABIInfo { 9961 public: 9962 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9963 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9964 QualType Ty) const override; 9965 }; 9966 9967 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9968 mutable TypeStringCache TSC; 9969 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9970 const CodeGen::CodeGenModule &M) const; 9971 9972 public: 9973 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9974 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9975 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9976 const llvm::MapVector<GlobalDecl, StringRef> 9977 &MangledDeclNames) const override; 9978 }; 9979 9980 } // End anonymous namespace. 9981 9982 // TODO: this implementation is likely now redundant with the default 9983 // EmitVAArg. 9984 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9985 QualType Ty) const { 9986 CGBuilderTy &Builder = CGF.Builder; 9987 9988 // Get the VAList. 9989 CharUnits SlotSize = CharUnits::fromQuantity(4); 9990 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9991 9992 // Handle the argument. 9993 ABIArgInfo AI = classifyArgumentType(Ty); 9994 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9995 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9996 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9997 AI.setCoerceToType(ArgTy); 9998 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9999 10000 Address Val = Address::invalid(); 10001 CharUnits ArgSize = CharUnits::Zero(); 10002 switch (AI.getKind()) { 10003 case ABIArgInfo::Expand: 10004 case ABIArgInfo::CoerceAndExpand: 10005 case ABIArgInfo::InAlloca: 10006 llvm_unreachable("Unsupported ABI kind for va_arg"); 10007 case ABIArgInfo::Ignore: 10008 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 10009 ArgSize = CharUnits::Zero(); 10010 break; 10011 case ABIArgInfo::Extend: 10012 case ABIArgInfo::Direct: 10013 Val = Builder.CreateBitCast(AP, ArgPtrTy); 10014 ArgSize = CharUnits::fromQuantity( 10015 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10016 ArgSize = ArgSize.alignTo(SlotSize); 10017 break; 10018 case ABIArgInfo::Indirect: 10019 case ABIArgInfo::IndirectAliased: 10020 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10021 Val = Address(Builder.CreateLoad(Val), TypeAlign); 10022 ArgSize = SlotSize; 10023 break; 10024 } 10025 10026 // Increment the VAList. 10027 if (!ArgSize.isZero()) { 10028 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10029 Builder.CreateStore(APN.getPointer(), VAListAddr); 10030 } 10031 10032 return Val; 10033 } 10034 10035 /// During the expansion of a RecordType, an incomplete TypeString is placed 10036 /// into the cache as a means to identify and break recursion. 10037 /// If there is a Recursive encoding in the cache, it is swapped out and will 10038 /// be reinserted by removeIncomplete(). 10039 /// All other types of encoding should have been used rather than arriving here. 10040 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10041 std::string StubEnc) { 10042 if (!ID) 10043 return; 10044 Entry &E = Map[ID]; 10045 assert( (E.Str.empty() || E.State == Recursive) && 10046 "Incorrectly use of addIncomplete"); 10047 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10048 E.Swapped.swap(E.Str); // swap out the Recursive 10049 E.Str.swap(StubEnc); 10050 E.State = Incomplete; 10051 ++IncompleteCount; 10052 } 10053 10054 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10055 /// must be removed from the cache. 10056 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10057 /// Returns true if the RecordType was defined recursively. 10058 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10059 if (!ID) 10060 return false; 10061 auto I = Map.find(ID); 10062 assert(I != Map.end() && "Entry not present"); 10063 Entry &E = I->second; 10064 assert( (E.State == Incomplete || 10065 E.State == IncompleteUsed) && 10066 "Entry must be an incomplete type"); 10067 bool IsRecursive = false; 10068 if (E.State == IncompleteUsed) { 10069 // We made use of our Incomplete encoding, thus we are recursive. 10070 IsRecursive = true; 10071 --IncompleteUsedCount; 10072 } 10073 if (E.Swapped.empty()) 10074 Map.erase(I); 10075 else { 10076 // Swap the Recursive back. 10077 E.Swapped.swap(E.Str); 10078 E.Swapped.clear(); 10079 E.State = Recursive; 10080 } 10081 --IncompleteCount; 10082 return IsRecursive; 10083 } 10084 10085 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10086 /// Recursive (viz: all sub-members were expanded as fully as possible). 10087 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10088 bool IsRecursive) { 10089 if (!ID || IncompleteUsedCount) 10090 return; // No key or it is is an incomplete sub-type so don't add. 10091 Entry &E = Map[ID]; 10092 if (IsRecursive && !E.Str.empty()) { 10093 assert(E.State==Recursive && E.Str.size() == Str.size() && 10094 "This is not the same Recursive entry"); 10095 // The parent container was not recursive after all, so we could have used 10096 // this Recursive sub-member entry after all, but we assumed the worse when 10097 // we started viz: IncompleteCount!=0. 10098 return; 10099 } 10100 assert(E.Str.empty() && "Entry already present"); 10101 E.Str = Str.str(); 10102 E.State = IsRecursive? Recursive : NonRecursive; 10103 } 10104 10105 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10106 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10107 /// encoding is Recursive, return an empty StringRef. 10108 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10109 if (!ID) 10110 return StringRef(); // We have no key. 10111 auto I = Map.find(ID); 10112 if (I == Map.end()) 10113 return StringRef(); // We have no encoding. 10114 Entry &E = I->second; 10115 if (E.State == Recursive && IncompleteCount) 10116 return StringRef(); // We don't use Recursive encodings for member types. 10117 10118 if (E.State == Incomplete) { 10119 // The incomplete type is being used to break out of recursion. 10120 E.State = IncompleteUsed; 10121 ++IncompleteUsedCount; 10122 } 10123 return E.Str; 10124 } 10125 10126 /// The XCore ABI includes a type information section that communicates symbol 10127 /// type information to the linker. The linker uses this information to verify 10128 /// safety/correctness of things such as array bound and pointers et al. 10129 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10130 /// This type information (TypeString) is emitted into meta data for all global 10131 /// symbols: definitions, declarations, functions & variables. 10132 /// 10133 /// The TypeString carries type, qualifier, name, size & value details. 10134 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10135 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10136 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10137 /// 10138 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10139 const CodeGen::CodeGenModule &CGM, 10140 TypeStringCache &TSC); 10141 10142 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10143 void XCoreTargetCodeGenInfo::emitTargetMD( 10144 const Decl *D, llvm::GlobalValue *GV, 10145 const CodeGen::CodeGenModule &CGM) const { 10146 SmallStringEnc Enc; 10147 if (getTypeString(Enc, D, CGM, TSC)) { 10148 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10149 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10150 llvm::MDString::get(Ctx, Enc.str())}; 10151 llvm::NamedMDNode *MD = 10152 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10153 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10154 } 10155 } 10156 10157 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10158 CodeGen::CodeGenModule &CGM, 10159 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10160 // Warning, new MangledDeclNames may be appended within this loop. 10161 // We rely on MapVector insertions adding new elements to the end 10162 // of the container. 10163 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10164 auto Val = *(MangledDeclNames.begin() + I); 10165 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10166 if (GV) { 10167 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10168 emitTargetMD(D, GV, CGM); 10169 } 10170 } 10171 } 10172 10173 //===----------------------------------------------------------------------===// 10174 // Base ABI and target codegen info implementation common between SPIR and 10175 // SPIR-V. 10176 //===----------------------------------------------------------------------===// 10177 10178 namespace { 10179 class CommonSPIRABIInfo : public DefaultABIInfo { 10180 public: 10181 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10182 10183 private: 10184 void setCCs(); 10185 }; 10186 } // end anonymous namespace 10187 namespace { 10188 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10189 public: 10190 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10191 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10192 10193 LangAS getASTAllocaAddressSpace() const override { 10194 return getLangASFromTargetAS( 10195 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10196 } 10197 10198 unsigned getOpenCLKernelCallingConv() const override; 10199 }; 10200 10201 } // End anonymous namespace. 10202 void CommonSPIRABIInfo::setCCs() { 10203 assert(getRuntimeCC() == llvm::CallingConv::C); 10204 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10205 } 10206 10207 namespace clang { 10208 namespace CodeGen { 10209 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10210 DefaultABIInfo SPIRABI(CGM.getTypes()); 10211 SPIRABI.computeInfo(FI); 10212 } 10213 } 10214 } 10215 10216 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10217 return llvm::CallingConv::SPIR_KERNEL; 10218 } 10219 10220 static bool appendType(SmallStringEnc &Enc, QualType QType, 10221 const CodeGen::CodeGenModule &CGM, 10222 TypeStringCache &TSC); 10223 10224 /// Helper function for appendRecordType(). 10225 /// Builds a SmallVector containing the encoded field types in declaration 10226 /// order. 10227 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10228 const RecordDecl *RD, 10229 const CodeGen::CodeGenModule &CGM, 10230 TypeStringCache &TSC) { 10231 for (const auto *Field : RD->fields()) { 10232 SmallStringEnc Enc; 10233 Enc += "m("; 10234 Enc += Field->getName(); 10235 Enc += "){"; 10236 if (Field->isBitField()) { 10237 Enc += "b("; 10238 llvm::raw_svector_ostream OS(Enc); 10239 OS << Field->getBitWidthValue(CGM.getContext()); 10240 Enc += ':'; 10241 } 10242 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10243 return false; 10244 if (Field->isBitField()) 10245 Enc += ')'; 10246 Enc += '}'; 10247 FE.emplace_back(!Field->getName().empty(), Enc); 10248 } 10249 return true; 10250 } 10251 10252 /// Appends structure and union types to Enc and adds encoding to cache. 10253 /// Recursively calls appendType (via extractFieldType) for each field. 10254 /// Union types have their fields ordered according to the ABI. 10255 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10256 const CodeGen::CodeGenModule &CGM, 10257 TypeStringCache &TSC, const IdentifierInfo *ID) { 10258 // Append the cached TypeString if we have one. 10259 StringRef TypeString = TSC.lookupStr(ID); 10260 if (!TypeString.empty()) { 10261 Enc += TypeString; 10262 return true; 10263 } 10264 10265 // Start to emit an incomplete TypeString. 10266 size_t Start = Enc.size(); 10267 Enc += (RT->isUnionType()? 'u' : 's'); 10268 Enc += '('; 10269 if (ID) 10270 Enc += ID->getName(); 10271 Enc += "){"; 10272 10273 // We collect all encoded fields and order as necessary. 10274 bool IsRecursive = false; 10275 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10276 if (RD && !RD->field_empty()) { 10277 // An incomplete TypeString stub is placed in the cache for this RecordType 10278 // so that recursive calls to this RecordType will use it whilst building a 10279 // complete TypeString for this RecordType. 10280 SmallVector<FieldEncoding, 16> FE; 10281 std::string StubEnc(Enc.substr(Start).str()); 10282 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10283 TSC.addIncomplete(ID, std::move(StubEnc)); 10284 if (!extractFieldType(FE, RD, CGM, TSC)) { 10285 (void) TSC.removeIncomplete(ID); 10286 return false; 10287 } 10288 IsRecursive = TSC.removeIncomplete(ID); 10289 // The ABI requires unions to be sorted but not structures. 10290 // See FieldEncoding::operator< for sort algorithm. 10291 if (RT->isUnionType()) 10292 llvm::sort(FE); 10293 // We can now complete the TypeString. 10294 unsigned E = FE.size(); 10295 for (unsigned I = 0; I != E; ++I) { 10296 if (I) 10297 Enc += ','; 10298 Enc += FE[I].str(); 10299 } 10300 } 10301 Enc += '}'; 10302 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10303 return true; 10304 } 10305 10306 /// Appends enum types to Enc and adds the encoding to the cache. 10307 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10308 TypeStringCache &TSC, 10309 const IdentifierInfo *ID) { 10310 // Append the cached TypeString if we have one. 10311 StringRef TypeString = TSC.lookupStr(ID); 10312 if (!TypeString.empty()) { 10313 Enc += TypeString; 10314 return true; 10315 } 10316 10317 size_t Start = Enc.size(); 10318 Enc += "e("; 10319 if (ID) 10320 Enc += ID->getName(); 10321 Enc += "){"; 10322 10323 // We collect all encoded enumerations and order them alphanumerically. 10324 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10325 SmallVector<FieldEncoding, 16> FE; 10326 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10327 ++I) { 10328 SmallStringEnc EnumEnc; 10329 EnumEnc += "m("; 10330 EnumEnc += I->getName(); 10331 EnumEnc += "){"; 10332 I->getInitVal().toString(EnumEnc); 10333 EnumEnc += '}'; 10334 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10335 } 10336 llvm::sort(FE); 10337 unsigned E = FE.size(); 10338 for (unsigned I = 0; I != E; ++I) { 10339 if (I) 10340 Enc += ','; 10341 Enc += FE[I].str(); 10342 } 10343 } 10344 Enc += '}'; 10345 TSC.addIfComplete(ID, Enc.substr(Start), false); 10346 return true; 10347 } 10348 10349 /// Appends type's qualifier to Enc. 10350 /// This is done prior to appending the type's encoding. 10351 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10352 // Qualifiers are emitted in alphabetical order. 10353 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10354 int Lookup = 0; 10355 if (QT.isConstQualified()) 10356 Lookup += 1<<0; 10357 if (QT.isRestrictQualified()) 10358 Lookup += 1<<1; 10359 if (QT.isVolatileQualified()) 10360 Lookup += 1<<2; 10361 Enc += Table[Lookup]; 10362 } 10363 10364 /// Appends built-in types to Enc. 10365 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10366 const char *EncType; 10367 switch (BT->getKind()) { 10368 case BuiltinType::Void: 10369 EncType = "0"; 10370 break; 10371 case BuiltinType::Bool: 10372 EncType = "b"; 10373 break; 10374 case BuiltinType::Char_U: 10375 EncType = "uc"; 10376 break; 10377 case BuiltinType::UChar: 10378 EncType = "uc"; 10379 break; 10380 case BuiltinType::SChar: 10381 EncType = "sc"; 10382 break; 10383 case BuiltinType::UShort: 10384 EncType = "us"; 10385 break; 10386 case BuiltinType::Short: 10387 EncType = "ss"; 10388 break; 10389 case BuiltinType::UInt: 10390 EncType = "ui"; 10391 break; 10392 case BuiltinType::Int: 10393 EncType = "si"; 10394 break; 10395 case BuiltinType::ULong: 10396 EncType = "ul"; 10397 break; 10398 case BuiltinType::Long: 10399 EncType = "sl"; 10400 break; 10401 case BuiltinType::ULongLong: 10402 EncType = "ull"; 10403 break; 10404 case BuiltinType::LongLong: 10405 EncType = "sll"; 10406 break; 10407 case BuiltinType::Float: 10408 EncType = "ft"; 10409 break; 10410 case BuiltinType::Double: 10411 EncType = "d"; 10412 break; 10413 case BuiltinType::LongDouble: 10414 EncType = "ld"; 10415 break; 10416 default: 10417 return false; 10418 } 10419 Enc += EncType; 10420 return true; 10421 } 10422 10423 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10424 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10425 const CodeGen::CodeGenModule &CGM, 10426 TypeStringCache &TSC) { 10427 Enc += "p("; 10428 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10429 return false; 10430 Enc += ')'; 10431 return true; 10432 } 10433 10434 /// Appends array encoding to Enc before calling appendType for the element. 10435 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10436 const ArrayType *AT, 10437 const CodeGen::CodeGenModule &CGM, 10438 TypeStringCache &TSC, StringRef NoSizeEnc) { 10439 if (AT->getSizeModifier() != ArrayType::Normal) 10440 return false; 10441 Enc += "a("; 10442 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10443 CAT->getSize().toStringUnsigned(Enc); 10444 else 10445 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10446 Enc += ':'; 10447 // The Qualifiers should be attached to the type rather than the array. 10448 appendQualifier(Enc, QT); 10449 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10450 return false; 10451 Enc += ')'; 10452 return true; 10453 } 10454 10455 /// Appends a function encoding to Enc, calling appendType for the return type 10456 /// and the arguments. 10457 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10458 const CodeGen::CodeGenModule &CGM, 10459 TypeStringCache &TSC) { 10460 Enc += "f{"; 10461 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10462 return false; 10463 Enc += "}("; 10464 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10465 // N.B. we are only interested in the adjusted param types. 10466 auto I = FPT->param_type_begin(); 10467 auto E = FPT->param_type_end(); 10468 if (I != E) { 10469 do { 10470 if (!appendType(Enc, *I, CGM, TSC)) 10471 return false; 10472 ++I; 10473 if (I != E) 10474 Enc += ','; 10475 } while (I != E); 10476 if (FPT->isVariadic()) 10477 Enc += ",va"; 10478 } else { 10479 if (FPT->isVariadic()) 10480 Enc += "va"; 10481 else 10482 Enc += '0'; 10483 } 10484 } 10485 Enc += ')'; 10486 return true; 10487 } 10488 10489 /// Handles the type's qualifier before dispatching a call to handle specific 10490 /// type encodings. 10491 static bool appendType(SmallStringEnc &Enc, QualType QType, 10492 const CodeGen::CodeGenModule &CGM, 10493 TypeStringCache &TSC) { 10494 10495 QualType QT = QType.getCanonicalType(); 10496 10497 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10498 // The Qualifiers should be attached to the type rather than the array. 10499 // Thus we don't call appendQualifier() here. 10500 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10501 10502 appendQualifier(Enc, QT); 10503 10504 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10505 return appendBuiltinType(Enc, BT); 10506 10507 if (const PointerType *PT = QT->getAs<PointerType>()) 10508 return appendPointerType(Enc, PT, CGM, TSC); 10509 10510 if (const EnumType *ET = QT->getAs<EnumType>()) 10511 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10512 10513 if (const RecordType *RT = QT->getAsStructureType()) 10514 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10515 10516 if (const RecordType *RT = QT->getAsUnionType()) 10517 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10518 10519 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10520 return appendFunctionType(Enc, FT, CGM, TSC); 10521 10522 return false; 10523 } 10524 10525 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10526 const CodeGen::CodeGenModule &CGM, 10527 TypeStringCache &TSC) { 10528 if (!D) 10529 return false; 10530 10531 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10532 if (FD->getLanguageLinkage() != CLanguageLinkage) 10533 return false; 10534 return appendType(Enc, FD->getType(), CGM, TSC); 10535 } 10536 10537 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10538 if (VD->getLanguageLinkage() != CLanguageLinkage) 10539 return false; 10540 QualType QT = VD->getType().getCanonicalType(); 10541 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10542 // Global ArrayTypes are given a size of '*' if the size is unknown. 10543 // The Qualifiers should be attached to the type rather than the array. 10544 // Thus we don't call appendQualifier() here. 10545 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10546 } 10547 return appendType(Enc, QT, CGM, TSC); 10548 } 10549 return false; 10550 } 10551 10552 //===----------------------------------------------------------------------===// 10553 // RISCV ABI Implementation 10554 //===----------------------------------------------------------------------===// 10555 10556 namespace { 10557 class RISCVABIInfo : public DefaultABIInfo { 10558 private: 10559 // Size of the integer ('x') registers in bits. 10560 unsigned XLen; 10561 // Size of the floating point ('f') registers in bits. Note that the target 10562 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10563 // with soft float ABI has FLen==0). 10564 unsigned FLen; 10565 static const int NumArgGPRs = 8; 10566 static const int NumArgFPRs = 8; 10567 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10568 llvm::Type *&Field1Ty, 10569 CharUnits &Field1Off, 10570 llvm::Type *&Field2Ty, 10571 CharUnits &Field2Off) const; 10572 10573 public: 10574 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10575 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10576 10577 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10578 // non-virtual, but computeInfo is virtual, so we overload it. 10579 void computeInfo(CGFunctionInfo &FI) const override; 10580 10581 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10582 int &ArgFPRsLeft) const; 10583 ABIArgInfo classifyReturnType(QualType RetTy) const; 10584 10585 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10586 QualType Ty) const override; 10587 10588 ABIArgInfo extendType(QualType Ty) const; 10589 10590 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10591 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10592 CharUnits &Field2Off, int &NeededArgGPRs, 10593 int &NeededArgFPRs) const; 10594 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10595 CharUnits Field1Off, 10596 llvm::Type *Field2Ty, 10597 CharUnits Field2Off) const; 10598 }; 10599 } // end anonymous namespace 10600 10601 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10602 QualType RetTy = FI.getReturnType(); 10603 if (!getCXXABI().classifyReturnType(FI)) 10604 FI.getReturnInfo() = classifyReturnType(RetTy); 10605 10606 // IsRetIndirect is true if classifyArgumentType indicated the value should 10607 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10608 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10609 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10610 // list and pass indirectly on RV32. 10611 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10612 if (!IsRetIndirect && RetTy->isScalarType() && 10613 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10614 if (RetTy->isComplexType() && FLen) { 10615 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10616 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10617 } else { 10618 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10619 IsRetIndirect = true; 10620 } 10621 } 10622 10623 // We must track the number of GPRs used in order to conform to the RISC-V 10624 // ABI, as integer scalars passed in registers should have signext/zeroext 10625 // when promoted, but are anyext if passed on the stack. As GPR usage is 10626 // different for variadic arguments, we must also track whether we are 10627 // examining a vararg or not. 10628 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10629 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10630 int NumFixedArgs = FI.getNumRequiredArgs(); 10631 10632 int ArgNum = 0; 10633 for (auto &ArgInfo : FI.arguments()) { 10634 bool IsFixed = ArgNum < NumFixedArgs; 10635 ArgInfo.info = 10636 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10637 ArgNum++; 10638 } 10639 } 10640 10641 // Returns true if the struct is a potential candidate for the floating point 10642 // calling convention. If this function returns true, the caller is 10643 // responsible for checking that if there is only a single field then that 10644 // field is a float. 10645 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10646 llvm::Type *&Field1Ty, 10647 CharUnits &Field1Off, 10648 llvm::Type *&Field2Ty, 10649 CharUnits &Field2Off) const { 10650 bool IsInt = Ty->isIntegralOrEnumerationType(); 10651 bool IsFloat = Ty->isRealFloatingType(); 10652 10653 if (IsInt || IsFloat) { 10654 uint64_t Size = getContext().getTypeSize(Ty); 10655 if (IsInt && Size > XLen) 10656 return false; 10657 // Can't be eligible if larger than the FP registers. Half precision isn't 10658 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10659 // default to the integer ABI in that case. 10660 if (IsFloat && (Size > FLen || Size < 32)) 10661 return false; 10662 // Can't be eligible if an integer type was already found (int+int pairs 10663 // are not eligible). 10664 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10665 return false; 10666 if (!Field1Ty) { 10667 Field1Ty = CGT.ConvertType(Ty); 10668 Field1Off = CurOff; 10669 return true; 10670 } 10671 if (!Field2Ty) { 10672 Field2Ty = CGT.ConvertType(Ty); 10673 Field2Off = CurOff; 10674 return true; 10675 } 10676 return false; 10677 } 10678 10679 if (auto CTy = Ty->getAs<ComplexType>()) { 10680 if (Field1Ty) 10681 return false; 10682 QualType EltTy = CTy->getElementType(); 10683 if (getContext().getTypeSize(EltTy) > FLen) 10684 return false; 10685 Field1Ty = CGT.ConvertType(EltTy); 10686 Field1Off = CurOff; 10687 Field2Ty = Field1Ty; 10688 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10689 return true; 10690 } 10691 10692 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10693 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10694 QualType EltTy = ATy->getElementType(); 10695 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10696 for (uint64_t i = 0; i < ArraySize; ++i) { 10697 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10698 Field1Off, Field2Ty, Field2Off); 10699 if (!Ret) 10700 return false; 10701 CurOff += EltSize; 10702 } 10703 return true; 10704 } 10705 10706 if (const auto *RTy = Ty->getAs<RecordType>()) { 10707 // Structures with either a non-trivial destructor or a non-trivial 10708 // copy constructor are not eligible for the FP calling convention. 10709 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10710 return false; 10711 if (isEmptyRecord(getContext(), Ty, true)) 10712 return true; 10713 const RecordDecl *RD = RTy->getDecl(); 10714 // Unions aren't eligible unless they're empty (which is caught above). 10715 if (RD->isUnion()) 10716 return false; 10717 int ZeroWidthBitFieldCount = 0; 10718 for (const FieldDecl *FD : RD->fields()) { 10719 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10720 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10721 QualType QTy = FD->getType(); 10722 if (FD->isBitField()) { 10723 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10724 // Allow a bitfield with a type greater than XLen as long as the 10725 // bitwidth is XLen or less. 10726 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10727 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10728 if (BitWidth == 0) { 10729 ZeroWidthBitFieldCount++; 10730 continue; 10731 } 10732 } 10733 10734 bool Ret = detectFPCCEligibleStructHelper( 10735 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10736 Field1Ty, Field1Off, Field2Ty, Field2Off); 10737 if (!Ret) 10738 return false; 10739 10740 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10741 // or int+fp structs, but are ignored for a struct with an fp field and 10742 // any number of zero-width bitfields. 10743 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10744 return false; 10745 } 10746 return Field1Ty != nullptr; 10747 } 10748 10749 return false; 10750 } 10751 10752 // Determine if a struct is eligible for passing according to the floating 10753 // point calling convention (i.e., when flattened it contains a single fp 10754 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10755 // NeededArgGPRs are incremented appropriately. 10756 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10757 CharUnits &Field1Off, 10758 llvm::Type *&Field2Ty, 10759 CharUnits &Field2Off, 10760 int &NeededArgGPRs, 10761 int &NeededArgFPRs) const { 10762 Field1Ty = nullptr; 10763 Field2Ty = nullptr; 10764 NeededArgGPRs = 0; 10765 NeededArgFPRs = 0; 10766 bool IsCandidate = detectFPCCEligibleStructHelper( 10767 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10768 // Not really a candidate if we have a single int but no float. 10769 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10770 return false; 10771 if (!IsCandidate) 10772 return false; 10773 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10774 NeededArgFPRs++; 10775 else if (Field1Ty) 10776 NeededArgGPRs++; 10777 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10778 NeededArgFPRs++; 10779 else if (Field2Ty) 10780 NeededArgGPRs++; 10781 return true; 10782 } 10783 10784 // Call getCoerceAndExpand for the two-element flattened struct described by 10785 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10786 // appropriate coerceToType and unpaddedCoerceToType. 10787 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10788 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10789 CharUnits Field2Off) const { 10790 SmallVector<llvm::Type *, 3> CoerceElts; 10791 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10792 if (!Field1Off.isZero()) 10793 CoerceElts.push_back(llvm::ArrayType::get( 10794 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10795 10796 CoerceElts.push_back(Field1Ty); 10797 UnpaddedCoerceElts.push_back(Field1Ty); 10798 10799 if (!Field2Ty) { 10800 return ABIArgInfo::getCoerceAndExpand( 10801 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10802 UnpaddedCoerceElts[0]); 10803 } 10804 10805 CharUnits Field2Align = 10806 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10807 CharUnits Field1End = Field1Off + 10808 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10809 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10810 10811 CharUnits Padding = CharUnits::Zero(); 10812 if (Field2Off > Field2OffNoPadNoPack) 10813 Padding = Field2Off - Field2OffNoPadNoPack; 10814 else if (Field2Off != Field2Align && Field2Off > Field1End) 10815 Padding = Field2Off - Field1End; 10816 10817 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10818 10819 if (!Padding.isZero()) 10820 CoerceElts.push_back(llvm::ArrayType::get( 10821 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10822 10823 CoerceElts.push_back(Field2Ty); 10824 UnpaddedCoerceElts.push_back(Field2Ty); 10825 10826 auto CoerceToType = 10827 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10828 auto UnpaddedCoerceToType = 10829 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10830 10831 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10832 } 10833 10834 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10835 int &ArgGPRsLeft, 10836 int &ArgFPRsLeft) const { 10837 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10838 Ty = useFirstFieldIfTransparentUnion(Ty); 10839 10840 // Structures with either a non-trivial destructor or a non-trivial 10841 // copy constructor are always passed indirectly. 10842 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10843 if (ArgGPRsLeft) 10844 ArgGPRsLeft -= 1; 10845 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10846 CGCXXABI::RAA_DirectInMemory); 10847 } 10848 10849 // Ignore empty structs/unions. 10850 if (isEmptyRecord(getContext(), Ty, true)) 10851 return ABIArgInfo::getIgnore(); 10852 10853 uint64_t Size = getContext().getTypeSize(Ty); 10854 10855 // Pass floating point values via FPRs if possible. 10856 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10857 FLen >= Size && ArgFPRsLeft) { 10858 ArgFPRsLeft--; 10859 return ABIArgInfo::getDirect(); 10860 } 10861 10862 // Complex types for the hard float ABI must be passed direct rather than 10863 // using CoerceAndExpand. 10864 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10865 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10866 if (getContext().getTypeSize(EltTy) <= FLen) { 10867 ArgFPRsLeft -= 2; 10868 return ABIArgInfo::getDirect(); 10869 } 10870 } 10871 10872 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10873 llvm::Type *Field1Ty = nullptr; 10874 llvm::Type *Field2Ty = nullptr; 10875 CharUnits Field1Off = CharUnits::Zero(); 10876 CharUnits Field2Off = CharUnits::Zero(); 10877 int NeededArgGPRs = 0; 10878 int NeededArgFPRs = 0; 10879 bool IsCandidate = 10880 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10881 NeededArgGPRs, NeededArgFPRs); 10882 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10883 NeededArgFPRs <= ArgFPRsLeft) { 10884 ArgGPRsLeft -= NeededArgGPRs; 10885 ArgFPRsLeft -= NeededArgFPRs; 10886 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10887 Field2Off); 10888 } 10889 } 10890 10891 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10892 bool MustUseStack = false; 10893 // Determine the number of GPRs needed to pass the current argument 10894 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10895 // register pairs, so may consume 3 registers. 10896 int NeededArgGPRs = 1; 10897 if (!IsFixed && NeededAlign == 2 * XLen) 10898 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10899 else if (Size > XLen && Size <= 2 * XLen) 10900 NeededArgGPRs = 2; 10901 10902 if (NeededArgGPRs > ArgGPRsLeft) { 10903 MustUseStack = true; 10904 NeededArgGPRs = ArgGPRsLeft; 10905 } 10906 10907 ArgGPRsLeft -= NeededArgGPRs; 10908 10909 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10910 // Treat an enum type as its underlying type. 10911 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10912 Ty = EnumTy->getDecl()->getIntegerType(); 10913 10914 // All integral types are promoted to XLen width, unless passed on the 10915 // stack. 10916 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10917 return extendType(Ty); 10918 } 10919 10920 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10921 if (EIT->getNumBits() < XLen && !MustUseStack) 10922 return extendType(Ty); 10923 if (EIT->getNumBits() > 128 || 10924 (!getContext().getTargetInfo().hasInt128Type() && 10925 EIT->getNumBits() > 64)) 10926 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10927 } 10928 10929 return ABIArgInfo::getDirect(); 10930 } 10931 10932 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10933 // so coerce to integers. 10934 if (Size <= 2 * XLen) { 10935 unsigned Alignment = getContext().getTypeAlign(Ty); 10936 10937 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10938 // required, and a 2-element XLen array if only XLen alignment is required. 10939 if (Size <= XLen) { 10940 return ABIArgInfo::getDirect( 10941 llvm::IntegerType::get(getVMContext(), XLen)); 10942 } else if (Alignment == 2 * XLen) { 10943 return ABIArgInfo::getDirect( 10944 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10945 } else { 10946 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10947 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10948 } 10949 } 10950 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10951 } 10952 10953 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10954 if (RetTy->isVoidType()) 10955 return ABIArgInfo::getIgnore(); 10956 10957 int ArgGPRsLeft = 2; 10958 int ArgFPRsLeft = FLen ? 2 : 0; 10959 10960 // The rules for return and argument types are the same, so defer to 10961 // classifyArgumentType. 10962 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10963 ArgFPRsLeft); 10964 } 10965 10966 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10967 QualType Ty) const { 10968 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10969 10970 // Empty records are ignored for parameter passing purposes. 10971 if (isEmptyRecord(getContext(), Ty, true)) { 10972 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10973 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10974 return Addr; 10975 } 10976 10977 auto TInfo = getContext().getTypeInfoInChars(Ty); 10978 10979 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10980 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10981 10982 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10983 SlotSize, /*AllowHigherAlign=*/true); 10984 } 10985 10986 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10987 int TySize = getContext().getTypeSize(Ty); 10988 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10989 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10990 return ABIArgInfo::getSignExtend(Ty); 10991 return ABIArgInfo::getExtend(Ty); 10992 } 10993 10994 namespace { 10995 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10996 public: 10997 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10998 unsigned FLen) 10999 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11000 11001 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11002 CodeGen::CodeGenModule &CGM) const override { 11003 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11004 if (!FD) return; 11005 11006 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11007 if (!Attr) 11008 return; 11009 11010 const char *Kind; 11011 switch (Attr->getInterrupt()) { 11012 case RISCVInterruptAttr::user: Kind = "user"; break; 11013 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11014 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11015 } 11016 11017 auto *Fn = cast<llvm::Function>(GV); 11018 11019 Fn->addFnAttr("interrupt", Kind); 11020 } 11021 }; 11022 } // namespace 11023 11024 //===----------------------------------------------------------------------===// 11025 // VE ABI Implementation. 11026 // 11027 namespace { 11028 class VEABIInfo : public DefaultABIInfo { 11029 public: 11030 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11031 11032 private: 11033 ABIArgInfo classifyReturnType(QualType RetTy) const; 11034 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11035 void computeInfo(CGFunctionInfo &FI) const override; 11036 }; 11037 } // end anonymous namespace 11038 11039 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11040 if (Ty->isAnyComplexType()) 11041 return ABIArgInfo::getDirect(); 11042 uint64_t Size = getContext().getTypeSize(Ty); 11043 if (Size < 64 && Ty->isIntegerType()) 11044 return ABIArgInfo::getExtend(Ty); 11045 return DefaultABIInfo::classifyReturnType(Ty); 11046 } 11047 11048 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11049 if (Ty->isAnyComplexType()) 11050 return ABIArgInfo::getDirect(); 11051 uint64_t Size = getContext().getTypeSize(Ty); 11052 if (Size < 64 && Ty->isIntegerType()) 11053 return ABIArgInfo::getExtend(Ty); 11054 return DefaultABIInfo::classifyArgumentType(Ty); 11055 } 11056 11057 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11058 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11059 for (auto &Arg : FI.arguments()) 11060 Arg.info = classifyArgumentType(Arg.type); 11061 } 11062 11063 namespace { 11064 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11065 public: 11066 VETargetCodeGenInfo(CodeGenTypes &CGT) 11067 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11068 // VE ABI requires the arguments of variadic and prototype-less functions 11069 // are passed in both registers and memory. 11070 bool isNoProtoCallVariadic(const CallArgList &args, 11071 const FunctionNoProtoType *fnType) const override { 11072 return true; 11073 } 11074 }; 11075 } // end anonymous namespace 11076 11077 //===----------------------------------------------------------------------===// 11078 // Driver code 11079 //===----------------------------------------------------------------------===// 11080 11081 bool CodeGenModule::supportsCOMDAT() const { 11082 return getTriple().supportsCOMDAT(); 11083 } 11084 11085 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11086 if (TheTargetCodeGenInfo) 11087 return *TheTargetCodeGenInfo; 11088 11089 // Helper to set the unique_ptr while still keeping the return value. 11090 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11091 this->TheTargetCodeGenInfo.reset(P); 11092 return *P; 11093 }; 11094 11095 const llvm::Triple &Triple = getTarget().getTriple(); 11096 switch (Triple.getArch()) { 11097 default: 11098 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11099 11100 case llvm::Triple::le32: 11101 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11102 case llvm::Triple::m68k: 11103 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11104 case llvm::Triple::mips: 11105 case llvm::Triple::mipsel: 11106 if (Triple.getOS() == llvm::Triple::NaCl) 11107 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11108 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11109 11110 case llvm::Triple::mips64: 11111 case llvm::Triple::mips64el: 11112 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11113 11114 case llvm::Triple::avr: 11115 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11116 11117 case llvm::Triple::aarch64: 11118 case llvm::Triple::aarch64_32: 11119 case llvm::Triple::aarch64_be: { 11120 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11121 if (getTarget().getABI() == "darwinpcs") 11122 Kind = AArch64ABIInfo::DarwinPCS; 11123 else if (Triple.isOSWindows()) 11124 return SetCGInfo( 11125 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11126 11127 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11128 } 11129 11130 case llvm::Triple::wasm32: 11131 case llvm::Triple::wasm64: { 11132 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11133 if (getTarget().getABI() == "experimental-mv") 11134 Kind = WebAssemblyABIInfo::ExperimentalMV; 11135 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11136 } 11137 11138 case llvm::Triple::arm: 11139 case llvm::Triple::armeb: 11140 case llvm::Triple::thumb: 11141 case llvm::Triple::thumbeb: { 11142 if (Triple.getOS() == llvm::Triple::Win32) { 11143 return SetCGInfo( 11144 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11145 } 11146 11147 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11148 StringRef ABIStr = getTarget().getABI(); 11149 if (ABIStr == "apcs-gnu") 11150 Kind = ARMABIInfo::APCS; 11151 else if (ABIStr == "aapcs16") 11152 Kind = ARMABIInfo::AAPCS16_VFP; 11153 else if (CodeGenOpts.FloatABI == "hard" || 11154 (CodeGenOpts.FloatABI != "soft" && 11155 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11156 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11157 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11158 Kind = ARMABIInfo::AAPCS_VFP; 11159 11160 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11161 } 11162 11163 case llvm::Triple::ppc: { 11164 if (Triple.isOSAIX()) 11165 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11166 11167 bool IsSoftFloat = 11168 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11169 bool RetSmallStructInRegABI = 11170 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11171 return SetCGInfo( 11172 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11173 } 11174 case llvm::Triple::ppcle: { 11175 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11176 bool RetSmallStructInRegABI = 11177 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11178 return SetCGInfo( 11179 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11180 } 11181 case llvm::Triple::ppc64: 11182 if (Triple.isOSAIX()) 11183 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11184 11185 if (Triple.isOSBinFormatELF()) { 11186 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11187 if (getTarget().getABI() == "elfv2") 11188 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11190 11191 return SetCGInfo( 11192 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11193 } 11194 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11195 case llvm::Triple::ppc64le: { 11196 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11197 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11198 if (getTarget().getABI() == "elfv1") 11199 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11201 11202 return SetCGInfo( 11203 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11204 } 11205 11206 case llvm::Triple::nvptx: 11207 case llvm::Triple::nvptx64: 11208 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11209 11210 case llvm::Triple::msp430: 11211 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11212 11213 case llvm::Triple::riscv32: 11214 case llvm::Triple::riscv64: { 11215 StringRef ABIStr = getTarget().getABI(); 11216 unsigned XLen = getTarget().getPointerWidth(0); 11217 unsigned ABIFLen = 0; 11218 if (ABIStr.endswith("f")) 11219 ABIFLen = 32; 11220 else if (ABIStr.endswith("d")) 11221 ABIFLen = 64; 11222 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11223 } 11224 11225 case llvm::Triple::systemz: { 11226 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11227 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11228 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11229 } 11230 11231 case llvm::Triple::tce: 11232 case llvm::Triple::tcele: 11233 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11234 11235 case llvm::Triple::x86: { 11236 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11237 bool RetSmallStructInRegABI = 11238 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11239 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11240 11241 if (Triple.getOS() == llvm::Triple::Win32) { 11242 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11243 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11244 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11245 } else { 11246 return SetCGInfo(new X86_32TargetCodeGenInfo( 11247 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11248 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11249 CodeGenOpts.FloatABI == "soft")); 11250 } 11251 } 11252 11253 case llvm::Triple::x86_64: { 11254 StringRef ABI = getTarget().getABI(); 11255 X86AVXABILevel AVXLevel = 11256 (ABI == "avx512" 11257 ? X86AVXABILevel::AVX512 11258 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11259 11260 switch (Triple.getOS()) { 11261 case llvm::Triple::Win32: 11262 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11263 default: 11264 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11265 } 11266 } 11267 case llvm::Triple::hexagon: 11268 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11269 case llvm::Triple::lanai: 11270 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11271 case llvm::Triple::r600: 11272 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11273 case llvm::Triple::amdgcn: 11274 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11275 case llvm::Triple::sparc: 11276 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11277 case llvm::Triple::sparcv9: 11278 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11279 case llvm::Triple::xcore: 11280 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11281 case llvm::Triple::arc: 11282 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11283 case llvm::Triple::spir: 11284 case llvm::Triple::spir64: 11285 case llvm::Triple::spirv32: 11286 case llvm::Triple::spirv64: 11287 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11288 case llvm::Triple::ve: 11289 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11290 } 11291 } 11292 11293 /// Create an OpenCL kernel for an enqueued block. 11294 /// 11295 /// The kernel has the same function type as the block invoke function. Its 11296 /// name is the name of the block invoke function postfixed with "_kernel". 11297 /// It simply calls the block invoke function then returns. 11298 llvm::Function * 11299 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11300 llvm::Function *Invoke, 11301 llvm::Value *BlockLiteral) const { 11302 auto *InvokeFT = Invoke->getFunctionType(); 11303 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11304 for (auto &P : InvokeFT->params()) 11305 ArgTys.push_back(P); 11306 auto &C = CGF.getLLVMContext(); 11307 std::string Name = Invoke->getName().str() + "_kernel"; 11308 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11309 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11310 &CGF.CGM.getModule()); 11311 auto IP = CGF.Builder.saveIP(); 11312 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11313 auto &Builder = CGF.Builder; 11314 Builder.SetInsertPoint(BB); 11315 llvm::SmallVector<llvm::Value *, 2> Args; 11316 for (auto &A : F->args()) 11317 Args.push_back(&A); 11318 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11319 call->setCallingConv(Invoke->getCallingConv()); 11320 Builder.CreateRetVoid(); 11321 Builder.restoreIP(IP); 11322 return F; 11323 } 11324 11325 /// Create an OpenCL kernel for an enqueued block. 11326 /// 11327 /// The type of the first argument (the block literal) is the struct type 11328 /// of the block literal instead of a pointer type. The first argument 11329 /// (block literal) is passed directly by value to the kernel. The kernel 11330 /// allocates the same type of struct on stack and stores the block literal 11331 /// to it and passes its pointer to the block invoke function. The kernel 11332 /// has "enqueued-block" function attribute and kernel argument metadata. 11333 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11334 CodeGenFunction &CGF, llvm::Function *Invoke, 11335 llvm::Value *BlockLiteral) const { 11336 auto &Builder = CGF.Builder; 11337 auto &C = CGF.getLLVMContext(); 11338 11339 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11340 auto *InvokeFT = Invoke->getFunctionType(); 11341 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11342 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11343 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11344 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11345 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11346 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11347 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11348 11349 ArgTys.push_back(BlockTy); 11350 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11351 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11352 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11353 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11354 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11355 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11356 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11357 ArgTys.push_back(InvokeFT->getParamType(I)); 11358 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11359 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11360 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11361 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11362 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11363 ArgNames.push_back( 11364 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11365 } 11366 std::string Name = Invoke->getName().str() + "_kernel"; 11367 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11368 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11369 &CGF.CGM.getModule()); 11370 F->addFnAttr("enqueued-block"); 11371 auto IP = CGF.Builder.saveIP(); 11372 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11373 Builder.SetInsertPoint(BB); 11374 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11375 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11376 BlockPtr->setAlignment(BlockAlign); 11377 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11378 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11379 llvm::SmallVector<llvm::Value *, 2> Args; 11380 Args.push_back(Cast); 11381 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11382 Args.push_back(I); 11383 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11384 call->setCallingConv(Invoke->getCallingConv()); 11385 Builder.CreateRetVoid(); 11386 Builder.restoreIP(IP); 11387 11388 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11389 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11390 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11391 F->setMetadata("kernel_arg_base_type", 11392 llvm::MDNode::get(C, ArgBaseTypeNames)); 11393 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11394 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11395 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11396 11397 return F; 11398 } 11399