1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> // std::sort 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 // Helper for coercing an aggregate argument or return value into an integer 39 // array of the same size (including padding) and alignment. This alternate 40 // coercion happens only for the RenderScript ABI and can be removed after 41 // runtimes that rely on it are no longer supported. 42 // 43 // RenderScript assumes that the size of the argument / return value in the IR 44 // is the same as the size of the corresponding qualified type. This helper 45 // coerces the aggregate type into an array of the same size (including 46 // padding). This coercion is used in lieu of expansion of struct members or 47 // other canonical coercions that return a coerced-type of larger size. 48 // 49 // Ty - The argument / return value type 50 // Context - The associated ASTContext 51 // LLVMContext - The associated LLVMContext 52 static ABIArgInfo coerceToIntArray(QualType Ty, 53 ASTContext &Context, 54 llvm::LLVMContext &LLVMContext) { 55 // Alignment and Size are measured in bits. 56 const uint64_t Size = Context.getTypeSize(Ty); 57 const uint64_t Alignment = Context.getTypeAlign(Ty); 58 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 59 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 60 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 61 } 62 63 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 64 llvm::Value *Array, 65 llvm::Value *Value, 66 unsigned FirstIndex, 67 unsigned LastIndex) { 68 // Alternatively, we could emit this as a loop in the source. 69 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 70 llvm::Value *Cell = 71 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 72 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 73 } 74 } 75 76 static bool isAggregateTypeForABI(QualType T) { 77 return !CodeGenFunction::hasScalarEvaluationKind(T) || 78 T->isMemberFunctionPointerType(); 79 } 80 81 ABIArgInfo 82 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 83 llvm::Type *Padding) const { 84 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 85 ByRef, Realign, Padding); 86 } 87 88 ABIArgInfo 89 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 90 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 91 /*ByRef*/ false, Realign); 92 } 93 94 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 95 QualType Ty) const { 96 return Address::invalid(); 97 } 98 99 ABIInfo::~ABIInfo() {} 100 101 /// Does the given lowering require more than the given number of 102 /// registers when expanded? 103 /// 104 /// This is intended to be the basis of a reasonable basic implementation 105 /// of should{Pass,Return}IndirectlyForSwift. 106 /// 107 /// For most targets, a limit of four total registers is reasonable; this 108 /// limits the amount of code required in order to move around the value 109 /// in case it wasn't produced immediately prior to the call by the caller 110 /// (or wasn't produced in exactly the right registers) or isn't used 111 /// immediately within the callee. But some targets may need to further 112 /// limit the register count due to an inability to support that many 113 /// return registers. 114 static bool occupiesMoreThan(CodeGenTypes &cgt, 115 ArrayRef<llvm::Type*> scalarTypes, 116 unsigned maxAllRegisters) { 117 unsigned intCount = 0, fpCount = 0; 118 for (llvm::Type *type : scalarTypes) { 119 if (type->isPointerTy()) { 120 intCount++; 121 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 122 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 123 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 124 } else { 125 assert(type->isVectorTy() || type->isFloatingPointTy()); 126 fpCount++; 127 } 128 } 129 130 return (intCount + fpCount > maxAllRegisters); 131 } 132 133 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 134 llvm::Type *eltTy, 135 unsigned numElts) const { 136 // The default implementation of this assumes that the target guarantees 137 // 128-bit SIMD support but nothing more. 138 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 139 } 140 141 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 142 CGCXXABI &CXXABI) { 143 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 144 if (!RD) { 145 if (!RT->getDecl()->canPassInRegisters()) 146 return CGCXXABI::RAA_Indirect; 147 return CGCXXABI::RAA_Default; 148 } 149 return CXXABI.getRecordArgABI(RD); 150 } 151 152 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 153 CGCXXABI &CXXABI) { 154 const RecordType *RT = T->getAs<RecordType>(); 155 if (!RT) 156 return CGCXXABI::RAA_Default; 157 return getRecordArgABI(RT, CXXABI); 158 } 159 160 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 161 const ABIInfo &Info) { 162 QualType Ty = FI.getReturnType(); 163 164 if (const auto *RT = Ty->getAs<RecordType>()) 165 if (!isa<CXXRecordDecl>(RT->getDecl()) && 166 !RT->getDecl()->canPassInRegisters()) { 167 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 168 return true; 169 } 170 171 return CXXABI.classifyReturnType(FI); 172 } 173 174 /// Pass transparent unions as if they were the type of the first element. Sema 175 /// should ensure that all elements of the union have the same "machine type". 176 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 177 if (const RecordType *UT = Ty->getAsUnionType()) { 178 const RecordDecl *UD = UT->getDecl(); 179 if (UD->hasAttr<TransparentUnionAttr>()) { 180 assert(!UD->field_empty() && "sema created an empty transparent union"); 181 return UD->field_begin()->getType(); 182 } 183 } 184 return Ty; 185 } 186 187 CGCXXABI &ABIInfo::getCXXABI() const { 188 return CGT.getCXXABI(); 189 } 190 191 ASTContext &ABIInfo::getContext() const { 192 return CGT.getContext(); 193 } 194 195 llvm::LLVMContext &ABIInfo::getVMContext() const { 196 return CGT.getLLVMContext(); 197 } 198 199 const llvm::DataLayout &ABIInfo::getDataLayout() const { 200 return CGT.getDataLayout(); 201 } 202 203 const TargetInfo &ABIInfo::getTarget() const { 204 return CGT.getTarget(); 205 } 206 207 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 208 return CGT.getCodeGenOpts(); 209 } 210 211 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 212 213 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 214 return false; 215 } 216 217 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 218 uint64_t Members) const { 219 return false; 220 } 221 222 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 223 raw_ostream &OS = llvm::errs(); 224 OS << "(ABIArgInfo Kind="; 225 switch (TheKind) { 226 case Direct: 227 OS << "Direct Type="; 228 if (llvm::Type *Ty = getCoerceToType()) 229 Ty->print(OS); 230 else 231 OS << "null"; 232 break; 233 case Extend: 234 OS << "Extend"; 235 break; 236 case Ignore: 237 OS << "Ignore"; 238 break; 239 case InAlloca: 240 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 241 break; 242 case Indirect: 243 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 244 << " ByVal=" << getIndirectByVal() 245 << " Realign=" << getIndirectRealign(); 246 break; 247 case Expand: 248 OS << "Expand"; 249 break; 250 case CoerceAndExpand: 251 OS << "CoerceAndExpand Type="; 252 getCoerceAndExpandType()->print(OS); 253 break; 254 } 255 OS << ")\n"; 256 } 257 258 // Dynamically round a pointer up to a multiple of the given alignment. 259 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 260 llvm::Value *Ptr, 261 CharUnits Align) { 262 llvm::Value *PtrAsInt = Ptr; 263 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 264 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 265 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 267 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 268 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 269 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 270 Ptr->getType(), 271 Ptr->getName() + ".aligned"); 272 return PtrAsInt; 273 } 274 275 /// Emit va_arg for a platform using the common void* representation, 276 /// where arguments are simply emitted in an array of slots on the stack. 277 /// 278 /// This version implements the core direct-value passing rules. 279 /// 280 /// \param SlotSize - The size and alignment of a stack slot. 281 /// Each argument will be allocated to a multiple of this number of 282 /// slots, and all the slots will be aligned to this value. 283 /// \param AllowHigherAlign - The slot alignment is not a cap; 284 /// an argument type with an alignment greater than the slot size 285 /// will be emitted on a higher-alignment address, potentially 286 /// leaving one or more empty slots behind as padding. If this 287 /// is false, the returned address might be less-aligned than 288 /// DirectAlign. 289 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 290 Address VAListAddr, 291 llvm::Type *DirectTy, 292 CharUnits DirectSize, 293 CharUnits DirectAlign, 294 CharUnits SlotSize, 295 bool AllowHigherAlign) { 296 // Cast the element type to i8* if necessary. Some platforms define 297 // va_list as a struct containing an i8* instead of just an i8*. 298 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 299 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 300 301 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 302 303 // If the CC aligns values higher than the slot size, do so if needed. 304 Address Addr = Address::invalid(); 305 if (AllowHigherAlign && DirectAlign > SlotSize) { 306 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 307 DirectAlign); 308 } else { 309 Addr = Address(Ptr, SlotSize); 310 } 311 312 // Advance the pointer past the argument, then store that back. 313 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 314 Address NextPtr = 315 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 316 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 317 318 // If the argument is smaller than a slot, and this is a big-endian 319 // target, the argument will be right-adjusted in its slot. 320 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 321 !DirectTy->isStructTy()) { 322 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 323 } 324 325 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 326 return Addr; 327 } 328 329 /// Emit va_arg for a platform using the common void* representation, 330 /// where arguments are simply emitted in an array of slots on the stack. 331 /// 332 /// \param IsIndirect - Values of this type are passed indirectly. 333 /// \param ValueInfo - The size and alignment of this type, generally 334 /// computed with getContext().getTypeInfoInChars(ValueTy). 335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 336 /// Each argument will be allocated to a multiple of this number of 337 /// slots, and all the slots will be aligned to this value. 338 /// \param AllowHigherAlign - The slot alignment is not a cap; 339 /// an argument type with an alignment greater than the slot size 340 /// will be emitted on a higher-alignment address, potentially 341 /// leaving one or more empty slots behind as padding. 342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 343 QualType ValueTy, bool IsIndirect, 344 std::pair<CharUnits, CharUnits> ValueInfo, 345 CharUnits SlotSizeAndAlign, 346 bool AllowHigherAlign) { 347 // The size and alignment of the value that was passed directly. 348 CharUnits DirectSize, DirectAlign; 349 if (IsIndirect) { 350 DirectSize = CGF.getPointerSize(); 351 DirectAlign = CGF.getPointerAlign(); 352 } else { 353 DirectSize = ValueInfo.first; 354 DirectAlign = ValueInfo.second; 355 } 356 357 // Cast the address we've calculated to the right type. 358 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 359 if (IsIndirect) 360 DirectTy = DirectTy->getPointerTo(0); 361 362 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 363 DirectSize, DirectAlign, 364 SlotSizeAndAlign, 365 AllowHigherAlign); 366 367 if (IsIndirect) { 368 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 369 } 370 371 return Addr; 372 373 } 374 375 static Address emitMergePHI(CodeGenFunction &CGF, 376 Address Addr1, llvm::BasicBlock *Block1, 377 Address Addr2, llvm::BasicBlock *Block2, 378 const llvm::Twine &Name = "") { 379 assert(Addr1.getType() == Addr2.getType()); 380 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 381 PHI->addIncoming(Addr1.getPointer(), Block1); 382 PHI->addIncoming(Addr2.getPointer(), Block2); 383 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 384 return Address(PHI, Align); 385 } 386 387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 388 389 // If someone can figure out a general rule for this, that would be great. 390 // It's probably just doomed to be platform-dependent, though. 391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 392 // Verified for: 393 // x86-64 FreeBSD, Linux, Darwin 394 // x86-32 FreeBSD, Linux, Darwin 395 // PowerPC Linux, Darwin 396 // ARM Darwin (*not* EABI) 397 // AArch64 Linux 398 return 32; 399 } 400 401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 402 const FunctionNoProtoType *fnType) const { 403 // The following conventions are known to require this to be false: 404 // x86_stdcall 405 // MIPS 406 // For everything else, we just prefer false unless we opt out. 407 return false; 408 } 409 410 void 411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 412 llvm::SmallString<24> &Opt) const { 413 // This assumes the user is passing a library name like "rt" instead of a 414 // filename like "librt.a/so", and that they don't care whether it's static or 415 // dynamic. 416 Opt = "-l"; 417 Opt += Lib; 418 } 419 420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 421 // OpenCL kernels are called via an explicit runtime API with arguments 422 // set with clSetKernelArg(), not as normal sub-functions. 423 // Return SPIR_KERNEL by default as the kernel calling convention to 424 // ensure the fingerprint is fixed such way that each OpenCL argument 425 // gets one matching argument in the produced kernel function argument 426 // list to enable feasible implementation of clSetKernelArg() with 427 // aggregates etc. In case we would use the default C calling conv here, 428 // clSetKernelArg() might break depending on the target-specific 429 // conventions; different targets might split structs passed as values 430 // to multiple function arguments etc. 431 return llvm::CallingConv::SPIR_KERNEL; 432 } 433 434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 435 llvm::PointerType *T, QualType QT) const { 436 return llvm::ConstantPointerNull::get(T); 437 } 438 439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 440 const VarDecl *D) const { 441 assert(!CGM.getLangOpts().OpenCL && 442 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 443 "Address space agnostic languages only"); 444 return D ? D->getType().getAddressSpace() : LangAS::Default; 445 } 446 447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 448 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 449 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 450 // Since target may map different address spaces in AST to the same address 451 // space, an address space conversion may end up as a bitcast. 452 if (auto *C = dyn_cast<llvm::Constant>(Src)) 453 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 454 // Try to preserve the source's name to make IR more readable. 455 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 456 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 457 } 458 459 llvm::Constant * 460 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 461 LangAS SrcAddr, LangAS DestAddr, 462 llvm::Type *DestTy) const { 463 // Since target may map different address spaces in AST to the same address 464 // space, an address space conversion may end up as a bitcast. 465 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 466 } 467 468 llvm::SyncScope::ID 469 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 470 SyncScope Scope, 471 llvm::AtomicOrdering Ordering, 472 llvm::LLVMContext &Ctx) const { 473 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 474 } 475 476 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 477 478 /// isEmptyField - Return true iff a the field is "empty", that is it 479 /// is an unnamed bit-field or an (array of) empty record(s). 480 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 481 bool AllowArrays) { 482 if (FD->isUnnamedBitfield()) 483 return true; 484 485 QualType FT = FD->getType(); 486 487 // Constant arrays of empty records count as empty, strip them off. 488 // Constant arrays of zero length always count as empty. 489 if (AllowArrays) 490 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 491 if (AT->getSize() == 0) 492 return true; 493 FT = AT->getElementType(); 494 } 495 496 const RecordType *RT = FT->getAs<RecordType>(); 497 if (!RT) 498 return false; 499 500 // C++ record fields are never empty, at least in the Itanium ABI. 501 // 502 // FIXME: We should use a predicate for whether this behavior is true in the 503 // current ABI. 504 if (isa<CXXRecordDecl>(RT->getDecl())) 505 return false; 506 507 return isEmptyRecord(Context, FT, AllowArrays); 508 } 509 510 /// isEmptyRecord - Return true iff a structure contains only empty 511 /// fields. Note that a structure with a flexible array member is not 512 /// considered empty. 513 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 514 const RecordType *RT = T->getAs<RecordType>(); 515 if (!RT) 516 return false; 517 const RecordDecl *RD = RT->getDecl(); 518 if (RD->hasFlexibleArrayMember()) 519 return false; 520 521 // If this is a C++ record, check the bases first. 522 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 523 for (const auto &I : CXXRD->bases()) 524 if (!isEmptyRecord(Context, I.getType(), true)) 525 return false; 526 527 for (const auto *I : RD->fields()) 528 if (!isEmptyField(Context, I, AllowArrays)) 529 return false; 530 return true; 531 } 532 533 /// isSingleElementStruct - Determine if a structure is a "single 534 /// element struct", i.e. it has exactly one non-empty field or 535 /// exactly one field which is itself a single element 536 /// struct. Structures with flexible array members are never 537 /// considered single element structs. 538 /// 539 /// \return The field declaration for the single non-empty field, if 540 /// it exists. 541 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 542 const RecordType *RT = T->getAs<RecordType>(); 543 if (!RT) 544 return nullptr; 545 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return nullptr; 549 550 const Type *Found = nullptr; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 554 for (const auto &I : CXXRD->bases()) { 555 // Ignore empty records. 556 if (isEmptyRecord(Context, I.getType(), true)) 557 continue; 558 559 // If we already found an element then this isn't a single-element struct. 560 if (Found) 561 return nullptr; 562 563 // If this is non-empty and not a single element struct, the composite 564 // cannot be a single element struct. 565 Found = isSingleElementStruct(I.getType(), Context); 566 if (!Found) 567 return nullptr; 568 } 569 } 570 571 // Check for single element. 572 for (const auto *FD : RD->fields()) { 573 QualType FT = FD->getType(); 574 575 // Ignore empty fields. 576 if (isEmptyField(Context, FD, true)) 577 continue; 578 579 // If we already found an element then this isn't a single-element 580 // struct. 581 if (Found) 582 return nullptr; 583 584 // Treat single element arrays as the element. 585 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 586 if (AT->getSize().getZExtValue() != 1) 587 break; 588 FT = AT->getElementType(); 589 } 590 591 if (!isAggregateTypeForABI(FT)) { 592 Found = FT.getTypePtr(); 593 } else { 594 Found = isSingleElementStruct(FT, Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // We don't consider a struct a single-element struct if it has 601 // padding beyond the element type. 602 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 603 return nullptr; 604 605 return Found; 606 } 607 608 namespace { 609 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 610 const ABIArgInfo &AI) { 611 // This default implementation defers to the llvm backend's va_arg 612 // instruction. It can handle only passing arguments directly 613 // (typically only handled in the backend for primitive types), or 614 // aggregates passed indirectly by pointer (NOTE: if the "byval" 615 // flag has ABI impact in the callee, this implementation cannot 616 // work.) 617 618 // Only a few cases are covered here at the moment -- those needed 619 // by the default abi. 620 llvm::Value *Val; 621 622 if (AI.isIndirect()) { 623 assert(!AI.getPaddingType() && 624 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 625 assert( 626 !AI.getIndirectRealign() && 627 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 628 629 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 630 CharUnits TyAlignForABI = TyInfo.second; 631 632 llvm::Type *BaseTy = 633 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 634 llvm::Value *Addr = 635 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 636 return Address(Addr, TyAlignForABI); 637 } else { 638 assert((AI.isDirect() || AI.isExtend()) && 639 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 640 641 assert(!AI.getInReg() && 642 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 643 assert(!AI.getPaddingType() && 644 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 645 assert(!AI.getDirectOffset() && 646 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 647 assert(!AI.getCoerceToType() && 648 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 649 650 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 651 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 652 CGF.Builder.CreateStore(Val, Temp); 653 return Temp; 654 } 655 } 656 657 /// DefaultABIInfo - The default implementation for ABI specific 658 /// details. This implementation provides information which results in 659 /// self-consistent and sensible LLVM IR generation, but does not 660 /// conform to any particular ABI. 661 class DefaultABIInfo : public ABIInfo { 662 public: 663 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 664 665 ABIArgInfo classifyReturnType(QualType RetTy) const; 666 ABIArgInfo classifyArgumentType(QualType RetTy) const; 667 668 void computeInfo(CGFunctionInfo &FI) const override { 669 if (!getCXXABI().classifyReturnType(FI)) 670 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 671 for (auto &I : FI.arguments()) 672 I.info = classifyArgumentType(I.type); 673 } 674 675 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 676 QualType Ty) const override { 677 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 678 } 679 }; 680 681 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 682 public: 683 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 684 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 685 }; 686 687 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 688 Ty = useFirstFieldIfTransparentUnion(Ty); 689 690 if (isAggregateTypeForABI(Ty)) { 691 // Records with non-trivial destructors/copy-constructors should not be 692 // passed by value. 693 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 694 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 695 696 return getNaturalAlignIndirect(Ty); 697 } 698 699 // Treat an enum type as its underlying type. 700 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 701 Ty = EnumTy->getDecl()->getIntegerType(); 702 703 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 704 : ABIArgInfo::getDirect()); 705 } 706 707 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 708 if (RetTy->isVoidType()) 709 return ABIArgInfo::getIgnore(); 710 711 if (isAggregateTypeForABI(RetTy)) 712 return getNaturalAlignIndirect(RetTy); 713 714 // Treat an enum type as its underlying type. 715 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 716 RetTy = EnumTy->getDecl()->getIntegerType(); 717 718 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 719 : ABIArgInfo::getDirect()); 720 } 721 722 //===----------------------------------------------------------------------===// 723 // WebAssembly ABI Implementation 724 // 725 // This is a very simple ABI that relies a lot on DefaultABIInfo. 726 //===----------------------------------------------------------------------===// 727 728 class WebAssemblyABIInfo final : public SwiftABIInfo { 729 DefaultABIInfo defaultInfo; 730 731 public: 732 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 733 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 734 735 private: 736 ABIArgInfo classifyReturnType(QualType RetTy) const; 737 ABIArgInfo classifyArgumentType(QualType Ty) const; 738 739 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 740 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 741 // overload them. 742 void computeInfo(CGFunctionInfo &FI) const override { 743 if (!getCXXABI().classifyReturnType(FI)) 744 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 745 for (auto &Arg : FI.arguments()) 746 Arg.info = classifyArgumentType(Arg.type); 747 } 748 749 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 750 QualType Ty) const override; 751 752 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 753 bool asReturnValue) const override { 754 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 755 } 756 757 bool isSwiftErrorInRegister() const override { 758 return false; 759 } 760 }; 761 762 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 763 public: 764 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 765 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 766 767 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 768 CodeGen::CodeGenModule &CGM) const override { 769 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 770 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 771 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 772 llvm::Function *Fn = cast<llvm::Function>(GV); 773 llvm::AttrBuilder B; 774 B.addAttribute("wasm-import-module", Attr->getImportModule()); 775 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 776 } 777 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 778 llvm::Function *Fn = cast<llvm::Function>(GV); 779 llvm::AttrBuilder B; 780 B.addAttribute("wasm-import-name", Attr->getImportName()); 781 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 782 } 783 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 784 llvm::Function *Fn = cast<llvm::Function>(GV); 785 llvm::AttrBuilder B; 786 B.addAttribute("wasm-export-name", Attr->getExportName()); 787 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 788 } 789 } 790 791 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 792 llvm::Function *Fn = cast<llvm::Function>(GV); 793 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 794 Fn->addFnAttr("no-prototype"); 795 } 796 } 797 }; 798 799 /// Classify argument of given type \p Ty. 800 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 801 Ty = useFirstFieldIfTransparentUnion(Ty); 802 803 if (isAggregateTypeForABI(Ty)) { 804 // Records with non-trivial destructors/copy-constructors should not be 805 // passed by value. 806 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 807 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 808 // Ignore empty structs/unions. 809 if (isEmptyRecord(getContext(), Ty, true)) 810 return ABIArgInfo::getIgnore(); 811 // Lower single-element structs to just pass a regular value. TODO: We 812 // could do reasonable-size multiple-element structs too, using getExpand(), 813 // though watch out for things like bitfields. 814 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 815 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 816 } 817 818 // Otherwise just do the default thing. 819 return defaultInfo.classifyArgumentType(Ty); 820 } 821 822 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 823 if (isAggregateTypeForABI(RetTy)) { 824 // Records with non-trivial destructors/copy-constructors should not be 825 // returned by value. 826 if (!getRecordArgABI(RetTy, getCXXABI())) { 827 // Ignore empty structs/unions. 828 if (isEmptyRecord(getContext(), RetTy, true)) 829 return ABIArgInfo::getIgnore(); 830 // Lower single-element structs to just return a regular value. TODO: We 831 // could do reasonable-size multiple-element structs too, using 832 // ABIArgInfo::getDirect(). 833 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 834 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 835 } 836 } 837 838 // Otherwise just do the default thing. 839 return defaultInfo.classifyReturnType(RetTy); 840 } 841 842 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 843 QualType Ty) const { 844 bool IsIndirect = isAggregateTypeForABI(Ty) && 845 !isEmptyRecord(getContext(), Ty, true) && 846 !isSingleElementStruct(Ty, getContext()); 847 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 848 getContext().getTypeInfoInChars(Ty), 849 CharUnits::fromQuantity(4), 850 /*AllowHigherAlign=*/true); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // le32/PNaCl bitcode ABI Implementation 855 // 856 // This is a simplified version of the x86_32 ABI. Arguments and return values 857 // are always passed on the stack. 858 //===----------------------------------------------------------------------===// 859 860 class PNaClABIInfo : public ABIInfo { 861 public: 862 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 863 864 ABIArgInfo classifyReturnType(QualType RetTy) const; 865 ABIArgInfo classifyArgumentType(QualType RetTy) const; 866 867 void computeInfo(CGFunctionInfo &FI) const override; 868 Address EmitVAArg(CodeGenFunction &CGF, 869 Address VAListAddr, QualType Ty) const override; 870 }; 871 872 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 873 public: 874 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 875 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 876 }; 877 878 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 879 if (!getCXXABI().classifyReturnType(FI)) 880 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 881 882 for (auto &I : FI.arguments()) 883 I.info = classifyArgumentType(I.type); 884 } 885 886 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 887 QualType Ty) const { 888 // The PNaCL ABI is a bit odd, in that varargs don't use normal 889 // function classification. Structs get passed directly for varargs 890 // functions, through a rewriting transform in 891 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 892 // this target to actually support a va_arg instructions with an 893 // aggregate type, unlike other targets. 894 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 895 } 896 897 /// Classify argument of given type \p Ty. 898 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 899 if (isAggregateTypeForABI(Ty)) { 900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 901 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 902 return getNaturalAlignIndirect(Ty); 903 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 904 // Treat an enum type as its underlying type. 905 Ty = EnumTy->getDecl()->getIntegerType(); 906 } else if (Ty->isFloatingType()) { 907 // Floating-point types don't go inreg. 908 return ABIArgInfo::getDirect(); 909 } 910 911 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 912 : ABIArgInfo::getDirect()); 913 } 914 915 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 916 if (RetTy->isVoidType()) 917 return ABIArgInfo::getIgnore(); 918 919 // In the PNaCl ABI we always return records/structures on the stack. 920 if (isAggregateTypeForABI(RetTy)) 921 return getNaturalAlignIndirect(RetTy); 922 923 // Treat an enum type as its underlying type. 924 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 925 RetTy = EnumTy->getDecl()->getIntegerType(); 926 927 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 928 : ABIArgInfo::getDirect()); 929 } 930 931 /// IsX86_MMXType - Return true if this is an MMX type. 932 bool IsX86_MMXType(llvm::Type *IRType) { 933 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 934 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 935 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 936 IRType->getScalarSizeInBits() != 64; 937 } 938 939 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 940 StringRef Constraint, 941 llvm::Type* Ty) { 942 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 943 .Cases("y", "&y", "^Ym", true) 944 .Default(false); 945 if (IsMMXCons && Ty->isVectorTy()) { 946 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 947 // Invalid MMX constraint 948 return nullptr; 949 } 950 951 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 952 } 953 954 // No operation needed 955 return Ty; 956 } 957 958 /// Returns true if this type can be passed in SSE registers with the 959 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 960 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 961 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 962 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 963 if (BT->getKind() == BuiltinType::LongDouble) { 964 if (&Context.getTargetInfo().getLongDoubleFormat() == 965 &llvm::APFloat::x87DoubleExtended()) 966 return false; 967 } 968 return true; 969 } 970 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 971 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 972 // registers specially. 973 unsigned VecSize = Context.getTypeSize(VT); 974 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 975 return true; 976 } 977 return false; 978 } 979 980 /// Returns true if this aggregate is small enough to be passed in SSE registers 981 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 982 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 983 return NumMembers <= 4; 984 } 985 986 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 987 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 988 auto AI = ABIArgInfo::getDirect(T); 989 AI.setInReg(true); 990 AI.setCanBeFlattened(false); 991 return AI; 992 } 993 994 //===----------------------------------------------------------------------===// 995 // X86-32 ABI Implementation 996 //===----------------------------------------------------------------------===// 997 998 /// Similar to llvm::CCState, but for Clang. 999 struct CCState { 1000 CCState(CGFunctionInfo &FI) 1001 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1002 1003 llvm::SmallBitVector IsPreassigned; 1004 unsigned CC = CallingConv::CC_C; 1005 unsigned FreeRegs = 0; 1006 unsigned FreeSSERegs = 0; 1007 }; 1008 1009 enum { 1010 // Vectorcall only allows the first 6 parameters to be passed in registers. 1011 VectorcallMaxParamNumAsReg = 6 1012 }; 1013 1014 /// X86_32ABIInfo - The X86-32 ABI information. 1015 class X86_32ABIInfo : public SwiftABIInfo { 1016 enum Class { 1017 Integer, 1018 Float 1019 }; 1020 1021 static const unsigned MinABIStackAlignInBytes = 4; 1022 1023 bool IsDarwinVectorABI; 1024 bool IsRetSmallStructInRegABI; 1025 bool IsWin32StructABI; 1026 bool IsSoftFloatABI; 1027 bool IsMCUABI; 1028 unsigned DefaultNumRegisterParameters; 1029 1030 static bool isRegisterSize(unsigned Size) { 1031 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1032 } 1033 1034 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1035 // FIXME: Assumes vectorcall is in use. 1036 return isX86VectorTypeForVectorCall(getContext(), Ty); 1037 } 1038 1039 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1040 uint64_t NumMembers) const override { 1041 // FIXME: Assumes vectorcall is in use. 1042 return isX86VectorCallAggregateSmallEnough(NumMembers); 1043 } 1044 1045 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1046 1047 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1048 /// such that the argument will be passed in memory. 1049 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1050 1051 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1052 1053 /// Return the alignment to use for the given type on the stack. 1054 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1055 1056 Class classify(QualType Ty) const; 1057 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1058 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1059 1060 /// Updates the number of available free registers, returns 1061 /// true if any registers were allocated. 1062 bool updateFreeRegs(QualType Ty, CCState &State) const; 1063 1064 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1065 bool &NeedsPadding) const; 1066 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1067 1068 bool canExpandIndirectArgument(QualType Ty) const; 1069 1070 /// Rewrite the function info so that all memory arguments use 1071 /// inalloca. 1072 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1073 1074 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1075 CharUnits &StackOffset, ABIArgInfo &Info, 1076 QualType Type) const; 1077 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1078 1079 public: 1080 1081 void computeInfo(CGFunctionInfo &FI) const override; 1082 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1083 QualType Ty) const override; 1084 1085 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1086 bool RetSmallStructInRegABI, bool Win32StructABI, 1087 unsigned NumRegisterParameters, bool SoftFloatABI) 1088 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1089 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1090 IsWin32StructABI(Win32StructABI), 1091 IsSoftFloatABI(SoftFloatABI), 1092 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1093 DefaultNumRegisterParameters(NumRegisterParameters) {} 1094 1095 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1096 bool asReturnValue) const override { 1097 // LLVM's x86-32 lowering currently only assigns up to three 1098 // integer registers and three fp registers. Oddly, it'll use up to 1099 // four vector registers for vectors, but those can overlap with the 1100 // scalar registers. 1101 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1102 } 1103 1104 bool isSwiftErrorInRegister() const override { 1105 // x86-32 lowering does not support passing swifterror in a register. 1106 return false; 1107 } 1108 }; 1109 1110 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1111 public: 1112 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1113 bool RetSmallStructInRegABI, bool Win32StructABI, 1114 unsigned NumRegisterParameters, bool SoftFloatABI) 1115 : TargetCodeGenInfo(new X86_32ABIInfo( 1116 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1117 NumRegisterParameters, SoftFloatABI)) {} 1118 1119 static bool isStructReturnInRegABI( 1120 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1121 1122 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1123 CodeGen::CodeGenModule &CGM) const override; 1124 1125 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1126 // Darwin uses different dwarf register numbers for EH. 1127 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1128 return 4; 1129 } 1130 1131 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1132 llvm::Value *Address) const override; 1133 1134 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1135 StringRef Constraint, 1136 llvm::Type* Ty) const override { 1137 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1138 } 1139 1140 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1141 std::string &Constraints, 1142 std::vector<llvm::Type *> &ResultRegTypes, 1143 std::vector<llvm::Type *> &ResultTruncRegTypes, 1144 std::vector<LValue> &ResultRegDests, 1145 std::string &AsmString, 1146 unsigned NumOutputs) const override; 1147 1148 llvm::Constant * 1149 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1150 unsigned Sig = (0xeb << 0) | // jmp rel8 1151 (0x06 << 8) | // .+0x08 1152 ('v' << 16) | 1153 ('2' << 24); 1154 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1155 } 1156 1157 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1158 return "movl\t%ebp, %ebp" 1159 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1160 } 1161 }; 1162 1163 } 1164 1165 /// Rewrite input constraint references after adding some output constraints. 1166 /// In the case where there is one output and one input and we add one output, 1167 /// we need to replace all operand references greater than or equal to 1: 1168 /// mov $0, $1 1169 /// mov eax, $1 1170 /// The result will be: 1171 /// mov $0, $2 1172 /// mov eax, $2 1173 static void rewriteInputConstraintReferences(unsigned FirstIn, 1174 unsigned NumNewOuts, 1175 std::string &AsmString) { 1176 std::string Buf; 1177 llvm::raw_string_ostream OS(Buf); 1178 size_t Pos = 0; 1179 while (Pos < AsmString.size()) { 1180 size_t DollarStart = AsmString.find('$', Pos); 1181 if (DollarStart == std::string::npos) 1182 DollarStart = AsmString.size(); 1183 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1184 if (DollarEnd == std::string::npos) 1185 DollarEnd = AsmString.size(); 1186 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1187 Pos = DollarEnd; 1188 size_t NumDollars = DollarEnd - DollarStart; 1189 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1190 // We have an operand reference. 1191 size_t DigitStart = Pos; 1192 if (AsmString[DigitStart] == '{') { 1193 OS << '{'; 1194 ++DigitStart; 1195 } 1196 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1197 if (DigitEnd == std::string::npos) 1198 DigitEnd = AsmString.size(); 1199 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1200 unsigned OperandIndex; 1201 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1202 if (OperandIndex >= FirstIn) 1203 OperandIndex += NumNewOuts; 1204 OS << OperandIndex; 1205 } else { 1206 OS << OperandStr; 1207 } 1208 Pos = DigitEnd; 1209 } 1210 } 1211 AsmString = std::move(OS.str()); 1212 } 1213 1214 /// Add output constraints for EAX:EDX because they are return registers. 1215 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1216 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1217 std::vector<llvm::Type *> &ResultRegTypes, 1218 std::vector<llvm::Type *> &ResultTruncRegTypes, 1219 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1220 unsigned NumOutputs) const { 1221 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1222 1223 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1224 // larger. 1225 if (!Constraints.empty()) 1226 Constraints += ','; 1227 if (RetWidth <= 32) { 1228 Constraints += "={eax}"; 1229 ResultRegTypes.push_back(CGF.Int32Ty); 1230 } else { 1231 // Use the 'A' constraint for EAX:EDX. 1232 Constraints += "=A"; 1233 ResultRegTypes.push_back(CGF.Int64Ty); 1234 } 1235 1236 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1237 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1238 ResultTruncRegTypes.push_back(CoerceTy); 1239 1240 // Coerce the integer by bitcasting the return slot pointer. 1241 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1242 CoerceTy->getPointerTo())); 1243 ResultRegDests.push_back(ReturnSlot); 1244 1245 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1246 } 1247 1248 /// shouldReturnTypeInRegister - Determine if the given type should be 1249 /// returned in a register (for the Darwin and MCU ABI). 1250 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1251 ASTContext &Context) const { 1252 uint64_t Size = Context.getTypeSize(Ty); 1253 1254 // For i386, type must be register sized. 1255 // For the MCU ABI, it only needs to be <= 8-byte 1256 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1257 return false; 1258 1259 if (Ty->isVectorType()) { 1260 // 64- and 128- bit vectors inside structures are not returned in 1261 // registers. 1262 if (Size == 64 || Size == 128) 1263 return false; 1264 1265 return true; 1266 } 1267 1268 // If this is a builtin, pointer, enum, complex type, member pointer, or 1269 // member function pointer it is ok. 1270 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1271 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1272 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1273 return true; 1274 1275 // Arrays are treated like records. 1276 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1277 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1278 1279 // Otherwise, it must be a record type. 1280 const RecordType *RT = Ty->getAs<RecordType>(); 1281 if (!RT) return false; 1282 1283 // FIXME: Traverse bases here too. 1284 1285 // Structure types are passed in register if all fields would be 1286 // passed in a register. 1287 for (const auto *FD : RT->getDecl()->fields()) { 1288 // Empty fields are ignored. 1289 if (isEmptyField(Context, FD, true)) 1290 continue; 1291 1292 // Check fields recursively. 1293 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1300 // Treat complex types as the element type. 1301 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1302 Ty = CTy->getElementType(); 1303 1304 // Check for a type which we know has a simple scalar argument-passing 1305 // convention without any padding. (We're specifically looking for 32 1306 // and 64-bit integer and integer-equivalents, float, and double.) 1307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1308 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1309 return false; 1310 1311 uint64_t Size = Context.getTypeSize(Ty); 1312 return Size == 32 || Size == 64; 1313 } 1314 1315 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1316 uint64_t &Size) { 1317 for (const auto *FD : RD->fields()) { 1318 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1319 // argument is smaller than 32-bits, expanding the struct will create 1320 // alignment padding. 1321 if (!is32Or64BitBasicType(FD->getType(), Context)) 1322 return false; 1323 1324 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1325 // how to expand them yet, and the predicate for telling if a bitfield still 1326 // counts as "basic" is more complicated than what we were doing previously. 1327 if (FD->isBitField()) 1328 return false; 1329 1330 Size += Context.getTypeSize(FD->getType()); 1331 } 1332 return true; 1333 } 1334 1335 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1336 uint64_t &Size) { 1337 // Don't do this if there are any non-empty bases. 1338 for (const CXXBaseSpecifier &Base : RD->bases()) { 1339 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1340 Size)) 1341 return false; 1342 } 1343 if (!addFieldSizes(Context, RD, Size)) 1344 return false; 1345 return true; 1346 } 1347 1348 /// Test whether an argument type which is to be passed indirectly (on the 1349 /// stack) would have the equivalent layout if it was expanded into separate 1350 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1351 /// optimizations. 1352 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1353 // We can only expand structure types. 1354 const RecordType *RT = Ty->getAs<RecordType>(); 1355 if (!RT) 1356 return false; 1357 const RecordDecl *RD = RT->getDecl(); 1358 uint64_t Size = 0; 1359 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1360 if (!IsWin32StructABI) { 1361 // On non-Windows, we have to conservatively match our old bitcode 1362 // prototypes in order to be ABI-compatible at the bitcode level. 1363 if (!CXXRD->isCLike()) 1364 return false; 1365 } else { 1366 // Don't do this for dynamic classes. 1367 if (CXXRD->isDynamicClass()) 1368 return false; 1369 } 1370 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1371 return false; 1372 } else { 1373 if (!addFieldSizes(getContext(), RD, Size)) 1374 return false; 1375 } 1376 1377 // We can do this if there was no alignment padding. 1378 return Size == getContext().getTypeSize(Ty); 1379 } 1380 1381 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1382 // If the return value is indirect, then the hidden argument is consuming one 1383 // integer register. 1384 if (State.FreeRegs) { 1385 --State.FreeRegs; 1386 if (!IsMCUABI) 1387 return getNaturalAlignIndirectInReg(RetTy); 1388 } 1389 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1390 } 1391 1392 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1393 CCState &State) const { 1394 if (RetTy->isVoidType()) 1395 return ABIArgInfo::getIgnore(); 1396 1397 const Type *Base = nullptr; 1398 uint64_t NumElts = 0; 1399 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1400 State.CC == llvm::CallingConv::X86_RegCall) && 1401 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1402 // The LLVM struct type for such an aggregate should lower properly. 1403 return ABIArgInfo::getDirect(); 1404 } 1405 1406 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1407 // On Darwin, some vectors are returned in registers. 1408 if (IsDarwinVectorABI) { 1409 uint64_t Size = getContext().getTypeSize(RetTy); 1410 1411 // 128-bit vectors are a special case; they are returned in 1412 // registers and we need to make sure to pick a type the LLVM 1413 // backend will like. 1414 if (Size == 128) 1415 return ABIArgInfo::getDirect(llvm::VectorType::get( 1416 llvm::Type::getInt64Ty(getVMContext()), 2)); 1417 1418 // Always return in register if it fits in a general purpose 1419 // register, or if it is 64 bits and has a single element. 1420 if ((Size == 8 || Size == 16 || Size == 32) || 1421 (Size == 64 && VT->getNumElements() == 1)) 1422 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1423 Size)); 1424 1425 return getIndirectReturnResult(RetTy, State); 1426 } 1427 1428 return ABIArgInfo::getDirect(); 1429 } 1430 1431 if (isAggregateTypeForABI(RetTy)) { 1432 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1433 // Structures with flexible arrays are always indirect. 1434 if (RT->getDecl()->hasFlexibleArrayMember()) 1435 return getIndirectReturnResult(RetTy, State); 1436 } 1437 1438 // If specified, structs and unions are always indirect. 1439 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1440 return getIndirectReturnResult(RetTy, State); 1441 1442 // Ignore empty structs/unions. 1443 if (isEmptyRecord(getContext(), RetTy, true)) 1444 return ABIArgInfo::getIgnore(); 1445 1446 // Small structures which are register sized are generally returned 1447 // in a register. 1448 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1449 uint64_t Size = getContext().getTypeSize(RetTy); 1450 1451 // As a special-case, if the struct is a "single-element" struct, and 1452 // the field is of type "float" or "double", return it in a 1453 // floating-point register. (MSVC does not apply this special case.) 1454 // We apply a similar transformation for pointer types to improve the 1455 // quality of the generated IR. 1456 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1457 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1458 || SeltTy->hasPointerRepresentation()) 1459 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1460 1461 // FIXME: We should be able to narrow this integer in cases with dead 1462 // padding. 1463 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1464 } 1465 1466 return getIndirectReturnResult(RetTy, State); 1467 } 1468 1469 // Treat an enum type as its underlying type. 1470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1471 RetTy = EnumTy->getDecl()->getIntegerType(); 1472 1473 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1474 : ABIArgInfo::getDirect()); 1475 } 1476 1477 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1478 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1479 } 1480 1481 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1482 const RecordType *RT = Ty->getAs<RecordType>(); 1483 if (!RT) 1484 return 0; 1485 const RecordDecl *RD = RT->getDecl(); 1486 1487 // If this is a C++ record, check the bases first. 1488 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1489 for (const auto &I : CXXRD->bases()) 1490 if (!isRecordWithSSEVectorType(Context, I.getType())) 1491 return false; 1492 1493 for (const auto *i : RD->fields()) { 1494 QualType FT = i->getType(); 1495 1496 if (isSSEVectorType(Context, FT)) 1497 return true; 1498 1499 if (isRecordWithSSEVectorType(Context, FT)) 1500 return true; 1501 } 1502 1503 return false; 1504 } 1505 1506 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1507 unsigned Align) const { 1508 // Otherwise, if the alignment is less than or equal to the minimum ABI 1509 // alignment, just use the default; the backend will handle this. 1510 if (Align <= MinABIStackAlignInBytes) 1511 return 0; // Use default alignment. 1512 1513 // On non-Darwin, the stack type alignment is always 4. 1514 if (!IsDarwinVectorABI) { 1515 // Set explicit alignment, since we may need to realign the top. 1516 return MinABIStackAlignInBytes; 1517 } 1518 1519 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1520 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1521 isRecordWithSSEVectorType(getContext(), Ty))) 1522 return 16; 1523 1524 return MinABIStackAlignInBytes; 1525 } 1526 1527 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1528 CCState &State) const { 1529 if (!ByVal) { 1530 if (State.FreeRegs) { 1531 --State.FreeRegs; // Non-byval indirects just use one pointer. 1532 if (!IsMCUABI) 1533 return getNaturalAlignIndirectInReg(Ty); 1534 } 1535 return getNaturalAlignIndirect(Ty, false); 1536 } 1537 1538 // Compute the byval alignment. 1539 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1540 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1541 if (StackAlign == 0) 1542 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1543 1544 // If the stack alignment is less than the type alignment, realign the 1545 // argument. 1546 bool Realign = TypeAlign > StackAlign; 1547 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1548 /*ByVal=*/true, Realign); 1549 } 1550 1551 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1552 const Type *T = isSingleElementStruct(Ty, getContext()); 1553 if (!T) 1554 T = Ty.getTypePtr(); 1555 1556 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1557 BuiltinType::Kind K = BT->getKind(); 1558 if (K == BuiltinType::Float || K == BuiltinType::Double) 1559 return Float; 1560 } 1561 return Integer; 1562 } 1563 1564 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1565 if (!IsSoftFloatABI) { 1566 Class C = classify(Ty); 1567 if (C == Float) 1568 return false; 1569 } 1570 1571 unsigned Size = getContext().getTypeSize(Ty); 1572 unsigned SizeInRegs = (Size + 31) / 32; 1573 1574 if (SizeInRegs == 0) 1575 return false; 1576 1577 if (!IsMCUABI) { 1578 if (SizeInRegs > State.FreeRegs) { 1579 State.FreeRegs = 0; 1580 return false; 1581 } 1582 } else { 1583 // The MCU psABI allows passing parameters in-reg even if there are 1584 // earlier parameters that are passed on the stack. Also, 1585 // it does not allow passing >8-byte structs in-register, 1586 // even if there are 3 free registers available. 1587 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1588 return false; 1589 } 1590 1591 State.FreeRegs -= SizeInRegs; 1592 return true; 1593 } 1594 1595 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1596 bool &InReg, 1597 bool &NeedsPadding) const { 1598 // On Windows, aggregates other than HFAs are never passed in registers, and 1599 // they do not consume register slots. Homogenous floating-point aggregates 1600 // (HFAs) have already been dealt with at this point. 1601 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1602 return false; 1603 1604 NeedsPadding = false; 1605 InReg = !IsMCUABI; 1606 1607 if (!updateFreeRegs(Ty, State)) 1608 return false; 1609 1610 if (IsMCUABI) 1611 return true; 1612 1613 if (State.CC == llvm::CallingConv::X86_FastCall || 1614 State.CC == llvm::CallingConv::X86_VectorCall || 1615 State.CC == llvm::CallingConv::X86_RegCall) { 1616 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1617 NeedsPadding = true; 1618 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1626 if (!updateFreeRegs(Ty, State)) 1627 return false; 1628 1629 if (IsMCUABI) 1630 return false; 1631 1632 if (State.CC == llvm::CallingConv::X86_FastCall || 1633 State.CC == llvm::CallingConv::X86_VectorCall || 1634 State.CC == llvm::CallingConv::X86_RegCall) { 1635 if (getContext().getTypeSize(Ty) > 32) 1636 return false; 1637 1638 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1639 Ty->isReferenceType()); 1640 } 1641 1642 return true; 1643 } 1644 1645 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1646 // Vectorcall x86 works subtly different than in x64, so the format is 1647 // a bit different than the x64 version. First, all vector types (not HVAs) 1648 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1649 // This differs from the x64 implementation, where the first 6 by INDEX get 1650 // registers. 1651 // In the second pass over the arguments, HVAs are passed in the remaining 1652 // vector registers if possible, or indirectly by address. The address will be 1653 // passed in ECX/EDX if available. Any other arguments are passed according to 1654 // the usual fastcall rules. 1655 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1656 for (int I = 0, E = Args.size(); I < E; ++I) { 1657 const Type *Base = nullptr; 1658 uint64_t NumElts = 0; 1659 const QualType &Ty = Args[I].type; 1660 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1661 isHomogeneousAggregate(Ty, Base, NumElts)) { 1662 if (State.FreeSSERegs >= NumElts) { 1663 State.FreeSSERegs -= NumElts; 1664 Args[I].info = ABIArgInfo::getDirect(); 1665 State.IsPreassigned.set(I); 1666 } 1667 } 1668 } 1669 } 1670 1671 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1672 CCState &State) const { 1673 // FIXME: Set alignment on indirect arguments. 1674 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1675 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1676 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1677 1678 Ty = useFirstFieldIfTransparentUnion(Ty); 1679 1680 // Check with the C++ ABI first. 1681 const RecordType *RT = Ty->getAs<RecordType>(); 1682 if (RT) { 1683 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1684 if (RAA == CGCXXABI::RAA_Indirect) { 1685 return getIndirectResult(Ty, false, State); 1686 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1687 // The field index doesn't matter, we'll fix it up later. 1688 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1689 } 1690 } 1691 1692 // Regcall uses the concept of a homogenous vector aggregate, similar 1693 // to other targets. 1694 const Type *Base = nullptr; 1695 uint64_t NumElts = 0; 1696 if ((IsRegCall || IsVectorCall) && 1697 isHomogeneousAggregate(Ty, Base, NumElts)) { 1698 if (State.FreeSSERegs >= NumElts) { 1699 State.FreeSSERegs -= NumElts; 1700 1701 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1702 // does. 1703 if (IsVectorCall) 1704 return getDirectX86Hva(); 1705 1706 if (Ty->isBuiltinType() || Ty->isVectorType()) 1707 return ABIArgInfo::getDirect(); 1708 return ABIArgInfo::getExpand(); 1709 } 1710 return getIndirectResult(Ty, /*ByVal=*/false, State); 1711 } 1712 1713 if (isAggregateTypeForABI(Ty)) { 1714 // Structures with flexible arrays are always indirect. 1715 // FIXME: This should not be byval! 1716 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1717 return getIndirectResult(Ty, true, State); 1718 1719 // Ignore empty structs/unions on non-Windows. 1720 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1721 return ABIArgInfo::getIgnore(); 1722 1723 llvm::LLVMContext &LLVMContext = getVMContext(); 1724 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1725 bool NeedsPadding = false; 1726 bool InReg; 1727 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1728 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1729 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1730 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1731 if (InReg) 1732 return ABIArgInfo::getDirectInReg(Result); 1733 else 1734 return ABIArgInfo::getDirect(Result); 1735 } 1736 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1737 1738 // Expand small (<= 128-bit) record types when we know that the stack layout 1739 // of those arguments will match the struct. This is important because the 1740 // LLVM backend isn't smart enough to remove byval, which inhibits many 1741 // optimizations. 1742 // Don't do this for the MCU if there are still free integer registers 1743 // (see X86_64 ABI for full explanation). 1744 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1745 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1746 return ABIArgInfo::getExpandWithPadding( 1747 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1748 1749 return getIndirectResult(Ty, true, State); 1750 } 1751 1752 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1753 // On Darwin, some vectors are passed in memory, we handle this by passing 1754 // it as an i8/i16/i32/i64. 1755 if (IsDarwinVectorABI) { 1756 uint64_t Size = getContext().getTypeSize(Ty); 1757 if ((Size == 8 || Size == 16 || Size == 32) || 1758 (Size == 64 && VT->getNumElements() == 1)) 1759 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1760 Size)); 1761 } 1762 1763 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1764 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1765 1766 return ABIArgInfo::getDirect(); 1767 } 1768 1769 1770 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1771 Ty = EnumTy->getDecl()->getIntegerType(); 1772 1773 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1774 1775 if (Ty->isPromotableIntegerType()) { 1776 if (InReg) 1777 return ABIArgInfo::getExtendInReg(Ty); 1778 return ABIArgInfo::getExtend(Ty); 1779 } 1780 1781 if (InReg) 1782 return ABIArgInfo::getDirectInReg(); 1783 return ABIArgInfo::getDirect(); 1784 } 1785 1786 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1787 CCState State(FI); 1788 if (IsMCUABI) 1789 State.FreeRegs = 3; 1790 else if (State.CC == llvm::CallingConv::X86_FastCall) 1791 State.FreeRegs = 2; 1792 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1793 State.FreeRegs = 2; 1794 State.FreeSSERegs = 6; 1795 } else if (FI.getHasRegParm()) 1796 State.FreeRegs = FI.getRegParm(); 1797 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1798 State.FreeRegs = 5; 1799 State.FreeSSERegs = 8; 1800 } else 1801 State.FreeRegs = DefaultNumRegisterParameters; 1802 1803 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1804 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1805 } else if (FI.getReturnInfo().isIndirect()) { 1806 // The C++ ABI is not aware of register usage, so we have to check if the 1807 // return value was sret and put it in a register ourselves if appropriate. 1808 if (State.FreeRegs) { 1809 --State.FreeRegs; // The sret parameter consumes a register. 1810 if (!IsMCUABI) 1811 FI.getReturnInfo().setInReg(true); 1812 } 1813 } 1814 1815 // The chain argument effectively gives us another free register. 1816 if (FI.isChainCall()) 1817 ++State.FreeRegs; 1818 1819 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1820 // arguments to XMM registers as available. 1821 if (State.CC == llvm::CallingConv::X86_VectorCall) 1822 runVectorCallFirstPass(FI, State); 1823 1824 bool UsedInAlloca = false; 1825 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1826 for (int I = 0, E = Args.size(); I < E; ++I) { 1827 // Skip arguments that have already been assigned. 1828 if (State.IsPreassigned.test(I)) 1829 continue; 1830 1831 Args[I].info = classifyArgumentType(Args[I].type, State); 1832 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1833 } 1834 1835 // If we needed to use inalloca for any argument, do a second pass and rewrite 1836 // all the memory arguments to use inalloca. 1837 if (UsedInAlloca) 1838 rewriteWithInAlloca(FI); 1839 } 1840 1841 void 1842 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1843 CharUnits &StackOffset, ABIArgInfo &Info, 1844 QualType Type) const { 1845 // Arguments are always 4-byte-aligned. 1846 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1847 1848 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1849 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1850 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1851 StackOffset += getContext().getTypeSizeInChars(Type); 1852 1853 // Insert padding bytes to respect alignment. 1854 CharUnits FieldEnd = StackOffset; 1855 StackOffset = FieldEnd.alignTo(FieldAlign); 1856 if (StackOffset != FieldEnd) { 1857 CharUnits NumBytes = StackOffset - FieldEnd; 1858 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1859 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1860 FrameFields.push_back(Ty); 1861 } 1862 } 1863 1864 static bool isArgInAlloca(const ABIArgInfo &Info) { 1865 // Leave ignored and inreg arguments alone. 1866 switch (Info.getKind()) { 1867 case ABIArgInfo::InAlloca: 1868 return true; 1869 case ABIArgInfo::Indirect: 1870 assert(Info.getIndirectByVal()); 1871 return true; 1872 case ABIArgInfo::Ignore: 1873 return false; 1874 case ABIArgInfo::Direct: 1875 case ABIArgInfo::Extend: 1876 if (Info.getInReg()) 1877 return false; 1878 return true; 1879 case ABIArgInfo::Expand: 1880 case ABIArgInfo::CoerceAndExpand: 1881 // These are aggregate types which are never passed in registers when 1882 // inalloca is involved. 1883 return true; 1884 } 1885 llvm_unreachable("invalid enum"); 1886 } 1887 1888 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1889 assert(IsWin32StructABI && "inalloca only supported on win32"); 1890 1891 // Build a packed struct type for all of the arguments in memory. 1892 SmallVector<llvm::Type *, 6> FrameFields; 1893 1894 // The stack alignment is always 4. 1895 CharUnits StackAlign = CharUnits::fromQuantity(4); 1896 1897 CharUnits StackOffset; 1898 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1899 1900 // Put 'this' into the struct before 'sret', if necessary. 1901 bool IsThisCall = 1902 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1903 ABIArgInfo &Ret = FI.getReturnInfo(); 1904 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1905 isArgInAlloca(I->info)) { 1906 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1907 ++I; 1908 } 1909 1910 // Put the sret parameter into the inalloca struct if it's in memory. 1911 if (Ret.isIndirect() && !Ret.getInReg()) { 1912 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1913 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1914 // On Windows, the hidden sret parameter is always returned in eax. 1915 Ret.setInAllocaSRet(IsWin32StructABI); 1916 } 1917 1918 // Skip the 'this' parameter in ecx. 1919 if (IsThisCall) 1920 ++I; 1921 1922 // Put arguments passed in memory into the struct. 1923 for (; I != E; ++I) { 1924 if (isArgInAlloca(I->info)) 1925 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1926 } 1927 1928 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1929 /*isPacked=*/true), 1930 StackAlign); 1931 } 1932 1933 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1934 Address VAListAddr, QualType Ty) const { 1935 1936 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1937 1938 // x86-32 changes the alignment of certain arguments on the stack. 1939 // 1940 // Just messing with TypeInfo like this works because we never pass 1941 // anything indirectly. 1942 TypeInfo.second = CharUnits::fromQuantity( 1943 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1944 1945 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1946 TypeInfo, CharUnits::fromQuantity(4), 1947 /*AllowHigherAlign*/ true); 1948 } 1949 1950 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1951 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1952 assert(Triple.getArch() == llvm::Triple::x86); 1953 1954 switch (Opts.getStructReturnConvention()) { 1955 case CodeGenOptions::SRCK_Default: 1956 break; 1957 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1958 return false; 1959 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1960 return true; 1961 } 1962 1963 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1964 return true; 1965 1966 switch (Triple.getOS()) { 1967 case llvm::Triple::DragonFly: 1968 case llvm::Triple::FreeBSD: 1969 case llvm::Triple::OpenBSD: 1970 case llvm::Triple::Win32: 1971 return true; 1972 default: 1973 return false; 1974 } 1975 } 1976 1977 void X86_32TargetCodeGenInfo::setTargetAttributes( 1978 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1979 if (GV->isDeclaration()) 1980 return; 1981 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1982 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1983 llvm::Function *Fn = cast<llvm::Function>(GV); 1984 Fn->addFnAttr("stackrealign"); 1985 } 1986 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1987 llvm::Function *Fn = cast<llvm::Function>(GV); 1988 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1989 } 1990 } 1991 } 1992 1993 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1994 CodeGen::CodeGenFunction &CGF, 1995 llvm::Value *Address) const { 1996 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1997 1998 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1999 2000 // 0-7 are the eight integer registers; the order is different 2001 // on Darwin (for EH), but the range is the same. 2002 // 8 is %eip. 2003 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2004 2005 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2006 // 12-16 are st(0..4). Not sure why we stop at 4. 2007 // These have size 16, which is sizeof(long double) on 2008 // platforms with 8-byte alignment for that type. 2009 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2010 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2011 2012 } else { 2013 // 9 is %eflags, which doesn't get a size on Darwin for some 2014 // reason. 2015 Builder.CreateAlignedStore( 2016 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2017 CharUnits::One()); 2018 2019 // 11-16 are st(0..5). Not sure why we stop at 5. 2020 // These have size 12, which is sizeof(long double) on 2021 // platforms with 4-byte alignment for that type. 2022 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2023 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2024 } 2025 2026 return false; 2027 } 2028 2029 //===----------------------------------------------------------------------===// 2030 // X86-64 ABI Implementation 2031 //===----------------------------------------------------------------------===// 2032 2033 2034 namespace { 2035 /// The AVX ABI level for X86 targets. 2036 enum class X86AVXABILevel { 2037 None, 2038 AVX, 2039 AVX512 2040 }; 2041 2042 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2043 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2044 switch (AVXLevel) { 2045 case X86AVXABILevel::AVX512: 2046 return 512; 2047 case X86AVXABILevel::AVX: 2048 return 256; 2049 case X86AVXABILevel::None: 2050 return 128; 2051 } 2052 llvm_unreachable("Unknown AVXLevel"); 2053 } 2054 2055 /// X86_64ABIInfo - The X86_64 ABI information. 2056 class X86_64ABIInfo : public SwiftABIInfo { 2057 enum Class { 2058 Integer = 0, 2059 SSE, 2060 SSEUp, 2061 X87, 2062 X87Up, 2063 ComplexX87, 2064 NoClass, 2065 Memory 2066 }; 2067 2068 /// merge - Implement the X86_64 ABI merging algorithm. 2069 /// 2070 /// Merge an accumulating classification \arg Accum with a field 2071 /// classification \arg Field. 2072 /// 2073 /// \param Accum - The accumulating classification. This should 2074 /// always be either NoClass or the result of a previous merge 2075 /// call. In addition, this should never be Memory (the caller 2076 /// should just return Memory for the aggregate). 2077 static Class merge(Class Accum, Class Field); 2078 2079 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2080 /// 2081 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2082 /// final MEMORY or SSE classes when necessary. 2083 /// 2084 /// \param AggregateSize - The size of the current aggregate in 2085 /// the classification process. 2086 /// 2087 /// \param Lo - The classification for the parts of the type 2088 /// residing in the low word of the containing object. 2089 /// 2090 /// \param Hi - The classification for the parts of the type 2091 /// residing in the higher words of the containing object. 2092 /// 2093 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2094 2095 /// classify - Determine the x86_64 register classes in which the 2096 /// given type T should be passed. 2097 /// 2098 /// \param Lo - The classification for the parts of the type 2099 /// residing in the low word of the containing object. 2100 /// 2101 /// \param Hi - The classification for the parts of the type 2102 /// residing in the high word of the containing object. 2103 /// 2104 /// \param OffsetBase - The bit offset of this type in the 2105 /// containing object. Some parameters are classified different 2106 /// depending on whether they straddle an eightbyte boundary. 2107 /// 2108 /// \param isNamedArg - Whether the argument in question is a "named" 2109 /// argument, as used in AMD64-ABI 3.5.7. 2110 /// 2111 /// If a word is unused its result will be NoClass; if a type should 2112 /// be passed in Memory then at least the classification of \arg Lo 2113 /// will be Memory. 2114 /// 2115 /// The \arg Lo class will be NoClass iff the argument is ignored. 2116 /// 2117 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2118 /// also be ComplexX87. 2119 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2120 bool isNamedArg) const; 2121 2122 llvm::Type *GetByteVectorType(QualType Ty) const; 2123 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2124 unsigned IROffset, QualType SourceTy, 2125 unsigned SourceOffset) const; 2126 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2127 unsigned IROffset, QualType SourceTy, 2128 unsigned SourceOffset) const; 2129 2130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2131 /// such that the argument will be returned in memory. 2132 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2133 2134 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2135 /// such that the argument will be passed in memory. 2136 /// 2137 /// \param freeIntRegs - The number of free integer registers remaining 2138 /// available. 2139 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2140 2141 ABIArgInfo classifyReturnType(QualType RetTy) const; 2142 2143 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2144 unsigned &neededInt, unsigned &neededSSE, 2145 bool isNamedArg) const; 2146 2147 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2148 unsigned &NeededSSE) const; 2149 2150 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2151 unsigned &NeededSSE) const; 2152 2153 bool IsIllegalVectorType(QualType Ty) const; 2154 2155 /// The 0.98 ABI revision clarified a lot of ambiguities, 2156 /// unfortunately in ways that were not always consistent with 2157 /// certain previous compilers. In particular, platforms which 2158 /// required strict binary compatibility with older versions of GCC 2159 /// may need to exempt themselves. 2160 bool honorsRevision0_98() const { 2161 return !getTarget().getTriple().isOSDarwin(); 2162 } 2163 2164 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2165 /// classify it as INTEGER (for compatibility with older clang compilers). 2166 bool classifyIntegerMMXAsSSE() const { 2167 // Clang <= 3.8 did not do this. 2168 if (getContext().getLangOpts().getClangABICompat() <= 2169 LangOptions::ClangABI::Ver3_8) 2170 return false; 2171 2172 const llvm::Triple &Triple = getTarget().getTriple(); 2173 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2174 return false; 2175 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2176 return false; 2177 return true; 2178 } 2179 2180 // GCC classifies vectors of __int128 as memory. 2181 bool passInt128VectorsInMem() const { 2182 // Clang <= 9.0 did not do this. 2183 if (getContext().getLangOpts().getClangABICompat() <= 2184 LangOptions::ClangABI::Ver9) 2185 return false; 2186 2187 const llvm::Triple &T = getTarget().getTriple(); 2188 return T.isOSLinux() || T.isOSNetBSD(); 2189 } 2190 2191 X86AVXABILevel AVXLevel; 2192 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2193 // 64-bit hardware. 2194 bool Has64BitPointers; 2195 2196 public: 2197 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2198 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2199 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2200 } 2201 2202 bool isPassedUsingAVXType(QualType type) const { 2203 unsigned neededInt, neededSSE; 2204 // The freeIntRegs argument doesn't matter here. 2205 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2206 /*isNamedArg*/true); 2207 if (info.isDirect()) { 2208 llvm::Type *ty = info.getCoerceToType(); 2209 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2210 return (vectorTy->getBitWidth() > 128); 2211 } 2212 return false; 2213 } 2214 2215 void computeInfo(CGFunctionInfo &FI) const override; 2216 2217 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2218 QualType Ty) const override; 2219 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2220 QualType Ty) const override; 2221 2222 bool has64BitPointers() const { 2223 return Has64BitPointers; 2224 } 2225 2226 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2227 bool asReturnValue) const override { 2228 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2229 } 2230 bool isSwiftErrorInRegister() const override { 2231 return true; 2232 } 2233 }; 2234 2235 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2236 class WinX86_64ABIInfo : public SwiftABIInfo { 2237 public: 2238 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2239 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2240 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2241 2242 void computeInfo(CGFunctionInfo &FI) const override; 2243 2244 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2245 QualType Ty) const override; 2246 2247 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2248 // FIXME: Assumes vectorcall is in use. 2249 return isX86VectorTypeForVectorCall(getContext(), Ty); 2250 } 2251 2252 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2253 uint64_t NumMembers) const override { 2254 // FIXME: Assumes vectorcall is in use. 2255 return isX86VectorCallAggregateSmallEnough(NumMembers); 2256 } 2257 2258 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2259 bool asReturnValue) const override { 2260 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2261 } 2262 2263 bool isSwiftErrorInRegister() const override { 2264 return true; 2265 } 2266 2267 private: 2268 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2269 bool IsVectorCall, bool IsRegCall) const; 2270 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2271 const ABIArgInfo ¤t) const; 2272 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2273 bool IsVectorCall, bool IsRegCall) const; 2274 2275 X86AVXABILevel AVXLevel; 2276 2277 bool IsMingw64; 2278 }; 2279 2280 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2281 public: 2282 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2283 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2284 2285 const X86_64ABIInfo &getABIInfo() const { 2286 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2287 } 2288 2289 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2290 /// the autoreleaseRV/retainRV optimization. 2291 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2292 return true; 2293 } 2294 2295 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2296 return 7; 2297 } 2298 2299 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2300 llvm::Value *Address) const override { 2301 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2302 2303 // 0-15 are the 16 integer registers. 2304 // 16 is %rip. 2305 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2306 return false; 2307 } 2308 2309 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2310 StringRef Constraint, 2311 llvm::Type* Ty) const override { 2312 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2313 } 2314 2315 bool isNoProtoCallVariadic(const CallArgList &args, 2316 const FunctionNoProtoType *fnType) const override { 2317 // The default CC on x86-64 sets %al to the number of SSA 2318 // registers used, and GCC sets this when calling an unprototyped 2319 // function, so we override the default behavior. However, don't do 2320 // that when AVX types are involved: the ABI explicitly states it is 2321 // undefined, and it doesn't work in practice because of how the ABI 2322 // defines varargs anyway. 2323 if (fnType->getCallConv() == CC_C) { 2324 bool HasAVXType = false; 2325 for (CallArgList::const_iterator 2326 it = args.begin(), ie = args.end(); it != ie; ++it) { 2327 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2328 HasAVXType = true; 2329 break; 2330 } 2331 } 2332 2333 if (!HasAVXType) 2334 return true; 2335 } 2336 2337 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2338 } 2339 2340 llvm::Constant * 2341 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2342 unsigned Sig = (0xeb << 0) | // jmp rel8 2343 (0x06 << 8) | // .+0x08 2344 ('v' << 16) | 2345 ('2' << 24); 2346 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2347 } 2348 2349 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2350 CodeGen::CodeGenModule &CGM) const override { 2351 if (GV->isDeclaration()) 2352 return; 2353 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2354 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2355 llvm::Function *Fn = cast<llvm::Function>(GV); 2356 Fn->addFnAttr("stackrealign"); 2357 } 2358 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2359 llvm::Function *Fn = cast<llvm::Function>(GV); 2360 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2361 } 2362 } 2363 } 2364 }; 2365 2366 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2367 // If the argument does not end in .lib, automatically add the suffix. 2368 // If the argument contains a space, enclose it in quotes. 2369 // This matches the behavior of MSVC. 2370 bool Quote = (Lib.find(" ") != StringRef::npos); 2371 std::string ArgStr = Quote ? "\"" : ""; 2372 ArgStr += Lib; 2373 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2374 ArgStr += ".lib"; 2375 ArgStr += Quote ? "\"" : ""; 2376 return ArgStr; 2377 } 2378 2379 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2380 public: 2381 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2382 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2383 unsigned NumRegisterParameters) 2384 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2385 Win32StructABI, NumRegisterParameters, false) {} 2386 2387 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2388 CodeGen::CodeGenModule &CGM) const override; 2389 2390 void getDependentLibraryOption(llvm::StringRef Lib, 2391 llvm::SmallString<24> &Opt) const override { 2392 Opt = "/DEFAULTLIB:"; 2393 Opt += qualifyWindowsLibrary(Lib); 2394 } 2395 2396 void getDetectMismatchOption(llvm::StringRef Name, 2397 llvm::StringRef Value, 2398 llvm::SmallString<32> &Opt) const override { 2399 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2400 } 2401 }; 2402 2403 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2404 CodeGen::CodeGenModule &CGM) { 2405 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2406 2407 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2408 Fn->addFnAttr("stack-probe-size", 2409 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2410 if (CGM.getCodeGenOpts().NoStackArgProbe) 2411 Fn->addFnAttr("no-stack-arg-probe"); 2412 } 2413 } 2414 2415 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2416 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2417 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2418 if (GV->isDeclaration()) 2419 return; 2420 addStackProbeTargetAttributes(D, GV, CGM); 2421 } 2422 2423 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2424 public: 2425 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2426 X86AVXABILevel AVXLevel) 2427 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} 2428 2429 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2430 CodeGen::CodeGenModule &CGM) const override; 2431 2432 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2433 return 7; 2434 } 2435 2436 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2437 llvm::Value *Address) const override { 2438 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2439 2440 // 0-15 are the 16 integer registers. 2441 // 16 is %rip. 2442 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2443 return false; 2444 } 2445 2446 void getDependentLibraryOption(llvm::StringRef Lib, 2447 llvm::SmallString<24> &Opt) const override { 2448 Opt = "/DEFAULTLIB:"; 2449 Opt += qualifyWindowsLibrary(Lib); 2450 } 2451 2452 void getDetectMismatchOption(llvm::StringRef Name, 2453 llvm::StringRef Value, 2454 llvm::SmallString<32> &Opt) const override { 2455 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2456 } 2457 }; 2458 2459 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2460 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2461 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2462 if (GV->isDeclaration()) 2463 return; 2464 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2465 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2466 llvm::Function *Fn = cast<llvm::Function>(GV); 2467 Fn->addFnAttr("stackrealign"); 2468 } 2469 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2470 llvm::Function *Fn = cast<llvm::Function>(GV); 2471 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2472 } 2473 } 2474 2475 addStackProbeTargetAttributes(D, GV, CGM); 2476 } 2477 } 2478 2479 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2480 Class &Hi) const { 2481 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2482 // 2483 // (a) If one of the classes is Memory, the whole argument is passed in 2484 // memory. 2485 // 2486 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2487 // memory. 2488 // 2489 // (c) If the size of the aggregate exceeds two eightbytes and the first 2490 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2491 // argument is passed in memory. NOTE: This is necessary to keep the 2492 // ABI working for processors that don't support the __m256 type. 2493 // 2494 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2495 // 2496 // Some of these are enforced by the merging logic. Others can arise 2497 // only with unions; for example: 2498 // union { _Complex double; unsigned; } 2499 // 2500 // Note that clauses (b) and (c) were added in 0.98. 2501 // 2502 if (Hi == Memory) 2503 Lo = Memory; 2504 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2505 Lo = Memory; 2506 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2507 Lo = Memory; 2508 if (Hi == SSEUp && Lo != SSE) 2509 Hi = SSE; 2510 } 2511 2512 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2513 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2514 // classified recursively so that always two fields are 2515 // considered. The resulting class is calculated according to 2516 // the classes of the fields in the eightbyte: 2517 // 2518 // (a) If both classes are equal, this is the resulting class. 2519 // 2520 // (b) If one of the classes is NO_CLASS, the resulting class is 2521 // the other class. 2522 // 2523 // (c) If one of the classes is MEMORY, the result is the MEMORY 2524 // class. 2525 // 2526 // (d) If one of the classes is INTEGER, the result is the 2527 // INTEGER. 2528 // 2529 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2530 // MEMORY is used as class. 2531 // 2532 // (f) Otherwise class SSE is used. 2533 2534 // Accum should never be memory (we should have returned) or 2535 // ComplexX87 (because this cannot be passed in a structure). 2536 assert((Accum != Memory && Accum != ComplexX87) && 2537 "Invalid accumulated classification during merge."); 2538 if (Accum == Field || Field == NoClass) 2539 return Accum; 2540 if (Field == Memory) 2541 return Memory; 2542 if (Accum == NoClass) 2543 return Field; 2544 if (Accum == Integer || Field == Integer) 2545 return Integer; 2546 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2547 Accum == X87 || Accum == X87Up) 2548 return Memory; 2549 return SSE; 2550 } 2551 2552 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2553 Class &Lo, Class &Hi, bool isNamedArg) const { 2554 // FIXME: This code can be simplified by introducing a simple value class for 2555 // Class pairs with appropriate constructor methods for the various 2556 // situations. 2557 2558 // FIXME: Some of the split computations are wrong; unaligned vectors 2559 // shouldn't be passed in registers for example, so there is no chance they 2560 // can straddle an eightbyte. Verify & simplify. 2561 2562 Lo = Hi = NoClass; 2563 2564 Class &Current = OffsetBase < 64 ? Lo : Hi; 2565 Current = Memory; 2566 2567 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2568 BuiltinType::Kind k = BT->getKind(); 2569 2570 if (k == BuiltinType::Void) { 2571 Current = NoClass; 2572 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2573 Lo = Integer; 2574 Hi = Integer; 2575 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2576 Current = Integer; 2577 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2578 Current = SSE; 2579 } else if (k == BuiltinType::LongDouble) { 2580 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2581 if (LDF == &llvm::APFloat::IEEEquad()) { 2582 Lo = SSE; 2583 Hi = SSEUp; 2584 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2585 Lo = X87; 2586 Hi = X87Up; 2587 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2588 Current = SSE; 2589 } else 2590 llvm_unreachable("unexpected long double representation!"); 2591 } 2592 // FIXME: _Decimal32 and _Decimal64 are SSE. 2593 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2594 return; 2595 } 2596 2597 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2598 // Classify the underlying integer type. 2599 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2600 return; 2601 } 2602 2603 if (Ty->hasPointerRepresentation()) { 2604 Current = Integer; 2605 return; 2606 } 2607 2608 if (Ty->isMemberPointerType()) { 2609 if (Ty->isMemberFunctionPointerType()) { 2610 if (Has64BitPointers) { 2611 // If Has64BitPointers, this is an {i64, i64}, so classify both 2612 // Lo and Hi now. 2613 Lo = Hi = Integer; 2614 } else { 2615 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2616 // straddles an eightbyte boundary, Hi should be classified as well. 2617 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2618 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2619 if (EB_FuncPtr != EB_ThisAdj) { 2620 Lo = Hi = Integer; 2621 } else { 2622 Current = Integer; 2623 } 2624 } 2625 } else { 2626 Current = Integer; 2627 } 2628 return; 2629 } 2630 2631 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2632 uint64_t Size = getContext().getTypeSize(VT); 2633 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2634 // gcc passes the following as integer: 2635 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2636 // 2 bytes - <2 x char>, <1 x short> 2637 // 1 byte - <1 x char> 2638 Current = Integer; 2639 2640 // If this type crosses an eightbyte boundary, it should be 2641 // split. 2642 uint64_t EB_Lo = (OffsetBase) / 64; 2643 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2644 if (EB_Lo != EB_Hi) 2645 Hi = Lo; 2646 } else if (Size == 64) { 2647 QualType ElementType = VT->getElementType(); 2648 2649 // gcc passes <1 x double> in memory. :( 2650 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2651 return; 2652 2653 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2654 // pass them as integer. For platforms where clang is the de facto 2655 // platform compiler, we must continue to use integer. 2656 if (!classifyIntegerMMXAsSSE() && 2657 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2658 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2659 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2660 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2661 Current = Integer; 2662 else 2663 Current = SSE; 2664 2665 // If this type crosses an eightbyte boundary, it should be 2666 // split. 2667 if (OffsetBase && OffsetBase != 64) 2668 Hi = Lo; 2669 } else if (Size == 128 || 2670 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2671 QualType ElementType = VT->getElementType(); 2672 2673 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2674 if (passInt128VectorsInMem() && Size != 128 && 2675 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2676 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2677 return; 2678 2679 // Arguments of 256-bits are split into four eightbyte chunks. The 2680 // least significant one belongs to class SSE and all the others to class 2681 // SSEUP. The original Lo and Hi design considers that types can't be 2682 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2683 // This design isn't correct for 256-bits, but since there're no cases 2684 // where the upper parts would need to be inspected, avoid adding 2685 // complexity and just consider Hi to match the 64-256 part. 2686 // 2687 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2688 // registers if they are "named", i.e. not part of the "..." of a 2689 // variadic function. 2690 // 2691 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2692 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2693 Lo = SSE; 2694 Hi = SSEUp; 2695 } 2696 return; 2697 } 2698 2699 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2700 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2701 2702 uint64_t Size = getContext().getTypeSize(Ty); 2703 if (ET->isIntegralOrEnumerationType()) { 2704 if (Size <= 64) 2705 Current = Integer; 2706 else if (Size <= 128) 2707 Lo = Hi = Integer; 2708 } else if (ET == getContext().FloatTy) { 2709 Current = SSE; 2710 } else if (ET == getContext().DoubleTy) { 2711 Lo = Hi = SSE; 2712 } else if (ET == getContext().LongDoubleTy) { 2713 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2714 if (LDF == &llvm::APFloat::IEEEquad()) 2715 Current = Memory; 2716 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2717 Current = ComplexX87; 2718 else if (LDF == &llvm::APFloat::IEEEdouble()) 2719 Lo = Hi = SSE; 2720 else 2721 llvm_unreachable("unexpected long double representation!"); 2722 } 2723 2724 // If this complex type crosses an eightbyte boundary then it 2725 // should be split. 2726 uint64_t EB_Real = (OffsetBase) / 64; 2727 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2728 if (Hi == NoClass && EB_Real != EB_Imag) 2729 Hi = Lo; 2730 2731 return; 2732 } 2733 2734 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2735 // Arrays are treated like structures. 2736 2737 uint64_t Size = getContext().getTypeSize(Ty); 2738 2739 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2740 // than eight eightbytes, ..., it has class MEMORY. 2741 if (Size > 512) 2742 return; 2743 2744 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2745 // fields, it has class MEMORY. 2746 // 2747 // Only need to check alignment of array base. 2748 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2749 return; 2750 2751 // Otherwise implement simplified merge. We could be smarter about 2752 // this, but it isn't worth it and would be harder to verify. 2753 Current = NoClass; 2754 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2755 uint64_t ArraySize = AT->getSize().getZExtValue(); 2756 2757 // The only case a 256-bit wide vector could be used is when the array 2758 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2759 // to work for sizes wider than 128, early check and fallback to memory. 2760 // 2761 if (Size > 128 && 2762 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2763 return; 2764 2765 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2766 Class FieldLo, FieldHi; 2767 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2768 Lo = merge(Lo, FieldLo); 2769 Hi = merge(Hi, FieldHi); 2770 if (Lo == Memory || Hi == Memory) 2771 break; 2772 } 2773 2774 postMerge(Size, Lo, Hi); 2775 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2776 return; 2777 } 2778 2779 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2780 uint64_t Size = getContext().getTypeSize(Ty); 2781 2782 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2783 // than eight eightbytes, ..., it has class MEMORY. 2784 if (Size > 512) 2785 return; 2786 2787 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2788 // copy constructor or a non-trivial destructor, it is passed by invisible 2789 // reference. 2790 if (getRecordArgABI(RT, getCXXABI())) 2791 return; 2792 2793 const RecordDecl *RD = RT->getDecl(); 2794 2795 // Assume variable sized types are passed in memory. 2796 if (RD->hasFlexibleArrayMember()) 2797 return; 2798 2799 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2800 2801 // Reset Lo class, this will be recomputed. 2802 Current = NoClass; 2803 2804 // If this is a C++ record, classify the bases first. 2805 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2806 for (const auto &I : CXXRD->bases()) { 2807 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2808 "Unexpected base class!"); 2809 const auto *Base = 2810 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2811 2812 // Classify this field. 2813 // 2814 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2815 // single eightbyte, each is classified separately. Each eightbyte gets 2816 // initialized to class NO_CLASS. 2817 Class FieldLo, FieldHi; 2818 uint64_t Offset = 2819 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2820 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2821 Lo = merge(Lo, FieldLo); 2822 Hi = merge(Hi, FieldHi); 2823 if (Lo == Memory || Hi == Memory) { 2824 postMerge(Size, Lo, Hi); 2825 return; 2826 } 2827 } 2828 } 2829 2830 // Classify the fields one at a time, merging the results. 2831 unsigned idx = 0; 2832 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2833 i != e; ++i, ++idx) { 2834 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2835 bool BitField = i->isBitField(); 2836 2837 // Ignore padding bit-fields. 2838 if (BitField && i->isUnnamedBitfield()) 2839 continue; 2840 2841 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2842 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2843 // 2844 // The only case a 256-bit wide vector could be used is when the struct 2845 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2846 // to work for sizes wider than 128, early check and fallback to memory. 2847 // 2848 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2849 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2850 Lo = Memory; 2851 postMerge(Size, Lo, Hi); 2852 return; 2853 } 2854 // Note, skip this test for bit-fields, see below. 2855 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2856 Lo = Memory; 2857 postMerge(Size, Lo, Hi); 2858 return; 2859 } 2860 2861 // Classify this field. 2862 // 2863 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2864 // exceeds a single eightbyte, each is classified 2865 // separately. Each eightbyte gets initialized to class 2866 // NO_CLASS. 2867 Class FieldLo, FieldHi; 2868 2869 // Bit-fields require special handling, they do not force the 2870 // structure to be passed in memory even if unaligned, and 2871 // therefore they can straddle an eightbyte. 2872 if (BitField) { 2873 assert(!i->isUnnamedBitfield()); 2874 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2875 uint64_t Size = i->getBitWidthValue(getContext()); 2876 2877 uint64_t EB_Lo = Offset / 64; 2878 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2879 2880 if (EB_Lo) { 2881 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2882 FieldLo = NoClass; 2883 FieldHi = Integer; 2884 } else { 2885 FieldLo = Integer; 2886 FieldHi = EB_Hi ? Integer : NoClass; 2887 } 2888 } else 2889 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2890 Lo = merge(Lo, FieldLo); 2891 Hi = merge(Hi, FieldHi); 2892 if (Lo == Memory || Hi == Memory) 2893 break; 2894 } 2895 2896 postMerge(Size, Lo, Hi); 2897 } 2898 } 2899 2900 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2901 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2902 // place naturally. 2903 if (!isAggregateTypeForABI(Ty)) { 2904 // Treat an enum type as its underlying type. 2905 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2906 Ty = EnumTy->getDecl()->getIntegerType(); 2907 2908 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2909 : ABIArgInfo::getDirect()); 2910 } 2911 2912 return getNaturalAlignIndirect(Ty); 2913 } 2914 2915 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2916 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2917 uint64_t Size = getContext().getTypeSize(VecTy); 2918 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2919 if (Size <= 64 || Size > LargestVector) 2920 return true; 2921 QualType EltTy = VecTy->getElementType(); 2922 if (passInt128VectorsInMem() && 2923 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2924 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2925 return true; 2926 } 2927 2928 return false; 2929 } 2930 2931 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2932 unsigned freeIntRegs) const { 2933 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2934 // place naturally. 2935 // 2936 // This assumption is optimistic, as there could be free registers available 2937 // when we need to pass this argument in memory, and LLVM could try to pass 2938 // the argument in the free register. This does not seem to happen currently, 2939 // but this code would be much safer if we could mark the argument with 2940 // 'onstack'. See PR12193. 2941 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2942 // Treat an enum type as its underlying type. 2943 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2944 Ty = EnumTy->getDecl()->getIntegerType(); 2945 2946 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2947 : ABIArgInfo::getDirect()); 2948 } 2949 2950 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2951 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2952 2953 // Compute the byval alignment. We specify the alignment of the byval in all 2954 // cases so that the mid-level optimizer knows the alignment of the byval. 2955 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2956 2957 // Attempt to avoid passing indirect results using byval when possible. This 2958 // is important for good codegen. 2959 // 2960 // We do this by coercing the value into a scalar type which the backend can 2961 // handle naturally (i.e., without using byval). 2962 // 2963 // For simplicity, we currently only do this when we have exhausted all of the 2964 // free integer registers. Doing this when there are free integer registers 2965 // would require more care, as we would have to ensure that the coerced value 2966 // did not claim the unused register. That would require either reording the 2967 // arguments to the function (so that any subsequent inreg values came first), 2968 // or only doing this optimization when there were no following arguments that 2969 // might be inreg. 2970 // 2971 // We currently expect it to be rare (particularly in well written code) for 2972 // arguments to be passed on the stack when there are still free integer 2973 // registers available (this would typically imply large structs being passed 2974 // by value), so this seems like a fair tradeoff for now. 2975 // 2976 // We can revisit this if the backend grows support for 'onstack' parameter 2977 // attributes. See PR12193. 2978 if (freeIntRegs == 0) { 2979 uint64_t Size = getContext().getTypeSize(Ty); 2980 2981 // If this type fits in an eightbyte, coerce it into the matching integral 2982 // type, which will end up on the stack (with alignment 8). 2983 if (Align == 8 && Size <= 64) 2984 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2985 Size)); 2986 } 2987 2988 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2989 } 2990 2991 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2992 /// register. Pick an LLVM IR type that will be passed as a vector register. 2993 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2994 // Wrapper structs/arrays that only contain vectors are passed just like 2995 // vectors; strip them off if present. 2996 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2997 Ty = QualType(InnerTy, 0); 2998 2999 llvm::Type *IRType = CGT.ConvertType(Ty); 3000 if (isa<llvm::VectorType>(IRType)) { 3001 // Don't pass vXi128 vectors in their native type, the backend can't 3002 // legalize them. 3003 if (passInt128VectorsInMem() && 3004 IRType->getVectorElementType()->isIntegerTy(128)) { 3005 // Use a vXi64 vector. 3006 uint64_t Size = getContext().getTypeSize(Ty); 3007 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3008 Size / 64); 3009 } 3010 3011 return IRType; 3012 } 3013 3014 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3015 return IRType; 3016 3017 // We couldn't find the preferred IR vector type for 'Ty'. 3018 uint64_t Size = getContext().getTypeSize(Ty); 3019 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3020 3021 3022 // Return a LLVM IR vector type based on the size of 'Ty'. 3023 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3024 Size / 64); 3025 } 3026 3027 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3028 /// is known to either be off the end of the specified type or being in 3029 /// alignment padding. The user type specified is known to be at most 128 bits 3030 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3031 /// classification that put one of the two halves in the INTEGER class. 3032 /// 3033 /// It is conservatively correct to return false. 3034 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3035 unsigned EndBit, ASTContext &Context) { 3036 // If the bytes being queried are off the end of the type, there is no user 3037 // data hiding here. This handles analysis of builtins, vectors and other 3038 // types that don't contain interesting padding. 3039 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3040 if (TySize <= StartBit) 3041 return true; 3042 3043 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3044 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3045 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3046 3047 // Check each element to see if the element overlaps with the queried range. 3048 for (unsigned i = 0; i != NumElts; ++i) { 3049 // If the element is after the span we care about, then we're done.. 3050 unsigned EltOffset = i*EltSize; 3051 if (EltOffset >= EndBit) break; 3052 3053 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3054 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3055 EndBit-EltOffset, Context)) 3056 return false; 3057 } 3058 // If it overlaps no elements, then it is safe to process as padding. 3059 return true; 3060 } 3061 3062 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3063 const RecordDecl *RD = RT->getDecl(); 3064 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3065 3066 // If this is a C++ record, check the bases first. 3067 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3068 for (const auto &I : CXXRD->bases()) { 3069 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3070 "Unexpected base class!"); 3071 const auto *Base = 3072 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3073 3074 // If the base is after the span we care about, ignore it. 3075 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3076 if (BaseOffset >= EndBit) continue; 3077 3078 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3079 if (!BitsContainNoUserData(I.getType(), BaseStart, 3080 EndBit-BaseOffset, Context)) 3081 return false; 3082 } 3083 } 3084 3085 // Verify that no field has data that overlaps the region of interest. Yes 3086 // this could be sped up a lot by being smarter about queried fields, 3087 // however we're only looking at structs up to 16 bytes, so we don't care 3088 // much. 3089 unsigned idx = 0; 3090 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3091 i != e; ++i, ++idx) { 3092 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3093 3094 // If we found a field after the region we care about, then we're done. 3095 if (FieldOffset >= EndBit) break; 3096 3097 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3098 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3099 Context)) 3100 return false; 3101 } 3102 3103 // If nothing in this record overlapped the area of interest, then we're 3104 // clean. 3105 return true; 3106 } 3107 3108 return false; 3109 } 3110 3111 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3112 /// float member at the specified offset. For example, {int,{float}} has a 3113 /// float at offset 4. It is conservatively correct for this routine to return 3114 /// false. 3115 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3116 const llvm::DataLayout &TD) { 3117 // Base case if we find a float. 3118 if (IROffset == 0 && IRType->isFloatTy()) 3119 return true; 3120 3121 // If this is a struct, recurse into the field at the specified offset. 3122 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3123 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3124 unsigned Elt = SL->getElementContainingOffset(IROffset); 3125 IROffset -= SL->getElementOffset(Elt); 3126 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3127 } 3128 3129 // If this is an array, recurse into the field at the specified offset. 3130 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3131 llvm::Type *EltTy = ATy->getElementType(); 3132 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3133 IROffset -= IROffset/EltSize*EltSize; 3134 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3135 } 3136 3137 return false; 3138 } 3139 3140 3141 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3142 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3143 llvm::Type *X86_64ABIInfo:: 3144 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3145 QualType SourceTy, unsigned SourceOffset) const { 3146 // The only three choices we have are either double, <2 x float>, or float. We 3147 // pass as float if the last 4 bytes is just padding. This happens for 3148 // structs that contain 3 floats. 3149 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3150 SourceOffset*8+64, getContext())) 3151 return llvm::Type::getFloatTy(getVMContext()); 3152 3153 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3154 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3155 // case. 3156 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3157 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3158 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3159 3160 return llvm::Type::getDoubleTy(getVMContext()); 3161 } 3162 3163 3164 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3165 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3166 /// about the high or low part of an up-to-16-byte struct. This routine picks 3167 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3168 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3169 /// etc). 3170 /// 3171 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3172 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3173 /// the 8-byte value references. PrefType may be null. 3174 /// 3175 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3176 /// an offset into this that we're processing (which is always either 0 or 8). 3177 /// 3178 llvm::Type *X86_64ABIInfo:: 3179 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3180 QualType SourceTy, unsigned SourceOffset) const { 3181 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3182 // returning an 8-byte unit starting with it. See if we can safely use it. 3183 if (IROffset == 0) { 3184 // Pointers and int64's always fill the 8-byte unit. 3185 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3186 IRType->isIntegerTy(64)) 3187 return IRType; 3188 3189 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3190 // goodness in the source type is just tail padding. This is allowed to 3191 // kick in for struct {double,int} on the int, but not on 3192 // struct{double,int,int} because we wouldn't return the second int. We 3193 // have to do this analysis on the source type because we can't depend on 3194 // unions being lowered a specific way etc. 3195 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3196 IRType->isIntegerTy(32) || 3197 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3198 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3199 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3200 3201 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3202 SourceOffset*8+64, getContext())) 3203 return IRType; 3204 } 3205 } 3206 3207 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3208 // If this is a struct, recurse into the field at the specified offset. 3209 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3210 if (IROffset < SL->getSizeInBytes()) { 3211 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3212 IROffset -= SL->getElementOffset(FieldIdx); 3213 3214 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3215 SourceTy, SourceOffset); 3216 } 3217 } 3218 3219 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3220 llvm::Type *EltTy = ATy->getElementType(); 3221 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3222 unsigned EltOffset = IROffset/EltSize*EltSize; 3223 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3224 SourceOffset); 3225 } 3226 3227 // Okay, we don't have any better idea of what to pass, so we pass this in an 3228 // integer register that isn't too big to fit the rest of the struct. 3229 unsigned TySizeInBytes = 3230 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3231 3232 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3233 3234 // It is always safe to classify this as an integer type up to i64 that 3235 // isn't larger than the structure. 3236 return llvm::IntegerType::get(getVMContext(), 3237 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3238 } 3239 3240 3241 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3242 /// be used as elements of a two register pair to pass or return, return a 3243 /// first class aggregate to represent them. For example, if the low part of 3244 /// a by-value argument should be passed as i32* and the high part as float, 3245 /// return {i32*, float}. 3246 static llvm::Type * 3247 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3248 const llvm::DataLayout &TD) { 3249 // In order to correctly satisfy the ABI, we need to the high part to start 3250 // at offset 8. If the high and low parts we inferred are both 4-byte types 3251 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3252 // the second element at offset 8. Check for this: 3253 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3254 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3255 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3256 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3257 3258 // To handle this, we have to increase the size of the low part so that the 3259 // second element will start at an 8 byte offset. We can't increase the size 3260 // of the second element because it might make us access off the end of the 3261 // struct. 3262 if (HiStart != 8) { 3263 // There are usually two sorts of types the ABI generation code can produce 3264 // for the low part of a pair that aren't 8 bytes in size: float or 3265 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3266 // NaCl). 3267 // Promote these to a larger type. 3268 if (Lo->isFloatTy()) 3269 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3270 else { 3271 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3272 && "Invalid/unknown lo type"); 3273 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3274 } 3275 } 3276 3277 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3278 3279 // Verify that the second element is at an 8-byte offset. 3280 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3281 "Invalid x86-64 argument pair!"); 3282 return Result; 3283 } 3284 3285 ABIArgInfo X86_64ABIInfo:: 3286 classifyReturnType(QualType RetTy) const { 3287 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3288 // classification algorithm. 3289 X86_64ABIInfo::Class Lo, Hi; 3290 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3291 3292 // Check some invariants. 3293 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3294 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3295 3296 llvm::Type *ResType = nullptr; 3297 switch (Lo) { 3298 case NoClass: 3299 if (Hi == NoClass) 3300 return ABIArgInfo::getIgnore(); 3301 // If the low part is just padding, it takes no register, leave ResType 3302 // null. 3303 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3304 "Unknown missing lo part"); 3305 break; 3306 3307 case SSEUp: 3308 case X87Up: 3309 llvm_unreachable("Invalid classification for lo word."); 3310 3311 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3312 // hidden argument. 3313 case Memory: 3314 return getIndirectReturnResult(RetTy); 3315 3316 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3317 // available register of the sequence %rax, %rdx is used. 3318 case Integer: 3319 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3320 3321 // If we have a sign or zero extended integer, make sure to return Extend 3322 // so that the parameter gets the right LLVM IR attributes. 3323 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3324 // Treat an enum type as its underlying type. 3325 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3326 RetTy = EnumTy->getDecl()->getIntegerType(); 3327 3328 if (RetTy->isIntegralOrEnumerationType() && 3329 RetTy->isPromotableIntegerType()) 3330 return ABIArgInfo::getExtend(RetTy); 3331 } 3332 break; 3333 3334 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3335 // available SSE register of the sequence %xmm0, %xmm1 is used. 3336 case SSE: 3337 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3338 break; 3339 3340 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3341 // returned on the X87 stack in %st0 as 80-bit x87 number. 3342 case X87: 3343 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3344 break; 3345 3346 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3347 // part of the value is returned in %st0 and the imaginary part in 3348 // %st1. 3349 case ComplexX87: 3350 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3351 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3352 llvm::Type::getX86_FP80Ty(getVMContext())); 3353 break; 3354 } 3355 3356 llvm::Type *HighPart = nullptr; 3357 switch (Hi) { 3358 // Memory was handled previously and X87 should 3359 // never occur as a hi class. 3360 case Memory: 3361 case X87: 3362 llvm_unreachable("Invalid classification for hi word."); 3363 3364 case ComplexX87: // Previously handled. 3365 case NoClass: 3366 break; 3367 3368 case Integer: 3369 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3370 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3371 return ABIArgInfo::getDirect(HighPart, 8); 3372 break; 3373 case SSE: 3374 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3375 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3376 return ABIArgInfo::getDirect(HighPart, 8); 3377 break; 3378 3379 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3380 // is passed in the next available eightbyte chunk if the last used 3381 // vector register. 3382 // 3383 // SSEUP should always be preceded by SSE, just widen. 3384 case SSEUp: 3385 assert(Lo == SSE && "Unexpected SSEUp classification."); 3386 ResType = GetByteVectorType(RetTy); 3387 break; 3388 3389 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3390 // returned together with the previous X87 value in %st0. 3391 case X87Up: 3392 // If X87Up is preceded by X87, we don't need to do 3393 // anything. However, in some cases with unions it may not be 3394 // preceded by X87. In such situations we follow gcc and pass the 3395 // extra bits in an SSE reg. 3396 if (Lo != X87) { 3397 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3398 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3399 return ABIArgInfo::getDirect(HighPart, 8); 3400 } 3401 break; 3402 } 3403 3404 // If a high part was specified, merge it together with the low part. It is 3405 // known to pass in the high eightbyte of the result. We do this by forming a 3406 // first class struct aggregate with the high and low part: {low, high} 3407 if (HighPart) 3408 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3409 3410 return ABIArgInfo::getDirect(ResType); 3411 } 3412 3413 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3414 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3415 bool isNamedArg) 3416 const 3417 { 3418 Ty = useFirstFieldIfTransparentUnion(Ty); 3419 3420 X86_64ABIInfo::Class Lo, Hi; 3421 classify(Ty, 0, Lo, Hi, isNamedArg); 3422 3423 // Check some invariants. 3424 // FIXME: Enforce these by construction. 3425 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3426 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3427 3428 neededInt = 0; 3429 neededSSE = 0; 3430 llvm::Type *ResType = nullptr; 3431 switch (Lo) { 3432 case NoClass: 3433 if (Hi == NoClass) 3434 return ABIArgInfo::getIgnore(); 3435 // If the low part is just padding, it takes no register, leave ResType 3436 // null. 3437 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3438 "Unknown missing lo part"); 3439 break; 3440 3441 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3442 // on the stack. 3443 case Memory: 3444 3445 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3446 // COMPLEX_X87, it is passed in memory. 3447 case X87: 3448 case ComplexX87: 3449 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3450 ++neededInt; 3451 return getIndirectResult(Ty, freeIntRegs); 3452 3453 case SSEUp: 3454 case X87Up: 3455 llvm_unreachable("Invalid classification for lo word."); 3456 3457 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3458 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3459 // and %r9 is used. 3460 case Integer: 3461 ++neededInt; 3462 3463 // Pick an 8-byte type based on the preferred type. 3464 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3465 3466 // If we have a sign or zero extended integer, make sure to return Extend 3467 // so that the parameter gets the right LLVM IR attributes. 3468 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3469 // Treat an enum type as its underlying type. 3470 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3471 Ty = EnumTy->getDecl()->getIntegerType(); 3472 3473 if (Ty->isIntegralOrEnumerationType() && 3474 Ty->isPromotableIntegerType()) 3475 return ABIArgInfo::getExtend(Ty); 3476 } 3477 3478 break; 3479 3480 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3481 // available SSE register is used, the registers are taken in the 3482 // order from %xmm0 to %xmm7. 3483 case SSE: { 3484 llvm::Type *IRType = CGT.ConvertType(Ty); 3485 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3486 ++neededSSE; 3487 break; 3488 } 3489 } 3490 3491 llvm::Type *HighPart = nullptr; 3492 switch (Hi) { 3493 // Memory was handled previously, ComplexX87 and X87 should 3494 // never occur as hi classes, and X87Up must be preceded by X87, 3495 // which is passed in memory. 3496 case Memory: 3497 case X87: 3498 case ComplexX87: 3499 llvm_unreachable("Invalid classification for hi word."); 3500 3501 case NoClass: break; 3502 3503 case Integer: 3504 ++neededInt; 3505 // Pick an 8-byte type based on the preferred type. 3506 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3507 3508 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3509 return ABIArgInfo::getDirect(HighPart, 8); 3510 break; 3511 3512 // X87Up generally doesn't occur here (long double is passed in 3513 // memory), except in situations involving unions. 3514 case X87Up: 3515 case SSE: 3516 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3517 3518 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3519 return ABIArgInfo::getDirect(HighPart, 8); 3520 3521 ++neededSSE; 3522 break; 3523 3524 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3525 // eightbyte is passed in the upper half of the last used SSE 3526 // register. This only happens when 128-bit vectors are passed. 3527 case SSEUp: 3528 assert(Lo == SSE && "Unexpected SSEUp classification"); 3529 ResType = GetByteVectorType(Ty); 3530 break; 3531 } 3532 3533 // If a high part was specified, merge it together with the low part. It is 3534 // known to pass in the high eightbyte of the result. We do this by forming a 3535 // first class struct aggregate with the high and low part: {low, high} 3536 if (HighPart) 3537 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3538 3539 return ABIArgInfo::getDirect(ResType); 3540 } 3541 3542 ABIArgInfo 3543 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3544 unsigned &NeededSSE) const { 3545 auto RT = Ty->getAs<RecordType>(); 3546 assert(RT && "classifyRegCallStructType only valid with struct types"); 3547 3548 if (RT->getDecl()->hasFlexibleArrayMember()) 3549 return getIndirectReturnResult(Ty); 3550 3551 // Sum up bases 3552 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3553 if (CXXRD->isDynamicClass()) { 3554 NeededInt = NeededSSE = 0; 3555 return getIndirectReturnResult(Ty); 3556 } 3557 3558 for (const auto &I : CXXRD->bases()) 3559 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3560 .isIndirect()) { 3561 NeededInt = NeededSSE = 0; 3562 return getIndirectReturnResult(Ty); 3563 } 3564 } 3565 3566 // Sum up members 3567 for (const auto *FD : RT->getDecl()->fields()) { 3568 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3569 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3570 .isIndirect()) { 3571 NeededInt = NeededSSE = 0; 3572 return getIndirectReturnResult(Ty); 3573 } 3574 } else { 3575 unsigned LocalNeededInt, LocalNeededSSE; 3576 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3577 LocalNeededSSE, true) 3578 .isIndirect()) { 3579 NeededInt = NeededSSE = 0; 3580 return getIndirectReturnResult(Ty); 3581 } 3582 NeededInt += LocalNeededInt; 3583 NeededSSE += LocalNeededSSE; 3584 } 3585 } 3586 3587 return ABIArgInfo::getDirect(); 3588 } 3589 3590 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3591 unsigned &NeededInt, 3592 unsigned &NeededSSE) const { 3593 3594 NeededInt = 0; 3595 NeededSSE = 0; 3596 3597 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3598 } 3599 3600 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3601 3602 const unsigned CallingConv = FI.getCallingConvention(); 3603 // It is possible to force Win64 calling convention on any x86_64 target by 3604 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3605 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3606 if (CallingConv == llvm::CallingConv::Win64) { 3607 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3608 Win64ABIInfo.computeInfo(FI); 3609 return; 3610 } 3611 3612 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3613 3614 // Keep track of the number of assigned registers. 3615 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3616 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3617 unsigned NeededInt, NeededSSE; 3618 3619 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3620 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3621 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3622 FI.getReturnInfo() = 3623 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3624 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3625 FreeIntRegs -= NeededInt; 3626 FreeSSERegs -= NeededSSE; 3627 } else { 3628 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3629 } 3630 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3631 // Complex Long Double Type is passed in Memory when Regcall 3632 // calling convention is used. 3633 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3634 if (getContext().getCanonicalType(CT->getElementType()) == 3635 getContext().LongDoubleTy) 3636 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3637 } else 3638 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3639 } 3640 3641 // If the return value is indirect, then the hidden argument is consuming one 3642 // integer register. 3643 if (FI.getReturnInfo().isIndirect()) 3644 --FreeIntRegs; 3645 3646 // The chain argument effectively gives us another free register. 3647 if (FI.isChainCall()) 3648 ++FreeIntRegs; 3649 3650 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3651 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3652 // get assigned (in left-to-right order) for passing as follows... 3653 unsigned ArgNo = 0; 3654 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3655 it != ie; ++it, ++ArgNo) { 3656 bool IsNamedArg = ArgNo < NumRequiredArgs; 3657 3658 if (IsRegCall && it->type->isStructureOrClassType()) 3659 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3660 else 3661 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3662 NeededSSE, IsNamedArg); 3663 3664 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3665 // eightbyte of an argument, the whole argument is passed on the 3666 // stack. If registers have already been assigned for some 3667 // eightbytes of such an argument, the assignments get reverted. 3668 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3669 FreeIntRegs -= NeededInt; 3670 FreeSSERegs -= NeededSSE; 3671 } else { 3672 it->info = getIndirectResult(it->type, FreeIntRegs); 3673 } 3674 } 3675 } 3676 3677 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3678 Address VAListAddr, QualType Ty) { 3679 Address overflow_arg_area_p = 3680 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3681 llvm::Value *overflow_arg_area = 3682 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3683 3684 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3685 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3686 // It isn't stated explicitly in the standard, but in practice we use 3687 // alignment greater than 16 where necessary. 3688 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3689 if (Align > CharUnits::fromQuantity(8)) { 3690 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3691 Align); 3692 } 3693 3694 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3695 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3696 llvm::Value *Res = 3697 CGF.Builder.CreateBitCast(overflow_arg_area, 3698 llvm::PointerType::getUnqual(LTy)); 3699 3700 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3701 // l->overflow_arg_area + sizeof(type). 3702 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3703 // an 8 byte boundary. 3704 3705 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3706 llvm::Value *Offset = 3707 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3708 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3709 "overflow_arg_area.next"); 3710 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3711 3712 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3713 return Address(Res, Align); 3714 } 3715 3716 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3717 QualType Ty) const { 3718 // Assume that va_list type is correct; should be pointer to LLVM type: 3719 // struct { 3720 // i32 gp_offset; 3721 // i32 fp_offset; 3722 // i8* overflow_arg_area; 3723 // i8* reg_save_area; 3724 // }; 3725 unsigned neededInt, neededSSE; 3726 3727 Ty = getContext().getCanonicalType(Ty); 3728 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3729 /*isNamedArg*/false); 3730 3731 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3732 // in the registers. If not go to step 7. 3733 if (!neededInt && !neededSSE) 3734 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3735 3736 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3737 // general purpose registers needed to pass type and num_fp to hold 3738 // the number of floating point registers needed. 3739 3740 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3741 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3742 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3743 // 3744 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3745 // register save space). 3746 3747 llvm::Value *InRegs = nullptr; 3748 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3749 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3750 if (neededInt) { 3751 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3752 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3753 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3754 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3755 } 3756 3757 if (neededSSE) { 3758 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3759 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3760 llvm::Value *FitsInFP = 3761 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3762 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3763 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3764 } 3765 3766 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3767 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3768 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3769 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3770 3771 // Emit code to load the value if it was passed in registers. 3772 3773 CGF.EmitBlock(InRegBlock); 3774 3775 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3776 // an offset of l->gp_offset and/or l->fp_offset. This may require 3777 // copying to a temporary location in case the parameter is passed 3778 // in different register classes or requires an alignment greater 3779 // than 8 for general purpose registers and 16 for XMM registers. 3780 // 3781 // FIXME: This really results in shameful code when we end up needing to 3782 // collect arguments from different places; often what should result in a 3783 // simple assembling of a structure from scattered addresses has many more 3784 // loads than necessary. Can we clean this up? 3785 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3786 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3787 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3788 3789 Address RegAddr = Address::invalid(); 3790 if (neededInt && neededSSE) { 3791 // FIXME: Cleanup. 3792 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3793 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3794 Address Tmp = CGF.CreateMemTemp(Ty); 3795 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3796 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3797 llvm::Type *TyLo = ST->getElementType(0); 3798 llvm::Type *TyHi = ST->getElementType(1); 3799 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3800 "Unexpected ABI info for mixed regs"); 3801 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3802 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3803 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3804 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3805 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3806 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3807 3808 // Copy the first element. 3809 // FIXME: Our choice of alignment here and below is probably pessimistic. 3810 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3811 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3812 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3813 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3814 3815 // Copy the second element. 3816 V = CGF.Builder.CreateAlignedLoad( 3817 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3818 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3819 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3820 3821 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3822 } else if (neededInt) { 3823 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3824 CharUnits::fromQuantity(8)); 3825 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3826 3827 // Copy to a temporary if necessary to ensure the appropriate alignment. 3828 std::pair<CharUnits, CharUnits> SizeAlign = 3829 getContext().getTypeInfoInChars(Ty); 3830 uint64_t TySize = SizeAlign.first.getQuantity(); 3831 CharUnits TyAlign = SizeAlign.second; 3832 3833 // Copy into a temporary if the type is more aligned than the 3834 // register save area. 3835 if (TyAlign.getQuantity() > 8) { 3836 Address Tmp = CGF.CreateMemTemp(Ty); 3837 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3838 RegAddr = Tmp; 3839 } 3840 3841 } else if (neededSSE == 1) { 3842 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3843 CharUnits::fromQuantity(16)); 3844 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3845 } else { 3846 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3847 // SSE registers are spaced 16 bytes apart in the register save 3848 // area, we need to collect the two eightbytes together. 3849 // The ABI isn't explicit about this, but it seems reasonable 3850 // to assume that the slots are 16-byte aligned, since the stack is 3851 // naturally 16-byte aligned and the prologue is expected to store 3852 // all the SSE registers to the RSA. 3853 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3854 CharUnits::fromQuantity(16)); 3855 Address RegAddrHi = 3856 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3857 CharUnits::fromQuantity(16)); 3858 llvm::Type *ST = AI.canHaveCoerceToType() 3859 ? AI.getCoerceToType() 3860 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3861 llvm::Value *V; 3862 Address Tmp = CGF.CreateMemTemp(Ty); 3863 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3864 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3865 RegAddrLo, ST->getStructElementType(0))); 3866 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3867 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3868 RegAddrHi, ST->getStructElementType(1))); 3869 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3870 3871 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3872 } 3873 3874 // AMD64-ABI 3.5.7p5: Step 5. Set: 3875 // l->gp_offset = l->gp_offset + num_gp * 8 3876 // l->fp_offset = l->fp_offset + num_fp * 16. 3877 if (neededInt) { 3878 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3879 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3880 gp_offset_p); 3881 } 3882 if (neededSSE) { 3883 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3884 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3885 fp_offset_p); 3886 } 3887 CGF.EmitBranch(ContBlock); 3888 3889 // Emit code to load the value if it was passed in memory. 3890 3891 CGF.EmitBlock(InMemBlock); 3892 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3893 3894 // Return the appropriate result. 3895 3896 CGF.EmitBlock(ContBlock); 3897 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3898 "vaarg.addr"); 3899 return ResAddr; 3900 } 3901 3902 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3903 QualType Ty) const { 3904 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3905 CGF.getContext().getTypeInfoInChars(Ty), 3906 CharUnits::fromQuantity(8), 3907 /*allowHigherAlign*/ false); 3908 } 3909 3910 ABIArgInfo 3911 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3912 const ABIArgInfo ¤t) const { 3913 // Assumes vectorCall calling convention. 3914 const Type *Base = nullptr; 3915 uint64_t NumElts = 0; 3916 3917 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3918 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3919 FreeSSERegs -= NumElts; 3920 return getDirectX86Hva(); 3921 } 3922 return current; 3923 } 3924 3925 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3926 bool IsReturnType, bool IsVectorCall, 3927 bool IsRegCall) const { 3928 3929 if (Ty->isVoidType()) 3930 return ABIArgInfo::getIgnore(); 3931 3932 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3933 Ty = EnumTy->getDecl()->getIntegerType(); 3934 3935 TypeInfo Info = getContext().getTypeInfo(Ty); 3936 uint64_t Width = Info.Width; 3937 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3938 3939 const RecordType *RT = Ty->getAs<RecordType>(); 3940 if (RT) { 3941 if (!IsReturnType) { 3942 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3943 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3944 } 3945 3946 if (RT->getDecl()->hasFlexibleArrayMember()) 3947 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3948 3949 } 3950 3951 const Type *Base = nullptr; 3952 uint64_t NumElts = 0; 3953 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3954 // other targets. 3955 if ((IsVectorCall || IsRegCall) && 3956 isHomogeneousAggregate(Ty, Base, NumElts)) { 3957 if (IsRegCall) { 3958 if (FreeSSERegs >= NumElts) { 3959 FreeSSERegs -= NumElts; 3960 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3961 return ABIArgInfo::getDirect(); 3962 return ABIArgInfo::getExpand(); 3963 } 3964 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3965 } else if (IsVectorCall) { 3966 if (FreeSSERegs >= NumElts && 3967 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3968 FreeSSERegs -= NumElts; 3969 return ABIArgInfo::getDirect(); 3970 } else if (IsReturnType) { 3971 return ABIArgInfo::getExpand(); 3972 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3973 // HVAs are delayed and reclassified in the 2nd step. 3974 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3975 } 3976 } 3977 } 3978 3979 if (Ty->isMemberPointerType()) { 3980 // If the member pointer is represented by an LLVM int or ptr, pass it 3981 // directly. 3982 llvm::Type *LLTy = CGT.ConvertType(Ty); 3983 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3984 return ABIArgInfo::getDirect(); 3985 } 3986 3987 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3988 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3989 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3990 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3991 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3992 3993 // Otherwise, coerce it to a small integer. 3994 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3995 } 3996 3997 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3998 switch (BT->getKind()) { 3999 case BuiltinType::Bool: 4000 // Bool type is always extended to the ABI, other builtin types are not 4001 // extended. 4002 return ABIArgInfo::getExtend(Ty); 4003 4004 case BuiltinType::LongDouble: 4005 // Mingw64 GCC uses the old 80 bit extended precision floating point 4006 // unit. It passes them indirectly through memory. 4007 if (IsMingw64) { 4008 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4009 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4010 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4011 } 4012 break; 4013 4014 case BuiltinType::Int128: 4015 case BuiltinType::UInt128: 4016 // If it's a parameter type, the normal ABI rule is that arguments larger 4017 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4018 // even though it isn't particularly efficient. 4019 if (!IsReturnType) 4020 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4021 4022 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4023 // Clang matches them for compatibility. 4024 return ABIArgInfo::getDirect( 4025 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4026 4027 default: 4028 break; 4029 } 4030 } 4031 4032 return ABIArgInfo::getDirect(); 4033 } 4034 4035 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4036 unsigned FreeSSERegs, 4037 bool IsVectorCall, 4038 bool IsRegCall) const { 4039 unsigned Count = 0; 4040 for (auto &I : FI.arguments()) { 4041 // Vectorcall in x64 only permits the first 6 arguments to be passed 4042 // as XMM/YMM registers. 4043 if (Count < VectorcallMaxParamNumAsReg) 4044 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4045 else { 4046 // Since these cannot be passed in registers, pretend no registers 4047 // are left. 4048 unsigned ZeroSSERegsAvail = 0; 4049 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4050 IsVectorCall, IsRegCall); 4051 } 4052 ++Count; 4053 } 4054 4055 for (auto &I : FI.arguments()) { 4056 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4057 } 4058 } 4059 4060 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4061 const unsigned CC = FI.getCallingConvention(); 4062 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4063 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4064 4065 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4066 // classification rules. 4067 if (CC == llvm::CallingConv::X86_64_SysV) { 4068 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4069 SysVABIInfo.computeInfo(FI); 4070 return; 4071 } 4072 4073 unsigned FreeSSERegs = 0; 4074 if (IsVectorCall) { 4075 // We can use up to 4 SSE return registers with vectorcall. 4076 FreeSSERegs = 4; 4077 } else if (IsRegCall) { 4078 // RegCall gives us 16 SSE registers. 4079 FreeSSERegs = 16; 4080 } 4081 4082 if (!getCXXABI().classifyReturnType(FI)) 4083 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4084 IsVectorCall, IsRegCall); 4085 4086 if (IsVectorCall) { 4087 // We can use up to 6 SSE register parameters with vectorcall. 4088 FreeSSERegs = 6; 4089 } else if (IsRegCall) { 4090 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4091 FreeSSERegs = 16; 4092 } 4093 4094 if (IsVectorCall) { 4095 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4096 } else { 4097 for (auto &I : FI.arguments()) 4098 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4099 } 4100 4101 } 4102 4103 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4104 QualType Ty) const { 4105 4106 bool IsIndirect = false; 4107 4108 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4109 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4110 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4111 uint64_t Width = getContext().getTypeSize(Ty); 4112 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4113 } 4114 4115 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4116 CGF.getContext().getTypeInfoInChars(Ty), 4117 CharUnits::fromQuantity(8), 4118 /*allowHigherAlign*/ false); 4119 } 4120 4121 // PowerPC-32 4122 namespace { 4123 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4124 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4125 bool IsSoftFloatABI; 4126 4127 CharUnits getParamTypeAlignment(QualType Ty) const; 4128 4129 public: 4130 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4131 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4132 4133 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4134 QualType Ty) const override; 4135 }; 4136 4137 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4138 public: 4139 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4140 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4141 4142 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4143 // This is recovered from gcc output. 4144 return 1; // r1 is the dedicated stack pointer 4145 } 4146 4147 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4148 llvm::Value *Address) const override; 4149 }; 4150 } 4151 4152 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4153 // Complex types are passed just like their elements 4154 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4155 Ty = CTy->getElementType(); 4156 4157 if (Ty->isVectorType()) 4158 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4159 : 4); 4160 4161 // For single-element float/vector structs, we consider the whole type 4162 // to have the same alignment requirements as its single element. 4163 const Type *AlignTy = nullptr; 4164 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4165 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4166 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4167 (BT && BT->isFloatingPoint())) 4168 AlignTy = EltType; 4169 } 4170 4171 if (AlignTy) 4172 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4173 return CharUnits::fromQuantity(4); 4174 } 4175 4176 // TODO: this implementation is now likely redundant with 4177 // DefaultABIInfo::EmitVAArg. 4178 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4179 QualType Ty) const { 4180 if (getTarget().getTriple().isOSDarwin()) { 4181 auto TI = getContext().getTypeInfoInChars(Ty); 4182 TI.second = getParamTypeAlignment(Ty); 4183 4184 CharUnits SlotSize = CharUnits::fromQuantity(4); 4185 return emitVoidPtrVAArg(CGF, VAList, Ty, 4186 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4187 /*AllowHigherAlign=*/true); 4188 } 4189 4190 const unsigned OverflowLimit = 8; 4191 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4192 // TODO: Implement this. For now ignore. 4193 (void)CTy; 4194 return Address::invalid(); // FIXME? 4195 } 4196 4197 // struct __va_list_tag { 4198 // unsigned char gpr; 4199 // unsigned char fpr; 4200 // unsigned short reserved; 4201 // void *overflow_arg_area; 4202 // void *reg_save_area; 4203 // }; 4204 4205 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4206 bool isInt = 4207 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4208 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4209 4210 // All aggregates are passed indirectly? That doesn't seem consistent 4211 // with the argument-lowering code. 4212 bool isIndirect = Ty->isAggregateType(); 4213 4214 CGBuilderTy &Builder = CGF.Builder; 4215 4216 // The calling convention either uses 1-2 GPRs or 1 FPR. 4217 Address NumRegsAddr = Address::invalid(); 4218 if (isInt || IsSoftFloatABI) { 4219 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4220 } else { 4221 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4222 } 4223 4224 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4225 4226 // "Align" the register count when TY is i64. 4227 if (isI64 || (isF64 && IsSoftFloatABI)) { 4228 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4229 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4230 } 4231 4232 llvm::Value *CC = 4233 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4234 4235 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4236 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4237 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4238 4239 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4240 4241 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4242 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4243 4244 // Case 1: consume registers. 4245 Address RegAddr = Address::invalid(); 4246 { 4247 CGF.EmitBlock(UsingRegs); 4248 4249 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4250 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4251 CharUnits::fromQuantity(8)); 4252 assert(RegAddr.getElementType() == CGF.Int8Ty); 4253 4254 // Floating-point registers start after the general-purpose registers. 4255 if (!(isInt || IsSoftFloatABI)) { 4256 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4257 CharUnits::fromQuantity(32)); 4258 } 4259 4260 // Get the address of the saved value by scaling the number of 4261 // registers we've used by the number of 4262 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4263 llvm::Value *RegOffset = 4264 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4265 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4266 RegAddr.getPointer(), RegOffset), 4267 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4268 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4269 4270 // Increase the used-register count. 4271 NumRegs = 4272 Builder.CreateAdd(NumRegs, 4273 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4274 Builder.CreateStore(NumRegs, NumRegsAddr); 4275 4276 CGF.EmitBranch(Cont); 4277 } 4278 4279 // Case 2: consume space in the overflow area. 4280 Address MemAddr = Address::invalid(); 4281 { 4282 CGF.EmitBlock(UsingOverflow); 4283 4284 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4285 4286 // Everything in the overflow area is rounded up to a size of at least 4. 4287 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4288 4289 CharUnits Size; 4290 if (!isIndirect) { 4291 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4292 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4293 } else { 4294 Size = CGF.getPointerSize(); 4295 } 4296 4297 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4298 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4299 OverflowAreaAlign); 4300 // Round up address of argument to alignment 4301 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4302 if (Align > OverflowAreaAlign) { 4303 llvm::Value *Ptr = OverflowArea.getPointer(); 4304 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4305 Align); 4306 } 4307 4308 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4309 4310 // Increase the overflow area. 4311 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4312 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4313 CGF.EmitBranch(Cont); 4314 } 4315 4316 CGF.EmitBlock(Cont); 4317 4318 // Merge the cases with a phi. 4319 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4320 "vaarg.addr"); 4321 4322 // Load the pointer if the argument was passed indirectly. 4323 if (isIndirect) { 4324 Result = Address(Builder.CreateLoad(Result, "aggr"), 4325 getContext().getTypeAlignInChars(Ty)); 4326 } 4327 4328 return Result; 4329 } 4330 4331 bool 4332 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4333 llvm::Value *Address) const { 4334 // This is calculated from the LLVM and GCC tables and verified 4335 // against gcc output. AFAIK all ABIs use the same encoding. 4336 4337 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4338 4339 llvm::IntegerType *i8 = CGF.Int8Ty; 4340 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4341 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4342 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4343 4344 // 0-31: r0-31, the 4-byte general-purpose registers 4345 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4346 4347 // 32-63: fp0-31, the 8-byte floating-point registers 4348 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4349 4350 // 64-76 are various 4-byte special-purpose registers: 4351 // 64: mq 4352 // 65: lr 4353 // 66: ctr 4354 // 67: ap 4355 // 68-75 cr0-7 4356 // 76: xer 4357 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4358 4359 // 77-108: v0-31, the 16-byte vector registers 4360 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4361 4362 // 109: vrsave 4363 // 110: vscr 4364 // 111: spe_acc 4365 // 112: spefscr 4366 // 113: sfp 4367 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4368 4369 return false; 4370 } 4371 4372 // PowerPC-64 4373 4374 namespace { 4375 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4376 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4377 public: 4378 enum ABIKind { 4379 ELFv1 = 0, 4380 ELFv2 4381 }; 4382 4383 private: 4384 static const unsigned GPRBits = 64; 4385 ABIKind Kind; 4386 bool HasQPX; 4387 bool IsSoftFloatABI; 4388 4389 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4390 // will be passed in a QPX register. 4391 bool IsQPXVectorTy(const Type *Ty) const { 4392 if (!HasQPX) 4393 return false; 4394 4395 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4396 unsigned NumElements = VT->getNumElements(); 4397 if (NumElements == 1) 4398 return false; 4399 4400 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4401 if (getContext().getTypeSize(Ty) <= 256) 4402 return true; 4403 } else if (VT->getElementType()-> 4404 isSpecificBuiltinType(BuiltinType::Float)) { 4405 if (getContext().getTypeSize(Ty) <= 128) 4406 return true; 4407 } 4408 } 4409 4410 return false; 4411 } 4412 4413 bool IsQPXVectorTy(QualType Ty) const { 4414 return IsQPXVectorTy(Ty.getTypePtr()); 4415 } 4416 4417 public: 4418 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4419 bool SoftFloatABI) 4420 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4421 IsSoftFloatABI(SoftFloatABI) {} 4422 4423 bool isPromotableTypeForABI(QualType Ty) const; 4424 CharUnits getParamTypeAlignment(QualType Ty) const; 4425 4426 ABIArgInfo classifyReturnType(QualType RetTy) const; 4427 ABIArgInfo classifyArgumentType(QualType Ty) const; 4428 4429 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4430 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4431 uint64_t Members) const override; 4432 4433 // TODO: We can add more logic to computeInfo to improve performance. 4434 // Example: For aggregate arguments that fit in a register, we could 4435 // use getDirectInReg (as is done below for structs containing a single 4436 // floating-point value) to avoid pushing them to memory on function 4437 // entry. This would require changing the logic in PPCISelLowering 4438 // when lowering the parameters in the caller and args in the callee. 4439 void computeInfo(CGFunctionInfo &FI) const override { 4440 if (!getCXXABI().classifyReturnType(FI)) 4441 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4442 for (auto &I : FI.arguments()) { 4443 // We rely on the default argument classification for the most part. 4444 // One exception: An aggregate containing a single floating-point 4445 // or vector item must be passed in a register if one is available. 4446 const Type *T = isSingleElementStruct(I.type, getContext()); 4447 if (T) { 4448 const BuiltinType *BT = T->getAs<BuiltinType>(); 4449 if (IsQPXVectorTy(T) || 4450 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4451 (BT && BT->isFloatingPoint())) { 4452 QualType QT(T, 0); 4453 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4454 continue; 4455 } 4456 } 4457 I.info = classifyArgumentType(I.type); 4458 } 4459 } 4460 4461 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4462 QualType Ty) const override; 4463 4464 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4465 bool asReturnValue) const override { 4466 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4467 } 4468 4469 bool isSwiftErrorInRegister() const override { 4470 return false; 4471 } 4472 }; 4473 4474 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4475 4476 public: 4477 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4478 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4479 bool SoftFloatABI) 4480 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4481 SoftFloatABI)) {} 4482 4483 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4484 // This is recovered from gcc output. 4485 return 1; // r1 is the dedicated stack pointer 4486 } 4487 4488 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4489 llvm::Value *Address) const override; 4490 }; 4491 4492 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4493 public: 4494 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4495 4496 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4497 // This is recovered from gcc output. 4498 return 1; // r1 is the dedicated stack pointer 4499 } 4500 4501 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4502 llvm::Value *Address) const override; 4503 }; 4504 4505 } 4506 4507 // Return true if the ABI requires Ty to be passed sign- or zero- 4508 // extended to 64 bits. 4509 bool 4510 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4511 // Treat an enum type as its underlying type. 4512 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4513 Ty = EnumTy->getDecl()->getIntegerType(); 4514 4515 // Promotable integer types are required to be promoted by the ABI. 4516 if (Ty->isPromotableIntegerType()) 4517 return true; 4518 4519 // In addition to the usual promotable integer types, we also need to 4520 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4521 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4522 switch (BT->getKind()) { 4523 case BuiltinType::Int: 4524 case BuiltinType::UInt: 4525 return true; 4526 default: 4527 break; 4528 } 4529 4530 return false; 4531 } 4532 4533 /// isAlignedParamType - Determine whether a type requires 16-byte or 4534 /// higher alignment in the parameter area. Always returns at least 8. 4535 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4536 // Complex types are passed just like their elements. 4537 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4538 Ty = CTy->getElementType(); 4539 4540 // Only vector types of size 16 bytes need alignment (larger types are 4541 // passed via reference, smaller types are not aligned). 4542 if (IsQPXVectorTy(Ty)) { 4543 if (getContext().getTypeSize(Ty) > 128) 4544 return CharUnits::fromQuantity(32); 4545 4546 return CharUnits::fromQuantity(16); 4547 } else if (Ty->isVectorType()) { 4548 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4549 } 4550 4551 // For single-element float/vector structs, we consider the whole type 4552 // to have the same alignment requirements as its single element. 4553 const Type *AlignAsType = nullptr; 4554 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4555 if (EltType) { 4556 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4557 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4558 getContext().getTypeSize(EltType) == 128) || 4559 (BT && BT->isFloatingPoint())) 4560 AlignAsType = EltType; 4561 } 4562 4563 // Likewise for ELFv2 homogeneous aggregates. 4564 const Type *Base = nullptr; 4565 uint64_t Members = 0; 4566 if (!AlignAsType && Kind == ELFv2 && 4567 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4568 AlignAsType = Base; 4569 4570 // With special case aggregates, only vector base types need alignment. 4571 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4572 if (getContext().getTypeSize(AlignAsType) > 128) 4573 return CharUnits::fromQuantity(32); 4574 4575 return CharUnits::fromQuantity(16); 4576 } else if (AlignAsType) { 4577 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4578 } 4579 4580 // Otherwise, we only need alignment for any aggregate type that 4581 // has an alignment requirement of >= 16 bytes. 4582 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4583 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4584 return CharUnits::fromQuantity(32); 4585 return CharUnits::fromQuantity(16); 4586 } 4587 4588 return CharUnits::fromQuantity(8); 4589 } 4590 4591 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4592 /// aggregate. Base is set to the base element type, and Members is set 4593 /// to the number of base elements. 4594 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4595 uint64_t &Members) const { 4596 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4597 uint64_t NElements = AT->getSize().getZExtValue(); 4598 if (NElements == 0) 4599 return false; 4600 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4601 return false; 4602 Members *= NElements; 4603 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4604 const RecordDecl *RD = RT->getDecl(); 4605 if (RD->hasFlexibleArrayMember()) 4606 return false; 4607 4608 Members = 0; 4609 4610 // If this is a C++ record, check the bases first. 4611 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4612 for (const auto &I : CXXRD->bases()) { 4613 // Ignore empty records. 4614 if (isEmptyRecord(getContext(), I.getType(), true)) 4615 continue; 4616 4617 uint64_t FldMembers; 4618 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4619 return false; 4620 4621 Members += FldMembers; 4622 } 4623 } 4624 4625 for (const auto *FD : RD->fields()) { 4626 // Ignore (non-zero arrays of) empty records. 4627 QualType FT = FD->getType(); 4628 while (const ConstantArrayType *AT = 4629 getContext().getAsConstantArrayType(FT)) { 4630 if (AT->getSize().getZExtValue() == 0) 4631 return false; 4632 FT = AT->getElementType(); 4633 } 4634 if (isEmptyRecord(getContext(), FT, true)) 4635 continue; 4636 4637 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4638 if (getContext().getLangOpts().CPlusPlus && 4639 FD->isZeroLengthBitField(getContext())) 4640 continue; 4641 4642 uint64_t FldMembers; 4643 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4644 return false; 4645 4646 Members = (RD->isUnion() ? 4647 std::max(Members, FldMembers) : Members + FldMembers); 4648 } 4649 4650 if (!Base) 4651 return false; 4652 4653 // Ensure there is no padding. 4654 if (getContext().getTypeSize(Base) * Members != 4655 getContext().getTypeSize(Ty)) 4656 return false; 4657 } else { 4658 Members = 1; 4659 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4660 Members = 2; 4661 Ty = CT->getElementType(); 4662 } 4663 4664 // Most ABIs only support float, double, and some vector type widths. 4665 if (!isHomogeneousAggregateBaseType(Ty)) 4666 return false; 4667 4668 // The base type must be the same for all members. Types that 4669 // agree in both total size and mode (float vs. vector) are 4670 // treated as being equivalent here. 4671 const Type *TyPtr = Ty.getTypePtr(); 4672 if (!Base) { 4673 Base = TyPtr; 4674 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4675 // so make sure to widen it explicitly. 4676 if (const VectorType *VT = Base->getAs<VectorType>()) { 4677 QualType EltTy = VT->getElementType(); 4678 unsigned NumElements = 4679 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4680 Base = getContext() 4681 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4682 .getTypePtr(); 4683 } 4684 } 4685 4686 if (Base->isVectorType() != TyPtr->isVectorType() || 4687 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4688 return false; 4689 } 4690 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4691 } 4692 4693 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4694 // Homogeneous aggregates for ELFv2 must have base types of float, 4695 // double, long double, or 128-bit vectors. 4696 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4697 if (BT->getKind() == BuiltinType::Float || 4698 BT->getKind() == BuiltinType::Double || 4699 BT->getKind() == BuiltinType::LongDouble || 4700 (getContext().getTargetInfo().hasFloat128Type() && 4701 (BT->getKind() == BuiltinType::Float128))) { 4702 if (IsSoftFloatABI) 4703 return false; 4704 return true; 4705 } 4706 } 4707 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4708 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4709 return true; 4710 } 4711 return false; 4712 } 4713 4714 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4715 const Type *Base, uint64_t Members) const { 4716 // Vector and fp128 types require one register, other floating point types 4717 // require one or two registers depending on their size. 4718 uint32_t NumRegs = 4719 ((getContext().getTargetInfo().hasFloat128Type() && 4720 Base->isFloat128Type()) || 4721 Base->isVectorType()) ? 1 4722 : (getContext().getTypeSize(Base) + 63) / 64; 4723 4724 // Homogeneous Aggregates may occupy at most 8 registers. 4725 return Members * NumRegs <= 8; 4726 } 4727 4728 ABIArgInfo 4729 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4730 Ty = useFirstFieldIfTransparentUnion(Ty); 4731 4732 if (Ty->isAnyComplexType()) 4733 return ABIArgInfo::getDirect(); 4734 4735 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4736 // or via reference (larger than 16 bytes). 4737 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4738 uint64_t Size = getContext().getTypeSize(Ty); 4739 if (Size > 128) 4740 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4741 else if (Size < 128) { 4742 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4743 return ABIArgInfo::getDirect(CoerceTy); 4744 } 4745 } 4746 4747 if (isAggregateTypeForABI(Ty)) { 4748 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4749 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4750 4751 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4752 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4753 4754 // ELFv2 homogeneous aggregates are passed as array types. 4755 const Type *Base = nullptr; 4756 uint64_t Members = 0; 4757 if (Kind == ELFv2 && 4758 isHomogeneousAggregate(Ty, Base, Members)) { 4759 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4760 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4761 return ABIArgInfo::getDirect(CoerceTy); 4762 } 4763 4764 // If an aggregate may end up fully in registers, we do not 4765 // use the ByVal method, but pass the aggregate as array. 4766 // This is usually beneficial since we avoid forcing the 4767 // back-end to store the argument to memory. 4768 uint64_t Bits = getContext().getTypeSize(Ty); 4769 if (Bits > 0 && Bits <= 8 * GPRBits) { 4770 llvm::Type *CoerceTy; 4771 4772 // Types up to 8 bytes are passed as integer type (which will be 4773 // properly aligned in the argument save area doubleword). 4774 if (Bits <= GPRBits) 4775 CoerceTy = 4776 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4777 // Larger types are passed as arrays, with the base type selected 4778 // according to the required alignment in the save area. 4779 else { 4780 uint64_t RegBits = ABIAlign * 8; 4781 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4782 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4783 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4784 } 4785 4786 return ABIArgInfo::getDirect(CoerceTy); 4787 } 4788 4789 // All other aggregates are passed ByVal. 4790 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4791 /*ByVal=*/true, 4792 /*Realign=*/TyAlign > ABIAlign); 4793 } 4794 4795 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4796 : ABIArgInfo::getDirect()); 4797 } 4798 4799 ABIArgInfo 4800 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4801 if (RetTy->isVoidType()) 4802 return ABIArgInfo::getIgnore(); 4803 4804 if (RetTy->isAnyComplexType()) 4805 return ABIArgInfo::getDirect(); 4806 4807 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4808 // or via reference (larger than 16 bytes). 4809 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4810 uint64_t Size = getContext().getTypeSize(RetTy); 4811 if (Size > 128) 4812 return getNaturalAlignIndirect(RetTy); 4813 else if (Size < 128) { 4814 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4815 return ABIArgInfo::getDirect(CoerceTy); 4816 } 4817 } 4818 4819 if (isAggregateTypeForABI(RetTy)) { 4820 // ELFv2 homogeneous aggregates are returned as array types. 4821 const Type *Base = nullptr; 4822 uint64_t Members = 0; 4823 if (Kind == ELFv2 && 4824 isHomogeneousAggregate(RetTy, Base, Members)) { 4825 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4826 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4827 return ABIArgInfo::getDirect(CoerceTy); 4828 } 4829 4830 // ELFv2 small aggregates are returned in up to two registers. 4831 uint64_t Bits = getContext().getTypeSize(RetTy); 4832 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4833 if (Bits == 0) 4834 return ABIArgInfo::getIgnore(); 4835 4836 llvm::Type *CoerceTy; 4837 if (Bits > GPRBits) { 4838 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4839 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4840 } else 4841 CoerceTy = 4842 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4843 return ABIArgInfo::getDirect(CoerceTy); 4844 } 4845 4846 // All other aggregates are returned indirectly. 4847 return getNaturalAlignIndirect(RetTy); 4848 } 4849 4850 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4851 : ABIArgInfo::getDirect()); 4852 } 4853 4854 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4855 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4856 QualType Ty) const { 4857 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4858 TypeInfo.second = getParamTypeAlignment(Ty); 4859 4860 CharUnits SlotSize = CharUnits::fromQuantity(8); 4861 4862 // If we have a complex type and the base type is smaller than 8 bytes, 4863 // the ABI calls for the real and imaginary parts to be right-adjusted 4864 // in separate doublewords. However, Clang expects us to produce a 4865 // pointer to a structure with the two parts packed tightly. So generate 4866 // loads of the real and imaginary parts relative to the va_list pointer, 4867 // and store them to a temporary structure. 4868 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4869 CharUnits EltSize = TypeInfo.first / 2; 4870 if (EltSize < SlotSize) { 4871 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4872 SlotSize * 2, SlotSize, 4873 SlotSize, /*AllowHigher*/ true); 4874 4875 Address RealAddr = Addr; 4876 Address ImagAddr = RealAddr; 4877 if (CGF.CGM.getDataLayout().isBigEndian()) { 4878 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4879 SlotSize - EltSize); 4880 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4881 2 * SlotSize - EltSize); 4882 } else { 4883 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4884 } 4885 4886 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4887 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4888 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4889 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4890 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4891 4892 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4893 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4894 /*init*/ true); 4895 return Temp; 4896 } 4897 } 4898 4899 // Otherwise, just use the general rule. 4900 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4901 TypeInfo, SlotSize, /*AllowHigher*/ true); 4902 } 4903 4904 static bool 4905 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4906 llvm::Value *Address) { 4907 // This is calculated from the LLVM and GCC tables and verified 4908 // against gcc output. AFAIK all ABIs use the same encoding. 4909 4910 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4911 4912 llvm::IntegerType *i8 = CGF.Int8Ty; 4913 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4914 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4915 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4916 4917 // 0-31: r0-31, the 8-byte general-purpose registers 4918 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4919 4920 // 32-63: fp0-31, the 8-byte floating-point registers 4921 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4922 4923 // 64-67 are various 8-byte special-purpose registers: 4924 // 64: mq 4925 // 65: lr 4926 // 66: ctr 4927 // 67: ap 4928 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4929 4930 // 68-76 are various 4-byte special-purpose registers: 4931 // 68-75 cr0-7 4932 // 76: xer 4933 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4934 4935 // 77-108: v0-31, the 16-byte vector registers 4936 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4937 4938 // 109: vrsave 4939 // 110: vscr 4940 // 111: spe_acc 4941 // 112: spefscr 4942 // 113: sfp 4943 // 114: tfhar 4944 // 115: tfiar 4945 // 116: texasr 4946 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4947 4948 return false; 4949 } 4950 4951 bool 4952 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4953 CodeGen::CodeGenFunction &CGF, 4954 llvm::Value *Address) const { 4955 4956 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4957 } 4958 4959 bool 4960 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4961 llvm::Value *Address) const { 4962 4963 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4964 } 4965 4966 //===----------------------------------------------------------------------===// 4967 // AArch64 ABI Implementation 4968 //===----------------------------------------------------------------------===// 4969 4970 namespace { 4971 4972 class AArch64ABIInfo : public SwiftABIInfo { 4973 public: 4974 enum ABIKind { 4975 AAPCS = 0, 4976 DarwinPCS, 4977 Win64 4978 }; 4979 4980 private: 4981 ABIKind Kind; 4982 4983 public: 4984 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4985 : SwiftABIInfo(CGT), Kind(Kind) {} 4986 4987 private: 4988 ABIKind getABIKind() const { return Kind; } 4989 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4990 4991 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 4992 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4993 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4994 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4995 uint64_t Members) const override; 4996 4997 bool isIllegalVectorType(QualType Ty) const; 4998 4999 void computeInfo(CGFunctionInfo &FI) const override { 5000 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5001 FI.getReturnInfo() = 5002 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5003 5004 for (auto &it : FI.arguments()) 5005 it.info = classifyArgumentType(it.type); 5006 } 5007 5008 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5009 CodeGenFunction &CGF) const; 5010 5011 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5012 CodeGenFunction &CGF) const; 5013 5014 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5015 QualType Ty) const override { 5016 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5017 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5018 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5019 } 5020 5021 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5022 QualType Ty) const override; 5023 5024 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5025 bool asReturnValue) const override { 5026 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5027 } 5028 bool isSwiftErrorInRegister() const override { 5029 return true; 5030 } 5031 5032 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5033 unsigned elts) const override; 5034 }; 5035 5036 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5037 public: 5038 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5039 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5040 5041 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5042 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5043 } 5044 5045 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5046 return 31; 5047 } 5048 5049 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5050 5051 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5052 CodeGen::CodeGenModule &CGM) const override { 5053 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5054 if (!FD) 5055 return; 5056 5057 CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress(); 5058 CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5059 bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement; 5060 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5061 ParsedTargetAttr Attr = TA->parse(); 5062 if (!Attr.BranchProtection.empty()) { 5063 TargetInfo::BranchProtectionInfo BPI; 5064 StringRef Error; 5065 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5066 BPI, Error); 5067 assert(Error.empty()); 5068 Scope = BPI.SignReturnAddr; 5069 Key = BPI.SignKey; 5070 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5071 } 5072 } 5073 5074 auto *Fn = cast<llvm::Function>(GV); 5075 if (Scope != CodeGenOptions::SignReturnAddressScope::None) { 5076 Fn->addFnAttr("sign-return-address", 5077 Scope == CodeGenOptions::SignReturnAddressScope::All 5078 ? "all" 5079 : "non-leaf"); 5080 5081 Fn->addFnAttr("sign-return-address-key", 5082 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5083 ? "a_key" 5084 : "b_key"); 5085 } 5086 5087 if (BranchTargetEnforcement) 5088 Fn->addFnAttr("branch-target-enforcement"); 5089 } 5090 }; 5091 5092 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5093 public: 5094 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5095 : AArch64TargetCodeGenInfo(CGT, K) {} 5096 5097 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5098 CodeGen::CodeGenModule &CGM) const override; 5099 5100 void getDependentLibraryOption(llvm::StringRef Lib, 5101 llvm::SmallString<24> &Opt) const override { 5102 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5103 } 5104 5105 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5106 llvm::SmallString<32> &Opt) const override { 5107 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5108 } 5109 }; 5110 5111 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5112 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5113 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5114 if (GV->isDeclaration()) 5115 return; 5116 addStackProbeTargetAttributes(D, GV, CGM); 5117 } 5118 } 5119 5120 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5121 Ty = useFirstFieldIfTransparentUnion(Ty); 5122 5123 // Handle illegal vector types here. 5124 if (isIllegalVectorType(Ty)) { 5125 uint64_t Size = getContext().getTypeSize(Ty); 5126 // Android promotes <2 x i8> to i16, not i32 5127 if (isAndroid() && (Size <= 16)) { 5128 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5129 return ABIArgInfo::getDirect(ResType); 5130 } 5131 if (Size <= 32) { 5132 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5133 return ABIArgInfo::getDirect(ResType); 5134 } 5135 if (Size == 64) { 5136 llvm::Type *ResType = 5137 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5138 return ABIArgInfo::getDirect(ResType); 5139 } 5140 if (Size == 128) { 5141 llvm::Type *ResType = 5142 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5143 return ABIArgInfo::getDirect(ResType); 5144 } 5145 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5146 } 5147 5148 if (!isAggregateTypeForABI(Ty)) { 5149 // Treat an enum type as its underlying type. 5150 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5151 Ty = EnumTy->getDecl()->getIntegerType(); 5152 5153 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5154 ? ABIArgInfo::getExtend(Ty) 5155 : ABIArgInfo::getDirect()); 5156 } 5157 5158 // Structures with either a non-trivial destructor or a non-trivial 5159 // copy constructor are always indirect. 5160 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5161 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5162 CGCXXABI::RAA_DirectInMemory); 5163 } 5164 5165 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5166 // elsewhere for GNU compatibility. 5167 uint64_t Size = getContext().getTypeSize(Ty); 5168 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5169 if (IsEmpty || Size == 0) { 5170 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5171 return ABIArgInfo::getIgnore(); 5172 5173 // GNU C mode. The only argument that gets ignored is an empty one with size 5174 // 0. 5175 if (IsEmpty && Size == 0) 5176 return ABIArgInfo::getIgnore(); 5177 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5178 } 5179 5180 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5181 const Type *Base = nullptr; 5182 uint64_t Members = 0; 5183 if (isHomogeneousAggregate(Ty, Base, Members)) { 5184 return ABIArgInfo::getDirect( 5185 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5186 } 5187 5188 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5189 if (Size <= 128) { 5190 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5191 // same size and alignment. 5192 if (getTarget().isRenderScriptTarget()) { 5193 return coerceToIntArray(Ty, getContext(), getVMContext()); 5194 } 5195 unsigned Alignment; 5196 if (Kind == AArch64ABIInfo::AAPCS) { 5197 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5198 Alignment = Alignment < 128 ? 64 : 128; 5199 } else { 5200 Alignment = std::max(getContext().getTypeAlign(Ty), 5201 (unsigned)getTarget().getPointerWidth(0)); 5202 } 5203 Size = llvm::alignTo(Size, Alignment); 5204 5205 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5206 // For aggregates with 16-byte alignment, we use i128. 5207 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5208 return ABIArgInfo::getDirect( 5209 Size == Alignment ? BaseTy 5210 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5211 } 5212 5213 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5214 } 5215 5216 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5217 bool IsVariadic) const { 5218 if (RetTy->isVoidType()) 5219 return ABIArgInfo::getIgnore(); 5220 5221 // Large vector types should be returned via memory. 5222 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5223 return getNaturalAlignIndirect(RetTy); 5224 5225 if (!isAggregateTypeForABI(RetTy)) { 5226 // Treat an enum type as its underlying type. 5227 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5228 RetTy = EnumTy->getDecl()->getIntegerType(); 5229 5230 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5231 ? ABIArgInfo::getExtend(RetTy) 5232 : ABIArgInfo::getDirect()); 5233 } 5234 5235 uint64_t Size = getContext().getTypeSize(RetTy); 5236 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5237 return ABIArgInfo::getIgnore(); 5238 5239 const Type *Base = nullptr; 5240 uint64_t Members = 0; 5241 if (isHomogeneousAggregate(RetTy, Base, Members) && 5242 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5243 IsVariadic)) 5244 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5245 return ABIArgInfo::getDirect(); 5246 5247 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5248 if (Size <= 128) { 5249 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5250 // same size and alignment. 5251 if (getTarget().isRenderScriptTarget()) { 5252 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5253 } 5254 unsigned Alignment = getContext().getTypeAlign(RetTy); 5255 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5256 5257 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5258 // For aggregates with 16-byte alignment, we use i128. 5259 if (Alignment < 128 && Size == 128) { 5260 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5261 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5262 } 5263 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5264 } 5265 5266 return getNaturalAlignIndirect(RetTy); 5267 } 5268 5269 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5270 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5271 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5272 // Check whether VT is legal. 5273 unsigned NumElements = VT->getNumElements(); 5274 uint64_t Size = getContext().getTypeSize(VT); 5275 // NumElements should be power of 2. 5276 if (!llvm::isPowerOf2_32(NumElements)) 5277 return true; 5278 5279 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5280 // vectors for some reason. 5281 llvm::Triple Triple = getTarget().getTriple(); 5282 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5283 Triple.isOSBinFormatMachO()) 5284 return Size <= 32; 5285 5286 return Size != 64 && (Size != 128 || NumElements == 1); 5287 } 5288 return false; 5289 } 5290 5291 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5292 llvm::Type *eltTy, 5293 unsigned elts) const { 5294 if (!llvm::isPowerOf2_32(elts)) 5295 return false; 5296 if (totalSize.getQuantity() != 8 && 5297 (totalSize.getQuantity() != 16 || elts == 1)) 5298 return false; 5299 return true; 5300 } 5301 5302 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5303 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5304 // point type or a short-vector type. This is the same as the 32-bit ABI, 5305 // but with the difference that any floating-point type is allowed, 5306 // including __fp16. 5307 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5308 if (BT->isFloatingPoint()) 5309 return true; 5310 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5311 unsigned VecSize = getContext().getTypeSize(VT); 5312 if (VecSize == 64 || VecSize == 128) 5313 return true; 5314 } 5315 return false; 5316 } 5317 5318 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5319 uint64_t Members) const { 5320 return Members <= 4; 5321 } 5322 5323 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5324 QualType Ty, 5325 CodeGenFunction &CGF) const { 5326 ABIArgInfo AI = classifyArgumentType(Ty); 5327 bool IsIndirect = AI.isIndirect(); 5328 5329 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5330 if (IsIndirect) 5331 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5332 else if (AI.getCoerceToType()) 5333 BaseTy = AI.getCoerceToType(); 5334 5335 unsigned NumRegs = 1; 5336 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5337 BaseTy = ArrTy->getElementType(); 5338 NumRegs = ArrTy->getNumElements(); 5339 } 5340 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5341 5342 // The AArch64 va_list type and handling is specified in the Procedure Call 5343 // Standard, section B.4: 5344 // 5345 // struct { 5346 // void *__stack; 5347 // void *__gr_top; 5348 // void *__vr_top; 5349 // int __gr_offs; 5350 // int __vr_offs; 5351 // }; 5352 5353 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5354 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5355 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5356 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5357 5358 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5359 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5360 5361 Address reg_offs_p = Address::invalid(); 5362 llvm::Value *reg_offs = nullptr; 5363 int reg_top_index; 5364 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5365 if (!IsFPR) { 5366 // 3 is the field number of __gr_offs 5367 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5368 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5369 reg_top_index = 1; // field number for __gr_top 5370 RegSize = llvm::alignTo(RegSize, 8); 5371 } else { 5372 // 4 is the field number of __vr_offs. 5373 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5374 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5375 reg_top_index = 2; // field number for __vr_top 5376 RegSize = 16 * NumRegs; 5377 } 5378 5379 //======================================= 5380 // Find out where argument was passed 5381 //======================================= 5382 5383 // If reg_offs >= 0 we're already using the stack for this type of 5384 // argument. We don't want to keep updating reg_offs (in case it overflows, 5385 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5386 // whatever they get). 5387 llvm::Value *UsingStack = nullptr; 5388 UsingStack = CGF.Builder.CreateICmpSGE( 5389 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5390 5391 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5392 5393 // Otherwise, at least some kind of argument could go in these registers, the 5394 // question is whether this particular type is too big. 5395 CGF.EmitBlock(MaybeRegBlock); 5396 5397 // Integer arguments may need to correct register alignment (for example a 5398 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5399 // align __gr_offs to calculate the potential address. 5400 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5401 int Align = TyAlign.getQuantity(); 5402 5403 reg_offs = CGF.Builder.CreateAdd( 5404 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5405 "align_regoffs"); 5406 reg_offs = CGF.Builder.CreateAnd( 5407 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5408 "aligned_regoffs"); 5409 } 5410 5411 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5412 // The fact that this is done unconditionally reflects the fact that 5413 // allocating an argument to the stack also uses up all the remaining 5414 // registers of the appropriate kind. 5415 llvm::Value *NewOffset = nullptr; 5416 NewOffset = CGF.Builder.CreateAdd( 5417 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5418 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5419 5420 // Now we're in a position to decide whether this argument really was in 5421 // registers or not. 5422 llvm::Value *InRegs = nullptr; 5423 InRegs = CGF.Builder.CreateICmpSLE( 5424 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5425 5426 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5427 5428 //======================================= 5429 // Argument was in registers 5430 //======================================= 5431 5432 // Now we emit the code for if the argument was originally passed in 5433 // registers. First start the appropriate block: 5434 CGF.EmitBlock(InRegBlock); 5435 5436 llvm::Value *reg_top = nullptr; 5437 Address reg_top_p = 5438 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5439 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5440 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5441 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5442 Address RegAddr = Address::invalid(); 5443 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5444 5445 if (IsIndirect) { 5446 // If it's been passed indirectly (actually a struct), whatever we find from 5447 // stored registers or on the stack will actually be a struct **. 5448 MemTy = llvm::PointerType::getUnqual(MemTy); 5449 } 5450 5451 const Type *Base = nullptr; 5452 uint64_t NumMembers = 0; 5453 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5454 if (IsHFA && NumMembers > 1) { 5455 // Homogeneous aggregates passed in registers will have their elements split 5456 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5457 // qN+1, ...). We reload and store into a temporary local variable 5458 // contiguously. 5459 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5460 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5461 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5462 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5463 Address Tmp = CGF.CreateTempAlloca(HFATy, 5464 std::max(TyAlign, BaseTyInfo.second)); 5465 5466 // On big-endian platforms, the value will be right-aligned in its slot. 5467 int Offset = 0; 5468 if (CGF.CGM.getDataLayout().isBigEndian() && 5469 BaseTyInfo.first.getQuantity() < 16) 5470 Offset = 16 - BaseTyInfo.first.getQuantity(); 5471 5472 for (unsigned i = 0; i < NumMembers; ++i) { 5473 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5474 Address LoadAddr = 5475 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5476 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5477 5478 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5479 5480 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5481 CGF.Builder.CreateStore(Elem, StoreAddr); 5482 } 5483 5484 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5485 } else { 5486 // Otherwise the object is contiguous in memory. 5487 5488 // It might be right-aligned in its slot. 5489 CharUnits SlotSize = BaseAddr.getAlignment(); 5490 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5491 (IsHFA || !isAggregateTypeForABI(Ty)) && 5492 TySize < SlotSize) { 5493 CharUnits Offset = SlotSize - TySize; 5494 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5495 } 5496 5497 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5498 } 5499 5500 CGF.EmitBranch(ContBlock); 5501 5502 //======================================= 5503 // Argument was on the stack 5504 //======================================= 5505 CGF.EmitBlock(OnStackBlock); 5506 5507 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5508 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5509 5510 // Again, stack arguments may need realignment. In this case both integer and 5511 // floating-point ones might be affected. 5512 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5513 int Align = TyAlign.getQuantity(); 5514 5515 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5516 5517 OnStackPtr = CGF.Builder.CreateAdd( 5518 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5519 "align_stack"); 5520 OnStackPtr = CGF.Builder.CreateAnd( 5521 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5522 "align_stack"); 5523 5524 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5525 } 5526 Address OnStackAddr(OnStackPtr, 5527 std::max(CharUnits::fromQuantity(8), TyAlign)); 5528 5529 // All stack slots are multiples of 8 bytes. 5530 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5531 CharUnits StackSize; 5532 if (IsIndirect) 5533 StackSize = StackSlotSize; 5534 else 5535 StackSize = TySize.alignTo(StackSlotSize); 5536 5537 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5538 llvm::Value *NewStack = 5539 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5540 5541 // Write the new value of __stack for the next call to va_arg 5542 CGF.Builder.CreateStore(NewStack, stack_p); 5543 5544 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5545 TySize < StackSlotSize) { 5546 CharUnits Offset = StackSlotSize - TySize; 5547 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5548 } 5549 5550 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5551 5552 CGF.EmitBranch(ContBlock); 5553 5554 //======================================= 5555 // Tidy up 5556 //======================================= 5557 CGF.EmitBlock(ContBlock); 5558 5559 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5560 OnStackAddr, OnStackBlock, "vaargs.addr"); 5561 5562 if (IsIndirect) 5563 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5564 TyAlign); 5565 5566 return ResAddr; 5567 } 5568 5569 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5570 CodeGenFunction &CGF) const { 5571 // The backend's lowering doesn't support va_arg for aggregates or 5572 // illegal vector types. Lower VAArg here for these cases and use 5573 // the LLVM va_arg instruction for everything else. 5574 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5575 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5576 5577 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5578 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5579 5580 // Empty records are ignored for parameter passing purposes. 5581 if (isEmptyRecord(getContext(), Ty, true)) { 5582 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5583 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5584 return Addr; 5585 } 5586 5587 // The size of the actual thing passed, which might end up just 5588 // being a pointer for indirect types. 5589 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5590 5591 // Arguments bigger than 16 bytes which aren't homogeneous 5592 // aggregates should be passed indirectly. 5593 bool IsIndirect = false; 5594 if (TyInfo.first.getQuantity() > 16) { 5595 const Type *Base = nullptr; 5596 uint64_t Members = 0; 5597 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5598 } 5599 5600 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5601 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5602 } 5603 5604 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5605 QualType Ty) const { 5606 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5607 CGF.getContext().getTypeInfoInChars(Ty), 5608 CharUnits::fromQuantity(8), 5609 /*allowHigherAlign*/ false); 5610 } 5611 5612 //===----------------------------------------------------------------------===// 5613 // ARM ABI Implementation 5614 //===----------------------------------------------------------------------===// 5615 5616 namespace { 5617 5618 class ARMABIInfo : public SwiftABIInfo { 5619 public: 5620 enum ABIKind { 5621 APCS = 0, 5622 AAPCS = 1, 5623 AAPCS_VFP = 2, 5624 AAPCS16_VFP = 3, 5625 }; 5626 5627 private: 5628 ABIKind Kind; 5629 5630 public: 5631 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5632 : SwiftABIInfo(CGT), Kind(_Kind) { 5633 setCCs(); 5634 } 5635 5636 bool isEABI() const { 5637 switch (getTarget().getTriple().getEnvironment()) { 5638 case llvm::Triple::Android: 5639 case llvm::Triple::EABI: 5640 case llvm::Triple::EABIHF: 5641 case llvm::Triple::GNUEABI: 5642 case llvm::Triple::GNUEABIHF: 5643 case llvm::Triple::MuslEABI: 5644 case llvm::Triple::MuslEABIHF: 5645 return true; 5646 default: 5647 return false; 5648 } 5649 } 5650 5651 bool isEABIHF() const { 5652 switch (getTarget().getTriple().getEnvironment()) { 5653 case llvm::Triple::EABIHF: 5654 case llvm::Triple::GNUEABIHF: 5655 case llvm::Triple::MuslEABIHF: 5656 return true; 5657 default: 5658 return false; 5659 } 5660 } 5661 5662 ABIKind getABIKind() const { return Kind; } 5663 5664 private: 5665 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5666 unsigned functionCallConv) const; 5667 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5668 unsigned functionCallConv) const; 5669 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5670 uint64_t Members) const; 5671 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5672 bool isIllegalVectorType(QualType Ty) const; 5673 bool containsAnyFP16Vectors(QualType Ty) const; 5674 5675 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5676 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5677 uint64_t Members) const override; 5678 5679 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5680 5681 void computeInfo(CGFunctionInfo &FI) const override; 5682 5683 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5684 QualType Ty) const override; 5685 5686 llvm::CallingConv::ID getLLVMDefaultCC() const; 5687 llvm::CallingConv::ID getABIDefaultCC() const; 5688 void setCCs(); 5689 5690 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5691 bool asReturnValue) const override { 5692 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5693 } 5694 bool isSwiftErrorInRegister() const override { 5695 return true; 5696 } 5697 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5698 unsigned elts) const override; 5699 }; 5700 5701 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5702 public: 5703 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5704 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5705 5706 const ARMABIInfo &getABIInfo() const { 5707 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5708 } 5709 5710 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5711 return 13; 5712 } 5713 5714 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5715 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5716 } 5717 5718 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5719 llvm::Value *Address) const override { 5720 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5721 5722 // 0-15 are the 16 integer registers. 5723 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5724 return false; 5725 } 5726 5727 unsigned getSizeOfUnwindException() const override { 5728 if (getABIInfo().isEABI()) return 88; 5729 return TargetCodeGenInfo::getSizeOfUnwindException(); 5730 } 5731 5732 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5733 CodeGen::CodeGenModule &CGM) const override { 5734 if (GV->isDeclaration()) 5735 return; 5736 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5737 if (!FD) 5738 return; 5739 5740 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5741 if (!Attr) 5742 return; 5743 5744 const char *Kind; 5745 switch (Attr->getInterrupt()) { 5746 case ARMInterruptAttr::Generic: Kind = ""; break; 5747 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5748 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5749 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5750 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5751 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5752 } 5753 5754 llvm::Function *Fn = cast<llvm::Function>(GV); 5755 5756 Fn->addFnAttr("interrupt", Kind); 5757 5758 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5759 if (ABI == ARMABIInfo::APCS) 5760 return; 5761 5762 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5763 // however this is not necessarily true on taking any interrupt. Instruct 5764 // the backend to perform a realignment as part of the function prologue. 5765 llvm::AttrBuilder B; 5766 B.addStackAlignmentAttr(8); 5767 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5768 } 5769 }; 5770 5771 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5772 public: 5773 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5774 : ARMTargetCodeGenInfo(CGT, K) {} 5775 5776 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5777 CodeGen::CodeGenModule &CGM) const override; 5778 5779 void getDependentLibraryOption(llvm::StringRef Lib, 5780 llvm::SmallString<24> &Opt) const override { 5781 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5782 } 5783 5784 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5785 llvm::SmallString<32> &Opt) const override { 5786 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5787 } 5788 }; 5789 5790 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5791 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5792 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5793 if (GV->isDeclaration()) 5794 return; 5795 addStackProbeTargetAttributes(D, GV, CGM); 5796 } 5797 } 5798 5799 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5800 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5801 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5802 FI.getCallingConvention()); 5803 5804 for (auto &I : FI.arguments()) 5805 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5806 FI.getCallingConvention()); 5807 5808 5809 // Always honor user-specified calling convention. 5810 if (FI.getCallingConvention() != llvm::CallingConv::C) 5811 return; 5812 5813 llvm::CallingConv::ID cc = getRuntimeCC(); 5814 if (cc != llvm::CallingConv::C) 5815 FI.setEffectiveCallingConvention(cc); 5816 } 5817 5818 /// Return the default calling convention that LLVM will use. 5819 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5820 // The default calling convention that LLVM will infer. 5821 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5822 return llvm::CallingConv::ARM_AAPCS_VFP; 5823 else if (isEABI()) 5824 return llvm::CallingConv::ARM_AAPCS; 5825 else 5826 return llvm::CallingConv::ARM_APCS; 5827 } 5828 5829 /// Return the calling convention that our ABI would like us to use 5830 /// as the C calling convention. 5831 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5832 switch (getABIKind()) { 5833 case APCS: return llvm::CallingConv::ARM_APCS; 5834 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5835 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5836 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5837 } 5838 llvm_unreachable("bad ABI kind"); 5839 } 5840 5841 void ARMABIInfo::setCCs() { 5842 assert(getRuntimeCC() == llvm::CallingConv::C); 5843 5844 // Don't muddy up the IR with a ton of explicit annotations if 5845 // they'd just match what LLVM will infer from the triple. 5846 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5847 if (abiCC != getLLVMDefaultCC()) 5848 RuntimeCC = abiCC; 5849 } 5850 5851 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5852 uint64_t Size = getContext().getTypeSize(Ty); 5853 if (Size <= 32) { 5854 llvm::Type *ResType = 5855 llvm::Type::getInt32Ty(getVMContext()); 5856 return ABIArgInfo::getDirect(ResType); 5857 } 5858 if (Size == 64 || Size == 128) { 5859 llvm::Type *ResType = llvm::VectorType::get( 5860 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5861 return ABIArgInfo::getDirect(ResType); 5862 } 5863 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5864 } 5865 5866 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5867 const Type *Base, 5868 uint64_t Members) const { 5869 assert(Base && "Base class should be set for homogeneous aggregate"); 5870 // Base can be a floating-point or a vector. 5871 if (const VectorType *VT = Base->getAs<VectorType>()) { 5872 // FP16 vectors should be converted to integer vectors 5873 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 5874 uint64_t Size = getContext().getTypeSize(VT); 5875 llvm::Type *NewVecTy = llvm::VectorType::get( 5876 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5877 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5878 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5879 } 5880 } 5881 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5882 } 5883 5884 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5885 unsigned functionCallConv) const { 5886 // 6.1.2.1 The following argument types are VFP CPRCs: 5887 // A single-precision floating-point type (including promoted 5888 // half-precision types); A double-precision floating-point type; 5889 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5890 // with a Base Type of a single- or double-precision floating-point type, 5891 // 64-bit containerized vectors or 128-bit containerized vectors with one 5892 // to four Elements. 5893 // Variadic functions should always marshal to the base standard. 5894 bool IsAAPCS_VFP = 5895 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5896 5897 Ty = useFirstFieldIfTransparentUnion(Ty); 5898 5899 // Handle illegal vector types here. 5900 if (isIllegalVectorType(Ty)) 5901 return coerceIllegalVector(Ty); 5902 5903 // _Float16 and __fp16 get passed as if it were an int or float, but with 5904 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5905 // half type natively, and does not need to interwork with AAPCS code. 5906 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5907 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5908 llvm::Type *ResType = IsAAPCS_VFP ? 5909 llvm::Type::getFloatTy(getVMContext()) : 5910 llvm::Type::getInt32Ty(getVMContext()); 5911 return ABIArgInfo::getDirect(ResType); 5912 } 5913 5914 if (!isAggregateTypeForABI(Ty)) { 5915 // Treat an enum type as its underlying type. 5916 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5917 Ty = EnumTy->getDecl()->getIntegerType(); 5918 } 5919 5920 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5921 : ABIArgInfo::getDirect()); 5922 } 5923 5924 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5925 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5926 } 5927 5928 // Ignore empty records. 5929 if (isEmptyRecord(getContext(), Ty, true)) 5930 return ABIArgInfo::getIgnore(); 5931 5932 if (IsAAPCS_VFP) { 5933 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5934 // into VFP registers. 5935 const Type *Base = nullptr; 5936 uint64_t Members = 0; 5937 if (isHomogeneousAggregate(Ty, Base, Members)) 5938 return classifyHomogeneousAggregate(Ty, Base, Members); 5939 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5940 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5941 // this convention even for a variadic function: the backend will use GPRs 5942 // if needed. 5943 const Type *Base = nullptr; 5944 uint64_t Members = 0; 5945 if (isHomogeneousAggregate(Ty, Base, Members)) { 5946 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5947 llvm::Type *Ty = 5948 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5949 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5950 } 5951 } 5952 5953 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5954 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5955 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5956 // bigger than 128-bits, they get placed in space allocated by the caller, 5957 // and a pointer is passed. 5958 return ABIArgInfo::getIndirect( 5959 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5960 } 5961 5962 // Support byval for ARM. 5963 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5964 // most 8-byte. We realign the indirect argument if type alignment is bigger 5965 // than ABI alignment. 5966 uint64_t ABIAlign = 4; 5967 uint64_t TyAlign; 5968 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5969 getABIKind() == ARMABIInfo::AAPCS) { 5970 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5971 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5972 } else { 5973 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5974 } 5975 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5976 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5977 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5978 /*ByVal=*/true, 5979 /*Realign=*/TyAlign > ABIAlign); 5980 } 5981 5982 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5983 // same size and alignment. 5984 if (getTarget().isRenderScriptTarget()) { 5985 return coerceToIntArray(Ty, getContext(), getVMContext()); 5986 } 5987 5988 // Otherwise, pass by coercing to a structure of the appropriate size. 5989 llvm::Type* ElemTy; 5990 unsigned SizeRegs; 5991 // FIXME: Try to match the types of the arguments more accurately where 5992 // we can. 5993 if (TyAlign <= 4) { 5994 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5995 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5996 } else { 5997 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5998 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5999 } 6000 6001 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6002 } 6003 6004 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6005 llvm::LLVMContext &VMContext) { 6006 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6007 // is called integer-like if its size is less than or equal to one word, and 6008 // the offset of each of its addressable sub-fields is zero. 6009 6010 uint64_t Size = Context.getTypeSize(Ty); 6011 6012 // Check that the type fits in a word. 6013 if (Size > 32) 6014 return false; 6015 6016 // FIXME: Handle vector types! 6017 if (Ty->isVectorType()) 6018 return false; 6019 6020 // Float types are never treated as "integer like". 6021 if (Ty->isRealFloatingType()) 6022 return false; 6023 6024 // If this is a builtin or pointer type then it is ok. 6025 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6026 return true; 6027 6028 // Small complex integer types are "integer like". 6029 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6030 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6031 6032 // Single element and zero sized arrays should be allowed, by the definition 6033 // above, but they are not. 6034 6035 // Otherwise, it must be a record type. 6036 const RecordType *RT = Ty->getAs<RecordType>(); 6037 if (!RT) return false; 6038 6039 // Ignore records with flexible arrays. 6040 const RecordDecl *RD = RT->getDecl(); 6041 if (RD->hasFlexibleArrayMember()) 6042 return false; 6043 6044 // Check that all sub-fields are at offset 0, and are themselves "integer 6045 // like". 6046 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6047 6048 bool HadField = false; 6049 unsigned idx = 0; 6050 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6051 i != e; ++i, ++idx) { 6052 const FieldDecl *FD = *i; 6053 6054 // Bit-fields are not addressable, we only need to verify they are "integer 6055 // like". We still have to disallow a subsequent non-bitfield, for example: 6056 // struct { int : 0; int x } 6057 // is non-integer like according to gcc. 6058 if (FD->isBitField()) { 6059 if (!RD->isUnion()) 6060 HadField = true; 6061 6062 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6063 return false; 6064 6065 continue; 6066 } 6067 6068 // Check if this field is at offset 0. 6069 if (Layout.getFieldOffset(idx) != 0) 6070 return false; 6071 6072 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6073 return false; 6074 6075 // Only allow at most one field in a structure. This doesn't match the 6076 // wording above, but follows gcc in situations with a field following an 6077 // empty structure. 6078 if (!RD->isUnion()) { 6079 if (HadField) 6080 return false; 6081 6082 HadField = true; 6083 } 6084 } 6085 6086 return true; 6087 } 6088 6089 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6090 unsigned functionCallConv) const { 6091 6092 // Variadic functions should always marshal to the base standard. 6093 bool IsAAPCS_VFP = 6094 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6095 6096 if (RetTy->isVoidType()) 6097 return ABIArgInfo::getIgnore(); 6098 6099 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6100 // Large vector types should be returned via memory. 6101 if (getContext().getTypeSize(RetTy) > 128) 6102 return getNaturalAlignIndirect(RetTy); 6103 // FP16 vectors should be converted to integer vectors 6104 if (!getTarget().hasLegalHalfType() && 6105 (VT->getElementType()->isFloat16Type() || 6106 VT->getElementType()->isHalfType())) 6107 return coerceIllegalVector(RetTy); 6108 } 6109 6110 // _Float16 and __fp16 get returned as if it were an int or float, but with 6111 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6112 // half type natively, and does not need to interwork with AAPCS code. 6113 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6114 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6115 llvm::Type *ResType = IsAAPCS_VFP ? 6116 llvm::Type::getFloatTy(getVMContext()) : 6117 llvm::Type::getInt32Ty(getVMContext()); 6118 return ABIArgInfo::getDirect(ResType); 6119 } 6120 6121 if (!isAggregateTypeForABI(RetTy)) { 6122 // Treat an enum type as its underlying type. 6123 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6124 RetTy = EnumTy->getDecl()->getIntegerType(); 6125 6126 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6127 : ABIArgInfo::getDirect(); 6128 } 6129 6130 // Are we following APCS? 6131 if (getABIKind() == APCS) { 6132 if (isEmptyRecord(getContext(), RetTy, false)) 6133 return ABIArgInfo::getIgnore(); 6134 6135 // Complex types are all returned as packed integers. 6136 // 6137 // FIXME: Consider using 2 x vector types if the back end handles them 6138 // correctly. 6139 if (RetTy->isAnyComplexType()) 6140 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6141 getVMContext(), getContext().getTypeSize(RetTy))); 6142 6143 // Integer like structures are returned in r0. 6144 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6145 // Return in the smallest viable integer type. 6146 uint64_t Size = getContext().getTypeSize(RetTy); 6147 if (Size <= 8) 6148 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6149 if (Size <= 16) 6150 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6151 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6152 } 6153 6154 // Otherwise return in memory. 6155 return getNaturalAlignIndirect(RetTy); 6156 } 6157 6158 // Otherwise this is an AAPCS variant. 6159 6160 if (isEmptyRecord(getContext(), RetTy, true)) 6161 return ABIArgInfo::getIgnore(); 6162 6163 // Check for homogeneous aggregates with AAPCS-VFP. 6164 if (IsAAPCS_VFP) { 6165 const Type *Base = nullptr; 6166 uint64_t Members = 0; 6167 if (isHomogeneousAggregate(RetTy, Base, Members)) 6168 return classifyHomogeneousAggregate(RetTy, Base, Members); 6169 } 6170 6171 // Aggregates <= 4 bytes are returned in r0; other aggregates 6172 // are returned indirectly. 6173 uint64_t Size = getContext().getTypeSize(RetTy); 6174 if (Size <= 32) { 6175 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6176 // same size and alignment. 6177 if (getTarget().isRenderScriptTarget()) { 6178 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6179 } 6180 if (getDataLayout().isBigEndian()) 6181 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6182 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6183 6184 // Return in the smallest viable integer type. 6185 if (Size <= 8) 6186 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6187 if (Size <= 16) 6188 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6189 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6190 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6191 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6192 llvm::Type *CoerceTy = 6193 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6194 return ABIArgInfo::getDirect(CoerceTy); 6195 } 6196 6197 return getNaturalAlignIndirect(RetTy); 6198 } 6199 6200 /// isIllegalVector - check whether Ty is an illegal vector type. 6201 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6202 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6203 // On targets that don't support FP16, FP16 is expanded into float, and we 6204 // don't want the ABI to depend on whether or not FP16 is supported in 6205 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6206 if (!getTarget().hasLegalHalfType() && 6207 (VT->getElementType()->isFloat16Type() || 6208 VT->getElementType()->isHalfType())) 6209 return true; 6210 if (isAndroid()) { 6211 // Android shipped using Clang 3.1, which supported a slightly different 6212 // vector ABI. The primary differences were that 3-element vector types 6213 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6214 // accepts that legacy behavior for Android only. 6215 // Check whether VT is legal. 6216 unsigned NumElements = VT->getNumElements(); 6217 // NumElements should be power of 2 or equal to 3. 6218 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6219 return true; 6220 } else { 6221 // Check whether VT is legal. 6222 unsigned NumElements = VT->getNumElements(); 6223 uint64_t Size = getContext().getTypeSize(VT); 6224 // NumElements should be power of 2. 6225 if (!llvm::isPowerOf2_32(NumElements)) 6226 return true; 6227 // Size should be greater than 32 bits. 6228 return Size <= 32; 6229 } 6230 } 6231 return false; 6232 } 6233 6234 /// Return true if a type contains any 16-bit floating point vectors 6235 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6236 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6237 uint64_t NElements = AT->getSize().getZExtValue(); 6238 if (NElements == 0) 6239 return false; 6240 return containsAnyFP16Vectors(AT->getElementType()); 6241 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6242 const RecordDecl *RD = RT->getDecl(); 6243 6244 // If this is a C++ record, check the bases first. 6245 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6246 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6247 return containsAnyFP16Vectors(B.getType()); 6248 })) 6249 return true; 6250 6251 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6252 return FD && containsAnyFP16Vectors(FD->getType()); 6253 })) 6254 return true; 6255 6256 return false; 6257 } else { 6258 if (const VectorType *VT = Ty->getAs<VectorType>()) 6259 return (VT->getElementType()->isFloat16Type() || 6260 VT->getElementType()->isHalfType()); 6261 return false; 6262 } 6263 } 6264 6265 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6266 llvm::Type *eltTy, 6267 unsigned numElts) const { 6268 if (!llvm::isPowerOf2_32(numElts)) 6269 return false; 6270 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6271 if (size > 64) 6272 return false; 6273 if (vectorSize.getQuantity() != 8 && 6274 (vectorSize.getQuantity() != 16 || numElts == 1)) 6275 return false; 6276 return true; 6277 } 6278 6279 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6280 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6281 // double, or 64-bit or 128-bit vectors. 6282 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6283 if (BT->getKind() == BuiltinType::Float || 6284 BT->getKind() == BuiltinType::Double || 6285 BT->getKind() == BuiltinType::LongDouble) 6286 return true; 6287 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6288 unsigned VecSize = getContext().getTypeSize(VT); 6289 if (VecSize == 64 || VecSize == 128) 6290 return true; 6291 } 6292 return false; 6293 } 6294 6295 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6296 uint64_t Members) const { 6297 return Members <= 4; 6298 } 6299 6300 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6301 bool acceptHalf) const { 6302 // Give precedence to user-specified calling conventions. 6303 if (callConvention != llvm::CallingConv::C) 6304 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6305 else 6306 return (getABIKind() == AAPCS_VFP) || 6307 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6308 } 6309 6310 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6311 QualType Ty) const { 6312 CharUnits SlotSize = CharUnits::fromQuantity(4); 6313 6314 // Empty records are ignored for parameter passing purposes. 6315 if (isEmptyRecord(getContext(), Ty, true)) { 6316 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6317 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6318 return Addr; 6319 } 6320 6321 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6322 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6323 6324 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6325 bool IsIndirect = false; 6326 const Type *Base = nullptr; 6327 uint64_t Members = 0; 6328 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6329 IsIndirect = true; 6330 6331 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6332 // allocated by the caller. 6333 } else if (TySize > CharUnits::fromQuantity(16) && 6334 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6335 !isHomogeneousAggregate(Ty, Base, Members)) { 6336 IsIndirect = true; 6337 6338 // Otherwise, bound the type's ABI alignment. 6339 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6340 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6341 // Our callers should be prepared to handle an under-aligned address. 6342 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6343 getABIKind() == ARMABIInfo::AAPCS) { 6344 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6345 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6346 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6347 // ARMv7k allows type alignment up to 16 bytes. 6348 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6349 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6350 } else { 6351 TyAlignForABI = CharUnits::fromQuantity(4); 6352 } 6353 6354 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6355 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6356 SlotSize, /*AllowHigherAlign*/ true); 6357 } 6358 6359 //===----------------------------------------------------------------------===// 6360 // NVPTX ABI Implementation 6361 //===----------------------------------------------------------------------===// 6362 6363 namespace { 6364 6365 class NVPTXABIInfo : public ABIInfo { 6366 public: 6367 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6368 6369 ABIArgInfo classifyReturnType(QualType RetTy) const; 6370 ABIArgInfo classifyArgumentType(QualType Ty) const; 6371 6372 void computeInfo(CGFunctionInfo &FI) const override; 6373 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6374 QualType Ty) const override; 6375 }; 6376 6377 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6378 public: 6379 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6380 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6381 6382 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6383 CodeGen::CodeGenModule &M) const override; 6384 bool shouldEmitStaticExternCAliases() const override; 6385 6386 private: 6387 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6388 // resulting MDNode to the nvvm.annotations MDNode. 6389 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6390 }; 6391 6392 /// Checks if the type is unsupported directly by the current target. 6393 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6394 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6395 return true; 6396 if (!Context.getTargetInfo().hasFloat128Type() && 6397 (T->isFloat128Type() || 6398 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6399 return true; 6400 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6401 Context.getTypeSize(T) > 64) 6402 return true; 6403 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6404 return isUnsupportedType(Context, AT->getElementType()); 6405 const auto *RT = T->getAs<RecordType>(); 6406 if (!RT) 6407 return false; 6408 const RecordDecl *RD = RT->getDecl(); 6409 6410 // If this is a C++ record, check the bases first. 6411 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6412 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6413 if (isUnsupportedType(Context, I.getType())) 6414 return true; 6415 6416 for (const FieldDecl *I : RD->fields()) 6417 if (isUnsupportedType(Context, I->getType())) 6418 return true; 6419 return false; 6420 } 6421 6422 /// Coerce the given type into an array with maximum allowed size of elements. 6423 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6424 llvm::LLVMContext &LLVMContext, 6425 unsigned MaxSize) { 6426 // Alignment and Size are measured in bits. 6427 const uint64_t Size = Context.getTypeSize(Ty); 6428 const uint64_t Alignment = Context.getTypeAlign(Ty); 6429 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6430 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6431 const uint64_t NumElements = (Size + Div - 1) / Div; 6432 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6433 } 6434 6435 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6436 if (RetTy->isVoidType()) 6437 return ABIArgInfo::getIgnore(); 6438 6439 if (getContext().getLangOpts().OpenMP && 6440 getContext().getLangOpts().OpenMPIsDevice && 6441 isUnsupportedType(getContext(), RetTy)) 6442 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6443 6444 // note: this is different from default ABI 6445 if (!RetTy->isScalarType()) 6446 return ABIArgInfo::getDirect(); 6447 6448 // Treat an enum type as its underlying type. 6449 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6450 RetTy = EnumTy->getDecl()->getIntegerType(); 6451 6452 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6453 : ABIArgInfo::getDirect()); 6454 } 6455 6456 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6457 // Treat an enum type as its underlying type. 6458 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6459 Ty = EnumTy->getDecl()->getIntegerType(); 6460 6461 // Return aggregates type as indirect by value 6462 if (isAggregateTypeForABI(Ty)) 6463 return getNaturalAlignIndirect(Ty, /* byval */ true); 6464 6465 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6466 : ABIArgInfo::getDirect()); 6467 } 6468 6469 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6470 if (!getCXXABI().classifyReturnType(FI)) 6471 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6472 for (auto &I : FI.arguments()) 6473 I.info = classifyArgumentType(I.type); 6474 6475 // Always honor user-specified calling convention. 6476 if (FI.getCallingConvention() != llvm::CallingConv::C) 6477 return; 6478 6479 FI.setEffectiveCallingConvention(getRuntimeCC()); 6480 } 6481 6482 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6483 QualType Ty) const { 6484 llvm_unreachable("NVPTX does not support varargs"); 6485 } 6486 6487 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6488 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6489 if (GV->isDeclaration()) 6490 return; 6491 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6492 if (!FD) return; 6493 6494 llvm::Function *F = cast<llvm::Function>(GV); 6495 6496 // Perform special handling in OpenCL mode 6497 if (M.getLangOpts().OpenCL) { 6498 // Use OpenCL function attributes to check for kernel functions 6499 // By default, all functions are device functions 6500 if (FD->hasAttr<OpenCLKernelAttr>()) { 6501 // OpenCL __kernel functions get kernel metadata 6502 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6503 addNVVMMetadata(F, "kernel", 1); 6504 // And kernel functions are not subject to inlining 6505 F->addFnAttr(llvm::Attribute::NoInline); 6506 } 6507 } 6508 6509 // Perform special handling in CUDA mode. 6510 if (M.getLangOpts().CUDA) { 6511 // CUDA __global__ functions get a kernel metadata entry. Since 6512 // __global__ functions cannot be called from the device, we do not 6513 // need to set the noinline attribute. 6514 if (FD->hasAttr<CUDAGlobalAttr>()) { 6515 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6516 addNVVMMetadata(F, "kernel", 1); 6517 } 6518 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6519 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6520 llvm::APSInt MaxThreads(32); 6521 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6522 if (MaxThreads > 0) 6523 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6524 6525 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6526 // not specified in __launch_bounds__ or if the user specified a 0 value, 6527 // we don't have to add a PTX directive. 6528 if (Attr->getMinBlocks()) { 6529 llvm::APSInt MinBlocks(32); 6530 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6531 if (MinBlocks > 0) 6532 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6533 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6534 } 6535 } 6536 } 6537 } 6538 6539 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6540 int Operand) { 6541 llvm::Module *M = F->getParent(); 6542 llvm::LLVMContext &Ctx = M->getContext(); 6543 6544 // Get "nvvm.annotations" metadata node 6545 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6546 6547 llvm::Metadata *MDVals[] = { 6548 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6549 llvm::ConstantAsMetadata::get( 6550 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6551 // Append metadata to nvvm.annotations 6552 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6553 } 6554 6555 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6556 return false; 6557 } 6558 } 6559 6560 //===----------------------------------------------------------------------===// 6561 // SystemZ ABI Implementation 6562 //===----------------------------------------------------------------------===// 6563 6564 namespace { 6565 6566 class SystemZABIInfo : public SwiftABIInfo { 6567 bool HasVector; 6568 6569 public: 6570 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6571 : SwiftABIInfo(CGT), HasVector(HV) {} 6572 6573 bool isPromotableIntegerType(QualType Ty) const; 6574 bool isCompoundType(QualType Ty) const; 6575 bool isVectorArgumentType(QualType Ty) const; 6576 bool isFPArgumentType(QualType Ty) const; 6577 QualType GetSingleElementType(QualType Ty) const; 6578 6579 ABIArgInfo classifyReturnType(QualType RetTy) const; 6580 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6581 6582 void computeInfo(CGFunctionInfo &FI) const override { 6583 if (!getCXXABI().classifyReturnType(FI)) 6584 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6585 for (auto &I : FI.arguments()) 6586 I.info = classifyArgumentType(I.type); 6587 } 6588 6589 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6590 QualType Ty) const override; 6591 6592 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6593 bool asReturnValue) const override { 6594 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6595 } 6596 bool isSwiftErrorInRegister() const override { 6597 return false; 6598 } 6599 }; 6600 6601 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6602 public: 6603 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6604 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6605 }; 6606 6607 } 6608 6609 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6610 // Treat an enum type as its underlying type. 6611 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6612 Ty = EnumTy->getDecl()->getIntegerType(); 6613 6614 // Promotable integer types are required to be promoted by the ABI. 6615 if (Ty->isPromotableIntegerType()) 6616 return true; 6617 6618 // 32-bit values must also be promoted. 6619 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6620 switch (BT->getKind()) { 6621 case BuiltinType::Int: 6622 case BuiltinType::UInt: 6623 return true; 6624 default: 6625 return false; 6626 } 6627 return false; 6628 } 6629 6630 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6631 return (Ty->isAnyComplexType() || 6632 Ty->isVectorType() || 6633 isAggregateTypeForABI(Ty)); 6634 } 6635 6636 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6637 return (HasVector && 6638 Ty->isVectorType() && 6639 getContext().getTypeSize(Ty) <= 128); 6640 } 6641 6642 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6643 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6644 switch (BT->getKind()) { 6645 case BuiltinType::Float: 6646 case BuiltinType::Double: 6647 return true; 6648 default: 6649 return false; 6650 } 6651 6652 return false; 6653 } 6654 6655 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6656 if (const RecordType *RT = Ty->getAsStructureType()) { 6657 const RecordDecl *RD = RT->getDecl(); 6658 QualType Found; 6659 6660 // If this is a C++ record, check the bases first. 6661 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6662 for (const auto &I : CXXRD->bases()) { 6663 QualType Base = I.getType(); 6664 6665 // Empty bases don't affect things either way. 6666 if (isEmptyRecord(getContext(), Base, true)) 6667 continue; 6668 6669 if (!Found.isNull()) 6670 return Ty; 6671 Found = GetSingleElementType(Base); 6672 } 6673 6674 // Check the fields. 6675 for (const auto *FD : RD->fields()) { 6676 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6677 // Unlike isSingleElementStruct(), empty structure and array fields 6678 // do count. So do anonymous bitfields that aren't zero-sized. 6679 if (getContext().getLangOpts().CPlusPlus && 6680 FD->isZeroLengthBitField(getContext())) 6681 continue; 6682 6683 // Unlike isSingleElementStruct(), arrays do not count. 6684 // Nested structures still do though. 6685 if (!Found.isNull()) 6686 return Ty; 6687 Found = GetSingleElementType(FD->getType()); 6688 } 6689 6690 // Unlike isSingleElementStruct(), trailing padding is allowed. 6691 // An 8-byte aligned struct s { float f; } is passed as a double. 6692 if (!Found.isNull()) 6693 return Found; 6694 } 6695 6696 return Ty; 6697 } 6698 6699 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6700 QualType Ty) const { 6701 // Assume that va_list type is correct; should be pointer to LLVM type: 6702 // struct { 6703 // i64 __gpr; 6704 // i64 __fpr; 6705 // i8 *__overflow_arg_area; 6706 // i8 *__reg_save_area; 6707 // }; 6708 6709 // Every non-vector argument occupies 8 bytes and is passed by preference 6710 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6711 // always passed on the stack. 6712 Ty = getContext().getCanonicalType(Ty); 6713 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6714 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6715 llvm::Type *DirectTy = ArgTy; 6716 ABIArgInfo AI = classifyArgumentType(Ty); 6717 bool IsIndirect = AI.isIndirect(); 6718 bool InFPRs = false; 6719 bool IsVector = false; 6720 CharUnits UnpaddedSize; 6721 CharUnits DirectAlign; 6722 if (IsIndirect) { 6723 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6724 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6725 } else { 6726 if (AI.getCoerceToType()) 6727 ArgTy = AI.getCoerceToType(); 6728 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6729 IsVector = ArgTy->isVectorTy(); 6730 UnpaddedSize = TyInfo.first; 6731 DirectAlign = TyInfo.second; 6732 } 6733 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6734 if (IsVector && UnpaddedSize > PaddedSize) 6735 PaddedSize = CharUnits::fromQuantity(16); 6736 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6737 6738 CharUnits Padding = (PaddedSize - UnpaddedSize); 6739 6740 llvm::Type *IndexTy = CGF.Int64Ty; 6741 llvm::Value *PaddedSizeV = 6742 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6743 6744 if (IsVector) { 6745 // Work out the address of a vector argument on the stack. 6746 // Vector arguments are always passed in the high bits of a 6747 // single (8 byte) or double (16 byte) stack slot. 6748 Address OverflowArgAreaPtr = 6749 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6750 Address OverflowArgArea = 6751 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6752 TyInfo.second); 6753 Address MemAddr = 6754 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6755 6756 // Update overflow_arg_area_ptr pointer 6757 llvm::Value *NewOverflowArgArea = 6758 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6759 "overflow_arg_area"); 6760 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6761 6762 return MemAddr; 6763 } 6764 6765 assert(PaddedSize.getQuantity() == 8); 6766 6767 unsigned MaxRegs, RegCountField, RegSaveIndex; 6768 CharUnits RegPadding; 6769 if (InFPRs) { 6770 MaxRegs = 4; // Maximum of 4 FPR arguments 6771 RegCountField = 1; // __fpr 6772 RegSaveIndex = 16; // save offset for f0 6773 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6774 } else { 6775 MaxRegs = 5; // Maximum of 5 GPR arguments 6776 RegCountField = 0; // __gpr 6777 RegSaveIndex = 2; // save offset for r2 6778 RegPadding = Padding; // values are passed in the low bits of a GPR 6779 } 6780 6781 Address RegCountPtr = 6782 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6783 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6784 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6785 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6786 "fits_in_regs"); 6787 6788 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6789 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6790 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6791 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6792 6793 // Emit code to load the value if it was passed in registers. 6794 CGF.EmitBlock(InRegBlock); 6795 6796 // Work out the address of an argument register. 6797 llvm::Value *ScaledRegCount = 6798 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6799 llvm::Value *RegBase = 6800 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6801 + RegPadding.getQuantity()); 6802 llvm::Value *RegOffset = 6803 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6804 Address RegSaveAreaPtr = 6805 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6806 llvm::Value *RegSaveArea = 6807 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6808 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6809 "raw_reg_addr"), 6810 PaddedSize); 6811 Address RegAddr = 6812 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6813 6814 // Update the register count 6815 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6816 llvm::Value *NewRegCount = 6817 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6818 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6819 CGF.EmitBranch(ContBlock); 6820 6821 // Emit code to load the value if it was passed in memory. 6822 CGF.EmitBlock(InMemBlock); 6823 6824 // Work out the address of a stack argument. 6825 Address OverflowArgAreaPtr = 6826 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6827 Address OverflowArgArea = 6828 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6829 PaddedSize); 6830 Address RawMemAddr = 6831 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6832 Address MemAddr = 6833 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6834 6835 // Update overflow_arg_area_ptr pointer 6836 llvm::Value *NewOverflowArgArea = 6837 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6838 "overflow_arg_area"); 6839 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6840 CGF.EmitBranch(ContBlock); 6841 6842 // Return the appropriate result. 6843 CGF.EmitBlock(ContBlock); 6844 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6845 MemAddr, InMemBlock, "va_arg.addr"); 6846 6847 if (IsIndirect) 6848 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6849 TyInfo.second); 6850 6851 return ResAddr; 6852 } 6853 6854 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6855 if (RetTy->isVoidType()) 6856 return ABIArgInfo::getIgnore(); 6857 if (isVectorArgumentType(RetTy)) 6858 return ABIArgInfo::getDirect(); 6859 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6860 return getNaturalAlignIndirect(RetTy); 6861 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6862 : ABIArgInfo::getDirect()); 6863 } 6864 6865 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6866 // Handle the generic C++ ABI. 6867 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6868 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6869 6870 // Integers and enums are extended to full register width. 6871 if (isPromotableIntegerType(Ty)) 6872 return ABIArgInfo::getExtend(Ty); 6873 6874 // Handle vector types and vector-like structure types. Note that 6875 // as opposed to float-like structure types, we do not allow any 6876 // padding for vector-like structures, so verify the sizes match. 6877 uint64_t Size = getContext().getTypeSize(Ty); 6878 QualType SingleElementTy = GetSingleElementType(Ty); 6879 if (isVectorArgumentType(SingleElementTy) && 6880 getContext().getTypeSize(SingleElementTy) == Size) 6881 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6882 6883 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6884 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6885 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6886 6887 // Handle small structures. 6888 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6889 // Structures with flexible arrays have variable length, so really 6890 // fail the size test above. 6891 const RecordDecl *RD = RT->getDecl(); 6892 if (RD->hasFlexibleArrayMember()) 6893 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6894 6895 // The structure is passed as an unextended integer, a float, or a double. 6896 llvm::Type *PassTy; 6897 if (isFPArgumentType(SingleElementTy)) { 6898 assert(Size == 32 || Size == 64); 6899 if (Size == 32) 6900 PassTy = llvm::Type::getFloatTy(getVMContext()); 6901 else 6902 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6903 } else 6904 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6905 return ABIArgInfo::getDirect(PassTy); 6906 } 6907 6908 // Non-structure compounds are passed indirectly. 6909 if (isCompoundType(Ty)) 6910 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6911 6912 return ABIArgInfo::getDirect(nullptr); 6913 } 6914 6915 //===----------------------------------------------------------------------===// 6916 // MSP430 ABI Implementation 6917 //===----------------------------------------------------------------------===// 6918 6919 namespace { 6920 6921 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6922 public: 6923 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6924 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6925 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6926 CodeGen::CodeGenModule &M) const override; 6927 }; 6928 6929 } 6930 6931 void MSP430TargetCodeGenInfo::setTargetAttributes( 6932 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6933 if (GV->isDeclaration()) 6934 return; 6935 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6936 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6937 if (!InterruptAttr) 6938 return; 6939 6940 // Handle 'interrupt' attribute: 6941 llvm::Function *F = cast<llvm::Function>(GV); 6942 6943 // Step 1: Set ISR calling convention. 6944 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6945 6946 // Step 2: Add attributes goodness. 6947 F->addFnAttr(llvm::Attribute::NoInline); 6948 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6949 } 6950 } 6951 6952 //===----------------------------------------------------------------------===// 6953 // MIPS ABI Implementation. This works for both little-endian and 6954 // big-endian variants. 6955 //===----------------------------------------------------------------------===// 6956 6957 namespace { 6958 class MipsABIInfo : public ABIInfo { 6959 bool IsO32; 6960 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6961 void CoerceToIntArgs(uint64_t TySize, 6962 SmallVectorImpl<llvm::Type *> &ArgList) const; 6963 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6964 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6965 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6966 public: 6967 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6968 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6969 StackAlignInBytes(IsO32 ? 8 : 16) {} 6970 6971 ABIArgInfo classifyReturnType(QualType RetTy) const; 6972 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6973 void computeInfo(CGFunctionInfo &FI) const override; 6974 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6975 QualType Ty) const override; 6976 ABIArgInfo extendType(QualType Ty) const; 6977 }; 6978 6979 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6980 unsigned SizeOfUnwindException; 6981 public: 6982 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6983 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6984 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6985 6986 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6987 return 29; 6988 } 6989 6990 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6991 CodeGen::CodeGenModule &CGM) const override { 6992 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6993 if (!FD) return; 6994 llvm::Function *Fn = cast<llvm::Function>(GV); 6995 6996 if (FD->hasAttr<MipsLongCallAttr>()) 6997 Fn->addFnAttr("long-call"); 6998 else if (FD->hasAttr<MipsShortCallAttr>()) 6999 Fn->addFnAttr("short-call"); 7000 7001 // Other attributes do not have a meaning for declarations. 7002 if (GV->isDeclaration()) 7003 return; 7004 7005 if (FD->hasAttr<Mips16Attr>()) { 7006 Fn->addFnAttr("mips16"); 7007 } 7008 else if (FD->hasAttr<NoMips16Attr>()) { 7009 Fn->addFnAttr("nomips16"); 7010 } 7011 7012 if (FD->hasAttr<MicroMipsAttr>()) 7013 Fn->addFnAttr("micromips"); 7014 else if (FD->hasAttr<NoMicroMipsAttr>()) 7015 Fn->addFnAttr("nomicromips"); 7016 7017 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7018 if (!Attr) 7019 return; 7020 7021 const char *Kind; 7022 switch (Attr->getInterrupt()) { 7023 case MipsInterruptAttr::eic: Kind = "eic"; break; 7024 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7025 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7026 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7027 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7028 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7029 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7030 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7031 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7032 } 7033 7034 Fn->addFnAttr("interrupt", Kind); 7035 7036 } 7037 7038 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7039 llvm::Value *Address) const override; 7040 7041 unsigned getSizeOfUnwindException() const override { 7042 return SizeOfUnwindException; 7043 } 7044 }; 7045 } 7046 7047 void MipsABIInfo::CoerceToIntArgs( 7048 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7049 llvm::IntegerType *IntTy = 7050 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7051 7052 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7053 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7054 ArgList.push_back(IntTy); 7055 7056 // If necessary, add one more integer type to ArgList. 7057 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7058 7059 if (R) 7060 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7061 } 7062 7063 // In N32/64, an aligned double precision floating point field is passed in 7064 // a register. 7065 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7066 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7067 7068 if (IsO32) { 7069 CoerceToIntArgs(TySize, ArgList); 7070 return llvm::StructType::get(getVMContext(), ArgList); 7071 } 7072 7073 if (Ty->isComplexType()) 7074 return CGT.ConvertType(Ty); 7075 7076 const RecordType *RT = Ty->getAs<RecordType>(); 7077 7078 // Unions/vectors are passed in integer registers. 7079 if (!RT || !RT->isStructureOrClassType()) { 7080 CoerceToIntArgs(TySize, ArgList); 7081 return llvm::StructType::get(getVMContext(), ArgList); 7082 } 7083 7084 const RecordDecl *RD = RT->getDecl(); 7085 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7086 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7087 7088 uint64_t LastOffset = 0; 7089 unsigned idx = 0; 7090 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7091 7092 // Iterate over fields in the struct/class and check if there are any aligned 7093 // double fields. 7094 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7095 i != e; ++i, ++idx) { 7096 const QualType Ty = i->getType(); 7097 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7098 7099 if (!BT || BT->getKind() != BuiltinType::Double) 7100 continue; 7101 7102 uint64_t Offset = Layout.getFieldOffset(idx); 7103 if (Offset % 64) // Ignore doubles that are not aligned. 7104 continue; 7105 7106 // Add ((Offset - LastOffset) / 64) args of type i64. 7107 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7108 ArgList.push_back(I64); 7109 7110 // Add double type. 7111 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7112 LastOffset = Offset + 64; 7113 } 7114 7115 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7116 ArgList.append(IntArgList.begin(), IntArgList.end()); 7117 7118 return llvm::StructType::get(getVMContext(), ArgList); 7119 } 7120 7121 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7122 uint64_t Offset) const { 7123 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7124 return nullptr; 7125 7126 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7127 } 7128 7129 ABIArgInfo 7130 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7131 Ty = useFirstFieldIfTransparentUnion(Ty); 7132 7133 uint64_t OrigOffset = Offset; 7134 uint64_t TySize = getContext().getTypeSize(Ty); 7135 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7136 7137 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7138 (uint64_t)StackAlignInBytes); 7139 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7140 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7141 7142 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7143 // Ignore empty aggregates. 7144 if (TySize == 0) 7145 return ABIArgInfo::getIgnore(); 7146 7147 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7148 Offset = OrigOffset + MinABIStackAlignInBytes; 7149 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7150 } 7151 7152 // If we have reached here, aggregates are passed directly by coercing to 7153 // another structure type. Padding is inserted if the offset of the 7154 // aggregate is unaligned. 7155 ABIArgInfo ArgInfo = 7156 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7157 getPaddingType(OrigOffset, CurrOffset)); 7158 ArgInfo.setInReg(true); 7159 return ArgInfo; 7160 } 7161 7162 // Treat an enum type as its underlying type. 7163 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7164 Ty = EnumTy->getDecl()->getIntegerType(); 7165 7166 // All integral types are promoted to the GPR width. 7167 if (Ty->isIntegralOrEnumerationType()) 7168 return extendType(Ty); 7169 7170 return ABIArgInfo::getDirect( 7171 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7172 } 7173 7174 llvm::Type* 7175 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7176 const RecordType *RT = RetTy->getAs<RecordType>(); 7177 SmallVector<llvm::Type*, 8> RTList; 7178 7179 if (RT && RT->isStructureOrClassType()) { 7180 const RecordDecl *RD = RT->getDecl(); 7181 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7182 unsigned FieldCnt = Layout.getFieldCount(); 7183 7184 // N32/64 returns struct/classes in floating point registers if the 7185 // following conditions are met: 7186 // 1. The size of the struct/class is no larger than 128-bit. 7187 // 2. The struct/class has one or two fields all of which are floating 7188 // point types. 7189 // 3. The offset of the first field is zero (this follows what gcc does). 7190 // 7191 // Any other composite results are returned in integer registers. 7192 // 7193 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7194 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7195 for (; b != e; ++b) { 7196 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7197 7198 if (!BT || !BT->isFloatingPoint()) 7199 break; 7200 7201 RTList.push_back(CGT.ConvertType(b->getType())); 7202 } 7203 7204 if (b == e) 7205 return llvm::StructType::get(getVMContext(), RTList, 7206 RD->hasAttr<PackedAttr>()); 7207 7208 RTList.clear(); 7209 } 7210 } 7211 7212 CoerceToIntArgs(Size, RTList); 7213 return llvm::StructType::get(getVMContext(), RTList); 7214 } 7215 7216 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7217 uint64_t Size = getContext().getTypeSize(RetTy); 7218 7219 if (RetTy->isVoidType()) 7220 return ABIArgInfo::getIgnore(); 7221 7222 // O32 doesn't treat zero-sized structs differently from other structs. 7223 // However, N32/N64 ignores zero sized return values. 7224 if (!IsO32 && Size == 0) 7225 return ABIArgInfo::getIgnore(); 7226 7227 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7228 if (Size <= 128) { 7229 if (RetTy->isAnyComplexType()) 7230 return ABIArgInfo::getDirect(); 7231 7232 // O32 returns integer vectors in registers and N32/N64 returns all small 7233 // aggregates in registers. 7234 if (!IsO32 || 7235 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7236 ABIArgInfo ArgInfo = 7237 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7238 ArgInfo.setInReg(true); 7239 return ArgInfo; 7240 } 7241 } 7242 7243 return getNaturalAlignIndirect(RetTy); 7244 } 7245 7246 // Treat an enum type as its underlying type. 7247 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7248 RetTy = EnumTy->getDecl()->getIntegerType(); 7249 7250 if (RetTy->isPromotableIntegerType()) 7251 return ABIArgInfo::getExtend(RetTy); 7252 7253 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7254 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7255 return ABIArgInfo::getSignExtend(RetTy); 7256 7257 return ABIArgInfo::getDirect(); 7258 } 7259 7260 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7261 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7262 if (!getCXXABI().classifyReturnType(FI)) 7263 RetInfo = classifyReturnType(FI.getReturnType()); 7264 7265 // Check if a pointer to an aggregate is passed as a hidden argument. 7266 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7267 7268 for (auto &I : FI.arguments()) 7269 I.info = classifyArgumentType(I.type, Offset); 7270 } 7271 7272 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7273 QualType OrigTy) const { 7274 QualType Ty = OrigTy; 7275 7276 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7277 // Pointers are also promoted in the same way but this only matters for N32. 7278 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7279 unsigned PtrWidth = getTarget().getPointerWidth(0); 7280 bool DidPromote = false; 7281 if ((Ty->isIntegerType() && 7282 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7283 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7284 DidPromote = true; 7285 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7286 Ty->isSignedIntegerType()); 7287 } 7288 7289 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7290 7291 // The alignment of things in the argument area is never larger than 7292 // StackAlignInBytes. 7293 TyInfo.second = 7294 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7295 7296 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7297 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7298 7299 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7300 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7301 7302 7303 // If there was a promotion, "unpromote" into a temporary. 7304 // TODO: can we just use a pointer into a subset of the original slot? 7305 if (DidPromote) { 7306 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7307 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7308 7309 // Truncate down to the right width. 7310 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7311 : CGF.IntPtrTy); 7312 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7313 if (OrigTy->isPointerType()) 7314 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7315 7316 CGF.Builder.CreateStore(V, Temp); 7317 Addr = Temp; 7318 } 7319 7320 return Addr; 7321 } 7322 7323 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7324 int TySize = getContext().getTypeSize(Ty); 7325 7326 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7327 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7328 return ABIArgInfo::getSignExtend(Ty); 7329 7330 return ABIArgInfo::getExtend(Ty); 7331 } 7332 7333 bool 7334 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7335 llvm::Value *Address) const { 7336 // This information comes from gcc's implementation, which seems to 7337 // as canonical as it gets. 7338 7339 // Everything on MIPS is 4 bytes. Double-precision FP registers 7340 // are aliased to pairs of single-precision FP registers. 7341 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7342 7343 // 0-31 are the general purpose registers, $0 - $31. 7344 // 32-63 are the floating-point registers, $f0 - $f31. 7345 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7346 // 66 is the (notional, I think) register for signal-handler return. 7347 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7348 7349 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7350 // They are one bit wide and ignored here. 7351 7352 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7353 // (coprocessor 1 is the FP unit) 7354 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7355 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7356 // 176-181 are the DSP accumulator registers. 7357 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7358 return false; 7359 } 7360 7361 //===----------------------------------------------------------------------===// 7362 // AVR ABI Implementation. 7363 //===----------------------------------------------------------------------===// 7364 7365 namespace { 7366 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7367 public: 7368 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7369 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7370 7371 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7372 CodeGen::CodeGenModule &CGM) const override { 7373 if (GV->isDeclaration()) 7374 return; 7375 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7376 if (!FD) return; 7377 auto *Fn = cast<llvm::Function>(GV); 7378 7379 if (FD->getAttr<AVRInterruptAttr>()) 7380 Fn->addFnAttr("interrupt"); 7381 7382 if (FD->getAttr<AVRSignalAttr>()) 7383 Fn->addFnAttr("signal"); 7384 } 7385 }; 7386 } 7387 7388 //===----------------------------------------------------------------------===// 7389 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7390 // Currently subclassed only to implement custom OpenCL C function attribute 7391 // handling. 7392 //===----------------------------------------------------------------------===// 7393 7394 namespace { 7395 7396 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7397 public: 7398 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7399 : DefaultTargetCodeGenInfo(CGT) {} 7400 7401 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7402 CodeGen::CodeGenModule &M) const override; 7403 }; 7404 7405 void TCETargetCodeGenInfo::setTargetAttributes( 7406 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7407 if (GV->isDeclaration()) 7408 return; 7409 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7410 if (!FD) return; 7411 7412 llvm::Function *F = cast<llvm::Function>(GV); 7413 7414 if (M.getLangOpts().OpenCL) { 7415 if (FD->hasAttr<OpenCLKernelAttr>()) { 7416 // OpenCL C Kernel functions are not subject to inlining 7417 F->addFnAttr(llvm::Attribute::NoInline); 7418 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7419 if (Attr) { 7420 // Convert the reqd_work_group_size() attributes to metadata. 7421 llvm::LLVMContext &Context = F->getContext(); 7422 llvm::NamedMDNode *OpenCLMetadata = 7423 M.getModule().getOrInsertNamedMetadata( 7424 "opencl.kernel_wg_size_info"); 7425 7426 SmallVector<llvm::Metadata *, 5> Operands; 7427 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7428 7429 Operands.push_back( 7430 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7431 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7432 Operands.push_back( 7433 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7434 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7435 Operands.push_back( 7436 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7437 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7438 7439 // Add a boolean constant operand for "required" (true) or "hint" 7440 // (false) for implementing the work_group_size_hint attr later. 7441 // Currently always true as the hint is not yet implemented. 7442 Operands.push_back( 7443 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7444 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7445 } 7446 } 7447 } 7448 } 7449 7450 } 7451 7452 //===----------------------------------------------------------------------===// 7453 // Hexagon ABI Implementation 7454 //===----------------------------------------------------------------------===// 7455 7456 namespace { 7457 7458 class HexagonABIInfo : public ABIInfo { 7459 7460 7461 public: 7462 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7463 7464 private: 7465 7466 ABIArgInfo classifyReturnType(QualType RetTy) const; 7467 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7468 7469 void computeInfo(CGFunctionInfo &FI) const override; 7470 7471 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7472 QualType Ty) const override; 7473 }; 7474 7475 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7476 public: 7477 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7478 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7479 7480 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7481 return 29; 7482 } 7483 }; 7484 7485 } 7486 7487 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7488 if (!getCXXABI().classifyReturnType(FI)) 7489 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7490 for (auto &I : FI.arguments()) 7491 I.info = classifyArgumentType(I.type); 7492 } 7493 7494 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7495 if (!isAggregateTypeForABI(Ty)) { 7496 // Treat an enum type as its underlying type. 7497 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7498 Ty = EnumTy->getDecl()->getIntegerType(); 7499 7500 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7501 : ABIArgInfo::getDirect()); 7502 } 7503 7504 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7505 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7506 7507 // Ignore empty records. 7508 if (isEmptyRecord(getContext(), Ty, true)) 7509 return ABIArgInfo::getIgnore(); 7510 7511 uint64_t Size = getContext().getTypeSize(Ty); 7512 if (Size > 64) 7513 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7514 // Pass in the smallest viable integer type. 7515 else if (Size > 32) 7516 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7517 else if (Size > 16) 7518 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7519 else if (Size > 8) 7520 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7521 else 7522 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7523 } 7524 7525 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7526 if (RetTy->isVoidType()) 7527 return ABIArgInfo::getIgnore(); 7528 7529 // Large vector types should be returned via memory. 7530 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7531 return getNaturalAlignIndirect(RetTy); 7532 7533 if (!isAggregateTypeForABI(RetTy)) { 7534 // Treat an enum type as its underlying type. 7535 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7536 RetTy = EnumTy->getDecl()->getIntegerType(); 7537 7538 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7539 : ABIArgInfo::getDirect()); 7540 } 7541 7542 if (isEmptyRecord(getContext(), RetTy, true)) 7543 return ABIArgInfo::getIgnore(); 7544 7545 // Aggregates <= 8 bytes are returned in r0; other aggregates 7546 // are returned indirectly. 7547 uint64_t Size = getContext().getTypeSize(RetTy); 7548 if (Size <= 64) { 7549 // Return in the smallest viable integer type. 7550 if (Size <= 8) 7551 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7552 if (Size <= 16) 7553 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7554 if (Size <= 32) 7555 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7556 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7557 } 7558 7559 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7560 } 7561 7562 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7563 QualType Ty) const { 7564 // FIXME: Someone needs to audit that this handle alignment correctly. 7565 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7566 getContext().getTypeInfoInChars(Ty), 7567 CharUnits::fromQuantity(4), 7568 /*AllowHigherAlign*/ true); 7569 } 7570 7571 //===----------------------------------------------------------------------===// 7572 // Lanai ABI Implementation 7573 //===----------------------------------------------------------------------===// 7574 7575 namespace { 7576 class LanaiABIInfo : public DefaultABIInfo { 7577 public: 7578 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7579 7580 bool shouldUseInReg(QualType Ty, CCState &State) const; 7581 7582 void computeInfo(CGFunctionInfo &FI) const override { 7583 CCState State(FI); 7584 // Lanai uses 4 registers to pass arguments unless the function has the 7585 // regparm attribute set. 7586 if (FI.getHasRegParm()) { 7587 State.FreeRegs = FI.getRegParm(); 7588 } else { 7589 State.FreeRegs = 4; 7590 } 7591 7592 if (!getCXXABI().classifyReturnType(FI)) 7593 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7594 for (auto &I : FI.arguments()) 7595 I.info = classifyArgumentType(I.type, State); 7596 } 7597 7598 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7599 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7600 }; 7601 } // end anonymous namespace 7602 7603 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7604 unsigned Size = getContext().getTypeSize(Ty); 7605 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7606 7607 if (SizeInRegs == 0) 7608 return false; 7609 7610 if (SizeInRegs > State.FreeRegs) { 7611 State.FreeRegs = 0; 7612 return false; 7613 } 7614 7615 State.FreeRegs -= SizeInRegs; 7616 7617 return true; 7618 } 7619 7620 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7621 CCState &State) const { 7622 if (!ByVal) { 7623 if (State.FreeRegs) { 7624 --State.FreeRegs; // Non-byval indirects just use one pointer. 7625 return getNaturalAlignIndirectInReg(Ty); 7626 } 7627 return getNaturalAlignIndirect(Ty, false); 7628 } 7629 7630 // Compute the byval alignment. 7631 const unsigned MinABIStackAlignInBytes = 4; 7632 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7633 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7634 /*Realign=*/TypeAlign > 7635 MinABIStackAlignInBytes); 7636 } 7637 7638 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7639 CCState &State) const { 7640 // Check with the C++ ABI first. 7641 const RecordType *RT = Ty->getAs<RecordType>(); 7642 if (RT) { 7643 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7644 if (RAA == CGCXXABI::RAA_Indirect) { 7645 return getIndirectResult(Ty, /*ByVal=*/false, State); 7646 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7647 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7648 } 7649 } 7650 7651 if (isAggregateTypeForABI(Ty)) { 7652 // Structures with flexible arrays are always indirect. 7653 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7654 return getIndirectResult(Ty, /*ByVal=*/true, State); 7655 7656 // Ignore empty structs/unions. 7657 if (isEmptyRecord(getContext(), Ty, true)) 7658 return ABIArgInfo::getIgnore(); 7659 7660 llvm::LLVMContext &LLVMContext = getVMContext(); 7661 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7662 if (SizeInRegs <= State.FreeRegs) { 7663 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7664 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7665 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7666 State.FreeRegs -= SizeInRegs; 7667 return ABIArgInfo::getDirectInReg(Result); 7668 } else { 7669 State.FreeRegs = 0; 7670 } 7671 return getIndirectResult(Ty, true, State); 7672 } 7673 7674 // Treat an enum type as its underlying type. 7675 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7676 Ty = EnumTy->getDecl()->getIntegerType(); 7677 7678 bool InReg = shouldUseInReg(Ty, State); 7679 if (Ty->isPromotableIntegerType()) { 7680 if (InReg) 7681 return ABIArgInfo::getDirectInReg(); 7682 return ABIArgInfo::getExtend(Ty); 7683 } 7684 if (InReg) 7685 return ABIArgInfo::getDirectInReg(); 7686 return ABIArgInfo::getDirect(); 7687 } 7688 7689 namespace { 7690 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7691 public: 7692 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7693 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7694 }; 7695 } 7696 7697 //===----------------------------------------------------------------------===// 7698 // AMDGPU ABI Implementation 7699 //===----------------------------------------------------------------------===// 7700 7701 namespace { 7702 7703 class AMDGPUABIInfo final : public DefaultABIInfo { 7704 private: 7705 static const unsigned MaxNumRegsForArgsRet = 16; 7706 7707 unsigned numRegsForType(QualType Ty) const; 7708 7709 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7710 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7711 uint64_t Members) const override; 7712 7713 // Coerce HIP pointer arguments from generic pointers to global ones. 7714 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 7715 unsigned ToAS) const { 7716 // Structure types. 7717 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 7718 SmallVector<llvm::Type *, 8> EltTys; 7719 bool Changed = false; 7720 for (auto T : STy->elements()) { 7721 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7722 EltTys.push_back(NT); 7723 Changed |= (NT != T); 7724 } 7725 // Skip if there is no change in element types. 7726 if (!Changed) 7727 return STy; 7728 if (STy->hasName()) 7729 return llvm::StructType::create( 7730 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 7731 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 7732 } 7733 // Arrary types. 7734 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 7735 auto T = ATy->getElementType(); 7736 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7737 // Skip if there is no change in that element type. 7738 if (NT == T) 7739 return ATy; 7740 return llvm::ArrayType::get(NT, ATy->getNumElements()); 7741 } 7742 // Single value types. 7743 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 7744 return llvm::PointerType::get( 7745 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 7746 return Ty; 7747 } 7748 7749 public: 7750 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7751 DefaultABIInfo(CGT) {} 7752 7753 ABIArgInfo classifyReturnType(QualType RetTy) const; 7754 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7755 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7756 7757 void computeInfo(CGFunctionInfo &FI) const override; 7758 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7759 QualType Ty) const override; 7760 }; 7761 7762 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7763 return true; 7764 } 7765 7766 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7767 const Type *Base, uint64_t Members) const { 7768 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7769 7770 // Homogeneous Aggregates may occupy at most 16 registers. 7771 return Members * NumRegs <= MaxNumRegsForArgsRet; 7772 } 7773 7774 /// Estimate number of registers the type will use when passed in registers. 7775 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7776 unsigned NumRegs = 0; 7777 7778 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7779 // Compute from the number of elements. The reported size is based on the 7780 // in-memory size, which includes the padding 4th element for 3-vectors. 7781 QualType EltTy = VT->getElementType(); 7782 unsigned EltSize = getContext().getTypeSize(EltTy); 7783 7784 // 16-bit element vectors should be passed as packed. 7785 if (EltSize == 16) 7786 return (VT->getNumElements() + 1) / 2; 7787 7788 unsigned EltNumRegs = (EltSize + 31) / 32; 7789 return EltNumRegs * VT->getNumElements(); 7790 } 7791 7792 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7793 const RecordDecl *RD = RT->getDecl(); 7794 assert(!RD->hasFlexibleArrayMember()); 7795 7796 for (const FieldDecl *Field : RD->fields()) { 7797 QualType FieldTy = Field->getType(); 7798 NumRegs += numRegsForType(FieldTy); 7799 } 7800 7801 return NumRegs; 7802 } 7803 7804 return (getContext().getTypeSize(Ty) + 31) / 32; 7805 } 7806 7807 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7808 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7809 7810 if (!getCXXABI().classifyReturnType(FI)) 7811 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7812 7813 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7814 for (auto &Arg : FI.arguments()) { 7815 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7816 Arg.info = classifyKernelArgumentType(Arg.type); 7817 } else { 7818 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7819 } 7820 } 7821 } 7822 7823 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7824 QualType Ty) const { 7825 llvm_unreachable("AMDGPU does not support varargs"); 7826 } 7827 7828 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7829 if (isAggregateTypeForABI(RetTy)) { 7830 // Records with non-trivial destructors/copy-constructors should not be 7831 // returned by value. 7832 if (!getRecordArgABI(RetTy, getCXXABI())) { 7833 // Ignore empty structs/unions. 7834 if (isEmptyRecord(getContext(), RetTy, true)) 7835 return ABIArgInfo::getIgnore(); 7836 7837 // Lower single-element structs to just return a regular value. 7838 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7839 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7840 7841 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7842 const RecordDecl *RD = RT->getDecl(); 7843 if (RD->hasFlexibleArrayMember()) 7844 return DefaultABIInfo::classifyReturnType(RetTy); 7845 } 7846 7847 // Pack aggregates <= 4 bytes into single VGPR or pair. 7848 uint64_t Size = getContext().getTypeSize(RetTy); 7849 if (Size <= 16) 7850 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7851 7852 if (Size <= 32) 7853 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7854 7855 if (Size <= 64) { 7856 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7857 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7858 } 7859 7860 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7861 return ABIArgInfo::getDirect(); 7862 } 7863 } 7864 7865 // Otherwise just do the default thing. 7866 return DefaultABIInfo::classifyReturnType(RetTy); 7867 } 7868 7869 /// For kernels all parameters are really passed in a special buffer. It doesn't 7870 /// make sense to pass anything byval, so everything must be direct. 7871 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7872 Ty = useFirstFieldIfTransparentUnion(Ty); 7873 7874 // TODO: Can we omit empty structs? 7875 7876 llvm::Type *LTy = nullptr; 7877 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7878 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 7879 7880 if (getContext().getLangOpts().HIP) { 7881 if (!LTy) 7882 LTy = CGT.ConvertType(Ty); 7883 LTy = coerceKernelArgumentType( 7884 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 7885 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 7886 } 7887 7888 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7889 // individual elements, which confuses the Clover OpenCL backend; therefore we 7890 // have to set it to false here. Other args of getDirect() are just defaults. 7891 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 7892 } 7893 7894 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7895 unsigned &NumRegsLeft) const { 7896 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7897 7898 Ty = useFirstFieldIfTransparentUnion(Ty); 7899 7900 if (isAggregateTypeForABI(Ty)) { 7901 // Records with non-trivial destructors/copy-constructors should not be 7902 // passed by value. 7903 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7904 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7905 7906 // Ignore empty structs/unions. 7907 if (isEmptyRecord(getContext(), Ty, true)) 7908 return ABIArgInfo::getIgnore(); 7909 7910 // Lower single-element structs to just pass a regular value. TODO: We 7911 // could do reasonable-size multiple-element structs too, using getExpand(), 7912 // though watch out for things like bitfields. 7913 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7914 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7915 7916 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7917 const RecordDecl *RD = RT->getDecl(); 7918 if (RD->hasFlexibleArrayMember()) 7919 return DefaultABIInfo::classifyArgumentType(Ty); 7920 } 7921 7922 // Pack aggregates <= 8 bytes into single VGPR or pair. 7923 uint64_t Size = getContext().getTypeSize(Ty); 7924 if (Size <= 64) { 7925 unsigned NumRegs = (Size + 31) / 32; 7926 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7927 7928 if (Size <= 16) 7929 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7930 7931 if (Size <= 32) 7932 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7933 7934 // XXX: Should this be i64 instead, and should the limit increase? 7935 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7936 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7937 } 7938 7939 if (NumRegsLeft > 0) { 7940 unsigned NumRegs = numRegsForType(Ty); 7941 if (NumRegsLeft >= NumRegs) { 7942 NumRegsLeft -= NumRegs; 7943 return ABIArgInfo::getDirect(); 7944 } 7945 } 7946 } 7947 7948 // Otherwise just do the default thing. 7949 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7950 if (!ArgInfo.isIndirect()) { 7951 unsigned NumRegs = numRegsForType(Ty); 7952 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7953 } 7954 7955 return ArgInfo; 7956 } 7957 7958 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7959 public: 7960 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7961 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7962 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7963 CodeGen::CodeGenModule &M) const override; 7964 unsigned getOpenCLKernelCallingConv() const override; 7965 7966 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7967 llvm::PointerType *T, QualType QT) const override; 7968 7969 LangAS getASTAllocaAddressSpace() const override { 7970 return getLangASFromTargetAS( 7971 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7972 } 7973 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7974 const VarDecl *D) const override; 7975 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 7976 SyncScope Scope, 7977 llvm::AtomicOrdering Ordering, 7978 llvm::LLVMContext &Ctx) const override; 7979 llvm::Function * 7980 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7981 llvm::Function *BlockInvokeFunc, 7982 llvm::Value *BlockLiteral) const override; 7983 bool shouldEmitStaticExternCAliases() const override; 7984 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7985 }; 7986 } 7987 7988 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7989 llvm::GlobalValue *GV) { 7990 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7991 return false; 7992 7993 return D->hasAttr<OpenCLKernelAttr>() || 7994 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 7995 (isa<VarDecl>(D) && 7996 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 7997 D->hasAttr<HIPPinnedShadowAttr>())); 7998 } 7999 8000 static bool requiresAMDGPUDefaultVisibility(const Decl *D, 8001 llvm::GlobalValue *GV) { 8002 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8003 return false; 8004 8005 return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); 8006 } 8007 8008 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8009 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8010 if (requiresAMDGPUDefaultVisibility(D, GV)) { 8011 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 8012 GV->setDSOLocal(false); 8013 } else if (requiresAMDGPUProtectedVisibility(D, GV)) { 8014 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8015 GV->setDSOLocal(true); 8016 } 8017 8018 if (GV->isDeclaration()) 8019 return; 8020 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8021 if (!FD) 8022 return; 8023 8024 llvm::Function *F = cast<llvm::Function>(GV); 8025 8026 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8027 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8028 8029 8030 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8031 FD->hasAttr<OpenCLKernelAttr>(); 8032 const bool IsHIPKernel = M.getLangOpts().HIP && 8033 FD->hasAttr<CUDAGlobalAttr>(); 8034 if ((IsOpenCLKernel || IsHIPKernel) && 8035 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8036 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8037 8038 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8039 if (ReqdWGS || FlatWGS) { 8040 unsigned Min = 0; 8041 unsigned Max = 0; 8042 if (FlatWGS) { 8043 Min = FlatWGS->getMin() 8044 ->EvaluateKnownConstInt(M.getContext()) 8045 .getExtValue(); 8046 Max = FlatWGS->getMax() 8047 ->EvaluateKnownConstInt(M.getContext()) 8048 .getExtValue(); 8049 } 8050 if (ReqdWGS && Min == 0 && Max == 0) 8051 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8052 8053 if (Min != 0) { 8054 assert(Min <= Max && "Min must be less than or equal Max"); 8055 8056 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8057 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8058 } else 8059 assert(Max == 0 && "Max must be zero"); 8060 } else if (IsOpenCLKernel || IsHIPKernel) { 8061 // By default, restrict the maximum size to a value specified by 8062 // --gpu-max-threads-per-block=n or its default value. 8063 std::string AttrVal = 8064 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 8065 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8066 } 8067 8068 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8069 unsigned Min = 8070 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8071 unsigned Max = Attr->getMax() ? Attr->getMax() 8072 ->EvaluateKnownConstInt(M.getContext()) 8073 .getExtValue() 8074 : 0; 8075 8076 if (Min != 0) { 8077 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8078 8079 std::string AttrVal = llvm::utostr(Min); 8080 if (Max != 0) 8081 AttrVal = AttrVal + "," + llvm::utostr(Max); 8082 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8083 } else 8084 assert(Max == 0 && "Max must be zero"); 8085 } 8086 8087 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8088 unsigned NumSGPR = Attr->getNumSGPR(); 8089 8090 if (NumSGPR != 0) 8091 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8092 } 8093 8094 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8095 uint32_t NumVGPR = Attr->getNumVGPR(); 8096 8097 if (NumVGPR != 0) 8098 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8099 } 8100 } 8101 8102 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8103 return llvm::CallingConv::AMDGPU_KERNEL; 8104 } 8105 8106 // Currently LLVM assumes null pointers always have value 0, 8107 // which results in incorrectly transformed IR. Therefore, instead of 8108 // emitting null pointers in private and local address spaces, a null 8109 // pointer in generic address space is emitted which is casted to a 8110 // pointer in local or private address space. 8111 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8112 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8113 QualType QT) const { 8114 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8115 return llvm::ConstantPointerNull::get(PT); 8116 8117 auto &Ctx = CGM.getContext(); 8118 auto NPT = llvm::PointerType::get(PT->getElementType(), 8119 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8120 return llvm::ConstantExpr::getAddrSpaceCast( 8121 llvm::ConstantPointerNull::get(NPT), PT); 8122 } 8123 8124 LangAS 8125 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8126 const VarDecl *D) const { 8127 assert(!CGM.getLangOpts().OpenCL && 8128 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8129 "Address space agnostic languages only"); 8130 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8131 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8132 if (!D) 8133 return DefaultGlobalAS; 8134 8135 LangAS AddrSpace = D->getType().getAddressSpace(); 8136 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8137 if (AddrSpace != LangAS::Default) 8138 return AddrSpace; 8139 8140 if (CGM.isTypeConstant(D->getType(), false)) { 8141 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8142 return ConstAS.getValue(); 8143 } 8144 return DefaultGlobalAS; 8145 } 8146 8147 llvm::SyncScope::ID 8148 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8149 SyncScope Scope, 8150 llvm::AtomicOrdering Ordering, 8151 llvm::LLVMContext &Ctx) const { 8152 std::string Name; 8153 switch (Scope) { 8154 case SyncScope::OpenCLWorkGroup: 8155 Name = "workgroup"; 8156 break; 8157 case SyncScope::OpenCLDevice: 8158 Name = "agent"; 8159 break; 8160 case SyncScope::OpenCLAllSVMDevices: 8161 Name = ""; 8162 break; 8163 case SyncScope::OpenCLSubGroup: 8164 Name = "wavefront"; 8165 } 8166 8167 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8168 if (!Name.empty()) 8169 Name = Twine(Twine(Name) + Twine("-")).str(); 8170 8171 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8172 } 8173 8174 return Ctx.getOrInsertSyncScopeID(Name); 8175 } 8176 8177 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8178 return false; 8179 } 8180 8181 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8182 const FunctionType *&FT) const { 8183 FT = getABIInfo().getContext().adjustFunctionType( 8184 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8185 } 8186 8187 //===----------------------------------------------------------------------===// 8188 // SPARC v8 ABI Implementation. 8189 // Based on the SPARC Compliance Definition version 2.4.1. 8190 // 8191 // Ensures that complex values are passed in registers. 8192 // 8193 namespace { 8194 class SparcV8ABIInfo : public DefaultABIInfo { 8195 public: 8196 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8197 8198 private: 8199 ABIArgInfo classifyReturnType(QualType RetTy) const; 8200 void computeInfo(CGFunctionInfo &FI) const override; 8201 }; 8202 } // end anonymous namespace 8203 8204 8205 ABIArgInfo 8206 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8207 if (Ty->isAnyComplexType()) { 8208 return ABIArgInfo::getDirect(); 8209 } 8210 else { 8211 return DefaultABIInfo::classifyReturnType(Ty); 8212 } 8213 } 8214 8215 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8216 8217 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8218 for (auto &Arg : FI.arguments()) 8219 Arg.info = classifyArgumentType(Arg.type); 8220 } 8221 8222 namespace { 8223 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8224 public: 8225 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8226 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8227 }; 8228 } // end anonymous namespace 8229 8230 //===----------------------------------------------------------------------===// 8231 // SPARC v9 ABI Implementation. 8232 // Based on the SPARC Compliance Definition version 2.4.1. 8233 // 8234 // Function arguments a mapped to a nominal "parameter array" and promoted to 8235 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8236 // the array, structs larger than 16 bytes are passed indirectly. 8237 // 8238 // One case requires special care: 8239 // 8240 // struct mixed { 8241 // int i; 8242 // float f; 8243 // }; 8244 // 8245 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8246 // parameter array, but the int is passed in an integer register, and the float 8247 // is passed in a floating point register. This is represented as two arguments 8248 // with the LLVM IR inreg attribute: 8249 // 8250 // declare void f(i32 inreg %i, float inreg %f) 8251 // 8252 // The code generator will only allocate 4 bytes from the parameter array for 8253 // the inreg arguments. All other arguments are allocated a multiple of 8 8254 // bytes. 8255 // 8256 namespace { 8257 class SparcV9ABIInfo : public ABIInfo { 8258 public: 8259 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8260 8261 private: 8262 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8263 void computeInfo(CGFunctionInfo &FI) const override; 8264 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8265 QualType Ty) const override; 8266 8267 // Coercion type builder for structs passed in registers. The coercion type 8268 // serves two purposes: 8269 // 8270 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8271 // in registers. 8272 // 2. Expose aligned floating point elements as first-level elements, so the 8273 // code generator knows to pass them in floating point registers. 8274 // 8275 // We also compute the InReg flag which indicates that the struct contains 8276 // aligned 32-bit floats. 8277 // 8278 struct CoerceBuilder { 8279 llvm::LLVMContext &Context; 8280 const llvm::DataLayout &DL; 8281 SmallVector<llvm::Type*, 8> Elems; 8282 uint64_t Size; 8283 bool InReg; 8284 8285 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8286 : Context(c), DL(dl), Size(0), InReg(false) {} 8287 8288 // Pad Elems with integers until Size is ToSize. 8289 void pad(uint64_t ToSize) { 8290 assert(ToSize >= Size && "Cannot remove elements"); 8291 if (ToSize == Size) 8292 return; 8293 8294 // Finish the current 64-bit word. 8295 uint64_t Aligned = llvm::alignTo(Size, 64); 8296 if (Aligned > Size && Aligned <= ToSize) { 8297 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8298 Size = Aligned; 8299 } 8300 8301 // Add whole 64-bit words. 8302 while (Size + 64 <= ToSize) { 8303 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8304 Size += 64; 8305 } 8306 8307 // Final in-word padding. 8308 if (Size < ToSize) { 8309 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8310 Size = ToSize; 8311 } 8312 } 8313 8314 // Add a floating point element at Offset. 8315 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8316 // Unaligned floats are treated as integers. 8317 if (Offset % Bits) 8318 return; 8319 // The InReg flag is only required if there are any floats < 64 bits. 8320 if (Bits < 64) 8321 InReg = true; 8322 pad(Offset); 8323 Elems.push_back(Ty); 8324 Size = Offset + Bits; 8325 } 8326 8327 // Add a struct type to the coercion type, starting at Offset (in bits). 8328 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8329 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8330 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8331 llvm::Type *ElemTy = StrTy->getElementType(i); 8332 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8333 switch (ElemTy->getTypeID()) { 8334 case llvm::Type::StructTyID: 8335 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8336 break; 8337 case llvm::Type::FloatTyID: 8338 addFloat(ElemOffset, ElemTy, 32); 8339 break; 8340 case llvm::Type::DoubleTyID: 8341 addFloat(ElemOffset, ElemTy, 64); 8342 break; 8343 case llvm::Type::FP128TyID: 8344 addFloat(ElemOffset, ElemTy, 128); 8345 break; 8346 case llvm::Type::PointerTyID: 8347 if (ElemOffset % 64 == 0) { 8348 pad(ElemOffset); 8349 Elems.push_back(ElemTy); 8350 Size += 64; 8351 } 8352 break; 8353 default: 8354 break; 8355 } 8356 } 8357 } 8358 8359 // Check if Ty is a usable substitute for the coercion type. 8360 bool isUsableType(llvm::StructType *Ty) const { 8361 return llvm::makeArrayRef(Elems) == Ty->elements(); 8362 } 8363 8364 // Get the coercion type as a literal struct type. 8365 llvm::Type *getType() const { 8366 if (Elems.size() == 1) 8367 return Elems.front(); 8368 else 8369 return llvm::StructType::get(Context, Elems); 8370 } 8371 }; 8372 }; 8373 } // end anonymous namespace 8374 8375 ABIArgInfo 8376 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8377 if (Ty->isVoidType()) 8378 return ABIArgInfo::getIgnore(); 8379 8380 uint64_t Size = getContext().getTypeSize(Ty); 8381 8382 // Anything too big to fit in registers is passed with an explicit indirect 8383 // pointer / sret pointer. 8384 if (Size > SizeLimit) 8385 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8386 8387 // Treat an enum type as its underlying type. 8388 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8389 Ty = EnumTy->getDecl()->getIntegerType(); 8390 8391 // Integer types smaller than a register are extended. 8392 if (Size < 64 && Ty->isIntegerType()) 8393 return ABIArgInfo::getExtend(Ty); 8394 8395 // Other non-aggregates go in registers. 8396 if (!isAggregateTypeForABI(Ty)) 8397 return ABIArgInfo::getDirect(); 8398 8399 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8400 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8401 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8402 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8403 8404 // This is a small aggregate type that should be passed in registers. 8405 // Build a coercion type from the LLVM struct type. 8406 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8407 if (!StrTy) 8408 return ABIArgInfo::getDirect(); 8409 8410 CoerceBuilder CB(getVMContext(), getDataLayout()); 8411 CB.addStruct(0, StrTy); 8412 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8413 8414 // Try to use the original type for coercion. 8415 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8416 8417 if (CB.InReg) 8418 return ABIArgInfo::getDirectInReg(CoerceTy); 8419 else 8420 return ABIArgInfo::getDirect(CoerceTy); 8421 } 8422 8423 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8424 QualType Ty) const { 8425 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8426 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8427 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8428 AI.setCoerceToType(ArgTy); 8429 8430 CharUnits SlotSize = CharUnits::fromQuantity(8); 8431 8432 CGBuilderTy &Builder = CGF.Builder; 8433 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8434 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8435 8436 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8437 8438 Address ArgAddr = Address::invalid(); 8439 CharUnits Stride; 8440 switch (AI.getKind()) { 8441 case ABIArgInfo::Expand: 8442 case ABIArgInfo::CoerceAndExpand: 8443 case ABIArgInfo::InAlloca: 8444 llvm_unreachable("Unsupported ABI kind for va_arg"); 8445 8446 case ABIArgInfo::Extend: { 8447 Stride = SlotSize; 8448 CharUnits Offset = SlotSize - TypeInfo.first; 8449 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8450 break; 8451 } 8452 8453 case ABIArgInfo::Direct: { 8454 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8455 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8456 ArgAddr = Addr; 8457 break; 8458 } 8459 8460 case ABIArgInfo::Indirect: 8461 Stride = SlotSize; 8462 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8463 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8464 TypeInfo.second); 8465 break; 8466 8467 case ABIArgInfo::Ignore: 8468 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8469 } 8470 8471 // Update VAList. 8472 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8473 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8474 8475 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8476 } 8477 8478 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8479 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8480 for (auto &I : FI.arguments()) 8481 I.info = classifyType(I.type, 16 * 8); 8482 } 8483 8484 namespace { 8485 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8486 public: 8487 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8488 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8489 8490 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8491 return 14; 8492 } 8493 8494 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8495 llvm::Value *Address) const override; 8496 }; 8497 } // end anonymous namespace 8498 8499 bool 8500 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8501 llvm::Value *Address) const { 8502 // This is calculated from the LLVM and GCC tables and verified 8503 // against gcc output. AFAIK all ABIs use the same encoding. 8504 8505 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8506 8507 llvm::IntegerType *i8 = CGF.Int8Ty; 8508 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8509 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8510 8511 // 0-31: the 8-byte general-purpose registers 8512 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8513 8514 // 32-63: f0-31, the 4-byte floating-point registers 8515 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8516 8517 // Y = 64 8518 // PSR = 65 8519 // WIM = 66 8520 // TBR = 67 8521 // PC = 68 8522 // NPC = 69 8523 // FSR = 70 8524 // CSR = 71 8525 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8526 8527 // 72-87: d0-15, the 8-byte floating-point registers 8528 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8529 8530 return false; 8531 } 8532 8533 // ARC ABI implementation. 8534 namespace { 8535 8536 class ARCABIInfo : public DefaultABIInfo { 8537 public: 8538 using DefaultABIInfo::DefaultABIInfo; 8539 8540 private: 8541 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8542 QualType Ty) const override; 8543 8544 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8545 if (!State.FreeRegs) 8546 return; 8547 if (Info.isIndirect() && Info.getInReg()) 8548 State.FreeRegs--; 8549 else if (Info.isDirect() && Info.getInReg()) { 8550 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8551 if (sz < State.FreeRegs) 8552 State.FreeRegs -= sz; 8553 else 8554 State.FreeRegs = 0; 8555 } 8556 } 8557 8558 void computeInfo(CGFunctionInfo &FI) const override { 8559 CCState State(FI); 8560 // ARC uses 8 registers to pass arguments. 8561 State.FreeRegs = 8; 8562 8563 if (!getCXXABI().classifyReturnType(FI)) 8564 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8565 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8566 for (auto &I : FI.arguments()) { 8567 I.info = classifyArgumentType(I.type, State.FreeRegs); 8568 updateState(I.info, I.type, State); 8569 } 8570 } 8571 8572 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8573 ABIArgInfo getIndirectByValue(QualType Ty) const; 8574 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8575 ABIArgInfo classifyReturnType(QualType RetTy) const; 8576 }; 8577 8578 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8579 public: 8580 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8581 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8582 }; 8583 8584 8585 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8586 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8587 getNaturalAlignIndirect(Ty, false); 8588 } 8589 8590 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8591 // Compute the byval alignment. 8592 const unsigned MinABIStackAlignInBytes = 4; 8593 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8594 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8595 TypeAlign > MinABIStackAlignInBytes); 8596 } 8597 8598 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8599 QualType Ty) const { 8600 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8601 getContext().getTypeInfoInChars(Ty), 8602 CharUnits::fromQuantity(4), true); 8603 } 8604 8605 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8606 uint8_t FreeRegs) const { 8607 // Handle the generic C++ ABI. 8608 const RecordType *RT = Ty->getAs<RecordType>(); 8609 if (RT) { 8610 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8611 if (RAA == CGCXXABI::RAA_Indirect) 8612 return getIndirectByRef(Ty, FreeRegs > 0); 8613 8614 if (RAA == CGCXXABI::RAA_DirectInMemory) 8615 return getIndirectByValue(Ty); 8616 } 8617 8618 // Treat an enum type as its underlying type. 8619 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8620 Ty = EnumTy->getDecl()->getIntegerType(); 8621 8622 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8623 8624 if (isAggregateTypeForABI(Ty)) { 8625 // Structures with flexible arrays are always indirect. 8626 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8627 return getIndirectByValue(Ty); 8628 8629 // Ignore empty structs/unions. 8630 if (isEmptyRecord(getContext(), Ty, true)) 8631 return ABIArgInfo::getIgnore(); 8632 8633 llvm::LLVMContext &LLVMContext = getVMContext(); 8634 8635 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8636 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8637 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8638 8639 return FreeRegs >= SizeInRegs ? 8640 ABIArgInfo::getDirectInReg(Result) : 8641 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8642 } 8643 8644 return Ty->isPromotableIntegerType() ? 8645 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8646 ABIArgInfo::getExtend(Ty)) : 8647 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8648 ABIArgInfo::getDirect()); 8649 } 8650 8651 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8652 if (RetTy->isAnyComplexType()) 8653 return ABIArgInfo::getDirectInReg(); 8654 8655 // Arguments of size > 4 registers are indirect. 8656 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8657 if (RetSize > 4) 8658 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8659 8660 return DefaultABIInfo::classifyReturnType(RetTy); 8661 } 8662 8663 } // End anonymous namespace. 8664 8665 //===----------------------------------------------------------------------===// 8666 // XCore ABI Implementation 8667 //===----------------------------------------------------------------------===// 8668 8669 namespace { 8670 8671 /// A SmallStringEnc instance is used to build up the TypeString by passing 8672 /// it by reference between functions that append to it. 8673 typedef llvm::SmallString<128> SmallStringEnc; 8674 8675 /// TypeStringCache caches the meta encodings of Types. 8676 /// 8677 /// The reason for caching TypeStrings is two fold: 8678 /// 1. To cache a type's encoding for later uses; 8679 /// 2. As a means to break recursive member type inclusion. 8680 /// 8681 /// A cache Entry can have a Status of: 8682 /// NonRecursive: The type encoding is not recursive; 8683 /// Recursive: The type encoding is recursive; 8684 /// Incomplete: An incomplete TypeString; 8685 /// IncompleteUsed: An incomplete TypeString that has been used in a 8686 /// Recursive type encoding. 8687 /// 8688 /// A NonRecursive entry will have all of its sub-members expanded as fully 8689 /// as possible. Whilst it may contain types which are recursive, the type 8690 /// itself is not recursive and thus its encoding may be safely used whenever 8691 /// the type is encountered. 8692 /// 8693 /// A Recursive entry will have all of its sub-members expanded as fully as 8694 /// possible. The type itself is recursive and it may contain other types which 8695 /// are recursive. The Recursive encoding must not be used during the expansion 8696 /// of a recursive type's recursive branch. For simplicity the code uses 8697 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8698 /// 8699 /// An Incomplete entry is always a RecordType and only encodes its 8700 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8701 /// are placed into the cache during type expansion as a means to identify and 8702 /// handle recursive inclusion of types as sub-members. If there is recursion 8703 /// the entry becomes IncompleteUsed. 8704 /// 8705 /// During the expansion of a RecordType's members: 8706 /// 8707 /// If the cache contains a NonRecursive encoding for the member type, the 8708 /// cached encoding is used; 8709 /// 8710 /// If the cache contains a Recursive encoding for the member type, the 8711 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8712 /// 8713 /// If the member is a RecordType, an Incomplete encoding is placed into the 8714 /// cache to break potential recursive inclusion of itself as a sub-member; 8715 /// 8716 /// Once a member RecordType has been expanded, its temporary incomplete 8717 /// entry is removed from the cache. If a Recursive encoding was swapped out 8718 /// it is swapped back in; 8719 /// 8720 /// If an incomplete entry is used to expand a sub-member, the incomplete 8721 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8722 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8723 /// 8724 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8725 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8726 /// Else the member is part of a recursive type and thus the recursion has 8727 /// been exited too soon for the encoding to be correct for the member. 8728 /// 8729 class TypeStringCache { 8730 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8731 struct Entry { 8732 std::string Str; // The encoded TypeString for the type. 8733 enum Status State; // Information about the encoding in 'Str'. 8734 std::string Swapped; // A temporary place holder for a Recursive encoding 8735 // during the expansion of RecordType's members. 8736 }; 8737 std::map<const IdentifierInfo *, struct Entry> Map; 8738 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8739 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8740 public: 8741 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8742 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8743 bool removeIncomplete(const IdentifierInfo *ID); 8744 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8745 bool IsRecursive); 8746 StringRef lookupStr(const IdentifierInfo *ID); 8747 }; 8748 8749 /// TypeString encodings for enum & union fields must be order. 8750 /// FieldEncoding is a helper for this ordering process. 8751 class FieldEncoding { 8752 bool HasName; 8753 std::string Enc; 8754 public: 8755 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8756 StringRef str() { return Enc; } 8757 bool operator<(const FieldEncoding &rhs) const { 8758 if (HasName != rhs.HasName) return HasName; 8759 return Enc < rhs.Enc; 8760 } 8761 }; 8762 8763 class XCoreABIInfo : public DefaultABIInfo { 8764 public: 8765 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8766 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8767 QualType Ty) const override; 8768 }; 8769 8770 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8771 mutable TypeStringCache TSC; 8772 public: 8773 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8774 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8775 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8776 CodeGen::CodeGenModule &M) const override; 8777 }; 8778 8779 } // End anonymous namespace. 8780 8781 // TODO: this implementation is likely now redundant with the default 8782 // EmitVAArg. 8783 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8784 QualType Ty) const { 8785 CGBuilderTy &Builder = CGF.Builder; 8786 8787 // Get the VAList. 8788 CharUnits SlotSize = CharUnits::fromQuantity(4); 8789 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8790 8791 // Handle the argument. 8792 ABIArgInfo AI = classifyArgumentType(Ty); 8793 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8794 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8795 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8796 AI.setCoerceToType(ArgTy); 8797 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8798 8799 Address Val = Address::invalid(); 8800 CharUnits ArgSize = CharUnits::Zero(); 8801 switch (AI.getKind()) { 8802 case ABIArgInfo::Expand: 8803 case ABIArgInfo::CoerceAndExpand: 8804 case ABIArgInfo::InAlloca: 8805 llvm_unreachable("Unsupported ABI kind for va_arg"); 8806 case ABIArgInfo::Ignore: 8807 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8808 ArgSize = CharUnits::Zero(); 8809 break; 8810 case ABIArgInfo::Extend: 8811 case ABIArgInfo::Direct: 8812 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8813 ArgSize = CharUnits::fromQuantity( 8814 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8815 ArgSize = ArgSize.alignTo(SlotSize); 8816 break; 8817 case ABIArgInfo::Indirect: 8818 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8819 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8820 ArgSize = SlotSize; 8821 break; 8822 } 8823 8824 // Increment the VAList. 8825 if (!ArgSize.isZero()) { 8826 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8827 Builder.CreateStore(APN.getPointer(), VAListAddr); 8828 } 8829 8830 return Val; 8831 } 8832 8833 /// During the expansion of a RecordType, an incomplete TypeString is placed 8834 /// into the cache as a means to identify and break recursion. 8835 /// If there is a Recursive encoding in the cache, it is swapped out and will 8836 /// be reinserted by removeIncomplete(). 8837 /// All other types of encoding should have been used rather than arriving here. 8838 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8839 std::string StubEnc) { 8840 if (!ID) 8841 return; 8842 Entry &E = Map[ID]; 8843 assert( (E.Str.empty() || E.State == Recursive) && 8844 "Incorrectly use of addIncomplete"); 8845 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8846 E.Swapped.swap(E.Str); // swap out the Recursive 8847 E.Str.swap(StubEnc); 8848 E.State = Incomplete; 8849 ++IncompleteCount; 8850 } 8851 8852 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8853 /// must be removed from the cache. 8854 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8855 /// Returns true if the RecordType was defined recursively. 8856 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8857 if (!ID) 8858 return false; 8859 auto I = Map.find(ID); 8860 assert(I != Map.end() && "Entry not present"); 8861 Entry &E = I->second; 8862 assert( (E.State == Incomplete || 8863 E.State == IncompleteUsed) && 8864 "Entry must be an incomplete type"); 8865 bool IsRecursive = false; 8866 if (E.State == IncompleteUsed) { 8867 // We made use of our Incomplete encoding, thus we are recursive. 8868 IsRecursive = true; 8869 --IncompleteUsedCount; 8870 } 8871 if (E.Swapped.empty()) 8872 Map.erase(I); 8873 else { 8874 // Swap the Recursive back. 8875 E.Swapped.swap(E.Str); 8876 E.Swapped.clear(); 8877 E.State = Recursive; 8878 } 8879 --IncompleteCount; 8880 return IsRecursive; 8881 } 8882 8883 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8884 /// Recursive (viz: all sub-members were expanded as fully as possible). 8885 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8886 bool IsRecursive) { 8887 if (!ID || IncompleteUsedCount) 8888 return; // No key or it is is an incomplete sub-type so don't add. 8889 Entry &E = Map[ID]; 8890 if (IsRecursive && !E.Str.empty()) { 8891 assert(E.State==Recursive && E.Str.size() == Str.size() && 8892 "This is not the same Recursive entry"); 8893 // The parent container was not recursive after all, so we could have used 8894 // this Recursive sub-member entry after all, but we assumed the worse when 8895 // we started viz: IncompleteCount!=0. 8896 return; 8897 } 8898 assert(E.Str.empty() && "Entry already present"); 8899 E.Str = Str.str(); 8900 E.State = IsRecursive? Recursive : NonRecursive; 8901 } 8902 8903 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8904 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8905 /// encoding is Recursive, return an empty StringRef. 8906 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8907 if (!ID) 8908 return StringRef(); // We have no key. 8909 auto I = Map.find(ID); 8910 if (I == Map.end()) 8911 return StringRef(); // We have no encoding. 8912 Entry &E = I->second; 8913 if (E.State == Recursive && IncompleteCount) 8914 return StringRef(); // We don't use Recursive encodings for member types. 8915 8916 if (E.State == Incomplete) { 8917 // The incomplete type is being used to break out of recursion. 8918 E.State = IncompleteUsed; 8919 ++IncompleteUsedCount; 8920 } 8921 return E.Str; 8922 } 8923 8924 /// The XCore ABI includes a type information section that communicates symbol 8925 /// type information to the linker. The linker uses this information to verify 8926 /// safety/correctness of things such as array bound and pointers et al. 8927 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8928 /// This type information (TypeString) is emitted into meta data for all global 8929 /// symbols: definitions, declarations, functions & variables. 8930 /// 8931 /// The TypeString carries type, qualifier, name, size & value details. 8932 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8933 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8934 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8935 /// 8936 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8937 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8938 8939 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8940 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8941 CodeGen::CodeGenModule &CGM) const { 8942 SmallStringEnc Enc; 8943 if (getTypeString(Enc, D, CGM, TSC)) { 8944 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8945 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8946 llvm::MDString::get(Ctx, Enc.str())}; 8947 llvm::NamedMDNode *MD = 8948 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8949 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8950 } 8951 } 8952 8953 //===----------------------------------------------------------------------===// 8954 // SPIR ABI Implementation 8955 //===----------------------------------------------------------------------===// 8956 8957 namespace { 8958 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8959 public: 8960 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8961 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8962 unsigned getOpenCLKernelCallingConv() const override; 8963 }; 8964 8965 } // End anonymous namespace. 8966 8967 namespace clang { 8968 namespace CodeGen { 8969 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8970 DefaultABIInfo SPIRABI(CGM.getTypes()); 8971 SPIRABI.computeInfo(FI); 8972 } 8973 } 8974 } 8975 8976 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8977 return llvm::CallingConv::SPIR_KERNEL; 8978 } 8979 8980 static bool appendType(SmallStringEnc &Enc, QualType QType, 8981 const CodeGen::CodeGenModule &CGM, 8982 TypeStringCache &TSC); 8983 8984 /// Helper function for appendRecordType(). 8985 /// Builds a SmallVector containing the encoded field types in declaration 8986 /// order. 8987 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8988 const RecordDecl *RD, 8989 const CodeGen::CodeGenModule &CGM, 8990 TypeStringCache &TSC) { 8991 for (const auto *Field : RD->fields()) { 8992 SmallStringEnc Enc; 8993 Enc += "m("; 8994 Enc += Field->getName(); 8995 Enc += "){"; 8996 if (Field->isBitField()) { 8997 Enc += "b("; 8998 llvm::raw_svector_ostream OS(Enc); 8999 OS << Field->getBitWidthValue(CGM.getContext()); 9000 Enc += ':'; 9001 } 9002 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9003 return false; 9004 if (Field->isBitField()) 9005 Enc += ')'; 9006 Enc += '}'; 9007 FE.emplace_back(!Field->getName().empty(), Enc); 9008 } 9009 return true; 9010 } 9011 9012 /// Appends structure and union types to Enc and adds encoding to cache. 9013 /// Recursively calls appendType (via extractFieldType) for each field. 9014 /// Union types have their fields ordered according to the ABI. 9015 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9016 const CodeGen::CodeGenModule &CGM, 9017 TypeStringCache &TSC, const IdentifierInfo *ID) { 9018 // Append the cached TypeString if we have one. 9019 StringRef TypeString = TSC.lookupStr(ID); 9020 if (!TypeString.empty()) { 9021 Enc += TypeString; 9022 return true; 9023 } 9024 9025 // Start to emit an incomplete TypeString. 9026 size_t Start = Enc.size(); 9027 Enc += (RT->isUnionType()? 'u' : 's'); 9028 Enc += '('; 9029 if (ID) 9030 Enc += ID->getName(); 9031 Enc += "){"; 9032 9033 // We collect all encoded fields and order as necessary. 9034 bool IsRecursive = false; 9035 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9036 if (RD && !RD->field_empty()) { 9037 // An incomplete TypeString stub is placed in the cache for this RecordType 9038 // so that recursive calls to this RecordType will use it whilst building a 9039 // complete TypeString for this RecordType. 9040 SmallVector<FieldEncoding, 16> FE; 9041 std::string StubEnc(Enc.substr(Start).str()); 9042 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9043 TSC.addIncomplete(ID, std::move(StubEnc)); 9044 if (!extractFieldType(FE, RD, CGM, TSC)) { 9045 (void) TSC.removeIncomplete(ID); 9046 return false; 9047 } 9048 IsRecursive = TSC.removeIncomplete(ID); 9049 // The ABI requires unions to be sorted but not structures. 9050 // See FieldEncoding::operator< for sort algorithm. 9051 if (RT->isUnionType()) 9052 llvm::sort(FE); 9053 // We can now complete the TypeString. 9054 unsigned E = FE.size(); 9055 for (unsigned I = 0; I != E; ++I) { 9056 if (I) 9057 Enc += ','; 9058 Enc += FE[I].str(); 9059 } 9060 } 9061 Enc += '}'; 9062 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9063 return true; 9064 } 9065 9066 /// Appends enum types to Enc and adds the encoding to the cache. 9067 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9068 TypeStringCache &TSC, 9069 const IdentifierInfo *ID) { 9070 // Append the cached TypeString if we have one. 9071 StringRef TypeString = TSC.lookupStr(ID); 9072 if (!TypeString.empty()) { 9073 Enc += TypeString; 9074 return true; 9075 } 9076 9077 size_t Start = Enc.size(); 9078 Enc += "e("; 9079 if (ID) 9080 Enc += ID->getName(); 9081 Enc += "){"; 9082 9083 // We collect all encoded enumerations and order them alphanumerically. 9084 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9085 SmallVector<FieldEncoding, 16> FE; 9086 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9087 ++I) { 9088 SmallStringEnc EnumEnc; 9089 EnumEnc += "m("; 9090 EnumEnc += I->getName(); 9091 EnumEnc += "){"; 9092 I->getInitVal().toString(EnumEnc); 9093 EnumEnc += '}'; 9094 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9095 } 9096 llvm::sort(FE); 9097 unsigned E = FE.size(); 9098 for (unsigned I = 0; I != E; ++I) { 9099 if (I) 9100 Enc += ','; 9101 Enc += FE[I].str(); 9102 } 9103 } 9104 Enc += '}'; 9105 TSC.addIfComplete(ID, Enc.substr(Start), false); 9106 return true; 9107 } 9108 9109 /// Appends type's qualifier to Enc. 9110 /// This is done prior to appending the type's encoding. 9111 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9112 // Qualifiers are emitted in alphabetical order. 9113 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9114 int Lookup = 0; 9115 if (QT.isConstQualified()) 9116 Lookup += 1<<0; 9117 if (QT.isRestrictQualified()) 9118 Lookup += 1<<1; 9119 if (QT.isVolatileQualified()) 9120 Lookup += 1<<2; 9121 Enc += Table[Lookup]; 9122 } 9123 9124 /// Appends built-in types to Enc. 9125 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9126 const char *EncType; 9127 switch (BT->getKind()) { 9128 case BuiltinType::Void: 9129 EncType = "0"; 9130 break; 9131 case BuiltinType::Bool: 9132 EncType = "b"; 9133 break; 9134 case BuiltinType::Char_U: 9135 EncType = "uc"; 9136 break; 9137 case BuiltinType::UChar: 9138 EncType = "uc"; 9139 break; 9140 case BuiltinType::SChar: 9141 EncType = "sc"; 9142 break; 9143 case BuiltinType::UShort: 9144 EncType = "us"; 9145 break; 9146 case BuiltinType::Short: 9147 EncType = "ss"; 9148 break; 9149 case BuiltinType::UInt: 9150 EncType = "ui"; 9151 break; 9152 case BuiltinType::Int: 9153 EncType = "si"; 9154 break; 9155 case BuiltinType::ULong: 9156 EncType = "ul"; 9157 break; 9158 case BuiltinType::Long: 9159 EncType = "sl"; 9160 break; 9161 case BuiltinType::ULongLong: 9162 EncType = "ull"; 9163 break; 9164 case BuiltinType::LongLong: 9165 EncType = "sll"; 9166 break; 9167 case BuiltinType::Float: 9168 EncType = "ft"; 9169 break; 9170 case BuiltinType::Double: 9171 EncType = "d"; 9172 break; 9173 case BuiltinType::LongDouble: 9174 EncType = "ld"; 9175 break; 9176 default: 9177 return false; 9178 } 9179 Enc += EncType; 9180 return true; 9181 } 9182 9183 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9184 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9185 const CodeGen::CodeGenModule &CGM, 9186 TypeStringCache &TSC) { 9187 Enc += "p("; 9188 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9189 return false; 9190 Enc += ')'; 9191 return true; 9192 } 9193 9194 /// Appends array encoding to Enc before calling appendType for the element. 9195 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9196 const ArrayType *AT, 9197 const CodeGen::CodeGenModule &CGM, 9198 TypeStringCache &TSC, StringRef NoSizeEnc) { 9199 if (AT->getSizeModifier() != ArrayType::Normal) 9200 return false; 9201 Enc += "a("; 9202 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9203 CAT->getSize().toStringUnsigned(Enc); 9204 else 9205 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9206 Enc += ':'; 9207 // The Qualifiers should be attached to the type rather than the array. 9208 appendQualifier(Enc, QT); 9209 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9210 return false; 9211 Enc += ')'; 9212 return true; 9213 } 9214 9215 /// Appends a function encoding to Enc, calling appendType for the return type 9216 /// and the arguments. 9217 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9218 const CodeGen::CodeGenModule &CGM, 9219 TypeStringCache &TSC) { 9220 Enc += "f{"; 9221 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9222 return false; 9223 Enc += "}("; 9224 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9225 // N.B. we are only interested in the adjusted param types. 9226 auto I = FPT->param_type_begin(); 9227 auto E = FPT->param_type_end(); 9228 if (I != E) { 9229 do { 9230 if (!appendType(Enc, *I, CGM, TSC)) 9231 return false; 9232 ++I; 9233 if (I != E) 9234 Enc += ','; 9235 } while (I != E); 9236 if (FPT->isVariadic()) 9237 Enc += ",va"; 9238 } else { 9239 if (FPT->isVariadic()) 9240 Enc += "va"; 9241 else 9242 Enc += '0'; 9243 } 9244 } 9245 Enc += ')'; 9246 return true; 9247 } 9248 9249 /// Handles the type's qualifier before dispatching a call to handle specific 9250 /// type encodings. 9251 static bool appendType(SmallStringEnc &Enc, QualType QType, 9252 const CodeGen::CodeGenModule &CGM, 9253 TypeStringCache &TSC) { 9254 9255 QualType QT = QType.getCanonicalType(); 9256 9257 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9258 // The Qualifiers should be attached to the type rather than the array. 9259 // Thus we don't call appendQualifier() here. 9260 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9261 9262 appendQualifier(Enc, QT); 9263 9264 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9265 return appendBuiltinType(Enc, BT); 9266 9267 if (const PointerType *PT = QT->getAs<PointerType>()) 9268 return appendPointerType(Enc, PT, CGM, TSC); 9269 9270 if (const EnumType *ET = QT->getAs<EnumType>()) 9271 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9272 9273 if (const RecordType *RT = QT->getAsStructureType()) 9274 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9275 9276 if (const RecordType *RT = QT->getAsUnionType()) 9277 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9278 9279 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9280 return appendFunctionType(Enc, FT, CGM, TSC); 9281 9282 return false; 9283 } 9284 9285 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9286 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9287 if (!D) 9288 return false; 9289 9290 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9291 if (FD->getLanguageLinkage() != CLanguageLinkage) 9292 return false; 9293 return appendType(Enc, FD->getType(), CGM, TSC); 9294 } 9295 9296 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9297 if (VD->getLanguageLinkage() != CLanguageLinkage) 9298 return false; 9299 QualType QT = VD->getType().getCanonicalType(); 9300 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9301 // Global ArrayTypes are given a size of '*' if the size is unknown. 9302 // The Qualifiers should be attached to the type rather than the array. 9303 // Thus we don't call appendQualifier() here. 9304 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9305 } 9306 return appendType(Enc, QT, CGM, TSC); 9307 } 9308 return false; 9309 } 9310 9311 //===----------------------------------------------------------------------===// 9312 // RISCV ABI Implementation 9313 //===----------------------------------------------------------------------===// 9314 9315 namespace { 9316 class RISCVABIInfo : public DefaultABIInfo { 9317 private: 9318 // Size of the integer ('x') registers in bits. 9319 unsigned XLen; 9320 // Size of the floating point ('f') registers in bits. Note that the target 9321 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 9322 // with soft float ABI has FLen==0). 9323 unsigned FLen; 9324 static const int NumArgGPRs = 8; 9325 static const int NumArgFPRs = 8; 9326 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9327 llvm::Type *&Field1Ty, 9328 CharUnits &Field1Off, 9329 llvm::Type *&Field2Ty, 9330 CharUnits &Field2Off) const; 9331 9332 public: 9333 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 9334 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 9335 9336 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9337 // non-virtual, but computeInfo is virtual, so we overload it. 9338 void computeInfo(CGFunctionInfo &FI) const override; 9339 9340 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 9341 int &ArgFPRsLeft) const; 9342 ABIArgInfo classifyReturnType(QualType RetTy) const; 9343 9344 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9345 QualType Ty) const override; 9346 9347 ABIArgInfo extendType(QualType Ty) const; 9348 9349 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9350 CharUnits &Field1Off, llvm::Type *&Field2Ty, 9351 CharUnits &Field2Off, int &NeededArgGPRs, 9352 int &NeededArgFPRs) const; 9353 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 9354 CharUnits Field1Off, 9355 llvm::Type *Field2Ty, 9356 CharUnits Field2Off) const; 9357 }; 9358 } // end anonymous namespace 9359 9360 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9361 QualType RetTy = FI.getReturnType(); 9362 if (!getCXXABI().classifyReturnType(FI)) 9363 FI.getReturnInfo() = classifyReturnType(RetTy); 9364 9365 // IsRetIndirect is true if classifyArgumentType indicated the value should 9366 // be passed indirect, or if the type size is a scalar greater than 2*XLen 9367 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 9368 // in LLVM IR, relying on the backend lowering code to rewrite the argument 9369 // list and pass indirectly on RV32. 9370 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 9371 if (!IsRetIndirect && RetTy->isScalarType() && 9372 getContext().getTypeSize(RetTy) > (2 * XLen)) { 9373 if (RetTy->isComplexType() && FLen) { 9374 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 9375 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 9376 } else { 9377 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 9378 IsRetIndirect = true; 9379 } 9380 } 9381 9382 // We must track the number of GPRs used in order to conform to the RISC-V 9383 // ABI, as integer scalars passed in registers should have signext/zeroext 9384 // when promoted, but are anyext if passed on the stack. As GPR usage is 9385 // different for variadic arguments, we must also track whether we are 9386 // examining a vararg or not. 9387 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9388 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 9389 int NumFixedArgs = FI.getNumRequiredArgs(); 9390 9391 int ArgNum = 0; 9392 for (auto &ArgInfo : FI.arguments()) { 9393 bool IsFixed = ArgNum < NumFixedArgs; 9394 ArgInfo.info = 9395 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 9396 ArgNum++; 9397 } 9398 } 9399 9400 // Returns true if the struct is a potential candidate for the floating point 9401 // calling convention. If this function returns true, the caller is 9402 // responsible for checking that if there is only a single field then that 9403 // field is a float. 9404 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9405 llvm::Type *&Field1Ty, 9406 CharUnits &Field1Off, 9407 llvm::Type *&Field2Ty, 9408 CharUnits &Field2Off) const { 9409 bool IsInt = Ty->isIntegralOrEnumerationType(); 9410 bool IsFloat = Ty->isRealFloatingType(); 9411 9412 if (IsInt || IsFloat) { 9413 uint64_t Size = getContext().getTypeSize(Ty); 9414 if (IsInt && Size > XLen) 9415 return false; 9416 // Can't be eligible if larger than the FP registers. Half precision isn't 9417 // currently supported on RISC-V and the ABI hasn't been confirmed, so 9418 // default to the integer ABI in that case. 9419 if (IsFloat && (Size > FLen || Size < 32)) 9420 return false; 9421 // Can't be eligible if an integer type was already found (int+int pairs 9422 // are not eligible). 9423 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 9424 return false; 9425 if (!Field1Ty) { 9426 Field1Ty = CGT.ConvertType(Ty); 9427 Field1Off = CurOff; 9428 return true; 9429 } 9430 if (!Field2Ty) { 9431 Field2Ty = CGT.ConvertType(Ty); 9432 Field2Off = CurOff; 9433 return true; 9434 } 9435 return false; 9436 } 9437 9438 if (auto CTy = Ty->getAs<ComplexType>()) { 9439 if (Field1Ty) 9440 return false; 9441 QualType EltTy = CTy->getElementType(); 9442 if (getContext().getTypeSize(EltTy) > FLen) 9443 return false; 9444 Field1Ty = CGT.ConvertType(EltTy); 9445 Field1Off = CurOff; 9446 assert(CurOff.isZero() && "Unexpected offset for first field"); 9447 Field2Ty = Field1Ty; 9448 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 9449 return true; 9450 } 9451 9452 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 9453 uint64_t ArraySize = ATy->getSize().getZExtValue(); 9454 QualType EltTy = ATy->getElementType(); 9455 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 9456 for (uint64_t i = 0; i < ArraySize; ++i) { 9457 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 9458 Field1Off, Field2Ty, Field2Off); 9459 if (!Ret) 9460 return false; 9461 CurOff += EltSize; 9462 } 9463 return true; 9464 } 9465 9466 if (const auto *RTy = Ty->getAs<RecordType>()) { 9467 // Structures with either a non-trivial destructor or a non-trivial 9468 // copy constructor are not eligible for the FP calling convention. 9469 if (getRecordArgABI(Ty, CGT.getCXXABI())) 9470 return false; 9471 if (isEmptyRecord(getContext(), Ty, true)) 9472 return true; 9473 const RecordDecl *RD = RTy->getDecl(); 9474 // Unions aren't eligible unless they're empty (which is caught above). 9475 if (RD->isUnion()) 9476 return false; 9477 int ZeroWidthBitFieldCount = 0; 9478 for (const FieldDecl *FD : RD->fields()) { 9479 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 9480 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 9481 QualType QTy = FD->getType(); 9482 if (FD->isBitField()) { 9483 unsigned BitWidth = FD->getBitWidthValue(getContext()); 9484 // Allow a bitfield with a type greater than XLen as long as the 9485 // bitwidth is XLen or less. 9486 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 9487 QTy = getContext().getIntTypeForBitwidth(XLen, false); 9488 if (BitWidth == 0) { 9489 ZeroWidthBitFieldCount++; 9490 continue; 9491 } 9492 } 9493 9494 bool Ret = detectFPCCEligibleStructHelper( 9495 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 9496 Field1Ty, Field1Off, Field2Ty, Field2Off); 9497 if (!Ret) 9498 return false; 9499 9500 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 9501 // or int+fp structs, but are ignored for a struct with an fp field and 9502 // any number of zero-width bitfields. 9503 if (Field2Ty && ZeroWidthBitFieldCount > 0) 9504 return false; 9505 } 9506 return Field1Ty != nullptr; 9507 } 9508 9509 return false; 9510 } 9511 9512 // Determine if a struct is eligible for passing according to the floating 9513 // point calling convention (i.e., when flattened it contains a single fp 9514 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 9515 // NeededArgGPRs are incremented appropriately. 9516 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9517 CharUnits &Field1Off, 9518 llvm::Type *&Field2Ty, 9519 CharUnits &Field2Off, 9520 int &NeededArgGPRs, 9521 int &NeededArgFPRs) const { 9522 Field1Ty = nullptr; 9523 Field2Ty = nullptr; 9524 NeededArgGPRs = 0; 9525 NeededArgFPRs = 0; 9526 bool IsCandidate = detectFPCCEligibleStructHelper( 9527 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 9528 // Not really a candidate if we have a single int but no float. 9529 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 9530 return false; 9531 if (!IsCandidate) 9532 return false; 9533 if (Field1Ty && Field1Ty->isFloatingPointTy()) 9534 NeededArgFPRs++; 9535 else if (Field1Ty) 9536 NeededArgGPRs++; 9537 if (Field2Ty && Field2Ty->isFloatingPointTy()) 9538 NeededArgFPRs++; 9539 else if (Field2Ty) 9540 NeededArgGPRs++; 9541 return IsCandidate; 9542 } 9543 9544 // Call getCoerceAndExpand for the two-element flattened struct described by 9545 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 9546 // appropriate coerceToType and unpaddedCoerceToType. 9547 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 9548 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 9549 CharUnits Field2Off) const { 9550 SmallVector<llvm::Type *, 3> CoerceElts; 9551 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 9552 if (!Field1Off.isZero()) 9553 CoerceElts.push_back(llvm::ArrayType::get( 9554 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 9555 9556 CoerceElts.push_back(Field1Ty); 9557 UnpaddedCoerceElts.push_back(Field1Ty); 9558 9559 if (!Field2Ty) { 9560 return ABIArgInfo::getCoerceAndExpand( 9561 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 9562 UnpaddedCoerceElts[0]); 9563 } 9564 9565 CharUnits Field2Align = 9566 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 9567 CharUnits Field1Size = 9568 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 9569 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 9570 9571 CharUnits Padding = CharUnits::Zero(); 9572 if (Field2Off > Field2OffNoPadNoPack) 9573 Padding = Field2Off - Field2OffNoPadNoPack; 9574 else if (Field2Off != Field2Align && Field2Off > Field1Size) 9575 Padding = Field2Off - Field1Size; 9576 9577 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 9578 9579 if (!Padding.isZero()) 9580 CoerceElts.push_back(llvm::ArrayType::get( 9581 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 9582 9583 CoerceElts.push_back(Field2Ty); 9584 UnpaddedCoerceElts.push_back(Field2Ty); 9585 9586 auto CoerceToType = 9587 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 9588 auto UnpaddedCoerceToType = 9589 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 9590 9591 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 9592 } 9593 9594 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9595 int &ArgGPRsLeft, 9596 int &ArgFPRsLeft) const { 9597 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9598 Ty = useFirstFieldIfTransparentUnion(Ty); 9599 9600 // Structures with either a non-trivial destructor or a non-trivial 9601 // copy constructor are always passed indirectly. 9602 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9603 if (ArgGPRsLeft) 9604 ArgGPRsLeft -= 1; 9605 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9606 CGCXXABI::RAA_DirectInMemory); 9607 } 9608 9609 // Ignore empty structs/unions. 9610 if (isEmptyRecord(getContext(), Ty, true)) 9611 return ABIArgInfo::getIgnore(); 9612 9613 uint64_t Size = getContext().getTypeSize(Ty); 9614 9615 // Pass floating point values via FPRs if possible. 9616 if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { 9617 ArgFPRsLeft--; 9618 return ABIArgInfo::getDirect(); 9619 } 9620 9621 // Complex types for the hard float ABI must be passed direct rather than 9622 // using CoerceAndExpand. 9623 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 9624 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 9625 if (getContext().getTypeSize(EltTy) <= FLen) { 9626 ArgFPRsLeft -= 2; 9627 return ABIArgInfo::getDirect(); 9628 } 9629 } 9630 9631 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 9632 llvm::Type *Field1Ty = nullptr; 9633 llvm::Type *Field2Ty = nullptr; 9634 CharUnits Field1Off = CharUnits::Zero(); 9635 CharUnits Field2Off = CharUnits::Zero(); 9636 int NeededArgGPRs; 9637 int NeededArgFPRs; 9638 bool IsCandidate = 9639 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 9640 NeededArgGPRs, NeededArgFPRs); 9641 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 9642 NeededArgFPRs <= ArgFPRsLeft) { 9643 ArgGPRsLeft -= NeededArgGPRs; 9644 ArgFPRsLeft -= NeededArgFPRs; 9645 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 9646 Field2Off); 9647 } 9648 } 9649 9650 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9651 bool MustUseStack = false; 9652 // Determine the number of GPRs needed to pass the current argument 9653 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9654 // register pairs, so may consume 3 registers. 9655 int NeededArgGPRs = 1; 9656 if (!IsFixed && NeededAlign == 2 * XLen) 9657 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9658 else if (Size > XLen && Size <= 2 * XLen) 9659 NeededArgGPRs = 2; 9660 9661 if (NeededArgGPRs > ArgGPRsLeft) { 9662 MustUseStack = true; 9663 NeededArgGPRs = ArgGPRsLeft; 9664 } 9665 9666 ArgGPRsLeft -= NeededArgGPRs; 9667 9668 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9669 // Treat an enum type as its underlying type. 9670 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9671 Ty = EnumTy->getDecl()->getIntegerType(); 9672 9673 // All integral types are promoted to XLen width, unless passed on the 9674 // stack. 9675 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9676 return extendType(Ty); 9677 } 9678 9679 return ABIArgInfo::getDirect(); 9680 } 9681 9682 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9683 // so coerce to integers. 9684 if (Size <= 2 * XLen) { 9685 unsigned Alignment = getContext().getTypeAlign(Ty); 9686 9687 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9688 // required, and a 2-element XLen array if only XLen alignment is required. 9689 if (Size <= XLen) { 9690 return ABIArgInfo::getDirect( 9691 llvm::IntegerType::get(getVMContext(), XLen)); 9692 } else if (Alignment == 2 * XLen) { 9693 return ABIArgInfo::getDirect( 9694 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9695 } else { 9696 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9697 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9698 } 9699 } 9700 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9701 } 9702 9703 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9704 if (RetTy->isVoidType()) 9705 return ABIArgInfo::getIgnore(); 9706 9707 int ArgGPRsLeft = 2; 9708 int ArgFPRsLeft = FLen ? 2 : 0; 9709 9710 // The rules for return and argument types are the same, so defer to 9711 // classifyArgumentType. 9712 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 9713 ArgFPRsLeft); 9714 } 9715 9716 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9717 QualType Ty) const { 9718 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9719 9720 // Empty records are ignored for parameter passing purposes. 9721 if (isEmptyRecord(getContext(), Ty, true)) { 9722 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9723 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9724 return Addr; 9725 } 9726 9727 std::pair<CharUnits, CharUnits> SizeAndAlign = 9728 getContext().getTypeInfoInChars(Ty); 9729 9730 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9731 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9732 9733 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9734 SlotSize, /*AllowHigherAlign=*/true); 9735 } 9736 9737 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9738 int TySize = getContext().getTypeSize(Ty); 9739 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9740 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9741 return ABIArgInfo::getSignExtend(Ty); 9742 return ABIArgInfo::getExtend(Ty); 9743 } 9744 9745 namespace { 9746 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9747 public: 9748 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 9749 unsigned FLen) 9750 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} 9751 9752 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9753 CodeGen::CodeGenModule &CGM) const override { 9754 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9755 if (!FD) return; 9756 9757 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9758 if (!Attr) 9759 return; 9760 9761 const char *Kind; 9762 switch (Attr->getInterrupt()) { 9763 case RISCVInterruptAttr::user: Kind = "user"; break; 9764 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9765 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9766 } 9767 9768 auto *Fn = cast<llvm::Function>(GV); 9769 9770 Fn->addFnAttr("interrupt", Kind); 9771 } 9772 }; 9773 } // namespace 9774 9775 //===----------------------------------------------------------------------===// 9776 // Driver code 9777 //===----------------------------------------------------------------------===// 9778 9779 bool CodeGenModule::supportsCOMDAT() const { 9780 return getTriple().supportsCOMDAT(); 9781 } 9782 9783 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9784 if (TheTargetCodeGenInfo) 9785 return *TheTargetCodeGenInfo; 9786 9787 // Helper to set the unique_ptr while still keeping the return value. 9788 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9789 this->TheTargetCodeGenInfo.reset(P); 9790 return *P; 9791 }; 9792 9793 const llvm::Triple &Triple = getTarget().getTriple(); 9794 switch (Triple.getArch()) { 9795 default: 9796 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9797 9798 case llvm::Triple::le32: 9799 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9800 case llvm::Triple::mips: 9801 case llvm::Triple::mipsel: 9802 if (Triple.getOS() == llvm::Triple::NaCl) 9803 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9804 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9805 9806 case llvm::Triple::mips64: 9807 case llvm::Triple::mips64el: 9808 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9809 9810 case llvm::Triple::avr: 9811 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9812 9813 case llvm::Triple::aarch64: 9814 case llvm::Triple::aarch64_32: 9815 case llvm::Triple::aarch64_be: { 9816 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9817 if (getTarget().getABI() == "darwinpcs") 9818 Kind = AArch64ABIInfo::DarwinPCS; 9819 else if (Triple.isOSWindows()) 9820 return SetCGInfo( 9821 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9822 9823 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9824 } 9825 9826 case llvm::Triple::wasm32: 9827 case llvm::Triple::wasm64: 9828 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9829 9830 case llvm::Triple::arm: 9831 case llvm::Triple::armeb: 9832 case llvm::Triple::thumb: 9833 case llvm::Triple::thumbeb: { 9834 if (Triple.getOS() == llvm::Triple::Win32) { 9835 return SetCGInfo( 9836 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9837 } 9838 9839 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9840 StringRef ABIStr = getTarget().getABI(); 9841 if (ABIStr == "apcs-gnu") 9842 Kind = ARMABIInfo::APCS; 9843 else if (ABIStr == "aapcs16") 9844 Kind = ARMABIInfo::AAPCS16_VFP; 9845 else if (CodeGenOpts.FloatABI == "hard" || 9846 (CodeGenOpts.FloatABI != "soft" && 9847 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9848 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9849 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9850 Kind = ARMABIInfo::AAPCS_VFP; 9851 9852 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9853 } 9854 9855 case llvm::Triple::ppc: 9856 return SetCGInfo( 9857 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" || 9858 getTarget().hasFeature("spe"))); 9859 case llvm::Triple::ppc64: 9860 if (Triple.isOSBinFormatELF()) { 9861 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9862 if (getTarget().getABI() == "elfv2") 9863 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9864 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9865 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9866 9867 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9868 IsSoftFloat)); 9869 } else 9870 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9871 case llvm::Triple::ppc64le: { 9872 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9873 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9874 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9875 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9876 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9877 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9878 9879 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9880 IsSoftFloat)); 9881 } 9882 9883 case llvm::Triple::nvptx: 9884 case llvm::Triple::nvptx64: 9885 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9886 9887 case llvm::Triple::msp430: 9888 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9889 9890 case llvm::Triple::riscv32: 9891 case llvm::Triple::riscv64: { 9892 StringRef ABIStr = getTarget().getABI(); 9893 unsigned XLen = getTarget().getPointerWidth(0); 9894 unsigned ABIFLen = 0; 9895 if (ABIStr.endswith("f")) 9896 ABIFLen = 32; 9897 else if (ABIStr.endswith("d")) 9898 ABIFLen = 64; 9899 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 9900 } 9901 9902 case llvm::Triple::systemz: { 9903 bool HasVector = getTarget().getABI() == "vector"; 9904 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9905 } 9906 9907 case llvm::Triple::tce: 9908 case llvm::Triple::tcele: 9909 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9910 9911 case llvm::Triple::x86: { 9912 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9913 bool RetSmallStructInRegABI = 9914 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9915 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9916 9917 if (Triple.getOS() == llvm::Triple::Win32) { 9918 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9919 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9920 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9921 } else { 9922 return SetCGInfo(new X86_32TargetCodeGenInfo( 9923 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9924 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9925 CodeGenOpts.FloatABI == "soft")); 9926 } 9927 } 9928 9929 case llvm::Triple::x86_64: { 9930 StringRef ABI = getTarget().getABI(); 9931 X86AVXABILevel AVXLevel = 9932 (ABI == "avx512" 9933 ? X86AVXABILevel::AVX512 9934 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9935 9936 switch (Triple.getOS()) { 9937 case llvm::Triple::Win32: 9938 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9939 default: 9940 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9941 } 9942 } 9943 case llvm::Triple::hexagon: 9944 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9945 case llvm::Triple::lanai: 9946 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9947 case llvm::Triple::r600: 9948 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9949 case llvm::Triple::amdgcn: 9950 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9951 case llvm::Triple::sparc: 9952 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9953 case llvm::Triple::sparcv9: 9954 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9955 case llvm::Triple::xcore: 9956 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9957 case llvm::Triple::arc: 9958 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9959 case llvm::Triple::spir: 9960 case llvm::Triple::spir64: 9961 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9962 } 9963 } 9964 9965 /// Create an OpenCL kernel for an enqueued block. 9966 /// 9967 /// The kernel has the same function type as the block invoke function. Its 9968 /// name is the name of the block invoke function postfixed with "_kernel". 9969 /// It simply calls the block invoke function then returns. 9970 llvm::Function * 9971 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9972 llvm::Function *Invoke, 9973 llvm::Value *BlockLiteral) const { 9974 auto *InvokeFT = Invoke->getFunctionType(); 9975 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9976 for (auto &P : InvokeFT->params()) 9977 ArgTys.push_back(P); 9978 auto &C = CGF.getLLVMContext(); 9979 std::string Name = Invoke->getName().str() + "_kernel"; 9980 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9981 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9982 &CGF.CGM.getModule()); 9983 auto IP = CGF.Builder.saveIP(); 9984 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9985 auto &Builder = CGF.Builder; 9986 Builder.SetInsertPoint(BB); 9987 llvm::SmallVector<llvm::Value *, 2> Args; 9988 for (auto &A : F->args()) 9989 Args.push_back(&A); 9990 Builder.CreateCall(Invoke, Args); 9991 Builder.CreateRetVoid(); 9992 Builder.restoreIP(IP); 9993 return F; 9994 } 9995 9996 /// Create an OpenCL kernel for an enqueued block. 9997 /// 9998 /// The type of the first argument (the block literal) is the struct type 9999 /// of the block literal instead of a pointer type. The first argument 10000 /// (block literal) is passed directly by value to the kernel. The kernel 10001 /// allocates the same type of struct on stack and stores the block literal 10002 /// to it and passes its pointer to the block invoke function. The kernel 10003 /// has "enqueued-block" function attribute and kernel argument metadata. 10004 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10005 CodeGenFunction &CGF, llvm::Function *Invoke, 10006 llvm::Value *BlockLiteral) const { 10007 auto &Builder = CGF.Builder; 10008 auto &C = CGF.getLLVMContext(); 10009 10010 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10011 auto *InvokeFT = Invoke->getFunctionType(); 10012 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10013 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10014 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10015 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10016 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10017 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10018 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10019 10020 ArgTys.push_back(BlockTy); 10021 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10022 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10023 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10024 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10025 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10026 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10027 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10028 ArgTys.push_back(InvokeFT->getParamType(I)); 10029 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10030 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10031 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10032 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10033 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10034 ArgNames.push_back( 10035 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10036 } 10037 std::string Name = Invoke->getName().str() + "_kernel"; 10038 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10039 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10040 &CGF.CGM.getModule()); 10041 F->addFnAttr("enqueued-block"); 10042 auto IP = CGF.Builder.saveIP(); 10043 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10044 Builder.SetInsertPoint(BB); 10045 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 10046 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10047 BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign)); 10048 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10049 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10050 llvm::SmallVector<llvm::Value *, 2> Args; 10051 Args.push_back(Cast); 10052 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10053 Args.push_back(I); 10054 Builder.CreateCall(Invoke, Args); 10055 Builder.CreateRetVoid(); 10056 Builder.restoreIP(IP); 10057 10058 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10059 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10060 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10061 F->setMetadata("kernel_arg_base_type", 10062 llvm::MDNode::get(C, ArgBaseTypeNames)); 10063 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10064 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10065 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10066 10067 return F; 10068 } 10069