xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/SwiftCallingConv.cpp (revision acb1f1269c6f4ff89a0d28ba742f6687e9ef779d)
1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the abstract lowering for the Swift calling convention.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/CodeGen/SwiftCallingConv.h"
14 #include "clang/Basic/TargetInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 
18 using namespace clang;
19 using namespace CodeGen;
20 using namespace swiftcall;
21 
22 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
23   return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
24 }
25 
26 static bool isPowerOf2(unsigned n) {
27   return n == (n & -n);
28 }
29 
30 /// Given two types with the same size, try to find a common type.
31 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
32   assert(first != second);
33 
34   // Allow pointers to merge with integers, but prefer the integer type.
35   if (first->isIntegerTy()) {
36     if (second->isPointerTy()) return first;
37   } else if (first->isPointerTy()) {
38     if (second->isIntegerTy()) return second;
39     if (second->isPointerTy()) return first;
40 
41   // Allow two vectors to be merged (given that they have the same size).
42   // This assumes that we never have two different vector register sets.
43   } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
44     if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
45       if (auto commonTy = getCommonType(firstVecTy->getElementType(),
46                                         secondVecTy->getElementType())) {
47         return (commonTy == firstVecTy->getElementType() ? first : second);
48       }
49     }
50   }
51 
52   return nullptr;
53 }
54 
55 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
56   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
57 }
58 
59 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
60   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
61 }
62 
63 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
64   // Deal with various aggregate types as special cases:
65 
66   // Record types.
67   if (auto recType = type->getAs<RecordType>()) {
68     addTypedData(recType->getDecl(), begin);
69 
70   // Array types.
71   } else if (type->isArrayType()) {
72     // Incomplete array types (flexible array members?) don't provide
73     // data to lay out, and the other cases shouldn't be possible.
74     auto arrayType = CGM.getContext().getAsConstantArrayType(type);
75     if (!arrayType) return;
76 
77     QualType eltType = arrayType->getElementType();
78     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
79     for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
80       addTypedData(eltType, begin + i * eltSize);
81     }
82 
83   // Complex types.
84   } else if (auto complexType = type->getAs<ComplexType>()) {
85     auto eltType = complexType->getElementType();
86     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
87     auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
88     addTypedData(eltLLVMType, begin, begin + eltSize);
89     addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
90 
91   // Member pointer types.
92   } else if (type->getAs<MemberPointerType>()) {
93     // Just add it all as opaque.
94     addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
95 
96     // Atomic types.
97   } else if (const auto *atomicType = type->getAs<AtomicType>()) {
98     auto valueType = atomicType->getValueType();
99     auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
100     auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
101 
102     addTypedData(atomicType->getValueType(), begin);
103 
104     // Add atomic padding.
105     auto atomicPadding = atomicSize - valueSize;
106     if (atomicPadding > CharUnits::Zero())
107       addOpaqueData(begin + valueSize, begin + atomicSize);
108 
109     // Everything else is scalar and should not convert as an LLVM aggregate.
110   } else {
111     // We intentionally convert as !ForMem because we want to preserve
112     // that a type was an i1.
113     auto *llvmType = CGM.getTypes().ConvertType(type);
114     addTypedData(llvmType, begin);
115   }
116 }
117 
118 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
119   addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
120 }
121 
122 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
123                                     const ASTRecordLayout &layout) {
124   // Unions are a special case.
125   if (record->isUnion()) {
126     for (auto field : record->fields()) {
127       if (field->isBitField()) {
128         addBitFieldData(field, begin, 0);
129       } else {
130         addTypedData(field->getType(), begin);
131       }
132     }
133     return;
134   }
135 
136   // Note that correctness does not rely on us adding things in
137   // their actual order of layout; it's just somewhat more efficient
138   // for the builder.
139 
140   // With that in mind, add "early" C++ data.
141   auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
142   if (cxxRecord) {
143     //   - a v-table pointer, if the class adds its own
144     if (layout.hasOwnVFPtr()) {
145       addTypedData(CGM.Int8PtrTy, begin);
146     }
147 
148     //   - non-virtual bases
149     for (auto &baseSpecifier : cxxRecord->bases()) {
150       if (baseSpecifier.isVirtual()) continue;
151 
152       auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
153       addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
154     }
155 
156     //   - a vbptr if the class adds its own
157     if (layout.hasOwnVBPtr()) {
158       addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
159     }
160   }
161 
162   // Add fields.
163   for (auto field : record->fields()) {
164     auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
165     if (field->isBitField()) {
166       addBitFieldData(field, begin, fieldOffsetInBits);
167     } else {
168       addTypedData(field->getType(),
169               begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
170     }
171   }
172 
173   // Add "late" C++ data:
174   if (cxxRecord) {
175     //   - virtual bases
176     for (auto &vbaseSpecifier : cxxRecord->vbases()) {
177       auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
178       addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
179     }
180   }
181 }
182 
183 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
184                                        CharUnits recordBegin,
185                                        uint64_t bitfieldBitBegin) {
186   assert(bitfield->isBitField());
187   auto &ctx = CGM.getContext();
188   auto width = bitfield->getBitWidthValue(ctx);
189 
190   // We can ignore zero-width bit-fields.
191   if (width == 0) return;
192 
193   // toCharUnitsFromBits rounds down.
194   CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
195 
196   // Find the offset of the last byte that is partially occupied by the
197   // bit-field; since we otherwise expect exclusive ends, the end is the
198   // next byte.
199   uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
200   CharUnits bitfieldByteEnd =
201     ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
202   addOpaqueData(recordBegin + bitfieldByteBegin,
203                 recordBegin + bitfieldByteEnd);
204 }
205 
206 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
207   assert(type && "didn't provide type for typed data");
208   addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
209 }
210 
211 void SwiftAggLowering::addTypedData(llvm::Type *type,
212                                     CharUnits begin, CharUnits end) {
213   assert(type && "didn't provide type for typed data");
214   assert(getTypeStoreSize(CGM, type) == end - begin);
215 
216   // Legalize vector types.
217   if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
218     SmallVector<llvm::Type*, 4> componentTys;
219     legalizeVectorType(CGM, end - begin, vecTy, componentTys);
220     assert(componentTys.size() >= 1);
221 
222     // Walk the initial components.
223     for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
224       llvm::Type *componentTy = componentTys[i];
225       auto componentSize = getTypeStoreSize(CGM, componentTy);
226       assert(componentSize < end - begin);
227       addLegalTypedData(componentTy, begin, begin + componentSize);
228       begin += componentSize;
229     }
230 
231     return addLegalTypedData(componentTys.back(), begin, end);
232   }
233 
234   // Legalize integer types.
235   if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
236     if (!isLegalIntegerType(CGM, intTy))
237       return addOpaqueData(begin, end);
238   }
239 
240   // All other types should be legal.
241   return addLegalTypedData(type, begin, end);
242 }
243 
244 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
245                                          CharUnits begin, CharUnits end) {
246   // Require the type to be naturally aligned.
247   if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
248 
249     // Try splitting vector types.
250     if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
251       auto split = splitLegalVectorType(CGM, end - begin, vecTy);
252       auto eltTy = split.first;
253       auto numElts = split.second;
254 
255       auto eltSize = (end - begin) / numElts;
256       assert(eltSize == getTypeStoreSize(CGM, eltTy));
257       for (size_t i = 0, e = numElts; i != e; ++i) {
258         addLegalTypedData(eltTy, begin, begin + eltSize);
259         begin += eltSize;
260       }
261       assert(begin == end);
262       return;
263     }
264 
265     return addOpaqueData(begin, end);
266   }
267 
268   addEntry(type, begin, end);
269 }
270 
271 void SwiftAggLowering::addEntry(llvm::Type *type,
272                                 CharUnits begin, CharUnits end) {
273   assert((!type ||
274           (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
275          "cannot add aggregate-typed data");
276   assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
277 
278   // Fast path: we can just add entries to the end.
279   if (Entries.empty() || Entries.back().End <= begin) {
280     Entries.push_back({begin, end, type});
281     return;
282   }
283 
284   // Find the first existing entry that ends after the start of the new data.
285   // TODO: do a binary search if Entries is big enough for it to matter.
286   size_t index = Entries.size() - 1;
287   while (index != 0) {
288     if (Entries[index - 1].End <= begin) break;
289     --index;
290   }
291 
292   // The entry ends after the start of the new data.
293   // If the entry starts after the end of the new data, there's no conflict.
294   if (Entries[index].Begin >= end) {
295     // This insertion is potentially O(n), but the way we generally build
296     // these layouts makes that unlikely to matter: we'd need a union of
297     // several very large types.
298     Entries.insert(Entries.begin() + index, {begin, end, type});
299     return;
300   }
301 
302   // Otherwise, the ranges overlap.  The new range might also overlap
303   // with later ranges.
304 restartAfterSplit:
305 
306   // Simplest case: an exact overlap.
307   if (Entries[index].Begin == begin && Entries[index].End == end) {
308     // If the types match exactly, great.
309     if (Entries[index].Type == type) return;
310 
311     // If either type is opaque, make the entry opaque and return.
312     if (Entries[index].Type == nullptr) {
313       return;
314     } else if (type == nullptr) {
315       Entries[index].Type = nullptr;
316       return;
317     }
318 
319     // If they disagree in an ABI-agnostic way, just resolve the conflict
320     // arbitrarily.
321     if (auto entryType = getCommonType(Entries[index].Type, type)) {
322       Entries[index].Type = entryType;
323       return;
324     }
325 
326     // Otherwise, make the entry opaque.
327     Entries[index].Type = nullptr;
328     return;
329   }
330 
331   // Okay, we have an overlapping conflict of some sort.
332 
333   // If we have a vector type, split it.
334   if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
335     auto eltTy = vecTy->getElementType();
336     CharUnits eltSize =
337         (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
338     assert(eltSize == getTypeStoreSize(CGM, eltTy));
339     for (unsigned i = 0,
340                   e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
341          i != e; ++i) {
342       addEntry(eltTy, begin, begin + eltSize);
343       begin += eltSize;
344     }
345     assert(begin == end);
346     return;
347   }
348 
349   // If the entry is a vector type, split it and try again.
350   if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
351     splitVectorEntry(index);
352     goto restartAfterSplit;
353   }
354 
355   // Okay, we have no choice but to make the existing entry opaque.
356 
357   Entries[index].Type = nullptr;
358 
359   // Stretch the start of the entry to the beginning of the range.
360   if (begin < Entries[index].Begin) {
361     Entries[index].Begin = begin;
362     assert(index == 0 || begin >= Entries[index - 1].End);
363   }
364 
365   // Stretch the end of the entry to the end of the range; but if we run
366   // into the start of the next entry, just leave the range there and repeat.
367   while (end > Entries[index].End) {
368     assert(Entries[index].Type == nullptr);
369 
370     // If the range doesn't overlap the next entry, we're done.
371     if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
372       Entries[index].End = end;
373       break;
374     }
375 
376     // Otherwise, stretch to the start of the next entry.
377     Entries[index].End = Entries[index + 1].Begin;
378 
379     // Continue with the next entry.
380     index++;
381 
382     // This entry needs to be made opaque if it is not already.
383     if (Entries[index].Type == nullptr)
384       continue;
385 
386     // Split vector entries unless we completely subsume them.
387     if (Entries[index].Type->isVectorTy() &&
388         end < Entries[index].End) {
389       splitVectorEntry(index);
390     }
391 
392     // Make the entry opaque.
393     Entries[index].Type = nullptr;
394   }
395 }
396 
397 /// Replace the entry of vector type at offset 'index' with a sequence
398 /// of its component vectors.
399 void SwiftAggLowering::splitVectorEntry(unsigned index) {
400   auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
401   auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
402 
403   auto eltTy = split.first;
404   CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
405   auto numElts = split.second;
406   Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
407 
408   CharUnits begin = Entries[index].Begin;
409   for (unsigned i = 0; i != numElts; ++i) {
410     Entries[index].Type = eltTy;
411     Entries[index].Begin = begin;
412     Entries[index].End = begin + eltSize;
413     begin += eltSize;
414   }
415 }
416 
417 /// Given a power-of-two unit size, return the offset of the aligned unit
418 /// of that size which contains the given offset.
419 ///
420 /// In other words, round down to the nearest multiple of the unit size.
421 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
422   assert(isPowerOf2(unitSize.getQuantity()));
423   auto unitMask = ~(unitSize.getQuantity() - 1);
424   return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
425 }
426 
427 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
428                                CharUnits chunkSize) {
429   return getOffsetAtStartOfUnit(first, chunkSize)
430       == getOffsetAtStartOfUnit(second, chunkSize);
431 }
432 
433 static bool isMergeableEntryType(llvm::Type *type) {
434   // Opaquely-typed memory is always mergeable.
435   if (type == nullptr) return true;
436 
437   // Pointers and integers are always mergeable.  In theory we should not
438   // merge pointers, but (1) it doesn't currently matter in practice because
439   // the chunk size is never greater than the size of a pointer and (2)
440   // Swift IRGen uses integer types for a lot of things that are "really"
441   // just storing pointers (like Optional<SomePointer>).  If we ever have a
442   // target that would otherwise combine pointers, we should put some effort
443   // into fixing those cases in Swift IRGen and then call out pointer types
444   // here.
445 
446   // Floating-point and vector types should never be merged.
447   // Most such types are too large and highly-aligned to ever trigger merging
448   // in practice, but it's important for the rule to cover at least 'half'
449   // and 'float', as well as things like small vectors of 'i1' or 'i8'.
450   return (!type->isFloatingPointTy() && !type->isVectorTy());
451 }
452 
453 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
454                                           const StorageEntry &second,
455                                           CharUnits chunkSize) {
456   // Only merge entries that overlap the same chunk.  We test this first
457   // despite being a bit more expensive because this is the condition that
458   // tends to prevent merging.
459   if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
460                           chunkSize))
461     return false;
462 
463   return (isMergeableEntryType(first.Type) &&
464           isMergeableEntryType(second.Type));
465 }
466 
467 void SwiftAggLowering::finish() {
468   if (Entries.empty()) {
469     Finished = true;
470     return;
471   }
472 
473   // We logically split the layout down into a series of chunks of this size,
474   // which is generally the size of a pointer.
475   const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
476 
477   // First pass: if two entries should be merged, make them both opaque
478   // and stretch one to meet the next.
479   // Also, remember if there are any opaque entries.
480   bool hasOpaqueEntries = (Entries[0].Type == nullptr);
481   for (size_t i = 1, e = Entries.size(); i != e; ++i) {
482     if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
483       Entries[i - 1].Type = nullptr;
484       Entries[i].Type = nullptr;
485       Entries[i - 1].End = Entries[i].Begin;
486       hasOpaqueEntries = true;
487 
488     } else if (Entries[i].Type == nullptr) {
489       hasOpaqueEntries = true;
490     }
491   }
492 
493   // The rest of the algorithm leaves non-opaque entries alone, so if we
494   // have no opaque entries, we're done.
495   if (!hasOpaqueEntries) {
496     Finished = true;
497     return;
498   }
499 
500   // Okay, move the entries to a temporary and rebuild Entries.
501   auto orig = std::move(Entries);
502   assert(Entries.empty());
503 
504   for (size_t i = 0, e = orig.size(); i != e; ++i) {
505     // Just copy over non-opaque entries.
506     if (orig[i].Type != nullptr) {
507       Entries.push_back(orig[i]);
508       continue;
509     }
510 
511     // Scan forward to determine the full extent of the next opaque range.
512     // We know from the first pass that only contiguous ranges will overlap
513     // the same aligned chunk.
514     auto begin = orig[i].Begin;
515     auto end = orig[i].End;
516     while (i + 1 != e &&
517            orig[i + 1].Type == nullptr &&
518            end == orig[i + 1].Begin) {
519       end = orig[i + 1].End;
520       i++;
521     }
522 
523     // Add an entry per intersected chunk.
524     do {
525       // Find the smallest aligned storage unit in the maximal aligned
526       // storage unit containing 'begin' that contains all the bytes in
527       // the intersection between the range and this chunk.
528       CharUnits localBegin = begin;
529       CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
530       CharUnits chunkEnd = chunkBegin + chunkSize;
531       CharUnits localEnd = std::min(end, chunkEnd);
532 
533       // Just do a simple loop over ever-increasing unit sizes.
534       CharUnits unitSize = CharUnits::One();
535       CharUnits unitBegin, unitEnd;
536       for (; ; unitSize *= 2) {
537         assert(unitSize <= chunkSize);
538         unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
539         unitEnd = unitBegin + unitSize;
540         if (unitEnd >= localEnd) break;
541       }
542 
543       // Add an entry for this unit.
544       auto entryTy =
545         llvm::IntegerType::get(CGM.getLLVMContext(),
546                                CGM.getContext().toBits(unitSize));
547       Entries.push_back({unitBegin, unitEnd, entryTy});
548 
549       // The next chunk starts where this chunk left off.
550       begin = localEnd;
551     } while (begin != end);
552   }
553 
554   // Okay, finally finished.
555   Finished = true;
556 }
557 
558 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
559   assert(Finished && "haven't yet finished lowering");
560 
561   for (auto &entry : Entries) {
562     callback(entry.Begin, entry.End, entry.Type);
563   }
564 }
565 
566 std::pair<llvm::StructType*, llvm::Type*>
567 SwiftAggLowering::getCoerceAndExpandTypes() const {
568   assert(Finished && "haven't yet finished lowering");
569 
570   auto &ctx = CGM.getLLVMContext();
571 
572   if (Entries.empty()) {
573     auto type = llvm::StructType::get(ctx);
574     return { type, type };
575   }
576 
577   SmallVector<llvm::Type*, 8> elts;
578   CharUnits lastEnd = CharUnits::Zero();
579   bool hasPadding = false;
580   bool packed = false;
581   for (auto &entry : Entries) {
582     if (entry.Begin != lastEnd) {
583       auto paddingSize = entry.Begin - lastEnd;
584       assert(!paddingSize.isNegative());
585 
586       auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
587                                           paddingSize.getQuantity());
588       elts.push_back(padding);
589       hasPadding = true;
590     }
591 
592     if (!packed && !entry.Begin.isMultipleOf(
593           CharUnits::fromQuantity(
594             CGM.getDataLayout().getABITypeAlignment(entry.Type))))
595       packed = true;
596 
597     elts.push_back(entry.Type);
598 
599     lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
600     assert(entry.End <= lastEnd);
601   }
602 
603   // We don't need to adjust 'packed' to deal with possible tail padding
604   // because we never do that kind of access through the coercion type.
605   auto coercionType = llvm::StructType::get(ctx, elts, packed);
606 
607   llvm::Type *unpaddedType = coercionType;
608   if (hasPadding) {
609     elts.clear();
610     for (auto &entry : Entries) {
611       elts.push_back(entry.Type);
612     }
613     if (elts.size() == 1) {
614       unpaddedType = elts[0];
615     } else {
616       unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
617     }
618   } else if (Entries.size() == 1) {
619     unpaddedType = Entries[0].Type;
620   }
621 
622   return { coercionType, unpaddedType };
623 }
624 
625 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
626   assert(Finished && "haven't yet finished lowering");
627 
628   // Empty types don't need to be passed indirectly.
629   if (Entries.empty()) return false;
630 
631   // Avoid copying the array of types when there's just a single element.
632   if (Entries.size() == 1) {
633     return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
634                                                            Entries.back().Type,
635                                                              asReturnValue);
636   }
637 
638   SmallVector<llvm::Type*, 8> componentTys;
639   componentTys.reserve(Entries.size());
640   for (auto &entry : Entries) {
641     componentTys.push_back(entry.Type);
642   }
643   return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
644                                                            asReturnValue);
645 }
646 
647 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
648                                      ArrayRef<llvm::Type*> componentTys,
649                                      bool asReturnValue) {
650   return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
651                                                            asReturnValue);
652 }
653 
654 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
655   // Currently always the size of an ordinary pointer.
656   return CGM.getContext().toCharUnitsFromBits(
657            CGM.getContext().getTargetInfo().getPointerWidth(0));
658 }
659 
660 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
661   // For Swift's purposes, this is always just the store size of the type
662   // rounded up to a power of 2.
663   auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
664   if (!isPowerOf2(size)) {
665     size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
666   }
667   assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
668   return CharUnits::fromQuantity(size);
669 }
670 
671 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
672                                    llvm::IntegerType *intTy) {
673   auto size = intTy->getBitWidth();
674   switch (size) {
675   case 1:
676   case 8:
677   case 16:
678   case 32:
679   case 64:
680     // Just assume that the above are always legal.
681     return true;
682 
683   case 128:
684     return CGM.getContext().getTargetInfo().hasInt128Type();
685 
686   default:
687     return false;
688   }
689 }
690 
691 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
692                                   llvm::VectorType *vectorTy) {
693   return isLegalVectorType(
694       CGM, vectorSize, vectorTy->getElementType(),
695       cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
696 }
697 
698 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
699                                   llvm::Type *eltTy, unsigned numElts) {
700   assert(numElts > 1 && "illegal vector length");
701   return getSwiftABIInfo(CGM)
702            .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
703 }
704 
705 std::pair<llvm::Type*, unsigned>
706 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
707                                 llvm::VectorType *vectorTy) {
708   auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
709   auto eltTy = vectorTy->getElementType();
710 
711   // Try to split the vector type in half.
712   if (numElts >= 4 && isPowerOf2(numElts)) {
713     if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
714       return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
715   }
716 
717   return {eltTy, numElts};
718 }
719 
720 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
721                                    llvm::VectorType *origVectorTy,
722                              llvm::SmallVectorImpl<llvm::Type*> &components) {
723   // If it's already a legal vector type, use it.
724   if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
725     components.push_back(origVectorTy);
726     return;
727   }
728 
729   // Try to split the vector into legal subvectors.
730   auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
731   auto eltTy = origVectorTy->getElementType();
732   assert(numElts != 1);
733 
734   // The largest size that we're still considering making subvectors of.
735   // Always a power of 2.
736   unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
737   unsigned candidateNumElts = 1U << logCandidateNumElts;
738   assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
739 
740   // Minor optimization: don't check the legality of this exact size twice.
741   if (candidateNumElts == numElts) {
742     logCandidateNumElts--;
743     candidateNumElts >>= 1;
744   }
745 
746   CharUnits eltSize = (origVectorSize / numElts);
747   CharUnits candidateSize = eltSize * candidateNumElts;
748 
749   // The sensibility of this algorithm relies on the fact that we never
750   // have a legal non-power-of-2 vector size without having the power of 2
751   // also be legal.
752   while (logCandidateNumElts > 0) {
753     assert(candidateNumElts == 1U << logCandidateNumElts);
754     assert(candidateNumElts <= numElts);
755     assert(candidateSize == eltSize * candidateNumElts);
756 
757     // Skip illegal vector sizes.
758     if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
759       logCandidateNumElts--;
760       candidateNumElts /= 2;
761       candidateSize /= 2;
762       continue;
763     }
764 
765     // Add the right number of vectors of this size.
766     auto numVecs = numElts >> logCandidateNumElts;
767     components.append(numVecs,
768                       llvm::FixedVectorType::get(eltTy, candidateNumElts));
769     numElts -= (numVecs << logCandidateNumElts);
770 
771     if (numElts == 0) return;
772 
773     // It's possible that the number of elements remaining will be legal.
774     // This can happen with e.g. <7 x float> when <3 x float> is legal.
775     // This only needs to be separately checked if it's not a power of 2.
776     if (numElts > 2 && !isPowerOf2(numElts) &&
777         isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
778       components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
779       return;
780     }
781 
782     // Bring vecSize down to something no larger than numElts.
783     do {
784       logCandidateNumElts--;
785       candidateNumElts /= 2;
786       candidateSize /= 2;
787     } while (candidateNumElts > numElts);
788   }
789 
790   // Otherwise, just append a bunch of individual elements.
791   components.append(numElts, eltTy);
792 }
793 
794 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
795                                          const RecordDecl *record) {
796   // FIXME: should we not rely on the standard computation in Sema, just in
797   // case we want to diverge from the platform ABI (e.g. on targets where
798   // that uses the MSVC rule)?
799   return !record->canPassInRegisters();
800 }
801 
802 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
803                                        bool forReturn,
804                                        CharUnits alignmentForIndirect) {
805   if (lowering.empty()) {
806     return ABIArgInfo::getIgnore();
807   } else if (lowering.shouldPassIndirectly(forReturn)) {
808     return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
809   } else {
810     auto types = lowering.getCoerceAndExpandTypes();
811     return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
812   }
813 }
814 
815 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
816                                bool forReturn) {
817   if (auto recordType = dyn_cast<RecordType>(type)) {
818     auto record = recordType->getDecl();
819     auto &layout = CGM.getContext().getASTRecordLayout(record);
820 
821     if (mustPassRecordIndirectly(CGM, record))
822       return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
823 
824     SwiftAggLowering lowering(CGM);
825     lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
826     lowering.finish();
827 
828     return classifyExpandedType(lowering, forReturn, layout.getAlignment());
829   }
830 
831   // Just assume that all of our target ABIs can support returning at least
832   // two integer or floating-point values.
833   if (isa<ComplexType>(type)) {
834     return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
835   }
836 
837   // Vector types may need to be legalized.
838   if (isa<VectorType>(type)) {
839     SwiftAggLowering lowering(CGM);
840     lowering.addTypedData(type, CharUnits::Zero());
841     lowering.finish();
842 
843     CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
844     return classifyExpandedType(lowering, forReturn, alignment);
845   }
846 
847   // Member pointer types need to be expanded, but it's a simple form of
848   // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
849   // true for this to work.
850 
851   // 'void' needs to be ignored.
852   if (type->isVoidType()) {
853     return ABIArgInfo::getIgnore();
854   }
855 
856   // Everything else can be passed directly.
857   return ABIArgInfo::getDirect();
858 }
859 
860 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
861   return classifyType(CGM, type, /*forReturn*/ true);
862 }
863 
864 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
865                                            CanQualType type) {
866   return classifyType(CGM, type, /*forReturn*/ false);
867 }
868 
869 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
870   auto &retInfo = FI.getReturnInfo();
871   retInfo = classifyReturnType(CGM, FI.getReturnType());
872 
873   for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
874     auto &argInfo = FI.arg_begin()[i];
875     argInfo.info = classifyArgumentType(CGM, argInfo.type);
876   }
877 }
878 
879 // Is swifterror lowered to a register by the target ABI.
880 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
881   return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
882 }
883