xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/SwiftCallingConv.cpp (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the abstract lowering for the Swift calling convention.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/CodeGen/SwiftCallingConv.h"
14 #include "ABIInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include <optional>
19 
20 using namespace clang;
21 using namespace CodeGen;
22 using namespace swiftcall;
23 
24 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
25   return CGM.getTargetCodeGenInfo().getSwiftABIInfo();
26 }
27 
28 static bool isPowerOf2(unsigned n) {
29   return n == (n & -n);
30 }
31 
32 /// Given two types with the same size, try to find a common type.
33 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
34   assert(first != second);
35 
36   // Allow pointers to merge with integers, but prefer the integer type.
37   if (first->isIntegerTy()) {
38     if (second->isPointerTy()) return first;
39   } else if (first->isPointerTy()) {
40     if (second->isIntegerTy()) return second;
41     if (second->isPointerTy()) return first;
42 
43   // Allow two vectors to be merged (given that they have the same size).
44   // This assumes that we never have two different vector register sets.
45   } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
46     if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
47       if (auto commonTy = getCommonType(firstVecTy->getElementType(),
48                                         secondVecTy->getElementType())) {
49         return (commonTy == firstVecTy->getElementType() ? first : second);
50       }
51     }
52   }
53 
54   return nullptr;
55 }
56 
57 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
58   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
59 }
60 
61 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
62   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
63 }
64 
65 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
66   // Deal with various aggregate types as special cases:
67 
68   // Record types.
69   if (auto recType = type->getAs<RecordType>()) {
70     addTypedData(recType->getDecl(), begin);
71 
72   // Array types.
73   } else if (type->isArrayType()) {
74     // Incomplete array types (flexible array members?) don't provide
75     // data to lay out, and the other cases shouldn't be possible.
76     auto arrayType = CGM.getContext().getAsConstantArrayType(type);
77     if (!arrayType) return;
78 
79     QualType eltType = arrayType->getElementType();
80     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
81     for (uint64_t i = 0, e = arrayType->getZExtSize(); i != e; ++i) {
82       addTypedData(eltType, begin + i * eltSize);
83     }
84 
85   // Complex types.
86   } else if (auto complexType = type->getAs<ComplexType>()) {
87     auto eltType = complexType->getElementType();
88     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
89     auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
90     addTypedData(eltLLVMType, begin, begin + eltSize);
91     addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
92 
93   // Member pointer types.
94   } else if (type->getAs<MemberPointerType>()) {
95     // Just add it all as opaque.
96     addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
97 
98     // Atomic types.
99   } else if (const auto *atomicType = type->getAs<AtomicType>()) {
100     auto valueType = atomicType->getValueType();
101     auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
102     auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
103 
104     addTypedData(atomicType->getValueType(), begin);
105 
106     // Add atomic padding.
107     auto atomicPadding = atomicSize - valueSize;
108     if (atomicPadding > CharUnits::Zero())
109       addOpaqueData(begin + valueSize, begin + atomicSize);
110 
111     // Everything else is scalar and should not convert as an LLVM aggregate.
112   } else {
113     // We intentionally convert as !ForMem because we want to preserve
114     // that a type was an i1.
115     auto *llvmType = CGM.getTypes().ConvertType(type);
116     addTypedData(llvmType, begin);
117   }
118 }
119 
120 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
121   addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
122 }
123 
124 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
125                                     const ASTRecordLayout &layout) {
126   // Unions are a special case.
127   if (record->isUnion()) {
128     for (auto *field : record->fields()) {
129       if (field->isBitField()) {
130         addBitFieldData(field, begin, 0);
131       } else {
132         addTypedData(field->getType(), begin);
133       }
134     }
135     return;
136   }
137 
138   // Note that correctness does not rely on us adding things in
139   // their actual order of layout; it's just somewhat more efficient
140   // for the builder.
141 
142   // With that in mind, add "early" C++ data.
143   auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
144   if (cxxRecord) {
145     //   - a v-table pointer, if the class adds its own
146     if (layout.hasOwnVFPtr()) {
147       addTypedData(CGM.Int8PtrTy, begin);
148     }
149 
150     //   - non-virtual bases
151     for (auto &baseSpecifier : cxxRecord->bases()) {
152       if (baseSpecifier.isVirtual()) continue;
153 
154       auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
155       addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
156     }
157 
158     //   - a vbptr if the class adds its own
159     if (layout.hasOwnVBPtr()) {
160       addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
161     }
162   }
163 
164   // Add fields.
165   for (auto *field : record->fields()) {
166     auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
167     if (field->isBitField()) {
168       addBitFieldData(field, begin, fieldOffsetInBits);
169     } else {
170       addTypedData(field->getType(),
171               begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
172     }
173   }
174 
175   // Add "late" C++ data:
176   if (cxxRecord) {
177     //   - virtual bases
178     for (auto &vbaseSpecifier : cxxRecord->vbases()) {
179       auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
180       addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
181     }
182   }
183 }
184 
185 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
186                                        CharUnits recordBegin,
187                                        uint64_t bitfieldBitBegin) {
188   assert(bitfield->isBitField());
189   auto &ctx = CGM.getContext();
190   auto width = bitfield->getBitWidthValue(ctx);
191 
192   // We can ignore zero-width bit-fields.
193   if (width == 0) return;
194 
195   // toCharUnitsFromBits rounds down.
196   CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
197 
198   // Find the offset of the last byte that is partially occupied by the
199   // bit-field; since we otherwise expect exclusive ends, the end is the
200   // next byte.
201   uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
202   CharUnits bitfieldByteEnd =
203     ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
204   addOpaqueData(recordBegin + bitfieldByteBegin,
205                 recordBegin + bitfieldByteEnd);
206 }
207 
208 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
209   assert(type && "didn't provide type for typed data");
210   addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
211 }
212 
213 void SwiftAggLowering::addTypedData(llvm::Type *type,
214                                     CharUnits begin, CharUnits end) {
215   assert(type && "didn't provide type for typed data");
216   assert(getTypeStoreSize(CGM, type) == end - begin);
217 
218   // Legalize vector types.
219   if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
220     SmallVector<llvm::Type*, 4> componentTys;
221     legalizeVectorType(CGM, end - begin, vecTy, componentTys);
222     assert(componentTys.size() >= 1);
223 
224     // Walk the initial components.
225     for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
226       llvm::Type *componentTy = componentTys[i];
227       auto componentSize = getTypeStoreSize(CGM, componentTy);
228       assert(componentSize < end - begin);
229       addLegalTypedData(componentTy, begin, begin + componentSize);
230       begin += componentSize;
231     }
232 
233     return addLegalTypedData(componentTys.back(), begin, end);
234   }
235 
236   // Legalize integer types.
237   if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
238     if (!isLegalIntegerType(CGM, intTy))
239       return addOpaqueData(begin, end);
240   }
241 
242   // All other types should be legal.
243   return addLegalTypedData(type, begin, end);
244 }
245 
246 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
247                                          CharUnits begin, CharUnits end) {
248   // Require the type to be naturally aligned.
249   if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
250 
251     // Try splitting vector types.
252     if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
253       auto split = splitLegalVectorType(CGM, end - begin, vecTy);
254       auto eltTy = split.first;
255       auto numElts = split.second;
256 
257       auto eltSize = (end - begin) / numElts;
258       assert(eltSize == getTypeStoreSize(CGM, eltTy));
259       for (size_t i = 0, e = numElts; i != e; ++i) {
260         addLegalTypedData(eltTy, begin, begin + eltSize);
261         begin += eltSize;
262       }
263       assert(begin == end);
264       return;
265     }
266 
267     return addOpaqueData(begin, end);
268   }
269 
270   addEntry(type, begin, end);
271 }
272 
273 void SwiftAggLowering::addEntry(llvm::Type *type,
274                                 CharUnits begin, CharUnits end) {
275   assert((!type ||
276           (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
277          "cannot add aggregate-typed data");
278   assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
279 
280   // Fast path: we can just add entries to the end.
281   if (Entries.empty() || Entries.back().End <= begin) {
282     Entries.push_back({begin, end, type});
283     return;
284   }
285 
286   // Find the first existing entry that ends after the start of the new data.
287   // TODO: do a binary search if Entries is big enough for it to matter.
288   size_t index = Entries.size() - 1;
289   while (index != 0) {
290     if (Entries[index - 1].End <= begin) break;
291     --index;
292   }
293 
294   // The entry ends after the start of the new data.
295   // If the entry starts after the end of the new data, there's no conflict.
296   if (Entries[index].Begin >= end) {
297     // This insertion is potentially O(n), but the way we generally build
298     // these layouts makes that unlikely to matter: we'd need a union of
299     // several very large types.
300     Entries.insert(Entries.begin() + index, {begin, end, type});
301     return;
302   }
303 
304   // Otherwise, the ranges overlap.  The new range might also overlap
305   // with later ranges.
306 restartAfterSplit:
307 
308   // Simplest case: an exact overlap.
309   if (Entries[index].Begin == begin && Entries[index].End == end) {
310     // If the types match exactly, great.
311     if (Entries[index].Type == type) return;
312 
313     // If either type is opaque, make the entry opaque and return.
314     if (Entries[index].Type == nullptr) {
315       return;
316     } else if (type == nullptr) {
317       Entries[index].Type = nullptr;
318       return;
319     }
320 
321     // If they disagree in an ABI-agnostic way, just resolve the conflict
322     // arbitrarily.
323     if (auto entryType = getCommonType(Entries[index].Type, type)) {
324       Entries[index].Type = entryType;
325       return;
326     }
327 
328     // Otherwise, make the entry opaque.
329     Entries[index].Type = nullptr;
330     return;
331   }
332 
333   // Okay, we have an overlapping conflict of some sort.
334 
335   // If we have a vector type, split it.
336   if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
337     auto eltTy = vecTy->getElementType();
338     CharUnits eltSize =
339         (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
340     assert(eltSize == getTypeStoreSize(CGM, eltTy));
341     for (unsigned i = 0,
342                   e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
343          i != e; ++i) {
344       addEntry(eltTy, begin, begin + eltSize);
345       begin += eltSize;
346     }
347     assert(begin == end);
348     return;
349   }
350 
351   // If the entry is a vector type, split it and try again.
352   if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
353     splitVectorEntry(index);
354     goto restartAfterSplit;
355   }
356 
357   // Okay, we have no choice but to make the existing entry opaque.
358 
359   Entries[index].Type = nullptr;
360 
361   // Stretch the start of the entry to the beginning of the range.
362   if (begin < Entries[index].Begin) {
363     Entries[index].Begin = begin;
364     assert(index == 0 || begin >= Entries[index - 1].End);
365   }
366 
367   // Stretch the end of the entry to the end of the range; but if we run
368   // into the start of the next entry, just leave the range there and repeat.
369   while (end > Entries[index].End) {
370     assert(Entries[index].Type == nullptr);
371 
372     // If the range doesn't overlap the next entry, we're done.
373     if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
374       Entries[index].End = end;
375       break;
376     }
377 
378     // Otherwise, stretch to the start of the next entry.
379     Entries[index].End = Entries[index + 1].Begin;
380 
381     // Continue with the next entry.
382     index++;
383 
384     // This entry needs to be made opaque if it is not already.
385     if (Entries[index].Type == nullptr)
386       continue;
387 
388     // Split vector entries unless we completely subsume them.
389     if (Entries[index].Type->isVectorTy() &&
390         end < Entries[index].End) {
391       splitVectorEntry(index);
392     }
393 
394     // Make the entry opaque.
395     Entries[index].Type = nullptr;
396   }
397 }
398 
399 /// Replace the entry of vector type at offset 'index' with a sequence
400 /// of its component vectors.
401 void SwiftAggLowering::splitVectorEntry(unsigned index) {
402   auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
403   auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
404 
405   auto eltTy = split.first;
406   CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
407   auto numElts = split.second;
408   Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
409 
410   CharUnits begin = Entries[index].Begin;
411   for (unsigned i = 0; i != numElts; ++i) {
412     unsigned idx = index + i;
413     Entries[idx].Type = eltTy;
414     Entries[idx].Begin = begin;
415     Entries[idx].End = begin + eltSize;
416     begin += eltSize;
417   }
418 }
419 
420 /// Given a power-of-two unit size, return the offset of the aligned unit
421 /// of that size which contains the given offset.
422 ///
423 /// In other words, round down to the nearest multiple of the unit size.
424 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
425   assert(isPowerOf2(unitSize.getQuantity()));
426   auto unitMask = ~(unitSize.getQuantity() - 1);
427   return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
428 }
429 
430 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
431                                CharUnits chunkSize) {
432   return getOffsetAtStartOfUnit(first, chunkSize)
433       == getOffsetAtStartOfUnit(second, chunkSize);
434 }
435 
436 static bool isMergeableEntryType(llvm::Type *type) {
437   // Opaquely-typed memory is always mergeable.
438   if (type == nullptr) return true;
439 
440   // Pointers and integers are always mergeable.  In theory we should not
441   // merge pointers, but (1) it doesn't currently matter in practice because
442   // the chunk size is never greater than the size of a pointer and (2)
443   // Swift IRGen uses integer types for a lot of things that are "really"
444   // just storing pointers (like std::optional<SomePointer>).  If we ever have a
445   // target that would otherwise combine pointers, we should put some effort
446   // into fixing those cases in Swift IRGen and then call out pointer types
447   // here.
448 
449   // Floating-point and vector types should never be merged.
450   // Most such types are too large and highly-aligned to ever trigger merging
451   // in practice, but it's important for the rule to cover at least 'half'
452   // and 'float', as well as things like small vectors of 'i1' or 'i8'.
453   return (!type->isFloatingPointTy() && !type->isVectorTy());
454 }
455 
456 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
457                                           const StorageEntry &second,
458                                           CharUnits chunkSize) {
459   // Only merge entries that overlap the same chunk.  We test this first
460   // despite being a bit more expensive because this is the condition that
461   // tends to prevent merging.
462   if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
463                           chunkSize))
464     return false;
465 
466   return (isMergeableEntryType(first.Type) &&
467           isMergeableEntryType(second.Type));
468 }
469 
470 void SwiftAggLowering::finish() {
471   if (Entries.empty()) {
472     Finished = true;
473     return;
474   }
475 
476   // We logically split the layout down into a series of chunks of this size,
477   // which is generally the size of a pointer.
478   const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
479 
480   // First pass: if two entries should be merged, make them both opaque
481   // and stretch one to meet the next.
482   // Also, remember if there are any opaque entries.
483   bool hasOpaqueEntries = (Entries[0].Type == nullptr);
484   for (size_t i = 1, e = Entries.size(); i != e; ++i) {
485     if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
486       Entries[i - 1].Type = nullptr;
487       Entries[i].Type = nullptr;
488       Entries[i - 1].End = Entries[i].Begin;
489       hasOpaqueEntries = true;
490 
491     } else if (Entries[i].Type == nullptr) {
492       hasOpaqueEntries = true;
493     }
494   }
495 
496   // The rest of the algorithm leaves non-opaque entries alone, so if we
497   // have no opaque entries, we're done.
498   if (!hasOpaqueEntries) {
499     Finished = true;
500     return;
501   }
502 
503   // Okay, move the entries to a temporary and rebuild Entries.
504   auto orig = std::move(Entries);
505   assert(Entries.empty());
506 
507   for (size_t i = 0, e = orig.size(); i != e; ++i) {
508     // Just copy over non-opaque entries.
509     if (orig[i].Type != nullptr) {
510       Entries.push_back(orig[i]);
511       continue;
512     }
513 
514     // Scan forward to determine the full extent of the next opaque range.
515     // We know from the first pass that only contiguous ranges will overlap
516     // the same aligned chunk.
517     auto begin = orig[i].Begin;
518     auto end = orig[i].End;
519     while (i + 1 != e &&
520            orig[i + 1].Type == nullptr &&
521            end == orig[i + 1].Begin) {
522       end = orig[i + 1].End;
523       i++;
524     }
525 
526     // Add an entry per intersected chunk.
527     do {
528       // Find the smallest aligned storage unit in the maximal aligned
529       // storage unit containing 'begin' that contains all the bytes in
530       // the intersection between the range and this chunk.
531       CharUnits localBegin = begin;
532       CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
533       CharUnits chunkEnd = chunkBegin + chunkSize;
534       CharUnits localEnd = std::min(end, chunkEnd);
535 
536       // Just do a simple loop over ever-increasing unit sizes.
537       CharUnits unitSize = CharUnits::One();
538       CharUnits unitBegin, unitEnd;
539       for (; ; unitSize *= 2) {
540         assert(unitSize <= chunkSize);
541         unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
542         unitEnd = unitBegin + unitSize;
543         if (unitEnd >= localEnd) break;
544       }
545 
546       // Add an entry for this unit.
547       auto entryTy =
548         llvm::IntegerType::get(CGM.getLLVMContext(),
549                                CGM.getContext().toBits(unitSize));
550       Entries.push_back({unitBegin, unitEnd, entryTy});
551 
552       // The next chunk starts where this chunk left off.
553       begin = localEnd;
554     } while (begin != end);
555   }
556 
557   // Okay, finally finished.
558   Finished = true;
559 }
560 
561 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
562   assert(Finished && "haven't yet finished lowering");
563 
564   for (auto &entry : Entries) {
565     callback(entry.Begin, entry.End, entry.Type);
566   }
567 }
568 
569 std::pair<llvm::StructType*, llvm::Type*>
570 SwiftAggLowering::getCoerceAndExpandTypes() const {
571   assert(Finished && "haven't yet finished lowering");
572 
573   auto &ctx = CGM.getLLVMContext();
574 
575   if (Entries.empty()) {
576     auto type = llvm::StructType::get(ctx);
577     return { type, type };
578   }
579 
580   SmallVector<llvm::Type*, 8> elts;
581   CharUnits lastEnd = CharUnits::Zero();
582   bool hasPadding = false;
583   bool packed = false;
584   for (auto &entry : Entries) {
585     if (entry.Begin != lastEnd) {
586       auto paddingSize = entry.Begin - lastEnd;
587       assert(!paddingSize.isNegative());
588 
589       auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
590                                           paddingSize.getQuantity());
591       elts.push_back(padding);
592       hasPadding = true;
593     }
594 
595     if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity(
596                        CGM.getDataLayout().getABITypeAlign(entry.Type))))
597       packed = true;
598 
599     elts.push_back(entry.Type);
600 
601     lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
602     assert(entry.End <= lastEnd);
603   }
604 
605   // We don't need to adjust 'packed' to deal with possible tail padding
606   // because we never do that kind of access through the coercion type.
607   auto coercionType = llvm::StructType::get(ctx, elts, packed);
608 
609   llvm::Type *unpaddedType = coercionType;
610   if (hasPadding) {
611     elts.clear();
612     for (auto &entry : Entries) {
613       elts.push_back(entry.Type);
614     }
615     if (elts.size() == 1) {
616       unpaddedType = elts[0];
617     } else {
618       unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
619     }
620   } else if (Entries.size() == 1) {
621     unpaddedType = Entries[0].Type;
622   }
623 
624   return { coercionType, unpaddedType };
625 }
626 
627 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
628   assert(Finished && "haven't yet finished lowering");
629 
630   // Empty types don't need to be passed indirectly.
631   if (Entries.empty()) return false;
632 
633   // Avoid copying the array of types when there's just a single element.
634   if (Entries.size() == 1) {
635     return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type,
636                                                      asReturnValue);
637   }
638 
639   SmallVector<llvm::Type*, 8> componentTys;
640   componentTys.reserve(Entries.size());
641   for (auto &entry : Entries) {
642     componentTys.push_back(entry.Type);
643   }
644   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
645 }
646 
647 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
648                                      ArrayRef<llvm::Type*> componentTys,
649                                      bool asReturnValue) {
650   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
651 }
652 
653 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
654   // Currently always the size of an ordinary pointer.
655   return CGM.getContext().toCharUnitsFromBits(
656       CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default));
657 }
658 
659 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
660   // For Swift's purposes, this is always just the store size of the type
661   // rounded up to a power of 2.
662   auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
663   size = llvm::bit_ceil(size);
664   assert(CGM.getDataLayout().getABITypeAlign(type) <= size);
665   return CharUnits::fromQuantity(size);
666 }
667 
668 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
669                                    llvm::IntegerType *intTy) {
670   auto size = intTy->getBitWidth();
671   switch (size) {
672   case 1:
673   case 8:
674   case 16:
675   case 32:
676   case 64:
677     // Just assume that the above are always legal.
678     return true;
679 
680   case 128:
681     return CGM.getContext().getTargetInfo().hasInt128Type();
682 
683   default:
684     return false;
685   }
686 }
687 
688 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
689                                   llvm::VectorType *vectorTy) {
690   return isLegalVectorType(
691       CGM, vectorSize, vectorTy->getElementType(),
692       cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
693 }
694 
695 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
696                                   llvm::Type *eltTy, unsigned numElts) {
697   assert(numElts > 1 && "illegal vector length");
698   return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts);
699 }
700 
701 std::pair<llvm::Type*, unsigned>
702 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
703                                 llvm::VectorType *vectorTy) {
704   auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
705   auto eltTy = vectorTy->getElementType();
706 
707   // Try to split the vector type in half.
708   if (numElts >= 4 && isPowerOf2(numElts)) {
709     if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
710       return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
711   }
712 
713   return {eltTy, numElts};
714 }
715 
716 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
717                                    llvm::VectorType *origVectorTy,
718                              llvm::SmallVectorImpl<llvm::Type*> &components) {
719   // If it's already a legal vector type, use it.
720   if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
721     components.push_back(origVectorTy);
722     return;
723   }
724 
725   // Try to split the vector into legal subvectors.
726   auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
727   auto eltTy = origVectorTy->getElementType();
728   assert(numElts != 1);
729 
730   // The largest size that we're still considering making subvectors of.
731   // Always a power of 2.
732   unsigned logCandidateNumElts = llvm::Log2_32(numElts);
733   unsigned candidateNumElts = 1U << logCandidateNumElts;
734   assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
735 
736   // Minor optimization: don't check the legality of this exact size twice.
737   if (candidateNumElts == numElts) {
738     logCandidateNumElts--;
739     candidateNumElts >>= 1;
740   }
741 
742   CharUnits eltSize = (origVectorSize / numElts);
743   CharUnits candidateSize = eltSize * candidateNumElts;
744 
745   // The sensibility of this algorithm relies on the fact that we never
746   // have a legal non-power-of-2 vector size without having the power of 2
747   // also be legal.
748   while (logCandidateNumElts > 0) {
749     assert(candidateNumElts == 1U << logCandidateNumElts);
750     assert(candidateNumElts <= numElts);
751     assert(candidateSize == eltSize * candidateNumElts);
752 
753     // Skip illegal vector sizes.
754     if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
755       logCandidateNumElts--;
756       candidateNumElts /= 2;
757       candidateSize /= 2;
758       continue;
759     }
760 
761     // Add the right number of vectors of this size.
762     auto numVecs = numElts >> logCandidateNumElts;
763     components.append(numVecs,
764                       llvm::FixedVectorType::get(eltTy, candidateNumElts));
765     numElts -= (numVecs << logCandidateNumElts);
766 
767     if (numElts == 0) return;
768 
769     // It's possible that the number of elements remaining will be legal.
770     // This can happen with e.g. <7 x float> when <3 x float> is legal.
771     // This only needs to be separately checked if it's not a power of 2.
772     if (numElts > 2 && !isPowerOf2(numElts) &&
773         isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
774       components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
775       return;
776     }
777 
778     // Bring vecSize down to something no larger than numElts.
779     do {
780       logCandidateNumElts--;
781       candidateNumElts /= 2;
782       candidateSize /= 2;
783     } while (candidateNumElts > numElts);
784   }
785 
786   // Otherwise, just append a bunch of individual elements.
787   components.append(numElts, eltTy);
788 }
789 
790 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
791                                          const RecordDecl *record) {
792   // FIXME: should we not rely on the standard computation in Sema, just in
793   // case we want to diverge from the platform ABI (e.g. on targets where
794   // that uses the MSVC rule)?
795   return !record->canPassInRegisters();
796 }
797 
798 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
799                                        bool forReturn,
800                                        CharUnits alignmentForIndirect) {
801   if (lowering.empty()) {
802     return ABIArgInfo::getIgnore();
803   } else if (lowering.shouldPassIndirectly(forReturn)) {
804     return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
805   } else {
806     auto types = lowering.getCoerceAndExpandTypes();
807     return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
808   }
809 }
810 
811 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
812                                bool forReturn) {
813   if (auto recordType = dyn_cast<RecordType>(type)) {
814     auto record = recordType->getDecl();
815     auto &layout = CGM.getContext().getASTRecordLayout(record);
816 
817     if (mustPassRecordIndirectly(CGM, record))
818       return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
819 
820     SwiftAggLowering lowering(CGM);
821     lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
822     lowering.finish();
823 
824     return classifyExpandedType(lowering, forReturn, layout.getAlignment());
825   }
826 
827   // Just assume that all of our target ABIs can support returning at least
828   // two integer or floating-point values.
829   if (isa<ComplexType>(type)) {
830     return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
831   }
832 
833   // Vector types may need to be legalized.
834   if (isa<VectorType>(type)) {
835     SwiftAggLowering lowering(CGM);
836     lowering.addTypedData(type, CharUnits::Zero());
837     lowering.finish();
838 
839     CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
840     return classifyExpandedType(lowering, forReturn, alignment);
841   }
842 
843   // Member pointer types need to be expanded, but it's a simple form of
844   // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
845   // true for this to work.
846 
847   // 'void' needs to be ignored.
848   if (type->isVoidType()) {
849     return ABIArgInfo::getIgnore();
850   }
851 
852   // Everything else can be passed directly.
853   return ABIArgInfo::getDirect();
854 }
855 
856 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
857   return classifyType(CGM, type, /*forReturn*/ true);
858 }
859 
860 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
861                                            CanQualType type) {
862   return classifyType(CGM, type, /*forReturn*/ false);
863 }
864 
865 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
866   auto &retInfo = FI.getReturnInfo();
867   retInfo = classifyReturnType(CGM, FI.getReturnType());
868 
869   for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
870     auto &argInfo = FI.arg_begin()[i];
871     argInfo.info = classifyArgumentType(CGM, argInfo.type);
872   }
873 }
874 
875 // Is swifterror lowered to a register by the target ABI.
876 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
877   return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
878 }
879