1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of the abstract lowering for the Swift calling convention. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/CodeGen/SwiftCallingConv.h" 14 #include "ABIInfo.h" 15 #include "CodeGenModule.h" 16 #include "TargetInfo.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include <optional> 19 20 using namespace clang; 21 using namespace CodeGen; 22 using namespace swiftcall; 23 24 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { 25 return CGM.getTargetCodeGenInfo().getSwiftABIInfo(); 26 } 27 28 static bool isPowerOf2(unsigned n) { 29 return n == (n & -n); 30 } 31 32 /// Given two types with the same size, try to find a common type. 33 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { 34 assert(first != second); 35 36 // Allow pointers to merge with integers, but prefer the integer type. 37 if (first->isIntegerTy()) { 38 if (second->isPointerTy()) return first; 39 } else if (first->isPointerTy()) { 40 if (second->isIntegerTy()) return second; 41 if (second->isPointerTy()) return first; 42 43 // Allow two vectors to be merged (given that they have the same size). 44 // This assumes that we never have two different vector register sets. 45 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { 46 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { 47 if (auto commonTy = getCommonType(firstVecTy->getElementType(), 48 secondVecTy->getElementType())) { 49 return (commonTy == firstVecTy->getElementType() ? first : second); 50 } 51 } 52 } 53 54 return nullptr; 55 } 56 57 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { 58 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); 59 } 60 61 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) { 62 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type)); 63 } 64 65 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { 66 // Deal with various aggregate types as special cases: 67 68 // Record types. 69 if (auto recType = type->getAs<RecordType>()) { 70 addTypedData(recType->getDecl(), begin); 71 72 // Array types. 73 } else if (type->isArrayType()) { 74 // Incomplete array types (flexible array members?) don't provide 75 // data to lay out, and the other cases shouldn't be possible. 76 auto arrayType = CGM.getContext().getAsConstantArrayType(type); 77 if (!arrayType) return; 78 79 QualType eltType = arrayType->getElementType(); 80 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 81 for (uint64_t i = 0, e = arrayType->getZExtSize(); i != e; ++i) { 82 addTypedData(eltType, begin + i * eltSize); 83 } 84 85 // Complex types. 86 } else if (auto complexType = type->getAs<ComplexType>()) { 87 auto eltType = complexType->getElementType(); 88 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 89 auto eltLLVMType = CGM.getTypes().ConvertType(eltType); 90 addTypedData(eltLLVMType, begin, begin + eltSize); 91 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); 92 93 // Member pointer types. 94 } else if (type->getAs<MemberPointerType>()) { 95 // Just add it all as opaque. 96 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); 97 98 // Atomic types. 99 } else if (const auto *atomicType = type->getAs<AtomicType>()) { 100 auto valueType = atomicType->getValueType(); 101 auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType); 102 auto valueSize = CGM.getContext().getTypeSizeInChars(valueType); 103 104 addTypedData(atomicType->getValueType(), begin); 105 106 // Add atomic padding. 107 auto atomicPadding = atomicSize - valueSize; 108 if (atomicPadding > CharUnits::Zero()) 109 addOpaqueData(begin + valueSize, begin + atomicSize); 110 111 // Everything else is scalar and should not convert as an LLVM aggregate. 112 } else { 113 // We intentionally convert as !ForMem because we want to preserve 114 // that a type was an i1. 115 auto *llvmType = CGM.getTypes().ConvertType(type); 116 addTypedData(llvmType, begin); 117 } 118 } 119 120 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { 121 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); 122 } 123 124 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, 125 const ASTRecordLayout &layout) { 126 // Unions are a special case. 127 if (record->isUnion()) { 128 for (auto *field : record->fields()) { 129 if (field->isBitField()) { 130 addBitFieldData(field, begin, 0); 131 } else { 132 addTypedData(field->getType(), begin); 133 } 134 } 135 return; 136 } 137 138 // Note that correctness does not rely on us adding things in 139 // their actual order of layout; it's just somewhat more efficient 140 // for the builder. 141 142 // With that in mind, add "early" C++ data. 143 auto cxxRecord = dyn_cast<CXXRecordDecl>(record); 144 if (cxxRecord) { 145 // - a v-table pointer, if the class adds its own 146 if (layout.hasOwnVFPtr()) { 147 addTypedData(CGM.Int8PtrTy, begin); 148 } 149 150 // - non-virtual bases 151 for (auto &baseSpecifier : cxxRecord->bases()) { 152 if (baseSpecifier.isVirtual()) continue; 153 154 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); 155 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); 156 } 157 158 // - a vbptr if the class adds its own 159 if (layout.hasOwnVBPtr()) { 160 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); 161 } 162 } 163 164 // Add fields. 165 for (auto *field : record->fields()) { 166 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); 167 if (field->isBitField()) { 168 addBitFieldData(field, begin, fieldOffsetInBits); 169 } else { 170 addTypedData(field->getType(), 171 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); 172 } 173 } 174 175 // Add "late" C++ data: 176 if (cxxRecord) { 177 // - virtual bases 178 for (auto &vbaseSpecifier : cxxRecord->vbases()) { 179 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); 180 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); 181 } 182 } 183 } 184 185 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, 186 CharUnits recordBegin, 187 uint64_t bitfieldBitBegin) { 188 assert(bitfield->isBitField()); 189 auto &ctx = CGM.getContext(); 190 auto width = bitfield->getBitWidthValue(ctx); 191 192 // We can ignore zero-width bit-fields. 193 if (width == 0) return; 194 195 // toCharUnitsFromBits rounds down. 196 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); 197 198 // Find the offset of the last byte that is partially occupied by the 199 // bit-field; since we otherwise expect exclusive ends, the end is the 200 // next byte. 201 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; 202 CharUnits bitfieldByteEnd = 203 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); 204 addOpaqueData(recordBegin + bitfieldByteBegin, 205 recordBegin + bitfieldByteEnd); 206 } 207 208 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { 209 assert(type && "didn't provide type for typed data"); 210 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); 211 } 212 213 void SwiftAggLowering::addTypedData(llvm::Type *type, 214 CharUnits begin, CharUnits end) { 215 assert(type && "didn't provide type for typed data"); 216 assert(getTypeStoreSize(CGM, type) == end - begin); 217 218 // Legalize vector types. 219 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 220 SmallVector<llvm::Type*, 4> componentTys; 221 legalizeVectorType(CGM, end - begin, vecTy, componentTys); 222 assert(componentTys.size() >= 1); 223 224 // Walk the initial components. 225 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { 226 llvm::Type *componentTy = componentTys[i]; 227 auto componentSize = getTypeStoreSize(CGM, componentTy); 228 assert(componentSize < end - begin); 229 addLegalTypedData(componentTy, begin, begin + componentSize); 230 begin += componentSize; 231 } 232 233 return addLegalTypedData(componentTys.back(), begin, end); 234 } 235 236 // Legalize integer types. 237 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 238 if (!isLegalIntegerType(CGM, intTy)) 239 return addOpaqueData(begin, end); 240 } 241 242 // All other types should be legal. 243 return addLegalTypedData(type, begin, end); 244 } 245 246 void SwiftAggLowering::addLegalTypedData(llvm::Type *type, 247 CharUnits begin, CharUnits end) { 248 // Require the type to be naturally aligned. 249 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { 250 251 // Try splitting vector types. 252 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 253 auto split = splitLegalVectorType(CGM, end - begin, vecTy); 254 auto eltTy = split.first; 255 auto numElts = split.second; 256 257 auto eltSize = (end - begin) / numElts; 258 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 259 for (size_t i = 0, e = numElts; i != e; ++i) { 260 addLegalTypedData(eltTy, begin, begin + eltSize); 261 begin += eltSize; 262 } 263 assert(begin == end); 264 return; 265 } 266 267 return addOpaqueData(begin, end); 268 } 269 270 addEntry(type, begin, end); 271 } 272 273 void SwiftAggLowering::addEntry(llvm::Type *type, 274 CharUnits begin, CharUnits end) { 275 assert((!type || 276 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && 277 "cannot add aggregate-typed data"); 278 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); 279 280 // Fast path: we can just add entries to the end. 281 if (Entries.empty() || Entries.back().End <= begin) { 282 Entries.push_back({begin, end, type}); 283 return; 284 } 285 286 // Find the first existing entry that ends after the start of the new data. 287 // TODO: do a binary search if Entries is big enough for it to matter. 288 size_t index = Entries.size() - 1; 289 while (index != 0) { 290 if (Entries[index - 1].End <= begin) break; 291 --index; 292 } 293 294 // The entry ends after the start of the new data. 295 // If the entry starts after the end of the new data, there's no conflict. 296 if (Entries[index].Begin >= end) { 297 // This insertion is potentially O(n), but the way we generally build 298 // these layouts makes that unlikely to matter: we'd need a union of 299 // several very large types. 300 Entries.insert(Entries.begin() + index, {begin, end, type}); 301 return; 302 } 303 304 // Otherwise, the ranges overlap. The new range might also overlap 305 // with later ranges. 306 restartAfterSplit: 307 308 // Simplest case: an exact overlap. 309 if (Entries[index].Begin == begin && Entries[index].End == end) { 310 // If the types match exactly, great. 311 if (Entries[index].Type == type) return; 312 313 // If either type is opaque, make the entry opaque and return. 314 if (Entries[index].Type == nullptr) { 315 return; 316 } else if (type == nullptr) { 317 Entries[index].Type = nullptr; 318 return; 319 } 320 321 // If they disagree in an ABI-agnostic way, just resolve the conflict 322 // arbitrarily. 323 if (auto entryType = getCommonType(Entries[index].Type, type)) { 324 Entries[index].Type = entryType; 325 return; 326 } 327 328 // Otherwise, make the entry opaque. 329 Entries[index].Type = nullptr; 330 return; 331 } 332 333 // Okay, we have an overlapping conflict of some sort. 334 335 // If we have a vector type, split it. 336 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { 337 auto eltTy = vecTy->getElementType(); 338 CharUnits eltSize = 339 (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements(); 340 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 341 for (unsigned i = 0, 342 e = cast<llvm::FixedVectorType>(vecTy)->getNumElements(); 343 i != e; ++i) { 344 addEntry(eltTy, begin, begin + eltSize); 345 begin += eltSize; 346 } 347 assert(begin == end); 348 return; 349 } 350 351 // If the entry is a vector type, split it and try again. 352 if (Entries[index].Type && Entries[index].Type->isVectorTy()) { 353 splitVectorEntry(index); 354 goto restartAfterSplit; 355 } 356 357 // Okay, we have no choice but to make the existing entry opaque. 358 359 Entries[index].Type = nullptr; 360 361 // Stretch the start of the entry to the beginning of the range. 362 if (begin < Entries[index].Begin) { 363 Entries[index].Begin = begin; 364 assert(index == 0 || begin >= Entries[index - 1].End); 365 } 366 367 // Stretch the end of the entry to the end of the range; but if we run 368 // into the start of the next entry, just leave the range there and repeat. 369 while (end > Entries[index].End) { 370 assert(Entries[index].Type == nullptr); 371 372 // If the range doesn't overlap the next entry, we're done. 373 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { 374 Entries[index].End = end; 375 break; 376 } 377 378 // Otherwise, stretch to the start of the next entry. 379 Entries[index].End = Entries[index + 1].Begin; 380 381 // Continue with the next entry. 382 index++; 383 384 // This entry needs to be made opaque if it is not already. 385 if (Entries[index].Type == nullptr) 386 continue; 387 388 // Split vector entries unless we completely subsume them. 389 if (Entries[index].Type->isVectorTy() && 390 end < Entries[index].End) { 391 splitVectorEntry(index); 392 } 393 394 // Make the entry opaque. 395 Entries[index].Type = nullptr; 396 } 397 } 398 399 /// Replace the entry of vector type at offset 'index' with a sequence 400 /// of its component vectors. 401 void SwiftAggLowering::splitVectorEntry(unsigned index) { 402 auto vecTy = cast<llvm::VectorType>(Entries[index].Type); 403 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); 404 405 auto eltTy = split.first; 406 CharUnits eltSize = getTypeStoreSize(CGM, eltTy); 407 auto numElts = split.second; 408 Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry()); 409 410 CharUnits begin = Entries[index].Begin; 411 for (unsigned i = 0; i != numElts; ++i) { 412 unsigned idx = index + i; 413 Entries[idx].Type = eltTy; 414 Entries[idx].Begin = begin; 415 Entries[idx].End = begin + eltSize; 416 begin += eltSize; 417 } 418 } 419 420 /// Given a power-of-two unit size, return the offset of the aligned unit 421 /// of that size which contains the given offset. 422 /// 423 /// In other words, round down to the nearest multiple of the unit size. 424 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { 425 assert(isPowerOf2(unitSize.getQuantity())); 426 auto unitMask = ~(unitSize.getQuantity() - 1); 427 return CharUnits::fromQuantity(offset.getQuantity() & unitMask); 428 } 429 430 static bool areBytesInSameUnit(CharUnits first, CharUnits second, 431 CharUnits chunkSize) { 432 return getOffsetAtStartOfUnit(first, chunkSize) 433 == getOffsetAtStartOfUnit(second, chunkSize); 434 } 435 436 static bool isMergeableEntryType(llvm::Type *type) { 437 // Opaquely-typed memory is always mergeable. 438 if (type == nullptr) return true; 439 440 // Pointers and integers are always mergeable. In theory we should not 441 // merge pointers, but (1) it doesn't currently matter in practice because 442 // the chunk size is never greater than the size of a pointer and (2) 443 // Swift IRGen uses integer types for a lot of things that are "really" 444 // just storing pointers (like std::optional<SomePointer>). If we ever have a 445 // target that would otherwise combine pointers, we should put some effort 446 // into fixing those cases in Swift IRGen and then call out pointer types 447 // here. 448 449 // Floating-point and vector types should never be merged. 450 // Most such types are too large and highly-aligned to ever trigger merging 451 // in practice, but it's important for the rule to cover at least 'half' 452 // and 'float', as well as things like small vectors of 'i1' or 'i8'. 453 return (!type->isFloatingPointTy() && !type->isVectorTy()); 454 } 455 456 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first, 457 const StorageEntry &second, 458 CharUnits chunkSize) { 459 // Only merge entries that overlap the same chunk. We test this first 460 // despite being a bit more expensive because this is the condition that 461 // tends to prevent merging. 462 if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin, 463 chunkSize)) 464 return false; 465 466 return (isMergeableEntryType(first.Type) && 467 isMergeableEntryType(second.Type)); 468 } 469 470 void SwiftAggLowering::finish() { 471 if (Entries.empty()) { 472 Finished = true; 473 return; 474 } 475 476 // We logically split the layout down into a series of chunks of this size, 477 // which is generally the size of a pointer. 478 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); 479 480 // First pass: if two entries should be merged, make them both opaque 481 // and stretch one to meet the next. 482 // Also, remember if there are any opaque entries. 483 bool hasOpaqueEntries = (Entries[0].Type == nullptr); 484 for (size_t i = 1, e = Entries.size(); i != e; ++i) { 485 if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) { 486 Entries[i - 1].Type = nullptr; 487 Entries[i].Type = nullptr; 488 Entries[i - 1].End = Entries[i].Begin; 489 hasOpaqueEntries = true; 490 491 } else if (Entries[i].Type == nullptr) { 492 hasOpaqueEntries = true; 493 } 494 } 495 496 // The rest of the algorithm leaves non-opaque entries alone, so if we 497 // have no opaque entries, we're done. 498 if (!hasOpaqueEntries) { 499 Finished = true; 500 return; 501 } 502 503 // Okay, move the entries to a temporary and rebuild Entries. 504 auto orig = std::move(Entries); 505 assert(Entries.empty()); 506 507 for (size_t i = 0, e = orig.size(); i != e; ++i) { 508 // Just copy over non-opaque entries. 509 if (orig[i].Type != nullptr) { 510 Entries.push_back(orig[i]); 511 continue; 512 } 513 514 // Scan forward to determine the full extent of the next opaque range. 515 // We know from the first pass that only contiguous ranges will overlap 516 // the same aligned chunk. 517 auto begin = orig[i].Begin; 518 auto end = orig[i].End; 519 while (i + 1 != e && 520 orig[i + 1].Type == nullptr && 521 end == orig[i + 1].Begin) { 522 end = orig[i + 1].End; 523 i++; 524 } 525 526 // Add an entry per intersected chunk. 527 do { 528 // Find the smallest aligned storage unit in the maximal aligned 529 // storage unit containing 'begin' that contains all the bytes in 530 // the intersection between the range and this chunk. 531 CharUnits localBegin = begin; 532 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); 533 CharUnits chunkEnd = chunkBegin + chunkSize; 534 CharUnits localEnd = std::min(end, chunkEnd); 535 536 // Just do a simple loop over ever-increasing unit sizes. 537 CharUnits unitSize = CharUnits::One(); 538 CharUnits unitBegin, unitEnd; 539 for (; ; unitSize *= 2) { 540 assert(unitSize <= chunkSize); 541 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); 542 unitEnd = unitBegin + unitSize; 543 if (unitEnd >= localEnd) break; 544 } 545 546 // Add an entry for this unit. 547 auto entryTy = 548 llvm::IntegerType::get(CGM.getLLVMContext(), 549 CGM.getContext().toBits(unitSize)); 550 Entries.push_back({unitBegin, unitEnd, entryTy}); 551 552 // The next chunk starts where this chunk left off. 553 begin = localEnd; 554 } while (begin != end); 555 } 556 557 // Okay, finally finished. 558 Finished = true; 559 } 560 561 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { 562 assert(Finished && "haven't yet finished lowering"); 563 564 for (auto &entry : Entries) { 565 callback(entry.Begin, entry.End, entry.Type); 566 } 567 } 568 569 std::pair<llvm::StructType*, llvm::Type*> 570 SwiftAggLowering::getCoerceAndExpandTypes() const { 571 assert(Finished && "haven't yet finished lowering"); 572 573 auto &ctx = CGM.getLLVMContext(); 574 575 if (Entries.empty()) { 576 auto type = llvm::StructType::get(ctx); 577 return { type, type }; 578 } 579 580 SmallVector<llvm::Type*, 8> elts; 581 CharUnits lastEnd = CharUnits::Zero(); 582 bool hasPadding = false; 583 bool packed = false; 584 for (auto &entry : Entries) { 585 if (entry.Begin != lastEnd) { 586 auto paddingSize = entry.Begin - lastEnd; 587 assert(!paddingSize.isNegative()); 588 589 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), 590 paddingSize.getQuantity()); 591 elts.push_back(padding); 592 hasPadding = true; 593 } 594 595 if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity( 596 CGM.getDataLayout().getABITypeAlign(entry.Type)))) 597 packed = true; 598 599 elts.push_back(entry.Type); 600 601 lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type); 602 assert(entry.End <= lastEnd); 603 } 604 605 // We don't need to adjust 'packed' to deal with possible tail padding 606 // because we never do that kind of access through the coercion type. 607 auto coercionType = llvm::StructType::get(ctx, elts, packed); 608 609 llvm::Type *unpaddedType = coercionType; 610 if (hasPadding) { 611 elts.clear(); 612 for (auto &entry : Entries) { 613 elts.push_back(entry.Type); 614 } 615 if (elts.size() == 1) { 616 unpaddedType = elts[0]; 617 } else { 618 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); 619 } 620 } else if (Entries.size() == 1) { 621 unpaddedType = Entries[0].Type; 622 } 623 624 return { coercionType, unpaddedType }; 625 } 626 627 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { 628 assert(Finished && "haven't yet finished lowering"); 629 630 // Empty types don't need to be passed indirectly. 631 if (Entries.empty()) return false; 632 633 // Avoid copying the array of types when there's just a single element. 634 if (Entries.size() == 1) { 635 return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type, 636 asReturnValue); 637 } 638 639 SmallVector<llvm::Type*, 8> componentTys; 640 componentTys.reserve(Entries.size()); 641 for (auto &entry : Entries) { 642 componentTys.push_back(entry.Type); 643 } 644 return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue); 645 } 646 647 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM, 648 ArrayRef<llvm::Type*> componentTys, 649 bool asReturnValue) { 650 return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue); 651 } 652 653 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { 654 // Currently always the size of an ordinary pointer. 655 return CGM.getContext().toCharUnitsFromBits( 656 CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default)); 657 } 658 659 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { 660 // For Swift's purposes, this is always just the store size of the type 661 // rounded up to a power of 2. 662 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); 663 size = llvm::bit_ceil(size); 664 assert(CGM.getDataLayout().getABITypeAlign(type) <= size); 665 return CharUnits::fromQuantity(size); 666 } 667 668 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, 669 llvm::IntegerType *intTy) { 670 auto size = intTy->getBitWidth(); 671 switch (size) { 672 case 1: 673 case 8: 674 case 16: 675 case 32: 676 case 64: 677 // Just assume that the above are always legal. 678 return true; 679 680 case 128: 681 return CGM.getContext().getTargetInfo().hasInt128Type(); 682 683 default: 684 return false; 685 } 686 } 687 688 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 689 llvm::VectorType *vectorTy) { 690 return isLegalVectorType( 691 CGM, vectorSize, vectorTy->getElementType(), 692 cast<llvm::FixedVectorType>(vectorTy)->getNumElements()); 693 } 694 695 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 696 llvm::Type *eltTy, unsigned numElts) { 697 assert(numElts > 1 && "illegal vector length"); 698 return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts); 699 } 700 701 std::pair<llvm::Type*, unsigned> 702 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 703 llvm::VectorType *vectorTy) { 704 auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements(); 705 auto eltTy = vectorTy->getElementType(); 706 707 // Try to split the vector type in half. 708 if (numElts >= 4 && isPowerOf2(numElts)) { 709 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) 710 return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2}; 711 } 712 713 return {eltTy, numElts}; 714 } 715 716 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, 717 llvm::VectorType *origVectorTy, 718 llvm::SmallVectorImpl<llvm::Type*> &components) { 719 // If it's already a legal vector type, use it. 720 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { 721 components.push_back(origVectorTy); 722 return; 723 } 724 725 // Try to split the vector into legal subvectors. 726 auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements(); 727 auto eltTy = origVectorTy->getElementType(); 728 assert(numElts != 1); 729 730 // The largest size that we're still considering making subvectors of. 731 // Always a power of 2. 732 unsigned logCandidateNumElts = llvm::Log2_32(numElts); 733 unsigned candidateNumElts = 1U << logCandidateNumElts; 734 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); 735 736 // Minor optimization: don't check the legality of this exact size twice. 737 if (candidateNumElts == numElts) { 738 logCandidateNumElts--; 739 candidateNumElts >>= 1; 740 } 741 742 CharUnits eltSize = (origVectorSize / numElts); 743 CharUnits candidateSize = eltSize * candidateNumElts; 744 745 // The sensibility of this algorithm relies on the fact that we never 746 // have a legal non-power-of-2 vector size without having the power of 2 747 // also be legal. 748 while (logCandidateNumElts > 0) { 749 assert(candidateNumElts == 1U << logCandidateNumElts); 750 assert(candidateNumElts <= numElts); 751 assert(candidateSize == eltSize * candidateNumElts); 752 753 // Skip illegal vector sizes. 754 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { 755 logCandidateNumElts--; 756 candidateNumElts /= 2; 757 candidateSize /= 2; 758 continue; 759 } 760 761 // Add the right number of vectors of this size. 762 auto numVecs = numElts >> logCandidateNumElts; 763 components.append(numVecs, 764 llvm::FixedVectorType::get(eltTy, candidateNumElts)); 765 numElts -= (numVecs << logCandidateNumElts); 766 767 if (numElts == 0) return; 768 769 // It's possible that the number of elements remaining will be legal. 770 // This can happen with e.g. <7 x float> when <3 x float> is legal. 771 // This only needs to be separately checked if it's not a power of 2. 772 if (numElts > 2 && !isPowerOf2(numElts) && 773 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { 774 components.push_back(llvm::FixedVectorType::get(eltTy, numElts)); 775 return; 776 } 777 778 // Bring vecSize down to something no larger than numElts. 779 do { 780 logCandidateNumElts--; 781 candidateNumElts /= 2; 782 candidateSize /= 2; 783 } while (candidateNumElts > numElts); 784 } 785 786 // Otherwise, just append a bunch of individual elements. 787 components.append(numElts, eltTy); 788 } 789 790 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM, 791 const RecordDecl *record) { 792 // FIXME: should we not rely on the standard computation in Sema, just in 793 // case we want to diverge from the platform ABI (e.g. on targets where 794 // that uses the MSVC rule)? 795 return !record->canPassInRegisters(); 796 } 797 798 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, 799 bool forReturn, 800 CharUnits alignmentForIndirect) { 801 if (lowering.empty()) { 802 return ABIArgInfo::getIgnore(); 803 } else if (lowering.shouldPassIndirectly(forReturn)) { 804 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false); 805 } else { 806 auto types = lowering.getCoerceAndExpandTypes(); 807 return ABIArgInfo::getCoerceAndExpand(types.first, types.second); 808 } 809 } 810 811 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, 812 bool forReturn) { 813 if (auto recordType = dyn_cast<RecordType>(type)) { 814 auto record = recordType->getDecl(); 815 auto &layout = CGM.getContext().getASTRecordLayout(record); 816 817 if (mustPassRecordIndirectly(CGM, record)) 818 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false); 819 820 SwiftAggLowering lowering(CGM); 821 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); 822 lowering.finish(); 823 824 return classifyExpandedType(lowering, forReturn, layout.getAlignment()); 825 } 826 827 // Just assume that all of our target ABIs can support returning at least 828 // two integer or floating-point values. 829 if (isa<ComplexType>(type)) { 830 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); 831 } 832 833 // Vector types may need to be legalized. 834 if (isa<VectorType>(type)) { 835 SwiftAggLowering lowering(CGM); 836 lowering.addTypedData(type, CharUnits::Zero()); 837 lowering.finish(); 838 839 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); 840 return classifyExpandedType(lowering, forReturn, alignment); 841 } 842 843 // Member pointer types need to be expanded, but it's a simple form of 844 // expansion that 'Direct' can handle. Note that CanBeFlattened should be 845 // true for this to work. 846 847 // 'void' needs to be ignored. 848 if (type->isVoidType()) { 849 return ABIArgInfo::getIgnore(); 850 } 851 852 // Everything else can be passed directly. 853 return ABIArgInfo::getDirect(); 854 } 855 856 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { 857 return classifyType(CGM, type, /*forReturn*/ true); 858 } 859 860 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, 861 CanQualType type) { 862 return classifyType(CGM, type, /*forReturn*/ false); 863 } 864 865 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 866 auto &retInfo = FI.getReturnInfo(); 867 retInfo = classifyReturnType(CGM, FI.getReturnType()); 868 869 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { 870 auto &argInfo = FI.arg_begin()[i]; 871 argInfo.info = classifyArgumentType(CGM, argInfo.type); 872 } 873 } 874 875 // Is swifterror lowered to a register by the target ABI. 876 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) { 877 return getSwiftABIInfo(CGM).isSwiftErrorInRegister(); 878 } 879