xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/SwiftCallingConv.cpp (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the abstract lowering for the Swift calling convention.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/CodeGen/SwiftCallingConv.h"
14 #include "ABIInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include <optional>
19 
20 using namespace clang;
21 using namespace CodeGen;
22 using namespace swiftcall;
23 
24 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
25   return CGM.getTargetCodeGenInfo().getSwiftABIInfo();
26 }
27 
28 static bool isPowerOf2(unsigned n) {
29   return n == (n & -n);
30 }
31 
32 /// Given two types with the same size, try to find a common type.
33 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
34   assert(first != second);
35 
36   // Allow pointers to merge with integers, but prefer the integer type.
37   if (first->isIntegerTy()) {
38     if (second->isPointerTy()) return first;
39   } else if (first->isPointerTy()) {
40     if (second->isIntegerTy()) return second;
41     if (second->isPointerTy()) return first;
42 
43   // Allow two vectors to be merged (given that they have the same size).
44   // This assumes that we never have two different vector register sets.
45   } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
46     if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
47       if (auto commonTy = getCommonType(firstVecTy->getElementType(),
48                                         secondVecTy->getElementType())) {
49         return (commonTy == firstVecTy->getElementType() ? first : second);
50       }
51     }
52   }
53 
54   return nullptr;
55 }
56 
57 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
58   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
59 }
60 
61 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
62   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
63 }
64 
65 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
66   // Deal with various aggregate types as special cases:
67 
68   // Record types.
69   if (auto recType = type->getAs<RecordType>()) {
70     addTypedData(recType->getDecl(), begin);
71 
72   // Array types.
73   } else if (type->isArrayType()) {
74     // Incomplete array types (flexible array members?) don't provide
75     // data to lay out, and the other cases shouldn't be possible.
76     auto arrayType = CGM.getContext().getAsConstantArrayType(type);
77     if (!arrayType) return;
78 
79     QualType eltType = arrayType->getElementType();
80     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
81     for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
82       addTypedData(eltType, begin + i * eltSize);
83     }
84 
85   // Complex types.
86   } else if (auto complexType = type->getAs<ComplexType>()) {
87     auto eltType = complexType->getElementType();
88     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
89     auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
90     addTypedData(eltLLVMType, begin, begin + eltSize);
91     addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
92 
93   // Member pointer types.
94   } else if (type->getAs<MemberPointerType>()) {
95     // Just add it all as opaque.
96     addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
97 
98     // Atomic types.
99   } else if (const auto *atomicType = type->getAs<AtomicType>()) {
100     auto valueType = atomicType->getValueType();
101     auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
102     auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
103 
104     addTypedData(atomicType->getValueType(), begin);
105 
106     // Add atomic padding.
107     auto atomicPadding = atomicSize - valueSize;
108     if (atomicPadding > CharUnits::Zero())
109       addOpaqueData(begin + valueSize, begin + atomicSize);
110 
111     // Everything else is scalar and should not convert as an LLVM aggregate.
112   } else {
113     // We intentionally convert as !ForMem because we want to preserve
114     // that a type was an i1.
115     auto *llvmType = CGM.getTypes().ConvertType(type);
116     addTypedData(llvmType, begin);
117   }
118 }
119 
120 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
121   addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
122 }
123 
124 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
125                                     const ASTRecordLayout &layout) {
126   // Unions are a special case.
127   if (record->isUnion()) {
128     for (auto *field : record->fields()) {
129       if (field->isBitField()) {
130         addBitFieldData(field, begin, 0);
131       } else {
132         addTypedData(field->getType(), begin);
133       }
134     }
135     return;
136   }
137 
138   // Note that correctness does not rely on us adding things in
139   // their actual order of layout; it's just somewhat more efficient
140   // for the builder.
141 
142   // With that in mind, add "early" C++ data.
143   auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
144   if (cxxRecord) {
145     //   - a v-table pointer, if the class adds its own
146     if (layout.hasOwnVFPtr()) {
147       addTypedData(CGM.Int8PtrTy, begin);
148     }
149 
150     //   - non-virtual bases
151     for (auto &baseSpecifier : cxxRecord->bases()) {
152       if (baseSpecifier.isVirtual()) continue;
153 
154       auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
155       addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
156     }
157 
158     //   - a vbptr if the class adds its own
159     if (layout.hasOwnVBPtr()) {
160       addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
161     }
162   }
163 
164   // Add fields.
165   for (auto *field : record->fields()) {
166     auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
167     if (field->isBitField()) {
168       addBitFieldData(field, begin, fieldOffsetInBits);
169     } else {
170       addTypedData(field->getType(),
171               begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
172     }
173   }
174 
175   // Add "late" C++ data:
176   if (cxxRecord) {
177     //   - virtual bases
178     for (auto &vbaseSpecifier : cxxRecord->vbases()) {
179       auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
180       addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
181     }
182   }
183 }
184 
185 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
186                                        CharUnits recordBegin,
187                                        uint64_t bitfieldBitBegin) {
188   assert(bitfield->isBitField());
189   auto &ctx = CGM.getContext();
190   auto width = bitfield->getBitWidthValue(ctx);
191 
192   // We can ignore zero-width bit-fields.
193   if (width == 0) return;
194 
195   // toCharUnitsFromBits rounds down.
196   CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
197 
198   // Find the offset of the last byte that is partially occupied by the
199   // bit-field; since we otherwise expect exclusive ends, the end is the
200   // next byte.
201   uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
202   CharUnits bitfieldByteEnd =
203     ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
204   addOpaqueData(recordBegin + bitfieldByteBegin,
205                 recordBegin + bitfieldByteEnd);
206 }
207 
208 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
209   assert(type && "didn't provide type for typed data");
210   addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
211 }
212 
213 void SwiftAggLowering::addTypedData(llvm::Type *type,
214                                     CharUnits begin, CharUnits end) {
215   assert(type && "didn't provide type for typed data");
216   assert(getTypeStoreSize(CGM, type) == end - begin);
217 
218   // Legalize vector types.
219   if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
220     SmallVector<llvm::Type*, 4> componentTys;
221     legalizeVectorType(CGM, end - begin, vecTy, componentTys);
222     assert(componentTys.size() >= 1);
223 
224     // Walk the initial components.
225     for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
226       llvm::Type *componentTy = componentTys[i];
227       auto componentSize = getTypeStoreSize(CGM, componentTy);
228       assert(componentSize < end - begin);
229       addLegalTypedData(componentTy, begin, begin + componentSize);
230       begin += componentSize;
231     }
232 
233     return addLegalTypedData(componentTys.back(), begin, end);
234   }
235 
236   // Legalize integer types.
237   if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
238     if (!isLegalIntegerType(CGM, intTy))
239       return addOpaqueData(begin, end);
240   }
241 
242   // All other types should be legal.
243   return addLegalTypedData(type, begin, end);
244 }
245 
246 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
247                                          CharUnits begin, CharUnits end) {
248   // Require the type to be naturally aligned.
249   if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
250 
251     // Try splitting vector types.
252     if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
253       auto split = splitLegalVectorType(CGM, end - begin, vecTy);
254       auto eltTy = split.first;
255       auto numElts = split.second;
256 
257       auto eltSize = (end - begin) / numElts;
258       assert(eltSize == getTypeStoreSize(CGM, eltTy));
259       for (size_t i = 0, e = numElts; i != e; ++i) {
260         addLegalTypedData(eltTy, begin, begin + eltSize);
261         begin += eltSize;
262       }
263       assert(begin == end);
264       return;
265     }
266 
267     return addOpaqueData(begin, end);
268   }
269 
270   addEntry(type, begin, end);
271 }
272 
273 void SwiftAggLowering::addEntry(llvm::Type *type,
274                                 CharUnits begin, CharUnits end) {
275   assert((!type ||
276           (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
277          "cannot add aggregate-typed data");
278   assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
279 
280   // Fast path: we can just add entries to the end.
281   if (Entries.empty() || Entries.back().End <= begin) {
282     Entries.push_back({begin, end, type});
283     return;
284   }
285 
286   // Find the first existing entry that ends after the start of the new data.
287   // TODO: do a binary search if Entries is big enough for it to matter.
288   size_t index = Entries.size() - 1;
289   while (index != 0) {
290     if (Entries[index - 1].End <= begin) break;
291     --index;
292   }
293 
294   // The entry ends after the start of the new data.
295   // If the entry starts after the end of the new data, there's no conflict.
296   if (Entries[index].Begin >= end) {
297     // This insertion is potentially O(n), but the way we generally build
298     // these layouts makes that unlikely to matter: we'd need a union of
299     // several very large types.
300     Entries.insert(Entries.begin() + index, {begin, end, type});
301     return;
302   }
303 
304   // Otherwise, the ranges overlap.  The new range might also overlap
305   // with later ranges.
306 restartAfterSplit:
307 
308   // Simplest case: an exact overlap.
309   if (Entries[index].Begin == begin && Entries[index].End == end) {
310     // If the types match exactly, great.
311     if (Entries[index].Type == type) return;
312 
313     // If either type is opaque, make the entry opaque and return.
314     if (Entries[index].Type == nullptr) {
315       return;
316     } else if (type == nullptr) {
317       Entries[index].Type = nullptr;
318       return;
319     }
320 
321     // If they disagree in an ABI-agnostic way, just resolve the conflict
322     // arbitrarily.
323     if (auto entryType = getCommonType(Entries[index].Type, type)) {
324       Entries[index].Type = entryType;
325       return;
326     }
327 
328     // Otherwise, make the entry opaque.
329     Entries[index].Type = nullptr;
330     return;
331   }
332 
333   // Okay, we have an overlapping conflict of some sort.
334 
335   // If we have a vector type, split it.
336   if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
337     auto eltTy = vecTy->getElementType();
338     CharUnits eltSize =
339         (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
340     assert(eltSize == getTypeStoreSize(CGM, eltTy));
341     for (unsigned i = 0,
342                   e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
343          i != e; ++i) {
344       addEntry(eltTy, begin, begin + eltSize);
345       begin += eltSize;
346     }
347     assert(begin == end);
348     return;
349   }
350 
351   // If the entry is a vector type, split it and try again.
352   if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
353     splitVectorEntry(index);
354     goto restartAfterSplit;
355   }
356 
357   // Okay, we have no choice but to make the existing entry opaque.
358 
359   Entries[index].Type = nullptr;
360 
361   // Stretch the start of the entry to the beginning of the range.
362   if (begin < Entries[index].Begin) {
363     Entries[index].Begin = begin;
364     assert(index == 0 || begin >= Entries[index - 1].End);
365   }
366 
367   // Stretch the end of the entry to the end of the range; but if we run
368   // into the start of the next entry, just leave the range there and repeat.
369   while (end > Entries[index].End) {
370     assert(Entries[index].Type == nullptr);
371 
372     // If the range doesn't overlap the next entry, we're done.
373     if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
374       Entries[index].End = end;
375       break;
376     }
377 
378     // Otherwise, stretch to the start of the next entry.
379     Entries[index].End = Entries[index + 1].Begin;
380 
381     // Continue with the next entry.
382     index++;
383 
384     // This entry needs to be made opaque if it is not already.
385     if (Entries[index].Type == nullptr)
386       continue;
387 
388     // Split vector entries unless we completely subsume them.
389     if (Entries[index].Type->isVectorTy() &&
390         end < Entries[index].End) {
391       splitVectorEntry(index);
392     }
393 
394     // Make the entry opaque.
395     Entries[index].Type = nullptr;
396   }
397 }
398 
399 /// Replace the entry of vector type at offset 'index' with a sequence
400 /// of its component vectors.
401 void SwiftAggLowering::splitVectorEntry(unsigned index) {
402   auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
403   auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
404 
405   auto eltTy = split.first;
406   CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
407   auto numElts = split.second;
408   Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
409 
410   CharUnits begin = Entries[index].Begin;
411   for (unsigned i = 0; i != numElts; ++i) {
412     Entries[index].Type = eltTy;
413     Entries[index].Begin = begin;
414     Entries[index].End = begin + eltSize;
415     begin += eltSize;
416   }
417 }
418 
419 /// Given a power-of-two unit size, return the offset of the aligned unit
420 /// of that size which contains the given offset.
421 ///
422 /// In other words, round down to the nearest multiple of the unit size.
423 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
424   assert(isPowerOf2(unitSize.getQuantity()));
425   auto unitMask = ~(unitSize.getQuantity() - 1);
426   return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
427 }
428 
429 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
430                                CharUnits chunkSize) {
431   return getOffsetAtStartOfUnit(first, chunkSize)
432       == getOffsetAtStartOfUnit(second, chunkSize);
433 }
434 
435 static bool isMergeableEntryType(llvm::Type *type) {
436   // Opaquely-typed memory is always mergeable.
437   if (type == nullptr) return true;
438 
439   // Pointers and integers are always mergeable.  In theory we should not
440   // merge pointers, but (1) it doesn't currently matter in practice because
441   // the chunk size is never greater than the size of a pointer and (2)
442   // Swift IRGen uses integer types for a lot of things that are "really"
443   // just storing pointers (like std::optional<SomePointer>).  If we ever have a
444   // target that would otherwise combine pointers, we should put some effort
445   // into fixing those cases in Swift IRGen and then call out pointer types
446   // here.
447 
448   // Floating-point and vector types should never be merged.
449   // Most such types are too large and highly-aligned to ever trigger merging
450   // in practice, but it's important for the rule to cover at least 'half'
451   // and 'float', as well as things like small vectors of 'i1' or 'i8'.
452   return (!type->isFloatingPointTy() && !type->isVectorTy());
453 }
454 
455 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
456                                           const StorageEntry &second,
457                                           CharUnits chunkSize) {
458   // Only merge entries that overlap the same chunk.  We test this first
459   // despite being a bit more expensive because this is the condition that
460   // tends to prevent merging.
461   if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
462                           chunkSize))
463     return false;
464 
465   return (isMergeableEntryType(first.Type) &&
466           isMergeableEntryType(second.Type));
467 }
468 
469 void SwiftAggLowering::finish() {
470   if (Entries.empty()) {
471     Finished = true;
472     return;
473   }
474 
475   // We logically split the layout down into a series of chunks of this size,
476   // which is generally the size of a pointer.
477   const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
478 
479   // First pass: if two entries should be merged, make them both opaque
480   // and stretch one to meet the next.
481   // Also, remember if there are any opaque entries.
482   bool hasOpaqueEntries = (Entries[0].Type == nullptr);
483   for (size_t i = 1, e = Entries.size(); i != e; ++i) {
484     if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
485       Entries[i - 1].Type = nullptr;
486       Entries[i].Type = nullptr;
487       Entries[i - 1].End = Entries[i].Begin;
488       hasOpaqueEntries = true;
489 
490     } else if (Entries[i].Type == nullptr) {
491       hasOpaqueEntries = true;
492     }
493   }
494 
495   // The rest of the algorithm leaves non-opaque entries alone, so if we
496   // have no opaque entries, we're done.
497   if (!hasOpaqueEntries) {
498     Finished = true;
499     return;
500   }
501 
502   // Okay, move the entries to a temporary and rebuild Entries.
503   auto orig = std::move(Entries);
504   assert(Entries.empty());
505 
506   for (size_t i = 0, e = orig.size(); i != e; ++i) {
507     // Just copy over non-opaque entries.
508     if (orig[i].Type != nullptr) {
509       Entries.push_back(orig[i]);
510       continue;
511     }
512 
513     // Scan forward to determine the full extent of the next opaque range.
514     // We know from the first pass that only contiguous ranges will overlap
515     // the same aligned chunk.
516     auto begin = orig[i].Begin;
517     auto end = orig[i].End;
518     while (i + 1 != e &&
519            orig[i + 1].Type == nullptr &&
520            end == orig[i + 1].Begin) {
521       end = orig[i + 1].End;
522       i++;
523     }
524 
525     // Add an entry per intersected chunk.
526     do {
527       // Find the smallest aligned storage unit in the maximal aligned
528       // storage unit containing 'begin' that contains all the bytes in
529       // the intersection between the range and this chunk.
530       CharUnits localBegin = begin;
531       CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
532       CharUnits chunkEnd = chunkBegin + chunkSize;
533       CharUnits localEnd = std::min(end, chunkEnd);
534 
535       // Just do a simple loop over ever-increasing unit sizes.
536       CharUnits unitSize = CharUnits::One();
537       CharUnits unitBegin, unitEnd;
538       for (; ; unitSize *= 2) {
539         assert(unitSize <= chunkSize);
540         unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
541         unitEnd = unitBegin + unitSize;
542         if (unitEnd >= localEnd) break;
543       }
544 
545       // Add an entry for this unit.
546       auto entryTy =
547         llvm::IntegerType::get(CGM.getLLVMContext(),
548                                CGM.getContext().toBits(unitSize));
549       Entries.push_back({unitBegin, unitEnd, entryTy});
550 
551       // The next chunk starts where this chunk left off.
552       begin = localEnd;
553     } while (begin != end);
554   }
555 
556   // Okay, finally finished.
557   Finished = true;
558 }
559 
560 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
561   assert(Finished && "haven't yet finished lowering");
562 
563   for (auto &entry : Entries) {
564     callback(entry.Begin, entry.End, entry.Type);
565   }
566 }
567 
568 std::pair<llvm::StructType*, llvm::Type*>
569 SwiftAggLowering::getCoerceAndExpandTypes() const {
570   assert(Finished && "haven't yet finished lowering");
571 
572   auto &ctx = CGM.getLLVMContext();
573 
574   if (Entries.empty()) {
575     auto type = llvm::StructType::get(ctx);
576     return { type, type };
577   }
578 
579   SmallVector<llvm::Type*, 8> elts;
580   CharUnits lastEnd = CharUnits::Zero();
581   bool hasPadding = false;
582   bool packed = false;
583   for (auto &entry : Entries) {
584     if (entry.Begin != lastEnd) {
585       auto paddingSize = entry.Begin - lastEnd;
586       assert(!paddingSize.isNegative());
587 
588       auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
589                                           paddingSize.getQuantity());
590       elts.push_back(padding);
591       hasPadding = true;
592     }
593 
594     if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity(
595                        CGM.getDataLayout().getABITypeAlign(entry.Type))))
596       packed = true;
597 
598     elts.push_back(entry.Type);
599 
600     lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
601     assert(entry.End <= lastEnd);
602   }
603 
604   // We don't need to adjust 'packed' to deal with possible tail padding
605   // because we never do that kind of access through the coercion type.
606   auto coercionType = llvm::StructType::get(ctx, elts, packed);
607 
608   llvm::Type *unpaddedType = coercionType;
609   if (hasPadding) {
610     elts.clear();
611     for (auto &entry : Entries) {
612       elts.push_back(entry.Type);
613     }
614     if (elts.size() == 1) {
615       unpaddedType = elts[0];
616     } else {
617       unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
618     }
619   } else if (Entries.size() == 1) {
620     unpaddedType = Entries[0].Type;
621   }
622 
623   return { coercionType, unpaddedType };
624 }
625 
626 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
627   assert(Finished && "haven't yet finished lowering");
628 
629   // Empty types don't need to be passed indirectly.
630   if (Entries.empty()) return false;
631 
632   // Avoid copying the array of types when there's just a single element.
633   if (Entries.size() == 1) {
634     return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type,
635                                                      asReturnValue);
636   }
637 
638   SmallVector<llvm::Type*, 8> componentTys;
639   componentTys.reserve(Entries.size());
640   for (auto &entry : Entries) {
641     componentTys.push_back(entry.Type);
642   }
643   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
644 }
645 
646 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
647                                      ArrayRef<llvm::Type*> componentTys,
648                                      bool asReturnValue) {
649   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
650 }
651 
652 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
653   // Currently always the size of an ordinary pointer.
654   return CGM.getContext().toCharUnitsFromBits(
655       CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default));
656 }
657 
658 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
659   // For Swift's purposes, this is always just the store size of the type
660   // rounded up to a power of 2.
661   auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
662   size = llvm::bit_ceil(size);
663   assert(CGM.getDataLayout().getABITypeAlign(type) <= size);
664   return CharUnits::fromQuantity(size);
665 }
666 
667 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
668                                    llvm::IntegerType *intTy) {
669   auto size = intTy->getBitWidth();
670   switch (size) {
671   case 1:
672   case 8:
673   case 16:
674   case 32:
675   case 64:
676     // Just assume that the above are always legal.
677     return true;
678 
679   case 128:
680     return CGM.getContext().getTargetInfo().hasInt128Type();
681 
682   default:
683     return false;
684   }
685 }
686 
687 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
688                                   llvm::VectorType *vectorTy) {
689   return isLegalVectorType(
690       CGM, vectorSize, vectorTy->getElementType(),
691       cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
692 }
693 
694 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
695                                   llvm::Type *eltTy, unsigned numElts) {
696   assert(numElts > 1 && "illegal vector length");
697   return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts);
698 }
699 
700 std::pair<llvm::Type*, unsigned>
701 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
702                                 llvm::VectorType *vectorTy) {
703   auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
704   auto eltTy = vectorTy->getElementType();
705 
706   // Try to split the vector type in half.
707   if (numElts >= 4 && isPowerOf2(numElts)) {
708     if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
709       return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
710   }
711 
712   return {eltTy, numElts};
713 }
714 
715 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
716                                    llvm::VectorType *origVectorTy,
717                              llvm::SmallVectorImpl<llvm::Type*> &components) {
718   // If it's already a legal vector type, use it.
719   if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
720     components.push_back(origVectorTy);
721     return;
722   }
723 
724   // Try to split the vector into legal subvectors.
725   auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
726   auto eltTy = origVectorTy->getElementType();
727   assert(numElts != 1);
728 
729   // The largest size that we're still considering making subvectors of.
730   // Always a power of 2.
731   unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
732   unsigned candidateNumElts = 1U << logCandidateNumElts;
733   assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
734 
735   // Minor optimization: don't check the legality of this exact size twice.
736   if (candidateNumElts == numElts) {
737     logCandidateNumElts--;
738     candidateNumElts >>= 1;
739   }
740 
741   CharUnits eltSize = (origVectorSize / numElts);
742   CharUnits candidateSize = eltSize * candidateNumElts;
743 
744   // The sensibility of this algorithm relies on the fact that we never
745   // have a legal non-power-of-2 vector size without having the power of 2
746   // also be legal.
747   while (logCandidateNumElts > 0) {
748     assert(candidateNumElts == 1U << logCandidateNumElts);
749     assert(candidateNumElts <= numElts);
750     assert(candidateSize == eltSize * candidateNumElts);
751 
752     // Skip illegal vector sizes.
753     if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
754       logCandidateNumElts--;
755       candidateNumElts /= 2;
756       candidateSize /= 2;
757       continue;
758     }
759 
760     // Add the right number of vectors of this size.
761     auto numVecs = numElts >> logCandidateNumElts;
762     components.append(numVecs,
763                       llvm::FixedVectorType::get(eltTy, candidateNumElts));
764     numElts -= (numVecs << logCandidateNumElts);
765 
766     if (numElts == 0) return;
767 
768     // It's possible that the number of elements remaining will be legal.
769     // This can happen with e.g. <7 x float> when <3 x float> is legal.
770     // This only needs to be separately checked if it's not a power of 2.
771     if (numElts > 2 && !isPowerOf2(numElts) &&
772         isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
773       components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
774       return;
775     }
776 
777     // Bring vecSize down to something no larger than numElts.
778     do {
779       logCandidateNumElts--;
780       candidateNumElts /= 2;
781       candidateSize /= 2;
782     } while (candidateNumElts > numElts);
783   }
784 
785   // Otherwise, just append a bunch of individual elements.
786   components.append(numElts, eltTy);
787 }
788 
789 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
790                                          const RecordDecl *record) {
791   // FIXME: should we not rely on the standard computation in Sema, just in
792   // case we want to diverge from the platform ABI (e.g. on targets where
793   // that uses the MSVC rule)?
794   return !record->canPassInRegisters();
795 }
796 
797 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
798                                        bool forReturn,
799                                        CharUnits alignmentForIndirect) {
800   if (lowering.empty()) {
801     return ABIArgInfo::getIgnore();
802   } else if (lowering.shouldPassIndirectly(forReturn)) {
803     return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
804   } else {
805     auto types = lowering.getCoerceAndExpandTypes();
806     return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
807   }
808 }
809 
810 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
811                                bool forReturn) {
812   if (auto recordType = dyn_cast<RecordType>(type)) {
813     auto record = recordType->getDecl();
814     auto &layout = CGM.getContext().getASTRecordLayout(record);
815 
816     if (mustPassRecordIndirectly(CGM, record))
817       return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
818 
819     SwiftAggLowering lowering(CGM);
820     lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
821     lowering.finish();
822 
823     return classifyExpandedType(lowering, forReturn, layout.getAlignment());
824   }
825 
826   // Just assume that all of our target ABIs can support returning at least
827   // two integer or floating-point values.
828   if (isa<ComplexType>(type)) {
829     return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
830   }
831 
832   // Vector types may need to be legalized.
833   if (isa<VectorType>(type)) {
834     SwiftAggLowering lowering(CGM);
835     lowering.addTypedData(type, CharUnits::Zero());
836     lowering.finish();
837 
838     CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
839     return classifyExpandedType(lowering, forReturn, alignment);
840   }
841 
842   // Member pointer types need to be expanded, but it's a simple form of
843   // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
844   // true for this to work.
845 
846   // 'void' needs to be ignored.
847   if (type->isVoidType()) {
848     return ABIArgInfo::getIgnore();
849   }
850 
851   // Everything else can be passed directly.
852   return ABIArgInfo::getDirect();
853 }
854 
855 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
856   return classifyType(CGM, type, /*forReturn*/ true);
857 }
858 
859 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
860                                            CanQualType type) {
861   return classifyType(CGM, type, /*forReturn*/ false);
862 }
863 
864 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
865   auto &retInfo = FI.getReturnInfo();
866   retInfo = classifyReturnType(CGM, FI.getReturnType());
867 
868   for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
869     auto &argInfo = FI.arg_begin()[i];
870     argInfo.info = classifyArgumentType(CGM, argInfo.type);
871   }
872 }
873 
874 // Is swifterror lowered to a register by the target ABI.
875 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
876   return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
877 }
878