1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenTypes.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/CXXInheritance.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/AST/VTableBuilder.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/IR/Intrinsics.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 namespace { 37 38 /// Holds all the vbtable globals for a given class. 39 struct VBTableGlobals { 40 const VPtrInfoVector *VBTables; 41 SmallVector<llvm::GlobalVariable *, 2> Globals; 42 }; 43 44 class MicrosoftCXXABI : public CGCXXABI { 45 public: 46 MicrosoftCXXABI(CodeGenModule &CGM) 47 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 48 ClassHierarchyDescriptorType(nullptr), 49 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 50 ThrowInfoType(nullptr) {} 51 52 bool HasThisReturn(GlobalDecl GD) const override; 53 bool hasMostDerivedReturn(GlobalDecl GD) const override; 54 55 bool classifyReturnType(CGFunctionInfo &FI) const override; 56 57 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 58 59 bool isSRetParameterAfterThis() const override { return true; } 60 61 bool isThisCompleteObject(GlobalDecl GD) const override { 62 // The Microsoft ABI doesn't use separate complete-object vs. 63 // base-object variants of constructors, but it does of destructors. 64 if (isa<CXXDestructorDecl>(GD.getDecl())) { 65 switch (GD.getDtorType()) { 66 case Dtor_Complete: 67 case Dtor_Deleting: 68 return true; 69 70 case Dtor_Base: 71 return false; 72 73 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 74 } 75 llvm_unreachable("bad dtor kind"); 76 } 77 78 // No other kinds. 79 return false; 80 } 81 82 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 83 FunctionArgList &Args) const override { 84 assert(Args.size() >= 2 && 85 "expected the arglist to have at least two args!"); 86 // The 'most_derived' parameter goes second if the ctor is variadic and 87 // has v-bases. 88 if (CD->getParent()->getNumVBases() > 0 && 89 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 90 return 2; 91 return 1; 92 } 93 94 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 95 std::vector<CharUnits> VBPtrOffsets; 96 const ASTContext &Context = getContext(); 97 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 98 99 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 100 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 101 const ASTRecordLayout &SubobjectLayout = 102 Context.getASTRecordLayout(VBT->IntroducingObject); 103 CharUnits Offs = VBT->NonVirtualOffset; 104 Offs += SubobjectLayout.getVBPtrOffset(); 105 if (VBT->getVBaseWithVPtr()) 106 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 107 VBPtrOffsets.push_back(Offs); 108 } 109 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 110 return VBPtrOffsets; 111 } 112 113 StringRef GetPureVirtualCallName() override { return "_purecall"; } 114 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 115 116 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 117 Address Ptr, QualType ElementType, 118 const CXXDestructorDecl *Dtor) override; 119 120 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 121 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 122 123 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 124 125 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 126 const VPtrInfo &Info); 127 128 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 129 CatchTypeInfo 130 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 131 132 /// MSVC needs an extra flag to indicate a catchall. 133 CatchTypeInfo getCatchAllTypeInfo() override { 134 return CatchTypeInfo{nullptr, 0x40}; 135 } 136 137 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 138 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 139 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 140 Address ThisPtr, 141 llvm::Type *StdTypeInfoPtrTy) override; 142 143 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 144 QualType SrcRecordTy) override; 145 146 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 147 QualType SrcRecordTy, QualType DestTy, 148 QualType DestRecordTy, 149 llvm::BasicBlock *CastEnd) override; 150 151 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 152 QualType SrcRecordTy, 153 QualType DestTy) override; 154 155 bool EmitBadCastCall(CodeGenFunction &CGF) override; 156 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 157 return false; 158 } 159 160 llvm::Value * 161 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 162 const CXXRecordDecl *ClassDecl, 163 const CXXRecordDecl *BaseClassDecl) override; 164 165 llvm::BasicBlock * 166 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 167 const CXXRecordDecl *RD) override; 168 169 llvm::BasicBlock * 170 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 171 172 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 173 const CXXRecordDecl *RD) override; 174 175 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 176 177 // Background on MSVC destructors 178 // ============================== 179 // 180 // Both Itanium and MSVC ABIs have destructor variants. The variant names 181 // roughly correspond in the following way: 182 // Itanium Microsoft 183 // Base -> no name, just ~Class 184 // Complete -> vbase destructor 185 // Deleting -> scalar deleting destructor 186 // vector deleting destructor 187 // 188 // The base and complete destructors are the same as in Itanium, although the 189 // complete destructor does not accept a VTT parameter when there are virtual 190 // bases. A separate mechanism involving vtordisps is used to ensure that 191 // virtual methods of destroyed subobjects are not called. 192 // 193 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 194 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 195 // pointer points to an array. The scalar deleting destructor assumes that 196 // bit 2 is zero, and therefore does not contain a loop. 197 // 198 // For virtual destructors, only one entry is reserved in the vftable, and it 199 // always points to the vector deleting destructor. The vector deleting 200 // destructor is the most general, so it can be used to destroy objects in 201 // place, delete single heap objects, or delete arrays. 202 // 203 // A TU defining a non-inline destructor is only guaranteed to emit a base 204 // destructor, and all of the other variants are emitted on an as-needed basis 205 // in COMDATs. Because a non-base destructor can be emitted in a TU that 206 // lacks a definition for the destructor, non-base destructors must always 207 // delegate to or alias the base destructor. 208 209 AddedStructorArgCounts 210 buildStructorSignature(GlobalDecl GD, 211 SmallVectorImpl<CanQualType> &ArgTys) override; 212 213 /// Non-base dtors should be emitted as delegating thunks in this ABI. 214 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 215 CXXDtorType DT) const override { 216 return DT != Dtor_Base; 217 } 218 219 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 220 const CXXDestructorDecl *Dtor, 221 CXXDtorType DT) const override; 222 223 llvm::GlobalValue::LinkageTypes 224 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 225 CXXDtorType DT) const override; 226 227 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 228 229 const CXXRecordDecl * 230 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 231 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 232 MethodVFTableLocation ML = 233 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 234 // The vbases might be ordered differently in the final overrider object 235 // and the complete object, so the "this" argument may sometimes point to 236 // memory that has no particular type (e.g. past the complete object). 237 // In this case, we just use a generic pointer type. 238 // FIXME: might want to have a more precise type in the non-virtual 239 // multiple inheritance case. 240 if (ML.VBase || !ML.VFPtrOffset.isZero()) 241 return nullptr; 242 } 243 return MD->getParent(); 244 } 245 246 Address 247 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 248 Address This, 249 bool VirtualCall) override; 250 251 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 252 FunctionArgList &Params) override; 253 254 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 255 256 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 257 const CXXConstructorDecl *D, 258 CXXCtorType Type, 259 bool ForVirtualBase, 260 bool Delegating) override; 261 262 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 263 const CXXDestructorDecl *DD, 264 CXXDtorType Type, 265 bool ForVirtualBase, 266 bool Delegating) override; 267 268 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 269 CXXDtorType Type, bool ForVirtualBase, 270 bool Delegating, Address This, 271 QualType ThisTy) override; 272 273 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 274 llvm::GlobalVariable *VTable); 275 276 void emitVTableDefinitions(CodeGenVTables &CGVT, 277 const CXXRecordDecl *RD) override; 278 279 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 280 CodeGenFunction::VPtr Vptr) override; 281 282 /// Don't initialize vptrs if dynamic class 283 /// is marked with with the 'novtable' attribute. 284 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 285 return !VTableClass->hasAttr<MSNoVTableAttr>(); 286 } 287 288 llvm::Constant * 289 getVTableAddressPoint(BaseSubobject Base, 290 const CXXRecordDecl *VTableClass) override; 291 292 llvm::Value *getVTableAddressPointInStructor( 293 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 294 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 295 296 llvm::Constant * 297 getVTableAddressPointForConstExpr(BaseSubobject Base, 298 const CXXRecordDecl *VTableClass) override; 299 300 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 301 CharUnits VPtrOffset) override; 302 303 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 304 Address This, llvm::Type *Ty, 305 SourceLocation Loc) override; 306 307 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 308 const CXXDestructorDecl *Dtor, 309 CXXDtorType DtorType, Address This, 310 DeleteOrMemberCallExpr E) override; 311 312 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 313 CallArgList &CallArgs) override { 314 assert(GD.getDtorType() == Dtor_Deleting && 315 "Only deleting destructor thunks are available in this ABI"); 316 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 317 getContext().IntTy); 318 } 319 320 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 321 322 llvm::GlobalVariable * 323 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 324 llvm::GlobalVariable::LinkageTypes Linkage); 325 326 llvm::GlobalVariable * 327 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 328 const CXXRecordDecl *DstRD) { 329 SmallString<256> OutName; 330 llvm::raw_svector_ostream Out(OutName); 331 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 332 StringRef MangledName = OutName.str(); 333 334 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 335 return VDispMap; 336 337 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 338 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 339 SmallVector<llvm::Constant *, 4> Map(NumEntries, 340 llvm::UndefValue::get(CGM.IntTy)); 341 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 342 bool AnyDifferent = false; 343 for (const auto &I : SrcRD->vbases()) { 344 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 345 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 346 continue; 347 348 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 349 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 350 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 351 AnyDifferent |= SrcVBIndex != DstVBIndex; 352 } 353 // This map would be useless, don't use it. 354 if (!AnyDifferent) 355 return nullptr; 356 357 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 358 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 359 llvm::GlobalValue::LinkageTypes Linkage = 360 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 361 ? llvm::GlobalValue::LinkOnceODRLinkage 362 : llvm::GlobalValue::InternalLinkage; 363 auto *VDispMap = new llvm::GlobalVariable( 364 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 365 /*Initializer=*/Init, MangledName); 366 return VDispMap; 367 } 368 369 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 370 llvm::GlobalVariable *GV) const; 371 372 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 373 GlobalDecl GD, bool ReturnAdjustment) override { 374 GVALinkage Linkage = 375 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 376 377 if (Linkage == GVA_Internal) 378 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 379 else if (ReturnAdjustment) 380 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 381 else 382 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 383 } 384 385 bool exportThunk() override { return false; } 386 387 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 388 const ThisAdjustment &TA) override; 389 390 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 391 const ReturnAdjustment &RA) override; 392 393 void EmitThreadLocalInitFuncs( 394 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 395 ArrayRef<llvm::Function *> CXXThreadLocalInits, 396 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 397 398 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 399 return false; 400 } 401 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 402 QualType LValType) override; 403 404 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 405 llvm::GlobalVariable *DeclPtr, 406 bool PerformInit) override; 407 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 408 llvm::FunctionCallee Dtor, 409 llvm::Constant *Addr) override; 410 411 // ==== Notes on array cookies ========= 412 // 413 // MSVC seems to only use cookies when the class has a destructor; a 414 // two-argument usual array deallocation function isn't sufficient. 415 // 416 // For example, this code prints "100" and "1": 417 // struct A { 418 // char x; 419 // void *operator new[](size_t sz) { 420 // printf("%u\n", sz); 421 // return malloc(sz); 422 // } 423 // void operator delete[](void *p, size_t sz) { 424 // printf("%u\n", sz); 425 // free(p); 426 // } 427 // }; 428 // int main() { 429 // A *p = new A[100]; 430 // delete[] p; 431 // } 432 // Whereas it prints "104" and "104" if you give A a destructor. 433 434 bool requiresArrayCookie(const CXXDeleteExpr *expr, 435 QualType elementType) override; 436 bool requiresArrayCookie(const CXXNewExpr *expr) override; 437 CharUnits getArrayCookieSizeImpl(QualType type) override; 438 Address InitializeArrayCookie(CodeGenFunction &CGF, 439 Address NewPtr, 440 llvm::Value *NumElements, 441 const CXXNewExpr *expr, 442 QualType ElementType) override; 443 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 444 Address allocPtr, 445 CharUnits cookieSize) override; 446 447 friend struct MSRTTIBuilder; 448 449 bool isImageRelative() const { 450 return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64; 451 } 452 453 // 5 routines for constructing the llvm types for MS RTTI structs. 454 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 455 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 456 TDTypeName += llvm::utostr(TypeInfoString.size()); 457 llvm::StructType *&TypeDescriptorType = 458 TypeDescriptorTypeMap[TypeInfoString.size()]; 459 if (TypeDescriptorType) 460 return TypeDescriptorType; 461 llvm::Type *FieldTypes[] = { 462 CGM.Int8PtrPtrTy, 463 CGM.Int8PtrTy, 464 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 465 TypeDescriptorType = 466 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 467 return TypeDescriptorType; 468 } 469 470 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 471 if (!isImageRelative()) 472 return PtrType; 473 return CGM.IntTy; 474 } 475 476 llvm::StructType *getBaseClassDescriptorType() { 477 if (BaseClassDescriptorType) 478 return BaseClassDescriptorType; 479 llvm::Type *FieldTypes[] = { 480 getImageRelativeType(CGM.Int8PtrTy), 481 CGM.IntTy, 482 CGM.IntTy, 483 CGM.IntTy, 484 CGM.IntTy, 485 CGM.IntTy, 486 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 487 }; 488 BaseClassDescriptorType = llvm::StructType::create( 489 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 490 return BaseClassDescriptorType; 491 } 492 493 llvm::StructType *getClassHierarchyDescriptorType() { 494 if (ClassHierarchyDescriptorType) 495 return ClassHierarchyDescriptorType; 496 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 497 ClassHierarchyDescriptorType = llvm::StructType::create( 498 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 499 llvm::Type *FieldTypes[] = { 500 CGM.IntTy, 501 CGM.IntTy, 502 CGM.IntTy, 503 getImageRelativeType( 504 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 505 }; 506 ClassHierarchyDescriptorType->setBody(FieldTypes); 507 return ClassHierarchyDescriptorType; 508 } 509 510 llvm::StructType *getCompleteObjectLocatorType() { 511 if (CompleteObjectLocatorType) 512 return CompleteObjectLocatorType; 513 CompleteObjectLocatorType = llvm::StructType::create( 514 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 515 llvm::Type *FieldTypes[] = { 516 CGM.IntTy, 517 CGM.IntTy, 518 CGM.IntTy, 519 getImageRelativeType(CGM.Int8PtrTy), 520 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 521 getImageRelativeType(CompleteObjectLocatorType), 522 }; 523 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 524 if (!isImageRelative()) 525 FieldTypesRef = FieldTypesRef.drop_back(); 526 CompleteObjectLocatorType->setBody(FieldTypesRef); 527 return CompleteObjectLocatorType; 528 } 529 530 llvm::GlobalVariable *getImageBase() { 531 StringRef Name = "__ImageBase"; 532 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 533 return GV; 534 535 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 536 /*isConstant=*/true, 537 llvm::GlobalValue::ExternalLinkage, 538 /*Initializer=*/nullptr, Name); 539 CGM.setDSOLocal(GV); 540 return GV; 541 } 542 543 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 544 if (!isImageRelative()) 545 return PtrVal; 546 547 if (PtrVal->isNullValue()) 548 return llvm::Constant::getNullValue(CGM.IntTy); 549 550 llvm::Constant *ImageBaseAsInt = 551 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 552 llvm::Constant *PtrValAsInt = 553 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 554 llvm::Constant *Diff = 555 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 556 /*HasNUW=*/true, /*HasNSW=*/true); 557 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 558 } 559 560 private: 561 MicrosoftMangleContext &getMangleContext() { 562 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 563 } 564 565 llvm::Constant *getZeroInt() { 566 return llvm::ConstantInt::get(CGM.IntTy, 0); 567 } 568 569 llvm::Constant *getAllOnesInt() { 570 return llvm::Constant::getAllOnesValue(CGM.IntTy); 571 } 572 573 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 574 575 void 576 GetNullMemberPointerFields(const MemberPointerType *MPT, 577 llvm::SmallVectorImpl<llvm::Constant *> &fields); 578 579 /// Shared code for virtual base adjustment. Returns the offset from 580 /// the vbptr to the virtual base. Optionally returns the address of the 581 /// vbptr itself. 582 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 583 Address Base, 584 llvm::Value *VBPtrOffset, 585 llvm::Value *VBTableOffset, 586 llvm::Value **VBPtr = nullptr); 587 588 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 589 Address Base, 590 int32_t VBPtrOffset, 591 int32_t VBTableOffset, 592 llvm::Value **VBPtr = nullptr) { 593 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 594 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 595 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 596 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 597 } 598 599 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 600 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 601 QualType SrcRecordTy); 602 603 /// Performs a full virtual base adjustment. Used to dereference 604 /// pointers to members of virtual bases. 605 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 606 const CXXRecordDecl *RD, Address Base, 607 llvm::Value *VirtualBaseAdjustmentOffset, 608 llvm::Value *VBPtrOffset /* optional */); 609 610 /// Emits a full member pointer with the fields common to data and 611 /// function member pointers. 612 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 613 bool IsMemberFunction, 614 const CXXRecordDecl *RD, 615 CharUnits NonVirtualBaseAdjustment, 616 unsigned VBTableIndex); 617 618 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 619 llvm::Constant *MP); 620 621 /// - Initialize all vbptrs of 'this' with RD as the complete type. 622 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 623 624 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 625 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 626 627 /// Generate a thunk for calling a virtual member function MD. 628 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 629 const MethodVFTableLocation &ML); 630 631 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 632 CharUnits offset); 633 634 public: 635 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 636 637 bool isZeroInitializable(const MemberPointerType *MPT) override; 638 639 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 640 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 641 return RD->hasAttr<MSInheritanceAttr>(); 642 } 643 644 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 645 646 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 647 CharUnits offset) override; 648 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 649 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 650 651 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 652 llvm::Value *L, 653 llvm::Value *R, 654 const MemberPointerType *MPT, 655 bool Inequality) override; 656 657 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 658 llvm::Value *MemPtr, 659 const MemberPointerType *MPT) override; 660 661 llvm::Value * 662 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 663 Address Base, llvm::Value *MemPtr, 664 const MemberPointerType *MPT) override; 665 666 llvm::Value *EmitNonNullMemberPointerConversion( 667 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 668 CastKind CK, CastExpr::path_const_iterator PathBegin, 669 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 670 CGBuilderTy &Builder); 671 672 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 673 const CastExpr *E, 674 llvm::Value *Src) override; 675 676 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 677 llvm::Constant *Src) override; 678 679 llvm::Constant *EmitMemberPointerConversion( 680 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 681 CastKind CK, CastExpr::path_const_iterator PathBegin, 682 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 683 684 CGCallee 685 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 686 Address This, llvm::Value *&ThisPtrForCall, 687 llvm::Value *MemPtr, 688 const MemberPointerType *MPT) override; 689 690 void emitCXXStructor(GlobalDecl GD) override; 691 692 llvm::StructType *getCatchableTypeType() { 693 if (CatchableTypeType) 694 return CatchableTypeType; 695 llvm::Type *FieldTypes[] = { 696 CGM.IntTy, // Flags 697 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 698 CGM.IntTy, // NonVirtualAdjustment 699 CGM.IntTy, // OffsetToVBPtr 700 CGM.IntTy, // VBTableIndex 701 CGM.IntTy, // Size 702 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 703 }; 704 CatchableTypeType = llvm::StructType::create( 705 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 706 return CatchableTypeType; 707 } 708 709 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 710 llvm::StructType *&CatchableTypeArrayType = 711 CatchableTypeArrayTypeMap[NumEntries]; 712 if (CatchableTypeArrayType) 713 return CatchableTypeArrayType; 714 715 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 716 CTATypeName += llvm::utostr(NumEntries); 717 llvm::Type *CTType = 718 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 719 llvm::Type *FieldTypes[] = { 720 CGM.IntTy, // NumEntries 721 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 722 }; 723 CatchableTypeArrayType = 724 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 725 return CatchableTypeArrayType; 726 } 727 728 llvm::StructType *getThrowInfoType() { 729 if (ThrowInfoType) 730 return ThrowInfoType; 731 llvm::Type *FieldTypes[] = { 732 CGM.IntTy, // Flags 733 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 734 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 735 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 736 }; 737 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 738 "eh.ThrowInfo"); 739 return ThrowInfoType; 740 } 741 742 llvm::FunctionCallee getThrowFn() { 743 // _CxxThrowException is passed an exception object and a ThrowInfo object 744 // which describes the exception. 745 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 746 llvm::FunctionType *FTy = 747 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 748 llvm::FunctionCallee Throw = 749 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 750 // _CxxThrowException is stdcall on 32-bit x86 platforms. 751 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 752 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 753 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 754 } 755 return Throw; 756 } 757 758 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 759 CXXCtorType CT); 760 761 llvm::Constant *getCatchableType(QualType T, 762 uint32_t NVOffset = 0, 763 int32_t VBPtrOffset = -1, 764 uint32_t VBIndex = 0); 765 766 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 767 768 llvm::GlobalVariable *getThrowInfo(QualType T) override; 769 770 std::pair<llvm::Value *, const CXXRecordDecl *> 771 LoadVTablePtr(CodeGenFunction &CGF, Address This, 772 const CXXRecordDecl *RD) override; 773 774 virtual bool 775 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; 776 777 private: 778 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 779 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 780 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 781 /// All the vftables that have been referenced. 782 VFTablesMapTy VFTablesMap; 783 VTablesMapTy VTablesMap; 784 785 /// This set holds the record decls we've deferred vtable emission for. 786 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 787 788 789 /// All the vbtables which have been referenced. 790 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 791 792 /// Info on the global variable used to guard initialization of static locals. 793 /// The BitIndex field is only used for externally invisible declarations. 794 struct GuardInfo { 795 GuardInfo() : Guard(nullptr), BitIndex(0) {} 796 llvm::GlobalVariable *Guard; 797 unsigned BitIndex; 798 }; 799 800 /// Map from DeclContext to the current guard variable. We assume that the 801 /// AST is visited in source code order. 802 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 803 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 804 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 805 806 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 807 llvm::StructType *BaseClassDescriptorType; 808 llvm::StructType *ClassHierarchyDescriptorType; 809 llvm::StructType *CompleteObjectLocatorType; 810 811 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 812 813 llvm::StructType *CatchableTypeType; 814 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 815 llvm::StructType *ThrowInfoType; 816 }; 817 818 } 819 820 CGCXXABI::RecordArgABI 821 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 822 // Use the default C calling convention rules for things that can be passed in 823 // registers, i.e. non-trivially copyable records or records marked with 824 // [[trivial_abi]]. 825 if (RD->canPassInRegisters()) 826 return RAA_Default; 827 828 switch (CGM.getTarget().getTriple().getArch()) { 829 default: 830 // FIXME: Implement for other architectures. 831 return RAA_Indirect; 832 833 case llvm::Triple::thumb: 834 // Pass things indirectly for now because it is simple. 835 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 836 // copy ctor. 837 return RAA_Indirect; 838 839 case llvm::Triple::x86: { 840 // If the argument has *required* alignment greater than four bytes, pass 841 // it indirectly. Prior to MSVC version 19.14, passing overaligned 842 // arguments was not supported and resulted in a compiler error. In 19.14 843 // and later versions, such arguments are now passed indirectly. 844 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); 845 if (Info.AlignIsRequired && Info.Align > 4) 846 return RAA_Indirect; 847 848 // If C++ prohibits us from making a copy, construct the arguments directly 849 // into argument memory. 850 return RAA_DirectInMemory; 851 } 852 853 case llvm::Triple::x86_64: 854 case llvm::Triple::aarch64: 855 return RAA_Indirect; 856 } 857 858 llvm_unreachable("invalid enum"); 859 } 860 861 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 862 const CXXDeleteExpr *DE, 863 Address Ptr, 864 QualType ElementType, 865 const CXXDestructorDecl *Dtor) { 866 // FIXME: Provide a source location here even though there's no 867 // CXXMemberCallExpr for dtor call. 868 bool UseGlobalDelete = DE->isGlobalDelete(); 869 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 870 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 871 if (UseGlobalDelete) 872 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 873 } 874 875 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 876 llvm::Value *Args[] = { 877 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 878 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 879 llvm::FunctionCallee Fn = getThrowFn(); 880 if (isNoReturn) 881 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 882 else 883 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 884 } 885 886 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 887 const CXXCatchStmt *S) { 888 // In the MS ABI, the runtime handles the copy, and the catch handler is 889 // responsible for destruction. 890 VarDecl *CatchParam = S->getExceptionDecl(); 891 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 892 llvm::CatchPadInst *CPI = 893 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 894 CGF.CurrentFuncletPad = CPI; 895 896 // If this is a catch-all or the catch parameter is unnamed, we don't need to 897 // emit an alloca to the object. 898 if (!CatchParam || !CatchParam->getDeclName()) { 899 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 900 return; 901 } 902 903 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 904 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 905 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 906 CGF.EmitAutoVarCleanups(var); 907 } 908 909 /// We need to perform a generic polymorphic operation (like a typeid 910 /// or a cast), which requires an object with a vfptr. Adjust the 911 /// address to point to an object with a vfptr. 912 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 913 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 914 QualType SrcRecordTy) { 915 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); 916 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 917 const ASTContext &Context = getContext(); 918 919 // If the class itself has a vfptr, great. This check implicitly 920 // covers non-virtual base subobjects: a class with its own virtual 921 // functions would be a candidate to be a primary base. 922 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 923 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 924 SrcDecl); 925 926 // Okay, one of the vbases must have a vfptr, or else this isn't 927 // actually a polymorphic class. 928 const CXXRecordDecl *PolymorphicBase = nullptr; 929 for (auto &Base : SrcDecl->vbases()) { 930 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 931 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 932 PolymorphicBase = BaseDecl; 933 break; 934 } 935 } 936 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 937 938 llvm::Value *Offset = 939 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 940 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset); 941 CharUnits VBaseAlign = 942 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 943 return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase); 944 } 945 946 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 947 QualType SrcRecordTy) { 948 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 949 return IsDeref && 950 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 951 } 952 953 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 954 llvm::Value *Argument) { 955 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 956 llvm::FunctionType *FTy = 957 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 958 llvm::Value *Args[] = {Argument}; 959 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 960 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 961 } 962 963 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 964 llvm::CallBase *Call = 965 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 966 Call->setDoesNotReturn(); 967 CGF.Builder.CreateUnreachable(); 968 } 969 970 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 971 QualType SrcRecordTy, 972 Address ThisPtr, 973 llvm::Type *StdTypeInfoPtrTy) { 974 std::tie(ThisPtr, std::ignore, std::ignore) = 975 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 976 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 977 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 978 } 979 980 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 981 QualType SrcRecordTy) { 982 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 983 return SrcIsPtr && 984 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 985 } 986 987 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 988 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 989 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 990 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 991 992 llvm::Value *SrcRTTI = 993 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 994 llvm::Value *DestRTTI = 995 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 996 997 llvm::Value *Offset; 998 std::tie(This, Offset, std::ignore) = 999 performBaseAdjustment(CGF, This, SrcRecordTy); 1000 llvm::Value *ThisPtr = This.getPointer(); 1001 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 1002 1003 // PVOID __RTDynamicCast( 1004 // PVOID inptr, 1005 // LONG VfDelta, 1006 // PVOID SrcType, 1007 // PVOID TargetType, 1008 // BOOL isReference) 1009 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1010 CGF.Int8PtrTy, CGF.Int32Ty}; 1011 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1012 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1013 "__RTDynamicCast"); 1014 llvm::Value *Args[] = { 1015 ThisPtr, Offset, SrcRTTI, DestRTTI, 1016 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1017 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); 1018 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 1019 } 1020 1021 llvm::Value * 1022 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1023 QualType SrcRecordTy, 1024 QualType DestTy) { 1025 std::tie(Value, std::ignore, std::ignore) = 1026 performBaseAdjustment(CGF, Value, SrcRecordTy); 1027 1028 // PVOID __RTCastToVoid( 1029 // PVOID inptr) 1030 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1031 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1032 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1033 "__RTCastToVoid"); 1034 llvm::Value *Args[] = {Value.getPointer()}; 1035 return CGF.EmitRuntimeCall(Function, Args); 1036 } 1037 1038 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1039 return false; 1040 } 1041 1042 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1043 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1044 const CXXRecordDecl *BaseClassDecl) { 1045 const ASTContext &Context = getContext(); 1046 int64_t VBPtrChars = 1047 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1048 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1049 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1050 CharUnits VBTableChars = 1051 IntSize * 1052 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1053 llvm::Value *VBTableOffset = 1054 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1055 1056 llvm::Value *VBPtrToNewBase = 1057 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1058 VBPtrToNewBase = 1059 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1060 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1061 } 1062 1063 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1064 return isa<CXXConstructorDecl>(GD.getDecl()); 1065 } 1066 1067 static bool isDeletingDtor(GlobalDecl GD) { 1068 return isa<CXXDestructorDecl>(GD.getDecl()) && 1069 GD.getDtorType() == Dtor_Deleting; 1070 } 1071 1072 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1073 return isDeletingDtor(GD); 1074 } 1075 1076 static bool isTrivialForAArch64MSVC(const CXXRecordDecl *RD) { 1077 // For AArch64, we use the C++14 definition of an aggregate, so we also 1078 // check for: 1079 // No private or protected non static data members. 1080 // No base classes 1081 // No virtual functions 1082 // Additionally, we need to ensure that there is a trivial copy assignment 1083 // operator, a trivial destructor and no user-provided constructors. 1084 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1085 return false; 1086 if (RD->getNumBases() > 0) 1087 return false; 1088 if (RD->isPolymorphic()) 1089 return false; 1090 if (RD->hasNonTrivialCopyAssignment()) 1091 return false; 1092 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1093 if (Ctor->isUserProvided()) 1094 return false; 1095 if (RD->hasNonTrivialDestructor()) 1096 return false; 1097 return true; 1098 } 1099 1100 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1101 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1102 if (!RD) 1103 return false; 1104 1105 // Normally, the C++ concept of "is trivially copyable" is used to determine 1106 // if a struct can be returned directly. However, as MSVC and the language 1107 // have evolved, the definition of "trivially copyable" has changed, while the 1108 // ABI must remain stable. AArch64 uses the C++14 concept of an "aggregate", 1109 // while other ISAs use the older concept of "plain old data". 1110 bool isTrivialForABI = RD->isPOD(); 1111 bool isAArch64 = CGM.getTarget().getTriple().isAArch64(); 1112 if (isAArch64) 1113 isTrivialForABI = RD->canPassInRegisters() && isTrivialForAArch64MSVC(RD); 1114 1115 // MSVC always returns structs indirectly from C++ instance methods. 1116 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); 1117 1118 if (isIndirectReturn) { 1119 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1120 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1121 1122 // MSVC always passes `this` before the `sret` parameter. 1123 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1124 1125 // On AArch64, use the `inreg` attribute if the object is considered to not 1126 // be trivially copyable, or if this is an instance method struct return. 1127 FI.getReturnInfo().setInReg(isAArch64); 1128 1129 return true; 1130 } 1131 1132 // Otherwise, use the C ABI rules. 1133 return false; 1134 } 1135 1136 llvm::BasicBlock * 1137 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1138 const CXXRecordDecl *RD) { 1139 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1140 assert(IsMostDerivedClass && 1141 "ctor for a class with virtual bases must have an implicit parameter"); 1142 llvm::Value *IsCompleteObject = 1143 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1144 1145 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1146 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1147 CGF.Builder.CreateCondBr(IsCompleteObject, 1148 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1149 1150 CGF.EmitBlock(CallVbaseCtorsBB); 1151 1152 // Fill in the vbtable pointers here. 1153 EmitVBPtrStores(CGF, RD); 1154 1155 // CGF will put the base ctor calls in this basic block for us later. 1156 1157 return SkipVbaseCtorsBB; 1158 } 1159 1160 llvm::BasicBlock * 1161 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1162 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1163 assert(IsMostDerivedClass && 1164 "ctor for a class with virtual bases must have an implicit parameter"); 1165 llvm::Value *IsCompleteObject = 1166 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1167 1168 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1169 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1170 CGF.Builder.CreateCondBr(IsCompleteObject, 1171 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1172 1173 CGF.EmitBlock(CallVbaseDtorsBB); 1174 // CGF will put the base dtor calls in this basic block for us later. 1175 1176 return SkipVbaseDtorsBB; 1177 } 1178 1179 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1180 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1181 // In most cases, an override for a vbase virtual method can adjust 1182 // the "this" parameter by applying a constant offset. 1183 // However, this is not enough while a constructor or a destructor of some 1184 // class X is being executed if all the following conditions are met: 1185 // - X has virtual bases, (1) 1186 // - X overrides a virtual method M of a vbase Y, (2) 1187 // - X itself is a vbase of the most derived class. 1188 // 1189 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1190 // which holds the extra amount of "this" adjustment we must do when we use 1191 // the X vftables (i.e. during X ctor or dtor). 1192 // Outside the ctors and dtors, the values of vtorDisps are zero. 1193 1194 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1195 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1196 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1197 CGBuilderTy &Builder = CGF.Builder; 1198 1199 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1200 llvm::Value *Int8This = nullptr; // Initialize lazily. 1201 1202 for (const CXXBaseSpecifier &S : RD->vbases()) { 1203 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1204 auto I = VBaseMap.find(VBase); 1205 assert(I != VBaseMap.end()); 1206 if (!I->second.hasVtorDisp()) 1207 continue; 1208 1209 llvm::Value *VBaseOffset = 1210 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1211 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1212 1213 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1214 llvm::Value *VtorDispValue = Builder.CreateSub( 1215 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1216 "vtordisp.value"); 1217 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1218 1219 if (!Int8This) 1220 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1221 CGF.Int8Ty->getPointerTo(AS)); 1222 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); 1223 // vtorDisp is always the 32-bits before the vbase in the class layout. 1224 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); 1225 VtorDispPtr = Builder.CreateBitCast( 1226 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1227 1228 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1229 CharUnits::fromQuantity(4)); 1230 } 1231 } 1232 1233 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1234 const CXXMethodDecl *MD) { 1235 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1236 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1237 CallingConv ActualCallingConv = 1238 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1239 return ExpectedCallingConv == ActualCallingConv; 1240 } 1241 1242 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1243 // There's only one constructor type in this ABI. 1244 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1245 1246 // Exported default constructors either have a simple call-site where they use 1247 // the typical calling convention and have a single 'this' pointer for an 1248 // argument -or- they get a wrapper function which appropriately thunks to the 1249 // real default constructor. This thunk is the default constructor closure. 1250 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && 1251 D->isDefined()) { 1252 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1253 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1254 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1255 CGM.setGVProperties(Fn, D); 1256 } 1257 } 1258 } 1259 1260 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1261 const CXXRecordDecl *RD) { 1262 Address This = getThisAddress(CGF); 1263 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1264 const ASTContext &Context = getContext(); 1265 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1266 1267 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1268 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1269 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1270 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1271 const ASTRecordLayout &SubobjectLayout = 1272 Context.getASTRecordLayout(VBT->IntroducingObject); 1273 CharUnits Offs = VBT->NonVirtualOffset; 1274 Offs += SubobjectLayout.getVBPtrOffset(); 1275 if (VBT->getVBaseWithVPtr()) 1276 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1277 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1278 llvm::Value *GVPtr = 1279 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1280 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1281 "vbptr." + VBT->ObjectWithVPtr->getName()); 1282 CGF.Builder.CreateStore(GVPtr, VBPtr); 1283 } 1284 } 1285 1286 CGCXXABI::AddedStructorArgCounts 1287 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1288 SmallVectorImpl<CanQualType> &ArgTys) { 1289 AddedStructorArgCounts Added; 1290 // TODO: 'for base' flag 1291 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1292 GD.getDtorType() == Dtor_Deleting) { 1293 // The scalar deleting destructor takes an implicit int parameter. 1294 ArgTys.push_back(getContext().IntTy); 1295 ++Added.Suffix; 1296 } 1297 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1298 if (!CD) 1299 return Added; 1300 1301 // All parameters are already in place except is_most_derived, which goes 1302 // after 'this' if it's variadic and last if it's not. 1303 1304 const CXXRecordDecl *Class = CD->getParent(); 1305 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1306 if (Class->getNumVBases()) { 1307 if (FPT->isVariadic()) { 1308 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1309 ++Added.Prefix; 1310 } else { 1311 ArgTys.push_back(getContext().IntTy); 1312 ++Added.Suffix; 1313 } 1314 } 1315 1316 return Added; 1317 } 1318 1319 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1320 const CXXDestructorDecl *Dtor, 1321 CXXDtorType DT) const { 1322 // Deleting destructor variants are never imported or exported. Give them the 1323 // default storage class. 1324 if (DT == Dtor_Deleting) { 1325 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1326 } else { 1327 const NamedDecl *ND = Dtor; 1328 CGM.setDLLImportDLLExport(GV, ND); 1329 } 1330 } 1331 1332 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1333 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1334 // Internal things are always internal, regardless of attributes. After this, 1335 // we know the thunk is externally visible. 1336 if (Linkage == GVA_Internal) 1337 return llvm::GlobalValue::InternalLinkage; 1338 1339 switch (DT) { 1340 case Dtor_Base: 1341 // The base destructor most closely tracks the user-declared constructor, so 1342 // we delegate back to the normal declarator case. 1343 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, 1344 /*IsConstantVariable=*/false); 1345 case Dtor_Complete: 1346 // The complete destructor is like an inline function, but it may be 1347 // imported and therefore must be exported as well. This requires changing 1348 // the linkage if a DLL attribute is present. 1349 if (Dtor->hasAttr<DLLExportAttr>()) 1350 return llvm::GlobalValue::WeakODRLinkage; 1351 if (Dtor->hasAttr<DLLImportAttr>()) 1352 return llvm::GlobalValue::AvailableExternallyLinkage; 1353 return llvm::GlobalValue::LinkOnceODRLinkage; 1354 case Dtor_Deleting: 1355 // Deleting destructors are like inline functions. They have vague linkage 1356 // and are emitted everywhere they are used. They are internal if the class 1357 // is internal. 1358 return llvm::GlobalValue::LinkOnceODRLinkage; 1359 case Dtor_Comdat: 1360 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1361 } 1362 llvm_unreachable("invalid dtor type"); 1363 } 1364 1365 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1366 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1367 // other destructor variants are delegating thunks. 1368 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1369 1370 // If the class is dllexported, emit the complete (vbase) destructor wherever 1371 // the base dtor is emitted. 1372 // FIXME: To match MSVC, this should only be done when the class is exported 1373 // with -fdllexport-inlines enabled. 1374 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1375 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1376 } 1377 1378 CharUnits 1379 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1380 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1381 1382 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1383 // Complete destructors take a pointer to the complete object as a 1384 // parameter, thus don't need this adjustment. 1385 if (GD.getDtorType() == Dtor_Complete) 1386 return CharUnits(); 1387 1388 // There's no Dtor_Base in vftable but it shares the this adjustment with 1389 // the deleting one, so look it up instead. 1390 GD = GlobalDecl(DD, Dtor_Deleting); 1391 } 1392 1393 MethodVFTableLocation ML = 1394 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1395 CharUnits Adjustment = ML.VFPtrOffset; 1396 1397 // Normal virtual instance methods need to adjust from the vfptr that first 1398 // defined the virtual method to the virtual base subobject, but destructors 1399 // do not. The vector deleting destructor thunk applies this adjustment for 1400 // us if necessary. 1401 if (isa<CXXDestructorDecl>(MD)) 1402 Adjustment = CharUnits::Zero(); 1403 1404 if (ML.VBase) { 1405 const ASTRecordLayout &DerivedLayout = 1406 getContext().getASTRecordLayout(MD->getParent()); 1407 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1408 } 1409 1410 return Adjustment; 1411 } 1412 1413 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1414 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1415 bool VirtualCall) { 1416 if (!VirtualCall) { 1417 // If the call of a virtual function is not virtual, we just have to 1418 // compensate for the adjustment the virtual function does in its prologue. 1419 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1420 if (Adjustment.isZero()) 1421 return This; 1422 1423 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1424 assert(Adjustment.isPositive()); 1425 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1426 } 1427 1428 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1429 1430 GlobalDecl LookupGD = GD; 1431 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1432 // Complete dtors take a pointer to the complete object, 1433 // thus don't need adjustment. 1434 if (GD.getDtorType() == Dtor_Complete) 1435 return This; 1436 1437 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1438 // with the base one, so look up the deleting one instead. 1439 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1440 } 1441 MethodVFTableLocation ML = 1442 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1443 1444 CharUnits StaticOffset = ML.VFPtrOffset; 1445 1446 // Base destructors expect 'this' to point to the beginning of the base 1447 // subobject, not the first vfptr that happens to contain the virtual dtor. 1448 // However, we still need to apply the virtual base adjustment. 1449 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1450 StaticOffset = CharUnits::Zero(); 1451 1452 Address Result = This; 1453 if (ML.VBase) { 1454 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1455 1456 const CXXRecordDecl *Derived = MD->getParent(); 1457 const CXXRecordDecl *VBase = ML.VBase; 1458 llvm::Value *VBaseOffset = 1459 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1460 llvm::Value *VBasePtr = 1461 CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset); 1462 CharUnits VBaseAlign = 1463 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1464 Result = Address(VBasePtr, VBaseAlign); 1465 } 1466 if (!StaticOffset.isZero()) { 1467 assert(StaticOffset.isPositive()); 1468 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1469 if (ML.VBase) { 1470 // Non-virtual adjustment might result in a pointer outside the allocated 1471 // object, e.g. if the final overrider class is laid out after the virtual 1472 // base that declares a method in the most derived class. 1473 // FIXME: Update the code that emits this adjustment in thunks prologues. 1474 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1475 } else { 1476 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1477 } 1478 } 1479 return Result; 1480 } 1481 1482 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1483 QualType &ResTy, 1484 FunctionArgList &Params) { 1485 ASTContext &Context = getContext(); 1486 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1487 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1488 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1489 auto *IsMostDerived = ImplicitParamDecl::Create( 1490 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1491 &Context.Idents.get("is_most_derived"), Context.IntTy, 1492 ImplicitParamDecl::Other); 1493 // The 'most_derived' parameter goes second if the ctor is variadic and last 1494 // if it's not. Dtors can't be variadic. 1495 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1496 if (FPT->isVariadic()) 1497 Params.insert(Params.begin() + 1, IsMostDerived); 1498 else 1499 Params.push_back(IsMostDerived); 1500 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1501 } else if (isDeletingDtor(CGF.CurGD)) { 1502 auto *ShouldDelete = ImplicitParamDecl::Create( 1503 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1504 &Context.Idents.get("should_call_delete"), Context.IntTy, 1505 ImplicitParamDecl::Other); 1506 Params.push_back(ShouldDelete); 1507 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1508 } 1509 } 1510 1511 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1512 // Naked functions have no prolog. 1513 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1514 return; 1515 1516 // Overridden virtual methods of non-primary bases need to adjust the incoming 1517 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1518 // sizeof(void*) to adjust from B* to C*: 1519 // struct A { virtual void a(); }; 1520 // struct B { virtual void b(); }; 1521 // struct C : A, B { virtual void b(); }; 1522 // 1523 // Leave the value stored in the 'this' alloca unadjusted, so that the 1524 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1525 // will apply the ThisAdjustment in the method type information. 1526 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1527 // without making our codegen depend on debug info settings. 1528 llvm::Value *This = loadIncomingCXXThis(CGF); 1529 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1530 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1531 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1532 if (!Adjustment.isZero()) { 1533 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1534 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1535 *thisTy = This->getType(); 1536 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1537 assert(Adjustment.isPositive()); 1538 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1539 -Adjustment.getQuantity()); 1540 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); 1541 } 1542 } 1543 setCXXABIThisValue(CGF, This); 1544 1545 // If this is a function that the ABI specifies returns 'this', initialize 1546 // the return slot to 'this' at the start of the function. 1547 // 1548 // Unlike the setting of return types, this is done within the ABI 1549 // implementation instead of by clients of CGCXXABI because: 1550 // 1) getThisValue is currently protected 1551 // 2) in theory, an ABI could implement 'this' returns some other way; 1552 // HasThisReturn only specifies a contract, not the implementation 1553 if (HasThisReturn(CGF.CurGD)) 1554 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1555 else if (hasMostDerivedReturn(CGF.CurGD)) 1556 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1557 CGF.ReturnValue); 1558 1559 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1560 assert(getStructorImplicitParamDecl(CGF) && 1561 "no implicit parameter for a constructor with virtual bases?"); 1562 getStructorImplicitParamValue(CGF) 1563 = CGF.Builder.CreateLoad( 1564 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1565 "is_most_derived"); 1566 } 1567 1568 if (isDeletingDtor(CGF.CurGD)) { 1569 assert(getStructorImplicitParamDecl(CGF) && 1570 "no implicit parameter for a deleting destructor?"); 1571 getStructorImplicitParamValue(CGF) 1572 = CGF.Builder.CreateLoad( 1573 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1574 "should_call_delete"); 1575 } 1576 } 1577 1578 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1579 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1580 bool ForVirtualBase, bool Delegating) { 1581 assert(Type == Ctor_Complete || Type == Ctor_Base); 1582 1583 // Check if we need a 'most_derived' parameter. 1584 if (!D->getParent()->getNumVBases()) 1585 return AddedStructorArgs{}; 1586 1587 // Add the 'most_derived' argument second if we are variadic or last if not. 1588 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1589 llvm::Value *MostDerivedArg; 1590 if (Delegating) { 1591 MostDerivedArg = getStructorImplicitParamValue(CGF); 1592 } else { 1593 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1594 } 1595 if (FPT->isVariadic()) { 1596 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1597 } 1598 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1599 } 1600 1601 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1602 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1603 bool ForVirtualBase, bool Delegating) { 1604 return nullptr; 1605 } 1606 1607 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1608 const CXXDestructorDecl *DD, 1609 CXXDtorType Type, bool ForVirtualBase, 1610 bool Delegating, Address This, 1611 QualType ThisTy) { 1612 // Use the base destructor variant in place of the complete destructor variant 1613 // if the class has no virtual bases. This effectively implements some of the 1614 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1615 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1616 Type = Dtor_Base; 1617 1618 GlobalDecl GD(DD, Type); 1619 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1620 1621 if (DD->isVirtual()) { 1622 assert(Type != CXXDtorType::Dtor_Deleting && 1623 "The deleting destructor should only be called via a virtual call"); 1624 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1625 This, false); 1626 } 1627 1628 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1629 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1630 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1631 } 1632 1633 llvm::Value *Implicit = 1634 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1635 Delegating); // = nullptr 1636 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1637 /*ImplicitParam=*/Implicit, 1638 /*ImplicitParamTy=*/QualType(), nullptr); 1639 if (BaseDtorEndBB) { 1640 // Complete object handler should continue to be the remaining 1641 CGF.Builder.CreateBr(BaseDtorEndBB); 1642 CGF.EmitBlock(BaseDtorEndBB); 1643 } 1644 } 1645 1646 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1647 const CXXRecordDecl *RD, 1648 llvm::GlobalVariable *VTable) { 1649 if (!CGM.getCodeGenOpts().LTOUnit) 1650 return; 1651 1652 // TODO: Should VirtualFunctionElimination also be supported here? 1653 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1654 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1655 llvm::DenseSet<const CXXRecordDecl *> Visited; 1656 llvm::GlobalObject::VCallVisibility TypeVis = 1657 CGM.GetVCallVisibilityLevel(RD, Visited); 1658 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1659 VTable->setVCallVisibilityMetadata(TypeVis); 1660 } 1661 1662 // The location of the first virtual function pointer in the virtual table, 1663 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1664 // disabled, or sizeof(void*) if RTTI is enabled. 1665 CharUnits AddressPoint = 1666 getContext().getLangOpts().RTTIData 1667 ? getContext().toCharUnitsFromBits( 1668 getContext().getTargetInfo().getPointerWidth(0)) 1669 : CharUnits::Zero(); 1670 1671 if (Info.PathToIntroducingObject.empty()) { 1672 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1673 return; 1674 } 1675 1676 // Add a bitset entry for the least derived base belonging to this vftable. 1677 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1678 Info.PathToIntroducingObject.back()); 1679 1680 // Add a bitset entry for each derived class that is laid out at the same 1681 // offset as the least derived base. 1682 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1683 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1684 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1685 1686 const ASTRecordLayout &Layout = 1687 getContext().getASTRecordLayout(DerivedRD); 1688 CharUnits Offset; 1689 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1690 if (VBI == Layout.getVBaseOffsetsMap().end()) 1691 Offset = Layout.getBaseClassOffset(BaseRD); 1692 else 1693 Offset = VBI->second.VBaseOffset; 1694 if (!Offset.isZero()) 1695 return; 1696 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1697 } 1698 1699 // Finally do the same for the most derived class. 1700 if (Info.FullOffsetInMDC.isZero()) 1701 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1702 } 1703 1704 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1705 const CXXRecordDecl *RD) { 1706 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1707 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1708 1709 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1710 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1711 if (VTable->hasInitializer()) 1712 continue; 1713 1714 const VTableLayout &VTLayout = 1715 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1716 1717 llvm::Constant *RTTI = nullptr; 1718 if (any_of(VTLayout.vtable_components(), 1719 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1720 RTTI = getMSCompleteObjectLocator(RD, *Info); 1721 1722 ConstantInitBuilder builder(CGM); 1723 auto components = builder.beginStruct(); 1724 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1725 VTable->hasLocalLinkage()); 1726 components.finishAndSetAsInitializer(VTable); 1727 1728 emitVTableTypeMetadata(*Info, RD, VTable); 1729 } 1730 } 1731 1732 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1733 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1734 return Vptr.NearestVBase != nullptr; 1735 } 1736 1737 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1738 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1739 const CXXRecordDecl *NearestVBase) { 1740 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1741 if (!VTableAddressPoint) { 1742 assert(Base.getBase()->getNumVBases() && 1743 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1744 } 1745 return VTableAddressPoint; 1746 } 1747 1748 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1749 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1750 SmallString<256> &Name) { 1751 llvm::raw_svector_ostream Out(Name); 1752 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1753 } 1754 1755 llvm::Constant * 1756 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1757 const CXXRecordDecl *VTableClass) { 1758 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1759 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1760 return VFTablesMap[ID]; 1761 } 1762 1763 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1764 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1765 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1766 assert(VFTable && "Couldn't find a vftable for the given base?"); 1767 return VFTable; 1768 } 1769 1770 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1771 CharUnits VPtrOffset) { 1772 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1773 // shouldn't be used in the given record type. We want to cache this result in 1774 // VFTablesMap, thus a simple zero check is not sufficient. 1775 1776 VFTableIdTy ID(RD, VPtrOffset); 1777 VTablesMapTy::iterator I; 1778 bool Inserted; 1779 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1780 if (!Inserted) 1781 return I->second; 1782 1783 llvm::GlobalVariable *&VTable = I->second; 1784 1785 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1786 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1787 1788 if (DeferredVFTables.insert(RD).second) { 1789 // We haven't processed this record type before. 1790 // Queue up this vtable for possible deferred emission. 1791 CGM.addDeferredVTable(RD); 1792 1793 #ifndef NDEBUG 1794 // Create all the vftables at once in order to make sure each vftable has 1795 // a unique mangled name. 1796 llvm::StringSet<> ObservedMangledNames; 1797 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1798 SmallString<256> Name; 1799 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1800 if (!ObservedMangledNames.insert(Name.str()).second) 1801 llvm_unreachable("Already saw this mangling before?"); 1802 } 1803 #endif 1804 } 1805 1806 const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if( 1807 VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) { 1808 return VPI->FullOffsetInMDC == VPtrOffset; 1809 }); 1810 if (VFPtrI == VFPtrs.end()) { 1811 VFTablesMap[ID] = nullptr; 1812 return nullptr; 1813 } 1814 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1815 1816 SmallString<256> VFTableName; 1817 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1818 1819 // Classes marked __declspec(dllimport) need vftables generated on the 1820 // import-side in order to support features like constexpr. No other 1821 // translation unit relies on the emission of the local vftable, translation 1822 // units are expected to generate them as needed. 1823 // 1824 // Because of this unique behavior, we maintain this logic here instead of 1825 // getVTableLinkage. 1826 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1827 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1828 : CGM.getVTableLinkage(RD); 1829 bool VFTableComesFromAnotherTU = 1830 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1831 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1832 bool VTableAliasIsRequred = 1833 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1834 1835 if (llvm::GlobalValue *VFTable = 1836 CGM.getModule().getNamedGlobal(VFTableName)) { 1837 VFTablesMap[ID] = VFTable; 1838 VTable = VTableAliasIsRequred 1839 ? cast<llvm::GlobalVariable>( 1840 cast<llvm::GlobalAlias>(VFTable)->getBaseObject()) 1841 : cast<llvm::GlobalVariable>(VFTable); 1842 return VTable; 1843 } 1844 1845 const VTableLayout &VTLayout = 1846 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1847 llvm::GlobalValue::LinkageTypes VTableLinkage = 1848 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1849 1850 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1851 1852 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1853 1854 // Create a backing variable for the contents of VTable. The VTable may 1855 // or may not include space for a pointer to RTTI data. 1856 llvm::GlobalValue *VFTable; 1857 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1858 /*isConstant=*/true, VTableLinkage, 1859 /*Initializer=*/nullptr, VTableName); 1860 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1861 1862 llvm::Comdat *C = nullptr; 1863 if (!VFTableComesFromAnotherTU && 1864 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1865 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1866 VTableAliasIsRequred))) 1867 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1868 1869 // Only insert a pointer into the VFTable for RTTI data if we are not 1870 // importing it. We never reference the RTTI data directly so there is no 1871 // need to make room for it. 1872 if (VTableAliasIsRequred) { 1873 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1874 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1875 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1876 // Create a GEP which points just after the first entry in the VFTable, 1877 // this should be the location of the first virtual method. 1878 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1879 VTable->getValueType(), VTable, GEPIndices); 1880 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1881 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1882 if (C) 1883 C->setSelectionKind(llvm::Comdat::Largest); 1884 } 1885 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1886 /*AddressSpace=*/0, VFTableLinkage, 1887 VFTableName.str(), VTableGEP, 1888 &CGM.getModule()); 1889 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1890 } else { 1891 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1892 // be referencing any RTTI data. 1893 // The GlobalVariable will end up being an appropriate definition of the 1894 // VFTable. 1895 VFTable = VTable; 1896 } 1897 if (C) 1898 VTable->setComdat(C); 1899 1900 if (RD->hasAttr<DLLExportAttr>()) 1901 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1902 1903 VFTablesMap[ID] = VFTable; 1904 return VTable; 1905 } 1906 1907 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1908 GlobalDecl GD, 1909 Address This, 1910 llvm::Type *Ty, 1911 SourceLocation Loc) { 1912 CGBuilderTy &Builder = CGF.Builder; 1913 1914 Ty = Ty->getPointerTo()->getPointerTo(); 1915 Address VPtr = 1916 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1917 1918 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1919 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent()); 1920 1921 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1922 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1923 1924 // Compute the identity of the most derived class whose virtual table is 1925 // located at the MethodVFTableLocation ML. 1926 auto getObjectWithVPtr = [&] { 1927 return llvm::find_if(VFTContext.getVFPtrOffsets( 1928 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1929 [&](const std::unique_ptr<VPtrInfo> &Info) { 1930 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1931 }) 1932 ->get() 1933 ->ObjectWithVPtr; 1934 }; 1935 1936 llvm::Value *VFunc; 1937 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1938 VFunc = CGF.EmitVTableTypeCheckedLoad( 1939 getObjectWithVPtr(), VTable, 1940 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); 1941 } else { 1942 if (CGM.getCodeGenOpts().PrepareForLTO) 1943 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1944 1945 llvm::Value *VFuncPtr = 1946 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1947 VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 1948 } 1949 1950 CGCallee Callee(GD, VFunc); 1951 return Callee; 1952 } 1953 1954 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1955 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1956 Address This, DeleteOrMemberCallExpr E) { 1957 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1958 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1959 assert((CE != nullptr) ^ (D != nullptr)); 1960 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1961 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1962 1963 // We have only one destructor in the vftable but can get both behaviors 1964 // by passing an implicit int parameter. 1965 GlobalDecl GD(Dtor, Dtor_Deleting); 1966 const CGFunctionInfo *FInfo = 1967 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 1968 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1969 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 1970 1971 ASTContext &Context = getContext(); 1972 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1973 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1974 DtorType == Dtor_Deleting); 1975 1976 QualType ThisTy; 1977 if (CE) { 1978 ThisTy = CE->getObjectType(); 1979 } else { 1980 ThisTy = D->getDestroyedType(); 1981 } 1982 1983 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1984 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1985 ImplicitParam, Context.IntTy, CE); 1986 return RV.getScalarVal(); 1987 } 1988 1989 const VBTableGlobals & 1990 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 1991 // At this layer, we can key the cache off of a single class, which is much 1992 // easier than caching each vbtable individually. 1993 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 1994 bool Added; 1995 std::tie(Entry, Added) = 1996 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 1997 VBTableGlobals &VBGlobals = Entry->second; 1998 if (!Added) 1999 return VBGlobals; 2000 2001 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2002 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 2003 2004 // Cache the globals for all vbtables so we don't have to recompute the 2005 // mangled names. 2006 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 2007 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 2008 E = VBGlobals.VBTables->end(); 2009 I != E; ++I) { 2010 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 2011 } 2012 2013 return VBGlobals; 2014 } 2015 2016 llvm::Function * 2017 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2018 const MethodVFTableLocation &ML) { 2019 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2020 "can't form pointers to ctors or virtual dtors"); 2021 2022 // Calculate the mangled name. 2023 SmallString<256> ThunkName; 2024 llvm::raw_svector_ostream Out(ThunkName); 2025 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2026 2027 // If the thunk has been generated previously, just return it. 2028 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2029 return cast<llvm::Function>(GV); 2030 2031 // Create the llvm::Function. 2032 const CGFunctionInfo &FnInfo = 2033 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2034 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2035 llvm::Function *ThunkFn = 2036 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2037 ThunkName.str(), &CGM.getModule()); 2038 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2039 2040 ThunkFn->setLinkage(MD->isExternallyVisible() 2041 ? llvm::GlobalValue::LinkOnceODRLinkage 2042 : llvm::GlobalValue::InternalLinkage); 2043 if (MD->isExternallyVisible()) 2044 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2045 2046 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 2047 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2048 2049 // Add the "thunk" attribute so that LLVM knows that the return type is 2050 // meaningless. These thunks can be used to call functions with differing 2051 // return types, and the caller is required to cast the prototype 2052 // appropriately to extract the correct value. 2053 ThunkFn->addFnAttr("thunk"); 2054 2055 // These thunks can be compared, so they are not unnamed. 2056 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2057 2058 // Start codegen. 2059 CodeGenFunction CGF(CGM); 2060 CGF.CurGD = GlobalDecl(MD); 2061 CGF.CurFuncIsThunk = true; 2062 2063 // Build FunctionArgs, but only include the implicit 'this' parameter 2064 // declaration. 2065 FunctionArgList FunctionArgs; 2066 buildThisParam(CGF, FunctionArgs); 2067 2068 // Start defining the function. 2069 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2070 FunctionArgs, MD->getLocation(), SourceLocation()); 2071 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2072 2073 // Load the vfptr and then callee from the vftable. The callee should have 2074 // adjusted 'this' so that the vfptr is at offset zero. 2075 llvm::Value *VTable = CGF.GetVTablePtr( 2076 getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent()); 2077 2078 llvm::Value *VFuncPtr = 2079 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 2080 llvm::Value *Callee = 2081 CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 2082 2083 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2084 2085 return ThunkFn; 2086 } 2087 2088 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2089 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2090 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2091 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2092 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2093 if (GV->isDeclaration()) 2094 emitVBTableDefinition(*VBT, RD, GV); 2095 } 2096 } 2097 2098 llvm::GlobalVariable * 2099 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2100 llvm::GlobalVariable::LinkageTypes Linkage) { 2101 SmallString<256> OutName; 2102 llvm::raw_svector_ostream Out(OutName); 2103 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2104 StringRef Name = OutName.str(); 2105 2106 llvm::ArrayType *VBTableType = 2107 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2108 2109 assert(!CGM.getModule().getNamedGlobal(Name) && 2110 "vbtable with this name already exists: mangling bug?"); 2111 CharUnits Alignment = 2112 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2113 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2114 Name, VBTableType, Linkage, Alignment.getQuantity()); 2115 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2116 2117 if (RD->hasAttr<DLLImportAttr>()) 2118 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2119 else if (RD->hasAttr<DLLExportAttr>()) 2120 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2121 2122 if (!GV->hasExternalLinkage()) 2123 emitVBTableDefinition(VBT, RD, GV); 2124 2125 return GV; 2126 } 2127 2128 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2129 const CXXRecordDecl *RD, 2130 llvm::GlobalVariable *GV) const { 2131 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2132 2133 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2134 "should only emit vbtables for classes with vbtables"); 2135 2136 const ASTRecordLayout &BaseLayout = 2137 getContext().getASTRecordLayout(VBT.IntroducingObject); 2138 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2139 2140 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2141 nullptr); 2142 2143 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2144 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2145 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2146 2147 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2148 for (const auto &I : ObjectWithVPtr->vbases()) { 2149 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2150 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2151 assert(!Offset.isNegative()); 2152 2153 // Make it relative to the subobject vbptr. 2154 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2155 if (VBT.getVBaseWithVPtr()) 2156 CompleteVBPtrOffset += 2157 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2158 Offset -= CompleteVBPtrOffset; 2159 2160 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2161 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2162 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2163 } 2164 2165 assert(Offsets.size() == 2166 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) 2167 ->getElementType())->getNumElements()); 2168 llvm::ArrayType *VBTableType = 2169 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2170 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2171 GV->setInitializer(Init); 2172 2173 if (RD->hasAttr<DLLImportAttr>()) 2174 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2175 } 2176 2177 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2178 Address This, 2179 const ThisAdjustment &TA) { 2180 if (TA.isEmpty()) 2181 return This.getPointer(); 2182 2183 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2184 2185 llvm::Value *V; 2186 if (TA.Virtual.isEmpty()) { 2187 V = This.getPointer(); 2188 } else { 2189 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2190 // Adjust the this argument based on the vtordisp value. 2191 Address VtorDispPtr = 2192 CGF.Builder.CreateConstInBoundsByteGEP(This, 2193 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2194 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2195 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2196 V = CGF.Builder.CreateGEP(This.getPointer(), 2197 CGF.Builder.CreateNeg(VtorDisp)); 2198 2199 // Unfortunately, having applied the vtordisp means that we no 2200 // longer really have a known alignment for the vbptr step. 2201 // We'll assume the vbptr is pointer-aligned. 2202 2203 if (TA.Virtual.Microsoft.VBPtrOffset) { 2204 // If the final overrider is defined in a virtual base other than the one 2205 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2206 // the vbtable of the derived class. 2207 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2208 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2209 llvm::Value *VBPtr; 2210 llvm::Value *VBaseOffset = 2211 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()), 2212 -TA.Virtual.Microsoft.VBPtrOffset, 2213 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2214 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2215 } 2216 } 2217 2218 if (TA.NonVirtual) { 2219 // Non-virtual adjustment might result in a pointer outside the allocated 2220 // object, e.g. if the final overrider class is laid out after the virtual 2221 // base that declares a method in the most derived class. 2222 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); 2223 } 2224 2225 // Don't need to bitcast back, the call CodeGen will handle this. 2226 return V; 2227 } 2228 2229 llvm::Value * 2230 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2231 const ReturnAdjustment &RA) { 2232 if (RA.isEmpty()) 2233 return Ret.getPointer(); 2234 2235 auto OrigTy = Ret.getType(); 2236 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2237 2238 llvm::Value *V = Ret.getPointer(); 2239 if (RA.Virtual.Microsoft.VBIndex) { 2240 assert(RA.Virtual.Microsoft.VBIndex > 0); 2241 int32_t IntSize = CGF.getIntSize().getQuantity(); 2242 llvm::Value *VBPtr; 2243 llvm::Value *VBaseOffset = 2244 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2245 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2246 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2247 } 2248 2249 if (RA.NonVirtual) 2250 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2251 2252 // Cast back to the original type. 2253 return CGF.Builder.CreateBitCast(V, OrigTy); 2254 } 2255 2256 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2257 QualType elementType) { 2258 // Microsoft seems to completely ignore the possibility of a 2259 // two-argument usual deallocation function. 2260 return elementType.isDestructedType(); 2261 } 2262 2263 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2264 // Microsoft seems to completely ignore the possibility of a 2265 // two-argument usual deallocation function. 2266 return expr->getAllocatedType().isDestructedType(); 2267 } 2268 2269 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2270 // The array cookie is always a size_t; we then pad that out to the 2271 // alignment of the element type. 2272 ASTContext &Ctx = getContext(); 2273 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2274 Ctx.getTypeAlignInChars(type)); 2275 } 2276 2277 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2278 Address allocPtr, 2279 CharUnits cookieSize) { 2280 Address numElementsPtr = 2281 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2282 return CGF.Builder.CreateLoad(numElementsPtr); 2283 } 2284 2285 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2286 Address newPtr, 2287 llvm::Value *numElements, 2288 const CXXNewExpr *expr, 2289 QualType elementType) { 2290 assert(requiresArrayCookie(expr)); 2291 2292 // The size of the cookie. 2293 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2294 2295 // Compute an offset to the cookie. 2296 Address cookiePtr = newPtr; 2297 2298 // Write the number of elements into the appropriate slot. 2299 Address numElementsPtr 2300 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2301 CGF.Builder.CreateStore(numElements, numElementsPtr); 2302 2303 // Finally, compute a pointer to the actual data buffer by skipping 2304 // over the cookie completely. 2305 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2306 } 2307 2308 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2309 llvm::FunctionCallee Dtor, 2310 llvm::Constant *Addr) { 2311 // Create a function which calls the destructor. 2312 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2313 2314 // extern "C" int __tlregdtor(void (*f)(void)); 2315 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2316 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2317 2318 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2319 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2320 if (llvm::Function *TLRegDtorFn = 2321 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2322 TLRegDtorFn->setDoesNotThrow(); 2323 2324 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2325 } 2326 2327 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2328 llvm::FunctionCallee Dtor, 2329 llvm::Constant *Addr) { 2330 if (D.isNoDestroy(CGM.getContext())) 2331 return; 2332 2333 if (D.getTLSKind()) 2334 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2335 2336 // The default behavior is to use atexit. 2337 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2338 } 2339 2340 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2341 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2342 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2343 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2344 if (CXXThreadLocalInits.empty()) 2345 return; 2346 2347 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2348 llvm::Triple::x86 2349 ? "/include:___dyn_tls_init@12" 2350 : "/include:__dyn_tls_init"); 2351 2352 // This will create a GV in the .CRT$XDU section. It will point to our 2353 // initialization function. The CRT will call all of these function 2354 // pointers at start-up time and, eventually, at thread-creation time. 2355 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2356 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2357 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2358 llvm::GlobalVariable::InternalLinkage, InitFunc, 2359 Twine(InitFunc->getName(), "$initializer$")); 2360 InitFuncPtr->setSection(".CRT$XDU"); 2361 // This variable has discardable linkage, we have to add it to @llvm.used to 2362 // ensure it won't get discarded. 2363 CGM.addUsedGlobal(InitFuncPtr); 2364 return InitFuncPtr; 2365 }; 2366 2367 std::vector<llvm::Function *> NonComdatInits; 2368 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2369 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2370 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2371 llvm::Function *F = CXXThreadLocalInits[I]; 2372 2373 // If the GV is already in a comdat group, then we have to join it. 2374 if (llvm::Comdat *C = GV->getComdat()) 2375 AddToXDU(F)->setComdat(C); 2376 else 2377 NonComdatInits.push_back(F); 2378 } 2379 2380 if (!NonComdatInits.empty()) { 2381 llvm::FunctionType *FTy = 2382 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2383 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2384 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2385 SourceLocation(), /*TLS=*/true); 2386 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2387 2388 AddToXDU(InitFunc); 2389 } 2390 } 2391 2392 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2393 const VarDecl *VD, 2394 QualType LValType) { 2395 CGF.CGM.ErrorUnsupported(VD, "thread wrappers"); 2396 return LValue(); 2397 } 2398 2399 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2400 StringRef VarName("_Init_thread_epoch"); 2401 CharUnits Align = CGM.getIntAlign(); 2402 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2403 return ConstantAddress(GV, Align); 2404 auto *GV = new llvm::GlobalVariable( 2405 CGM.getModule(), CGM.IntTy, 2406 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2407 /*Initializer=*/nullptr, VarName, 2408 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2409 GV->setAlignment(Align.getAsAlign()); 2410 return ConstantAddress(GV, Align); 2411 } 2412 2413 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2414 llvm::FunctionType *FTy = 2415 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2416 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2417 return CGM.CreateRuntimeFunction( 2418 FTy, "_Init_thread_header", 2419 llvm::AttributeList::get(CGM.getLLVMContext(), 2420 llvm::AttributeList::FunctionIndex, 2421 llvm::Attribute::NoUnwind), 2422 /*Local=*/true); 2423 } 2424 2425 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2426 llvm::FunctionType *FTy = 2427 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2428 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2429 return CGM.CreateRuntimeFunction( 2430 FTy, "_Init_thread_footer", 2431 llvm::AttributeList::get(CGM.getLLVMContext(), 2432 llvm::AttributeList::FunctionIndex, 2433 llvm::Attribute::NoUnwind), 2434 /*Local=*/true); 2435 } 2436 2437 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2438 llvm::FunctionType *FTy = 2439 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2440 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2441 return CGM.CreateRuntimeFunction( 2442 FTy, "_Init_thread_abort", 2443 llvm::AttributeList::get(CGM.getLLVMContext(), 2444 llvm::AttributeList::FunctionIndex, 2445 llvm::Attribute::NoUnwind), 2446 /*Local=*/true); 2447 } 2448 2449 namespace { 2450 struct ResetGuardBit final : EHScopeStack::Cleanup { 2451 Address Guard; 2452 unsigned GuardNum; 2453 ResetGuardBit(Address Guard, unsigned GuardNum) 2454 : Guard(Guard), GuardNum(GuardNum) {} 2455 2456 void Emit(CodeGenFunction &CGF, Flags flags) override { 2457 // Reset the bit in the mask so that the static variable may be 2458 // reinitialized. 2459 CGBuilderTy &Builder = CGF.Builder; 2460 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2461 llvm::ConstantInt *Mask = 2462 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2463 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2464 } 2465 }; 2466 2467 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2468 llvm::Value *Guard; 2469 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2470 2471 void Emit(CodeGenFunction &CGF, Flags flags) override { 2472 // Calling _Init_thread_abort will reset the guard's state. 2473 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2474 } 2475 }; 2476 } 2477 2478 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2479 llvm::GlobalVariable *GV, 2480 bool PerformInit) { 2481 // MSVC only uses guards for static locals. 2482 if (!D.isStaticLocal()) { 2483 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2484 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2485 llvm::Function *F = CGF.CurFn; 2486 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2487 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2488 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2489 return; 2490 } 2491 2492 bool ThreadlocalStatic = D.getTLSKind(); 2493 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2494 2495 // Thread-safe static variables which aren't thread-specific have a 2496 // per-variable guard. 2497 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2498 2499 CGBuilderTy &Builder = CGF.Builder; 2500 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2501 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2502 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2503 2504 // Get the guard variable for this function if we have one already. 2505 GuardInfo *GI = nullptr; 2506 if (ThreadlocalStatic) 2507 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2508 else if (!ThreadsafeStatic) 2509 GI = &GuardVariableMap[D.getDeclContext()]; 2510 2511 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2512 unsigned GuardNum; 2513 if (D.isExternallyVisible()) { 2514 // Externally visible variables have to be numbered in Sema to properly 2515 // handle unreachable VarDecls. 2516 GuardNum = getContext().getStaticLocalNumber(&D); 2517 assert(GuardNum > 0); 2518 GuardNum--; 2519 } else if (HasPerVariableGuard) { 2520 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2521 } else { 2522 // Non-externally visible variables are numbered here in CodeGen. 2523 GuardNum = GI->BitIndex++; 2524 } 2525 2526 if (!HasPerVariableGuard && GuardNum >= 32) { 2527 if (D.isExternallyVisible()) 2528 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2529 GuardNum %= 32; 2530 GuardVar = nullptr; 2531 } 2532 2533 if (!GuardVar) { 2534 // Mangle the name for the guard. 2535 SmallString<256> GuardName; 2536 { 2537 llvm::raw_svector_ostream Out(GuardName); 2538 if (HasPerVariableGuard) 2539 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2540 Out); 2541 else 2542 getMangleContext().mangleStaticGuardVariable(&D, Out); 2543 } 2544 2545 // Create the guard variable with a zero-initializer. Just absorb linkage, 2546 // visibility and dll storage class from the guarded variable. 2547 GuardVar = 2548 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2549 GV->getLinkage(), Zero, GuardName.str()); 2550 GuardVar->setVisibility(GV->getVisibility()); 2551 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2552 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2553 if (GuardVar->isWeakForLinker()) 2554 GuardVar->setComdat( 2555 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2556 if (D.getTLSKind()) 2557 CGM.setTLSMode(GuardVar, D); 2558 if (GI && !HasPerVariableGuard) 2559 GI->Guard = GuardVar; 2560 } 2561 2562 ConstantAddress GuardAddr(GuardVar, GuardAlign); 2563 2564 assert(GuardVar->getLinkage() == GV->getLinkage() && 2565 "static local from the same function had different linkage"); 2566 2567 if (!HasPerVariableGuard) { 2568 // Pseudo code for the test: 2569 // if (!(GuardVar & MyGuardBit)) { 2570 // GuardVar |= MyGuardBit; 2571 // ... initialize the object ...; 2572 // } 2573 2574 // Test our bit from the guard variable. 2575 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2576 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2577 llvm::Value *NeedsInit = 2578 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2579 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2580 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2581 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2582 CodeGenFunction::GuardKind::VariableGuard, &D); 2583 2584 // Set our bit in the guard variable and emit the initializer and add a global 2585 // destructor if appropriate. 2586 CGF.EmitBlock(InitBlock); 2587 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2588 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2589 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2590 CGF.PopCleanupBlock(); 2591 Builder.CreateBr(EndBlock); 2592 2593 // Continue. 2594 CGF.EmitBlock(EndBlock); 2595 } else { 2596 // Pseudo code for the test: 2597 // if (TSS > _Init_thread_epoch) { 2598 // _Init_thread_header(&TSS); 2599 // if (TSS == -1) { 2600 // ... initialize the object ...; 2601 // _Init_thread_footer(&TSS); 2602 // } 2603 // } 2604 // 2605 // The algorithm is almost identical to what can be found in the appendix 2606 // found in N2325. 2607 2608 // This BasicBLock determines whether or not we have any work to do. 2609 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2610 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2611 llvm::LoadInst *InitThreadEpoch = 2612 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2613 llvm::Value *IsUninitialized = 2614 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2615 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2616 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2617 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2618 CodeGenFunction::GuardKind::VariableGuard, &D); 2619 2620 // This BasicBlock attempts to determine whether or not this thread is 2621 // responsible for doing the initialization. 2622 CGF.EmitBlock(AttemptInitBlock); 2623 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2624 GuardAddr.getPointer()); 2625 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2626 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2627 llvm::Value *ShouldDoInit = 2628 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2629 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2630 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2631 2632 // Ok, we ended up getting selected as the initializing thread. 2633 CGF.EmitBlock(InitBlock); 2634 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2635 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2636 CGF.PopCleanupBlock(); 2637 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2638 GuardAddr.getPointer()); 2639 Builder.CreateBr(EndBlock); 2640 2641 CGF.EmitBlock(EndBlock); 2642 } 2643 } 2644 2645 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2646 // Null-ness for function memptrs only depends on the first field, which is 2647 // the function pointer. The rest don't matter, so we can zero initialize. 2648 if (MPT->isMemberFunctionPointer()) 2649 return true; 2650 2651 // The virtual base adjustment field is always -1 for null, so if we have one 2652 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2653 // valid field offset. 2654 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2655 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2656 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2657 RD->nullFieldOffsetIsZero()); 2658 } 2659 2660 llvm::Type * 2661 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2662 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2663 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2664 llvm::SmallVector<llvm::Type *, 4> fields; 2665 if (MPT->isMemberFunctionPointer()) 2666 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2667 else 2668 fields.push_back(CGM.IntTy); // FieldOffset 2669 2670 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2671 Inheritance)) 2672 fields.push_back(CGM.IntTy); 2673 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2674 fields.push_back(CGM.IntTy); 2675 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2676 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2677 2678 if (fields.size() == 1) 2679 return fields[0]; 2680 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2681 } 2682 2683 void MicrosoftCXXABI:: 2684 GetNullMemberPointerFields(const MemberPointerType *MPT, 2685 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2686 assert(fields.empty()); 2687 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2688 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2689 if (MPT->isMemberFunctionPointer()) { 2690 // FunctionPointerOrVirtualThunk 2691 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2692 } else { 2693 if (RD->nullFieldOffsetIsZero()) 2694 fields.push_back(getZeroInt()); // FieldOffset 2695 else 2696 fields.push_back(getAllOnesInt()); // FieldOffset 2697 } 2698 2699 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2700 Inheritance)) 2701 fields.push_back(getZeroInt()); 2702 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2703 fields.push_back(getZeroInt()); 2704 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2705 fields.push_back(getAllOnesInt()); 2706 } 2707 2708 llvm::Constant * 2709 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2710 llvm::SmallVector<llvm::Constant *, 4> fields; 2711 GetNullMemberPointerFields(MPT, fields); 2712 if (fields.size() == 1) 2713 return fields[0]; 2714 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2715 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2716 return Res; 2717 } 2718 2719 llvm::Constant * 2720 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2721 bool IsMemberFunction, 2722 const CXXRecordDecl *RD, 2723 CharUnits NonVirtualBaseAdjustment, 2724 unsigned VBTableIndex) { 2725 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2726 2727 // Single inheritance class member pointer are represented as scalars instead 2728 // of aggregates. 2729 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2730 return FirstField; 2731 2732 llvm::SmallVector<llvm::Constant *, 4> fields; 2733 fields.push_back(FirstField); 2734 2735 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2736 fields.push_back(llvm::ConstantInt::get( 2737 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2738 2739 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2740 CharUnits Offs = CharUnits::Zero(); 2741 if (VBTableIndex) 2742 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2743 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2744 } 2745 2746 // The rest of the fields are adjusted by conversions to a more derived class. 2747 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2748 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2749 2750 return llvm::ConstantStruct::getAnon(fields); 2751 } 2752 2753 llvm::Constant * 2754 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2755 CharUnits offset) { 2756 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2757 } 2758 2759 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2760 CharUnits offset) { 2761 if (RD->getMSInheritanceModel() == 2762 MSInheritanceModel::Virtual) 2763 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2764 llvm::Constant *FirstField = 2765 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2766 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2767 CharUnits::Zero(), /*VBTableIndex=*/0); 2768 } 2769 2770 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2771 QualType MPType) { 2772 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2773 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2774 if (!MPD) 2775 return EmitNullMemberPointer(DstTy); 2776 2777 ASTContext &Ctx = getContext(); 2778 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2779 2780 llvm::Constant *C; 2781 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2782 C = EmitMemberFunctionPointer(MD); 2783 } else { 2784 // For a pointer to data member, start off with the offset of the field in 2785 // the class in which it was declared, and convert from there if necessary. 2786 // For indirect field decls, get the outermost anonymous field and use the 2787 // parent class. 2788 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2789 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2790 if (!FD) 2791 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2792 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2793 RD = RD->getMostRecentNonInjectedDecl(); 2794 C = EmitMemberDataPointer(RD, FieldOffset); 2795 } 2796 2797 if (!MemberPointerPath.empty()) { 2798 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2799 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2800 const MemberPointerType *SrcTy = 2801 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2802 ->castAs<MemberPointerType>(); 2803 2804 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2805 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2806 const CXXRecordDecl *PrevRD = SrcRD; 2807 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2808 const CXXRecordDecl *Base = nullptr; 2809 const CXXRecordDecl *Derived = nullptr; 2810 if (DerivedMember) { 2811 Base = PathElem; 2812 Derived = PrevRD; 2813 } else { 2814 Base = PrevRD; 2815 Derived = PathElem; 2816 } 2817 for (const CXXBaseSpecifier &BS : Derived->bases()) 2818 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2819 Base->getCanonicalDecl()) 2820 DerivedToBasePath.push_back(&BS); 2821 PrevRD = PathElem; 2822 } 2823 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2824 2825 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2826 : CK_BaseToDerivedMemberPointer; 2827 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2828 DerivedToBasePath.end(), C); 2829 } 2830 return C; 2831 } 2832 2833 llvm::Constant * 2834 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2835 assert(MD->isInstance() && "Member function must not be static!"); 2836 2837 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2838 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2839 CodeGenTypes &Types = CGM.getTypes(); 2840 2841 unsigned VBTableIndex = 0; 2842 llvm::Constant *FirstField; 2843 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2844 if (!MD->isVirtual()) { 2845 llvm::Type *Ty; 2846 // Check whether the function has a computable LLVM signature. 2847 if (Types.isFuncTypeConvertible(FPT)) { 2848 // The function has a computable LLVM signature; use the correct type. 2849 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2850 } else { 2851 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2852 // function type is incomplete. 2853 Ty = CGM.PtrDiffTy; 2854 } 2855 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2856 } else { 2857 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2858 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2859 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2860 // Include the vfptr adjustment if the method is in a non-primary vftable. 2861 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2862 if (ML.VBase) 2863 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2864 } 2865 2866 if (VBTableIndex == 0 && 2867 RD->getMSInheritanceModel() == 2868 MSInheritanceModel::Virtual) 2869 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2870 2871 // The rest of the fields are common with data member pointers. 2872 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2873 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2874 NonVirtualBaseAdjustment, VBTableIndex); 2875 } 2876 2877 /// Member pointers are the same if they're either bitwise identical *or* both 2878 /// null. Null-ness for function members is determined by the first field, 2879 /// while for data member pointers we must compare all fields. 2880 llvm::Value * 2881 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2882 llvm::Value *L, 2883 llvm::Value *R, 2884 const MemberPointerType *MPT, 2885 bool Inequality) { 2886 CGBuilderTy &Builder = CGF.Builder; 2887 2888 // Handle != comparisons by switching the sense of all boolean operations. 2889 llvm::ICmpInst::Predicate Eq; 2890 llvm::Instruction::BinaryOps And, Or; 2891 if (Inequality) { 2892 Eq = llvm::ICmpInst::ICMP_NE; 2893 And = llvm::Instruction::Or; 2894 Or = llvm::Instruction::And; 2895 } else { 2896 Eq = llvm::ICmpInst::ICMP_EQ; 2897 And = llvm::Instruction::And; 2898 Or = llvm::Instruction::Or; 2899 } 2900 2901 // If this is a single field member pointer (single inheritance), this is a 2902 // single icmp. 2903 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2904 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2905 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 2906 Inheritance)) 2907 return Builder.CreateICmp(Eq, L, R); 2908 2909 // Compare the first field. 2910 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 2911 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 2912 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 2913 2914 // Compare everything other than the first field. 2915 llvm::Value *Res = nullptr; 2916 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 2917 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 2918 llvm::Value *LF = Builder.CreateExtractValue(L, I); 2919 llvm::Value *RF = Builder.CreateExtractValue(R, I); 2920 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 2921 if (Res) 2922 Res = Builder.CreateBinOp(And, Res, Cmp); 2923 else 2924 Res = Cmp; 2925 } 2926 2927 // Check if the first field is 0 if this is a function pointer. 2928 if (MPT->isMemberFunctionPointer()) { 2929 // (l1 == r1 && ...) || l0 == 0 2930 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 2931 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 2932 Res = Builder.CreateBinOp(Or, Res, IsZero); 2933 } 2934 2935 // Combine the comparison of the first field, which must always be true for 2936 // this comparison to succeeed. 2937 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 2938 } 2939 2940 llvm::Value * 2941 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 2942 llvm::Value *MemPtr, 2943 const MemberPointerType *MPT) { 2944 CGBuilderTy &Builder = CGF.Builder; 2945 llvm::SmallVector<llvm::Constant *, 4> fields; 2946 // We only need one field for member functions. 2947 if (MPT->isMemberFunctionPointer()) 2948 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2949 else 2950 GetNullMemberPointerFields(MPT, fields); 2951 assert(!fields.empty()); 2952 llvm::Value *FirstField = MemPtr; 2953 if (MemPtr->getType()->isStructTy()) 2954 FirstField = Builder.CreateExtractValue(MemPtr, 0); 2955 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 2956 2957 // For function member pointers, we only need to test the function pointer 2958 // field. The other fields if any can be garbage. 2959 if (MPT->isMemberFunctionPointer()) 2960 return Res; 2961 2962 // Otherwise, emit a series of compares and combine the results. 2963 for (int I = 1, E = fields.size(); I < E; ++I) { 2964 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 2965 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 2966 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 2967 } 2968 return Res; 2969 } 2970 2971 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 2972 llvm::Constant *Val) { 2973 // Function pointers are null if the pointer in the first field is null. 2974 if (MPT->isMemberFunctionPointer()) { 2975 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 2976 Val->getAggregateElement(0U) : Val; 2977 return FirstField->isNullValue(); 2978 } 2979 2980 // If it's not a function pointer and it's zero initializable, we can easily 2981 // check zero. 2982 if (isZeroInitializable(MPT) && Val->isNullValue()) 2983 return true; 2984 2985 // Otherwise, break down all the fields for comparison. Hopefully these 2986 // little Constants are reused, while a big null struct might not be. 2987 llvm::SmallVector<llvm::Constant *, 4> Fields; 2988 GetNullMemberPointerFields(MPT, Fields); 2989 if (Fields.size() == 1) { 2990 assert(Val->getType()->isIntegerTy()); 2991 return Val == Fields[0]; 2992 } 2993 2994 unsigned I, E; 2995 for (I = 0, E = Fields.size(); I != E; ++I) { 2996 if (Val->getAggregateElement(I) != Fields[I]) 2997 break; 2998 } 2999 return I == E; 3000 } 3001 3002 llvm::Value * 3003 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 3004 Address This, 3005 llvm::Value *VBPtrOffset, 3006 llvm::Value *VBTableOffset, 3007 llvm::Value **VBPtrOut) { 3008 CGBuilderTy &Builder = CGF.Builder; 3009 // Load the vbtable pointer from the vbptr in the instance. 3010 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 3011 llvm::Value *VBPtr = 3012 Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr"); 3013 if (VBPtrOut) *VBPtrOut = VBPtr; 3014 VBPtr = Builder.CreateBitCast(VBPtr, 3015 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 3016 3017 CharUnits VBPtrAlign; 3018 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3019 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3020 CharUnits::fromQuantity(CI->getSExtValue())); 3021 } else { 3022 VBPtrAlign = CGF.getPointerAlign(); 3023 } 3024 3025 llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable"); 3026 3027 // Translate from byte offset to table index. It improves analyzability. 3028 llvm::Value *VBTableIndex = Builder.CreateAShr( 3029 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3030 "vbtindex", /*isExact=*/true); 3031 3032 // Load an i32 offset from the vb-table. 3033 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex); 3034 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 3035 return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4), 3036 "vbase_offs"); 3037 } 3038 3039 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3040 // it. 3041 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3042 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3043 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3044 CGBuilderTy &Builder = CGF.Builder; 3045 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 3046 llvm::BasicBlock *OriginalBB = nullptr; 3047 llvm::BasicBlock *SkipAdjustBB = nullptr; 3048 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3049 3050 // In the unspecified inheritance model, there might not be a vbtable at all, 3051 // in which case we need to skip the virtual base lookup. If there is a 3052 // vbtable, the first entry is a no-op entry that gives back the original 3053 // base, so look for a virtual base adjustment offset of zero. 3054 if (VBPtrOffset) { 3055 OriginalBB = Builder.GetInsertBlock(); 3056 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3057 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3058 llvm::Value *IsVirtual = 3059 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3060 "memptr.is_vbase"); 3061 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3062 CGF.EmitBlock(VBaseAdjustBB); 3063 } 3064 3065 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3066 // know the vbptr offset. 3067 if (!VBPtrOffset) { 3068 CharUnits offs = CharUnits::Zero(); 3069 if (!RD->hasDefinition()) { 3070 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3071 unsigned DiagID = Diags.getCustomDiagID( 3072 DiagnosticsEngine::Error, 3073 "member pointer representation requires a " 3074 "complete class type for %0 to perform this expression"); 3075 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3076 } else if (RD->getNumVBases()) 3077 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3078 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3079 } 3080 llvm::Value *VBPtr = nullptr; 3081 llvm::Value *VBaseOffs = 3082 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3083 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); 3084 3085 // Merge control flow with the case where we didn't have to adjust. 3086 if (VBaseAdjustBB) { 3087 Builder.CreateBr(SkipAdjustBB); 3088 CGF.EmitBlock(SkipAdjustBB); 3089 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3090 Phi->addIncoming(Base.getPointer(), OriginalBB); 3091 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3092 return Phi; 3093 } 3094 return AdjustedBase; 3095 } 3096 3097 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3098 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3099 const MemberPointerType *MPT) { 3100 assert(MPT->isMemberDataPointer()); 3101 unsigned AS = Base.getAddressSpace(); 3102 llvm::Type *PType = 3103 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 3104 CGBuilderTy &Builder = CGF.Builder; 3105 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3106 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3107 3108 // Extract the fields we need, regardless of model. We'll apply them if we 3109 // have them. 3110 llvm::Value *FieldOffset = MemPtr; 3111 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3112 llvm::Value *VBPtrOffset = nullptr; 3113 if (MemPtr->getType()->isStructTy()) { 3114 // We need to extract values. 3115 unsigned I = 0; 3116 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3117 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3118 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3119 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3120 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3121 } 3122 3123 llvm::Value *Addr; 3124 if (VirtualBaseAdjustmentOffset) { 3125 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3126 VBPtrOffset); 3127 } else { 3128 Addr = Base.getPointer(); 3129 } 3130 3131 // Cast to char*. 3132 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 3133 3134 // Apply the offset, which we assume is non-null. 3135 Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset"); 3136 3137 // Cast the address to the appropriate pointer type, adopting the address 3138 // space of the base pointer. 3139 return Builder.CreateBitCast(Addr, PType); 3140 } 3141 3142 llvm::Value * 3143 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3144 const CastExpr *E, 3145 llvm::Value *Src) { 3146 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3147 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3148 E->getCastKind() == CK_ReinterpretMemberPointer); 3149 3150 // Use constant emission if we can. 3151 if (isa<llvm::Constant>(Src)) 3152 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3153 3154 // We may be adding or dropping fields from the member pointer, so we need 3155 // both types and the inheritance models of both records. 3156 const MemberPointerType *SrcTy = 3157 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3158 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3159 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3160 3161 // If the classes use the same null representation, reinterpret_cast is a nop. 3162 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3163 if (IsReinterpret && IsFunc) 3164 return Src; 3165 3166 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3167 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3168 if (IsReinterpret && 3169 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3170 return Src; 3171 3172 CGBuilderTy &Builder = CGF.Builder; 3173 3174 // Branch past the conversion if Src is null. 3175 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3176 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3177 3178 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3179 // pointer value of the destination type. 3180 if (IsReinterpret) { 3181 // For reinterpret casts, sema ensures that src and dst are both functions 3182 // or data and have the same size, which means the LLVM types should match. 3183 assert(Src->getType() == DstNull->getType()); 3184 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3185 } 3186 3187 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3188 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3189 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3190 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3191 CGF.EmitBlock(ConvertBB); 3192 3193 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3194 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3195 Builder); 3196 3197 Builder.CreateBr(ContinueBB); 3198 3199 // In the continuation, choose between DstNull and Dst. 3200 CGF.EmitBlock(ContinueBB); 3201 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3202 Phi->addIncoming(DstNull, OriginalBB); 3203 Phi->addIncoming(Dst, ConvertBB); 3204 return Phi; 3205 } 3206 3207 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3208 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3209 CastExpr::path_const_iterator PathBegin, 3210 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3211 CGBuilderTy &Builder) { 3212 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3213 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3214 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3215 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3216 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3217 bool IsConstant = isa<llvm::Constant>(Src); 3218 3219 // Decompose src. 3220 llvm::Value *FirstField = Src; 3221 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3222 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3223 llvm::Value *VBPtrOffset = getZeroInt(); 3224 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3225 // We need to extract values. 3226 unsigned I = 0; 3227 FirstField = Builder.CreateExtractValue(Src, I++); 3228 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3229 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3230 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3231 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3232 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3233 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3234 } 3235 3236 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3237 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3238 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3239 3240 // For data pointers, we adjust the field offset directly. For functions, we 3241 // have a separate field. 3242 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3243 3244 // The virtual inheritance model has a quirk: the virtual base table is always 3245 // referenced when dereferencing a member pointer even if the member pointer 3246 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3247 // to point backwards to the top of the MDC from the first VBase. Undo this 3248 // adjustment to normalize the member pointer. 3249 llvm::Value *SrcVBIndexEqZero = 3250 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3251 if (SrcInheritance == MSInheritanceModel::Virtual) { 3252 if (int64_t SrcOffsetToFirstVBase = 3253 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3254 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3255 SrcVBIndexEqZero, 3256 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3257 getZeroInt()); 3258 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3259 } 3260 } 3261 3262 // A non-zero vbindex implies that we are dealing with a source member in a 3263 // floating virtual base in addition to some non-virtual offset. If the 3264 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3265 // fixed, base. The difference between these two cases is that the vbindex + 3266 // nvoffset *always* point to the member regardless of what context they are 3267 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3268 // base requires explicit nv adjustment. 3269 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3270 CGM.IntTy, 3271 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3272 .getQuantity()); 3273 3274 llvm::Value *NVDisp; 3275 if (IsDerivedToBase) 3276 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3277 else 3278 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3279 3280 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3281 3282 // Update the vbindex to an appropriate value in the destination because 3283 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3284 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3285 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3286 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3287 if (llvm::GlobalVariable *VDispMap = 3288 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3289 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3290 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3291 if (IsConstant) { 3292 llvm::Constant *Mapping = VDispMap->getInitializer(); 3293 VirtualBaseAdjustmentOffset = 3294 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3295 } else { 3296 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3297 VirtualBaseAdjustmentOffset = 3298 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs), 3299 CharUnits::fromQuantity(4)); 3300 } 3301 3302 DstVBIndexEqZero = 3303 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3304 } 3305 } 3306 3307 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3308 // it to the offset of the vbptr. 3309 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3310 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3311 CGM.IntTy, 3312 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3313 VBPtrOffset = 3314 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3315 } 3316 3317 // Likewise, apply a similar adjustment so that dereferencing the member 3318 // pointer correctly accounts for the distance between the start of the first 3319 // virtual base and the top of the MDC. 3320 if (DstInheritance == MSInheritanceModel::Virtual) { 3321 if (int64_t DstOffsetToFirstVBase = 3322 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3323 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3324 DstVBIndexEqZero, 3325 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3326 getZeroInt()); 3327 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3328 } 3329 } 3330 3331 // Recompose dst from the null struct and the adjusted fields from src. 3332 llvm::Value *Dst; 3333 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3334 Dst = FirstField; 3335 } else { 3336 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3337 unsigned Idx = 0; 3338 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3339 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3340 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3341 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3342 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3343 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3344 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3345 } 3346 return Dst; 3347 } 3348 3349 llvm::Constant * 3350 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3351 llvm::Constant *Src) { 3352 const MemberPointerType *SrcTy = 3353 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3354 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3355 3356 CastKind CK = E->getCastKind(); 3357 3358 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3359 E->path_end(), Src); 3360 } 3361 3362 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3363 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3364 CastExpr::path_const_iterator PathBegin, 3365 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3366 assert(CK == CK_DerivedToBaseMemberPointer || 3367 CK == CK_BaseToDerivedMemberPointer || 3368 CK == CK_ReinterpretMemberPointer); 3369 // If src is null, emit a new null for dst. We can't return src because dst 3370 // might have a new representation. 3371 if (MemberPointerConstantIsNull(SrcTy, Src)) 3372 return EmitNullMemberPointer(DstTy); 3373 3374 // We don't need to do anything for reinterpret_casts of non-null member 3375 // pointers. We should only get here when the two type representations have 3376 // the same size. 3377 if (CK == CK_ReinterpretMemberPointer) 3378 return Src; 3379 3380 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3381 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3382 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3383 3384 return Dst; 3385 } 3386 3387 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3388 CodeGenFunction &CGF, const Expr *E, Address This, 3389 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3390 const MemberPointerType *MPT) { 3391 assert(MPT->isMemberFunctionPointer()); 3392 const FunctionProtoType *FPT = 3393 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3394 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3395 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3396 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3397 CGBuilderTy &Builder = CGF.Builder; 3398 3399 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3400 3401 // Extract the fields we need, regardless of model. We'll apply them if we 3402 // have them. 3403 llvm::Value *FunctionPointer = MemPtr; 3404 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3405 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3406 llvm::Value *VBPtrOffset = nullptr; 3407 if (MemPtr->getType()->isStructTy()) { 3408 // We need to extract values. 3409 unsigned I = 0; 3410 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3411 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3412 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3413 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3414 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3415 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3416 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3417 } 3418 3419 if (VirtualBaseAdjustmentOffset) { 3420 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3421 VirtualBaseAdjustmentOffset, VBPtrOffset); 3422 } else { 3423 ThisPtrForCall = This.getPointer(); 3424 } 3425 3426 if (NonVirtualBaseAdjustment) { 3427 // Apply the adjustment and cast back to the original struct type. 3428 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3429 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); 3430 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3431 "this.adjusted"); 3432 } 3433 3434 FunctionPointer = 3435 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3436 CGCallee Callee(FPT, FunctionPointer); 3437 return Callee; 3438 } 3439 3440 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3441 return new MicrosoftCXXABI(CGM); 3442 } 3443 3444 // MS RTTI Overview: 3445 // The run time type information emitted by cl.exe contains 5 distinct types of 3446 // structures. Many of them reference each other. 3447 // 3448 // TypeInfo: Static classes that are returned by typeid. 3449 // 3450 // CompleteObjectLocator: Referenced by vftables. They contain information 3451 // required for dynamic casting, including OffsetFromTop. They also contain 3452 // a reference to the TypeInfo for the type and a reference to the 3453 // CompleteHierarchyDescriptor for the type. 3454 // 3455 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3456 // Used during dynamic_cast to walk a class hierarchy. References a base 3457 // class array and the size of said array. 3458 // 3459 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3460 // somewhat of a misnomer because the most derived class is also in the list 3461 // as well as multiple copies of virtual bases (if they occur multiple times 3462 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3463 // every path in the hierarchy, in pre-order depth first order. Note, we do 3464 // not declare a specific llvm type for BaseClassArray, it's merely an array 3465 // of BaseClassDescriptor pointers. 3466 // 3467 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3468 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3469 // BaseClassArray is. It contains information about a class within a 3470 // hierarchy such as: is this base is ambiguous and what is its offset in the 3471 // vbtable. The names of the BaseClassDescriptors have all of their fields 3472 // mangled into them so they can be aggressively deduplicated by the linker. 3473 3474 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3475 StringRef MangledName("??_7type_info@@6B@"); 3476 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3477 return VTable; 3478 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3479 /*isConstant=*/true, 3480 llvm::GlobalVariable::ExternalLinkage, 3481 /*Initializer=*/nullptr, MangledName); 3482 } 3483 3484 namespace { 3485 3486 /// A Helper struct that stores information about a class in a class 3487 /// hierarchy. The information stored in these structs struct is used during 3488 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3489 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3490 // implicit depth first pre-order tree connectivity. getFirstChild and 3491 // getNextSibling allow us to walk the tree efficiently. 3492 struct MSRTTIClass { 3493 enum { 3494 IsPrivateOnPath = 1 | 8, 3495 IsAmbiguous = 2, 3496 IsPrivate = 4, 3497 IsVirtual = 16, 3498 HasHierarchyDescriptor = 64 3499 }; 3500 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3501 uint32_t initialize(const MSRTTIClass *Parent, 3502 const CXXBaseSpecifier *Specifier); 3503 3504 MSRTTIClass *getFirstChild() { return this + 1; } 3505 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3506 return Child + 1 + Child->NumBases; 3507 } 3508 3509 const CXXRecordDecl *RD, *VirtualRoot; 3510 uint32_t Flags, NumBases, OffsetInVBase; 3511 }; 3512 3513 /// Recursively initialize the base class array. 3514 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3515 const CXXBaseSpecifier *Specifier) { 3516 Flags = HasHierarchyDescriptor; 3517 if (!Parent) { 3518 VirtualRoot = nullptr; 3519 OffsetInVBase = 0; 3520 } else { 3521 if (Specifier->getAccessSpecifier() != AS_public) 3522 Flags |= IsPrivate | IsPrivateOnPath; 3523 if (Specifier->isVirtual()) { 3524 Flags |= IsVirtual; 3525 VirtualRoot = RD; 3526 OffsetInVBase = 0; 3527 } else { 3528 if (Parent->Flags & IsPrivateOnPath) 3529 Flags |= IsPrivateOnPath; 3530 VirtualRoot = Parent->VirtualRoot; 3531 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3532 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3533 } 3534 } 3535 NumBases = 0; 3536 MSRTTIClass *Child = getFirstChild(); 3537 for (const CXXBaseSpecifier &Base : RD->bases()) { 3538 NumBases += Child->initialize(this, &Base) + 1; 3539 Child = getNextChild(Child); 3540 } 3541 return NumBases; 3542 } 3543 3544 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3545 switch (Ty->getLinkage()) { 3546 case NoLinkage: 3547 case InternalLinkage: 3548 case UniqueExternalLinkage: 3549 return llvm::GlobalValue::InternalLinkage; 3550 3551 case VisibleNoLinkage: 3552 case ModuleInternalLinkage: 3553 case ModuleLinkage: 3554 case ExternalLinkage: 3555 return llvm::GlobalValue::LinkOnceODRLinkage; 3556 } 3557 llvm_unreachable("Invalid linkage!"); 3558 } 3559 3560 /// An ephemeral helper class for building MS RTTI types. It caches some 3561 /// calls to the module and information about the most derived class in a 3562 /// hierarchy. 3563 struct MSRTTIBuilder { 3564 enum { 3565 HasBranchingHierarchy = 1, 3566 HasVirtualBranchingHierarchy = 2, 3567 HasAmbiguousBases = 4 3568 }; 3569 3570 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3571 : CGM(ABI.CGM), Context(CGM.getContext()), 3572 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3573 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3574 ABI(ABI) {} 3575 3576 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3577 llvm::GlobalVariable * 3578 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3579 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3580 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3581 3582 CodeGenModule &CGM; 3583 ASTContext &Context; 3584 llvm::LLVMContext &VMContext; 3585 llvm::Module &Module; 3586 const CXXRecordDecl *RD; 3587 llvm::GlobalVariable::LinkageTypes Linkage; 3588 MicrosoftCXXABI &ABI; 3589 }; 3590 3591 } // namespace 3592 3593 /// Recursively serializes a class hierarchy in pre-order depth first 3594 /// order. 3595 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3596 const CXXRecordDecl *RD) { 3597 Classes.push_back(MSRTTIClass(RD)); 3598 for (const CXXBaseSpecifier &Base : RD->bases()) 3599 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3600 } 3601 3602 /// Find ambiguity among base classes. 3603 static void 3604 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3605 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3606 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3607 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3608 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3609 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3610 !VirtualBases.insert(Class->RD).second) { 3611 Class = MSRTTIClass::getNextChild(Class); 3612 continue; 3613 } 3614 if (!UniqueBases.insert(Class->RD).second) 3615 AmbiguousBases.insert(Class->RD); 3616 Class++; 3617 } 3618 if (AmbiguousBases.empty()) 3619 return; 3620 for (MSRTTIClass &Class : Classes) 3621 if (AmbiguousBases.count(Class.RD)) 3622 Class.Flags |= MSRTTIClass::IsAmbiguous; 3623 } 3624 3625 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3626 SmallString<256> MangledName; 3627 { 3628 llvm::raw_svector_ostream Out(MangledName); 3629 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3630 } 3631 3632 // Check to see if we've already declared this ClassHierarchyDescriptor. 3633 if (auto CHD = Module.getNamedGlobal(MangledName)) 3634 return CHD; 3635 3636 // Serialize the class hierarchy and initialize the CHD Fields. 3637 SmallVector<MSRTTIClass, 8> Classes; 3638 serializeClassHierarchy(Classes, RD); 3639 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3640 detectAmbiguousBases(Classes); 3641 int Flags = 0; 3642 for (auto Class : Classes) { 3643 if (Class.RD->getNumBases() > 1) 3644 Flags |= HasBranchingHierarchy; 3645 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3646 // believe the field isn't actually used. 3647 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3648 Flags |= HasAmbiguousBases; 3649 } 3650 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3651 Flags |= HasVirtualBranchingHierarchy; 3652 // These gep indices are used to get the address of the first element of the 3653 // base class array. 3654 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3655 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3656 3657 // Forward-declare the class hierarchy descriptor 3658 auto Type = ABI.getClassHierarchyDescriptorType(); 3659 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3660 /*Initializer=*/nullptr, 3661 MangledName); 3662 if (CHD->isWeakForLinker()) 3663 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3664 3665 auto *Bases = getBaseClassArray(Classes); 3666 3667 // Initialize the base class ClassHierarchyDescriptor. 3668 llvm::Constant *Fields[] = { 3669 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3670 llvm::ConstantInt::get(CGM.IntTy, Flags), 3671 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3672 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3673 Bases->getValueType(), Bases, 3674 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3675 }; 3676 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3677 return CHD; 3678 } 3679 3680 llvm::GlobalVariable * 3681 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3682 SmallString<256> MangledName; 3683 { 3684 llvm::raw_svector_ostream Out(MangledName); 3685 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3686 } 3687 3688 // Forward-declare the base class array. 3689 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3690 // mode) bytes of padding. We provide a pointer sized amount of padding by 3691 // adding +1 to Classes.size(). The sections have pointer alignment and are 3692 // marked pick-any so it shouldn't matter. 3693 llvm::Type *PtrType = ABI.getImageRelativeType( 3694 ABI.getBaseClassDescriptorType()->getPointerTo()); 3695 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3696 auto *BCA = 3697 new llvm::GlobalVariable(Module, ArrType, 3698 /*isConstant=*/true, Linkage, 3699 /*Initializer=*/nullptr, MangledName); 3700 if (BCA->isWeakForLinker()) 3701 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3702 3703 // Initialize the BaseClassArray. 3704 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3705 for (MSRTTIClass &Class : Classes) 3706 BaseClassArrayData.push_back( 3707 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3708 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3709 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3710 return BCA; 3711 } 3712 3713 llvm::GlobalVariable * 3714 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3715 // Compute the fields for the BaseClassDescriptor. They are computed up front 3716 // because they are mangled into the name of the object. 3717 uint32_t OffsetInVBTable = 0; 3718 int32_t VBPtrOffset = -1; 3719 if (Class.VirtualRoot) { 3720 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3721 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3722 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3723 } 3724 3725 SmallString<256> MangledName; 3726 { 3727 llvm::raw_svector_ostream Out(MangledName); 3728 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3729 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3730 Class.Flags, Out); 3731 } 3732 3733 // Check to see if we've already declared this object. 3734 if (auto BCD = Module.getNamedGlobal(MangledName)) 3735 return BCD; 3736 3737 // Forward-declare the base class descriptor. 3738 auto Type = ABI.getBaseClassDescriptorType(); 3739 auto BCD = 3740 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3741 /*Initializer=*/nullptr, MangledName); 3742 if (BCD->isWeakForLinker()) 3743 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3744 3745 // Initialize the BaseClassDescriptor. 3746 llvm::Constant *Fields[] = { 3747 ABI.getImageRelativeConstant( 3748 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3749 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3750 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3751 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3752 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3753 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3754 ABI.getImageRelativeConstant( 3755 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3756 }; 3757 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3758 return BCD; 3759 } 3760 3761 llvm::GlobalVariable * 3762 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3763 SmallString<256> MangledName; 3764 { 3765 llvm::raw_svector_ostream Out(MangledName); 3766 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3767 } 3768 3769 // Check to see if we've already computed this complete object locator. 3770 if (auto COL = Module.getNamedGlobal(MangledName)) 3771 return COL; 3772 3773 // Compute the fields of the complete object locator. 3774 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3775 int VFPtrOffset = 0; 3776 // The offset includes the vtordisp if one exists. 3777 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3778 if (Context.getASTRecordLayout(RD) 3779 .getVBaseOffsetsMap() 3780 .find(VBase) 3781 ->second.hasVtorDisp()) 3782 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3783 3784 // Forward-declare the complete object locator. 3785 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3786 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3787 /*Initializer=*/nullptr, MangledName); 3788 3789 // Initialize the CompleteObjectLocator. 3790 llvm::Constant *Fields[] = { 3791 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3792 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3793 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3794 ABI.getImageRelativeConstant( 3795 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3796 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3797 ABI.getImageRelativeConstant(COL), 3798 }; 3799 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3800 if (!ABI.isImageRelative()) 3801 FieldsRef = FieldsRef.drop_back(); 3802 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3803 if (COL->isWeakForLinker()) 3804 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3805 return COL; 3806 } 3807 3808 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3809 bool &IsConst, bool &IsVolatile, 3810 bool &IsUnaligned) { 3811 T = Context.getExceptionObjectType(T); 3812 3813 // C++14 [except.handle]p3: 3814 // A handler is a match for an exception object of type E if [...] 3815 // - the handler is of type cv T or const T& where T is a pointer type and 3816 // E is a pointer type that can be converted to T by [...] 3817 // - a qualification conversion 3818 IsConst = false; 3819 IsVolatile = false; 3820 IsUnaligned = false; 3821 QualType PointeeType = T->getPointeeType(); 3822 if (!PointeeType.isNull()) { 3823 IsConst = PointeeType.isConstQualified(); 3824 IsVolatile = PointeeType.isVolatileQualified(); 3825 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3826 } 3827 3828 // Member pointer types like "const int A::*" are represented by having RTTI 3829 // for "int A::*" and separately storing the const qualifier. 3830 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3831 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3832 MPTy->getClass()); 3833 3834 // Pointer types like "const int * const *" are represented by having RTTI 3835 // for "const int **" and separately storing the const qualifier. 3836 if (T->isPointerType()) 3837 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3838 3839 return T; 3840 } 3841 3842 CatchTypeInfo 3843 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3844 QualType CatchHandlerType) { 3845 // TypeDescriptors for exceptions never have qualified pointer types, 3846 // qualifiers are stored separately in order to support qualification 3847 // conversions. 3848 bool IsConst, IsVolatile, IsUnaligned; 3849 Type = 3850 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3851 3852 bool IsReference = CatchHandlerType->isReferenceType(); 3853 3854 uint32_t Flags = 0; 3855 if (IsConst) 3856 Flags |= 1; 3857 if (IsVolatile) 3858 Flags |= 2; 3859 if (IsUnaligned) 3860 Flags |= 4; 3861 if (IsReference) 3862 Flags |= 8; 3863 3864 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3865 Flags}; 3866 } 3867 3868 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3869 /// llvm::GlobalVariable * because different type descriptors have different 3870 /// types, and need to be abstracted. They are abstracting by casting the 3871 /// address to an Int8PtrTy. 3872 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3873 SmallString<256> MangledName; 3874 { 3875 llvm::raw_svector_ostream Out(MangledName); 3876 getMangleContext().mangleCXXRTTI(Type, Out); 3877 } 3878 3879 // Check to see if we've already declared this TypeDescriptor. 3880 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3881 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 3882 3883 // Note for the future: If we would ever like to do deferred emission of 3884 // RTTI, check if emitting vtables opportunistically need any adjustment. 3885 3886 // Compute the fields for the TypeDescriptor. 3887 SmallString<256> TypeInfoString; 3888 { 3889 llvm::raw_svector_ostream Out(TypeInfoString); 3890 getMangleContext().mangleCXXRTTIName(Type, Out); 3891 } 3892 3893 // Declare and initialize the TypeDescriptor. 3894 llvm::Constant *Fields[] = { 3895 getTypeInfoVTable(CGM), // VFPtr 3896 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 3897 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 3898 llvm::StructType *TypeDescriptorType = 3899 getTypeDescriptorType(TypeInfoString); 3900 auto *Var = new llvm::GlobalVariable( 3901 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 3902 getLinkageForRTTI(Type), 3903 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 3904 MangledName); 3905 if (Var->isWeakForLinker()) 3906 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 3907 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 3908 } 3909 3910 /// Gets or a creates a Microsoft CompleteObjectLocator. 3911 llvm::GlobalVariable * 3912 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 3913 const VPtrInfo &Info) { 3914 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 3915 } 3916 3917 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 3918 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 3919 // There are no constructor variants, always emit the complete destructor. 3920 llvm::Function *Fn = 3921 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 3922 CGM.maybeSetTrivialComdat(*ctor, *Fn); 3923 return; 3924 } 3925 3926 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 3927 3928 // Emit the base destructor if the base and complete (vbase) destructors are 3929 // equivalent. This effectively implements -mconstructor-aliases as part of 3930 // the ABI. 3931 if (GD.getDtorType() == Dtor_Complete && 3932 dtor->getParent()->getNumVBases() == 0) 3933 GD = GD.getWithDtorType(Dtor_Base); 3934 3935 // The base destructor is equivalent to the base destructor of its 3936 // base class if there is exactly one non-virtual base class with a 3937 // non-trivial destructor, there are no fields with a non-trivial 3938 // destructor, and the body of the destructor is trivial. 3939 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 3940 return; 3941 3942 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 3943 if (Fn->isWeakForLinker()) 3944 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 3945 } 3946 3947 llvm::Function * 3948 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 3949 CXXCtorType CT) { 3950 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 3951 3952 // Calculate the mangled name. 3953 SmallString<256> ThunkName; 3954 llvm::raw_svector_ostream Out(ThunkName); 3955 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 3956 3957 // If the thunk has been generated previously, just return it. 3958 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 3959 return cast<llvm::Function>(GV); 3960 3961 // Create the llvm::Function. 3962 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 3963 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 3964 const CXXRecordDecl *RD = CD->getParent(); 3965 QualType RecordTy = getContext().getRecordType(RD); 3966 llvm::Function *ThunkFn = llvm::Function::Create( 3967 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 3968 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 3969 FnInfo.getEffectiveCallingConvention())); 3970 if (ThunkFn->isWeakForLinker()) 3971 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 3972 bool IsCopy = CT == Ctor_CopyingClosure; 3973 3974 // Start codegen. 3975 CodeGenFunction CGF(CGM); 3976 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 3977 3978 // Build FunctionArgs. 3979 FunctionArgList FunctionArgs; 3980 3981 // A constructor always starts with a 'this' pointer as its first argument. 3982 buildThisParam(CGF, FunctionArgs); 3983 3984 // Following the 'this' pointer is a reference to the source object that we 3985 // are copying from. 3986 ImplicitParamDecl SrcParam( 3987 getContext(), /*DC=*/nullptr, SourceLocation(), 3988 &getContext().Idents.get("src"), 3989 getContext().getLValueReferenceType(RecordTy, 3990 /*SpelledAsLValue=*/true), 3991 ImplicitParamDecl::Other); 3992 if (IsCopy) 3993 FunctionArgs.push_back(&SrcParam); 3994 3995 // Constructors for classes which utilize virtual bases have an additional 3996 // parameter which indicates whether or not it is being delegated to by a more 3997 // derived constructor. 3998 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 3999 SourceLocation(), 4000 &getContext().Idents.get("is_most_derived"), 4001 getContext().IntTy, ImplicitParamDecl::Other); 4002 // Only add the parameter to the list if the class has virtual bases. 4003 if (RD->getNumVBases() > 0) 4004 FunctionArgs.push_back(&IsMostDerived); 4005 4006 // Start defining the function. 4007 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4008 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 4009 FunctionArgs, CD->getLocation(), SourceLocation()); 4010 // Create a scope with an artificial location for the body of this function. 4011 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 4012 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 4013 llvm::Value *This = getThisValue(CGF); 4014 4015 llvm::Value *SrcVal = 4016 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4017 : nullptr; 4018 4019 CallArgList Args; 4020 4021 // Push the this ptr. 4022 Args.add(RValue::get(This), CD->getThisType()); 4023 4024 // Push the src ptr. 4025 if (SrcVal) 4026 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4027 4028 // Add the rest of the default arguments. 4029 SmallVector<const Stmt *, 4> ArgVec; 4030 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4031 for (const ParmVarDecl *PD : params) { 4032 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4033 ArgVec.push_back(PD->getDefaultArg()); 4034 } 4035 4036 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4037 4038 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4039 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4040 4041 // Insert any ABI-specific implicit constructor arguments. 4042 AddedStructorArgCounts ExtraArgs = 4043 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4044 /*ForVirtualBase=*/false, 4045 /*Delegating=*/false, Args); 4046 // Call the destructor with our arguments. 4047 llvm::Constant *CalleePtr = 4048 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4049 CGCallee Callee = 4050 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4051 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4052 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4053 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4054 4055 Cleanups.ForceCleanup(); 4056 4057 // Emit the ret instruction, remove any temporary instructions created for the 4058 // aid of CodeGen. 4059 CGF.FinishFunction(SourceLocation()); 4060 4061 return ThunkFn; 4062 } 4063 4064 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4065 uint32_t NVOffset, 4066 int32_t VBPtrOffset, 4067 uint32_t VBIndex) { 4068 assert(!T->isReferenceType()); 4069 4070 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4071 const CXXConstructorDecl *CD = 4072 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4073 CXXCtorType CT = Ctor_Complete; 4074 if (CD) 4075 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4076 CT = Ctor_CopyingClosure; 4077 4078 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4079 SmallString<256> MangledName; 4080 { 4081 llvm::raw_svector_ostream Out(MangledName); 4082 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4083 VBPtrOffset, VBIndex, Out); 4084 } 4085 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4086 return getImageRelativeConstant(GV); 4087 4088 // The TypeDescriptor is used by the runtime to determine if a catch handler 4089 // is appropriate for the exception object. 4090 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4091 4092 // The runtime is responsible for calling the copy constructor if the 4093 // exception is caught by value. 4094 llvm::Constant *CopyCtor; 4095 if (CD) { 4096 if (CT == Ctor_CopyingClosure) 4097 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4098 else 4099 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4100 4101 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 4102 } else { 4103 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4104 } 4105 CopyCtor = getImageRelativeConstant(CopyCtor); 4106 4107 bool IsScalar = !RD; 4108 bool HasVirtualBases = false; 4109 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4110 QualType PointeeType = T; 4111 if (T->isPointerType()) 4112 PointeeType = T->getPointeeType(); 4113 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4114 HasVirtualBases = RD->getNumVBases() > 0; 4115 if (IdentifierInfo *II = RD->getIdentifier()) 4116 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4117 } 4118 4119 // Encode the relevant CatchableType properties into the Flags bitfield. 4120 // FIXME: Figure out how bits 2 or 8 can get set. 4121 uint32_t Flags = 0; 4122 if (IsScalar) 4123 Flags |= 1; 4124 if (HasVirtualBases) 4125 Flags |= 4; 4126 if (IsStdBadAlloc) 4127 Flags |= 16; 4128 4129 llvm::Constant *Fields[] = { 4130 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4131 TD, // TypeDescriptor 4132 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4133 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4134 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4135 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4136 CopyCtor // CopyCtor 4137 }; 4138 llvm::StructType *CTType = getCatchableTypeType(); 4139 auto *GV = new llvm::GlobalVariable( 4140 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4141 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4142 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4143 GV->setSection(".xdata"); 4144 if (GV->isWeakForLinker()) 4145 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4146 return getImageRelativeConstant(GV); 4147 } 4148 4149 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4150 assert(!T->isReferenceType()); 4151 4152 // See if we've already generated a CatchableTypeArray for this type before. 4153 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4154 if (CTA) 4155 return CTA; 4156 4157 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4158 // using a SmallSetVector. Duplicates may arise due to virtual bases 4159 // occurring more than once in the hierarchy. 4160 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4161 4162 // C++14 [except.handle]p3: 4163 // A handler is a match for an exception object of type E if [...] 4164 // - the handler is of type cv T or cv T& and T is an unambiguous public 4165 // base class of E, or 4166 // - the handler is of type cv T or const T& where T is a pointer type and 4167 // E is a pointer type that can be converted to T by [...] 4168 // - a standard pointer conversion (4.10) not involving conversions to 4169 // pointers to private or protected or ambiguous classes 4170 const CXXRecordDecl *MostDerivedClass = nullptr; 4171 bool IsPointer = T->isPointerType(); 4172 if (IsPointer) 4173 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4174 else 4175 MostDerivedClass = T->getAsCXXRecordDecl(); 4176 4177 // Collect all the unambiguous public bases of the MostDerivedClass. 4178 if (MostDerivedClass) { 4179 const ASTContext &Context = getContext(); 4180 const ASTRecordLayout &MostDerivedLayout = 4181 Context.getASTRecordLayout(MostDerivedClass); 4182 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4183 SmallVector<MSRTTIClass, 8> Classes; 4184 serializeClassHierarchy(Classes, MostDerivedClass); 4185 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4186 detectAmbiguousBases(Classes); 4187 for (const MSRTTIClass &Class : Classes) { 4188 // Skip any ambiguous or private bases. 4189 if (Class.Flags & 4190 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4191 continue; 4192 // Write down how to convert from a derived pointer to a base pointer. 4193 uint32_t OffsetInVBTable = 0; 4194 int32_t VBPtrOffset = -1; 4195 if (Class.VirtualRoot) { 4196 OffsetInVBTable = 4197 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4198 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4199 } 4200 4201 // Turn our record back into a pointer if the exception object is a 4202 // pointer. 4203 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4204 if (IsPointer) 4205 RTTITy = Context.getPointerType(RTTITy); 4206 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4207 VBPtrOffset, OffsetInVBTable)); 4208 } 4209 } 4210 4211 // C++14 [except.handle]p3: 4212 // A handler is a match for an exception object of type E if 4213 // - The handler is of type cv T or cv T& and E and T are the same type 4214 // (ignoring the top-level cv-qualifiers) 4215 CatchableTypes.insert(getCatchableType(T)); 4216 4217 // C++14 [except.handle]p3: 4218 // A handler is a match for an exception object of type E if 4219 // - the handler is of type cv T or const T& where T is a pointer type and 4220 // E is a pointer type that can be converted to T by [...] 4221 // - a standard pointer conversion (4.10) not involving conversions to 4222 // pointers to private or protected or ambiguous classes 4223 // 4224 // C++14 [conv.ptr]p2: 4225 // A prvalue of type "pointer to cv T," where T is an object type, can be 4226 // converted to a prvalue of type "pointer to cv void". 4227 if (IsPointer && T->getPointeeType()->isObjectType()) 4228 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4229 4230 // C++14 [except.handle]p3: 4231 // A handler is a match for an exception object of type E if [...] 4232 // - the handler is of type cv T or const T& where T is a pointer or 4233 // pointer to member type and E is std::nullptr_t. 4234 // 4235 // We cannot possibly list all possible pointer types here, making this 4236 // implementation incompatible with the standard. However, MSVC includes an 4237 // entry for pointer-to-void in this case. Let's do the same. 4238 if (T->isNullPtrType()) 4239 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4240 4241 uint32_t NumEntries = CatchableTypes.size(); 4242 llvm::Type *CTType = 4243 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4244 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4245 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4246 llvm::Constant *Fields[] = { 4247 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4248 llvm::ConstantArray::get( 4249 AT, llvm::makeArrayRef(CatchableTypes.begin(), 4250 CatchableTypes.end())) // CatchableTypes 4251 }; 4252 SmallString<256> MangledName; 4253 { 4254 llvm::raw_svector_ostream Out(MangledName); 4255 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4256 } 4257 CTA = new llvm::GlobalVariable( 4258 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4259 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4260 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4261 CTA->setSection(".xdata"); 4262 if (CTA->isWeakForLinker()) 4263 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4264 return CTA; 4265 } 4266 4267 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4268 bool IsConst, IsVolatile, IsUnaligned; 4269 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4270 4271 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4272 // the exception object may be caught as. 4273 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4274 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4275 // This is used as a component of the mangled name which means that we need to 4276 // know what it is in order to see if we have previously generated the 4277 // ThrowInfo. 4278 uint32_t NumEntries = 4279 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4280 ->getLimitedValue(); 4281 4282 SmallString<256> MangledName; 4283 { 4284 llvm::raw_svector_ostream Out(MangledName); 4285 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4286 NumEntries, Out); 4287 } 4288 4289 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4290 // one before. 4291 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4292 return GV; 4293 4294 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4295 // be at least as CV qualified. Encode this requirement into the Flags 4296 // bitfield. 4297 uint32_t Flags = 0; 4298 if (IsConst) 4299 Flags |= 1; 4300 if (IsVolatile) 4301 Flags |= 2; 4302 if (IsUnaligned) 4303 Flags |= 4; 4304 4305 // The cleanup-function (a destructor) must be called when the exception 4306 // object's lifetime ends. 4307 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4308 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4309 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4310 if (!DtorD->isTrivial()) 4311 CleanupFn = llvm::ConstantExpr::getBitCast( 4312 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), 4313 CGM.Int8PtrTy); 4314 // This is unused as far as we can tell, initialize it to null. 4315 llvm::Constant *ForwardCompat = 4316 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4317 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4318 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4319 llvm::StructType *TIType = getThrowInfoType(); 4320 llvm::Constant *Fields[] = { 4321 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4322 getImageRelativeConstant(CleanupFn), // CleanupFn 4323 ForwardCompat, // ForwardCompat 4324 PointerToCatchableTypes // CatchableTypeArray 4325 }; 4326 auto *GV = new llvm::GlobalVariable( 4327 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4328 llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName)); 4329 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4330 GV->setSection(".xdata"); 4331 if (GV->isWeakForLinker()) 4332 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4333 return GV; 4334 } 4335 4336 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4337 const Expr *SubExpr = E->getSubExpr(); 4338 QualType ThrowType = SubExpr->getType(); 4339 // The exception object lives on the stack and it's address is passed to the 4340 // runtime function. 4341 Address AI = CGF.CreateMemTemp(ThrowType); 4342 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4343 /*IsInit=*/true); 4344 4345 // The so-called ThrowInfo is used to describe how the exception object may be 4346 // caught. 4347 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4348 4349 // Call into the runtime to throw the exception. 4350 llvm::Value *Args[] = { 4351 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4352 TI 4353 }; 4354 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4355 } 4356 4357 std::pair<llvm::Value *, const CXXRecordDecl *> 4358 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4359 const CXXRecordDecl *RD) { 4360 std::tie(This, std::ignore, RD) = 4361 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4362 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4363 } 4364 4365 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( 4366 const CXXRecordDecl *CXXRD) const { 4367 // MSVC Windows on Arm64 considers a type not HFA if it is not an 4368 // aggregate according to the C++14 spec. This is not consistent with the 4369 // AAPCS64, but is defacto spec on that platform. 4370 return !CGM.getTarget().getTriple().isAArch64() || 4371 isTrivialForAArch64MSVC(CXXRD); 4372 } 4373