xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/MicrosoftCXXABI.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10 // The class in this file generates structures that follow the Microsoft
11 // Visual C++ ABI, which is actually not very well documented at all outside
12 // of Microsoft.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGVTables.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenTypes.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/VTableBuilder.h"
28 #include "clang/CodeGen/ConstantInitBuilder.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/IR/Intrinsics.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 namespace {
37 
38 /// Holds all the vbtable globals for a given class.
39 struct VBTableGlobals {
40   const VPtrInfoVector *VBTables;
41   SmallVector<llvm::GlobalVariable *, 2> Globals;
42 };
43 
44 class MicrosoftCXXABI : public CGCXXABI {
45 public:
46   MicrosoftCXXABI(CodeGenModule &CGM)
47       : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
48         ClassHierarchyDescriptorType(nullptr),
49         CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
50         ThrowInfoType(nullptr) {}
51 
52   bool HasThisReturn(GlobalDecl GD) const override;
53   bool hasMostDerivedReturn(GlobalDecl GD) const override;
54 
55   bool classifyReturnType(CGFunctionInfo &FI) const override;
56 
57   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
58 
59   bool isSRetParameterAfterThis() const override { return true; }
60 
61   bool isThisCompleteObject(GlobalDecl GD) const override {
62     // The Microsoft ABI doesn't use separate complete-object vs.
63     // base-object variants of constructors, but it does of destructors.
64     if (isa<CXXDestructorDecl>(GD.getDecl())) {
65       switch (GD.getDtorType()) {
66       case Dtor_Complete:
67       case Dtor_Deleting:
68         return true;
69 
70       case Dtor_Base:
71         return false;
72 
73       case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
74       }
75       llvm_unreachable("bad dtor kind");
76     }
77 
78     // No other kinds.
79     return false;
80   }
81 
82   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
83                               FunctionArgList &Args) const override {
84     assert(Args.size() >= 2 &&
85            "expected the arglist to have at least two args!");
86     // The 'most_derived' parameter goes second if the ctor is variadic and
87     // has v-bases.
88     if (CD->getParent()->getNumVBases() > 0 &&
89         CD->getType()->castAs<FunctionProtoType>()->isVariadic())
90       return 2;
91     return 1;
92   }
93 
94   std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
95     std::vector<CharUnits> VBPtrOffsets;
96     const ASTContext &Context = getContext();
97     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
98 
99     const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
100     for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
101       const ASTRecordLayout &SubobjectLayout =
102           Context.getASTRecordLayout(VBT->IntroducingObject);
103       CharUnits Offs = VBT->NonVirtualOffset;
104       Offs += SubobjectLayout.getVBPtrOffset();
105       if (VBT->getVBaseWithVPtr())
106         Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
107       VBPtrOffsets.push_back(Offs);
108     }
109     llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
110     return VBPtrOffsets;
111   }
112 
113   StringRef GetPureVirtualCallName() override { return "_purecall"; }
114   StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
115 
116   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
117                                Address Ptr, QualType ElementType,
118                                const CXXDestructorDecl *Dtor) override;
119 
120   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
121   void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
122 
123   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
124 
125   llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
126                                                    const VPtrInfo &Info);
127 
128   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
129   CatchTypeInfo
130   getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
131 
132   /// MSVC needs an extra flag to indicate a catchall.
133   CatchTypeInfo getCatchAllTypeInfo() override {
134     return CatchTypeInfo{nullptr, 0x40};
135   }
136 
137   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
138   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
139   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
140                           Address ThisPtr,
141                           llvm::Type *StdTypeInfoPtrTy) override;
142 
143   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
144                                           QualType SrcRecordTy) override;
145 
146   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
147                                    QualType SrcRecordTy, QualType DestTy,
148                                    QualType DestRecordTy,
149                                    llvm::BasicBlock *CastEnd) override;
150 
151   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
152                                      QualType SrcRecordTy,
153                                      QualType DestTy) override;
154 
155   bool EmitBadCastCall(CodeGenFunction &CGF) override;
156   bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
157     return false;
158   }
159 
160   llvm::Value *
161   GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
162                             const CXXRecordDecl *ClassDecl,
163                             const CXXRecordDecl *BaseClassDecl) override;
164 
165   llvm::BasicBlock *
166   EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
167                                 const CXXRecordDecl *RD) override;
168 
169   llvm::BasicBlock *
170   EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
171 
172   void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
173                                               const CXXRecordDecl *RD) override;
174 
175   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
176 
177   // Background on MSVC destructors
178   // ==============================
179   //
180   // Both Itanium and MSVC ABIs have destructor variants.  The variant names
181   // roughly correspond in the following way:
182   //   Itanium       Microsoft
183   //   Base       -> no name, just ~Class
184   //   Complete   -> vbase destructor
185   //   Deleting   -> scalar deleting destructor
186   //                 vector deleting destructor
187   //
188   // The base and complete destructors are the same as in Itanium, although the
189   // complete destructor does not accept a VTT parameter when there are virtual
190   // bases.  A separate mechanism involving vtordisps is used to ensure that
191   // virtual methods of destroyed subobjects are not called.
192   //
193   // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
194   // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
195   // pointer points to an array.  The scalar deleting destructor assumes that
196   // bit 2 is zero, and therefore does not contain a loop.
197   //
198   // For virtual destructors, only one entry is reserved in the vftable, and it
199   // always points to the vector deleting destructor.  The vector deleting
200   // destructor is the most general, so it can be used to destroy objects in
201   // place, delete single heap objects, or delete arrays.
202   //
203   // A TU defining a non-inline destructor is only guaranteed to emit a base
204   // destructor, and all of the other variants are emitted on an as-needed basis
205   // in COMDATs.  Because a non-base destructor can be emitted in a TU that
206   // lacks a definition for the destructor, non-base destructors must always
207   // delegate to or alias the base destructor.
208 
209   AddedStructorArgCounts
210   buildStructorSignature(GlobalDecl GD,
211                          SmallVectorImpl<CanQualType> &ArgTys) override;
212 
213   /// Non-base dtors should be emitted as delegating thunks in this ABI.
214   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
215                               CXXDtorType DT) const override {
216     return DT != Dtor_Base;
217   }
218 
219   void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
220                                   const CXXDestructorDecl *Dtor,
221                                   CXXDtorType DT) const override;
222 
223   llvm::GlobalValue::LinkageTypes
224   getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
225                           CXXDtorType DT) const override;
226 
227   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
228 
229   const CXXRecordDecl *
230   getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
231     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
232       MethodVFTableLocation ML =
233           CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
234       // The vbases might be ordered differently in the final overrider object
235       // and the complete object, so the "this" argument may sometimes point to
236       // memory that has no particular type (e.g. past the complete object).
237       // In this case, we just use a generic pointer type.
238       // FIXME: might want to have a more precise type in the non-virtual
239       // multiple inheritance case.
240       if (ML.VBase || !ML.VFPtrOffset.isZero())
241         return nullptr;
242     }
243     return MD->getParent();
244   }
245 
246   Address
247   adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
248                                            Address This,
249                                            bool VirtualCall) override;
250 
251   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
252                                  FunctionArgList &Params) override;
253 
254   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
255 
256   AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF,
257                                                const CXXConstructorDecl *D,
258                                                CXXCtorType Type,
259                                                bool ForVirtualBase,
260                                                bool Delegating) override;
261 
262   llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF,
263                                              const CXXDestructorDecl *DD,
264                                              CXXDtorType Type,
265                                              bool ForVirtualBase,
266                                              bool Delegating) override;
267 
268   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
269                           CXXDtorType Type, bool ForVirtualBase,
270                           bool Delegating, Address This,
271                           QualType ThisTy) override;
272 
273   void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
274                               llvm::GlobalVariable *VTable);
275 
276   void emitVTableDefinitions(CodeGenVTables &CGVT,
277                              const CXXRecordDecl *RD) override;
278 
279   bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
280                                            CodeGenFunction::VPtr Vptr) override;
281 
282   /// Don't initialize vptrs if dynamic class
283   /// is marked with with the 'novtable' attribute.
284   bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
285     return !VTableClass->hasAttr<MSNoVTableAttr>();
286   }
287 
288   llvm::Constant *
289   getVTableAddressPoint(BaseSubobject Base,
290                         const CXXRecordDecl *VTableClass) override;
291 
292   llvm::Value *getVTableAddressPointInStructor(
293       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
294       BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
295 
296   llvm::Constant *
297   getVTableAddressPointForConstExpr(BaseSubobject Base,
298                                     const CXXRecordDecl *VTableClass) override;
299 
300   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
301                                         CharUnits VPtrOffset) override;
302 
303   CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
304                                      Address This, llvm::Type *Ty,
305                                      SourceLocation Loc) override;
306 
307   llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
308                                          const CXXDestructorDecl *Dtor,
309                                          CXXDtorType DtorType, Address This,
310                                          DeleteOrMemberCallExpr E) override;
311 
312   void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
313                                         CallArgList &CallArgs) override {
314     assert(GD.getDtorType() == Dtor_Deleting &&
315            "Only deleting destructor thunks are available in this ABI");
316     CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
317                  getContext().IntTy);
318   }
319 
320   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
321 
322   llvm::GlobalVariable *
323   getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
324                    llvm::GlobalVariable::LinkageTypes Linkage);
325 
326   llvm::GlobalVariable *
327   getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
328                                   const CXXRecordDecl *DstRD) {
329     SmallString<256> OutName;
330     llvm::raw_svector_ostream Out(OutName);
331     getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
332     StringRef MangledName = OutName.str();
333 
334     if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
335       return VDispMap;
336 
337     MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
338     unsigned NumEntries = 1 + SrcRD->getNumVBases();
339     SmallVector<llvm::Constant *, 4> Map(NumEntries,
340                                          llvm::UndefValue::get(CGM.IntTy));
341     Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
342     bool AnyDifferent = false;
343     for (const auto &I : SrcRD->vbases()) {
344       const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
345       if (!DstRD->isVirtuallyDerivedFrom(VBase))
346         continue;
347 
348       unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
349       unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
350       Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
351       AnyDifferent |= SrcVBIndex != DstVBIndex;
352     }
353     // This map would be useless, don't use it.
354     if (!AnyDifferent)
355       return nullptr;
356 
357     llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
358     llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
359     llvm::GlobalValue::LinkageTypes Linkage =
360         SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
361             ? llvm::GlobalValue::LinkOnceODRLinkage
362             : llvm::GlobalValue::InternalLinkage;
363     auto *VDispMap = new llvm::GlobalVariable(
364         CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
365         /*Initializer=*/Init, MangledName);
366     return VDispMap;
367   }
368 
369   void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
370                              llvm::GlobalVariable *GV) const;
371 
372   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
373                        GlobalDecl GD, bool ReturnAdjustment) override {
374     GVALinkage Linkage =
375         getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
376 
377     if (Linkage == GVA_Internal)
378       Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
379     else if (ReturnAdjustment)
380       Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
381     else
382       Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
383   }
384 
385   bool exportThunk() override { return false; }
386 
387   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
388                                      const ThisAdjustment &TA) override;
389 
390   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
391                                        const ReturnAdjustment &RA) override;
392 
393   void EmitThreadLocalInitFuncs(
394       CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
395       ArrayRef<llvm::Function *> CXXThreadLocalInits,
396       ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
397 
398   bool usesThreadWrapperFunction(const VarDecl *VD) const override {
399     return false;
400   }
401   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
402                                       QualType LValType) override;
403 
404   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
405                        llvm::GlobalVariable *DeclPtr,
406                        bool PerformInit) override;
407   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
408                           llvm::FunctionCallee Dtor,
409                           llvm::Constant *Addr) override;
410 
411   // ==== Notes on array cookies =========
412   //
413   // MSVC seems to only use cookies when the class has a destructor; a
414   // two-argument usual array deallocation function isn't sufficient.
415   //
416   // For example, this code prints "100" and "1":
417   //   struct A {
418   //     char x;
419   //     void *operator new[](size_t sz) {
420   //       printf("%u\n", sz);
421   //       return malloc(sz);
422   //     }
423   //     void operator delete[](void *p, size_t sz) {
424   //       printf("%u\n", sz);
425   //       free(p);
426   //     }
427   //   };
428   //   int main() {
429   //     A *p = new A[100];
430   //     delete[] p;
431   //   }
432   // Whereas it prints "104" and "104" if you give A a destructor.
433 
434   bool requiresArrayCookie(const CXXDeleteExpr *expr,
435                            QualType elementType) override;
436   bool requiresArrayCookie(const CXXNewExpr *expr) override;
437   CharUnits getArrayCookieSizeImpl(QualType type) override;
438   Address InitializeArrayCookie(CodeGenFunction &CGF,
439                                 Address NewPtr,
440                                 llvm::Value *NumElements,
441                                 const CXXNewExpr *expr,
442                                 QualType ElementType) override;
443   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
444                                    Address allocPtr,
445                                    CharUnits cookieSize) override;
446 
447   friend struct MSRTTIBuilder;
448 
449   bool isImageRelative() const {
450     return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64;
451   }
452 
453   // 5 routines for constructing the llvm types for MS RTTI structs.
454   llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
455     llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
456     TDTypeName += llvm::utostr(TypeInfoString.size());
457     llvm::StructType *&TypeDescriptorType =
458         TypeDescriptorTypeMap[TypeInfoString.size()];
459     if (TypeDescriptorType)
460       return TypeDescriptorType;
461     llvm::Type *FieldTypes[] = {
462         CGM.Int8PtrPtrTy,
463         CGM.Int8PtrTy,
464         llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
465     TypeDescriptorType =
466         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
467     return TypeDescriptorType;
468   }
469 
470   llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
471     if (!isImageRelative())
472       return PtrType;
473     return CGM.IntTy;
474   }
475 
476   llvm::StructType *getBaseClassDescriptorType() {
477     if (BaseClassDescriptorType)
478       return BaseClassDescriptorType;
479     llvm::Type *FieldTypes[] = {
480         getImageRelativeType(CGM.Int8PtrTy),
481         CGM.IntTy,
482         CGM.IntTy,
483         CGM.IntTy,
484         CGM.IntTy,
485         CGM.IntTy,
486         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
487     };
488     BaseClassDescriptorType = llvm::StructType::create(
489         CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
490     return BaseClassDescriptorType;
491   }
492 
493   llvm::StructType *getClassHierarchyDescriptorType() {
494     if (ClassHierarchyDescriptorType)
495       return ClassHierarchyDescriptorType;
496     // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
497     ClassHierarchyDescriptorType = llvm::StructType::create(
498         CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
499     llvm::Type *FieldTypes[] = {
500         CGM.IntTy,
501         CGM.IntTy,
502         CGM.IntTy,
503         getImageRelativeType(
504             getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
505     };
506     ClassHierarchyDescriptorType->setBody(FieldTypes);
507     return ClassHierarchyDescriptorType;
508   }
509 
510   llvm::StructType *getCompleteObjectLocatorType() {
511     if (CompleteObjectLocatorType)
512       return CompleteObjectLocatorType;
513     CompleteObjectLocatorType = llvm::StructType::create(
514         CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
515     llvm::Type *FieldTypes[] = {
516         CGM.IntTy,
517         CGM.IntTy,
518         CGM.IntTy,
519         getImageRelativeType(CGM.Int8PtrTy),
520         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
521         getImageRelativeType(CompleteObjectLocatorType),
522     };
523     llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
524     if (!isImageRelative())
525       FieldTypesRef = FieldTypesRef.drop_back();
526     CompleteObjectLocatorType->setBody(FieldTypesRef);
527     return CompleteObjectLocatorType;
528   }
529 
530   llvm::GlobalVariable *getImageBase() {
531     StringRef Name = "__ImageBase";
532     if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
533       return GV;
534 
535     auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
536                                         /*isConstant=*/true,
537                                         llvm::GlobalValue::ExternalLinkage,
538                                         /*Initializer=*/nullptr, Name);
539     CGM.setDSOLocal(GV);
540     return GV;
541   }
542 
543   llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
544     if (!isImageRelative())
545       return PtrVal;
546 
547     if (PtrVal->isNullValue())
548       return llvm::Constant::getNullValue(CGM.IntTy);
549 
550     llvm::Constant *ImageBaseAsInt =
551         llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
552     llvm::Constant *PtrValAsInt =
553         llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
554     llvm::Constant *Diff =
555         llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
556                                    /*HasNUW=*/true, /*HasNSW=*/true);
557     return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
558   }
559 
560 private:
561   MicrosoftMangleContext &getMangleContext() {
562     return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
563   }
564 
565   llvm::Constant *getZeroInt() {
566     return llvm::ConstantInt::get(CGM.IntTy, 0);
567   }
568 
569   llvm::Constant *getAllOnesInt() {
570     return  llvm::Constant::getAllOnesValue(CGM.IntTy);
571   }
572 
573   CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
574 
575   void
576   GetNullMemberPointerFields(const MemberPointerType *MPT,
577                              llvm::SmallVectorImpl<llvm::Constant *> &fields);
578 
579   /// Shared code for virtual base adjustment.  Returns the offset from
580   /// the vbptr to the virtual base.  Optionally returns the address of the
581   /// vbptr itself.
582   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
583                                        Address Base,
584                                        llvm::Value *VBPtrOffset,
585                                        llvm::Value *VBTableOffset,
586                                        llvm::Value **VBPtr = nullptr);
587 
588   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
589                                        Address Base,
590                                        int32_t VBPtrOffset,
591                                        int32_t VBTableOffset,
592                                        llvm::Value **VBPtr = nullptr) {
593     assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
594     llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
595                 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
596     return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
597   }
598 
599   std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
600   performBaseAdjustment(CodeGenFunction &CGF, Address Value,
601                         QualType SrcRecordTy);
602 
603   /// Performs a full virtual base adjustment.  Used to dereference
604   /// pointers to members of virtual bases.
605   llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
606                                  const CXXRecordDecl *RD, Address Base,
607                                  llvm::Value *VirtualBaseAdjustmentOffset,
608                                  llvm::Value *VBPtrOffset /* optional */);
609 
610   /// Emits a full member pointer with the fields common to data and
611   /// function member pointers.
612   llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
613                                         bool IsMemberFunction,
614                                         const CXXRecordDecl *RD,
615                                         CharUnits NonVirtualBaseAdjustment,
616                                         unsigned VBTableIndex);
617 
618   bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
619                                    llvm::Constant *MP);
620 
621   /// - Initialize all vbptrs of 'this' with RD as the complete type.
622   void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
623 
624   /// Caching wrapper around VBTableBuilder::enumerateVBTables().
625   const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
626 
627   /// Generate a thunk for calling a virtual member function MD.
628   llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
629                                          const MethodVFTableLocation &ML);
630 
631   llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
632                                         CharUnits offset);
633 
634 public:
635   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
636 
637   bool isZeroInitializable(const MemberPointerType *MPT) override;
638 
639   bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
640     const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
641     return RD->hasAttr<MSInheritanceAttr>();
642   }
643 
644   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
645 
646   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
647                                         CharUnits offset) override;
648   llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
649   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
650 
651   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
652                                            llvm::Value *L,
653                                            llvm::Value *R,
654                                            const MemberPointerType *MPT,
655                                            bool Inequality) override;
656 
657   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
658                                           llvm::Value *MemPtr,
659                                           const MemberPointerType *MPT) override;
660 
661   llvm::Value *
662   EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
663                                Address Base, llvm::Value *MemPtr,
664                                const MemberPointerType *MPT) override;
665 
666   llvm::Value *EmitNonNullMemberPointerConversion(
667       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
668       CastKind CK, CastExpr::path_const_iterator PathBegin,
669       CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
670       CGBuilderTy &Builder);
671 
672   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
673                                            const CastExpr *E,
674                                            llvm::Value *Src) override;
675 
676   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
677                                               llvm::Constant *Src) override;
678 
679   llvm::Constant *EmitMemberPointerConversion(
680       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
681       CastKind CK, CastExpr::path_const_iterator PathBegin,
682       CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
683 
684   CGCallee
685   EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
686                                   Address This, llvm::Value *&ThisPtrForCall,
687                                   llvm::Value *MemPtr,
688                                   const MemberPointerType *MPT) override;
689 
690   void emitCXXStructor(GlobalDecl GD) override;
691 
692   llvm::StructType *getCatchableTypeType() {
693     if (CatchableTypeType)
694       return CatchableTypeType;
695     llvm::Type *FieldTypes[] = {
696         CGM.IntTy,                           // Flags
697         getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
698         CGM.IntTy,                           // NonVirtualAdjustment
699         CGM.IntTy,                           // OffsetToVBPtr
700         CGM.IntTy,                           // VBTableIndex
701         CGM.IntTy,                           // Size
702         getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
703     };
704     CatchableTypeType = llvm::StructType::create(
705         CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
706     return CatchableTypeType;
707   }
708 
709   llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
710     llvm::StructType *&CatchableTypeArrayType =
711         CatchableTypeArrayTypeMap[NumEntries];
712     if (CatchableTypeArrayType)
713       return CatchableTypeArrayType;
714 
715     llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
716     CTATypeName += llvm::utostr(NumEntries);
717     llvm::Type *CTType =
718         getImageRelativeType(getCatchableTypeType()->getPointerTo());
719     llvm::Type *FieldTypes[] = {
720         CGM.IntTy,                               // NumEntries
721         llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
722     };
723     CatchableTypeArrayType =
724         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
725     return CatchableTypeArrayType;
726   }
727 
728   llvm::StructType *getThrowInfoType() {
729     if (ThrowInfoType)
730       return ThrowInfoType;
731     llvm::Type *FieldTypes[] = {
732         CGM.IntTy,                           // Flags
733         getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
734         getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
735         getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
736     };
737     ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
738                                              "eh.ThrowInfo");
739     return ThrowInfoType;
740   }
741 
742   llvm::FunctionCallee getThrowFn() {
743     // _CxxThrowException is passed an exception object and a ThrowInfo object
744     // which describes the exception.
745     llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
746     llvm::FunctionType *FTy =
747         llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
748     llvm::FunctionCallee Throw =
749         CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
750     // _CxxThrowException is stdcall on 32-bit x86 platforms.
751     if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
752       if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
753         Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
754     }
755     return Throw;
756   }
757 
758   llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
759                                           CXXCtorType CT);
760 
761   llvm::Constant *getCatchableType(QualType T,
762                                    uint32_t NVOffset = 0,
763                                    int32_t VBPtrOffset = -1,
764                                    uint32_t VBIndex = 0);
765 
766   llvm::GlobalVariable *getCatchableTypeArray(QualType T);
767 
768   llvm::GlobalVariable *getThrowInfo(QualType T) override;
769 
770   std::pair<llvm::Value *, const CXXRecordDecl *>
771   LoadVTablePtr(CodeGenFunction &CGF, Address This,
772                 const CXXRecordDecl *RD) override;
773 
774   virtual bool
775   isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override;
776 
777 private:
778   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
779   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
780   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
781   /// All the vftables that have been referenced.
782   VFTablesMapTy VFTablesMap;
783   VTablesMapTy VTablesMap;
784 
785   /// This set holds the record decls we've deferred vtable emission for.
786   llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
787 
788 
789   /// All the vbtables which have been referenced.
790   llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
791 
792   /// Info on the global variable used to guard initialization of static locals.
793   /// The BitIndex field is only used for externally invisible declarations.
794   struct GuardInfo {
795     GuardInfo() : Guard(nullptr), BitIndex(0) {}
796     llvm::GlobalVariable *Guard;
797     unsigned BitIndex;
798   };
799 
800   /// Map from DeclContext to the current guard variable.  We assume that the
801   /// AST is visited in source code order.
802   llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
803   llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
804   llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
805 
806   llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
807   llvm::StructType *BaseClassDescriptorType;
808   llvm::StructType *ClassHierarchyDescriptorType;
809   llvm::StructType *CompleteObjectLocatorType;
810 
811   llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
812 
813   llvm::StructType *CatchableTypeType;
814   llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
815   llvm::StructType *ThrowInfoType;
816 };
817 
818 }
819 
820 CGCXXABI::RecordArgABI
821 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
822   // Use the default C calling convention rules for things that can be passed in
823   // registers, i.e. non-trivially copyable records or records marked with
824   // [[trivial_abi]].
825   if (RD->canPassInRegisters())
826     return RAA_Default;
827 
828   switch (CGM.getTarget().getTriple().getArch()) {
829   default:
830     // FIXME: Implement for other architectures.
831     return RAA_Indirect;
832 
833   case llvm::Triple::thumb:
834     // Pass things indirectly for now because it is simple.
835     // FIXME: This is incompatible with MSVC for arguments with a dtor and no
836     // copy ctor.
837     return RAA_Indirect;
838 
839   case llvm::Triple::x86: {
840     // If the argument has *required* alignment greater than four bytes, pass
841     // it indirectly. Prior to MSVC version 19.14, passing overaligned
842     // arguments was not supported and resulted in a compiler error. In 19.14
843     // and later versions, such arguments are now passed indirectly.
844     TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl());
845     if (Info.AlignIsRequired && Info.Align > 4)
846       return RAA_Indirect;
847 
848     // If C++ prohibits us from making a copy, construct the arguments directly
849     // into argument memory.
850     return RAA_DirectInMemory;
851   }
852 
853   case llvm::Triple::x86_64:
854   case llvm::Triple::aarch64:
855     return RAA_Indirect;
856   }
857 
858   llvm_unreachable("invalid enum");
859 }
860 
861 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
862                                               const CXXDeleteExpr *DE,
863                                               Address Ptr,
864                                               QualType ElementType,
865                                               const CXXDestructorDecl *Dtor) {
866   // FIXME: Provide a source location here even though there's no
867   // CXXMemberCallExpr for dtor call.
868   bool UseGlobalDelete = DE->isGlobalDelete();
869   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
870   llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
871   if (UseGlobalDelete)
872     CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
873 }
874 
875 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
876   llvm::Value *Args[] = {
877       llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
878       llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
879   llvm::FunctionCallee Fn = getThrowFn();
880   if (isNoReturn)
881     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
882   else
883     CGF.EmitRuntimeCallOrInvoke(Fn, Args);
884 }
885 
886 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
887                                      const CXXCatchStmt *S) {
888   // In the MS ABI, the runtime handles the copy, and the catch handler is
889   // responsible for destruction.
890   VarDecl *CatchParam = S->getExceptionDecl();
891   llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
892   llvm::CatchPadInst *CPI =
893       cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
894   CGF.CurrentFuncletPad = CPI;
895 
896   // If this is a catch-all or the catch parameter is unnamed, we don't need to
897   // emit an alloca to the object.
898   if (!CatchParam || !CatchParam->getDeclName()) {
899     CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
900     return;
901   }
902 
903   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
904   CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
905   CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
906   CGF.EmitAutoVarCleanups(var);
907 }
908 
909 /// We need to perform a generic polymorphic operation (like a typeid
910 /// or a cast), which requires an object with a vfptr.  Adjust the
911 /// address to point to an object with a vfptr.
912 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
913 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
914                                        QualType SrcRecordTy) {
915   Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
916   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
917   const ASTContext &Context = getContext();
918 
919   // If the class itself has a vfptr, great.  This check implicitly
920   // covers non-virtual base subobjects: a class with its own virtual
921   // functions would be a candidate to be a primary base.
922   if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
923     return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
924                            SrcDecl);
925 
926   // Okay, one of the vbases must have a vfptr, or else this isn't
927   // actually a polymorphic class.
928   const CXXRecordDecl *PolymorphicBase = nullptr;
929   for (auto &Base : SrcDecl->vbases()) {
930     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
931     if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
932       PolymorphicBase = BaseDecl;
933       break;
934     }
935   }
936   assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
937 
938   llvm::Value *Offset =
939     GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
940   llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
941   CharUnits VBaseAlign =
942     CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
943   return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase);
944 }
945 
946 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
947                                                 QualType SrcRecordTy) {
948   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
949   return IsDeref &&
950          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
951 }
952 
953 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
954                                         llvm::Value *Argument) {
955   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
956   llvm::FunctionType *FTy =
957       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
958   llvm::Value *Args[] = {Argument};
959   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
960   return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
961 }
962 
963 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
964   llvm::CallBase *Call =
965       emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
966   Call->setDoesNotReturn();
967   CGF.Builder.CreateUnreachable();
968 }
969 
970 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
971                                          QualType SrcRecordTy,
972                                          Address ThisPtr,
973                                          llvm::Type *StdTypeInfoPtrTy) {
974   std::tie(ThisPtr, std::ignore, std::ignore) =
975       performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
976   llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
977   return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
978 }
979 
980 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
981                                                          QualType SrcRecordTy) {
982   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
983   return SrcIsPtr &&
984          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
985 }
986 
987 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
988     CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
989     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
990   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
991 
992   llvm::Value *SrcRTTI =
993       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
994   llvm::Value *DestRTTI =
995       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
996 
997   llvm::Value *Offset;
998   std::tie(This, Offset, std::ignore) =
999       performBaseAdjustment(CGF, This, SrcRecordTy);
1000   llvm::Value *ThisPtr = This.getPointer();
1001   Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
1002 
1003   // PVOID __RTDynamicCast(
1004   //   PVOID inptr,
1005   //   LONG VfDelta,
1006   //   PVOID SrcType,
1007   //   PVOID TargetType,
1008   //   BOOL isReference)
1009   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
1010                             CGF.Int8PtrTy, CGF.Int32Ty};
1011   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1012       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1013       "__RTDynamicCast");
1014   llvm::Value *Args[] = {
1015       ThisPtr, Offset, SrcRTTI, DestRTTI,
1016       llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1017   ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args);
1018   return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
1019 }
1020 
1021 llvm::Value *
1022 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
1023                                        QualType SrcRecordTy,
1024                                        QualType DestTy) {
1025   std::tie(Value, std::ignore, std::ignore) =
1026       performBaseAdjustment(CGF, Value, SrcRecordTy);
1027 
1028   // PVOID __RTCastToVoid(
1029   //   PVOID inptr)
1030   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1031   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1032       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1033       "__RTCastToVoid");
1034   llvm::Value *Args[] = {Value.getPointer()};
1035   return CGF.EmitRuntimeCall(Function, Args);
1036 }
1037 
1038 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1039   return false;
1040 }
1041 
1042 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1043     CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1044     const CXXRecordDecl *BaseClassDecl) {
1045   const ASTContext &Context = getContext();
1046   int64_t VBPtrChars =
1047       Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1048   llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1049   CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1050   CharUnits VBTableChars =
1051       IntSize *
1052       CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1053   llvm::Value *VBTableOffset =
1054       llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1055 
1056   llvm::Value *VBPtrToNewBase =
1057       GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1058   VBPtrToNewBase =
1059       CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1060   return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1061 }
1062 
1063 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1064   return isa<CXXConstructorDecl>(GD.getDecl());
1065 }
1066 
1067 static bool isDeletingDtor(GlobalDecl GD) {
1068   return isa<CXXDestructorDecl>(GD.getDecl()) &&
1069          GD.getDtorType() == Dtor_Deleting;
1070 }
1071 
1072 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1073   return isDeletingDtor(GD);
1074 }
1075 
1076 static bool isTrivialForAArch64MSVC(const CXXRecordDecl *RD) {
1077   // For AArch64, we use the C++14 definition of an aggregate, so we also
1078   // check for:
1079   //   No private or protected non static data members.
1080   //   No base classes
1081   //   No virtual functions
1082   // Additionally, we need to ensure that there is a trivial copy assignment
1083   // operator, a trivial destructor and no user-provided constructors.
1084   if (RD->hasProtectedFields() || RD->hasPrivateFields())
1085     return false;
1086   if (RD->getNumBases() > 0)
1087     return false;
1088   if (RD->isPolymorphic())
1089     return false;
1090   if (RD->hasNonTrivialCopyAssignment())
1091     return false;
1092   for (const CXXConstructorDecl *Ctor : RD->ctors())
1093     if (Ctor->isUserProvided())
1094       return false;
1095   if (RD->hasNonTrivialDestructor())
1096     return false;
1097   return true;
1098 }
1099 
1100 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1101   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1102   if (!RD)
1103     return false;
1104 
1105   // Normally, the C++ concept of "is trivially copyable" is used to determine
1106   // if a struct can be returned directly. However, as MSVC and the language
1107   // have evolved, the definition of "trivially copyable" has changed, while the
1108   // ABI must remain stable. AArch64 uses the C++14 concept of an "aggregate",
1109   // while other ISAs use the older concept of "plain old data".
1110   bool isTrivialForABI = RD->isPOD();
1111   bool isAArch64 = CGM.getTarget().getTriple().isAArch64();
1112   if (isAArch64)
1113     isTrivialForABI = RD->canPassInRegisters() && isTrivialForAArch64MSVC(RD);
1114 
1115   // MSVC always returns structs indirectly from C++ instance methods.
1116   bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod();
1117 
1118   if (isIndirectReturn) {
1119     CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1120     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1121 
1122     // MSVC always passes `this` before the `sret` parameter.
1123     FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
1124 
1125     // On AArch64, use the `inreg` attribute if the object is considered to not
1126     // be trivially copyable, or if this is an instance method struct return.
1127     FI.getReturnInfo().setInReg(isAArch64);
1128 
1129     return true;
1130   }
1131 
1132   // Otherwise, use the C ABI rules.
1133   return false;
1134 }
1135 
1136 llvm::BasicBlock *
1137 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1138                                                const CXXRecordDecl *RD) {
1139   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1140   assert(IsMostDerivedClass &&
1141          "ctor for a class with virtual bases must have an implicit parameter");
1142   llvm::Value *IsCompleteObject =
1143     CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1144 
1145   llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1146   llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1147   CGF.Builder.CreateCondBr(IsCompleteObject,
1148                            CallVbaseCtorsBB, SkipVbaseCtorsBB);
1149 
1150   CGF.EmitBlock(CallVbaseCtorsBB);
1151 
1152   // Fill in the vbtable pointers here.
1153   EmitVBPtrStores(CGF, RD);
1154 
1155   // CGF will put the base ctor calls in this basic block for us later.
1156 
1157   return SkipVbaseCtorsBB;
1158 }
1159 
1160 llvm::BasicBlock *
1161 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1162   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1163   assert(IsMostDerivedClass &&
1164          "ctor for a class with virtual bases must have an implicit parameter");
1165   llvm::Value *IsCompleteObject =
1166       CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1167 
1168   llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1169   llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1170   CGF.Builder.CreateCondBr(IsCompleteObject,
1171                            CallVbaseDtorsBB, SkipVbaseDtorsBB);
1172 
1173   CGF.EmitBlock(CallVbaseDtorsBB);
1174   // CGF will put the base dtor calls in this basic block for us later.
1175 
1176   return SkipVbaseDtorsBB;
1177 }
1178 
1179 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1180     CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1181   // In most cases, an override for a vbase virtual method can adjust
1182   // the "this" parameter by applying a constant offset.
1183   // However, this is not enough while a constructor or a destructor of some
1184   // class X is being executed if all the following conditions are met:
1185   //  - X has virtual bases, (1)
1186   //  - X overrides a virtual method M of a vbase Y, (2)
1187   //  - X itself is a vbase of the most derived class.
1188   //
1189   // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1190   // which holds the extra amount of "this" adjustment we must do when we use
1191   // the X vftables (i.e. during X ctor or dtor).
1192   // Outside the ctors and dtors, the values of vtorDisps are zero.
1193 
1194   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1195   typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1196   const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1197   CGBuilderTy &Builder = CGF.Builder;
1198 
1199   unsigned AS = getThisAddress(CGF).getAddressSpace();
1200   llvm::Value *Int8This = nullptr;  // Initialize lazily.
1201 
1202   for (const CXXBaseSpecifier &S : RD->vbases()) {
1203     const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1204     auto I = VBaseMap.find(VBase);
1205     assert(I != VBaseMap.end());
1206     if (!I->second.hasVtorDisp())
1207       continue;
1208 
1209     llvm::Value *VBaseOffset =
1210         GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1211     uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1212 
1213     // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1214     llvm::Value *VtorDispValue = Builder.CreateSub(
1215         VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1216         "vtordisp.value");
1217     VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1218 
1219     if (!Int8This)
1220       Int8This = Builder.CreateBitCast(getThisValue(CGF),
1221                                        CGF.Int8Ty->getPointerTo(AS));
1222     llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
1223     // vtorDisp is always the 32-bits before the vbase in the class layout.
1224     VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
1225     VtorDispPtr = Builder.CreateBitCast(
1226         VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1227 
1228     Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1229                                CharUnits::fromQuantity(4));
1230   }
1231 }
1232 
1233 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1234                                   const CXXMethodDecl *MD) {
1235   CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1236       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1237   CallingConv ActualCallingConv =
1238       MD->getType()->castAs<FunctionProtoType>()->getCallConv();
1239   return ExpectedCallingConv == ActualCallingConv;
1240 }
1241 
1242 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1243   // There's only one constructor type in this ABI.
1244   CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1245 
1246   // Exported default constructors either have a simple call-site where they use
1247   // the typical calling convention and have a single 'this' pointer for an
1248   // argument -or- they get a wrapper function which appropriately thunks to the
1249   // real default constructor.  This thunk is the default constructor closure.
1250   if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() &&
1251       D->isDefined()) {
1252     if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1253       llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1254       Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1255       CGM.setGVProperties(Fn, D);
1256     }
1257   }
1258 }
1259 
1260 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1261                                       const CXXRecordDecl *RD) {
1262   Address This = getThisAddress(CGF);
1263   This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
1264   const ASTContext &Context = getContext();
1265   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1266 
1267   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1268   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1269     const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1270     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1271     const ASTRecordLayout &SubobjectLayout =
1272         Context.getASTRecordLayout(VBT->IntroducingObject);
1273     CharUnits Offs = VBT->NonVirtualOffset;
1274     Offs += SubobjectLayout.getVBPtrOffset();
1275     if (VBT->getVBaseWithVPtr())
1276       Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1277     Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1278     llvm::Value *GVPtr =
1279         CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1280     VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
1281                                       "vbptr." + VBT->ObjectWithVPtr->getName());
1282     CGF.Builder.CreateStore(GVPtr, VBPtr);
1283   }
1284 }
1285 
1286 CGCXXABI::AddedStructorArgCounts
1287 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1288                                         SmallVectorImpl<CanQualType> &ArgTys) {
1289   AddedStructorArgCounts Added;
1290   // TODO: 'for base' flag
1291   if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1292       GD.getDtorType() == Dtor_Deleting) {
1293     // The scalar deleting destructor takes an implicit int parameter.
1294     ArgTys.push_back(getContext().IntTy);
1295     ++Added.Suffix;
1296   }
1297   auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1298   if (!CD)
1299     return Added;
1300 
1301   // All parameters are already in place except is_most_derived, which goes
1302   // after 'this' if it's variadic and last if it's not.
1303 
1304   const CXXRecordDecl *Class = CD->getParent();
1305   const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1306   if (Class->getNumVBases()) {
1307     if (FPT->isVariadic()) {
1308       ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1309       ++Added.Prefix;
1310     } else {
1311       ArgTys.push_back(getContext().IntTy);
1312       ++Added.Suffix;
1313     }
1314   }
1315 
1316   return Added;
1317 }
1318 
1319 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1320                                                  const CXXDestructorDecl *Dtor,
1321                                                  CXXDtorType DT) const {
1322   // Deleting destructor variants are never imported or exported. Give them the
1323   // default storage class.
1324   if (DT == Dtor_Deleting) {
1325     GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1326   } else {
1327     const NamedDecl *ND = Dtor;
1328     CGM.setDLLImportDLLExport(GV, ND);
1329   }
1330 }
1331 
1332 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1333     GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1334   // Internal things are always internal, regardless of attributes. After this,
1335   // we know the thunk is externally visible.
1336   if (Linkage == GVA_Internal)
1337     return llvm::GlobalValue::InternalLinkage;
1338 
1339   switch (DT) {
1340   case Dtor_Base:
1341     // The base destructor most closely tracks the user-declared constructor, so
1342     // we delegate back to the normal declarator case.
1343     return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage,
1344                                            /*IsConstantVariable=*/false);
1345   case Dtor_Complete:
1346     // The complete destructor is like an inline function, but it may be
1347     // imported and therefore must be exported as well. This requires changing
1348     // the linkage if a DLL attribute is present.
1349     if (Dtor->hasAttr<DLLExportAttr>())
1350       return llvm::GlobalValue::WeakODRLinkage;
1351     if (Dtor->hasAttr<DLLImportAttr>())
1352       return llvm::GlobalValue::AvailableExternallyLinkage;
1353     return llvm::GlobalValue::LinkOnceODRLinkage;
1354   case Dtor_Deleting:
1355     // Deleting destructors are like inline functions. They have vague linkage
1356     // and are emitted everywhere they are used. They are internal if the class
1357     // is internal.
1358     return llvm::GlobalValue::LinkOnceODRLinkage;
1359   case Dtor_Comdat:
1360     llvm_unreachable("MS C++ ABI does not support comdat dtors");
1361   }
1362   llvm_unreachable("invalid dtor type");
1363 }
1364 
1365 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1366   // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1367   // other destructor variants are delegating thunks.
1368   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1369 
1370   // If the class is dllexported, emit the complete (vbase) destructor wherever
1371   // the base dtor is emitted.
1372   // FIXME: To match MSVC, this should only be done when the class is exported
1373   // with -fdllexport-inlines enabled.
1374   if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>())
1375     CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
1376 }
1377 
1378 CharUnits
1379 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1380   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1381 
1382   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1383     // Complete destructors take a pointer to the complete object as a
1384     // parameter, thus don't need this adjustment.
1385     if (GD.getDtorType() == Dtor_Complete)
1386       return CharUnits();
1387 
1388     // There's no Dtor_Base in vftable but it shares the this adjustment with
1389     // the deleting one, so look it up instead.
1390     GD = GlobalDecl(DD, Dtor_Deleting);
1391   }
1392 
1393   MethodVFTableLocation ML =
1394       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1395   CharUnits Adjustment = ML.VFPtrOffset;
1396 
1397   // Normal virtual instance methods need to adjust from the vfptr that first
1398   // defined the virtual method to the virtual base subobject, but destructors
1399   // do not.  The vector deleting destructor thunk applies this adjustment for
1400   // us if necessary.
1401   if (isa<CXXDestructorDecl>(MD))
1402     Adjustment = CharUnits::Zero();
1403 
1404   if (ML.VBase) {
1405     const ASTRecordLayout &DerivedLayout =
1406         getContext().getASTRecordLayout(MD->getParent());
1407     Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1408   }
1409 
1410   return Adjustment;
1411 }
1412 
1413 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1414     CodeGenFunction &CGF, GlobalDecl GD, Address This,
1415     bool VirtualCall) {
1416   if (!VirtualCall) {
1417     // If the call of a virtual function is not virtual, we just have to
1418     // compensate for the adjustment the virtual function does in its prologue.
1419     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1420     if (Adjustment.isZero())
1421       return This;
1422 
1423     This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
1424     assert(Adjustment.isPositive());
1425     return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1426   }
1427 
1428   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1429 
1430   GlobalDecl LookupGD = GD;
1431   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1432     // Complete dtors take a pointer to the complete object,
1433     // thus don't need adjustment.
1434     if (GD.getDtorType() == Dtor_Complete)
1435       return This;
1436 
1437     // There's only Dtor_Deleting in vftable but it shares the this adjustment
1438     // with the base one, so look up the deleting one instead.
1439     LookupGD = GlobalDecl(DD, Dtor_Deleting);
1440   }
1441   MethodVFTableLocation ML =
1442       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1443 
1444   CharUnits StaticOffset = ML.VFPtrOffset;
1445 
1446   // Base destructors expect 'this' to point to the beginning of the base
1447   // subobject, not the first vfptr that happens to contain the virtual dtor.
1448   // However, we still need to apply the virtual base adjustment.
1449   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1450     StaticOffset = CharUnits::Zero();
1451 
1452   Address Result = This;
1453   if (ML.VBase) {
1454     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1455 
1456     const CXXRecordDecl *Derived = MD->getParent();
1457     const CXXRecordDecl *VBase = ML.VBase;
1458     llvm::Value *VBaseOffset =
1459       GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1460     llvm::Value *VBasePtr =
1461       CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
1462     CharUnits VBaseAlign =
1463       CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1464     Result = Address(VBasePtr, VBaseAlign);
1465   }
1466   if (!StaticOffset.isZero()) {
1467     assert(StaticOffset.isPositive());
1468     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1469     if (ML.VBase) {
1470       // Non-virtual adjustment might result in a pointer outside the allocated
1471       // object, e.g. if the final overrider class is laid out after the virtual
1472       // base that declares a method in the most derived class.
1473       // FIXME: Update the code that emits this adjustment in thunks prologues.
1474       Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1475     } else {
1476       Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1477     }
1478   }
1479   return Result;
1480 }
1481 
1482 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1483                                                 QualType &ResTy,
1484                                                 FunctionArgList &Params) {
1485   ASTContext &Context = getContext();
1486   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1487   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1488   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1489     auto *IsMostDerived = ImplicitParamDecl::Create(
1490         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1491         &Context.Idents.get("is_most_derived"), Context.IntTy,
1492         ImplicitParamDecl::Other);
1493     // The 'most_derived' parameter goes second if the ctor is variadic and last
1494     // if it's not.  Dtors can't be variadic.
1495     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1496     if (FPT->isVariadic())
1497       Params.insert(Params.begin() + 1, IsMostDerived);
1498     else
1499       Params.push_back(IsMostDerived);
1500     getStructorImplicitParamDecl(CGF) = IsMostDerived;
1501   } else if (isDeletingDtor(CGF.CurGD)) {
1502     auto *ShouldDelete = ImplicitParamDecl::Create(
1503         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1504         &Context.Idents.get("should_call_delete"), Context.IntTy,
1505         ImplicitParamDecl::Other);
1506     Params.push_back(ShouldDelete);
1507     getStructorImplicitParamDecl(CGF) = ShouldDelete;
1508   }
1509 }
1510 
1511 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1512   // Naked functions have no prolog.
1513   if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1514     return;
1515 
1516   // Overridden virtual methods of non-primary bases need to adjust the incoming
1517   // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1518   // sizeof(void*) to adjust from B* to C*:
1519   //   struct A { virtual void a(); };
1520   //   struct B { virtual void b(); };
1521   //   struct C : A, B { virtual void b(); };
1522   //
1523   // Leave the value stored in the 'this' alloca unadjusted, so that the
1524   // debugger sees the unadjusted value. Microsoft debuggers require this, and
1525   // will apply the ThisAdjustment in the method type information.
1526   // FIXME: Do something better for DWARF debuggers, which won't expect this,
1527   // without making our codegen depend on debug info settings.
1528   llvm::Value *This = loadIncomingCXXThis(CGF);
1529   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1530   if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1531     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1532     if (!Adjustment.isZero()) {
1533       unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1534       llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1535                  *thisTy = This->getType();
1536       This = CGF.Builder.CreateBitCast(This, charPtrTy);
1537       assert(Adjustment.isPositive());
1538       This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1539                                                     -Adjustment.getQuantity());
1540       This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted");
1541     }
1542   }
1543   setCXXABIThisValue(CGF, This);
1544 
1545   // If this is a function that the ABI specifies returns 'this', initialize
1546   // the return slot to 'this' at the start of the function.
1547   //
1548   // Unlike the setting of return types, this is done within the ABI
1549   // implementation instead of by clients of CGCXXABI because:
1550   // 1) getThisValue is currently protected
1551   // 2) in theory, an ABI could implement 'this' returns some other way;
1552   //    HasThisReturn only specifies a contract, not the implementation
1553   if (HasThisReturn(CGF.CurGD))
1554     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1555   else if (hasMostDerivedReturn(CGF.CurGD))
1556     CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1557                             CGF.ReturnValue);
1558 
1559   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1560     assert(getStructorImplicitParamDecl(CGF) &&
1561            "no implicit parameter for a constructor with virtual bases?");
1562     getStructorImplicitParamValue(CGF)
1563       = CGF.Builder.CreateLoad(
1564           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1565           "is_most_derived");
1566   }
1567 
1568   if (isDeletingDtor(CGF.CurGD)) {
1569     assert(getStructorImplicitParamDecl(CGF) &&
1570            "no implicit parameter for a deleting destructor?");
1571     getStructorImplicitParamValue(CGF)
1572       = CGF.Builder.CreateLoad(
1573           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1574           "should_call_delete");
1575   }
1576 }
1577 
1578 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs(
1579     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1580     bool ForVirtualBase, bool Delegating) {
1581   assert(Type == Ctor_Complete || Type == Ctor_Base);
1582 
1583   // Check if we need a 'most_derived' parameter.
1584   if (!D->getParent()->getNumVBases())
1585     return AddedStructorArgs{};
1586 
1587   // Add the 'most_derived' argument second if we are variadic or last if not.
1588   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1589   llvm::Value *MostDerivedArg;
1590   if (Delegating) {
1591     MostDerivedArg = getStructorImplicitParamValue(CGF);
1592   } else {
1593     MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1594   }
1595   if (FPT->isVariadic()) {
1596     return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}});
1597   }
1598   return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}});
1599 }
1600 
1601 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam(
1602     CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type,
1603     bool ForVirtualBase, bool Delegating) {
1604   return nullptr;
1605 }
1606 
1607 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1608                                          const CXXDestructorDecl *DD,
1609                                          CXXDtorType Type, bool ForVirtualBase,
1610                                          bool Delegating, Address This,
1611                                          QualType ThisTy) {
1612   // Use the base destructor variant in place of the complete destructor variant
1613   // if the class has no virtual bases. This effectively implements some of the
1614   // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1615   if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1616     Type = Dtor_Base;
1617 
1618   GlobalDecl GD(DD, Type);
1619   CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1620 
1621   if (DD->isVirtual()) {
1622     assert(Type != CXXDtorType::Dtor_Deleting &&
1623            "The deleting destructor should only be called via a virtual call");
1624     This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1625                                                     This, false);
1626   }
1627 
1628   llvm::BasicBlock *BaseDtorEndBB = nullptr;
1629   if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1630     BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1631   }
1632 
1633   llvm::Value *Implicit =
1634       getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase,
1635                                     Delegating); // = nullptr
1636   CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1637                             /*ImplicitParam=*/Implicit,
1638                             /*ImplicitParamTy=*/QualType(), nullptr);
1639   if (BaseDtorEndBB) {
1640     // Complete object handler should continue to be the remaining
1641     CGF.Builder.CreateBr(BaseDtorEndBB);
1642     CGF.EmitBlock(BaseDtorEndBB);
1643   }
1644 }
1645 
1646 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1647                                              const CXXRecordDecl *RD,
1648                                              llvm::GlobalVariable *VTable) {
1649   if (!CGM.getCodeGenOpts().LTOUnit)
1650     return;
1651 
1652   // TODO: Should VirtualFunctionElimination also be supported here?
1653   // See similar handling in CodeGenModule::EmitVTableTypeMetadata.
1654   if (CGM.getCodeGenOpts().WholeProgramVTables) {
1655     llvm::DenseSet<const CXXRecordDecl *> Visited;
1656     llvm::GlobalObject::VCallVisibility TypeVis =
1657         CGM.GetVCallVisibilityLevel(RD, Visited);
1658     if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1659       VTable->setVCallVisibilityMetadata(TypeVis);
1660   }
1661 
1662   // The location of the first virtual function pointer in the virtual table,
1663   // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1664   // disabled, or sizeof(void*) if RTTI is enabled.
1665   CharUnits AddressPoint =
1666       getContext().getLangOpts().RTTIData
1667           ? getContext().toCharUnitsFromBits(
1668                 getContext().getTargetInfo().getPointerWidth(0))
1669           : CharUnits::Zero();
1670 
1671   if (Info.PathToIntroducingObject.empty()) {
1672     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1673     return;
1674   }
1675 
1676   // Add a bitset entry for the least derived base belonging to this vftable.
1677   CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1678                             Info.PathToIntroducingObject.back());
1679 
1680   // Add a bitset entry for each derived class that is laid out at the same
1681   // offset as the least derived base.
1682   for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1683     const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1684     const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1685 
1686     const ASTRecordLayout &Layout =
1687         getContext().getASTRecordLayout(DerivedRD);
1688     CharUnits Offset;
1689     auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1690     if (VBI == Layout.getVBaseOffsetsMap().end())
1691       Offset = Layout.getBaseClassOffset(BaseRD);
1692     else
1693       Offset = VBI->second.VBaseOffset;
1694     if (!Offset.isZero())
1695       return;
1696     CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1697   }
1698 
1699   // Finally do the same for the most derived class.
1700   if (Info.FullOffsetInMDC.isZero())
1701     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1702 }
1703 
1704 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1705                                             const CXXRecordDecl *RD) {
1706   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1707   const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1708 
1709   for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1710     llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1711     if (VTable->hasInitializer())
1712       continue;
1713 
1714     const VTableLayout &VTLayout =
1715       VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1716 
1717     llvm::Constant *RTTI = nullptr;
1718     if (any_of(VTLayout.vtable_components(),
1719                [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1720       RTTI = getMSCompleteObjectLocator(RD, *Info);
1721 
1722     ConstantInitBuilder builder(CGM);
1723     auto components = builder.beginStruct();
1724     CGVT.createVTableInitializer(components, VTLayout, RTTI,
1725                                  VTable->hasLocalLinkage());
1726     components.finishAndSetAsInitializer(VTable);
1727 
1728     emitVTableTypeMetadata(*Info, RD, VTable);
1729   }
1730 }
1731 
1732 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1733     CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1734   return Vptr.NearestVBase != nullptr;
1735 }
1736 
1737 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1738     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1739     const CXXRecordDecl *NearestVBase) {
1740   llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1741   if (!VTableAddressPoint) {
1742     assert(Base.getBase()->getNumVBases() &&
1743            !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1744   }
1745   return VTableAddressPoint;
1746 }
1747 
1748 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1749                               const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1750                               SmallString<256> &Name) {
1751   llvm::raw_svector_ostream Out(Name);
1752   MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1753 }
1754 
1755 llvm::Constant *
1756 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1757                                        const CXXRecordDecl *VTableClass) {
1758   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1759   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1760   return VFTablesMap[ID];
1761 }
1762 
1763 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1764     BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1765   llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1766   assert(VFTable && "Couldn't find a vftable for the given base?");
1767   return VFTable;
1768 }
1769 
1770 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1771                                                        CharUnits VPtrOffset) {
1772   // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1773   // shouldn't be used in the given record type. We want to cache this result in
1774   // VFTablesMap, thus a simple zero check is not sufficient.
1775 
1776   VFTableIdTy ID(RD, VPtrOffset);
1777   VTablesMapTy::iterator I;
1778   bool Inserted;
1779   std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1780   if (!Inserted)
1781     return I->second;
1782 
1783   llvm::GlobalVariable *&VTable = I->second;
1784 
1785   MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1786   const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1787 
1788   if (DeferredVFTables.insert(RD).second) {
1789     // We haven't processed this record type before.
1790     // Queue up this vtable for possible deferred emission.
1791     CGM.addDeferredVTable(RD);
1792 
1793 #ifndef NDEBUG
1794     // Create all the vftables at once in order to make sure each vftable has
1795     // a unique mangled name.
1796     llvm::StringSet<> ObservedMangledNames;
1797     for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1798       SmallString<256> Name;
1799       mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1800       if (!ObservedMangledNames.insert(Name.str()).second)
1801         llvm_unreachable("Already saw this mangling before?");
1802     }
1803 #endif
1804   }
1805 
1806   const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if(
1807       VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) {
1808         return VPI->FullOffsetInMDC == VPtrOffset;
1809       });
1810   if (VFPtrI == VFPtrs.end()) {
1811     VFTablesMap[ID] = nullptr;
1812     return nullptr;
1813   }
1814   const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1815 
1816   SmallString<256> VFTableName;
1817   mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1818 
1819   // Classes marked __declspec(dllimport) need vftables generated on the
1820   // import-side in order to support features like constexpr.  No other
1821   // translation unit relies on the emission of the local vftable, translation
1822   // units are expected to generate them as needed.
1823   //
1824   // Because of this unique behavior, we maintain this logic here instead of
1825   // getVTableLinkage.
1826   llvm::GlobalValue::LinkageTypes VFTableLinkage =
1827       RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1828                                    : CGM.getVTableLinkage(RD);
1829   bool VFTableComesFromAnotherTU =
1830       llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1831       llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1832   bool VTableAliasIsRequred =
1833       !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1834 
1835   if (llvm::GlobalValue *VFTable =
1836           CGM.getModule().getNamedGlobal(VFTableName)) {
1837     VFTablesMap[ID] = VFTable;
1838     VTable = VTableAliasIsRequred
1839                  ? cast<llvm::GlobalVariable>(
1840                        cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
1841                  : cast<llvm::GlobalVariable>(VFTable);
1842     return VTable;
1843   }
1844 
1845   const VTableLayout &VTLayout =
1846       VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1847   llvm::GlobalValue::LinkageTypes VTableLinkage =
1848       VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1849 
1850   StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1851 
1852   llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1853 
1854   // Create a backing variable for the contents of VTable.  The VTable may
1855   // or may not include space for a pointer to RTTI data.
1856   llvm::GlobalValue *VFTable;
1857   VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1858                                     /*isConstant=*/true, VTableLinkage,
1859                                     /*Initializer=*/nullptr, VTableName);
1860   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1861 
1862   llvm::Comdat *C = nullptr;
1863   if (!VFTableComesFromAnotherTU &&
1864       (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1865        (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1866         VTableAliasIsRequred)))
1867     C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1868 
1869   // Only insert a pointer into the VFTable for RTTI data if we are not
1870   // importing it.  We never reference the RTTI data directly so there is no
1871   // need to make room for it.
1872   if (VTableAliasIsRequred) {
1873     llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1874                                  llvm::ConstantInt::get(CGM.Int32Ty, 0),
1875                                  llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1876     // Create a GEP which points just after the first entry in the VFTable,
1877     // this should be the location of the first virtual method.
1878     llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1879         VTable->getValueType(), VTable, GEPIndices);
1880     if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1881       VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1882       if (C)
1883         C->setSelectionKind(llvm::Comdat::Largest);
1884     }
1885     VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1886                                         /*AddressSpace=*/0, VFTableLinkage,
1887                                         VFTableName.str(), VTableGEP,
1888                                         &CGM.getModule());
1889     VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1890   } else {
1891     // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1892     // be referencing any RTTI data.
1893     // The GlobalVariable will end up being an appropriate definition of the
1894     // VFTable.
1895     VFTable = VTable;
1896   }
1897   if (C)
1898     VTable->setComdat(C);
1899 
1900   if (RD->hasAttr<DLLExportAttr>())
1901     VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1902 
1903   VFTablesMap[ID] = VFTable;
1904   return VTable;
1905 }
1906 
1907 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1908                                                     GlobalDecl GD,
1909                                                     Address This,
1910                                                     llvm::Type *Ty,
1911                                                     SourceLocation Loc) {
1912   CGBuilderTy &Builder = CGF.Builder;
1913 
1914   Ty = Ty->getPointerTo()->getPointerTo();
1915   Address VPtr =
1916       adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1917 
1918   auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1919   llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
1920 
1921   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1922   MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1923 
1924   // Compute the identity of the most derived class whose virtual table is
1925   // located at the MethodVFTableLocation ML.
1926   auto getObjectWithVPtr = [&] {
1927     return llvm::find_if(VFTContext.getVFPtrOffsets(
1928                              ML.VBase ? ML.VBase : MethodDecl->getParent()),
1929                          [&](const std::unique_ptr<VPtrInfo> &Info) {
1930                            return Info->FullOffsetInMDC == ML.VFPtrOffset;
1931                          })
1932         ->get()
1933         ->ObjectWithVPtr;
1934   };
1935 
1936   llvm::Value *VFunc;
1937   if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1938     VFunc = CGF.EmitVTableTypeCheckedLoad(
1939         getObjectWithVPtr(), VTable,
1940         ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
1941   } else {
1942     if (CGM.getCodeGenOpts().PrepareForLTO)
1943       CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1944 
1945     llvm::Value *VFuncPtr =
1946         Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1947     VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1948   }
1949 
1950   CGCallee Callee(GD, VFunc);
1951   return Callee;
1952 }
1953 
1954 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1955     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1956     Address This, DeleteOrMemberCallExpr E) {
1957   auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
1958   auto *D = E.dyn_cast<const CXXDeleteExpr *>();
1959   assert((CE != nullptr) ^ (D != nullptr));
1960   assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1961   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1962 
1963   // We have only one destructor in the vftable but can get both behaviors
1964   // by passing an implicit int parameter.
1965   GlobalDecl GD(Dtor, Dtor_Deleting);
1966   const CGFunctionInfo *FInfo =
1967       &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
1968   llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1969   CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
1970 
1971   ASTContext &Context = getContext();
1972   llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1973       llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1974       DtorType == Dtor_Deleting);
1975 
1976   QualType ThisTy;
1977   if (CE) {
1978     ThisTy = CE->getObjectType();
1979   } else {
1980     ThisTy = D->getDestroyedType();
1981   }
1982 
1983   This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1984   RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1985                                         ImplicitParam, Context.IntTy, CE);
1986   return RV.getScalarVal();
1987 }
1988 
1989 const VBTableGlobals &
1990 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1991   // At this layer, we can key the cache off of a single class, which is much
1992   // easier than caching each vbtable individually.
1993   llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1994   bool Added;
1995   std::tie(Entry, Added) =
1996       VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1997   VBTableGlobals &VBGlobals = Entry->second;
1998   if (!Added)
1999     return VBGlobals;
2000 
2001   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2002   VBGlobals.VBTables = &Context.enumerateVBTables(RD);
2003 
2004   // Cache the globals for all vbtables so we don't have to recompute the
2005   // mangled names.
2006   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
2007   for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
2008                                       E = VBGlobals.VBTables->end();
2009        I != E; ++I) {
2010     VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
2011   }
2012 
2013   return VBGlobals;
2014 }
2015 
2016 llvm::Function *
2017 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
2018                                         const MethodVFTableLocation &ML) {
2019   assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
2020          "can't form pointers to ctors or virtual dtors");
2021 
2022   // Calculate the mangled name.
2023   SmallString<256> ThunkName;
2024   llvm::raw_svector_ostream Out(ThunkName);
2025   getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
2026 
2027   // If the thunk has been generated previously, just return it.
2028   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
2029     return cast<llvm::Function>(GV);
2030 
2031   // Create the llvm::Function.
2032   const CGFunctionInfo &FnInfo =
2033       CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
2034   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
2035   llvm::Function *ThunkFn =
2036       llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
2037                              ThunkName.str(), &CGM.getModule());
2038   assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
2039 
2040   ThunkFn->setLinkage(MD->isExternallyVisible()
2041                           ? llvm::GlobalValue::LinkOnceODRLinkage
2042                           : llvm::GlobalValue::InternalLinkage);
2043   if (MD->isExternallyVisible())
2044     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
2045 
2046   CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
2047   CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
2048 
2049   // Add the "thunk" attribute so that LLVM knows that the return type is
2050   // meaningless. These thunks can be used to call functions with differing
2051   // return types, and the caller is required to cast the prototype
2052   // appropriately to extract the correct value.
2053   ThunkFn->addFnAttr("thunk");
2054 
2055   // These thunks can be compared, so they are not unnamed.
2056   ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2057 
2058   // Start codegen.
2059   CodeGenFunction CGF(CGM);
2060   CGF.CurGD = GlobalDecl(MD);
2061   CGF.CurFuncIsThunk = true;
2062 
2063   // Build FunctionArgs, but only include the implicit 'this' parameter
2064   // declaration.
2065   FunctionArgList FunctionArgs;
2066   buildThisParam(CGF, FunctionArgs);
2067 
2068   // Start defining the function.
2069   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2070                     FunctionArgs, MD->getLocation(), SourceLocation());
2071   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2072 
2073   // Load the vfptr and then callee from the vftable.  The callee should have
2074   // adjusted 'this' so that the vfptr is at offset zero.
2075   llvm::Value *VTable = CGF.GetVTablePtr(
2076       getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
2077 
2078   llvm::Value *VFuncPtr =
2079       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
2080   llvm::Value *Callee =
2081     CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
2082 
2083   CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2084 
2085   return ThunkFn;
2086 }
2087 
2088 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2089   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2090   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2091     const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2092     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2093     if (GV->isDeclaration())
2094       emitVBTableDefinition(*VBT, RD, GV);
2095   }
2096 }
2097 
2098 llvm::GlobalVariable *
2099 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2100                                   llvm::GlobalVariable::LinkageTypes Linkage) {
2101   SmallString<256> OutName;
2102   llvm::raw_svector_ostream Out(OutName);
2103   getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2104   StringRef Name = OutName.str();
2105 
2106   llvm::ArrayType *VBTableType =
2107       llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2108 
2109   assert(!CGM.getModule().getNamedGlobal(Name) &&
2110          "vbtable with this name already exists: mangling bug?");
2111   CharUnits Alignment =
2112       CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2113   llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2114       Name, VBTableType, Linkage, Alignment.getQuantity());
2115   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2116 
2117   if (RD->hasAttr<DLLImportAttr>())
2118     GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2119   else if (RD->hasAttr<DLLExportAttr>())
2120     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2121 
2122   if (!GV->hasExternalLinkage())
2123     emitVBTableDefinition(VBT, RD, GV);
2124 
2125   return GV;
2126 }
2127 
2128 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2129                                             const CXXRecordDecl *RD,
2130                                             llvm::GlobalVariable *GV) const {
2131   const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2132 
2133   assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2134          "should only emit vbtables for classes with vbtables");
2135 
2136   const ASTRecordLayout &BaseLayout =
2137       getContext().getASTRecordLayout(VBT.IntroducingObject);
2138   const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2139 
2140   SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2141                                            nullptr);
2142 
2143   // The offset from ObjectWithVPtr's vbptr to itself always leads.
2144   CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2145   Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2146 
2147   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2148   for (const auto &I : ObjectWithVPtr->vbases()) {
2149     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2150     CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2151     assert(!Offset.isNegative());
2152 
2153     // Make it relative to the subobject vbptr.
2154     CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2155     if (VBT.getVBaseWithVPtr())
2156       CompleteVBPtrOffset +=
2157           DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2158     Offset -= CompleteVBPtrOffset;
2159 
2160     unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2161     assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2162     Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2163   }
2164 
2165   assert(Offsets.size() ==
2166          cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
2167                                ->getElementType())->getNumElements());
2168   llvm::ArrayType *VBTableType =
2169     llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2170   llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2171   GV->setInitializer(Init);
2172 
2173   if (RD->hasAttr<DLLImportAttr>())
2174     GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2175 }
2176 
2177 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2178                                                     Address This,
2179                                                     const ThisAdjustment &TA) {
2180   if (TA.isEmpty())
2181     return This.getPointer();
2182 
2183   This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
2184 
2185   llvm::Value *V;
2186   if (TA.Virtual.isEmpty()) {
2187     V = This.getPointer();
2188   } else {
2189     assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2190     // Adjust the this argument based on the vtordisp value.
2191     Address VtorDispPtr =
2192         CGF.Builder.CreateConstInBoundsByteGEP(This,
2193                  CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2194     VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
2195     llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2196     V = CGF.Builder.CreateGEP(This.getPointer(),
2197                               CGF.Builder.CreateNeg(VtorDisp));
2198 
2199     // Unfortunately, having applied the vtordisp means that we no
2200     // longer really have a known alignment for the vbptr step.
2201     // We'll assume the vbptr is pointer-aligned.
2202 
2203     if (TA.Virtual.Microsoft.VBPtrOffset) {
2204       // If the final overrider is defined in a virtual base other than the one
2205       // that holds the vfptr, we have to use a vtordispex thunk which looks up
2206       // the vbtable of the derived class.
2207       assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2208       assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2209       llvm::Value *VBPtr;
2210       llvm::Value *VBaseOffset =
2211           GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
2212                                   -TA.Virtual.Microsoft.VBPtrOffset,
2213                                   TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2214       V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2215     }
2216   }
2217 
2218   if (TA.NonVirtual) {
2219     // Non-virtual adjustment might result in a pointer outside the allocated
2220     // object, e.g. if the final overrider class is laid out after the virtual
2221     // base that declares a method in the most derived class.
2222     V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
2223   }
2224 
2225   // Don't need to bitcast back, the call CodeGen will handle this.
2226   return V;
2227 }
2228 
2229 llvm::Value *
2230 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2231                                          const ReturnAdjustment &RA) {
2232   if (RA.isEmpty())
2233     return Ret.getPointer();
2234 
2235   auto OrigTy = Ret.getType();
2236   Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
2237 
2238   llvm::Value *V = Ret.getPointer();
2239   if (RA.Virtual.Microsoft.VBIndex) {
2240     assert(RA.Virtual.Microsoft.VBIndex > 0);
2241     int32_t IntSize = CGF.getIntSize().getQuantity();
2242     llvm::Value *VBPtr;
2243     llvm::Value *VBaseOffset =
2244         GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2245                                 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2246     V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2247   }
2248 
2249   if (RA.NonVirtual)
2250     V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2251 
2252   // Cast back to the original type.
2253   return CGF.Builder.CreateBitCast(V, OrigTy);
2254 }
2255 
2256 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2257                                    QualType elementType) {
2258   // Microsoft seems to completely ignore the possibility of a
2259   // two-argument usual deallocation function.
2260   return elementType.isDestructedType();
2261 }
2262 
2263 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2264   // Microsoft seems to completely ignore the possibility of a
2265   // two-argument usual deallocation function.
2266   return expr->getAllocatedType().isDestructedType();
2267 }
2268 
2269 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2270   // The array cookie is always a size_t; we then pad that out to the
2271   // alignment of the element type.
2272   ASTContext &Ctx = getContext();
2273   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2274                   Ctx.getTypeAlignInChars(type));
2275 }
2276 
2277 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2278                                                   Address allocPtr,
2279                                                   CharUnits cookieSize) {
2280   Address numElementsPtr =
2281     CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
2282   return CGF.Builder.CreateLoad(numElementsPtr);
2283 }
2284 
2285 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2286                                                Address newPtr,
2287                                                llvm::Value *numElements,
2288                                                const CXXNewExpr *expr,
2289                                                QualType elementType) {
2290   assert(requiresArrayCookie(expr));
2291 
2292   // The size of the cookie.
2293   CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2294 
2295   // Compute an offset to the cookie.
2296   Address cookiePtr = newPtr;
2297 
2298   // Write the number of elements into the appropriate slot.
2299   Address numElementsPtr
2300     = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
2301   CGF.Builder.CreateStore(numElements, numElementsPtr);
2302 
2303   // Finally, compute a pointer to the actual data buffer by skipping
2304   // over the cookie completely.
2305   return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2306 }
2307 
2308 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2309                                         llvm::FunctionCallee Dtor,
2310                                         llvm::Constant *Addr) {
2311   // Create a function which calls the destructor.
2312   llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2313 
2314   // extern "C" int __tlregdtor(void (*f)(void));
2315   llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2316       CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2317 
2318   llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2319       TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2320   if (llvm::Function *TLRegDtorFn =
2321           dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2322     TLRegDtorFn->setDoesNotThrow();
2323 
2324   CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2325 }
2326 
2327 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2328                                          llvm::FunctionCallee Dtor,
2329                                          llvm::Constant *Addr) {
2330   if (D.isNoDestroy(CGM.getContext()))
2331     return;
2332 
2333   if (D.getTLSKind())
2334     return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2335 
2336   // The default behavior is to use atexit.
2337   CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2338 }
2339 
2340 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2341     CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2342     ArrayRef<llvm::Function *> CXXThreadLocalInits,
2343     ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2344   if (CXXThreadLocalInits.empty())
2345     return;
2346 
2347   CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2348                                   llvm::Triple::x86
2349                               ? "/include:___dyn_tls_init@12"
2350                               : "/include:__dyn_tls_init");
2351 
2352   // This will create a GV in the .CRT$XDU section.  It will point to our
2353   // initialization function.  The CRT will call all of these function
2354   // pointers at start-up time and, eventually, at thread-creation time.
2355   auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2356     llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2357         CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2358         llvm::GlobalVariable::InternalLinkage, InitFunc,
2359         Twine(InitFunc->getName(), "$initializer$"));
2360     InitFuncPtr->setSection(".CRT$XDU");
2361     // This variable has discardable linkage, we have to add it to @llvm.used to
2362     // ensure it won't get discarded.
2363     CGM.addUsedGlobal(InitFuncPtr);
2364     return InitFuncPtr;
2365   };
2366 
2367   std::vector<llvm::Function *> NonComdatInits;
2368   for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2369     llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2370         CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2371     llvm::Function *F = CXXThreadLocalInits[I];
2372 
2373     // If the GV is already in a comdat group, then we have to join it.
2374     if (llvm::Comdat *C = GV->getComdat())
2375       AddToXDU(F)->setComdat(C);
2376     else
2377       NonComdatInits.push_back(F);
2378   }
2379 
2380   if (!NonComdatInits.empty()) {
2381     llvm::FunctionType *FTy =
2382         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2383     llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(
2384         FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2385         SourceLocation(), /*TLS=*/true);
2386     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2387 
2388     AddToXDU(InitFunc);
2389   }
2390 }
2391 
2392 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2393                                                      const VarDecl *VD,
2394                                                      QualType LValType) {
2395   CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
2396   return LValue();
2397 }
2398 
2399 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2400   StringRef VarName("_Init_thread_epoch");
2401   CharUnits Align = CGM.getIntAlign();
2402   if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2403     return ConstantAddress(GV, Align);
2404   auto *GV = new llvm::GlobalVariable(
2405       CGM.getModule(), CGM.IntTy,
2406       /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2407       /*Initializer=*/nullptr, VarName,
2408       /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2409   GV->setAlignment(Align.getAsAlign());
2410   return ConstantAddress(GV, Align);
2411 }
2412 
2413 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2414   llvm::FunctionType *FTy =
2415       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2416                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2417   return CGM.CreateRuntimeFunction(
2418       FTy, "_Init_thread_header",
2419       llvm::AttributeList::get(CGM.getLLVMContext(),
2420                                llvm::AttributeList::FunctionIndex,
2421                                llvm::Attribute::NoUnwind),
2422       /*Local=*/true);
2423 }
2424 
2425 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2426   llvm::FunctionType *FTy =
2427       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2428                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2429   return CGM.CreateRuntimeFunction(
2430       FTy, "_Init_thread_footer",
2431       llvm::AttributeList::get(CGM.getLLVMContext(),
2432                                llvm::AttributeList::FunctionIndex,
2433                                llvm::Attribute::NoUnwind),
2434       /*Local=*/true);
2435 }
2436 
2437 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2438   llvm::FunctionType *FTy =
2439       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2440                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2441   return CGM.CreateRuntimeFunction(
2442       FTy, "_Init_thread_abort",
2443       llvm::AttributeList::get(CGM.getLLVMContext(),
2444                                llvm::AttributeList::FunctionIndex,
2445                                llvm::Attribute::NoUnwind),
2446       /*Local=*/true);
2447 }
2448 
2449 namespace {
2450 struct ResetGuardBit final : EHScopeStack::Cleanup {
2451   Address Guard;
2452   unsigned GuardNum;
2453   ResetGuardBit(Address Guard, unsigned GuardNum)
2454       : Guard(Guard), GuardNum(GuardNum) {}
2455 
2456   void Emit(CodeGenFunction &CGF, Flags flags) override {
2457     // Reset the bit in the mask so that the static variable may be
2458     // reinitialized.
2459     CGBuilderTy &Builder = CGF.Builder;
2460     llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2461     llvm::ConstantInt *Mask =
2462         llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2463     Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2464   }
2465 };
2466 
2467 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2468   llvm::Value *Guard;
2469   CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2470 
2471   void Emit(CodeGenFunction &CGF, Flags flags) override {
2472     // Calling _Init_thread_abort will reset the guard's state.
2473     CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2474   }
2475 };
2476 }
2477 
2478 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2479                                       llvm::GlobalVariable *GV,
2480                                       bool PerformInit) {
2481   // MSVC only uses guards for static locals.
2482   if (!D.isStaticLocal()) {
2483     assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2484     // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2485     llvm::Function *F = CGF.CurFn;
2486     F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2487     F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2488     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2489     return;
2490   }
2491 
2492   bool ThreadlocalStatic = D.getTLSKind();
2493   bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2494 
2495   // Thread-safe static variables which aren't thread-specific have a
2496   // per-variable guard.
2497   bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2498 
2499   CGBuilderTy &Builder = CGF.Builder;
2500   llvm::IntegerType *GuardTy = CGF.Int32Ty;
2501   llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2502   CharUnits GuardAlign = CharUnits::fromQuantity(4);
2503 
2504   // Get the guard variable for this function if we have one already.
2505   GuardInfo *GI = nullptr;
2506   if (ThreadlocalStatic)
2507     GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2508   else if (!ThreadsafeStatic)
2509     GI = &GuardVariableMap[D.getDeclContext()];
2510 
2511   llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2512   unsigned GuardNum;
2513   if (D.isExternallyVisible()) {
2514     // Externally visible variables have to be numbered in Sema to properly
2515     // handle unreachable VarDecls.
2516     GuardNum = getContext().getStaticLocalNumber(&D);
2517     assert(GuardNum > 0);
2518     GuardNum--;
2519   } else if (HasPerVariableGuard) {
2520     GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2521   } else {
2522     // Non-externally visible variables are numbered here in CodeGen.
2523     GuardNum = GI->BitIndex++;
2524   }
2525 
2526   if (!HasPerVariableGuard && GuardNum >= 32) {
2527     if (D.isExternallyVisible())
2528       ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2529     GuardNum %= 32;
2530     GuardVar = nullptr;
2531   }
2532 
2533   if (!GuardVar) {
2534     // Mangle the name for the guard.
2535     SmallString<256> GuardName;
2536     {
2537       llvm::raw_svector_ostream Out(GuardName);
2538       if (HasPerVariableGuard)
2539         getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2540                                                                Out);
2541       else
2542         getMangleContext().mangleStaticGuardVariable(&D, Out);
2543     }
2544 
2545     // Create the guard variable with a zero-initializer. Just absorb linkage,
2546     // visibility and dll storage class from the guarded variable.
2547     GuardVar =
2548         new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2549                                  GV->getLinkage(), Zero, GuardName.str());
2550     GuardVar->setVisibility(GV->getVisibility());
2551     GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2552     GuardVar->setAlignment(GuardAlign.getAsAlign());
2553     if (GuardVar->isWeakForLinker())
2554       GuardVar->setComdat(
2555           CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2556     if (D.getTLSKind())
2557       CGM.setTLSMode(GuardVar, D);
2558     if (GI && !HasPerVariableGuard)
2559       GI->Guard = GuardVar;
2560   }
2561 
2562   ConstantAddress GuardAddr(GuardVar, GuardAlign);
2563 
2564   assert(GuardVar->getLinkage() == GV->getLinkage() &&
2565          "static local from the same function had different linkage");
2566 
2567   if (!HasPerVariableGuard) {
2568     // Pseudo code for the test:
2569     // if (!(GuardVar & MyGuardBit)) {
2570     //   GuardVar |= MyGuardBit;
2571     //   ... initialize the object ...;
2572     // }
2573 
2574     // Test our bit from the guard variable.
2575     llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2576     llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2577     llvm::Value *NeedsInit =
2578         Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2579     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2580     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2581     CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2582                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2583 
2584     // Set our bit in the guard variable and emit the initializer and add a global
2585     // destructor if appropriate.
2586     CGF.EmitBlock(InitBlock);
2587     Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2588     CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2589     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2590     CGF.PopCleanupBlock();
2591     Builder.CreateBr(EndBlock);
2592 
2593     // Continue.
2594     CGF.EmitBlock(EndBlock);
2595   } else {
2596     // Pseudo code for the test:
2597     // if (TSS > _Init_thread_epoch) {
2598     //   _Init_thread_header(&TSS);
2599     //   if (TSS == -1) {
2600     //     ... initialize the object ...;
2601     //     _Init_thread_footer(&TSS);
2602     //   }
2603     // }
2604     //
2605     // The algorithm is almost identical to what can be found in the appendix
2606     // found in N2325.
2607 
2608     // This BasicBLock determines whether or not we have any work to do.
2609     llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2610     FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2611     llvm::LoadInst *InitThreadEpoch =
2612         Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2613     llvm::Value *IsUninitialized =
2614         Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2615     llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2616     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2617     CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2618                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2619 
2620     // This BasicBlock attempts to determine whether or not this thread is
2621     // responsible for doing the initialization.
2622     CGF.EmitBlock(AttemptInitBlock);
2623     CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2624                                 GuardAddr.getPointer());
2625     llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2626     SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2627     llvm::Value *ShouldDoInit =
2628         Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2629     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2630     Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2631 
2632     // Ok, we ended up getting selected as the initializing thread.
2633     CGF.EmitBlock(InitBlock);
2634     CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2635     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2636     CGF.PopCleanupBlock();
2637     CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2638                                 GuardAddr.getPointer());
2639     Builder.CreateBr(EndBlock);
2640 
2641     CGF.EmitBlock(EndBlock);
2642   }
2643 }
2644 
2645 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2646   // Null-ness for function memptrs only depends on the first field, which is
2647   // the function pointer.  The rest don't matter, so we can zero initialize.
2648   if (MPT->isMemberFunctionPointer())
2649     return true;
2650 
2651   // The virtual base adjustment field is always -1 for null, so if we have one
2652   // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
2653   // valid field offset.
2654   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2655   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2656   return (!inheritanceModelHasVBTableOffsetField(Inheritance) &&
2657           RD->nullFieldOffsetIsZero());
2658 }
2659 
2660 llvm::Type *
2661 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2662   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2663   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2664   llvm::SmallVector<llvm::Type *, 4> fields;
2665   if (MPT->isMemberFunctionPointer())
2666     fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
2667   else
2668     fields.push_back(CGM.IntTy);  // FieldOffset
2669 
2670   if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2671                                        Inheritance))
2672     fields.push_back(CGM.IntTy);
2673   if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2674     fields.push_back(CGM.IntTy);
2675   if (inheritanceModelHasVBTableOffsetField(Inheritance))
2676     fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
2677 
2678   if (fields.size() == 1)
2679     return fields[0];
2680   return llvm::StructType::get(CGM.getLLVMContext(), fields);
2681 }
2682 
2683 void MicrosoftCXXABI::
2684 GetNullMemberPointerFields(const MemberPointerType *MPT,
2685                            llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2686   assert(fields.empty());
2687   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2688   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2689   if (MPT->isMemberFunctionPointer()) {
2690     // FunctionPointerOrVirtualThunk
2691     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2692   } else {
2693     if (RD->nullFieldOffsetIsZero())
2694       fields.push_back(getZeroInt());  // FieldOffset
2695     else
2696       fields.push_back(getAllOnesInt());  // FieldOffset
2697   }
2698 
2699   if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2700                                        Inheritance))
2701     fields.push_back(getZeroInt());
2702   if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2703     fields.push_back(getZeroInt());
2704   if (inheritanceModelHasVBTableOffsetField(Inheritance))
2705     fields.push_back(getAllOnesInt());
2706 }
2707 
2708 llvm::Constant *
2709 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2710   llvm::SmallVector<llvm::Constant *, 4> fields;
2711   GetNullMemberPointerFields(MPT, fields);
2712   if (fields.size() == 1)
2713     return fields[0];
2714   llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2715   assert(Res->getType() == ConvertMemberPointerType(MPT));
2716   return Res;
2717 }
2718 
2719 llvm::Constant *
2720 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2721                                        bool IsMemberFunction,
2722                                        const CXXRecordDecl *RD,
2723                                        CharUnits NonVirtualBaseAdjustment,
2724                                        unsigned VBTableIndex) {
2725   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2726 
2727   // Single inheritance class member pointer are represented as scalars instead
2728   // of aggregates.
2729   if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance))
2730     return FirstField;
2731 
2732   llvm::SmallVector<llvm::Constant *, 4> fields;
2733   fields.push_back(FirstField);
2734 
2735   if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance))
2736     fields.push_back(llvm::ConstantInt::get(
2737       CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2738 
2739   if (inheritanceModelHasVBPtrOffsetField(Inheritance)) {
2740     CharUnits Offs = CharUnits::Zero();
2741     if (VBTableIndex)
2742       Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2743     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2744   }
2745 
2746   // The rest of the fields are adjusted by conversions to a more derived class.
2747   if (inheritanceModelHasVBTableOffsetField(Inheritance))
2748     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2749 
2750   return llvm::ConstantStruct::getAnon(fields);
2751 }
2752 
2753 llvm::Constant *
2754 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2755                                        CharUnits offset) {
2756   return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
2757 }
2758 
2759 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
2760                                                        CharUnits offset) {
2761   if (RD->getMSInheritanceModel() ==
2762       MSInheritanceModel::Virtual)
2763     offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2764   llvm::Constant *FirstField =
2765     llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2766   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2767                                CharUnits::Zero(), /*VBTableIndex=*/0);
2768 }
2769 
2770 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2771                                                    QualType MPType) {
2772   const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2773   const ValueDecl *MPD = MP.getMemberPointerDecl();
2774   if (!MPD)
2775     return EmitNullMemberPointer(DstTy);
2776 
2777   ASTContext &Ctx = getContext();
2778   ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2779 
2780   llvm::Constant *C;
2781   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2782     C = EmitMemberFunctionPointer(MD);
2783   } else {
2784     // For a pointer to data member, start off with the offset of the field in
2785     // the class in which it was declared, and convert from there if necessary.
2786     // For indirect field decls, get the outermost anonymous field and use the
2787     // parent class.
2788     CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2789     const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
2790     if (!FD)
2791       FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
2792     const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
2793     RD = RD->getMostRecentNonInjectedDecl();
2794     C = EmitMemberDataPointer(RD, FieldOffset);
2795   }
2796 
2797   if (!MemberPointerPath.empty()) {
2798     const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2799     const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2800     const MemberPointerType *SrcTy =
2801         Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2802             ->castAs<MemberPointerType>();
2803 
2804     bool DerivedMember = MP.isMemberPointerToDerivedMember();
2805     SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2806     const CXXRecordDecl *PrevRD = SrcRD;
2807     for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2808       const CXXRecordDecl *Base = nullptr;
2809       const CXXRecordDecl *Derived = nullptr;
2810       if (DerivedMember) {
2811         Base = PathElem;
2812         Derived = PrevRD;
2813       } else {
2814         Base = PrevRD;
2815         Derived = PathElem;
2816       }
2817       for (const CXXBaseSpecifier &BS : Derived->bases())
2818         if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2819             Base->getCanonicalDecl())
2820           DerivedToBasePath.push_back(&BS);
2821       PrevRD = PathElem;
2822     }
2823     assert(DerivedToBasePath.size() == MemberPointerPath.size());
2824 
2825     CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2826                                 : CK_BaseToDerivedMemberPointer;
2827     C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2828                                     DerivedToBasePath.end(), C);
2829   }
2830   return C;
2831 }
2832 
2833 llvm::Constant *
2834 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2835   assert(MD->isInstance() && "Member function must not be static!");
2836 
2837   CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2838   const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2839   CodeGenTypes &Types = CGM.getTypes();
2840 
2841   unsigned VBTableIndex = 0;
2842   llvm::Constant *FirstField;
2843   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2844   if (!MD->isVirtual()) {
2845     llvm::Type *Ty;
2846     // Check whether the function has a computable LLVM signature.
2847     if (Types.isFuncTypeConvertible(FPT)) {
2848       // The function has a computable LLVM signature; use the correct type.
2849       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2850     } else {
2851       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2852       // function type is incomplete.
2853       Ty = CGM.PtrDiffTy;
2854     }
2855     FirstField = CGM.GetAddrOfFunction(MD, Ty);
2856   } else {
2857     auto &VTableContext = CGM.getMicrosoftVTableContext();
2858     MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2859     FirstField = EmitVirtualMemPtrThunk(MD, ML);
2860     // Include the vfptr adjustment if the method is in a non-primary vftable.
2861     NonVirtualBaseAdjustment += ML.VFPtrOffset;
2862     if (ML.VBase)
2863       VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2864   }
2865 
2866   if (VBTableIndex == 0 &&
2867       RD->getMSInheritanceModel() ==
2868           MSInheritanceModel::Virtual)
2869     NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2870 
2871   // The rest of the fields are common with data member pointers.
2872   FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2873   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2874                                NonVirtualBaseAdjustment, VBTableIndex);
2875 }
2876 
2877 /// Member pointers are the same if they're either bitwise identical *or* both
2878 /// null.  Null-ness for function members is determined by the first field,
2879 /// while for data member pointers we must compare all fields.
2880 llvm::Value *
2881 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2882                                              llvm::Value *L,
2883                                              llvm::Value *R,
2884                                              const MemberPointerType *MPT,
2885                                              bool Inequality) {
2886   CGBuilderTy &Builder = CGF.Builder;
2887 
2888   // Handle != comparisons by switching the sense of all boolean operations.
2889   llvm::ICmpInst::Predicate Eq;
2890   llvm::Instruction::BinaryOps And, Or;
2891   if (Inequality) {
2892     Eq = llvm::ICmpInst::ICMP_NE;
2893     And = llvm::Instruction::Or;
2894     Or = llvm::Instruction::And;
2895   } else {
2896     Eq = llvm::ICmpInst::ICMP_EQ;
2897     And = llvm::Instruction::And;
2898     Or = llvm::Instruction::Or;
2899   }
2900 
2901   // If this is a single field member pointer (single inheritance), this is a
2902   // single icmp.
2903   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2904   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2905   if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(),
2906                                       Inheritance))
2907     return Builder.CreateICmp(Eq, L, R);
2908 
2909   // Compare the first field.
2910   llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2911   llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2912   llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2913 
2914   // Compare everything other than the first field.
2915   llvm::Value *Res = nullptr;
2916   llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2917   for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2918     llvm::Value *LF = Builder.CreateExtractValue(L, I);
2919     llvm::Value *RF = Builder.CreateExtractValue(R, I);
2920     llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2921     if (Res)
2922       Res = Builder.CreateBinOp(And, Res, Cmp);
2923     else
2924       Res = Cmp;
2925   }
2926 
2927   // Check if the first field is 0 if this is a function pointer.
2928   if (MPT->isMemberFunctionPointer()) {
2929     // (l1 == r1 && ...) || l0 == 0
2930     llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2931     llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2932     Res = Builder.CreateBinOp(Or, Res, IsZero);
2933   }
2934 
2935   // Combine the comparison of the first field, which must always be true for
2936   // this comparison to succeeed.
2937   return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2938 }
2939 
2940 llvm::Value *
2941 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2942                                             llvm::Value *MemPtr,
2943                                             const MemberPointerType *MPT) {
2944   CGBuilderTy &Builder = CGF.Builder;
2945   llvm::SmallVector<llvm::Constant *, 4> fields;
2946   // We only need one field for member functions.
2947   if (MPT->isMemberFunctionPointer())
2948     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2949   else
2950     GetNullMemberPointerFields(MPT, fields);
2951   assert(!fields.empty());
2952   llvm::Value *FirstField = MemPtr;
2953   if (MemPtr->getType()->isStructTy())
2954     FirstField = Builder.CreateExtractValue(MemPtr, 0);
2955   llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2956 
2957   // For function member pointers, we only need to test the function pointer
2958   // field.  The other fields if any can be garbage.
2959   if (MPT->isMemberFunctionPointer())
2960     return Res;
2961 
2962   // Otherwise, emit a series of compares and combine the results.
2963   for (int I = 1, E = fields.size(); I < E; ++I) {
2964     llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2965     llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2966     Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2967   }
2968   return Res;
2969 }
2970 
2971 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2972                                                   llvm::Constant *Val) {
2973   // Function pointers are null if the pointer in the first field is null.
2974   if (MPT->isMemberFunctionPointer()) {
2975     llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2976       Val->getAggregateElement(0U) : Val;
2977     return FirstField->isNullValue();
2978   }
2979 
2980   // If it's not a function pointer and it's zero initializable, we can easily
2981   // check zero.
2982   if (isZeroInitializable(MPT) && Val->isNullValue())
2983     return true;
2984 
2985   // Otherwise, break down all the fields for comparison.  Hopefully these
2986   // little Constants are reused, while a big null struct might not be.
2987   llvm::SmallVector<llvm::Constant *, 4> Fields;
2988   GetNullMemberPointerFields(MPT, Fields);
2989   if (Fields.size() == 1) {
2990     assert(Val->getType()->isIntegerTy());
2991     return Val == Fields[0];
2992   }
2993 
2994   unsigned I, E;
2995   for (I = 0, E = Fields.size(); I != E; ++I) {
2996     if (Val->getAggregateElement(I) != Fields[I])
2997       break;
2998   }
2999   return I == E;
3000 }
3001 
3002 llvm::Value *
3003 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
3004                                          Address This,
3005                                          llvm::Value *VBPtrOffset,
3006                                          llvm::Value *VBTableOffset,
3007                                          llvm::Value **VBPtrOut) {
3008   CGBuilderTy &Builder = CGF.Builder;
3009   // Load the vbtable pointer from the vbptr in the instance.
3010   This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
3011   llvm::Value *VBPtr =
3012     Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
3013   if (VBPtrOut) *VBPtrOut = VBPtr;
3014   VBPtr = Builder.CreateBitCast(VBPtr,
3015             CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
3016 
3017   CharUnits VBPtrAlign;
3018   if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
3019     VBPtrAlign = This.getAlignment().alignmentAtOffset(
3020                                    CharUnits::fromQuantity(CI->getSExtValue()));
3021   } else {
3022     VBPtrAlign = CGF.getPointerAlign();
3023   }
3024 
3025   llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
3026 
3027   // Translate from byte offset to table index. It improves analyzability.
3028   llvm::Value *VBTableIndex = Builder.CreateAShr(
3029       VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
3030       "vbtindex", /*isExact=*/true);
3031 
3032   // Load an i32 offset from the vb-table.
3033   llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
3034   VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
3035   return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
3036                                    "vbase_offs");
3037 }
3038 
3039 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
3040 // it.
3041 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
3042     CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
3043     Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
3044   CGBuilderTy &Builder = CGF.Builder;
3045   Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
3046   llvm::BasicBlock *OriginalBB = nullptr;
3047   llvm::BasicBlock *SkipAdjustBB = nullptr;
3048   llvm::BasicBlock *VBaseAdjustBB = nullptr;
3049 
3050   // In the unspecified inheritance model, there might not be a vbtable at all,
3051   // in which case we need to skip the virtual base lookup.  If there is a
3052   // vbtable, the first entry is a no-op entry that gives back the original
3053   // base, so look for a virtual base adjustment offset of zero.
3054   if (VBPtrOffset) {
3055     OriginalBB = Builder.GetInsertBlock();
3056     VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
3057     SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
3058     llvm::Value *IsVirtual =
3059       Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
3060                            "memptr.is_vbase");
3061     Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
3062     CGF.EmitBlock(VBaseAdjustBB);
3063   }
3064 
3065   // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3066   // know the vbptr offset.
3067   if (!VBPtrOffset) {
3068     CharUnits offs = CharUnits::Zero();
3069     if (!RD->hasDefinition()) {
3070       DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3071       unsigned DiagID = Diags.getCustomDiagID(
3072           DiagnosticsEngine::Error,
3073           "member pointer representation requires a "
3074           "complete class type for %0 to perform this expression");
3075       Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3076     } else if (RD->getNumVBases())
3077       offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3078     VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3079   }
3080   llvm::Value *VBPtr = nullptr;
3081   llvm::Value *VBaseOffs =
3082     GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3083   llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
3084 
3085   // Merge control flow with the case where we didn't have to adjust.
3086   if (VBaseAdjustBB) {
3087     Builder.CreateBr(SkipAdjustBB);
3088     CGF.EmitBlock(SkipAdjustBB);
3089     llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3090     Phi->addIncoming(Base.getPointer(), OriginalBB);
3091     Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3092     return Phi;
3093   }
3094   return AdjustedBase;
3095 }
3096 
3097 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3098     CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3099     const MemberPointerType *MPT) {
3100   assert(MPT->isMemberDataPointer());
3101   unsigned AS = Base.getAddressSpace();
3102   llvm::Type *PType =
3103       CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
3104   CGBuilderTy &Builder = CGF.Builder;
3105   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3106   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3107 
3108   // Extract the fields we need, regardless of model.  We'll apply them if we
3109   // have them.
3110   llvm::Value *FieldOffset = MemPtr;
3111   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3112   llvm::Value *VBPtrOffset = nullptr;
3113   if (MemPtr->getType()->isStructTy()) {
3114     // We need to extract values.
3115     unsigned I = 0;
3116     FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3117     if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3118       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3119     if (inheritanceModelHasVBTableOffsetField(Inheritance))
3120       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3121   }
3122 
3123   llvm::Value *Addr;
3124   if (VirtualBaseAdjustmentOffset) {
3125     Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3126                              VBPtrOffset);
3127   } else {
3128     Addr = Base.getPointer();
3129   }
3130 
3131   // Cast to char*.
3132   Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
3133 
3134   // Apply the offset, which we assume is non-null.
3135   Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
3136 
3137   // Cast the address to the appropriate pointer type, adopting the address
3138   // space of the base pointer.
3139   return Builder.CreateBitCast(Addr, PType);
3140 }
3141 
3142 llvm::Value *
3143 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3144                                              const CastExpr *E,
3145                                              llvm::Value *Src) {
3146   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3147          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3148          E->getCastKind() == CK_ReinterpretMemberPointer);
3149 
3150   // Use constant emission if we can.
3151   if (isa<llvm::Constant>(Src))
3152     return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3153 
3154   // We may be adding or dropping fields from the member pointer, so we need
3155   // both types and the inheritance models of both records.
3156   const MemberPointerType *SrcTy =
3157     E->getSubExpr()->getType()->castAs<MemberPointerType>();
3158   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3159   bool IsFunc = SrcTy->isMemberFunctionPointer();
3160 
3161   // If the classes use the same null representation, reinterpret_cast is a nop.
3162   bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3163   if (IsReinterpret && IsFunc)
3164     return Src;
3165 
3166   CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3167   CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3168   if (IsReinterpret &&
3169       SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3170     return Src;
3171 
3172   CGBuilderTy &Builder = CGF.Builder;
3173 
3174   // Branch past the conversion if Src is null.
3175   llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3176   llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3177 
3178   // C++ 5.2.10p9: The null member pointer value is converted to the null member
3179   //   pointer value of the destination type.
3180   if (IsReinterpret) {
3181     // For reinterpret casts, sema ensures that src and dst are both functions
3182     // or data and have the same size, which means the LLVM types should match.
3183     assert(Src->getType() == DstNull->getType());
3184     return Builder.CreateSelect(IsNotNull, Src, DstNull);
3185   }
3186 
3187   llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3188   llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3189   llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3190   Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3191   CGF.EmitBlock(ConvertBB);
3192 
3193   llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3194       SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3195       Builder);
3196 
3197   Builder.CreateBr(ContinueBB);
3198 
3199   // In the continuation, choose between DstNull and Dst.
3200   CGF.EmitBlock(ContinueBB);
3201   llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3202   Phi->addIncoming(DstNull, OriginalBB);
3203   Phi->addIncoming(Dst, ConvertBB);
3204   return Phi;
3205 }
3206 
3207 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3208     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3209     CastExpr::path_const_iterator PathBegin,
3210     CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3211     CGBuilderTy &Builder) {
3212   const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3213   const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3214   MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel();
3215   MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel();
3216   bool IsFunc = SrcTy->isMemberFunctionPointer();
3217   bool IsConstant = isa<llvm::Constant>(Src);
3218 
3219   // Decompose src.
3220   llvm::Value *FirstField = Src;
3221   llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3222   llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3223   llvm::Value *VBPtrOffset = getZeroInt();
3224   if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) {
3225     // We need to extract values.
3226     unsigned I = 0;
3227     FirstField = Builder.CreateExtractValue(Src, I++);
3228     if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance))
3229       NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3230     if (inheritanceModelHasVBPtrOffsetField(SrcInheritance))
3231       VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3232     if (inheritanceModelHasVBTableOffsetField(SrcInheritance))
3233       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3234   }
3235 
3236   bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3237   const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3238   const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3239 
3240   // For data pointers, we adjust the field offset directly.  For functions, we
3241   // have a separate field.
3242   llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3243 
3244   // The virtual inheritance model has a quirk: the virtual base table is always
3245   // referenced when dereferencing a member pointer even if the member pointer
3246   // is non-virtual.  This is accounted for by adjusting the non-virtual offset
3247   // to point backwards to the top of the MDC from the first VBase.  Undo this
3248   // adjustment to normalize the member pointer.
3249   llvm::Value *SrcVBIndexEqZero =
3250       Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3251   if (SrcInheritance == MSInheritanceModel::Virtual) {
3252     if (int64_t SrcOffsetToFirstVBase =
3253             getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3254       llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3255           SrcVBIndexEqZero,
3256           llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3257           getZeroInt());
3258       NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3259     }
3260   }
3261 
3262   // A non-zero vbindex implies that we are dealing with a source member in a
3263   // floating virtual base in addition to some non-virtual offset.  If the
3264   // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3265   // fixed, base.  The difference between these two cases is that the vbindex +
3266   // nvoffset *always* point to the member regardless of what context they are
3267   // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
3268   // base requires explicit nv adjustment.
3269   llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3270       CGM.IntTy,
3271       CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3272           .getQuantity());
3273 
3274   llvm::Value *NVDisp;
3275   if (IsDerivedToBase)
3276     NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3277   else
3278     NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3279 
3280   NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3281 
3282   // Update the vbindex to an appropriate value in the destination because
3283   // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3284   llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3285   if (inheritanceModelHasVBTableOffsetField(DstInheritance) &&
3286       inheritanceModelHasVBTableOffsetField(SrcInheritance)) {
3287     if (llvm::GlobalVariable *VDispMap =
3288             getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3289       llvm::Value *VBIndex = Builder.CreateExactUDiv(
3290           VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3291       if (IsConstant) {
3292         llvm::Constant *Mapping = VDispMap->getInitializer();
3293         VirtualBaseAdjustmentOffset =
3294             Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3295       } else {
3296         llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3297         VirtualBaseAdjustmentOffset =
3298             Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
3299                                       CharUnits::fromQuantity(4));
3300       }
3301 
3302       DstVBIndexEqZero =
3303           Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3304     }
3305   }
3306 
3307   // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
3308   // it to the offset of the vbptr.
3309   if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) {
3310     llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3311         CGM.IntTy,
3312         getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3313     VBPtrOffset =
3314         Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3315   }
3316 
3317   // Likewise, apply a similar adjustment so that dereferencing the member
3318   // pointer correctly accounts for the distance between the start of the first
3319   // virtual base and the top of the MDC.
3320   if (DstInheritance == MSInheritanceModel::Virtual) {
3321     if (int64_t DstOffsetToFirstVBase =
3322             getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3323       llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3324           DstVBIndexEqZero,
3325           llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3326           getZeroInt());
3327       NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3328     }
3329   }
3330 
3331   // Recompose dst from the null struct and the adjusted fields from src.
3332   llvm::Value *Dst;
3333   if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) {
3334     Dst = FirstField;
3335   } else {
3336     Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3337     unsigned Idx = 0;
3338     Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3339     if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance))
3340       Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3341     if (inheritanceModelHasVBPtrOffsetField(DstInheritance))
3342       Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3343     if (inheritanceModelHasVBTableOffsetField(DstInheritance))
3344       Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3345   }
3346   return Dst;
3347 }
3348 
3349 llvm::Constant *
3350 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3351                                              llvm::Constant *Src) {
3352   const MemberPointerType *SrcTy =
3353       E->getSubExpr()->getType()->castAs<MemberPointerType>();
3354   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3355 
3356   CastKind CK = E->getCastKind();
3357 
3358   return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3359                                      E->path_end(), Src);
3360 }
3361 
3362 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3363     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3364     CastExpr::path_const_iterator PathBegin,
3365     CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3366   assert(CK == CK_DerivedToBaseMemberPointer ||
3367          CK == CK_BaseToDerivedMemberPointer ||
3368          CK == CK_ReinterpretMemberPointer);
3369   // If src is null, emit a new null for dst.  We can't return src because dst
3370   // might have a new representation.
3371   if (MemberPointerConstantIsNull(SrcTy, Src))
3372     return EmitNullMemberPointer(DstTy);
3373 
3374   // We don't need to do anything for reinterpret_casts of non-null member
3375   // pointers.  We should only get here when the two type representations have
3376   // the same size.
3377   if (CK == CK_ReinterpretMemberPointer)
3378     return Src;
3379 
3380   CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3381   auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3382       SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3383 
3384   return Dst;
3385 }
3386 
3387 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3388     CodeGenFunction &CGF, const Expr *E, Address This,
3389     llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3390     const MemberPointerType *MPT) {
3391   assert(MPT->isMemberFunctionPointer());
3392   const FunctionProtoType *FPT =
3393     MPT->getPointeeType()->castAs<FunctionProtoType>();
3394   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3395   llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
3396       CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
3397   CGBuilderTy &Builder = CGF.Builder;
3398 
3399   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3400 
3401   // Extract the fields we need, regardless of model.  We'll apply them if we
3402   // have them.
3403   llvm::Value *FunctionPointer = MemPtr;
3404   llvm::Value *NonVirtualBaseAdjustment = nullptr;
3405   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3406   llvm::Value *VBPtrOffset = nullptr;
3407   if (MemPtr->getType()->isStructTy()) {
3408     // We need to extract values.
3409     unsigned I = 0;
3410     FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3411     if (inheritanceModelHasNVOffsetField(MPT, Inheritance))
3412       NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3413     if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3414       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3415     if (inheritanceModelHasVBTableOffsetField(Inheritance))
3416       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3417   }
3418 
3419   if (VirtualBaseAdjustmentOffset) {
3420     ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3421                                    VirtualBaseAdjustmentOffset, VBPtrOffset);
3422   } else {
3423     ThisPtrForCall = This.getPointer();
3424   }
3425 
3426   if (NonVirtualBaseAdjustment) {
3427     // Apply the adjustment and cast back to the original struct type.
3428     llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
3429     Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
3430     ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
3431                                            "this.adjusted");
3432   }
3433 
3434   FunctionPointer =
3435     Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
3436   CGCallee Callee(FPT, FunctionPointer);
3437   return Callee;
3438 }
3439 
3440 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3441   return new MicrosoftCXXABI(CGM);
3442 }
3443 
3444 // MS RTTI Overview:
3445 // The run time type information emitted by cl.exe contains 5 distinct types of
3446 // structures.  Many of them reference each other.
3447 //
3448 // TypeInfo:  Static classes that are returned by typeid.
3449 //
3450 // CompleteObjectLocator:  Referenced by vftables.  They contain information
3451 //   required for dynamic casting, including OffsetFromTop.  They also contain
3452 //   a reference to the TypeInfo for the type and a reference to the
3453 //   CompleteHierarchyDescriptor for the type.
3454 //
3455 // ClassHierarchyDescriptor: Contains information about a class hierarchy.
3456 //   Used during dynamic_cast to walk a class hierarchy.  References a base
3457 //   class array and the size of said array.
3458 //
3459 // BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
3460 //   somewhat of a misnomer because the most derived class is also in the list
3461 //   as well as multiple copies of virtual bases (if they occur multiple times
3462 //   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for
3463 //   every path in the hierarchy, in pre-order depth first order.  Note, we do
3464 //   not declare a specific llvm type for BaseClassArray, it's merely an array
3465 //   of BaseClassDescriptor pointers.
3466 //
3467 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3468 //   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3469 //   BaseClassArray is.  It contains information about a class within a
3470 //   hierarchy such as: is this base is ambiguous and what is its offset in the
3471 //   vbtable.  The names of the BaseClassDescriptors have all of their fields
3472 //   mangled into them so they can be aggressively deduplicated by the linker.
3473 
3474 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3475   StringRef MangledName("??_7type_info@@6B@");
3476   if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3477     return VTable;
3478   return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3479                                   /*isConstant=*/true,
3480                                   llvm::GlobalVariable::ExternalLinkage,
3481                                   /*Initializer=*/nullptr, MangledName);
3482 }
3483 
3484 namespace {
3485 
3486 /// A Helper struct that stores information about a class in a class
3487 /// hierarchy.  The information stored in these structs struct is used during
3488 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3489 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3490 // implicit depth first pre-order tree connectivity.  getFirstChild and
3491 // getNextSibling allow us to walk the tree efficiently.
3492 struct MSRTTIClass {
3493   enum {
3494     IsPrivateOnPath = 1 | 8,
3495     IsAmbiguous = 2,
3496     IsPrivate = 4,
3497     IsVirtual = 16,
3498     HasHierarchyDescriptor = 64
3499   };
3500   MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3501   uint32_t initialize(const MSRTTIClass *Parent,
3502                       const CXXBaseSpecifier *Specifier);
3503 
3504   MSRTTIClass *getFirstChild() { return this + 1; }
3505   static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3506     return Child + 1 + Child->NumBases;
3507   }
3508 
3509   const CXXRecordDecl *RD, *VirtualRoot;
3510   uint32_t Flags, NumBases, OffsetInVBase;
3511 };
3512 
3513 /// Recursively initialize the base class array.
3514 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3515                                  const CXXBaseSpecifier *Specifier) {
3516   Flags = HasHierarchyDescriptor;
3517   if (!Parent) {
3518     VirtualRoot = nullptr;
3519     OffsetInVBase = 0;
3520   } else {
3521     if (Specifier->getAccessSpecifier() != AS_public)
3522       Flags |= IsPrivate | IsPrivateOnPath;
3523     if (Specifier->isVirtual()) {
3524       Flags |= IsVirtual;
3525       VirtualRoot = RD;
3526       OffsetInVBase = 0;
3527     } else {
3528       if (Parent->Flags & IsPrivateOnPath)
3529         Flags |= IsPrivateOnPath;
3530       VirtualRoot = Parent->VirtualRoot;
3531       OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3532           .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3533     }
3534   }
3535   NumBases = 0;
3536   MSRTTIClass *Child = getFirstChild();
3537   for (const CXXBaseSpecifier &Base : RD->bases()) {
3538     NumBases += Child->initialize(this, &Base) + 1;
3539     Child = getNextChild(Child);
3540   }
3541   return NumBases;
3542 }
3543 
3544 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3545   switch (Ty->getLinkage()) {
3546   case NoLinkage:
3547   case InternalLinkage:
3548   case UniqueExternalLinkage:
3549     return llvm::GlobalValue::InternalLinkage;
3550 
3551   case VisibleNoLinkage:
3552   case ModuleInternalLinkage:
3553   case ModuleLinkage:
3554   case ExternalLinkage:
3555     return llvm::GlobalValue::LinkOnceODRLinkage;
3556   }
3557   llvm_unreachable("Invalid linkage!");
3558 }
3559 
3560 /// An ephemeral helper class for building MS RTTI types.  It caches some
3561 /// calls to the module and information about the most derived class in a
3562 /// hierarchy.
3563 struct MSRTTIBuilder {
3564   enum {
3565     HasBranchingHierarchy = 1,
3566     HasVirtualBranchingHierarchy = 2,
3567     HasAmbiguousBases = 4
3568   };
3569 
3570   MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3571       : CGM(ABI.CGM), Context(CGM.getContext()),
3572         VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3573         Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3574         ABI(ABI) {}
3575 
3576   llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3577   llvm::GlobalVariable *
3578   getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3579   llvm::GlobalVariable *getClassHierarchyDescriptor();
3580   llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3581 
3582   CodeGenModule &CGM;
3583   ASTContext &Context;
3584   llvm::LLVMContext &VMContext;
3585   llvm::Module &Module;
3586   const CXXRecordDecl *RD;
3587   llvm::GlobalVariable::LinkageTypes Linkage;
3588   MicrosoftCXXABI &ABI;
3589 };
3590 
3591 } // namespace
3592 
3593 /// Recursively serializes a class hierarchy in pre-order depth first
3594 /// order.
3595 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3596                                     const CXXRecordDecl *RD) {
3597   Classes.push_back(MSRTTIClass(RD));
3598   for (const CXXBaseSpecifier &Base : RD->bases())
3599     serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3600 }
3601 
3602 /// Find ambiguity among base classes.
3603 static void
3604 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3605   llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3606   llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3607   llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3608   for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3609     if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3610         !VirtualBases.insert(Class->RD).second) {
3611       Class = MSRTTIClass::getNextChild(Class);
3612       continue;
3613     }
3614     if (!UniqueBases.insert(Class->RD).second)
3615       AmbiguousBases.insert(Class->RD);
3616     Class++;
3617   }
3618   if (AmbiguousBases.empty())
3619     return;
3620   for (MSRTTIClass &Class : Classes)
3621     if (AmbiguousBases.count(Class.RD))
3622       Class.Flags |= MSRTTIClass::IsAmbiguous;
3623 }
3624 
3625 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3626   SmallString<256> MangledName;
3627   {
3628     llvm::raw_svector_ostream Out(MangledName);
3629     ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3630   }
3631 
3632   // Check to see if we've already declared this ClassHierarchyDescriptor.
3633   if (auto CHD = Module.getNamedGlobal(MangledName))
3634     return CHD;
3635 
3636   // Serialize the class hierarchy and initialize the CHD Fields.
3637   SmallVector<MSRTTIClass, 8> Classes;
3638   serializeClassHierarchy(Classes, RD);
3639   Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3640   detectAmbiguousBases(Classes);
3641   int Flags = 0;
3642   for (auto Class : Classes) {
3643     if (Class.RD->getNumBases() > 1)
3644       Flags |= HasBranchingHierarchy;
3645     // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
3646     // believe the field isn't actually used.
3647     if (Class.Flags & MSRTTIClass::IsAmbiguous)
3648       Flags |= HasAmbiguousBases;
3649   }
3650   if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3651     Flags |= HasVirtualBranchingHierarchy;
3652   // These gep indices are used to get the address of the first element of the
3653   // base class array.
3654   llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3655                                llvm::ConstantInt::get(CGM.IntTy, 0)};
3656 
3657   // Forward-declare the class hierarchy descriptor
3658   auto Type = ABI.getClassHierarchyDescriptorType();
3659   auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3660                                       /*Initializer=*/nullptr,
3661                                       MangledName);
3662   if (CHD->isWeakForLinker())
3663     CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3664 
3665   auto *Bases = getBaseClassArray(Classes);
3666 
3667   // Initialize the base class ClassHierarchyDescriptor.
3668   llvm::Constant *Fields[] = {
3669       llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3670       llvm::ConstantInt::get(CGM.IntTy, Flags),
3671       llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3672       ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3673           Bases->getValueType(), Bases,
3674           llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3675   };
3676   CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3677   return CHD;
3678 }
3679 
3680 llvm::GlobalVariable *
3681 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3682   SmallString<256> MangledName;
3683   {
3684     llvm::raw_svector_ostream Out(MangledName);
3685     ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3686   }
3687 
3688   // Forward-declare the base class array.
3689   // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3690   // mode) bytes of padding.  We provide a pointer sized amount of padding by
3691   // adding +1 to Classes.size().  The sections have pointer alignment and are
3692   // marked pick-any so it shouldn't matter.
3693   llvm::Type *PtrType = ABI.getImageRelativeType(
3694       ABI.getBaseClassDescriptorType()->getPointerTo());
3695   auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3696   auto *BCA =
3697       new llvm::GlobalVariable(Module, ArrType,
3698                                /*isConstant=*/true, Linkage,
3699                                /*Initializer=*/nullptr, MangledName);
3700   if (BCA->isWeakForLinker())
3701     BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3702 
3703   // Initialize the BaseClassArray.
3704   SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3705   for (MSRTTIClass &Class : Classes)
3706     BaseClassArrayData.push_back(
3707         ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3708   BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3709   BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3710   return BCA;
3711 }
3712 
3713 llvm::GlobalVariable *
3714 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3715   // Compute the fields for the BaseClassDescriptor.  They are computed up front
3716   // because they are mangled into the name of the object.
3717   uint32_t OffsetInVBTable = 0;
3718   int32_t VBPtrOffset = -1;
3719   if (Class.VirtualRoot) {
3720     auto &VTableContext = CGM.getMicrosoftVTableContext();
3721     OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3722     VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3723   }
3724 
3725   SmallString<256> MangledName;
3726   {
3727     llvm::raw_svector_ostream Out(MangledName);
3728     ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3729         Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3730         Class.Flags, Out);
3731   }
3732 
3733   // Check to see if we've already declared this object.
3734   if (auto BCD = Module.getNamedGlobal(MangledName))
3735     return BCD;
3736 
3737   // Forward-declare the base class descriptor.
3738   auto Type = ABI.getBaseClassDescriptorType();
3739   auto BCD =
3740       new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3741                                /*Initializer=*/nullptr, MangledName);
3742   if (BCD->isWeakForLinker())
3743     BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3744 
3745   // Initialize the BaseClassDescriptor.
3746   llvm::Constant *Fields[] = {
3747       ABI.getImageRelativeConstant(
3748           ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3749       llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3750       llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3751       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3752       llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3753       llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3754       ABI.getImageRelativeConstant(
3755           MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3756   };
3757   BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3758   return BCD;
3759 }
3760 
3761 llvm::GlobalVariable *
3762 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3763   SmallString<256> MangledName;
3764   {
3765     llvm::raw_svector_ostream Out(MangledName);
3766     ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3767   }
3768 
3769   // Check to see if we've already computed this complete object locator.
3770   if (auto COL = Module.getNamedGlobal(MangledName))
3771     return COL;
3772 
3773   // Compute the fields of the complete object locator.
3774   int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3775   int VFPtrOffset = 0;
3776   // The offset includes the vtordisp if one exists.
3777   if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3778     if (Context.getASTRecordLayout(RD)
3779       .getVBaseOffsetsMap()
3780       .find(VBase)
3781       ->second.hasVtorDisp())
3782       VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3783 
3784   // Forward-declare the complete object locator.
3785   llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3786   auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3787     /*Initializer=*/nullptr, MangledName);
3788 
3789   // Initialize the CompleteObjectLocator.
3790   llvm::Constant *Fields[] = {
3791       llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3792       llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3793       llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3794       ABI.getImageRelativeConstant(
3795           CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3796       ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3797       ABI.getImageRelativeConstant(COL),
3798   };
3799   llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3800   if (!ABI.isImageRelative())
3801     FieldsRef = FieldsRef.drop_back();
3802   COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3803   if (COL->isWeakForLinker())
3804     COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3805   return COL;
3806 }
3807 
3808 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3809                                    bool &IsConst, bool &IsVolatile,
3810                                    bool &IsUnaligned) {
3811   T = Context.getExceptionObjectType(T);
3812 
3813   // C++14 [except.handle]p3:
3814   //   A handler is a match for an exception object of type E if [...]
3815   //     - the handler is of type cv T or const T& where T is a pointer type and
3816   //       E is a pointer type that can be converted to T by [...]
3817   //         - a qualification conversion
3818   IsConst = false;
3819   IsVolatile = false;
3820   IsUnaligned = false;
3821   QualType PointeeType = T->getPointeeType();
3822   if (!PointeeType.isNull()) {
3823     IsConst = PointeeType.isConstQualified();
3824     IsVolatile = PointeeType.isVolatileQualified();
3825     IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3826   }
3827 
3828   // Member pointer types like "const int A::*" are represented by having RTTI
3829   // for "int A::*" and separately storing the const qualifier.
3830   if (const auto *MPTy = T->getAs<MemberPointerType>())
3831     T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3832                                      MPTy->getClass());
3833 
3834   // Pointer types like "const int * const *" are represented by having RTTI
3835   // for "const int **" and separately storing the const qualifier.
3836   if (T->isPointerType())
3837     T = Context.getPointerType(PointeeType.getUnqualifiedType());
3838 
3839   return T;
3840 }
3841 
3842 CatchTypeInfo
3843 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3844                                               QualType CatchHandlerType) {
3845   // TypeDescriptors for exceptions never have qualified pointer types,
3846   // qualifiers are stored separately in order to support qualification
3847   // conversions.
3848   bool IsConst, IsVolatile, IsUnaligned;
3849   Type =
3850       decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3851 
3852   bool IsReference = CatchHandlerType->isReferenceType();
3853 
3854   uint32_t Flags = 0;
3855   if (IsConst)
3856     Flags |= 1;
3857   if (IsVolatile)
3858     Flags |= 2;
3859   if (IsUnaligned)
3860     Flags |= 4;
3861   if (IsReference)
3862     Flags |= 8;
3863 
3864   return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3865                        Flags};
3866 }
3867 
3868 /// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3869 /// llvm::GlobalVariable * because different type descriptors have different
3870 /// types, and need to be abstracted.  They are abstracting by casting the
3871 /// address to an Int8PtrTy.
3872 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3873   SmallString<256> MangledName;
3874   {
3875     llvm::raw_svector_ostream Out(MangledName);
3876     getMangleContext().mangleCXXRTTI(Type, Out);
3877   }
3878 
3879   // Check to see if we've already declared this TypeDescriptor.
3880   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3881     return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3882 
3883   // Note for the future: If we would ever like to do deferred emission of
3884   // RTTI, check if emitting vtables opportunistically need any adjustment.
3885 
3886   // Compute the fields for the TypeDescriptor.
3887   SmallString<256> TypeInfoString;
3888   {
3889     llvm::raw_svector_ostream Out(TypeInfoString);
3890     getMangleContext().mangleCXXRTTIName(Type, Out);
3891   }
3892 
3893   // Declare and initialize the TypeDescriptor.
3894   llvm::Constant *Fields[] = {
3895     getTypeInfoVTable(CGM),                        // VFPtr
3896     llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3897     llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3898   llvm::StructType *TypeDescriptorType =
3899       getTypeDescriptorType(TypeInfoString);
3900   auto *Var = new llvm::GlobalVariable(
3901       CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
3902       getLinkageForRTTI(Type),
3903       llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3904       MangledName);
3905   if (Var->isWeakForLinker())
3906     Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
3907   return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
3908 }
3909 
3910 /// Gets or a creates a Microsoft CompleteObjectLocator.
3911 llvm::GlobalVariable *
3912 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3913                                             const VPtrInfo &Info) {
3914   return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3915 }
3916 
3917 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
3918   if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
3919     // There are no constructor variants, always emit the complete destructor.
3920     llvm::Function *Fn =
3921         CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
3922     CGM.maybeSetTrivialComdat(*ctor, *Fn);
3923     return;
3924   }
3925 
3926   auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
3927 
3928   // Emit the base destructor if the base and complete (vbase) destructors are
3929   // equivalent. This effectively implements -mconstructor-aliases as part of
3930   // the ABI.
3931   if (GD.getDtorType() == Dtor_Complete &&
3932       dtor->getParent()->getNumVBases() == 0)
3933     GD = GD.getWithDtorType(Dtor_Base);
3934 
3935   // The base destructor is equivalent to the base destructor of its
3936   // base class if there is exactly one non-virtual base class with a
3937   // non-trivial destructor, there are no fields with a non-trivial
3938   // destructor, and the body of the destructor is trivial.
3939   if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3940     return;
3941 
3942   llvm::Function *Fn = CGM.codegenCXXStructor(GD);
3943   if (Fn->isWeakForLinker())
3944     Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
3945 }
3946 
3947 llvm::Function *
3948 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
3949                                          CXXCtorType CT) {
3950   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
3951 
3952   // Calculate the mangled name.
3953   SmallString<256> ThunkName;
3954   llvm::raw_svector_ostream Out(ThunkName);
3955   getMangleContext().mangleName(GlobalDecl(CD, CT), Out);
3956 
3957   // If the thunk has been generated previously, just return it.
3958   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
3959     return cast<llvm::Function>(GV);
3960 
3961   // Create the llvm::Function.
3962   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
3963   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
3964   const CXXRecordDecl *RD = CD->getParent();
3965   QualType RecordTy = getContext().getRecordType(RD);
3966   llvm::Function *ThunkFn = llvm::Function::Create(
3967       ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
3968   ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
3969       FnInfo.getEffectiveCallingConvention()));
3970   if (ThunkFn->isWeakForLinker())
3971     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
3972   bool IsCopy = CT == Ctor_CopyingClosure;
3973 
3974   // Start codegen.
3975   CodeGenFunction CGF(CGM);
3976   CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
3977 
3978   // Build FunctionArgs.
3979   FunctionArgList FunctionArgs;
3980 
3981   // A constructor always starts with a 'this' pointer as its first argument.
3982   buildThisParam(CGF, FunctionArgs);
3983 
3984   // Following the 'this' pointer is a reference to the source object that we
3985   // are copying from.
3986   ImplicitParamDecl SrcParam(
3987       getContext(), /*DC=*/nullptr, SourceLocation(),
3988       &getContext().Idents.get("src"),
3989       getContext().getLValueReferenceType(RecordTy,
3990                                           /*SpelledAsLValue=*/true),
3991       ImplicitParamDecl::Other);
3992   if (IsCopy)
3993     FunctionArgs.push_back(&SrcParam);
3994 
3995   // Constructors for classes which utilize virtual bases have an additional
3996   // parameter which indicates whether or not it is being delegated to by a more
3997   // derived constructor.
3998   ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
3999                                   SourceLocation(),
4000                                   &getContext().Idents.get("is_most_derived"),
4001                                   getContext().IntTy, ImplicitParamDecl::Other);
4002   // Only add the parameter to the list if the class has virtual bases.
4003   if (RD->getNumVBases() > 0)
4004     FunctionArgs.push_back(&IsMostDerived);
4005 
4006   // Start defining the function.
4007   auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4008   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
4009                     FunctionArgs, CD->getLocation(), SourceLocation());
4010   // Create a scope with an artificial location for the body of this function.
4011   auto AL = ApplyDebugLocation::CreateArtificial(CGF);
4012   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
4013   llvm::Value *This = getThisValue(CGF);
4014 
4015   llvm::Value *SrcVal =
4016       IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
4017              : nullptr;
4018 
4019   CallArgList Args;
4020 
4021   // Push the this ptr.
4022   Args.add(RValue::get(This), CD->getThisType());
4023 
4024   // Push the src ptr.
4025   if (SrcVal)
4026     Args.add(RValue::get(SrcVal), SrcParam.getType());
4027 
4028   // Add the rest of the default arguments.
4029   SmallVector<const Stmt *, 4> ArgVec;
4030   ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
4031   for (const ParmVarDecl *PD : params) {
4032     assert(PD->hasDefaultArg() && "ctor closure lacks default args");
4033     ArgVec.push_back(PD->getDefaultArg());
4034   }
4035 
4036   CodeGenFunction::RunCleanupsScope Cleanups(CGF);
4037 
4038   const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
4039   CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
4040 
4041   // Insert any ABI-specific implicit constructor arguments.
4042   AddedStructorArgCounts ExtraArgs =
4043       addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
4044                                  /*ForVirtualBase=*/false,
4045                                  /*Delegating=*/false, Args);
4046   // Call the destructor with our arguments.
4047   llvm::Constant *CalleePtr =
4048       CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4049   CGCallee Callee =
4050       CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
4051   const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
4052       Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
4053   CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
4054 
4055   Cleanups.ForceCleanup();
4056 
4057   // Emit the ret instruction, remove any temporary instructions created for the
4058   // aid of CodeGen.
4059   CGF.FinishFunction(SourceLocation());
4060 
4061   return ThunkFn;
4062 }
4063 
4064 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4065                                                   uint32_t NVOffset,
4066                                                   int32_t VBPtrOffset,
4067                                                   uint32_t VBIndex) {
4068   assert(!T->isReferenceType());
4069 
4070   CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4071   const CXXConstructorDecl *CD =
4072       RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4073   CXXCtorType CT = Ctor_Complete;
4074   if (CD)
4075     if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4076       CT = Ctor_CopyingClosure;
4077 
4078   uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4079   SmallString<256> MangledName;
4080   {
4081     llvm::raw_svector_ostream Out(MangledName);
4082     getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4083                                               VBPtrOffset, VBIndex, Out);
4084   }
4085   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4086     return getImageRelativeConstant(GV);
4087 
4088   // The TypeDescriptor is used by the runtime to determine if a catch handler
4089   // is appropriate for the exception object.
4090   llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4091 
4092   // The runtime is responsible for calling the copy constructor if the
4093   // exception is caught by value.
4094   llvm::Constant *CopyCtor;
4095   if (CD) {
4096     if (CT == Ctor_CopyingClosure)
4097       CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4098     else
4099       CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4100 
4101     CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
4102   } else {
4103     CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4104   }
4105   CopyCtor = getImageRelativeConstant(CopyCtor);
4106 
4107   bool IsScalar = !RD;
4108   bool HasVirtualBases = false;
4109   bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4110   QualType PointeeType = T;
4111   if (T->isPointerType())
4112     PointeeType = T->getPointeeType();
4113   if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4114     HasVirtualBases = RD->getNumVBases() > 0;
4115     if (IdentifierInfo *II = RD->getIdentifier())
4116       IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4117   }
4118 
4119   // Encode the relevant CatchableType properties into the Flags bitfield.
4120   // FIXME: Figure out how bits 2 or 8 can get set.
4121   uint32_t Flags = 0;
4122   if (IsScalar)
4123     Flags |= 1;
4124   if (HasVirtualBases)
4125     Flags |= 4;
4126   if (IsStdBadAlloc)
4127     Flags |= 16;
4128 
4129   llvm::Constant *Fields[] = {
4130       llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
4131       TD,                                             // TypeDescriptor
4132       llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
4133       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4134       llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
4135       llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
4136       CopyCtor                                        // CopyCtor
4137   };
4138   llvm::StructType *CTType = getCatchableTypeType();
4139   auto *GV = new llvm::GlobalVariable(
4140       CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4141       llvm::ConstantStruct::get(CTType, Fields), MangledName);
4142   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4143   GV->setSection(".xdata");
4144   if (GV->isWeakForLinker())
4145     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4146   return getImageRelativeConstant(GV);
4147 }
4148 
4149 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4150   assert(!T->isReferenceType());
4151 
4152   // See if we've already generated a CatchableTypeArray for this type before.
4153   llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4154   if (CTA)
4155     return CTA;
4156 
4157   // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4158   // using a SmallSetVector.  Duplicates may arise due to virtual bases
4159   // occurring more than once in the hierarchy.
4160   llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4161 
4162   // C++14 [except.handle]p3:
4163   //   A handler is a match for an exception object of type E if [...]
4164   //     - the handler is of type cv T or cv T& and T is an unambiguous public
4165   //       base class of E, or
4166   //     - the handler is of type cv T or const T& where T is a pointer type and
4167   //       E is a pointer type that can be converted to T by [...]
4168   //         - a standard pointer conversion (4.10) not involving conversions to
4169   //           pointers to private or protected or ambiguous classes
4170   const CXXRecordDecl *MostDerivedClass = nullptr;
4171   bool IsPointer = T->isPointerType();
4172   if (IsPointer)
4173     MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4174   else
4175     MostDerivedClass = T->getAsCXXRecordDecl();
4176 
4177   // Collect all the unambiguous public bases of the MostDerivedClass.
4178   if (MostDerivedClass) {
4179     const ASTContext &Context = getContext();
4180     const ASTRecordLayout &MostDerivedLayout =
4181         Context.getASTRecordLayout(MostDerivedClass);
4182     MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4183     SmallVector<MSRTTIClass, 8> Classes;
4184     serializeClassHierarchy(Classes, MostDerivedClass);
4185     Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4186     detectAmbiguousBases(Classes);
4187     for (const MSRTTIClass &Class : Classes) {
4188       // Skip any ambiguous or private bases.
4189       if (Class.Flags &
4190           (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4191         continue;
4192       // Write down how to convert from a derived pointer to a base pointer.
4193       uint32_t OffsetInVBTable = 0;
4194       int32_t VBPtrOffset = -1;
4195       if (Class.VirtualRoot) {
4196         OffsetInVBTable =
4197           VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4198         VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4199       }
4200 
4201       // Turn our record back into a pointer if the exception object is a
4202       // pointer.
4203       QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4204       if (IsPointer)
4205         RTTITy = Context.getPointerType(RTTITy);
4206       CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4207                                              VBPtrOffset, OffsetInVBTable));
4208     }
4209   }
4210 
4211   // C++14 [except.handle]p3:
4212   //   A handler is a match for an exception object of type E if
4213   //     - The handler is of type cv T or cv T& and E and T are the same type
4214   //       (ignoring the top-level cv-qualifiers)
4215   CatchableTypes.insert(getCatchableType(T));
4216 
4217   // C++14 [except.handle]p3:
4218   //   A handler is a match for an exception object of type E if
4219   //     - the handler is of type cv T or const T& where T is a pointer type and
4220   //       E is a pointer type that can be converted to T by [...]
4221   //         - a standard pointer conversion (4.10) not involving conversions to
4222   //           pointers to private or protected or ambiguous classes
4223   //
4224   // C++14 [conv.ptr]p2:
4225   //   A prvalue of type "pointer to cv T," where T is an object type, can be
4226   //   converted to a prvalue of type "pointer to cv void".
4227   if (IsPointer && T->getPointeeType()->isObjectType())
4228     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4229 
4230   // C++14 [except.handle]p3:
4231   //   A handler is a match for an exception object of type E if [...]
4232   //     - the handler is of type cv T or const T& where T is a pointer or
4233   //       pointer to member type and E is std::nullptr_t.
4234   //
4235   // We cannot possibly list all possible pointer types here, making this
4236   // implementation incompatible with the standard.  However, MSVC includes an
4237   // entry for pointer-to-void in this case.  Let's do the same.
4238   if (T->isNullPtrType())
4239     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4240 
4241   uint32_t NumEntries = CatchableTypes.size();
4242   llvm::Type *CTType =
4243       getImageRelativeType(getCatchableTypeType()->getPointerTo());
4244   llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4245   llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4246   llvm::Constant *Fields[] = {
4247       llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries
4248       llvm::ConstantArray::get(
4249           AT, llvm::makeArrayRef(CatchableTypes.begin(),
4250                                  CatchableTypes.end())) // CatchableTypes
4251   };
4252   SmallString<256> MangledName;
4253   {
4254     llvm::raw_svector_ostream Out(MangledName);
4255     getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4256   }
4257   CTA = new llvm::GlobalVariable(
4258       CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4259       llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4260   CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4261   CTA->setSection(".xdata");
4262   if (CTA->isWeakForLinker())
4263     CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4264   return CTA;
4265 }
4266 
4267 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4268   bool IsConst, IsVolatile, IsUnaligned;
4269   T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4270 
4271   // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4272   // the exception object may be caught as.
4273   llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4274   // The first field in a CatchableTypeArray is the number of CatchableTypes.
4275   // This is used as a component of the mangled name which means that we need to
4276   // know what it is in order to see if we have previously generated the
4277   // ThrowInfo.
4278   uint32_t NumEntries =
4279       cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4280           ->getLimitedValue();
4281 
4282   SmallString<256> MangledName;
4283   {
4284     llvm::raw_svector_ostream Out(MangledName);
4285     getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4286                                           NumEntries, Out);
4287   }
4288 
4289   // Reuse a previously generated ThrowInfo if we have generated an appropriate
4290   // one before.
4291   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4292     return GV;
4293 
4294   // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4295   // be at least as CV qualified.  Encode this requirement into the Flags
4296   // bitfield.
4297   uint32_t Flags = 0;
4298   if (IsConst)
4299     Flags |= 1;
4300   if (IsVolatile)
4301     Flags |= 2;
4302   if (IsUnaligned)
4303     Flags |= 4;
4304 
4305   // The cleanup-function (a destructor) must be called when the exception
4306   // object's lifetime ends.
4307   llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4308   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4309     if (CXXDestructorDecl *DtorD = RD->getDestructor())
4310       if (!DtorD->isTrivial())
4311         CleanupFn = llvm::ConstantExpr::getBitCast(
4312             CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)),
4313             CGM.Int8PtrTy);
4314   // This is unused as far as we can tell, initialize it to null.
4315   llvm::Constant *ForwardCompat =
4316       getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4317   llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4318       llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4319   llvm::StructType *TIType = getThrowInfoType();
4320   llvm::Constant *Fields[] = {
4321       llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4322       getImageRelativeConstant(CleanupFn),      // CleanupFn
4323       ForwardCompat,                            // ForwardCompat
4324       PointerToCatchableTypes                   // CatchableTypeArray
4325   };
4326   auto *GV = new llvm::GlobalVariable(
4327       CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4328       llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
4329   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4330   GV->setSection(".xdata");
4331   if (GV->isWeakForLinker())
4332     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4333   return GV;
4334 }
4335 
4336 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4337   const Expr *SubExpr = E->getSubExpr();
4338   QualType ThrowType = SubExpr->getType();
4339   // The exception object lives on the stack and it's address is passed to the
4340   // runtime function.
4341   Address AI = CGF.CreateMemTemp(ThrowType);
4342   CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4343                        /*IsInit=*/true);
4344 
4345   // The so-called ThrowInfo is used to describe how the exception object may be
4346   // caught.
4347   llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4348 
4349   // Call into the runtime to throw the exception.
4350   llvm::Value *Args[] = {
4351     CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
4352     TI
4353   };
4354   CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4355 }
4356 
4357 std::pair<llvm::Value *, const CXXRecordDecl *>
4358 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4359                                const CXXRecordDecl *RD) {
4360   std::tie(This, std::ignore, RD) =
4361       performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4362   return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4363 }
4364 
4365 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate(
4366     const CXXRecordDecl *CXXRD) const {
4367   // MSVC Windows on Arm64 considers a type not HFA if it is not an
4368   // aggregate according to the C++14 spec. This is not consistent with the
4369   // AAPCS64, but is defacto spec on that platform.
4370   return !CGM.getTarget().getTriple().isAArch64() ||
4371          isTrivialForAArch64MSVC(CXXRD);
4372 }
4373