1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGVTables.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenTypes.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/CXXInheritance.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/VTableBuilder.h" 29 #include "clang/CodeGen/ConstantInitBuilder.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/IR/Intrinsics.h" 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 namespace { 38 39 /// Holds all the vbtable globals for a given class. 40 struct VBTableGlobals { 41 const VPtrInfoVector *VBTables; 42 SmallVector<llvm::GlobalVariable *, 2> Globals; 43 }; 44 45 class MicrosoftCXXABI : public CGCXXABI { 46 public: 47 MicrosoftCXXABI(CodeGenModule &CGM) 48 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 49 ClassHierarchyDescriptorType(nullptr), 50 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 51 ThrowInfoType(nullptr) { 52 assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || 53 CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && 54 "visibility export mapping option unimplemented in this ABI"); 55 } 56 57 bool HasThisReturn(GlobalDecl GD) const override; 58 bool hasMostDerivedReturn(GlobalDecl GD) const override; 59 60 bool classifyReturnType(CGFunctionInfo &FI) const override; 61 62 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 63 64 bool isSRetParameterAfterThis() const override { return true; } 65 66 bool isThisCompleteObject(GlobalDecl GD) const override { 67 // The Microsoft ABI doesn't use separate complete-object vs. 68 // base-object variants of constructors, but it does of destructors. 69 if (isa<CXXDestructorDecl>(GD.getDecl())) { 70 switch (GD.getDtorType()) { 71 case Dtor_Complete: 72 case Dtor_Deleting: 73 return true; 74 75 case Dtor_Base: 76 return false; 77 78 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 79 } 80 llvm_unreachable("bad dtor kind"); 81 } 82 83 // No other kinds. 84 return false; 85 } 86 87 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 88 FunctionArgList &Args) const override { 89 assert(Args.size() >= 2 && 90 "expected the arglist to have at least two args!"); 91 // The 'most_derived' parameter goes second if the ctor is variadic and 92 // has v-bases. 93 if (CD->getParent()->getNumVBases() > 0 && 94 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 95 return 2; 96 return 1; 97 } 98 99 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 100 std::vector<CharUnits> VBPtrOffsets; 101 const ASTContext &Context = getContext(); 102 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 103 104 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 105 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 106 const ASTRecordLayout &SubobjectLayout = 107 Context.getASTRecordLayout(VBT->IntroducingObject); 108 CharUnits Offs = VBT->NonVirtualOffset; 109 Offs += SubobjectLayout.getVBPtrOffset(); 110 if (VBT->getVBaseWithVPtr()) 111 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 112 VBPtrOffsets.push_back(Offs); 113 } 114 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 115 return VBPtrOffsets; 116 } 117 118 StringRef GetPureVirtualCallName() override { return "_purecall"; } 119 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 120 121 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 122 Address Ptr, QualType ElementType, 123 const CXXDestructorDecl *Dtor) override; 124 125 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 126 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 127 128 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 129 130 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 131 const VPtrInfo &Info); 132 133 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 134 CatchTypeInfo 135 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 136 137 /// MSVC needs an extra flag to indicate a catchall. 138 CatchTypeInfo getCatchAllTypeInfo() override { 139 // For -EHa catch(...) must handle HW exception 140 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions 141 if (getContext().getLangOpts().EHAsynch) 142 return CatchTypeInfo{nullptr, 0}; 143 else 144 return CatchTypeInfo{nullptr, 0x40}; 145 } 146 147 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 148 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 149 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 150 Address ThisPtr, 151 llvm::Type *StdTypeInfoPtrTy) override; 152 153 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 154 QualType SrcRecordTy) override; 155 156 bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { 157 // TODO: Add support for exact dynamic_casts. 158 return false; 159 } 160 llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value, 161 QualType SrcRecordTy, QualType DestTy, 162 QualType DestRecordTy, 163 llvm::BasicBlock *CastSuccess, 164 llvm::BasicBlock *CastFail) override { 165 llvm_unreachable("unsupported"); 166 } 167 168 llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, 169 QualType SrcRecordTy, QualType DestTy, 170 QualType DestRecordTy, 171 llvm::BasicBlock *CastEnd) override; 172 173 llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 174 QualType SrcRecordTy) override; 175 176 bool EmitBadCastCall(CodeGenFunction &CGF) override; 177 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 178 return false; 179 } 180 181 llvm::Value * 182 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 183 const CXXRecordDecl *ClassDecl, 184 const CXXRecordDecl *BaseClassDecl) override; 185 186 llvm::BasicBlock * 187 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 188 const CXXRecordDecl *RD) override; 189 190 llvm::BasicBlock * 191 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 192 193 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 194 const CXXRecordDecl *RD) override; 195 196 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 197 198 // Background on MSVC destructors 199 // ============================== 200 // 201 // Both Itanium and MSVC ABIs have destructor variants. The variant names 202 // roughly correspond in the following way: 203 // Itanium Microsoft 204 // Base -> no name, just ~Class 205 // Complete -> vbase destructor 206 // Deleting -> scalar deleting destructor 207 // vector deleting destructor 208 // 209 // The base and complete destructors are the same as in Itanium, although the 210 // complete destructor does not accept a VTT parameter when there are virtual 211 // bases. A separate mechanism involving vtordisps is used to ensure that 212 // virtual methods of destroyed subobjects are not called. 213 // 214 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 215 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 216 // pointer points to an array. The scalar deleting destructor assumes that 217 // bit 2 is zero, and therefore does not contain a loop. 218 // 219 // For virtual destructors, only one entry is reserved in the vftable, and it 220 // always points to the vector deleting destructor. The vector deleting 221 // destructor is the most general, so it can be used to destroy objects in 222 // place, delete single heap objects, or delete arrays. 223 // 224 // A TU defining a non-inline destructor is only guaranteed to emit a base 225 // destructor, and all of the other variants are emitted on an as-needed basis 226 // in COMDATs. Because a non-base destructor can be emitted in a TU that 227 // lacks a definition for the destructor, non-base destructors must always 228 // delegate to or alias the base destructor. 229 230 AddedStructorArgCounts 231 buildStructorSignature(GlobalDecl GD, 232 SmallVectorImpl<CanQualType> &ArgTys) override; 233 234 /// Non-base dtors should be emitted as delegating thunks in this ABI. 235 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 236 CXXDtorType DT) const override { 237 return DT != Dtor_Base; 238 } 239 240 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 241 const CXXDestructorDecl *Dtor, 242 CXXDtorType DT) const override; 243 244 llvm::GlobalValue::LinkageTypes 245 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 246 CXXDtorType DT) const override; 247 248 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 249 250 const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { 251 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 252 253 if (MD->isVirtual()) { 254 GlobalDecl LookupGD = GD; 255 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { 256 // Complete dtors take a pointer to the complete object, 257 // thus don't need adjustment. 258 if (GD.getDtorType() == Dtor_Complete) 259 return MD->getParent(); 260 261 // There's only Dtor_Deleting in vftable but it shares the this 262 // adjustment with the base one, so look up the deleting one instead. 263 LookupGD = GlobalDecl(DD, Dtor_Deleting); 264 } 265 MethodVFTableLocation ML = 266 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 267 268 // The vbases might be ordered differently in the final overrider object 269 // and the complete object, so the "this" argument may sometimes point to 270 // memory that has no particular type (e.g. past the complete object). 271 // In this case, we just use a generic pointer type. 272 // FIXME: might want to have a more precise type in the non-virtual 273 // multiple inheritance case. 274 if (ML.VBase || !ML.VFPtrOffset.isZero()) 275 return nullptr; 276 } 277 return MD->getParent(); 278 } 279 280 Address 281 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 282 Address This, 283 bool VirtualCall) override; 284 285 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 286 FunctionArgList &Params) override; 287 288 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 289 290 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 291 const CXXConstructorDecl *D, 292 CXXCtorType Type, 293 bool ForVirtualBase, 294 bool Delegating) override; 295 296 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 297 const CXXDestructorDecl *DD, 298 CXXDtorType Type, 299 bool ForVirtualBase, 300 bool Delegating) override; 301 302 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 303 CXXDtorType Type, bool ForVirtualBase, 304 bool Delegating, Address This, 305 QualType ThisTy) override; 306 307 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 308 llvm::GlobalVariable *VTable); 309 310 void emitVTableDefinitions(CodeGenVTables &CGVT, 311 const CXXRecordDecl *RD) override; 312 313 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 314 CodeGenFunction::VPtr Vptr) override; 315 316 /// Don't initialize vptrs if dynamic class 317 /// is marked with the 'novtable' attribute. 318 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 319 return !VTableClass->hasAttr<MSNoVTableAttr>(); 320 } 321 322 llvm::Constant * 323 getVTableAddressPoint(BaseSubobject Base, 324 const CXXRecordDecl *VTableClass) override; 325 326 llvm::Value *getVTableAddressPointInStructor( 327 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 328 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 329 330 llvm::Constant * 331 getVTableAddressPointForConstExpr(BaseSubobject Base, 332 const CXXRecordDecl *VTableClass) override; 333 334 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 335 CharUnits VPtrOffset) override; 336 337 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 338 Address This, llvm::Type *Ty, 339 SourceLocation Loc) override; 340 341 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 342 const CXXDestructorDecl *Dtor, 343 CXXDtorType DtorType, Address This, 344 DeleteOrMemberCallExpr E) override; 345 346 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 347 CallArgList &CallArgs) override { 348 assert(GD.getDtorType() == Dtor_Deleting && 349 "Only deleting destructor thunks are available in this ABI"); 350 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 351 getContext().IntTy); 352 } 353 354 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 355 356 llvm::GlobalVariable * 357 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 358 llvm::GlobalVariable::LinkageTypes Linkage); 359 360 llvm::GlobalVariable * 361 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 362 const CXXRecordDecl *DstRD) { 363 SmallString<256> OutName; 364 llvm::raw_svector_ostream Out(OutName); 365 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 366 StringRef MangledName = OutName.str(); 367 368 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 369 return VDispMap; 370 371 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 372 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 373 SmallVector<llvm::Constant *, 4> Map(NumEntries, 374 llvm::UndefValue::get(CGM.IntTy)); 375 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 376 bool AnyDifferent = false; 377 for (const auto &I : SrcRD->vbases()) { 378 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 379 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 380 continue; 381 382 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 383 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 384 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 385 AnyDifferent |= SrcVBIndex != DstVBIndex; 386 } 387 // This map would be useless, don't use it. 388 if (!AnyDifferent) 389 return nullptr; 390 391 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 392 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 393 llvm::GlobalValue::LinkageTypes Linkage = 394 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 395 ? llvm::GlobalValue::LinkOnceODRLinkage 396 : llvm::GlobalValue::InternalLinkage; 397 auto *VDispMap = new llvm::GlobalVariable( 398 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 399 /*Initializer=*/Init, MangledName); 400 return VDispMap; 401 } 402 403 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 404 llvm::GlobalVariable *GV) const; 405 406 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 407 GlobalDecl GD, bool ReturnAdjustment) override { 408 GVALinkage Linkage = 409 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 410 411 if (Linkage == GVA_Internal) 412 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 413 else if (ReturnAdjustment) 414 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 415 else 416 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 417 } 418 419 bool exportThunk() override { return false; } 420 421 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 422 const ThisAdjustment &TA) override; 423 424 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 425 const ReturnAdjustment &RA) override; 426 427 void EmitThreadLocalInitFuncs( 428 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 429 ArrayRef<llvm::Function *> CXXThreadLocalInits, 430 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 431 432 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 433 return getContext().getLangOpts().isCompatibleWithMSVC( 434 LangOptions::MSVC2019_5) && 435 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); 436 } 437 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 438 QualType LValType) override; 439 440 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 441 llvm::GlobalVariable *DeclPtr, 442 bool PerformInit) override; 443 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 444 llvm::FunctionCallee Dtor, 445 llvm::Constant *Addr) override; 446 447 // ==== Notes on array cookies ========= 448 // 449 // MSVC seems to only use cookies when the class has a destructor; a 450 // two-argument usual array deallocation function isn't sufficient. 451 // 452 // For example, this code prints "100" and "1": 453 // struct A { 454 // char x; 455 // void *operator new[](size_t sz) { 456 // printf("%u\n", sz); 457 // return malloc(sz); 458 // } 459 // void operator delete[](void *p, size_t sz) { 460 // printf("%u\n", sz); 461 // free(p); 462 // } 463 // }; 464 // int main() { 465 // A *p = new A[100]; 466 // delete[] p; 467 // } 468 // Whereas it prints "104" and "104" if you give A a destructor. 469 470 bool requiresArrayCookie(const CXXDeleteExpr *expr, 471 QualType elementType) override; 472 bool requiresArrayCookie(const CXXNewExpr *expr) override; 473 CharUnits getArrayCookieSizeImpl(QualType type) override; 474 Address InitializeArrayCookie(CodeGenFunction &CGF, 475 Address NewPtr, 476 llvm::Value *NumElements, 477 const CXXNewExpr *expr, 478 QualType ElementType) override; 479 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 480 Address allocPtr, 481 CharUnits cookieSize) override; 482 483 friend struct MSRTTIBuilder; 484 485 bool isImageRelative() const { 486 return CGM.getTarget().getPointerWidth(LangAS::Default) == 64; 487 } 488 489 // 5 routines for constructing the llvm types for MS RTTI structs. 490 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 491 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 492 TDTypeName += llvm::utostr(TypeInfoString.size()); 493 llvm::StructType *&TypeDescriptorType = 494 TypeDescriptorTypeMap[TypeInfoString.size()]; 495 if (TypeDescriptorType) 496 return TypeDescriptorType; 497 llvm::Type *FieldTypes[] = { 498 CGM.Int8PtrPtrTy, 499 CGM.Int8PtrTy, 500 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 501 TypeDescriptorType = 502 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 503 return TypeDescriptorType; 504 } 505 506 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 507 if (!isImageRelative()) 508 return PtrType; 509 return CGM.IntTy; 510 } 511 512 llvm::StructType *getBaseClassDescriptorType() { 513 if (BaseClassDescriptorType) 514 return BaseClassDescriptorType; 515 llvm::Type *FieldTypes[] = { 516 getImageRelativeType(CGM.Int8PtrTy), 517 CGM.IntTy, 518 CGM.IntTy, 519 CGM.IntTy, 520 CGM.IntTy, 521 CGM.IntTy, 522 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 523 }; 524 BaseClassDescriptorType = llvm::StructType::create( 525 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 526 return BaseClassDescriptorType; 527 } 528 529 llvm::StructType *getClassHierarchyDescriptorType() { 530 if (ClassHierarchyDescriptorType) 531 return ClassHierarchyDescriptorType; 532 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 533 ClassHierarchyDescriptorType = llvm::StructType::create( 534 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 535 llvm::Type *FieldTypes[] = { 536 CGM.IntTy, 537 CGM.IntTy, 538 CGM.IntTy, 539 getImageRelativeType( 540 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 541 }; 542 ClassHierarchyDescriptorType->setBody(FieldTypes); 543 return ClassHierarchyDescriptorType; 544 } 545 546 llvm::StructType *getCompleteObjectLocatorType() { 547 if (CompleteObjectLocatorType) 548 return CompleteObjectLocatorType; 549 CompleteObjectLocatorType = llvm::StructType::create( 550 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 551 llvm::Type *FieldTypes[] = { 552 CGM.IntTy, 553 CGM.IntTy, 554 CGM.IntTy, 555 getImageRelativeType(CGM.Int8PtrTy), 556 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 557 getImageRelativeType(CompleteObjectLocatorType), 558 }; 559 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 560 if (!isImageRelative()) 561 FieldTypesRef = FieldTypesRef.drop_back(); 562 CompleteObjectLocatorType->setBody(FieldTypesRef); 563 return CompleteObjectLocatorType; 564 } 565 566 llvm::GlobalVariable *getImageBase() { 567 StringRef Name = "__ImageBase"; 568 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 569 return GV; 570 571 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 572 /*isConstant=*/true, 573 llvm::GlobalValue::ExternalLinkage, 574 /*Initializer=*/nullptr, Name); 575 CGM.setDSOLocal(GV); 576 return GV; 577 } 578 579 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 580 if (!isImageRelative()) 581 return PtrVal; 582 583 if (PtrVal->isNullValue()) 584 return llvm::Constant::getNullValue(CGM.IntTy); 585 586 llvm::Constant *ImageBaseAsInt = 587 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 588 llvm::Constant *PtrValAsInt = 589 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 590 llvm::Constant *Diff = 591 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 592 /*HasNUW=*/true, /*HasNSW=*/true); 593 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 594 } 595 596 private: 597 MicrosoftMangleContext &getMangleContext() { 598 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 599 } 600 601 llvm::Constant *getZeroInt() { 602 return llvm::ConstantInt::get(CGM.IntTy, 0); 603 } 604 605 llvm::Constant *getAllOnesInt() { 606 return llvm::Constant::getAllOnesValue(CGM.IntTy); 607 } 608 609 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 610 611 void 612 GetNullMemberPointerFields(const MemberPointerType *MPT, 613 llvm::SmallVectorImpl<llvm::Constant *> &fields); 614 615 /// Shared code for virtual base adjustment. Returns the offset from 616 /// the vbptr to the virtual base. Optionally returns the address of the 617 /// vbptr itself. 618 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 619 Address Base, 620 llvm::Value *VBPtrOffset, 621 llvm::Value *VBTableOffset, 622 llvm::Value **VBPtr = nullptr); 623 624 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 625 Address Base, 626 int32_t VBPtrOffset, 627 int32_t VBTableOffset, 628 llvm::Value **VBPtr = nullptr) { 629 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 630 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 631 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 632 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 633 } 634 635 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 636 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 637 QualType SrcRecordTy); 638 639 /// Performs a full virtual base adjustment. Used to dereference 640 /// pointers to members of virtual bases. 641 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 642 const CXXRecordDecl *RD, Address Base, 643 llvm::Value *VirtualBaseAdjustmentOffset, 644 llvm::Value *VBPtrOffset /* optional */); 645 646 /// Emits a full member pointer with the fields common to data and 647 /// function member pointers. 648 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 649 bool IsMemberFunction, 650 const CXXRecordDecl *RD, 651 CharUnits NonVirtualBaseAdjustment, 652 unsigned VBTableIndex); 653 654 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 655 llvm::Constant *MP); 656 657 /// - Initialize all vbptrs of 'this' with RD as the complete type. 658 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 659 660 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 661 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 662 663 /// Generate a thunk for calling a virtual member function MD. 664 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 665 const MethodVFTableLocation &ML); 666 667 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 668 CharUnits offset); 669 670 public: 671 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 672 673 bool isZeroInitializable(const MemberPointerType *MPT) override; 674 675 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 676 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 677 return RD->hasAttr<MSInheritanceAttr>(); 678 } 679 680 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 681 682 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 683 CharUnits offset) override; 684 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 685 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 686 687 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 688 llvm::Value *L, 689 llvm::Value *R, 690 const MemberPointerType *MPT, 691 bool Inequality) override; 692 693 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 694 llvm::Value *MemPtr, 695 const MemberPointerType *MPT) override; 696 697 llvm::Value * 698 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 699 Address Base, llvm::Value *MemPtr, 700 const MemberPointerType *MPT) override; 701 702 llvm::Value *EmitNonNullMemberPointerConversion( 703 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 704 CastKind CK, CastExpr::path_const_iterator PathBegin, 705 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 706 CGBuilderTy &Builder); 707 708 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 709 const CastExpr *E, 710 llvm::Value *Src) override; 711 712 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 713 llvm::Constant *Src) override; 714 715 llvm::Constant *EmitMemberPointerConversion( 716 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 717 CastKind CK, CastExpr::path_const_iterator PathBegin, 718 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 719 720 CGCallee 721 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 722 Address This, llvm::Value *&ThisPtrForCall, 723 llvm::Value *MemPtr, 724 const MemberPointerType *MPT) override; 725 726 void emitCXXStructor(GlobalDecl GD) override; 727 728 llvm::StructType *getCatchableTypeType() { 729 if (CatchableTypeType) 730 return CatchableTypeType; 731 llvm::Type *FieldTypes[] = { 732 CGM.IntTy, // Flags 733 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 734 CGM.IntTy, // NonVirtualAdjustment 735 CGM.IntTy, // OffsetToVBPtr 736 CGM.IntTy, // VBTableIndex 737 CGM.IntTy, // Size 738 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 739 }; 740 CatchableTypeType = llvm::StructType::create( 741 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 742 return CatchableTypeType; 743 } 744 745 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 746 llvm::StructType *&CatchableTypeArrayType = 747 CatchableTypeArrayTypeMap[NumEntries]; 748 if (CatchableTypeArrayType) 749 return CatchableTypeArrayType; 750 751 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 752 CTATypeName += llvm::utostr(NumEntries); 753 llvm::Type *CTType = 754 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 755 llvm::Type *FieldTypes[] = { 756 CGM.IntTy, // NumEntries 757 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 758 }; 759 CatchableTypeArrayType = 760 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 761 return CatchableTypeArrayType; 762 } 763 764 llvm::StructType *getThrowInfoType() { 765 if (ThrowInfoType) 766 return ThrowInfoType; 767 llvm::Type *FieldTypes[] = { 768 CGM.IntTy, // Flags 769 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 770 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 771 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 772 }; 773 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 774 "eh.ThrowInfo"); 775 return ThrowInfoType; 776 } 777 778 llvm::FunctionCallee getThrowFn() { 779 // _CxxThrowException is passed an exception object and a ThrowInfo object 780 // which describes the exception. 781 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 782 llvm::FunctionType *FTy = 783 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 784 llvm::FunctionCallee Throw = 785 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 786 // _CxxThrowException is stdcall on 32-bit x86 platforms. 787 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 788 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 789 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 790 } 791 return Throw; 792 } 793 794 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 795 CXXCtorType CT); 796 797 llvm::Constant *getCatchableType(QualType T, 798 uint32_t NVOffset = 0, 799 int32_t VBPtrOffset = -1, 800 uint32_t VBIndex = 0); 801 802 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 803 804 llvm::GlobalVariable *getThrowInfo(QualType T) override; 805 806 std::pair<llvm::Value *, const CXXRecordDecl *> 807 LoadVTablePtr(CodeGenFunction &CGF, Address This, 808 const CXXRecordDecl *RD) override; 809 810 bool 811 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; 812 813 private: 814 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 815 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 816 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 817 /// All the vftables that have been referenced. 818 VFTablesMapTy VFTablesMap; 819 VTablesMapTy VTablesMap; 820 821 /// This set holds the record decls we've deferred vtable emission for. 822 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 823 824 825 /// All the vbtables which have been referenced. 826 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 827 828 /// Info on the global variable used to guard initialization of static locals. 829 /// The BitIndex field is only used for externally invisible declarations. 830 struct GuardInfo { 831 GuardInfo() = default; 832 llvm::GlobalVariable *Guard = nullptr; 833 unsigned BitIndex = 0; 834 }; 835 836 /// Map from DeclContext to the current guard variable. We assume that the 837 /// AST is visited in source code order. 838 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 839 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 840 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 841 842 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 843 llvm::StructType *BaseClassDescriptorType; 844 llvm::StructType *ClassHierarchyDescriptorType; 845 llvm::StructType *CompleteObjectLocatorType; 846 847 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 848 849 llvm::StructType *CatchableTypeType; 850 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 851 llvm::StructType *ThrowInfoType; 852 }; 853 854 } 855 856 CGCXXABI::RecordArgABI 857 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 858 // Use the default C calling convention rules for things that can be passed in 859 // registers, i.e. non-trivially copyable records or records marked with 860 // [[trivial_abi]]. 861 if (RD->canPassInRegisters()) 862 return RAA_Default; 863 864 switch (CGM.getTarget().getTriple().getArch()) { 865 default: 866 // FIXME: Implement for other architectures. 867 return RAA_Indirect; 868 869 case llvm::Triple::thumb: 870 // Pass things indirectly for now because it is simple. 871 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 872 // copy ctor. 873 return RAA_Indirect; 874 875 case llvm::Triple::x86: { 876 // If the argument has *required* alignment greater than four bytes, pass 877 // it indirectly. Prior to MSVC version 19.14, passing overaligned 878 // arguments was not supported and resulted in a compiler error. In 19.14 879 // and later versions, such arguments are now passed indirectly. 880 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); 881 if (Info.isAlignRequired() && Info.Align > 4) 882 return RAA_Indirect; 883 884 // If C++ prohibits us from making a copy, construct the arguments directly 885 // into argument memory. 886 return RAA_DirectInMemory; 887 } 888 889 case llvm::Triple::x86_64: 890 case llvm::Triple::aarch64: 891 return RAA_Indirect; 892 } 893 894 llvm_unreachable("invalid enum"); 895 } 896 897 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 898 const CXXDeleteExpr *DE, 899 Address Ptr, 900 QualType ElementType, 901 const CXXDestructorDecl *Dtor) { 902 // FIXME: Provide a source location here even though there's no 903 // CXXMemberCallExpr for dtor call. 904 bool UseGlobalDelete = DE->isGlobalDelete(); 905 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 906 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 907 if (UseGlobalDelete) 908 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 909 } 910 911 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 912 llvm::Value *Args[] = { 913 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 914 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 915 llvm::FunctionCallee Fn = getThrowFn(); 916 if (isNoReturn) 917 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 918 else 919 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 920 } 921 922 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 923 const CXXCatchStmt *S) { 924 // In the MS ABI, the runtime handles the copy, and the catch handler is 925 // responsible for destruction. 926 VarDecl *CatchParam = S->getExceptionDecl(); 927 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 928 llvm::CatchPadInst *CPI = 929 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 930 CGF.CurrentFuncletPad = CPI; 931 932 // If this is a catch-all or the catch parameter is unnamed, we don't need to 933 // emit an alloca to the object. 934 if (!CatchParam || !CatchParam->getDeclName()) { 935 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 936 return; 937 } 938 939 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 940 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 941 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 942 CGF.EmitAutoVarCleanups(var); 943 } 944 945 /// We need to perform a generic polymorphic operation (like a typeid 946 /// or a cast), which requires an object with a vfptr. Adjust the 947 /// address to point to an object with a vfptr. 948 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 949 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 950 QualType SrcRecordTy) { 951 Value = Value.withElementType(CGF.Int8Ty); 952 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 953 const ASTContext &Context = getContext(); 954 955 // If the class itself has a vfptr, great. This check implicitly 956 // covers non-virtual base subobjects: a class with its own virtual 957 // functions would be a candidate to be a primary base. 958 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 959 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 960 SrcDecl); 961 962 // Okay, one of the vbases must have a vfptr, or else this isn't 963 // actually a polymorphic class. 964 const CXXRecordDecl *PolymorphicBase = nullptr; 965 for (auto &Base : SrcDecl->vbases()) { 966 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 967 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 968 PolymorphicBase = BaseDecl; 969 break; 970 } 971 } 972 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 973 974 llvm::Value *Offset = 975 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 976 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 977 Value.getElementType(), Value.getPointer(), Offset); 978 CharUnits VBaseAlign = 979 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 980 return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset, 981 PolymorphicBase); 982 } 983 984 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 985 QualType SrcRecordTy) { 986 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 987 return IsDeref && 988 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 989 } 990 991 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 992 llvm::Value *Argument) { 993 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 994 llvm::FunctionType *FTy = 995 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 996 llvm::Value *Args[] = {Argument}; 997 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 998 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 999 } 1000 1001 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 1002 llvm::CallBase *Call = 1003 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 1004 Call->setDoesNotReturn(); 1005 CGF.Builder.CreateUnreachable(); 1006 } 1007 1008 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 1009 QualType SrcRecordTy, 1010 Address ThisPtr, 1011 llvm::Type *StdTypeInfoPtrTy) { 1012 std::tie(ThisPtr, std::ignore, std::ignore) = 1013 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 1014 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 1015 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 1016 } 1017 1018 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 1019 QualType SrcRecordTy) { 1020 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1021 return SrcIsPtr && 1022 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 1023 } 1024 1025 llvm::Value *MicrosoftCXXABI::emitDynamicCastCall( 1026 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy, 1027 QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 1028 llvm::Value *SrcRTTI = 1029 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1030 llvm::Value *DestRTTI = 1031 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1032 1033 llvm::Value *Offset; 1034 std::tie(This, Offset, std::ignore) = 1035 performBaseAdjustment(CGF, This, SrcRecordTy); 1036 llvm::Value *ThisPtr = This.getPointer(); 1037 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 1038 1039 // PVOID __RTDynamicCast( 1040 // PVOID inptr, 1041 // LONG VfDelta, 1042 // PVOID SrcType, 1043 // PVOID TargetType, 1044 // BOOL isReference) 1045 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1046 CGF.Int8PtrTy, CGF.Int32Ty}; 1047 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1048 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1049 "__RTDynamicCast"); 1050 llvm::Value *Args[] = { 1051 ThisPtr, Offset, SrcRTTI, DestRTTI, 1052 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1053 return CGF.EmitRuntimeCallOrInvoke(Function, Args); 1054 } 1055 1056 llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, 1057 Address Value, 1058 QualType SrcRecordTy) { 1059 std::tie(Value, std::ignore, std::ignore) = 1060 performBaseAdjustment(CGF, Value, SrcRecordTy); 1061 1062 // PVOID __RTCastToVoid( 1063 // PVOID inptr) 1064 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1065 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1066 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1067 "__RTCastToVoid"); 1068 llvm::Value *Args[] = {Value.getPointer()}; 1069 return CGF.EmitRuntimeCall(Function, Args); 1070 } 1071 1072 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1073 return false; 1074 } 1075 1076 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1077 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1078 const CXXRecordDecl *BaseClassDecl) { 1079 const ASTContext &Context = getContext(); 1080 int64_t VBPtrChars = 1081 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1082 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1083 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1084 CharUnits VBTableChars = 1085 IntSize * 1086 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1087 llvm::Value *VBTableOffset = 1088 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1089 1090 llvm::Value *VBPtrToNewBase = 1091 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1092 VBPtrToNewBase = 1093 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1094 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1095 } 1096 1097 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1098 return isa<CXXConstructorDecl>(GD.getDecl()); 1099 } 1100 1101 static bool isDeletingDtor(GlobalDecl GD) { 1102 return isa<CXXDestructorDecl>(GD.getDecl()) && 1103 GD.getDtorType() == Dtor_Deleting; 1104 } 1105 1106 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1107 return isDeletingDtor(GD); 1108 } 1109 1110 static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty, 1111 CodeGenModule &CGM) { 1112 // On AArch64, HVAs that can be passed in registers can also be returned 1113 // in registers. (Note this is using the MSVC definition of an HVA; see 1114 // isPermittedToBeHomogeneousAggregate().) 1115 const Type *Base = nullptr; 1116 uint64_t NumElts = 0; 1117 if (CGM.getTarget().getTriple().isAArch64() && 1118 CGM.getTypes().getABIInfo().isHomogeneousAggregate(Ty, Base, NumElts) && 1119 isa<VectorType>(Base)) { 1120 return true; 1121 } 1122 1123 // We use the C++14 definition of an aggregate, so we also 1124 // check for: 1125 // No private or protected non static data members. 1126 // No base classes 1127 // No virtual functions 1128 // Additionally, we need to ensure that there is a trivial copy assignment 1129 // operator, a trivial destructor and no user-provided constructors. 1130 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1131 return false; 1132 if (RD->getNumBases() > 0) 1133 return false; 1134 if (RD->isPolymorphic()) 1135 return false; 1136 if (RD->hasNonTrivialCopyAssignment()) 1137 return false; 1138 for (const Decl *D : RD->decls()) { 1139 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) { 1140 if (Ctor->isUserProvided()) 1141 return false; 1142 } else if (auto *Template = dyn_cast<FunctionTemplateDecl>(D)) { 1143 if (isa<CXXConstructorDecl>(Template->getTemplatedDecl())) 1144 return false; 1145 } 1146 } 1147 if (RD->hasNonTrivialDestructor()) 1148 return false; 1149 return true; 1150 } 1151 1152 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1153 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1154 if (!RD) 1155 return false; 1156 1157 bool isTrivialForABI = RD->canPassInRegisters() && 1158 isTrivialForMSVC(RD, FI.getReturnType(), CGM); 1159 1160 // MSVC always returns structs indirectly from C++ instance methods. 1161 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); 1162 1163 if (isIndirectReturn) { 1164 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1165 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1166 1167 // MSVC always passes `this` before the `sret` parameter. 1168 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1169 1170 // On AArch64, use the `inreg` attribute if the object is considered to not 1171 // be trivially copyable, or if this is an instance method struct return. 1172 FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); 1173 1174 return true; 1175 } 1176 1177 // Otherwise, use the C ABI rules. 1178 return false; 1179 } 1180 1181 llvm::BasicBlock * 1182 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1183 const CXXRecordDecl *RD) { 1184 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1185 assert(IsMostDerivedClass && 1186 "ctor for a class with virtual bases must have an implicit parameter"); 1187 llvm::Value *IsCompleteObject = 1188 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1189 1190 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1191 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1192 CGF.Builder.CreateCondBr(IsCompleteObject, 1193 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1194 1195 CGF.EmitBlock(CallVbaseCtorsBB); 1196 1197 // Fill in the vbtable pointers here. 1198 EmitVBPtrStores(CGF, RD); 1199 1200 // CGF will put the base ctor calls in this basic block for us later. 1201 1202 return SkipVbaseCtorsBB; 1203 } 1204 1205 llvm::BasicBlock * 1206 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1207 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1208 assert(IsMostDerivedClass && 1209 "ctor for a class with virtual bases must have an implicit parameter"); 1210 llvm::Value *IsCompleteObject = 1211 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1212 1213 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1214 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1215 CGF.Builder.CreateCondBr(IsCompleteObject, 1216 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1217 1218 CGF.EmitBlock(CallVbaseDtorsBB); 1219 // CGF will put the base dtor calls in this basic block for us later. 1220 1221 return SkipVbaseDtorsBB; 1222 } 1223 1224 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1225 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1226 // In most cases, an override for a vbase virtual method can adjust 1227 // the "this" parameter by applying a constant offset. 1228 // However, this is not enough while a constructor or a destructor of some 1229 // class X is being executed if all the following conditions are met: 1230 // - X has virtual bases, (1) 1231 // - X overrides a virtual method M of a vbase Y, (2) 1232 // - X itself is a vbase of the most derived class. 1233 // 1234 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1235 // which holds the extra amount of "this" adjustment we must do when we use 1236 // the X vftables (i.e. during X ctor or dtor). 1237 // Outside the ctors and dtors, the values of vtorDisps are zero. 1238 1239 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1240 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1241 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1242 CGBuilderTy &Builder = CGF.Builder; 1243 1244 llvm::Value *Int8This = nullptr; // Initialize lazily. 1245 1246 for (const CXXBaseSpecifier &S : RD->vbases()) { 1247 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1248 auto I = VBaseMap.find(VBase); 1249 assert(I != VBaseMap.end()); 1250 if (!I->second.hasVtorDisp()) 1251 continue; 1252 1253 llvm::Value *VBaseOffset = 1254 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1255 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1256 1257 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1258 llvm::Value *VtorDispValue = Builder.CreateSub( 1259 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1260 "vtordisp.value"); 1261 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1262 1263 if (!Int8This) 1264 Int8This = getThisValue(CGF); 1265 1266 llvm::Value *VtorDispPtr = 1267 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset); 1268 // vtorDisp is always the 32-bits before the vbase in the class layout. 1269 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4); 1270 1271 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1272 CharUnits::fromQuantity(4)); 1273 } 1274 } 1275 1276 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1277 const CXXMethodDecl *MD) { 1278 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1279 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1280 CallingConv ActualCallingConv = 1281 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1282 return ExpectedCallingConv == ActualCallingConv; 1283 } 1284 1285 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1286 // There's only one constructor type in this ABI. 1287 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1288 1289 // Exported default constructors either have a simple call-site where they use 1290 // the typical calling convention and have a single 'this' pointer for an 1291 // argument -or- they get a wrapper function which appropriately thunks to the 1292 // real default constructor. This thunk is the default constructor closure. 1293 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && 1294 D->isDefined()) { 1295 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1296 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1297 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1298 CGM.setGVProperties(Fn, D); 1299 } 1300 } 1301 } 1302 1303 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1304 const CXXRecordDecl *RD) { 1305 Address This = getThisAddress(CGF); 1306 This = This.withElementType(CGM.Int8Ty); 1307 const ASTContext &Context = getContext(); 1308 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1309 1310 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1311 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1312 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1313 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1314 const ASTRecordLayout &SubobjectLayout = 1315 Context.getASTRecordLayout(VBT->IntroducingObject); 1316 CharUnits Offs = VBT->NonVirtualOffset; 1317 Offs += SubobjectLayout.getVBPtrOffset(); 1318 if (VBT->getVBaseWithVPtr()) 1319 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1320 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1321 llvm::Value *GVPtr = 1322 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1323 VBPtr = VBPtr.withElementType(GVPtr->getType()); 1324 CGF.Builder.CreateStore(GVPtr, VBPtr); 1325 } 1326 } 1327 1328 CGCXXABI::AddedStructorArgCounts 1329 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1330 SmallVectorImpl<CanQualType> &ArgTys) { 1331 AddedStructorArgCounts Added; 1332 // TODO: 'for base' flag 1333 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1334 GD.getDtorType() == Dtor_Deleting) { 1335 // The scalar deleting destructor takes an implicit int parameter. 1336 ArgTys.push_back(getContext().IntTy); 1337 ++Added.Suffix; 1338 } 1339 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1340 if (!CD) 1341 return Added; 1342 1343 // All parameters are already in place except is_most_derived, which goes 1344 // after 'this' if it's variadic and last if it's not. 1345 1346 const CXXRecordDecl *Class = CD->getParent(); 1347 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1348 if (Class->getNumVBases()) { 1349 if (FPT->isVariadic()) { 1350 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1351 ++Added.Prefix; 1352 } else { 1353 ArgTys.push_back(getContext().IntTy); 1354 ++Added.Suffix; 1355 } 1356 } 1357 1358 return Added; 1359 } 1360 1361 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1362 const CXXDestructorDecl *Dtor, 1363 CXXDtorType DT) const { 1364 // Deleting destructor variants are never imported or exported. Give them the 1365 // default storage class. 1366 if (DT == Dtor_Deleting) { 1367 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1368 } else { 1369 const NamedDecl *ND = Dtor; 1370 CGM.setDLLImportDLLExport(GV, ND); 1371 } 1372 } 1373 1374 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1375 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1376 // Internal things are always internal, regardless of attributes. After this, 1377 // we know the thunk is externally visible. 1378 if (Linkage == GVA_Internal) 1379 return llvm::GlobalValue::InternalLinkage; 1380 1381 switch (DT) { 1382 case Dtor_Base: 1383 // The base destructor most closely tracks the user-declared constructor, so 1384 // we delegate back to the normal declarator case. 1385 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage); 1386 case Dtor_Complete: 1387 // The complete destructor is like an inline function, but it may be 1388 // imported and therefore must be exported as well. This requires changing 1389 // the linkage if a DLL attribute is present. 1390 if (Dtor->hasAttr<DLLExportAttr>()) 1391 return llvm::GlobalValue::WeakODRLinkage; 1392 if (Dtor->hasAttr<DLLImportAttr>()) 1393 return llvm::GlobalValue::AvailableExternallyLinkage; 1394 return llvm::GlobalValue::LinkOnceODRLinkage; 1395 case Dtor_Deleting: 1396 // Deleting destructors are like inline functions. They have vague linkage 1397 // and are emitted everywhere they are used. They are internal if the class 1398 // is internal. 1399 return llvm::GlobalValue::LinkOnceODRLinkage; 1400 case Dtor_Comdat: 1401 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1402 } 1403 llvm_unreachable("invalid dtor type"); 1404 } 1405 1406 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1407 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1408 // other destructor variants are delegating thunks. 1409 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1410 1411 // If the class is dllexported, emit the complete (vbase) destructor wherever 1412 // the base dtor is emitted. 1413 // FIXME: To match MSVC, this should only be done when the class is exported 1414 // with -fdllexport-inlines enabled. 1415 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1416 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1417 } 1418 1419 CharUnits 1420 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1421 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1422 1423 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1424 // Complete destructors take a pointer to the complete object as a 1425 // parameter, thus don't need this adjustment. 1426 if (GD.getDtorType() == Dtor_Complete) 1427 return CharUnits(); 1428 1429 // There's no Dtor_Base in vftable but it shares the this adjustment with 1430 // the deleting one, so look it up instead. 1431 GD = GlobalDecl(DD, Dtor_Deleting); 1432 } 1433 1434 MethodVFTableLocation ML = 1435 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1436 CharUnits Adjustment = ML.VFPtrOffset; 1437 1438 // Normal virtual instance methods need to adjust from the vfptr that first 1439 // defined the virtual method to the virtual base subobject, but destructors 1440 // do not. The vector deleting destructor thunk applies this adjustment for 1441 // us if necessary. 1442 if (isa<CXXDestructorDecl>(MD)) 1443 Adjustment = CharUnits::Zero(); 1444 1445 if (ML.VBase) { 1446 const ASTRecordLayout &DerivedLayout = 1447 getContext().getASTRecordLayout(MD->getParent()); 1448 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1449 } 1450 1451 return Adjustment; 1452 } 1453 1454 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1455 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1456 bool VirtualCall) { 1457 if (!VirtualCall) { 1458 // If the call of a virtual function is not virtual, we just have to 1459 // compensate for the adjustment the virtual function does in its prologue. 1460 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1461 if (Adjustment.isZero()) 1462 return This; 1463 1464 This = This.withElementType(CGF.Int8Ty); 1465 assert(Adjustment.isPositive()); 1466 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1467 } 1468 1469 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1470 1471 GlobalDecl LookupGD = GD; 1472 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1473 // Complete dtors take a pointer to the complete object, 1474 // thus don't need adjustment. 1475 if (GD.getDtorType() == Dtor_Complete) 1476 return This; 1477 1478 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1479 // with the base one, so look up the deleting one instead. 1480 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1481 } 1482 MethodVFTableLocation ML = 1483 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1484 1485 CharUnits StaticOffset = ML.VFPtrOffset; 1486 1487 // Base destructors expect 'this' to point to the beginning of the base 1488 // subobject, not the first vfptr that happens to contain the virtual dtor. 1489 // However, we still need to apply the virtual base adjustment. 1490 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1491 StaticOffset = CharUnits::Zero(); 1492 1493 Address Result = This; 1494 if (ML.VBase) { 1495 Result = Result.withElementType(CGF.Int8Ty); 1496 1497 const CXXRecordDecl *Derived = MD->getParent(); 1498 const CXXRecordDecl *VBase = ML.VBase; 1499 llvm::Value *VBaseOffset = 1500 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1501 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( 1502 Result.getElementType(), Result.getPointer(), VBaseOffset); 1503 CharUnits VBaseAlign = 1504 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1505 Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); 1506 } 1507 if (!StaticOffset.isZero()) { 1508 assert(StaticOffset.isPositive()); 1509 Result = Result.withElementType(CGF.Int8Ty); 1510 if (ML.VBase) { 1511 // Non-virtual adjustment might result in a pointer outside the allocated 1512 // object, e.g. if the final overrider class is laid out after the virtual 1513 // base that declares a method in the most derived class. 1514 // FIXME: Update the code that emits this adjustment in thunks prologues. 1515 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1516 } else { 1517 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1518 } 1519 } 1520 return Result; 1521 } 1522 1523 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1524 QualType &ResTy, 1525 FunctionArgList &Params) { 1526 ASTContext &Context = getContext(); 1527 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1528 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1529 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1530 auto *IsMostDerived = ImplicitParamDecl::Create( 1531 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1532 &Context.Idents.get("is_most_derived"), Context.IntTy, 1533 ImplicitParamKind::Other); 1534 // The 'most_derived' parameter goes second if the ctor is variadic and last 1535 // if it's not. Dtors can't be variadic. 1536 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1537 if (FPT->isVariadic()) 1538 Params.insert(Params.begin() + 1, IsMostDerived); 1539 else 1540 Params.push_back(IsMostDerived); 1541 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1542 } else if (isDeletingDtor(CGF.CurGD)) { 1543 auto *ShouldDelete = ImplicitParamDecl::Create( 1544 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1545 &Context.Idents.get("should_call_delete"), Context.IntTy, 1546 ImplicitParamKind::Other); 1547 Params.push_back(ShouldDelete); 1548 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1549 } 1550 } 1551 1552 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1553 // Naked functions have no prolog. 1554 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1555 return; 1556 1557 // Overridden virtual methods of non-primary bases need to adjust the incoming 1558 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1559 // sizeof(void*) to adjust from B* to C*: 1560 // struct A { virtual void a(); }; 1561 // struct B { virtual void b(); }; 1562 // struct C : A, B { virtual void b(); }; 1563 // 1564 // Leave the value stored in the 'this' alloca unadjusted, so that the 1565 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1566 // will apply the ThisAdjustment in the method type information. 1567 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1568 // without making our codegen depend on debug info settings. 1569 llvm::Value *This = loadIncomingCXXThis(CGF); 1570 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1571 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1572 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1573 if (!Adjustment.isZero()) { 1574 assert(Adjustment.isPositive()); 1575 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1576 -Adjustment.getQuantity()); 1577 } 1578 } 1579 setCXXABIThisValue(CGF, This); 1580 1581 // If this is a function that the ABI specifies returns 'this', initialize 1582 // the return slot to 'this' at the start of the function. 1583 // 1584 // Unlike the setting of return types, this is done within the ABI 1585 // implementation instead of by clients of CGCXXABI because: 1586 // 1) getThisValue is currently protected 1587 // 2) in theory, an ABI could implement 'this' returns some other way; 1588 // HasThisReturn only specifies a contract, not the implementation 1589 if (HasThisReturn(CGF.CurGD) || hasMostDerivedReturn(CGF.CurGD)) 1590 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1591 1592 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1593 assert(getStructorImplicitParamDecl(CGF) && 1594 "no implicit parameter for a constructor with virtual bases?"); 1595 getStructorImplicitParamValue(CGF) 1596 = CGF.Builder.CreateLoad( 1597 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1598 "is_most_derived"); 1599 } 1600 1601 if (isDeletingDtor(CGF.CurGD)) { 1602 assert(getStructorImplicitParamDecl(CGF) && 1603 "no implicit parameter for a deleting destructor?"); 1604 getStructorImplicitParamValue(CGF) 1605 = CGF.Builder.CreateLoad( 1606 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1607 "should_call_delete"); 1608 } 1609 } 1610 1611 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1612 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1613 bool ForVirtualBase, bool Delegating) { 1614 assert(Type == Ctor_Complete || Type == Ctor_Base); 1615 1616 // Check if we need a 'most_derived' parameter. 1617 if (!D->getParent()->getNumVBases()) 1618 return AddedStructorArgs{}; 1619 1620 // Add the 'most_derived' argument second if we are variadic or last if not. 1621 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1622 llvm::Value *MostDerivedArg; 1623 if (Delegating) { 1624 MostDerivedArg = getStructorImplicitParamValue(CGF); 1625 } else { 1626 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1627 } 1628 if (FPT->isVariadic()) { 1629 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1630 } 1631 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1632 } 1633 1634 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1635 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1636 bool ForVirtualBase, bool Delegating) { 1637 return nullptr; 1638 } 1639 1640 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1641 const CXXDestructorDecl *DD, 1642 CXXDtorType Type, bool ForVirtualBase, 1643 bool Delegating, Address This, 1644 QualType ThisTy) { 1645 // Use the base destructor variant in place of the complete destructor variant 1646 // if the class has no virtual bases. This effectively implements some of the 1647 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1648 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1649 Type = Dtor_Base; 1650 1651 GlobalDecl GD(DD, Type); 1652 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1653 1654 if (DD->isVirtual()) { 1655 assert(Type != CXXDtorType::Dtor_Deleting && 1656 "The deleting destructor should only be called via a virtual call"); 1657 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1658 This, false); 1659 } 1660 1661 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1662 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1663 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1664 } 1665 1666 llvm::Value *Implicit = 1667 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1668 Delegating); // = nullptr 1669 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1670 /*ImplicitParam=*/Implicit, 1671 /*ImplicitParamTy=*/QualType(), nullptr); 1672 if (BaseDtorEndBB) { 1673 // Complete object handler should continue to be the remaining 1674 CGF.Builder.CreateBr(BaseDtorEndBB); 1675 CGF.EmitBlock(BaseDtorEndBB); 1676 } 1677 } 1678 1679 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1680 const CXXRecordDecl *RD, 1681 llvm::GlobalVariable *VTable) { 1682 // Emit type metadata on vtables with LTO or IR instrumentation. 1683 // In IR instrumentation, the type metadata could be used to find out vtable 1684 // definitions (for type profiling) among all global variables. 1685 if (!CGM.getCodeGenOpts().LTOUnit && 1686 !CGM.getCodeGenOpts().hasProfileIRInstr()) 1687 return; 1688 1689 // TODO: Should VirtualFunctionElimination also be supported here? 1690 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1691 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1692 llvm::DenseSet<const CXXRecordDecl *> Visited; 1693 llvm::GlobalObject::VCallVisibility TypeVis = 1694 CGM.GetVCallVisibilityLevel(RD, Visited); 1695 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1696 VTable->setVCallVisibilityMetadata(TypeVis); 1697 } 1698 1699 // The location of the first virtual function pointer in the virtual table, 1700 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1701 // disabled, or sizeof(void*) if RTTI is enabled. 1702 CharUnits AddressPoint = 1703 getContext().getLangOpts().RTTIData 1704 ? getContext().toCharUnitsFromBits( 1705 getContext().getTargetInfo().getPointerWidth(LangAS::Default)) 1706 : CharUnits::Zero(); 1707 1708 if (Info.PathToIntroducingObject.empty()) { 1709 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1710 return; 1711 } 1712 1713 // Add a bitset entry for the least derived base belonging to this vftable. 1714 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1715 Info.PathToIntroducingObject.back()); 1716 1717 // Add a bitset entry for each derived class that is laid out at the same 1718 // offset as the least derived base. 1719 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1720 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1721 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1722 1723 const ASTRecordLayout &Layout = 1724 getContext().getASTRecordLayout(DerivedRD); 1725 CharUnits Offset; 1726 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1727 if (VBI == Layout.getVBaseOffsetsMap().end()) 1728 Offset = Layout.getBaseClassOffset(BaseRD); 1729 else 1730 Offset = VBI->second.VBaseOffset; 1731 if (!Offset.isZero()) 1732 return; 1733 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1734 } 1735 1736 // Finally do the same for the most derived class. 1737 if (Info.FullOffsetInMDC.isZero()) 1738 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1739 } 1740 1741 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1742 const CXXRecordDecl *RD) { 1743 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1744 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1745 1746 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1747 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1748 if (VTable->hasInitializer()) 1749 continue; 1750 1751 const VTableLayout &VTLayout = 1752 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1753 1754 llvm::Constant *RTTI = nullptr; 1755 if (any_of(VTLayout.vtable_components(), 1756 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1757 RTTI = getMSCompleteObjectLocator(RD, *Info); 1758 1759 ConstantInitBuilder builder(CGM); 1760 auto components = builder.beginStruct(); 1761 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1762 VTable->hasLocalLinkage()); 1763 components.finishAndSetAsInitializer(VTable); 1764 1765 emitVTableTypeMetadata(*Info, RD, VTable); 1766 } 1767 } 1768 1769 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1770 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1771 return Vptr.NearestVBase != nullptr; 1772 } 1773 1774 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1775 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1776 const CXXRecordDecl *NearestVBase) { 1777 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1778 if (!VTableAddressPoint) { 1779 assert(Base.getBase()->getNumVBases() && 1780 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1781 } 1782 return VTableAddressPoint; 1783 } 1784 1785 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1786 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1787 SmallString<256> &Name) { 1788 llvm::raw_svector_ostream Out(Name); 1789 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1790 } 1791 1792 llvm::Constant * 1793 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1794 const CXXRecordDecl *VTableClass) { 1795 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1796 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1797 return VFTablesMap[ID]; 1798 } 1799 1800 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1801 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1802 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1803 assert(VFTable && "Couldn't find a vftable for the given base?"); 1804 return VFTable; 1805 } 1806 1807 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1808 CharUnits VPtrOffset) { 1809 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1810 // shouldn't be used in the given record type. We want to cache this result in 1811 // VFTablesMap, thus a simple zero check is not sufficient. 1812 1813 VFTableIdTy ID(RD, VPtrOffset); 1814 VTablesMapTy::iterator I; 1815 bool Inserted; 1816 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1817 if (!Inserted) 1818 return I->second; 1819 1820 llvm::GlobalVariable *&VTable = I->second; 1821 1822 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1823 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1824 1825 if (DeferredVFTables.insert(RD).second) { 1826 // We haven't processed this record type before. 1827 // Queue up this vtable for possible deferred emission. 1828 CGM.addDeferredVTable(RD); 1829 1830 #ifndef NDEBUG 1831 // Create all the vftables at once in order to make sure each vftable has 1832 // a unique mangled name. 1833 llvm::StringSet<> ObservedMangledNames; 1834 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1835 SmallString<256> Name; 1836 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1837 if (!ObservedMangledNames.insert(Name.str()).second) 1838 llvm_unreachable("Already saw this mangling before?"); 1839 } 1840 #endif 1841 } 1842 1843 const std::unique_ptr<VPtrInfo> *VFPtrI = 1844 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) { 1845 return VPI->FullOffsetInMDC == VPtrOffset; 1846 }); 1847 if (VFPtrI == VFPtrs.end()) { 1848 VFTablesMap[ID] = nullptr; 1849 return nullptr; 1850 } 1851 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1852 1853 SmallString<256> VFTableName; 1854 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1855 1856 // Classes marked __declspec(dllimport) need vftables generated on the 1857 // import-side in order to support features like constexpr. No other 1858 // translation unit relies on the emission of the local vftable, translation 1859 // units are expected to generate them as needed. 1860 // 1861 // Because of this unique behavior, we maintain this logic here instead of 1862 // getVTableLinkage. 1863 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1864 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1865 : CGM.getVTableLinkage(RD); 1866 bool VFTableComesFromAnotherTU = 1867 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1868 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1869 bool VTableAliasIsRequred = 1870 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1871 1872 if (llvm::GlobalValue *VFTable = 1873 CGM.getModule().getNamedGlobal(VFTableName)) { 1874 VFTablesMap[ID] = VFTable; 1875 VTable = VTableAliasIsRequred 1876 ? cast<llvm::GlobalVariable>( 1877 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject()) 1878 : cast<llvm::GlobalVariable>(VFTable); 1879 return VTable; 1880 } 1881 1882 const VTableLayout &VTLayout = 1883 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1884 llvm::GlobalValue::LinkageTypes VTableLinkage = 1885 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1886 1887 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1888 1889 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1890 1891 // Create a backing variable for the contents of VTable. The VTable may 1892 // or may not include space for a pointer to RTTI data. 1893 llvm::GlobalValue *VFTable; 1894 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1895 /*isConstant=*/true, VTableLinkage, 1896 /*Initializer=*/nullptr, VTableName); 1897 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1898 1899 llvm::Comdat *C = nullptr; 1900 if (!VFTableComesFromAnotherTU && 1901 llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) 1902 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1903 1904 // Only insert a pointer into the VFTable for RTTI data if we are not 1905 // importing it. We never reference the RTTI data directly so there is no 1906 // need to make room for it. 1907 if (VTableAliasIsRequred) { 1908 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1909 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1910 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1911 // Create a GEP which points just after the first entry in the VFTable, 1912 // this should be the location of the first virtual method. 1913 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1914 VTable->getValueType(), VTable, GEPIndices); 1915 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1916 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1917 if (C) 1918 C->setSelectionKind(llvm::Comdat::Largest); 1919 } 1920 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1921 /*AddressSpace=*/0, VFTableLinkage, 1922 VFTableName.str(), VTableGEP, 1923 &CGM.getModule()); 1924 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1925 } else { 1926 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1927 // be referencing any RTTI data. 1928 // The GlobalVariable will end up being an appropriate definition of the 1929 // VFTable. 1930 VFTable = VTable; 1931 } 1932 if (C) 1933 VTable->setComdat(C); 1934 1935 if (RD->hasAttr<DLLExportAttr>()) 1936 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1937 1938 VFTablesMap[ID] = VFTable; 1939 return VTable; 1940 } 1941 1942 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1943 GlobalDecl GD, 1944 Address This, 1945 llvm::Type *Ty, 1946 SourceLocation Loc) { 1947 CGBuilderTy &Builder = CGF.Builder; 1948 1949 Ty = Ty->getPointerTo(); 1950 Address VPtr = 1951 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1952 1953 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1954 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(), 1955 MethodDecl->getParent()); 1956 1957 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1958 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1959 1960 // Compute the identity of the most derived class whose virtual table is 1961 // located at the MethodVFTableLocation ML. 1962 auto getObjectWithVPtr = [&] { 1963 return llvm::find_if(VFTContext.getVFPtrOffsets( 1964 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1965 [&](const std::unique_ptr<VPtrInfo> &Info) { 1966 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1967 }) 1968 ->get() 1969 ->ObjectWithVPtr; 1970 }; 1971 1972 llvm::Value *VFunc; 1973 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1974 VFunc = CGF.EmitVTableTypeCheckedLoad( 1975 getObjectWithVPtr(), VTable, Ty, 1976 ML.Index * 1977 CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) / 1978 8); 1979 } else { 1980 if (CGM.getCodeGenOpts().PrepareForLTO) 1981 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1982 1983 llvm::Value *VFuncPtr = 1984 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn"); 1985 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); 1986 } 1987 1988 CGCallee Callee(GD, VFunc); 1989 return Callee; 1990 } 1991 1992 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1993 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1994 Address This, DeleteOrMemberCallExpr E) { 1995 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1996 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1997 assert((CE != nullptr) ^ (D != nullptr)); 1998 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1999 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 2000 2001 // We have only one destructor in the vftable but can get both behaviors 2002 // by passing an implicit int parameter. 2003 GlobalDecl GD(Dtor, Dtor_Deleting); 2004 const CGFunctionInfo *FInfo = 2005 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 2006 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 2007 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 2008 2009 ASTContext &Context = getContext(); 2010 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 2011 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 2012 DtorType == Dtor_Deleting); 2013 2014 QualType ThisTy; 2015 if (CE) { 2016 ThisTy = CE->getObjectType(); 2017 } else { 2018 ThisTy = D->getDestroyedType(); 2019 } 2020 2021 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 2022 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 2023 ImplicitParam, Context.IntTy, CE); 2024 return RV.getScalarVal(); 2025 } 2026 2027 const VBTableGlobals & 2028 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 2029 // At this layer, we can key the cache off of a single class, which is much 2030 // easier than caching each vbtable individually. 2031 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 2032 bool Added; 2033 std::tie(Entry, Added) = 2034 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 2035 VBTableGlobals &VBGlobals = Entry->second; 2036 if (!Added) 2037 return VBGlobals; 2038 2039 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2040 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 2041 2042 // Cache the globals for all vbtables so we don't have to recompute the 2043 // mangled names. 2044 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 2045 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 2046 E = VBGlobals.VBTables->end(); 2047 I != E; ++I) { 2048 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 2049 } 2050 2051 return VBGlobals; 2052 } 2053 2054 llvm::Function * 2055 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2056 const MethodVFTableLocation &ML) { 2057 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2058 "can't form pointers to ctors or virtual dtors"); 2059 2060 // Calculate the mangled name. 2061 SmallString<256> ThunkName; 2062 llvm::raw_svector_ostream Out(ThunkName); 2063 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2064 2065 // If the thunk has been generated previously, just return it. 2066 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2067 return cast<llvm::Function>(GV); 2068 2069 // Create the llvm::Function. 2070 const CGFunctionInfo &FnInfo = 2071 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2072 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2073 llvm::Function *ThunkFn = 2074 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2075 ThunkName.str(), &CGM.getModule()); 2076 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2077 2078 ThunkFn->setLinkage(MD->isExternallyVisible() 2079 ? llvm::GlobalValue::LinkOnceODRLinkage 2080 : llvm::GlobalValue::InternalLinkage); 2081 if (MD->isExternallyVisible()) 2082 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2083 2084 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 2085 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2086 2087 // Add the "thunk" attribute so that LLVM knows that the return type is 2088 // meaningless. These thunks can be used to call functions with differing 2089 // return types, and the caller is required to cast the prototype 2090 // appropriately to extract the correct value. 2091 ThunkFn->addFnAttr("thunk"); 2092 2093 // These thunks can be compared, so they are not unnamed. 2094 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2095 2096 // Start codegen. 2097 CodeGenFunction CGF(CGM); 2098 CGF.CurGD = GlobalDecl(MD); 2099 CGF.CurFuncIsThunk = true; 2100 2101 // Build FunctionArgs, but only include the implicit 'this' parameter 2102 // declaration. 2103 FunctionArgList FunctionArgs; 2104 buildThisParam(CGF, FunctionArgs); 2105 2106 // Start defining the function. 2107 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2108 FunctionArgs, MD->getLocation(), SourceLocation()); 2109 2110 ApplyDebugLocation AL(CGF, MD->getLocation()); 2111 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2112 2113 // Load the vfptr and then callee from the vftable. The callee should have 2114 // adjusted 'this' so that the vfptr is at offset zero. 2115 llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo(); 2116 llvm::Value *VTable = CGF.GetVTablePtr( 2117 getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent()); 2118 2119 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( 2120 ThunkPtrTy, VTable, ML.Index, "vfn"); 2121 llvm::Value *Callee = 2122 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); 2123 2124 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2125 2126 return ThunkFn; 2127 } 2128 2129 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2130 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2131 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2132 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2133 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2134 if (GV->isDeclaration()) 2135 emitVBTableDefinition(*VBT, RD, GV); 2136 } 2137 } 2138 2139 llvm::GlobalVariable * 2140 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2141 llvm::GlobalVariable::LinkageTypes Linkage) { 2142 SmallString<256> OutName; 2143 llvm::raw_svector_ostream Out(OutName); 2144 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2145 StringRef Name = OutName.str(); 2146 2147 llvm::ArrayType *VBTableType = 2148 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2149 2150 assert(!CGM.getModule().getNamedGlobal(Name) && 2151 "vbtable with this name already exists: mangling bug?"); 2152 CharUnits Alignment = 2153 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2154 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2155 Name, VBTableType, Linkage, Alignment.getAsAlign()); 2156 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2157 2158 if (RD->hasAttr<DLLImportAttr>()) 2159 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2160 else if (RD->hasAttr<DLLExportAttr>()) 2161 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2162 2163 if (!GV->hasExternalLinkage()) 2164 emitVBTableDefinition(VBT, RD, GV); 2165 2166 return GV; 2167 } 2168 2169 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2170 const CXXRecordDecl *RD, 2171 llvm::GlobalVariable *GV) const { 2172 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2173 2174 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2175 "should only emit vbtables for classes with vbtables"); 2176 2177 const ASTRecordLayout &BaseLayout = 2178 getContext().getASTRecordLayout(VBT.IntroducingObject); 2179 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2180 2181 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2182 nullptr); 2183 2184 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2185 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2186 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2187 2188 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2189 for (const auto &I : ObjectWithVPtr->vbases()) { 2190 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2191 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2192 assert(!Offset.isNegative()); 2193 2194 // Make it relative to the subobject vbptr. 2195 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2196 if (VBT.getVBaseWithVPtr()) 2197 CompleteVBPtrOffset += 2198 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2199 Offset -= CompleteVBPtrOffset; 2200 2201 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2202 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2203 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2204 } 2205 2206 assert(Offsets.size() == 2207 cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); 2208 llvm::ArrayType *VBTableType = 2209 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2210 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2211 GV->setInitializer(Init); 2212 2213 if (RD->hasAttr<DLLImportAttr>()) 2214 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2215 } 2216 2217 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2218 Address This, 2219 const ThisAdjustment &TA) { 2220 if (TA.isEmpty()) 2221 return This.getPointer(); 2222 2223 This = This.withElementType(CGF.Int8Ty); 2224 2225 llvm::Value *V; 2226 if (TA.Virtual.isEmpty()) { 2227 V = This.getPointer(); 2228 } else { 2229 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2230 // Adjust the this argument based on the vtordisp value. 2231 Address VtorDispPtr = 2232 CGF.Builder.CreateConstInBoundsByteGEP(This, 2233 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2234 VtorDispPtr = VtorDispPtr.withElementType(CGF.Int32Ty); 2235 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2236 V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(), 2237 CGF.Builder.CreateNeg(VtorDisp)); 2238 2239 // Unfortunately, having applied the vtordisp means that we no 2240 // longer really have a known alignment for the vbptr step. 2241 // We'll assume the vbptr is pointer-aligned. 2242 2243 if (TA.Virtual.Microsoft.VBPtrOffset) { 2244 // If the final overrider is defined in a virtual base other than the one 2245 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2246 // the vbtable of the derived class. 2247 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2248 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2249 llvm::Value *VBPtr; 2250 llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( 2251 CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()), 2252 -TA.Virtual.Microsoft.VBPtrOffset, 2253 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2254 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2255 } 2256 } 2257 2258 if (TA.NonVirtual) { 2259 // Non-virtual adjustment might result in a pointer outside the allocated 2260 // object, e.g. if the final overrider class is laid out after the virtual 2261 // base that declares a method in the most derived class. 2262 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual); 2263 } 2264 2265 // Don't need to bitcast back, the call CodeGen will handle this. 2266 return V; 2267 } 2268 2269 llvm::Value * 2270 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2271 const ReturnAdjustment &RA) { 2272 if (RA.isEmpty()) 2273 return Ret.getPointer(); 2274 2275 Ret = Ret.withElementType(CGF.Int8Ty); 2276 2277 llvm::Value *V = Ret.getPointer(); 2278 if (RA.Virtual.Microsoft.VBIndex) { 2279 assert(RA.Virtual.Microsoft.VBIndex > 0); 2280 int32_t IntSize = CGF.getIntSize().getQuantity(); 2281 llvm::Value *VBPtr; 2282 llvm::Value *VBaseOffset = 2283 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2284 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2285 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2286 } 2287 2288 if (RA.NonVirtual) 2289 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2290 2291 return V; 2292 } 2293 2294 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2295 QualType elementType) { 2296 // Microsoft seems to completely ignore the possibility of a 2297 // two-argument usual deallocation function. 2298 return elementType.isDestructedType(); 2299 } 2300 2301 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2302 // Microsoft seems to completely ignore the possibility of a 2303 // two-argument usual deallocation function. 2304 return expr->getAllocatedType().isDestructedType(); 2305 } 2306 2307 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2308 // The array cookie is always a size_t; we then pad that out to the 2309 // alignment of the element type. 2310 ASTContext &Ctx = getContext(); 2311 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2312 Ctx.getTypeAlignInChars(type)); 2313 } 2314 2315 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2316 Address allocPtr, 2317 CharUnits cookieSize) { 2318 Address numElementsPtr = allocPtr.withElementType(CGF.SizeTy); 2319 return CGF.Builder.CreateLoad(numElementsPtr); 2320 } 2321 2322 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2323 Address newPtr, 2324 llvm::Value *numElements, 2325 const CXXNewExpr *expr, 2326 QualType elementType) { 2327 assert(requiresArrayCookie(expr)); 2328 2329 // The size of the cookie. 2330 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2331 2332 // Compute an offset to the cookie. 2333 Address cookiePtr = newPtr; 2334 2335 // Write the number of elements into the appropriate slot. 2336 Address numElementsPtr = cookiePtr.withElementType(CGF.SizeTy); 2337 CGF.Builder.CreateStore(numElements, numElementsPtr); 2338 2339 // Finally, compute a pointer to the actual data buffer by skipping 2340 // over the cookie completely. 2341 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2342 } 2343 2344 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2345 llvm::FunctionCallee Dtor, 2346 llvm::Constant *Addr) { 2347 // Create a function which calls the destructor. 2348 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2349 2350 // extern "C" int __tlregdtor(void (*f)(void)); 2351 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2352 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2353 2354 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2355 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2356 if (llvm::Function *TLRegDtorFn = 2357 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2358 TLRegDtorFn->setDoesNotThrow(); 2359 2360 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2361 } 2362 2363 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2364 llvm::FunctionCallee Dtor, 2365 llvm::Constant *Addr) { 2366 if (D.isNoDestroy(CGM.getContext())) 2367 return; 2368 2369 if (D.getTLSKind()) 2370 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2371 2372 // HLSL doesn't support atexit. 2373 if (CGM.getLangOpts().HLSL) 2374 return CGM.AddCXXDtorEntry(Dtor, Addr); 2375 2376 // The default behavior is to use atexit. 2377 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2378 } 2379 2380 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2381 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2382 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2383 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2384 if (CXXThreadLocalInits.empty()) 2385 return; 2386 2387 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2388 llvm::Triple::x86 2389 ? "/include:___dyn_tls_init@12" 2390 : "/include:__dyn_tls_init"); 2391 2392 // This will create a GV in the .CRT$XDU section. It will point to our 2393 // initialization function. The CRT will call all of these function 2394 // pointers at start-up time and, eventually, at thread-creation time. 2395 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2396 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2397 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2398 llvm::GlobalVariable::InternalLinkage, InitFunc, 2399 Twine(InitFunc->getName(), "$initializer$")); 2400 InitFuncPtr->setSection(".CRT$XDU"); 2401 // This variable has discardable linkage, we have to add it to @llvm.used to 2402 // ensure it won't get discarded. 2403 CGM.addUsedGlobal(InitFuncPtr); 2404 return InitFuncPtr; 2405 }; 2406 2407 std::vector<llvm::Function *> NonComdatInits; 2408 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2409 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2410 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2411 llvm::Function *F = CXXThreadLocalInits[I]; 2412 2413 // If the GV is already in a comdat group, then we have to join it. 2414 if (llvm::Comdat *C = GV->getComdat()) 2415 AddToXDU(F)->setComdat(C); 2416 else 2417 NonComdatInits.push_back(F); 2418 } 2419 2420 if (!NonComdatInits.empty()) { 2421 llvm::FunctionType *FTy = 2422 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2423 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2424 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2425 SourceLocation(), /*TLS=*/true); 2426 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2427 2428 AddToXDU(InitFunc); 2429 } 2430 } 2431 2432 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { 2433 // __tls_guard comes from the MSVC runtime and reflects 2434 // whether TLS has been initialized for a particular thread. 2435 // It is set from within __dyn_tls_init by the runtime. 2436 // Every library and executable has its own variable. 2437 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext()); 2438 llvm::Constant *TlsGuardConstant = 2439 CGM.CreateRuntimeVariable(VTy, "__tls_guard"); 2440 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant); 2441 2442 TlsGuard->setThreadLocal(true); 2443 2444 return TlsGuard; 2445 } 2446 2447 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { 2448 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers 2449 // dynamic TLS initialization by calling __dyn_tls_init internally. 2450 llvm::FunctionType *FTy = 2451 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {}, 2452 /*isVarArg=*/false); 2453 return CGM.CreateRuntimeFunction( 2454 FTy, "__dyn_tls_on_demand_init", 2455 llvm::AttributeList::get(CGM.getLLVMContext(), 2456 llvm::AttributeList::FunctionIndex, 2457 llvm::Attribute::NoUnwind), 2458 /*Local=*/true); 2459 } 2460 2461 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, 2462 llvm::BasicBlock *DynInitBB, 2463 llvm::BasicBlock *ContinueBB) { 2464 llvm::LoadInst *TlsGuardValue = 2465 CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); 2466 llvm::Value *CmpResult = 2467 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0)); 2468 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB); 2469 } 2470 2471 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, 2472 llvm::GlobalValue *TlsGuard, 2473 llvm::BasicBlock *ContinueBB) { 2474 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM); 2475 llvm::Function *InitializerFunction = 2476 cast<llvm::Function>(Initializer.getCallee()); 2477 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction); 2478 CallVal->setCallingConv(InitializerFunction->getCallingConv()); 2479 2480 CGF.Builder.CreateBr(ContinueBB); 2481 } 2482 2483 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { 2484 llvm::BasicBlock *DynInitBB = 2485 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn); 2486 llvm::BasicBlock *ContinueBB = 2487 CGF.createBasicBlock("dyntls.continue", CGF.CurFn); 2488 2489 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM); 2490 2491 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); 2492 CGF.Builder.SetInsertPoint(DynInitBB); 2493 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); 2494 CGF.Builder.SetInsertPoint(ContinueBB); 2495 } 2496 2497 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2498 const VarDecl *VD, 2499 QualType LValType) { 2500 // Dynamic TLS initialization works by checking the state of a 2501 // guard variable (__tls_guard) to see whether TLS initialization 2502 // for a thread has happend yet. 2503 // If not, the initialization is triggered on-demand 2504 // by calling __dyn_tls_on_demand_init. 2505 emitDynamicTlsInitialization(CGF); 2506 2507 // Emit the variable just like any regular global variable. 2508 2509 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2510 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2511 2512 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2513 Address Addr(V, RealVarTy, Alignment); 2514 2515 LValue LV = VD->getType()->isReferenceType() 2516 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2517 AlignmentSource::Decl) 2518 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl); 2519 return LV; 2520 } 2521 2522 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2523 StringRef VarName("_Init_thread_epoch"); 2524 CharUnits Align = CGM.getIntAlign(); 2525 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2526 return ConstantAddress(GV, GV->getValueType(), Align); 2527 auto *GV = new llvm::GlobalVariable( 2528 CGM.getModule(), CGM.IntTy, 2529 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2530 /*Initializer=*/nullptr, VarName, 2531 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2532 GV->setAlignment(Align.getAsAlign()); 2533 return ConstantAddress(GV, GV->getValueType(), Align); 2534 } 2535 2536 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2537 llvm::FunctionType *FTy = 2538 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2539 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2540 return CGM.CreateRuntimeFunction( 2541 FTy, "_Init_thread_header", 2542 llvm::AttributeList::get(CGM.getLLVMContext(), 2543 llvm::AttributeList::FunctionIndex, 2544 llvm::Attribute::NoUnwind), 2545 /*Local=*/true); 2546 } 2547 2548 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2549 llvm::FunctionType *FTy = 2550 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2551 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2552 return CGM.CreateRuntimeFunction( 2553 FTy, "_Init_thread_footer", 2554 llvm::AttributeList::get(CGM.getLLVMContext(), 2555 llvm::AttributeList::FunctionIndex, 2556 llvm::Attribute::NoUnwind), 2557 /*Local=*/true); 2558 } 2559 2560 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2561 llvm::FunctionType *FTy = 2562 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2563 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2564 return CGM.CreateRuntimeFunction( 2565 FTy, "_Init_thread_abort", 2566 llvm::AttributeList::get(CGM.getLLVMContext(), 2567 llvm::AttributeList::FunctionIndex, 2568 llvm::Attribute::NoUnwind), 2569 /*Local=*/true); 2570 } 2571 2572 namespace { 2573 struct ResetGuardBit final : EHScopeStack::Cleanup { 2574 Address Guard; 2575 unsigned GuardNum; 2576 ResetGuardBit(Address Guard, unsigned GuardNum) 2577 : Guard(Guard), GuardNum(GuardNum) {} 2578 2579 void Emit(CodeGenFunction &CGF, Flags flags) override { 2580 // Reset the bit in the mask so that the static variable may be 2581 // reinitialized. 2582 CGBuilderTy &Builder = CGF.Builder; 2583 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2584 llvm::ConstantInt *Mask = 2585 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2586 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2587 } 2588 }; 2589 2590 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2591 llvm::Value *Guard; 2592 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2593 2594 void Emit(CodeGenFunction &CGF, Flags flags) override { 2595 // Calling _Init_thread_abort will reset the guard's state. 2596 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2597 } 2598 }; 2599 } 2600 2601 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2602 llvm::GlobalVariable *GV, 2603 bool PerformInit) { 2604 // MSVC only uses guards for static locals. 2605 if (!D.isStaticLocal()) { 2606 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2607 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2608 llvm::Function *F = CGF.CurFn; 2609 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2610 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2611 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2612 return; 2613 } 2614 2615 bool ThreadlocalStatic = D.getTLSKind(); 2616 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2617 2618 // Thread-safe static variables which aren't thread-specific have a 2619 // per-variable guard. 2620 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2621 2622 CGBuilderTy &Builder = CGF.Builder; 2623 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2624 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2625 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2626 2627 // Get the guard variable for this function if we have one already. 2628 GuardInfo *GI = nullptr; 2629 if (ThreadlocalStatic) 2630 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2631 else if (!ThreadsafeStatic) 2632 GI = &GuardVariableMap[D.getDeclContext()]; 2633 2634 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2635 unsigned GuardNum; 2636 if (D.isExternallyVisible()) { 2637 // Externally visible variables have to be numbered in Sema to properly 2638 // handle unreachable VarDecls. 2639 GuardNum = getContext().getStaticLocalNumber(&D); 2640 assert(GuardNum > 0); 2641 GuardNum--; 2642 } else if (HasPerVariableGuard) { 2643 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2644 } else { 2645 // Non-externally visible variables are numbered here in CodeGen. 2646 GuardNum = GI->BitIndex++; 2647 } 2648 2649 if (!HasPerVariableGuard && GuardNum >= 32) { 2650 if (D.isExternallyVisible()) 2651 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2652 GuardNum %= 32; 2653 GuardVar = nullptr; 2654 } 2655 2656 if (!GuardVar) { 2657 // Mangle the name for the guard. 2658 SmallString<256> GuardName; 2659 { 2660 llvm::raw_svector_ostream Out(GuardName); 2661 if (HasPerVariableGuard) 2662 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2663 Out); 2664 else 2665 getMangleContext().mangleStaticGuardVariable(&D, Out); 2666 } 2667 2668 // Create the guard variable with a zero-initializer. Just absorb linkage, 2669 // visibility and dll storage class from the guarded variable. 2670 GuardVar = 2671 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2672 GV->getLinkage(), Zero, GuardName.str()); 2673 GuardVar->setVisibility(GV->getVisibility()); 2674 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2675 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2676 if (GuardVar->isWeakForLinker()) 2677 GuardVar->setComdat( 2678 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2679 if (D.getTLSKind()) 2680 CGM.setTLSMode(GuardVar, D); 2681 if (GI && !HasPerVariableGuard) 2682 GI->Guard = GuardVar; 2683 } 2684 2685 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); 2686 2687 assert(GuardVar->getLinkage() == GV->getLinkage() && 2688 "static local from the same function had different linkage"); 2689 2690 if (!HasPerVariableGuard) { 2691 // Pseudo code for the test: 2692 // if (!(GuardVar & MyGuardBit)) { 2693 // GuardVar |= MyGuardBit; 2694 // ... initialize the object ...; 2695 // } 2696 2697 // Test our bit from the guard variable. 2698 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2699 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2700 llvm::Value *NeedsInit = 2701 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2702 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2703 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2704 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2705 CodeGenFunction::GuardKind::VariableGuard, &D); 2706 2707 // Set our bit in the guard variable and emit the initializer and add a global 2708 // destructor if appropriate. 2709 CGF.EmitBlock(InitBlock); 2710 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2711 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2712 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2713 CGF.PopCleanupBlock(); 2714 Builder.CreateBr(EndBlock); 2715 2716 // Continue. 2717 CGF.EmitBlock(EndBlock); 2718 } else { 2719 // Pseudo code for the test: 2720 // if (TSS > _Init_thread_epoch) { 2721 // _Init_thread_header(&TSS); 2722 // if (TSS == -1) { 2723 // ... initialize the object ...; 2724 // _Init_thread_footer(&TSS); 2725 // } 2726 // } 2727 // 2728 // The algorithm is almost identical to what can be found in the appendix 2729 // found in N2325. 2730 2731 // This BasicBLock determines whether or not we have any work to do. 2732 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2733 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2734 llvm::LoadInst *InitThreadEpoch = 2735 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2736 llvm::Value *IsUninitialized = 2737 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2738 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2739 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2740 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2741 CodeGenFunction::GuardKind::VariableGuard, &D); 2742 2743 // This BasicBlock attempts to determine whether or not this thread is 2744 // responsible for doing the initialization. 2745 CGF.EmitBlock(AttemptInitBlock); 2746 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2747 GuardAddr.getPointer()); 2748 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2749 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2750 llvm::Value *ShouldDoInit = 2751 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2752 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2753 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2754 2755 // Ok, we ended up getting selected as the initializing thread. 2756 CGF.EmitBlock(InitBlock); 2757 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2758 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2759 CGF.PopCleanupBlock(); 2760 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2761 GuardAddr.getPointer()); 2762 Builder.CreateBr(EndBlock); 2763 2764 CGF.EmitBlock(EndBlock); 2765 } 2766 } 2767 2768 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2769 // Null-ness for function memptrs only depends on the first field, which is 2770 // the function pointer. The rest don't matter, so we can zero initialize. 2771 if (MPT->isMemberFunctionPointer()) 2772 return true; 2773 2774 // The virtual base adjustment field is always -1 for null, so if we have one 2775 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2776 // valid field offset. 2777 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2778 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2779 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2780 RD->nullFieldOffsetIsZero()); 2781 } 2782 2783 llvm::Type * 2784 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2785 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2786 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2787 llvm::SmallVector<llvm::Type *, 4> fields; 2788 if (MPT->isMemberFunctionPointer()) 2789 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2790 else 2791 fields.push_back(CGM.IntTy); // FieldOffset 2792 2793 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2794 Inheritance)) 2795 fields.push_back(CGM.IntTy); 2796 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2797 fields.push_back(CGM.IntTy); 2798 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2799 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2800 2801 if (fields.size() == 1) 2802 return fields[0]; 2803 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2804 } 2805 2806 void MicrosoftCXXABI:: 2807 GetNullMemberPointerFields(const MemberPointerType *MPT, 2808 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2809 assert(fields.empty()); 2810 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2811 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2812 if (MPT->isMemberFunctionPointer()) { 2813 // FunctionPointerOrVirtualThunk 2814 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2815 } else { 2816 if (RD->nullFieldOffsetIsZero()) 2817 fields.push_back(getZeroInt()); // FieldOffset 2818 else 2819 fields.push_back(getAllOnesInt()); // FieldOffset 2820 } 2821 2822 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2823 Inheritance)) 2824 fields.push_back(getZeroInt()); 2825 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2826 fields.push_back(getZeroInt()); 2827 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2828 fields.push_back(getAllOnesInt()); 2829 } 2830 2831 llvm::Constant * 2832 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2833 llvm::SmallVector<llvm::Constant *, 4> fields; 2834 GetNullMemberPointerFields(MPT, fields); 2835 if (fields.size() == 1) 2836 return fields[0]; 2837 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2838 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2839 return Res; 2840 } 2841 2842 llvm::Constant * 2843 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2844 bool IsMemberFunction, 2845 const CXXRecordDecl *RD, 2846 CharUnits NonVirtualBaseAdjustment, 2847 unsigned VBTableIndex) { 2848 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2849 2850 // Single inheritance class member pointer are represented as scalars instead 2851 // of aggregates. 2852 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2853 return FirstField; 2854 2855 llvm::SmallVector<llvm::Constant *, 4> fields; 2856 fields.push_back(FirstField); 2857 2858 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2859 fields.push_back(llvm::ConstantInt::get( 2860 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2861 2862 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2863 CharUnits Offs = CharUnits::Zero(); 2864 if (VBTableIndex) 2865 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2866 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2867 } 2868 2869 // The rest of the fields are adjusted by conversions to a more derived class. 2870 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2871 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2872 2873 return llvm::ConstantStruct::getAnon(fields); 2874 } 2875 2876 llvm::Constant * 2877 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2878 CharUnits offset) { 2879 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2880 } 2881 2882 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2883 CharUnits offset) { 2884 if (RD->getMSInheritanceModel() == 2885 MSInheritanceModel::Virtual) 2886 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2887 llvm::Constant *FirstField = 2888 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2889 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2890 CharUnits::Zero(), /*VBTableIndex=*/0); 2891 } 2892 2893 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2894 QualType MPType) { 2895 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2896 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2897 if (!MPD) 2898 return EmitNullMemberPointer(DstTy); 2899 2900 ASTContext &Ctx = getContext(); 2901 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2902 2903 llvm::Constant *C; 2904 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2905 C = EmitMemberFunctionPointer(MD); 2906 } else { 2907 // For a pointer to data member, start off with the offset of the field in 2908 // the class in which it was declared, and convert from there if necessary. 2909 // For indirect field decls, get the outermost anonymous field and use the 2910 // parent class. 2911 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2912 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2913 if (!FD) 2914 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2915 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2916 RD = RD->getMostRecentNonInjectedDecl(); 2917 C = EmitMemberDataPointer(RD, FieldOffset); 2918 } 2919 2920 if (!MemberPointerPath.empty()) { 2921 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2922 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2923 const MemberPointerType *SrcTy = 2924 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2925 ->castAs<MemberPointerType>(); 2926 2927 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2928 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2929 const CXXRecordDecl *PrevRD = SrcRD; 2930 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2931 const CXXRecordDecl *Base = nullptr; 2932 const CXXRecordDecl *Derived = nullptr; 2933 if (DerivedMember) { 2934 Base = PathElem; 2935 Derived = PrevRD; 2936 } else { 2937 Base = PrevRD; 2938 Derived = PathElem; 2939 } 2940 for (const CXXBaseSpecifier &BS : Derived->bases()) 2941 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2942 Base->getCanonicalDecl()) 2943 DerivedToBasePath.push_back(&BS); 2944 PrevRD = PathElem; 2945 } 2946 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2947 2948 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2949 : CK_BaseToDerivedMemberPointer; 2950 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2951 DerivedToBasePath.end(), C); 2952 } 2953 return C; 2954 } 2955 2956 llvm::Constant * 2957 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2958 assert(MD->isInstance() && "Member function must not be static!"); 2959 2960 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2961 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2962 CodeGenTypes &Types = CGM.getTypes(); 2963 2964 unsigned VBTableIndex = 0; 2965 llvm::Constant *FirstField; 2966 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2967 if (!MD->isVirtual()) { 2968 llvm::Type *Ty; 2969 // Check whether the function has a computable LLVM signature. 2970 if (Types.isFuncTypeConvertible(FPT)) { 2971 // The function has a computable LLVM signature; use the correct type. 2972 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2973 } else { 2974 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2975 // function type is incomplete. 2976 Ty = CGM.PtrDiffTy; 2977 } 2978 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2979 } else { 2980 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2981 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2982 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2983 // Include the vfptr adjustment if the method is in a non-primary vftable. 2984 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2985 if (ML.VBase) 2986 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2987 } 2988 2989 if (VBTableIndex == 0 && 2990 RD->getMSInheritanceModel() == 2991 MSInheritanceModel::Virtual) 2992 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2993 2994 // The rest of the fields are common with data member pointers. 2995 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2996 NonVirtualBaseAdjustment, VBTableIndex); 2997 } 2998 2999 /// Member pointers are the same if they're either bitwise identical *or* both 3000 /// null. Null-ness for function members is determined by the first field, 3001 /// while for data member pointers we must compare all fields. 3002 llvm::Value * 3003 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 3004 llvm::Value *L, 3005 llvm::Value *R, 3006 const MemberPointerType *MPT, 3007 bool Inequality) { 3008 CGBuilderTy &Builder = CGF.Builder; 3009 3010 // Handle != comparisons by switching the sense of all boolean operations. 3011 llvm::ICmpInst::Predicate Eq; 3012 llvm::Instruction::BinaryOps And, Or; 3013 if (Inequality) { 3014 Eq = llvm::ICmpInst::ICMP_NE; 3015 And = llvm::Instruction::Or; 3016 Or = llvm::Instruction::And; 3017 } else { 3018 Eq = llvm::ICmpInst::ICMP_EQ; 3019 And = llvm::Instruction::And; 3020 Or = llvm::Instruction::Or; 3021 } 3022 3023 // If this is a single field member pointer (single inheritance), this is a 3024 // single icmp. 3025 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3026 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3027 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 3028 Inheritance)) 3029 return Builder.CreateICmp(Eq, L, R); 3030 3031 // Compare the first field. 3032 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 3033 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 3034 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 3035 3036 // Compare everything other than the first field. 3037 llvm::Value *Res = nullptr; 3038 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 3039 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 3040 llvm::Value *LF = Builder.CreateExtractValue(L, I); 3041 llvm::Value *RF = Builder.CreateExtractValue(R, I); 3042 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 3043 if (Res) 3044 Res = Builder.CreateBinOp(And, Res, Cmp); 3045 else 3046 Res = Cmp; 3047 } 3048 3049 // Check if the first field is 0 if this is a function pointer. 3050 if (MPT->isMemberFunctionPointer()) { 3051 // (l1 == r1 && ...) || l0 == 0 3052 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 3053 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 3054 Res = Builder.CreateBinOp(Or, Res, IsZero); 3055 } 3056 3057 // Combine the comparison of the first field, which must always be true for 3058 // this comparison to succeeed. 3059 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 3060 } 3061 3062 llvm::Value * 3063 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 3064 llvm::Value *MemPtr, 3065 const MemberPointerType *MPT) { 3066 CGBuilderTy &Builder = CGF.Builder; 3067 llvm::SmallVector<llvm::Constant *, 4> fields; 3068 // We only need one field for member functions. 3069 if (MPT->isMemberFunctionPointer()) 3070 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 3071 else 3072 GetNullMemberPointerFields(MPT, fields); 3073 assert(!fields.empty()); 3074 llvm::Value *FirstField = MemPtr; 3075 if (MemPtr->getType()->isStructTy()) 3076 FirstField = Builder.CreateExtractValue(MemPtr, 0); 3077 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 3078 3079 // For function member pointers, we only need to test the function pointer 3080 // field. The other fields if any can be garbage. 3081 if (MPT->isMemberFunctionPointer()) 3082 return Res; 3083 3084 // Otherwise, emit a series of compares and combine the results. 3085 for (int I = 1, E = fields.size(); I < E; ++I) { 3086 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 3087 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 3088 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 3089 } 3090 return Res; 3091 } 3092 3093 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 3094 llvm::Constant *Val) { 3095 // Function pointers are null if the pointer in the first field is null. 3096 if (MPT->isMemberFunctionPointer()) { 3097 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 3098 Val->getAggregateElement(0U) : Val; 3099 return FirstField->isNullValue(); 3100 } 3101 3102 // If it's not a function pointer and it's zero initializable, we can easily 3103 // check zero. 3104 if (isZeroInitializable(MPT) && Val->isNullValue()) 3105 return true; 3106 3107 // Otherwise, break down all the fields for comparison. Hopefully these 3108 // little Constants are reused, while a big null struct might not be. 3109 llvm::SmallVector<llvm::Constant *, 4> Fields; 3110 GetNullMemberPointerFields(MPT, Fields); 3111 if (Fields.size() == 1) { 3112 assert(Val->getType()->isIntegerTy()); 3113 return Val == Fields[0]; 3114 } 3115 3116 unsigned I, E; 3117 for (I = 0, E = Fields.size(); I != E; ++I) { 3118 if (Val->getAggregateElement(I) != Fields[I]) 3119 break; 3120 } 3121 return I == E; 3122 } 3123 3124 llvm::Value * 3125 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 3126 Address This, 3127 llvm::Value *VBPtrOffset, 3128 llvm::Value *VBTableOffset, 3129 llvm::Value **VBPtrOut) { 3130 CGBuilderTy &Builder = CGF.Builder; 3131 // Load the vbtable pointer from the vbptr in the instance. 3132 llvm::Value *VBPtr = Builder.CreateInBoundsGEP(CGM.Int8Ty, This.getPointer(), 3133 VBPtrOffset, "vbptr"); 3134 if (VBPtrOut) 3135 *VBPtrOut = VBPtr; 3136 3137 CharUnits VBPtrAlign; 3138 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3139 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3140 CharUnits::fromQuantity(CI->getSExtValue())); 3141 } else { 3142 VBPtrAlign = CGF.getPointerAlign(); 3143 } 3144 3145 llvm::Value *VBTable = Builder.CreateAlignedLoad( 3146 CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable"); 3147 3148 // Translate from byte offset to table index. It improves analyzability. 3149 llvm::Value *VBTableIndex = Builder.CreateAShr( 3150 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3151 "vbtindex", /*isExact=*/true); 3152 3153 // Load an i32 offset from the vb-table. 3154 llvm::Value *VBaseOffs = 3155 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex); 3156 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs, 3157 CharUnits::fromQuantity(4), "vbase_offs"); 3158 } 3159 3160 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3161 // it. 3162 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3163 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3164 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3165 CGBuilderTy &Builder = CGF.Builder; 3166 Base = Base.withElementType(CGM.Int8Ty); 3167 llvm::BasicBlock *OriginalBB = nullptr; 3168 llvm::BasicBlock *SkipAdjustBB = nullptr; 3169 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3170 3171 // In the unspecified inheritance model, there might not be a vbtable at all, 3172 // in which case we need to skip the virtual base lookup. If there is a 3173 // vbtable, the first entry is a no-op entry that gives back the original 3174 // base, so look for a virtual base adjustment offset of zero. 3175 if (VBPtrOffset) { 3176 OriginalBB = Builder.GetInsertBlock(); 3177 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3178 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3179 llvm::Value *IsVirtual = 3180 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3181 "memptr.is_vbase"); 3182 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3183 CGF.EmitBlock(VBaseAdjustBB); 3184 } 3185 3186 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3187 // know the vbptr offset. 3188 if (!VBPtrOffset) { 3189 CharUnits offs = CharUnits::Zero(); 3190 if (!RD->hasDefinition()) { 3191 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3192 unsigned DiagID = Diags.getCustomDiagID( 3193 DiagnosticsEngine::Error, 3194 "member pointer representation requires a " 3195 "complete class type for %0 to perform this expression"); 3196 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3197 } else if (RD->getNumVBases()) 3198 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3199 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3200 } 3201 llvm::Value *VBPtr = nullptr; 3202 llvm::Value *VBaseOffs = 3203 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3204 llvm::Value *AdjustedBase = 3205 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs); 3206 3207 // Merge control flow with the case where we didn't have to adjust. 3208 if (VBaseAdjustBB) { 3209 Builder.CreateBr(SkipAdjustBB); 3210 CGF.EmitBlock(SkipAdjustBB); 3211 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3212 Phi->addIncoming(Base.getPointer(), OriginalBB); 3213 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3214 return Phi; 3215 } 3216 return AdjustedBase; 3217 } 3218 3219 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3220 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3221 const MemberPointerType *MPT) { 3222 assert(MPT->isMemberDataPointer()); 3223 CGBuilderTy &Builder = CGF.Builder; 3224 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3225 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3226 3227 // Extract the fields we need, regardless of model. We'll apply them if we 3228 // have them. 3229 llvm::Value *FieldOffset = MemPtr; 3230 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3231 llvm::Value *VBPtrOffset = nullptr; 3232 if (MemPtr->getType()->isStructTy()) { 3233 // We need to extract values. 3234 unsigned I = 0; 3235 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3236 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3237 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3238 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3239 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3240 } 3241 3242 llvm::Value *Addr; 3243 if (VirtualBaseAdjustmentOffset) { 3244 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3245 VBPtrOffset); 3246 } else { 3247 Addr = Base.getPointer(); 3248 } 3249 3250 // Apply the offset, which we assume is non-null. 3251 return Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset, 3252 "memptr.offset"); 3253 } 3254 3255 llvm::Value * 3256 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3257 const CastExpr *E, 3258 llvm::Value *Src) { 3259 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3260 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3261 E->getCastKind() == CK_ReinterpretMemberPointer); 3262 3263 // Use constant emission if we can. 3264 if (isa<llvm::Constant>(Src)) 3265 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3266 3267 // We may be adding or dropping fields from the member pointer, so we need 3268 // both types and the inheritance models of both records. 3269 const MemberPointerType *SrcTy = 3270 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3271 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3272 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3273 3274 // If the classes use the same null representation, reinterpret_cast is a nop. 3275 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3276 if (IsReinterpret && IsFunc) 3277 return Src; 3278 3279 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3280 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3281 if (IsReinterpret && 3282 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3283 return Src; 3284 3285 CGBuilderTy &Builder = CGF.Builder; 3286 3287 // Branch past the conversion if Src is null. 3288 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3289 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3290 3291 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3292 // pointer value of the destination type. 3293 if (IsReinterpret) { 3294 // For reinterpret casts, sema ensures that src and dst are both functions 3295 // or data and have the same size, which means the LLVM types should match. 3296 assert(Src->getType() == DstNull->getType()); 3297 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3298 } 3299 3300 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3301 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3302 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3303 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3304 CGF.EmitBlock(ConvertBB); 3305 3306 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3307 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3308 Builder); 3309 3310 Builder.CreateBr(ContinueBB); 3311 3312 // In the continuation, choose between DstNull and Dst. 3313 CGF.EmitBlock(ContinueBB); 3314 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3315 Phi->addIncoming(DstNull, OriginalBB); 3316 Phi->addIncoming(Dst, ConvertBB); 3317 return Phi; 3318 } 3319 3320 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3321 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3322 CastExpr::path_const_iterator PathBegin, 3323 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3324 CGBuilderTy &Builder) { 3325 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3326 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3327 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3328 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3329 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3330 bool IsConstant = isa<llvm::Constant>(Src); 3331 3332 // Decompose src. 3333 llvm::Value *FirstField = Src; 3334 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3335 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3336 llvm::Value *VBPtrOffset = getZeroInt(); 3337 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3338 // We need to extract values. 3339 unsigned I = 0; 3340 FirstField = Builder.CreateExtractValue(Src, I++); 3341 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3342 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3343 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3344 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3345 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3346 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3347 } 3348 3349 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3350 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3351 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3352 3353 // For data pointers, we adjust the field offset directly. For functions, we 3354 // have a separate field. 3355 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3356 3357 // The virtual inheritance model has a quirk: the virtual base table is always 3358 // referenced when dereferencing a member pointer even if the member pointer 3359 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3360 // to point backwards to the top of the MDC from the first VBase. Undo this 3361 // adjustment to normalize the member pointer. 3362 llvm::Value *SrcVBIndexEqZero = 3363 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3364 if (SrcInheritance == MSInheritanceModel::Virtual) { 3365 if (int64_t SrcOffsetToFirstVBase = 3366 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3367 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3368 SrcVBIndexEqZero, 3369 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3370 getZeroInt()); 3371 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3372 } 3373 } 3374 3375 // A non-zero vbindex implies that we are dealing with a source member in a 3376 // floating virtual base in addition to some non-virtual offset. If the 3377 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3378 // fixed, base. The difference between these two cases is that the vbindex + 3379 // nvoffset *always* point to the member regardless of what context they are 3380 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3381 // base requires explicit nv adjustment. 3382 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3383 CGM.IntTy, 3384 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3385 .getQuantity()); 3386 3387 llvm::Value *NVDisp; 3388 if (IsDerivedToBase) 3389 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3390 else 3391 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3392 3393 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3394 3395 // Update the vbindex to an appropriate value in the destination because 3396 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3397 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3398 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3399 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3400 if (llvm::GlobalVariable *VDispMap = 3401 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3402 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3403 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3404 if (IsConstant) { 3405 llvm::Constant *Mapping = VDispMap->getInitializer(); 3406 VirtualBaseAdjustmentOffset = 3407 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3408 } else { 3409 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3410 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( 3411 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(), 3412 VDispMap, Idxs), 3413 CharUnits::fromQuantity(4)); 3414 } 3415 3416 DstVBIndexEqZero = 3417 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3418 } 3419 } 3420 3421 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3422 // it to the offset of the vbptr. 3423 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3424 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3425 CGM.IntTy, 3426 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3427 VBPtrOffset = 3428 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3429 } 3430 3431 // Likewise, apply a similar adjustment so that dereferencing the member 3432 // pointer correctly accounts for the distance between the start of the first 3433 // virtual base and the top of the MDC. 3434 if (DstInheritance == MSInheritanceModel::Virtual) { 3435 if (int64_t DstOffsetToFirstVBase = 3436 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3437 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3438 DstVBIndexEqZero, 3439 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3440 getZeroInt()); 3441 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3442 } 3443 } 3444 3445 // Recompose dst from the null struct and the adjusted fields from src. 3446 llvm::Value *Dst; 3447 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3448 Dst = FirstField; 3449 } else { 3450 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3451 unsigned Idx = 0; 3452 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3453 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3454 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3455 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3456 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3457 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3458 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3459 } 3460 return Dst; 3461 } 3462 3463 llvm::Constant * 3464 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3465 llvm::Constant *Src) { 3466 const MemberPointerType *SrcTy = 3467 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3468 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3469 3470 CastKind CK = E->getCastKind(); 3471 3472 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3473 E->path_end(), Src); 3474 } 3475 3476 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3477 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3478 CastExpr::path_const_iterator PathBegin, 3479 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3480 assert(CK == CK_DerivedToBaseMemberPointer || 3481 CK == CK_BaseToDerivedMemberPointer || 3482 CK == CK_ReinterpretMemberPointer); 3483 // If src is null, emit a new null for dst. We can't return src because dst 3484 // might have a new representation. 3485 if (MemberPointerConstantIsNull(SrcTy, Src)) 3486 return EmitNullMemberPointer(DstTy); 3487 3488 // We don't need to do anything for reinterpret_casts of non-null member 3489 // pointers. We should only get here when the two type representations have 3490 // the same size. 3491 if (CK == CK_ReinterpretMemberPointer) 3492 return Src; 3493 3494 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3495 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3496 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3497 3498 return Dst; 3499 } 3500 3501 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3502 CodeGenFunction &CGF, const Expr *E, Address This, 3503 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3504 const MemberPointerType *MPT) { 3505 assert(MPT->isMemberFunctionPointer()); 3506 const FunctionProtoType *FPT = 3507 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3508 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3509 CGBuilderTy &Builder = CGF.Builder; 3510 3511 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3512 3513 // Extract the fields we need, regardless of model. We'll apply them if we 3514 // have them. 3515 llvm::Value *FunctionPointer = MemPtr; 3516 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3517 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3518 llvm::Value *VBPtrOffset = nullptr; 3519 if (MemPtr->getType()->isStructTy()) { 3520 // We need to extract values. 3521 unsigned I = 0; 3522 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3523 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3524 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3525 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3526 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3527 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3528 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3529 } 3530 3531 if (VirtualBaseAdjustmentOffset) { 3532 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3533 VirtualBaseAdjustmentOffset, VBPtrOffset); 3534 } else { 3535 ThisPtrForCall = This.getPointer(); 3536 } 3537 3538 if (NonVirtualBaseAdjustment) 3539 ThisPtrForCall = Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisPtrForCall, 3540 NonVirtualBaseAdjustment); 3541 3542 CGCallee Callee(FPT, FunctionPointer); 3543 return Callee; 3544 } 3545 3546 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3547 return new MicrosoftCXXABI(CGM); 3548 } 3549 3550 // MS RTTI Overview: 3551 // The run time type information emitted by cl.exe contains 5 distinct types of 3552 // structures. Many of them reference each other. 3553 // 3554 // TypeInfo: Static classes that are returned by typeid. 3555 // 3556 // CompleteObjectLocator: Referenced by vftables. They contain information 3557 // required for dynamic casting, including OffsetFromTop. They also contain 3558 // a reference to the TypeInfo for the type and a reference to the 3559 // CompleteHierarchyDescriptor for the type. 3560 // 3561 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3562 // Used during dynamic_cast to walk a class hierarchy. References a base 3563 // class array and the size of said array. 3564 // 3565 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3566 // somewhat of a misnomer because the most derived class is also in the list 3567 // as well as multiple copies of virtual bases (if they occur multiple times 3568 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3569 // every path in the hierarchy, in pre-order depth first order. Note, we do 3570 // not declare a specific llvm type for BaseClassArray, it's merely an array 3571 // of BaseClassDescriptor pointers. 3572 // 3573 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3574 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3575 // BaseClassArray is. It contains information about a class within a 3576 // hierarchy such as: is this base is ambiguous and what is its offset in the 3577 // vbtable. The names of the BaseClassDescriptors have all of their fields 3578 // mangled into them so they can be aggressively deduplicated by the linker. 3579 3580 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3581 StringRef MangledName("??_7type_info@@6B@"); 3582 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3583 return VTable; 3584 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3585 /*isConstant=*/true, 3586 llvm::GlobalVariable::ExternalLinkage, 3587 /*Initializer=*/nullptr, MangledName); 3588 } 3589 3590 namespace { 3591 3592 /// A Helper struct that stores information about a class in a class 3593 /// hierarchy. The information stored in these structs struct is used during 3594 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3595 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3596 // implicit depth first pre-order tree connectivity. getFirstChild and 3597 // getNextSibling allow us to walk the tree efficiently. 3598 struct MSRTTIClass { 3599 enum { 3600 IsPrivateOnPath = 1 | 8, 3601 IsAmbiguous = 2, 3602 IsPrivate = 4, 3603 IsVirtual = 16, 3604 HasHierarchyDescriptor = 64 3605 }; 3606 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3607 uint32_t initialize(const MSRTTIClass *Parent, 3608 const CXXBaseSpecifier *Specifier); 3609 3610 MSRTTIClass *getFirstChild() { return this + 1; } 3611 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3612 return Child + 1 + Child->NumBases; 3613 } 3614 3615 const CXXRecordDecl *RD, *VirtualRoot; 3616 uint32_t Flags, NumBases, OffsetInVBase; 3617 }; 3618 3619 /// Recursively initialize the base class array. 3620 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3621 const CXXBaseSpecifier *Specifier) { 3622 Flags = HasHierarchyDescriptor; 3623 if (!Parent) { 3624 VirtualRoot = nullptr; 3625 OffsetInVBase = 0; 3626 } else { 3627 if (Specifier->getAccessSpecifier() != AS_public) 3628 Flags |= IsPrivate | IsPrivateOnPath; 3629 if (Specifier->isVirtual()) { 3630 Flags |= IsVirtual; 3631 VirtualRoot = RD; 3632 OffsetInVBase = 0; 3633 } else { 3634 if (Parent->Flags & IsPrivateOnPath) 3635 Flags |= IsPrivateOnPath; 3636 VirtualRoot = Parent->VirtualRoot; 3637 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3638 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3639 } 3640 } 3641 NumBases = 0; 3642 MSRTTIClass *Child = getFirstChild(); 3643 for (const CXXBaseSpecifier &Base : RD->bases()) { 3644 NumBases += Child->initialize(this, &Base) + 1; 3645 Child = getNextChild(Child); 3646 } 3647 return NumBases; 3648 } 3649 3650 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3651 switch (Ty->getLinkage()) { 3652 case Linkage::Invalid: 3653 llvm_unreachable("Linkage hasn't been computed!"); 3654 3655 case Linkage::None: 3656 case Linkage::Internal: 3657 case Linkage::UniqueExternal: 3658 return llvm::GlobalValue::InternalLinkage; 3659 3660 case Linkage::VisibleNone: 3661 case Linkage::Module: 3662 case Linkage::External: 3663 return llvm::GlobalValue::LinkOnceODRLinkage; 3664 } 3665 llvm_unreachable("Invalid linkage!"); 3666 } 3667 3668 /// An ephemeral helper class for building MS RTTI types. It caches some 3669 /// calls to the module and information about the most derived class in a 3670 /// hierarchy. 3671 struct MSRTTIBuilder { 3672 enum { 3673 HasBranchingHierarchy = 1, 3674 HasVirtualBranchingHierarchy = 2, 3675 HasAmbiguousBases = 4 3676 }; 3677 3678 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3679 : CGM(ABI.CGM), Context(CGM.getContext()), 3680 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3681 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3682 ABI(ABI) {} 3683 3684 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3685 llvm::GlobalVariable * 3686 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3687 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3688 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3689 3690 CodeGenModule &CGM; 3691 ASTContext &Context; 3692 llvm::LLVMContext &VMContext; 3693 llvm::Module &Module; 3694 const CXXRecordDecl *RD; 3695 llvm::GlobalVariable::LinkageTypes Linkage; 3696 MicrosoftCXXABI &ABI; 3697 }; 3698 3699 } // namespace 3700 3701 /// Recursively serializes a class hierarchy in pre-order depth first 3702 /// order. 3703 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3704 const CXXRecordDecl *RD) { 3705 Classes.push_back(MSRTTIClass(RD)); 3706 for (const CXXBaseSpecifier &Base : RD->bases()) 3707 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3708 } 3709 3710 /// Find ambiguity among base classes. 3711 static void 3712 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3713 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3714 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3715 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3716 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3717 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3718 !VirtualBases.insert(Class->RD).second) { 3719 Class = MSRTTIClass::getNextChild(Class); 3720 continue; 3721 } 3722 if (!UniqueBases.insert(Class->RD).second) 3723 AmbiguousBases.insert(Class->RD); 3724 Class++; 3725 } 3726 if (AmbiguousBases.empty()) 3727 return; 3728 for (MSRTTIClass &Class : Classes) 3729 if (AmbiguousBases.count(Class.RD)) 3730 Class.Flags |= MSRTTIClass::IsAmbiguous; 3731 } 3732 3733 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3734 SmallString<256> MangledName; 3735 { 3736 llvm::raw_svector_ostream Out(MangledName); 3737 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3738 } 3739 3740 // Check to see if we've already declared this ClassHierarchyDescriptor. 3741 if (auto CHD = Module.getNamedGlobal(MangledName)) 3742 return CHD; 3743 3744 // Serialize the class hierarchy and initialize the CHD Fields. 3745 SmallVector<MSRTTIClass, 8> Classes; 3746 serializeClassHierarchy(Classes, RD); 3747 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3748 detectAmbiguousBases(Classes); 3749 int Flags = 0; 3750 for (const MSRTTIClass &Class : Classes) { 3751 if (Class.RD->getNumBases() > 1) 3752 Flags |= HasBranchingHierarchy; 3753 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3754 // believe the field isn't actually used. 3755 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3756 Flags |= HasAmbiguousBases; 3757 } 3758 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3759 Flags |= HasVirtualBranchingHierarchy; 3760 // These gep indices are used to get the address of the first element of the 3761 // base class array. 3762 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3763 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3764 3765 // Forward-declare the class hierarchy descriptor 3766 auto Type = ABI.getClassHierarchyDescriptorType(); 3767 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3768 /*Initializer=*/nullptr, 3769 MangledName); 3770 if (CHD->isWeakForLinker()) 3771 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3772 3773 auto *Bases = getBaseClassArray(Classes); 3774 3775 // Initialize the base class ClassHierarchyDescriptor. 3776 llvm::Constant *Fields[] = { 3777 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3778 llvm::ConstantInt::get(CGM.IntTy, Flags), 3779 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3780 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3781 Bases->getValueType(), Bases, 3782 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3783 }; 3784 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3785 return CHD; 3786 } 3787 3788 llvm::GlobalVariable * 3789 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3790 SmallString<256> MangledName; 3791 { 3792 llvm::raw_svector_ostream Out(MangledName); 3793 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3794 } 3795 3796 // Forward-declare the base class array. 3797 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3798 // mode) bytes of padding. We provide a pointer sized amount of padding by 3799 // adding +1 to Classes.size(). The sections have pointer alignment and are 3800 // marked pick-any so it shouldn't matter. 3801 llvm::Type *PtrType = ABI.getImageRelativeType( 3802 ABI.getBaseClassDescriptorType()->getPointerTo()); 3803 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3804 auto *BCA = 3805 new llvm::GlobalVariable(Module, ArrType, 3806 /*isConstant=*/true, Linkage, 3807 /*Initializer=*/nullptr, MangledName); 3808 if (BCA->isWeakForLinker()) 3809 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3810 3811 // Initialize the BaseClassArray. 3812 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3813 for (MSRTTIClass &Class : Classes) 3814 BaseClassArrayData.push_back( 3815 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3816 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3817 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3818 return BCA; 3819 } 3820 3821 llvm::GlobalVariable * 3822 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3823 // Compute the fields for the BaseClassDescriptor. They are computed up front 3824 // because they are mangled into the name of the object. 3825 uint32_t OffsetInVBTable = 0; 3826 int32_t VBPtrOffset = -1; 3827 if (Class.VirtualRoot) { 3828 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3829 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3830 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3831 } 3832 3833 SmallString<256> MangledName; 3834 { 3835 llvm::raw_svector_ostream Out(MangledName); 3836 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3837 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3838 Class.Flags, Out); 3839 } 3840 3841 // Check to see if we've already declared this object. 3842 if (auto BCD = Module.getNamedGlobal(MangledName)) 3843 return BCD; 3844 3845 // Forward-declare the base class descriptor. 3846 auto Type = ABI.getBaseClassDescriptorType(); 3847 auto BCD = 3848 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3849 /*Initializer=*/nullptr, MangledName); 3850 if (BCD->isWeakForLinker()) 3851 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3852 3853 // Initialize the BaseClassDescriptor. 3854 llvm::Constant *Fields[] = { 3855 ABI.getImageRelativeConstant( 3856 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3857 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3858 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3859 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3860 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3861 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3862 ABI.getImageRelativeConstant( 3863 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3864 }; 3865 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3866 return BCD; 3867 } 3868 3869 llvm::GlobalVariable * 3870 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3871 SmallString<256> MangledName; 3872 { 3873 llvm::raw_svector_ostream Out(MangledName); 3874 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3875 } 3876 3877 // Check to see if we've already computed this complete object locator. 3878 if (auto COL = Module.getNamedGlobal(MangledName)) 3879 return COL; 3880 3881 // Compute the fields of the complete object locator. 3882 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3883 int VFPtrOffset = 0; 3884 // The offset includes the vtordisp if one exists. 3885 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3886 if (Context.getASTRecordLayout(RD) 3887 .getVBaseOffsetsMap() 3888 .find(VBase) 3889 ->second.hasVtorDisp()) 3890 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3891 3892 // Forward-declare the complete object locator. 3893 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3894 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3895 /*Initializer=*/nullptr, MangledName); 3896 3897 // Initialize the CompleteObjectLocator. 3898 llvm::Constant *Fields[] = { 3899 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3900 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3901 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3902 ABI.getImageRelativeConstant( 3903 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3904 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3905 ABI.getImageRelativeConstant(COL), 3906 }; 3907 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3908 if (!ABI.isImageRelative()) 3909 FieldsRef = FieldsRef.drop_back(); 3910 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3911 if (COL->isWeakForLinker()) 3912 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3913 return COL; 3914 } 3915 3916 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3917 bool &IsConst, bool &IsVolatile, 3918 bool &IsUnaligned) { 3919 T = Context.getExceptionObjectType(T); 3920 3921 // C++14 [except.handle]p3: 3922 // A handler is a match for an exception object of type E if [...] 3923 // - the handler is of type cv T or const T& where T is a pointer type and 3924 // E is a pointer type that can be converted to T by [...] 3925 // - a qualification conversion 3926 IsConst = false; 3927 IsVolatile = false; 3928 IsUnaligned = false; 3929 QualType PointeeType = T->getPointeeType(); 3930 if (!PointeeType.isNull()) { 3931 IsConst = PointeeType.isConstQualified(); 3932 IsVolatile = PointeeType.isVolatileQualified(); 3933 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3934 } 3935 3936 // Member pointer types like "const int A::*" are represented by having RTTI 3937 // for "int A::*" and separately storing the const qualifier. 3938 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3939 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3940 MPTy->getClass()); 3941 3942 // Pointer types like "const int * const *" are represented by having RTTI 3943 // for "const int **" and separately storing the const qualifier. 3944 if (T->isPointerType()) 3945 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3946 3947 return T; 3948 } 3949 3950 CatchTypeInfo 3951 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3952 QualType CatchHandlerType) { 3953 // TypeDescriptors for exceptions never have qualified pointer types, 3954 // qualifiers are stored separately in order to support qualification 3955 // conversions. 3956 bool IsConst, IsVolatile, IsUnaligned; 3957 Type = 3958 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3959 3960 bool IsReference = CatchHandlerType->isReferenceType(); 3961 3962 uint32_t Flags = 0; 3963 if (IsConst) 3964 Flags |= 1; 3965 if (IsVolatile) 3966 Flags |= 2; 3967 if (IsUnaligned) 3968 Flags |= 4; 3969 if (IsReference) 3970 Flags |= 8; 3971 3972 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3973 Flags}; 3974 } 3975 3976 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3977 /// llvm::GlobalVariable * because different type descriptors have different 3978 /// types, and need to be abstracted. They are abstracting by casting the 3979 /// address to an Int8PtrTy. 3980 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3981 SmallString<256> MangledName; 3982 { 3983 llvm::raw_svector_ostream Out(MangledName); 3984 getMangleContext().mangleCXXRTTI(Type, Out); 3985 } 3986 3987 // Check to see if we've already declared this TypeDescriptor. 3988 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3989 return GV; 3990 3991 // Note for the future: If we would ever like to do deferred emission of 3992 // RTTI, check if emitting vtables opportunistically need any adjustment. 3993 3994 // Compute the fields for the TypeDescriptor. 3995 SmallString<256> TypeInfoString; 3996 { 3997 llvm::raw_svector_ostream Out(TypeInfoString); 3998 getMangleContext().mangleCXXRTTIName(Type, Out); 3999 } 4000 4001 // Declare and initialize the TypeDescriptor. 4002 llvm::Constant *Fields[] = { 4003 getTypeInfoVTable(CGM), // VFPtr 4004 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 4005 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 4006 llvm::StructType *TypeDescriptorType = 4007 getTypeDescriptorType(TypeInfoString); 4008 auto *Var = new llvm::GlobalVariable( 4009 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 4010 getLinkageForRTTI(Type), 4011 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 4012 MangledName); 4013 if (Var->isWeakForLinker()) 4014 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 4015 return Var; 4016 } 4017 4018 /// Gets or a creates a Microsoft CompleteObjectLocator. 4019 llvm::GlobalVariable * 4020 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 4021 const VPtrInfo &Info) { 4022 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 4023 } 4024 4025 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 4026 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 4027 // There are no constructor variants, always emit the complete destructor. 4028 llvm::Function *Fn = 4029 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 4030 CGM.maybeSetTrivialComdat(*ctor, *Fn); 4031 return; 4032 } 4033 4034 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 4035 4036 // Emit the base destructor if the base and complete (vbase) destructors are 4037 // equivalent. This effectively implements -mconstructor-aliases as part of 4038 // the ABI. 4039 if (GD.getDtorType() == Dtor_Complete && 4040 dtor->getParent()->getNumVBases() == 0) 4041 GD = GD.getWithDtorType(Dtor_Base); 4042 4043 // The base destructor is equivalent to the base destructor of its 4044 // base class if there is exactly one non-virtual base class with a 4045 // non-trivial destructor, there are no fields with a non-trivial 4046 // destructor, and the body of the destructor is trivial. 4047 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 4048 return; 4049 4050 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 4051 if (Fn->isWeakForLinker()) 4052 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 4053 } 4054 4055 llvm::Function * 4056 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 4057 CXXCtorType CT) { 4058 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 4059 4060 // Calculate the mangled name. 4061 SmallString<256> ThunkName; 4062 llvm::raw_svector_ostream Out(ThunkName); 4063 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 4064 4065 // If the thunk has been generated previously, just return it. 4066 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 4067 return cast<llvm::Function>(GV); 4068 4069 // Create the llvm::Function. 4070 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 4071 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 4072 const CXXRecordDecl *RD = CD->getParent(); 4073 QualType RecordTy = getContext().getRecordType(RD); 4074 llvm::Function *ThunkFn = llvm::Function::Create( 4075 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 4076 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 4077 FnInfo.getEffectiveCallingConvention())); 4078 if (ThunkFn->isWeakForLinker()) 4079 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 4080 bool IsCopy = CT == Ctor_CopyingClosure; 4081 4082 // Start codegen. 4083 CodeGenFunction CGF(CGM); 4084 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 4085 4086 // Build FunctionArgs. 4087 FunctionArgList FunctionArgs; 4088 4089 // A constructor always starts with a 'this' pointer as its first argument. 4090 buildThisParam(CGF, FunctionArgs); 4091 4092 // Following the 'this' pointer is a reference to the source object that we 4093 // are copying from. 4094 ImplicitParamDecl SrcParam( 4095 getContext(), /*DC=*/nullptr, SourceLocation(), 4096 &getContext().Idents.get("src"), 4097 getContext().getLValueReferenceType(RecordTy, 4098 /*SpelledAsLValue=*/true), 4099 ImplicitParamKind::Other); 4100 if (IsCopy) 4101 FunctionArgs.push_back(&SrcParam); 4102 4103 // Constructors for classes which utilize virtual bases have an additional 4104 // parameter which indicates whether or not it is being delegated to by a more 4105 // derived constructor. 4106 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 4107 SourceLocation(), 4108 &getContext().Idents.get("is_most_derived"), 4109 getContext().IntTy, ImplicitParamKind::Other); 4110 // Only add the parameter to the list if the class has virtual bases. 4111 if (RD->getNumVBases() > 0) 4112 FunctionArgs.push_back(&IsMostDerived); 4113 4114 // Start defining the function. 4115 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4116 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 4117 FunctionArgs, CD->getLocation(), SourceLocation()); 4118 // Create a scope with an artificial location for the body of this function. 4119 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 4120 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 4121 llvm::Value *This = getThisValue(CGF); 4122 4123 llvm::Value *SrcVal = 4124 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4125 : nullptr; 4126 4127 CallArgList Args; 4128 4129 // Push the this ptr. 4130 Args.add(RValue::get(This), CD->getThisType()); 4131 4132 // Push the src ptr. 4133 if (SrcVal) 4134 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4135 4136 // Add the rest of the default arguments. 4137 SmallVector<const Stmt *, 4> ArgVec; 4138 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4139 for (const ParmVarDecl *PD : params) { 4140 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4141 ArgVec.push_back(PD->getDefaultArg()); 4142 } 4143 4144 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4145 4146 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4147 CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4148 4149 // Insert any ABI-specific implicit constructor arguments. 4150 AddedStructorArgCounts ExtraArgs = 4151 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4152 /*ForVirtualBase=*/false, 4153 /*Delegating=*/false, Args); 4154 // Call the destructor with our arguments. 4155 llvm::Constant *CalleePtr = 4156 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4157 CGCallee Callee = 4158 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4159 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4160 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4161 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4162 4163 Cleanups.ForceCleanup(); 4164 4165 // Emit the ret instruction, remove any temporary instructions created for the 4166 // aid of CodeGen. 4167 CGF.FinishFunction(SourceLocation()); 4168 4169 return ThunkFn; 4170 } 4171 4172 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4173 uint32_t NVOffset, 4174 int32_t VBPtrOffset, 4175 uint32_t VBIndex) { 4176 assert(!T->isReferenceType()); 4177 4178 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4179 const CXXConstructorDecl *CD = 4180 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4181 CXXCtorType CT = Ctor_Complete; 4182 if (CD) 4183 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4184 CT = Ctor_CopyingClosure; 4185 4186 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4187 SmallString<256> MangledName; 4188 { 4189 llvm::raw_svector_ostream Out(MangledName); 4190 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4191 VBPtrOffset, VBIndex, Out); 4192 } 4193 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4194 return getImageRelativeConstant(GV); 4195 4196 // The TypeDescriptor is used by the runtime to determine if a catch handler 4197 // is appropriate for the exception object. 4198 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4199 4200 // The runtime is responsible for calling the copy constructor if the 4201 // exception is caught by value. 4202 llvm::Constant *CopyCtor; 4203 if (CD) { 4204 if (CT == Ctor_CopyingClosure) 4205 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4206 else 4207 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4208 } else { 4209 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4210 } 4211 CopyCtor = getImageRelativeConstant(CopyCtor); 4212 4213 bool IsScalar = !RD; 4214 bool HasVirtualBases = false; 4215 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4216 QualType PointeeType = T; 4217 if (T->isPointerType()) 4218 PointeeType = T->getPointeeType(); 4219 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4220 HasVirtualBases = RD->getNumVBases() > 0; 4221 if (IdentifierInfo *II = RD->getIdentifier()) 4222 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4223 } 4224 4225 // Encode the relevant CatchableType properties into the Flags bitfield. 4226 // FIXME: Figure out how bits 2 or 8 can get set. 4227 uint32_t Flags = 0; 4228 if (IsScalar) 4229 Flags |= 1; 4230 if (HasVirtualBases) 4231 Flags |= 4; 4232 if (IsStdBadAlloc) 4233 Flags |= 16; 4234 4235 llvm::Constant *Fields[] = { 4236 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4237 TD, // TypeDescriptor 4238 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4239 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4240 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4241 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4242 CopyCtor // CopyCtor 4243 }; 4244 llvm::StructType *CTType = getCatchableTypeType(); 4245 auto *GV = new llvm::GlobalVariable( 4246 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4247 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4248 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4249 GV->setSection(".xdata"); 4250 if (GV->isWeakForLinker()) 4251 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4252 return getImageRelativeConstant(GV); 4253 } 4254 4255 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4256 assert(!T->isReferenceType()); 4257 4258 // See if we've already generated a CatchableTypeArray for this type before. 4259 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4260 if (CTA) 4261 return CTA; 4262 4263 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4264 // using a SmallSetVector. Duplicates may arise due to virtual bases 4265 // occurring more than once in the hierarchy. 4266 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4267 4268 // C++14 [except.handle]p3: 4269 // A handler is a match for an exception object of type E if [...] 4270 // - the handler is of type cv T or cv T& and T is an unambiguous public 4271 // base class of E, or 4272 // - the handler is of type cv T or const T& where T is a pointer type and 4273 // E is a pointer type that can be converted to T by [...] 4274 // - a standard pointer conversion (4.10) not involving conversions to 4275 // pointers to private or protected or ambiguous classes 4276 const CXXRecordDecl *MostDerivedClass = nullptr; 4277 bool IsPointer = T->isPointerType(); 4278 if (IsPointer) 4279 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4280 else 4281 MostDerivedClass = T->getAsCXXRecordDecl(); 4282 4283 // Collect all the unambiguous public bases of the MostDerivedClass. 4284 if (MostDerivedClass) { 4285 const ASTContext &Context = getContext(); 4286 const ASTRecordLayout &MostDerivedLayout = 4287 Context.getASTRecordLayout(MostDerivedClass); 4288 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4289 SmallVector<MSRTTIClass, 8> Classes; 4290 serializeClassHierarchy(Classes, MostDerivedClass); 4291 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4292 detectAmbiguousBases(Classes); 4293 for (const MSRTTIClass &Class : Classes) { 4294 // Skip any ambiguous or private bases. 4295 if (Class.Flags & 4296 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4297 continue; 4298 // Write down how to convert from a derived pointer to a base pointer. 4299 uint32_t OffsetInVBTable = 0; 4300 int32_t VBPtrOffset = -1; 4301 if (Class.VirtualRoot) { 4302 OffsetInVBTable = 4303 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4304 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4305 } 4306 4307 // Turn our record back into a pointer if the exception object is a 4308 // pointer. 4309 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4310 if (IsPointer) 4311 RTTITy = Context.getPointerType(RTTITy); 4312 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4313 VBPtrOffset, OffsetInVBTable)); 4314 } 4315 } 4316 4317 // C++14 [except.handle]p3: 4318 // A handler is a match for an exception object of type E if 4319 // - The handler is of type cv T or cv T& and E and T are the same type 4320 // (ignoring the top-level cv-qualifiers) 4321 CatchableTypes.insert(getCatchableType(T)); 4322 4323 // C++14 [except.handle]p3: 4324 // A handler is a match for an exception object of type E if 4325 // - the handler is of type cv T or const T& where T is a pointer type and 4326 // E is a pointer type that can be converted to T by [...] 4327 // - a standard pointer conversion (4.10) not involving conversions to 4328 // pointers to private or protected or ambiguous classes 4329 // 4330 // C++14 [conv.ptr]p2: 4331 // A prvalue of type "pointer to cv T," where T is an object type, can be 4332 // converted to a prvalue of type "pointer to cv void". 4333 if (IsPointer && T->getPointeeType()->isObjectType()) 4334 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4335 4336 // C++14 [except.handle]p3: 4337 // A handler is a match for an exception object of type E if [...] 4338 // - the handler is of type cv T or const T& where T is a pointer or 4339 // pointer to member type and E is std::nullptr_t. 4340 // 4341 // We cannot possibly list all possible pointer types here, making this 4342 // implementation incompatible with the standard. However, MSVC includes an 4343 // entry for pointer-to-void in this case. Let's do the same. 4344 if (T->isNullPtrType()) 4345 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4346 4347 uint32_t NumEntries = CatchableTypes.size(); 4348 llvm::Type *CTType = 4349 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4350 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4351 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4352 llvm::Constant *Fields[] = { 4353 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4354 llvm::ConstantArray::get( 4355 AT, llvm::ArrayRef(CatchableTypes.begin(), 4356 CatchableTypes.end())) // CatchableTypes 4357 }; 4358 SmallString<256> MangledName; 4359 { 4360 llvm::raw_svector_ostream Out(MangledName); 4361 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4362 } 4363 CTA = new llvm::GlobalVariable( 4364 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4365 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4366 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4367 CTA->setSection(".xdata"); 4368 if (CTA->isWeakForLinker()) 4369 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4370 return CTA; 4371 } 4372 4373 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4374 bool IsConst, IsVolatile, IsUnaligned; 4375 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4376 4377 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4378 // the exception object may be caught as. 4379 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4380 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4381 // This is used as a component of the mangled name which means that we need to 4382 // know what it is in order to see if we have previously generated the 4383 // ThrowInfo. 4384 uint32_t NumEntries = 4385 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4386 ->getLimitedValue(); 4387 4388 SmallString<256> MangledName; 4389 { 4390 llvm::raw_svector_ostream Out(MangledName); 4391 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4392 NumEntries, Out); 4393 } 4394 4395 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4396 // one before. 4397 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4398 return GV; 4399 4400 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4401 // be at least as CV qualified. Encode this requirement into the Flags 4402 // bitfield. 4403 uint32_t Flags = 0; 4404 if (IsConst) 4405 Flags |= 1; 4406 if (IsVolatile) 4407 Flags |= 2; 4408 if (IsUnaligned) 4409 Flags |= 4; 4410 4411 // The cleanup-function (a destructor) must be called when the exception 4412 // object's lifetime ends. 4413 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4414 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4415 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4416 if (!DtorD->isTrivial()) 4417 CleanupFn = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)); 4418 // This is unused as far as we can tell, initialize it to null. 4419 llvm::Constant *ForwardCompat = 4420 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4421 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(CTA); 4422 llvm::StructType *TIType = getThrowInfoType(); 4423 llvm::Constant *Fields[] = { 4424 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4425 getImageRelativeConstant(CleanupFn), // CleanupFn 4426 ForwardCompat, // ForwardCompat 4427 PointerToCatchableTypes // CatchableTypeArray 4428 }; 4429 auto *GV = new llvm::GlobalVariable( 4430 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4431 llvm::ConstantStruct::get(TIType, Fields), MangledName.str()); 4432 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4433 GV->setSection(".xdata"); 4434 if (GV->isWeakForLinker()) 4435 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4436 return GV; 4437 } 4438 4439 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4440 const Expr *SubExpr = E->getSubExpr(); 4441 assert(SubExpr && "SubExpr cannot be null"); 4442 QualType ThrowType = SubExpr->getType(); 4443 // The exception object lives on the stack and it's address is passed to the 4444 // runtime function. 4445 Address AI = CGF.CreateMemTemp(ThrowType); 4446 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4447 /*IsInit=*/true); 4448 4449 // The so-called ThrowInfo is used to describe how the exception object may be 4450 // caught. 4451 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4452 4453 // Call into the runtime to throw the exception. 4454 llvm::Value *Args[] = { 4455 AI.getPointer(), 4456 TI 4457 }; 4458 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4459 } 4460 4461 std::pair<llvm::Value *, const CXXRecordDecl *> 4462 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4463 const CXXRecordDecl *RD) { 4464 std::tie(This, std::ignore, RD) = 4465 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4466 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4467 } 4468 4469 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( 4470 const CXXRecordDecl *RD) const { 4471 // All aggregates are permitted to be HFA on non-ARM platforms, which mostly 4472 // affects vectorcall on x64/x86. 4473 if (!CGM.getTarget().getTriple().isAArch64()) 4474 return true; 4475 // MSVC Windows on Arm64 has its own rules for determining if a type is HFA 4476 // that are inconsistent with the AAPCS64 ABI. The following are our best 4477 // determination of those rules so far, based on observation of MSVC's 4478 // behavior. 4479 if (RD->isEmpty()) 4480 return false; 4481 if (RD->isPolymorphic()) 4482 return false; 4483 if (RD->hasNonTrivialCopyAssignment()) 4484 return false; 4485 if (RD->hasNonTrivialDestructor()) 4486 return false; 4487 if (RD->hasNonTrivialDefaultConstructor()) 4488 return false; 4489 // These two are somewhat redundant given the caller 4490 // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that 4491 // caller doesn't consider empty bases/fields to be non-homogenous, but it 4492 // looks like Microsoft's AArch64 ABI does care about these empty types & 4493 // anything containing/derived from one is non-homogeneous. 4494 // Instead we could add another CXXABI entry point to query this property and 4495 // have ABIInfo::isHomogeneousAggregate use that property. 4496 // I don't think any other of the features listed above could be true of a 4497 // base/field while not true of the outer struct. For example, if you have a 4498 // base/field that has an non-trivial copy assignment/dtor/default ctor, then 4499 // the outer struct's corresponding operation must be non-trivial. 4500 for (const CXXBaseSpecifier &B : RD->bases()) { 4501 if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { 4502 if (!isPermittedToBeHomogeneousAggregate(FRD)) 4503 return false; 4504 } 4505 } 4506 // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate 4507 // checking for padding - but maybe there are ways to end up with an empty 4508 // field without padding? Not that I know of, so don't check fields here & 4509 // rely on the padding check. 4510 return true; 4511 } 4512