1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenTypes.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/CXXInheritance.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/AST/VTableBuilder.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/IR/Intrinsics.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 namespace { 37 38 /// Holds all the vbtable globals for a given class. 39 struct VBTableGlobals { 40 const VPtrInfoVector *VBTables; 41 SmallVector<llvm::GlobalVariable *, 2> Globals; 42 }; 43 44 class MicrosoftCXXABI : public CGCXXABI { 45 public: 46 MicrosoftCXXABI(CodeGenModule &CGM) 47 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 48 ClassHierarchyDescriptorType(nullptr), 49 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 50 ThrowInfoType(nullptr) {} 51 52 bool HasThisReturn(GlobalDecl GD) const override; 53 bool hasMostDerivedReturn(GlobalDecl GD) const override; 54 55 bool classifyReturnType(CGFunctionInfo &FI) const override; 56 57 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 58 59 bool isSRetParameterAfterThis() const override { return true; } 60 61 bool isThisCompleteObject(GlobalDecl GD) const override { 62 // The Microsoft ABI doesn't use separate complete-object vs. 63 // base-object variants of constructors, but it does of destructors. 64 if (isa<CXXDestructorDecl>(GD.getDecl())) { 65 switch (GD.getDtorType()) { 66 case Dtor_Complete: 67 case Dtor_Deleting: 68 return true; 69 70 case Dtor_Base: 71 return false; 72 73 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 74 } 75 llvm_unreachable("bad dtor kind"); 76 } 77 78 // No other kinds. 79 return false; 80 } 81 82 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 83 FunctionArgList &Args) const override { 84 assert(Args.size() >= 2 && 85 "expected the arglist to have at least two args!"); 86 // The 'most_derived' parameter goes second if the ctor is variadic and 87 // has v-bases. 88 if (CD->getParent()->getNumVBases() > 0 && 89 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 90 return 2; 91 return 1; 92 } 93 94 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 95 std::vector<CharUnits> VBPtrOffsets; 96 const ASTContext &Context = getContext(); 97 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 98 99 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 100 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 101 const ASTRecordLayout &SubobjectLayout = 102 Context.getASTRecordLayout(VBT->IntroducingObject); 103 CharUnits Offs = VBT->NonVirtualOffset; 104 Offs += SubobjectLayout.getVBPtrOffset(); 105 if (VBT->getVBaseWithVPtr()) 106 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 107 VBPtrOffsets.push_back(Offs); 108 } 109 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 110 return VBPtrOffsets; 111 } 112 113 StringRef GetPureVirtualCallName() override { return "_purecall"; } 114 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 115 116 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 117 Address Ptr, QualType ElementType, 118 const CXXDestructorDecl *Dtor) override; 119 120 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 121 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 122 123 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 124 125 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 126 const VPtrInfo &Info); 127 128 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 129 CatchTypeInfo 130 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 131 132 /// MSVC needs an extra flag to indicate a catchall. 133 CatchTypeInfo getCatchAllTypeInfo() override { 134 // For -EHa catch(...) must handle HW exception 135 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions 136 if (getContext().getLangOpts().EHAsynch) 137 return CatchTypeInfo{nullptr, 0}; 138 else 139 return CatchTypeInfo{nullptr, 0x40}; 140 } 141 142 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 143 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 144 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 145 Address ThisPtr, 146 llvm::Type *StdTypeInfoPtrTy) override; 147 148 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 149 QualType SrcRecordTy) override; 150 151 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 152 QualType SrcRecordTy, QualType DestTy, 153 QualType DestRecordTy, 154 llvm::BasicBlock *CastEnd) override; 155 156 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 157 QualType SrcRecordTy, 158 QualType DestTy) override; 159 160 bool EmitBadCastCall(CodeGenFunction &CGF) override; 161 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 162 return false; 163 } 164 165 llvm::Value * 166 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 167 const CXXRecordDecl *ClassDecl, 168 const CXXRecordDecl *BaseClassDecl) override; 169 170 llvm::BasicBlock * 171 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 172 const CXXRecordDecl *RD) override; 173 174 llvm::BasicBlock * 175 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 176 177 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 178 const CXXRecordDecl *RD) override; 179 180 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 181 182 // Background on MSVC destructors 183 // ============================== 184 // 185 // Both Itanium and MSVC ABIs have destructor variants. The variant names 186 // roughly correspond in the following way: 187 // Itanium Microsoft 188 // Base -> no name, just ~Class 189 // Complete -> vbase destructor 190 // Deleting -> scalar deleting destructor 191 // vector deleting destructor 192 // 193 // The base and complete destructors are the same as in Itanium, although the 194 // complete destructor does not accept a VTT parameter when there are virtual 195 // bases. A separate mechanism involving vtordisps is used to ensure that 196 // virtual methods of destroyed subobjects are not called. 197 // 198 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 199 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 200 // pointer points to an array. The scalar deleting destructor assumes that 201 // bit 2 is zero, and therefore does not contain a loop. 202 // 203 // For virtual destructors, only one entry is reserved in the vftable, and it 204 // always points to the vector deleting destructor. The vector deleting 205 // destructor is the most general, so it can be used to destroy objects in 206 // place, delete single heap objects, or delete arrays. 207 // 208 // A TU defining a non-inline destructor is only guaranteed to emit a base 209 // destructor, and all of the other variants are emitted on an as-needed basis 210 // in COMDATs. Because a non-base destructor can be emitted in a TU that 211 // lacks a definition for the destructor, non-base destructors must always 212 // delegate to or alias the base destructor. 213 214 AddedStructorArgCounts 215 buildStructorSignature(GlobalDecl GD, 216 SmallVectorImpl<CanQualType> &ArgTys) override; 217 218 /// Non-base dtors should be emitted as delegating thunks in this ABI. 219 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 220 CXXDtorType DT) const override { 221 return DT != Dtor_Base; 222 } 223 224 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 225 const CXXDestructorDecl *Dtor, 226 CXXDtorType DT) const override; 227 228 llvm::GlobalValue::LinkageTypes 229 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 230 CXXDtorType DT) const override; 231 232 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 233 234 const CXXRecordDecl * 235 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 236 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 237 MethodVFTableLocation ML = 238 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 239 // The vbases might be ordered differently in the final overrider object 240 // and the complete object, so the "this" argument may sometimes point to 241 // memory that has no particular type (e.g. past the complete object). 242 // In this case, we just use a generic pointer type. 243 // FIXME: might want to have a more precise type in the non-virtual 244 // multiple inheritance case. 245 if (ML.VBase || !ML.VFPtrOffset.isZero()) 246 return nullptr; 247 } 248 return MD->getParent(); 249 } 250 251 Address 252 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 253 Address This, 254 bool VirtualCall) override; 255 256 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 257 FunctionArgList &Params) override; 258 259 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 260 261 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 262 const CXXConstructorDecl *D, 263 CXXCtorType Type, 264 bool ForVirtualBase, 265 bool Delegating) override; 266 267 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 268 const CXXDestructorDecl *DD, 269 CXXDtorType Type, 270 bool ForVirtualBase, 271 bool Delegating) override; 272 273 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 274 CXXDtorType Type, bool ForVirtualBase, 275 bool Delegating, Address This, 276 QualType ThisTy) override; 277 278 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 279 llvm::GlobalVariable *VTable); 280 281 void emitVTableDefinitions(CodeGenVTables &CGVT, 282 const CXXRecordDecl *RD) override; 283 284 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 285 CodeGenFunction::VPtr Vptr) override; 286 287 /// Don't initialize vptrs if dynamic class 288 /// is marked with with the 'novtable' attribute. 289 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 290 return !VTableClass->hasAttr<MSNoVTableAttr>(); 291 } 292 293 llvm::Constant * 294 getVTableAddressPoint(BaseSubobject Base, 295 const CXXRecordDecl *VTableClass) override; 296 297 llvm::Value *getVTableAddressPointInStructor( 298 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 299 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 300 301 llvm::Constant * 302 getVTableAddressPointForConstExpr(BaseSubobject Base, 303 const CXXRecordDecl *VTableClass) override; 304 305 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 306 CharUnits VPtrOffset) override; 307 308 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 309 Address This, llvm::Type *Ty, 310 SourceLocation Loc) override; 311 312 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 313 const CXXDestructorDecl *Dtor, 314 CXXDtorType DtorType, Address This, 315 DeleteOrMemberCallExpr E) override; 316 317 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 318 CallArgList &CallArgs) override { 319 assert(GD.getDtorType() == Dtor_Deleting && 320 "Only deleting destructor thunks are available in this ABI"); 321 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 322 getContext().IntTy); 323 } 324 325 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 326 327 llvm::GlobalVariable * 328 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 329 llvm::GlobalVariable::LinkageTypes Linkage); 330 331 llvm::GlobalVariable * 332 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 333 const CXXRecordDecl *DstRD) { 334 SmallString<256> OutName; 335 llvm::raw_svector_ostream Out(OutName); 336 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 337 StringRef MangledName = OutName.str(); 338 339 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 340 return VDispMap; 341 342 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 343 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 344 SmallVector<llvm::Constant *, 4> Map(NumEntries, 345 llvm::UndefValue::get(CGM.IntTy)); 346 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 347 bool AnyDifferent = false; 348 for (const auto &I : SrcRD->vbases()) { 349 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 350 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 351 continue; 352 353 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 354 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 355 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 356 AnyDifferent |= SrcVBIndex != DstVBIndex; 357 } 358 // This map would be useless, don't use it. 359 if (!AnyDifferent) 360 return nullptr; 361 362 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 363 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 364 llvm::GlobalValue::LinkageTypes Linkage = 365 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 366 ? llvm::GlobalValue::LinkOnceODRLinkage 367 : llvm::GlobalValue::InternalLinkage; 368 auto *VDispMap = new llvm::GlobalVariable( 369 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 370 /*Initializer=*/Init, MangledName); 371 return VDispMap; 372 } 373 374 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 375 llvm::GlobalVariable *GV) const; 376 377 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 378 GlobalDecl GD, bool ReturnAdjustment) override { 379 GVALinkage Linkage = 380 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 381 382 if (Linkage == GVA_Internal) 383 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 384 else if (ReturnAdjustment) 385 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 386 else 387 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 388 } 389 390 bool exportThunk() override { return false; } 391 392 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 393 const ThisAdjustment &TA) override; 394 395 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 396 const ReturnAdjustment &RA) override; 397 398 void EmitThreadLocalInitFuncs( 399 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 400 ArrayRef<llvm::Function *> CXXThreadLocalInits, 401 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 402 403 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 404 return getContext().getLangOpts().isCompatibleWithMSVC( 405 LangOptions::MSVC2019_5) && 406 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); 407 } 408 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 409 QualType LValType) override; 410 411 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 412 llvm::GlobalVariable *DeclPtr, 413 bool PerformInit) override; 414 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 415 llvm::FunctionCallee Dtor, 416 llvm::Constant *Addr) override; 417 418 // ==== Notes on array cookies ========= 419 // 420 // MSVC seems to only use cookies when the class has a destructor; a 421 // two-argument usual array deallocation function isn't sufficient. 422 // 423 // For example, this code prints "100" and "1": 424 // struct A { 425 // char x; 426 // void *operator new[](size_t sz) { 427 // printf("%u\n", sz); 428 // return malloc(sz); 429 // } 430 // void operator delete[](void *p, size_t sz) { 431 // printf("%u\n", sz); 432 // free(p); 433 // } 434 // }; 435 // int main() { 436 // A *p = new A[100]; 437 // delete[] p; 438 // } 439 // Whereas it prints "104" and "104" if you give A a destructor. 440 441 bool requiresArrayCookie(const CXXDeleteExpr *expr, 442 QualType elementType) override; 443 bool requiresArrayCookie(const CXXNewExpr *expr) override; 444 CharUnits getArrayCookieSizeImpl(QualType type) override; 445 Address InitializeArrayCookie(CodeGenFunction &CGF, 446 Address NewPtr, 447 llvm::Value *NumElements, 448 const CXXNewExpr *expr, 449 QualType ElementType) override; 450 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 451 Address allocPtr, 452 CharUnits cookieSize) override; 453 454 friend struct MSRTTIBuilder; 455 456 bool isImageRelative() const { 457 return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64; 458 } 459 460 // 5 routines for constructing the llvm types for MS RTTI structs. 461 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 462 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 463 TDTypeName += llvm::utostr(TypeInfoString.size()); 464 llvm::StructType *&TypeDescriptorType = 465 TypeDescriptorTypeMap[TypeInfoString.size()]; 466 if (TypeDescriptorType) 467 return TypeDescriptorType; 468 llvm::Type *FieldTypes[] = { 469 CGM.Int8PtrPtrTy, 470 CGM.Int8PtrTy, 471 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 472 TypeDescriptorType = 473 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 474 return TypeDescriptorType; 475 } 476 477 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 478 if (!isImageRelative()) 479 return PtrType; 480 return CGM.IntTy; 481 } 482 483 llvm::StructType *getBaseClassDescriptorType() { 484 if (BaseClassDescriptorType) 485 return BaseClassDescriptorType; 486 llvm::Type *FieldTypes[] = { 487 getImageRelativeType(CGM.Int8PtrTy), 488 CGM.IntTy, 489 CGM.IntTy, 490 CGM.IntTy, 491 CGM.IntTy, 492 CGM.IntTy, 493 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 494 }; 495 BaseClassDescriptorType = llvm::StructType::create( 496 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 497 return BaseClassDescriptorType; 498 } 499 500 llvm::StructType *getClassHierarchyDescriptorType() { 501 if (ClassHierarchyDescriptorType) 502 return ClassHierarchyDescriptorType; 503 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 504 ClassHierarchyDescriptorType = llvm::StructType::create( 505 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 506 llvm::Type *FieldTypes[] = { 507 CGM.IntTy, 508 CGM.IntTy, 509 CGM.IntTy, 510 getImageRelativeType( 511 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 512 }; 513 ClassHierarchyDescriptorType->setBody(FieldTypes); 514 return ClassHierarchyDescriptorType; 515 } 516 517 llvm::StructType *getCompleteObjectLocatorType() { 518 if (CompleteObjectLocatorType) 519 return CompleteObjectLocatorType; 520 CompleteObjectLocatorType = llvm::StructType::create( 521 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 522 llvm::Type *FieldTypes[] = { 523 CGM.IntTy, 524 CGM.IntTy, 525 CGM.IntTy, 526 getImageRelativeType(CGM.Int8PtrTy), 527 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 528 getImageRelativeType(CompleteObjectLocatorType), 529 }; 530 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 531 if (!isImageRelative()) 532 FieldTypesRef = FieldTypesRef.drop_back(); 533 CompleteObjectLocatorType->setBody(FieldTypesRef); 534 return CompleteObjectLocatorType; 535 } 536 537 llvm::GlobalVariable *getImageBase() { 538 StringRef Name = "__ImageBase"; 539 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 540 return GV; 541 542 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 543 /*isConstant=*/true, 544 llvm::GlobalValue::ExternalLinkage, 545 /*Initializer=*/nullptr, Name); 546 CGM.setDSOLocal(GV); 547 return GV; 548 } 549 550 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 551 if (!isImageRelative()) 552 return PtrVal; 553 554 if (PtrVal->isNullValue()) 555 return llvm::Constant::getNullValue(CGM.IntTy); 556 557 llvm::Constant *ImageBaseAsInt = 558 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 559 llvm::Constant *PtrValAsInt = 560 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 561 llvm::Constant *Diff = 562 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 563 /*HasNUW=*/true, /*HasNSW=*/true); 564 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 565 } 566 567 private: 568 MicrosoftMangleContext &getMangleContext() { 569 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 570 } 571 572 llvm::Constant *getZeroInt() { 573 return llvm::ConstantInt::get(CGM.IntTy, 0); 574 } 575 576 llvm::Constant *getAllOnesInt() { 577 return llvm::Constant::getAllOnesValue(CGM.IntTy); 578 } 579 580 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 581 582 void 583 GetNullMemberPointerFields(const MemberPointerType *MPT, 584 llvm::SmallVectorImpl<llvm::Constant *> &fields); 585 586 /// Shared code for virtual base adjustment. Returns the offset from 587 /// the vbptr to the virtual base. Optionally returns the address of the 588 /// vbptr itself. 589 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 590 Address Base, 591 llvm::Value *VBPtrOffset, 592 llvm::Value *VBTableOffset, 593 llvm::Value **VBPtr = nullptr); 594 595 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 596 Address Base, 597 int32_t VBPtrOffset, 598 int32_t VBTableOffset, 599 llvm::Value **VBPtr = nullptr) { 600 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 601 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 602 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 603 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 604 } 605 606 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 607 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 608 QualType SrcRecordTy); 609 610 /// Performs a full virtual base adjustment. Used to dereference 611 /// pointers to members of virtual bases. 612 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 613 const CXXRecordDecl *RD, Address Base, 614 llvm::Value *VirtualBaseAdjustmentOffset, 615 llvm::Value *VBPtrOffset /* optional */); 616 617 /// Emits a full member pointer with the fields common to data and 618 /// function member pointers. 619 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 620 bool IsMemberFunction, 621 const CXXRecordDecl *RD, 622 CharUnits NonVirtualBaseAdjustment, 623 unsigned VBTableIndex); 624 625 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 626 llvm::Constant *MP); 627 628 /// - Initialize all vbptrs of 'this' with RD as the complete type. 629 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 630 631 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 632 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 633 634 /// Generate a thunk for calling a virtual member function MD. 635 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 636 const MethodVFTableLocation &ML); 637 638 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 639 CharUnits offset); 640 641 public: 642 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 643 644 bool isZeroInitializable(const MemberPointerType *MPT) override; 645 646 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 647 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 648 return RD->hasAttr<MSInheritanceAttr>(); 649 } 650 651 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 652 653 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 654 CharUnits offset) override; 655 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 656 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 657 658 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 659 llvm::Value *L, 660 llvm::Value *R, 661 const MemberPointerType *MPT, 662 bool Inequality) override; 663 664 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 665 llvm::Value *MemPtr, 666 const MemberPointerType *MPT) override; 667 668 llvm::Value * 669 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 670 Address Base, llvm::Value *MemPtr, 671 const MemberPointerType *MPT) override; 672 673 llvm::Value *EmitNonNullMemberPointerConversion( 674 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 675 CastKind CK, CastExpr::path_const_iterator PathBegin, 676 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 677 CGBuilderTy &Builder); 678 679 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 680 const CastExpr *E, 681 llvm::Value *Src) override; 682 683 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 684 llvm::Constant *Src) override; 685 686 llvm::Constant *EmitMemberPointerConversion( 687 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 688 CastKind CK, CastExpr::path_const_iterator PathBegin, 689 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 690 691 CGCallee 692 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 693 Address This, llvm::Value *&ThisPtrForCall, 694 llvm::Value *MemPtr, 695 const MemberPointerType *MPT) override; 696 697 void emitCXXStructor(GlobalDecl GD) override; 698 699 llvm::StructType *getCatchableTypeType() { 700 if (CatchableTypeType) 701 return CatchableTypeType; 702 llvm::Type *FieldTypes[] = { 703 CGM.IntTy, // Flags 704 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 705 CGM.IntTy, // NonVirtualAdjustment 706 CGM.IntTy, // OffsetToVBPtr 707 CGM.IntTy, // VBTableIndex 708 CGM.IntTy, // Size 709 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 710 }; 711 CatchableTypeType = llvm::StructType::create( 712 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 713 return CatchableTypeType; 714 } 715 716 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 717 llvm::StructType *&CatchableTypeArrayType = 718 CatchableTypeArrayTypeMap[NumEntries]; 719 if (CatchableTypeArrayType) 720 return CatchableTypeArrayType; 721 722 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 723 CTATypeName += llvm::utostr(NumEntries); 724 llvm::Type *CTType = 725 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 726 llvm::Type *FieldTypes[] = { 727 CGM.IntTy, // NumEntries 728 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 729 }; 730 CatchableTypeArrayType = 731 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 732 return CatchableTypeArrayType; 733 } 734 735 llvm::StructType *getThrowInfoType() { 736 if (ThrowInfoType) 737 return ThrowInfoType; 738 llvm::Type *FieldTypes[] = { 739 CGM.IntTy, // Flags 740 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 741 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 742 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 743 }; 744 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 745 "eh.ThrowInfo"); 746 return ThrowInfoType; 747 } 748 749 llvm::FunctionCallee getThrowFn() { 750 // _CxxThrowException is passed an exception object and a ThrowInfo object 751 // which describes the exception. 752 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 753 llvm::FunctionType *FTy = 754 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 755 llvm::FunctionCallee Throw = 756 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 757 // _CxxThrowException is stdcall on 32-bit x86 platforms. 758 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 759 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 760 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 761 } 762 return Throw; 763 } 764 765 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 766 CXXCtorType CT); 767 768 llvm::Constant *getCatchableType(QualType T, 769 uint32_t NVOffset = 0, 770 int32_t VBPtrOffset = -1, 771 uint32_t VBIndex = 0); 772 773 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 774 775 llvm::GlobalVariable *getThrowInfo(QualType T) override; 776 777 std::pair<llvm::Value *, const CXXRecordDecl *> 778 LoadVTablePtr(CodeGenFunction &CGF, Address This, 779 const CXXRecordDecl *RD) override; 780 781 virtual bool 782 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; 783 784 private: 785 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 786 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 787 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 788 /// All the vftables that have been referenced. 789 VFTablesMapTy VFTablesMap; 790 VTablesMapTy VTablesMap; 791 792 /// This set holds the record decls we've deferred vtable emission for. 793 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 794 795 796 /// All the vbtables which have been referenced. 797 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 798 799 /// Info on the global variable used to guard initialization of static locals. 800 /// The BitIndex field is only used for externally invisible declarations. 801 struct GuardInfo { 802 GuardInfo() : Guard(nullptr), BitIndex(0) {} 803 llvm::GlobalVariable *Guard; 804 unsigned BitIndex; 805 }; 806 807 /// Map from DeclContext to the current guard variable. We assume that the 808 /// AST is visited in source code order. 809 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 810 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 811 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 812 813 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 814 llvm::StructType *BaseClassDescriptorType; 815 llvm::StructType *ClassHierarchyDescriptorType; 816 llvm::StructType *CompleteObjectLocatorType; 817 818 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 819 820 llvm::StructType *CatchableTypeType; 821 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 822 llvm::StructType *ThrowInfoType; 823 }; 824 825 } 826 827 CGCXXABI::RecordArgABI 828 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 829 // Use the default C calling convention rules for things that can be passed in 830 // registers, i.e. non-trivially copyable records or records marked with 831 // [[trivial_abi]]. 832 if (RD->canPassInRegisters()) 833 return RAA_Default; 834 835 switch (CGM.getTarget().getTriple().getArch()) { 836 default: 837 // FIXME: Implement for other architectures. 838 return RAA_Indirect; 839 840 case llvm::Triple::thumb: 841 // Pass things indirectly for now because it is simple. 842 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 843 // copy ctor. 844 return RAA_Indirect; 845 846 case llvm::Triple::x86: { 847 // If the argument has *required* alignment greater than four bytes, pass 848 // it indirectly. Prior to MSVC version 19.14, passing overaligned 849 // arguments was not supported and resulted in a compiler error. In 19.14 850 // and later versions, such arguments are now passed indirectly. 851 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); 852 if (Info.isAlignRequired() && Info.Align > 4) 853 return RAA_Indirect; 854 855 // If C++ prohibits us from making a copy, construct the arguments directly 856 // into argument memory. 857 return RAA_DirectInMemory; 858 } 859 860 case llvm::Triple::x86_64: 861 case llvm::Triple::aarch64: 862 return RAA_Indirect; 863 } 864 865 llvm_unreachable("invalid enum"); 866 } 867 868 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 869 const CXXDeleteExpr *DE, 870 Address Ptr, 871 QualType ElementType, 872 const CXXDestructorDecl *Dtor) { 873 // FIXME: Provide a source location here even though there's no 874 // CXXMemberCallExpr for dtor call. 875 bool UseGlobalDelete = DE->isGlobalDelete(); 876 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 877 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 878 if (UseGlobalDelete) 879 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 880 } 881 882 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 883 llvm::Value *Args[] = { 884 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 885 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 886 llvm::FunctionCallee Fn = getThrowFn(); 887 if (isNoReturn) 888 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 889 else 890 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 891 } 892 893 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 894 const CXXCatchStmt *S) { 895 // In the MS ABI, the runtime handles the copy, and the catch handler is 896 // responsible for destruction. 897 VarDecl *CatchParam = S->getExceptionDecl(); 898 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 899 llvm::CatchPadInst *CPI = 900 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 901 CGF.CurrentFuncletPad = CPI; 902 903 // If this is a catch-all or the catch parameter is unnamed, we don't need to 904 // emit an alloca to the object. 905 if (!CatchParam || !CatchParam->getDeclName()) { 906 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 907 return; 908 } 909 910 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 911 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 912 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 913 CGF.EmitAutoVarCleanups(var); 914 } 915 916 /// We need to perform a generic polymorphic operation (like a typeid 917 /// or a cast), which requires an object with a vfptr. Adjust the 918 /// address to point to an object with a vfptr. 919 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 920 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 921 QualType SrcRecordTy) { 922 Value = CGF.Builder.CreateElementBitCast(Value, CGF.Int8Ty); 923 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 924 const ASTContext &Context = getContext(); 925 926 // If the class itself has a vfptr, great. This check implicitly 927 // covers non-virtual base subobjects: a class with its own virtual 928 // functions would be a candidate to be a primary base. 929 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 930 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 931 SrcDecl); 932 933 // Okay, one of the vbases must have a vfptr, or else this isn't 934 // actually a polymorphic class. 935 const CXXRecordDecl *PolymorphicBase = nullptr; 936 for (auto &Base : SrcDecl->vbases()) { 937 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 938 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 939 PolymorphicBase = BaseDecl; 940 break; 941 } 942 } 943 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 944 945 llvm::Value *Offset = 946 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 947 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 948 Value.getElementType(), Value.getPointer(), Offset); 949 CharUnits VBaseAlign = 950 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 951 return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase); 952 } 953 954 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 955 QualType SrcRecordTy) { 956 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 957 return IsDeref && 958 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 959 } 960 961 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 962 llvm::Value *Argument) { 963 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 964 llvm::FunctionType *FTy = 965 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 966 llvm::Value *Args[] = {Argument}; 967 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 968 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 969 } 970 971 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 972 llvm::CallBase *Call = 973 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 974 Call->setDoesNotReturn(); 975 CGF.Builder.CreateUnreachable(); 976 } 977 978 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 979 QualType SrcRecordTy, 980 Address ThisPtr, 981 llvm::Type *StdTypeInfoPtrTy) { 982 std::tie(ThisPtr, std::ignore, std::ignore) = 983 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 984 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 985 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 986 } 987 988 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 989 QualType SrcRecordTy) { 990 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 991 return SrcIsPtr && 992 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 993 } 994 995 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 996 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 997 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 998 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 999 1000 llvm::Value *SrcRTTI = 1001 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1002 llvm::Value *DestRTTI = 1003 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1004 1005 llvm::Value *Offset; 1006 std::tie(This, Offset, std::ignore) = 1007 performBaseAdjustment(CGF, This, SrcRecordTy); 1008 llvm::Value *ThisPtr = This.getPointer(); 1009 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 1010 1011 // PVOID __RTDynamicCast( 1012 // PVOID inptr, 1013 // LONG VfDelta, 1014 // PVOID SrcType, 1015 // PVOID TargetType, 1016 // BOOL isReference) 1017 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1018 CGF.Int8PtrTy, CGF.Int32Ty}; 1019 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1020 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1021 "__RTDynamicCast"); 1022 llvm::Value *Args[] = { 1023 ThisPtr, Offset, SrcRTTI, DestRTTI, 1024 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1025 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); 1026 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 1027 } 1028 1029 llvm::Value * 1030 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1031 QualType SrcRecordTy, 1032 QualType DestTy) { 1033 std::tie(Value, std::ignore, std::ignore) = 1034 performBaseAdjustment(CGF, Value, SrcRecordTy); 1035 1036 // PVOID __RTCastToVoid( 1037 // PVOID inptr) 1038 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1039 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1040 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1041 "__RTCastToVoid"); 1042 llvm::Value *Args[] = {Value.getPointer()}; 1043 return CGF.EmitRuntimeCall(Function, Args); 1044 } 1045 1046 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1047 return false; 1048 } 1049 1050 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1051 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1052 const CXXRecordDecl *BaseClassDecl) { 1053 const ASTContext &Context = getContext(); 1054 int64_t VBPtrChars = 1055 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1056 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1057 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1058 CharUnits VBTableChars = 1059 IntSize * 1060 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1061 llvm::Value *VBTableOffset = 1062 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1063 1064 llvm::Value *VBPtrToNewBase = 1065 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1066 VBPtrToNewBase = 1067 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1068 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1069 } 1070 1071 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1072 return isa<CXXConstructorDecl>(GD.getDecl()); 1073 } 1074 1075 static bool isDeletingDtor(GlobalDecl GD) { 1076 return isa<CXXDestructorDecl>(GD.getDecl()) && 1077 GD.getDtorType() == Dtor_Deleting; 1078 } 1079 1080 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1081 return isDeletingDtor(GD); 1082 } 1083 1084 static bool isTrivialForAArch64MSVC(const CXXRecordDecl *RD) { 1085 // For AArch64, we use the C++14 definition of an aggregate, so we also 1086 // check for: 1087 // No private or protected non static data members. 1088 // No base classes 1089 // No virtual functions 1090 // Additionally, we need to ensure that there is a trivial copy assignment 1091 // operator, a trivial destructor and no user-provided constructors. 1092 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1093 return false; 1094 if (RD->getNumBases() > 0) 1095 return false; 1096 if (RD->isPolymorphic()) 1097 return false; 1098 if (RD->hasNonTrivialCopyAssignment()) 1099 return false; 1100 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1101 if (Ctor->isUserProvided()) 1102 return false; 1103 if (RD->hasNonTrivialDestructor()) 1104 return false; 1105 return true; 1106 } 1107 1108 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1109 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1110 if (!RD) 1111 return false; 1112 1113 // Normally, the C++ concept of "is trivially copyable" is used to determine 1114 // if a struct can be returned directly. However, as MSVC and the language 1115 // have evolved, the definition of "trivially copyable" has changed, while the 1116 // ABI must remain stable. AArch64 uses the C++14 concept of an "aggregate", 1117 // while other ISAs use the older concept of "plain old data". 1118 bool isTrivialForABI = RD->isPOD(); 1119 bool isAArch64 = CGM.getTarget().getTriple().isAArch64(); 1120 if (isAArch64) 1121 isTrivialForABI = RD->canPassInRegisters() && isTrivialForAArch64MSVC(RD); 1122 1123 // MSVC always returns structs indirectly from C++ instance methods. 1124 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); 1125 1126 if (isIndirectReturn) { 1127 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1128 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1129 1130 // MSVC always passes `this` before the `sret` parameter. 1131 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1132 1133 // On AArch64, use the `inreg` attribute if the object is considered to not 1134 // be trivially copyable, or if this is an instance method struct return. 1135 FI.getReturnInfo().setInReg(isAArch64); 1136 1137 return true; 1138 } 1139 1140 // Otherwise, use the C ABI rules. 1141 return false; 1142 } 1143 1144 llvm::BasicBlock * 1145 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1146 const CXXRecordDecl *RD) { 1147 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1148 assert(IsMostDerivedClass && 1149 "ctor for a class with virtual bases must have an implicit parameter"); 1150 llvm::Value *IsCompleteObject = 1151 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1152 1153 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1154 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1155 CGF.Builder.CreateCondBr(IsCompleteObject, 1156 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1157 1158 CGF.EmitBlock(CallVbaseCtorsBB); 1159 1160 // Fill in the vbtable pointers here. 1161 EmitVBPtrStores(CGF, RD); 1162 1163 // CGF will put the base ctor calls in this basic block for us later. 1164 1165 return SkipVbaseCtorsBB; 1166 } 1167 1168 llvm::BasicBlock * 1169 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1170 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1171 assert(IsMostDerivedClass && 1172 "ctor for a class with virtual bases must have an implicit parameter"); 1173 llvm::Value *IsCompleteObject = 1174 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1175 1176 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1177 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1178 CGF.Builder.CreateCondBr(IsCompleteObject, 1179 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1180 1181 CGF.EmitBlock(CallVbaseDtorsBB); 1182 // CGF will put the base dtor calls in this basic block for us later. 1183 1184 return SkipVbaseDtorsBB; 1185 } 1186 1187 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1188 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1189 // In most cases, an override for a vbase virtual method can adjust 1190 // the "this" parameter by applying a constant offset. 1191 // However, this is not enough while a constructor or a destructor of some 1192 // class X is being executed if all the following conditions are met: 1193 // - X has virtual bases, (1) 1194 // - X overrides a virtual method M of a vbase Y, (2) 1195 // - X itself is a vbase of the most derived class. 1196 // 1197 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1198 // which holds the extra amount of "this" adjustment we must do when we use 1199 // the X vftables (i.e. during X ctor or dtor). 1200 // Outside the ctors and dtors, the values of vtorDisps are zero. 1201 1202 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1203 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1204 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1205 CGBuilderTy &Builder = CGF.Builder; 1206 1207 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1208 llvm::Value *Int8This = nullptr; // Initialize lazily. 1209 1210 for (const CXXBaseSpecifier &S : RD->vbases()) { 1211 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1212 auto I = VBaseMap.find(VBase); 1213 assert(I != VBaseMap.end()); 1214 if (!I->second.hasVtorDisp()) 1215 continue; 1216 1217 llvm::Value *VBaseOffset = 1218 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1219 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1220 1221 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1222 llvm::Value *VtorDispValue = Builder.CreateSub( 1223 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1224 "vtordisp.value"); 1225 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1226 1227 if (!Int8This) 1228 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1229 CGF.Int8Ty->getPointerTo(AS)); 1230 llvm::Value *VtorDispPtr = 1231 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset); 1232 // vtorDisp is always the 32-bits before the vbase in the class layout. 1233 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4); 1234 VtorDispPtr = Builder.CreateBitCast( 1235 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1236 1237 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1238 CharUnits::fromQuantity(4)); 1239 } 1240 } 1241 1242 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1243 const CXXMethodDecl *MD) { 1244 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1245 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1246 CallingConv ActualCallingConv = 1247 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1248 return ExpectedCallingConv == ActualCallingConv; 1249 } 1250 1251 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1252 // There's only one constructor type in this ABI. 1253 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1254 1255 // Exported default constructors either have a simple call-site where they use 1256 // the typical calling convention and have a single 'this' pointer for an 1257 // argument -or- they get a wrapper function which appropriately thunks to the 1258 // real default constructor. This thunk is the default constructor closure. 1259 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && 1260 D->isDefined()) { 1261 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1262 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1263 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1264 CGM.setGVProperties(Fn, D); 1265 } 1266 } 1267 } 1268 1269 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1270 const CXXRecordDecl *RD) { 1271 Address This = getThisAddress(CGF); 1272 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1273 const ASTContext &Context = getContext(); 1274 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1275 1276 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1277 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1278 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1279 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1280 const ASTRecordLayout &SubobjectLayout = 1281 Context.getASTRecordLayout(VBT->IntroducingObject); 1282 CharUnits Offs = VBT->NonVirtualOffset; 1283 Offs += SubobjectLayout.getVBPtrOffset(); 1284 if (VBT->getVBaseWithVPtr()) 1285 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1286 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1287 llvm::Value *GVPtr = 1288 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1289 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1290 "vbptr." + VBT->ObjectWithVPtr->getName()); 1291 CGF.Builder.CreateStore(GVPtr, VBPtr); 1292 } 1293 } 1294 1295 CGCXXABI::AddedStructorArgCounts 1296 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1297 SmallVectorImpl<CanQualType> &ArgTys) { 1298 AddedStructorArgCounts Added; 1299 // TODO: 'for base' flag 1300 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1301 GD.getDtorType() == Dtor_Deleting) { 1302 // The scalar deleting destructor takes an implicit int parameter. 1303 ArgTys.push_back(getContext().IntTy); 1304 ++Added.Suffix; 1305 } 1306 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1307 if (!CD) 1308 return Added; 1309 1310 // All parameters are already in place except is_most_derived, which goes 1311 // after 'this' if it's variadic and last if it's not. 1312 1313 const CXXRecordDecl *Class = CD->getParent(); 1314 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1315 if (Class->getNumVBases()) { 1316 if (FPT->isVariadic()) { 1317 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1318 ++Added.Prefix; 1319 } else { 1320 ArgTys.push_back(getContext().IntTy); 1321 ++Added.Suffix; 1322 } 1323 } 1324 1325 return Added; 1326 } 1327 1328 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1329 const CXXDestructorDecl *Dtor, 1330 CXXDtorType DT) const { 1331 // Deleting destructor variants are never imported or exported. Give them the 1332 // default storage class. 1333 if (DT == Dtor_Deleting) { 1334 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1335 } else { 1336 const NamedDecl *ND = Dtor; 1337 CGM.setDLLImportDLLExport(GV, ND); 1338 } 1339 } 1340 1341 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1342 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1343 // Internal things are always internal, regardless of attributes. After this, 1344 // we know the thunk is externally visible. 1345 if (Linkage == GVA_Internal) 1346 return llvm::GlobalValue::InternalLinkage; 1347 1348 switch (DT) { 1349 case Dtor_Base: 1350 // The base destructor most closely tracks the user-declared constructor, so 1351 // we delegate back to the normal declarator case. 1352 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, 1353 /*IsConstantVariable=*/false); 1354 case Dtor_Complete: 1355 // The complete destructor is like an inline function, but it may be 1356 // imported and therefore must be exported as well. This requires changing 1357 // the linkage if a DLL attribute is present. 1358 if (Dtor->hasAttr<DLLExportAttr>()) 1359 return llvm::GlobalValue::WeakODRLinkage; 1360 if (Dtor->hasAttr<DLLImportAttr>()) 1361 return llvm::GlobalValue::AvailableExternallyLinkage; 1362 return llvm::GlobalValue::LinkOnceODRLinkage; 1363 case Dtor_Deleting: 1364 // Deleting destructors are like inline functions. They have vague linkage 1365 // and are emitted everywhere they are used. They are internal if the class 1366 // is internal. 1367 return llvm::GlobalValue::LinkOnceODRLinkage; 1368 case Dtor_Comdat: 1369 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1370 } 1371 llvm_unreachable("invalid dtor type"); 1372 } 1373 1374 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1375 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1376 // other destructor variants are delegating thunks. 1377 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1378 1379 // If the class is dllexported, emit the complete (vbase) destructor wherever 1380 // the base dtor is emitted. 1381 // FIXME: To match MSVC, this should only be done when the class is exported 1382 // with -fdllexport-inlines enabled. 1383 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1384 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1385 } 1386 1387 CharUnits 1388 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1389 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1390 1391 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1392 // Complete destructors take a pointer to the complete object as a 1393 // parameter, thus don't need this adjustment. 1394 if (GD.getDtorType() == Dtor_Complete) 1395 return CharUnits(); 1396 1397 // There's no Dtor_Base in vftable but it shares the this adjustment with 1398 // the deleting one, so look it up instead. 1399 GD = GlobalDecl(DD, Dtor_Deleting); 1400 } 1401 1402 MethodVFTableLocation ML = 1403 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1404 CharUnits Adjustment = ML.VFPtrOffset; 1405 1406 // Normal virtual instance methods need to adjust from the vfptr that first 1407 // defined the virtual method to the virtual base subobject, but destructors 1408 // do not. The vector deleting destructor thunk applies this adjustment for 1409 // us if necessary. 1410 if (isa<CXXDestructorDecl>(MD)) 1411 Adjustment = CharUnits::Zero(); 1412 1413 if (ML.VBase) { 1414 const ASTRecordLayout &DerivedLayout = 1415 getContext().getASTRecordLayout(MD->getParent()); 1416 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1417 } 1418 1419 return Adjustment; 1420 } 1421 1422 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1423 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1424 bool VirtualCall) { 1425 if (!VirtualCall) { 1426 // If the call of a virtual function is not virtual, we just have to 1427 // compensate for the adjustment the virtual function does in its prologue. 1428 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1429 if (Adjustment.isZero()) 1430 return This; 1431 1432 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1433 assert(Adjustment.isPositive()); 1434 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1435 } 1436 1437 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1438 1439 GlobalDecl LookupGD = GD; 1440 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1441 // Complete dtors take a pointer to the complete object, 1442 // thus don't need adjustment. 1443 if (GD.getDtorType() == Dtor_Complete) 1444 return This; 1445 1446 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1447 // with the base one, so look up the deleting one instead. 1448 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1449 } 1450 MethodVFTableLocation ML = 1451 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1452 1453 CharUnits StaticOffset = ML.VFPtrOffset; 1454 1455 // Base destructors expect 'this' to point to the beginning of the base 1456 // subobject, not the first vfptr that happens to contain the virtual dtor. 1457 // However, we still need to apply the virtual base adjustment. 1458 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1459 StaticOffset = CharUnits::Zero(); 1460 1461 Address Result = This; 1462 if (ML.VBase) { 1463 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1464 1465 const CXXRecordDecl *Derived = MD->getParent(); 1466 const CXXRecordDecl *VBase = ML.VBase; 1467 llvm::Value *VBaseOffset = 1468 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1469 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( 1470 Result.getElementType(), Result.getPointer(), VBaseOffset); 1471 CharUnits VBaseAlign = 1472 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1473 Result = Address(VBasePtr, VBaseAlign); 1474 } 1475 if (!StaticOffset.isZero()) { 1476 assert(StaticOffset.isPositive()); 1477 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1478 if (ML.VBase) { 1479 // Non-virtual adjustment might result in a pointer outside the allocated 1480 // object, e.g. if the final overrider class is laid out after the virtual 1481 // base that declares a method in the most derived class. 1482 // FIXME: Update the code that emits this adjustment in thunks prologues. 1483 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1484 } else { 1485 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1486 } 1487 } 1488 return Result; 1489 } 1490 1491 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1492 QualType &ResTy, 1493 FunctionArgList &Params) { 1494 ASTContext &Context = getContext(); 1495 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1496 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1497 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1498 auto *IsMostDerived = ImplicitParamDecl::Create( 1499 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1500 &Context.Idents.get("is_most_derived"), Context.IntTy, 1501 ImplicitParamDecl::Other); 1502 // The 'most_derived' parameter goes second if the ctor is variadic and last 1503 // if it's not. Dtors can't be variadic. 1504 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1505 if (FPT->isVariadic()) 1506 Params.insert(Params.begin() + 1, IsMostDerived); 1507 else 1508 Params.push_back(IsMostDerived); 1509 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1510 } else if (isDeletingDtor(CGF.CurGD)) { 1511 auto *ShouldDelete = ImplicitParamDecl::Create( 1512 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1513 &Context.Idents.get("should_call_delete"), Context.IntTy, 1514 ImplicitParamDecl::Other); 1515 Params.push_back(ShouldDelete); 1516 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1517 } 1518 } 1519 1520 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1521 // Naked functions have no prolog. 1522 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1523 return; 1524 1525 // Overridden virtual methods of non-primary bases need to adjust the incoming 1526 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1527 // sizeof(void*) to adjust from B* to C*: 1528 // struct A { virtual void a(); }; 1529 // struct B { virtual void b(); }; 1530 // struct C : A, B { virtual void b(); }; 1531 // 1532 // Leave the value stored in the 'this' alloca unadjusted, so that the 1533 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1534 // will apply the ThisAdjustment in the method type information. 1535 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1536 // without making our codegen depend on debug info settings. 1537 llvm::Value *This = loadIncomingCXXThis(CGF); 1538 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1539 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1540 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1541 if (!Adjustment.isZero()) { 1542 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1543 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1544 *thisTy = This->getType(); 1545 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1546 assert(Adjustment.isPositive()); 1547 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1548 -Adjustment.getQuantity()); 1549 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); 1550 } 1551 } 1552 setCXXABIThisValue(CGF, This); 1553 1554 // If this is a function that the ABI specifies returns 'this', initialize 1555 // the return slot to 'this' at the start of the function. 1556 // 1557 // Unlike the setting of return types, this is done within the ABI 1558 // implementation instead of by clients of CGCXXABI because: 1559 // 1) getThisValue is currently protected 1560 // 2) in theory, an ABI could implement 'this' returns some other way; 1561 // HasThisReturn only specifies a contract, not the implementation 1562 if (HasThisReturn(CGF.CurGD)) 1563 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1564 else if (hasMostDerivedReturn(CGF.CurGD)) 1565 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1566 CGF.ReturnValue); 1567 1568 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1569 assert(getStructorImplicitParamDecl(CGF) && 1570 "no implicit parameter for a constructor with virtual bases?"); 1571 getStructorImplicitParamValue(CGF) 1572 = CGF.Builder.CreateLoad( 1573 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1574 "is_most_derived"); 1575 } 1576 1577 if (isDeletingDtor(CGF.CurGD)) { 1578 assert(getStructorImplicitParamDecl(CGF) && 1579 "no implicit parameter for a deleting destructor?"); 1580 getStructorImplicitParamValue(CGF) 1581 = CGF.Builder.CreateLoad( 1582 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1583 "should_call_delete"); 1584 } 1585 } 1586 1587 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1588 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1589 bool ForVirtualBase, bool Delegating) { 1590 assert(Type == Ctor_Complete || Type == Ctor_Base); 1591 1592 // Check if we need a 'most_derived' parameter. 1593 if (!D->getParent()->getNumVBases()) 1594 return AddedStructorArgs{}; 1595 1596 // Add the 'most_derived' argument second if we are variadic or last if not. 1597 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1598 llvm::Value *MostDerivedArg; 1599 if (Delegating) { 1600 MostDerivedArg = getStructorImplicitParamValue(CGF); 1601 } else { 1602 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1603 } 1604 if (FPT->isVariadic()) { 1605 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1606 } 1607 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1608 } 1609 1610 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1611 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1612 bool ForVirtualBase, bool Delegating) { 1613 return nullptr; 1614 } 1615 1616 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1617 const CXXDestructorDecl *DD, 1618 CXXDtorType Type, bool ForVirtualBase, 1619 bool Delegating, Address This, 1620 QualType ThisTy) { 1621 // Use the base destructor variant in place of the complete destructor variant 1622 // if the class has no virtual bases. This effectively implements some of the 1623 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1624 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1625 Type = Dtor_Base; 1626 1627 GlobalDecl GD(DD, Type); 1628 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1629 1630 if (DD->isVirtual()) { 1631 assert(Type != CXXDtorType::Dtor_Deleting && 1632 "The deleting destructor should only be called via a virtual call"); 1633 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1634 This, false); 1635 } 1636 1637 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1638 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1639 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1640 } 1641 1642 llvm::Value *Implicit = 1643 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1644 Delegating); // = nullptr 1645 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1646 /*ImplicitParam=*/Implicit, 1647 /*ImplicitParamTy=*/QualType(), nullptr); 1648 if (BaseDtorEndBB) { 1649 // Complete object handler should continue to be the remaining 1650 CGF.Builder.CreateBr(BaseDtorEndBB); 1651 CGF.EmitBlock(BaseDtorEndBB); 1652 } 1653 } 1654 1655 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1656 const CXXRecordDecl *RD, 1657 llvm::GlobalVariable *VTable) { 1658 if (!CGM.getCodeGenOpts().LTOUnit) 1659 return; 1660 1661 // TODO: Should VirtualFunctionElimination also be supported here? 1662 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1663 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1664 llvm::DenseSet<const CXXRecordDecl *> Visited; 1665 llvm::GlobalObject::VCallVisibility TypeVis = 1666 CGM.GetVCallVisibilityLevel(RD, Visited); 1667 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1668 VTable->setVCallVisibilityMetadata(TypeVis); 1669 } 1670 1671 // The location of the first virtual function pointer in the virtual table, 1672 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1673 // disabled, or sizeof(void*) if RTTI is enabled. 1674 CharUnits AddressPoint = 1675 getContext().getLangOpts().RTTIData 1676 ? getContext().toCharUnitsFromBits( 1677 getContext().getTargetInfo().getPointerWidth(0)) 1678 : CharUnits::Zero(); 1679 1680 if (Info.PathToIntroducingObject.empty()) { 1681 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1682 return; 1683 } 1684 1685 // Add a bitset entry for the least derived base belonging to this vftable. 1686 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1687 Info.PathToIntroducingObject.back()); 1688 1689 // Add a bitset entry for each derived class that is laid out at the same 1690 // offset as the least derived base. 1691 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1692 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1693 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1694 1695 const ASTRecordLayout &Layout = 1696 getContext().getASTRecordLayout(DerivedRD); 1697 CharUnits Offset; 1698 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1699 if (VBI == Layout.getVBaseOffsetsMap().end()) 1700 Offset = Layout.getBaseClassOffset(BaseRD); 1701 else 1702 Offset = VBI->second.VBaseOffset; 1703 if (!Offset.isZero()) 1704 return; 1705 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1706 } 1707 1708 // Finally do the same for the most derived class. 1709 if (Info.FullOffsetInMDC.isZero()) 1710 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1711 } 1712 1713 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1714 const CXXRecordDecl *RD) { 1715 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1716 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1717 1718 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1719 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1720 if (VTable->hasInitializer()) 1721 continue; 1722 1723 const VTableLayout &VTLayout = 1724 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1725 1726 llvm::Constant *RTTI = nullptr; 1727 if (any_of(VTLayout.vtable_components(), 1728 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1729 RTTI = getMSCompleteObjectLocator(RD, *Info); 1730 1731 ConstantInitBuilder builder(CGM); 1732 auto components = builder.beginStruct(); 1733 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1734 VTable->hasLocalLinkage()); 1735 components.finishAndSetAsInitializer(VTable); 1736 1737 emitVTableTypeMetadata(*Info, RD, VTable); 1738 } 1739 } 1740 1741 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1742 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1743 return Vptr.NearestVBase != nullptr; 1744 } 1745 1746 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1747 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1748 const CXXRecordDecl *NearestVBase) { 1749 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1750 if (!VTableAddressPoint) { 1751 assert(Base.getBase()->getNumVBases() && 1752 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1753 } 1754 return VTableAddressPoint; 1755 } 1756 1757 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1758 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1759 SmallString<256> &Name) { 1760 llvm::raw_svector_ostream Out(Name); 1761 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1762 } 1763 1764 llvm::Constant * 1765 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1766 const CXXRecordDecl *VTableClass) { 1767 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1768 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1769 return VFTablesMap[ID]; 1770 } 1771 1772 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1773 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1774 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1775 assert(VFTable && "Couldn't find a vftable for the given base?"); 1776 return VFTable; 1777 } 1778 1779 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1780 CharUnits VPtrOffset) { 1781 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1782 // shouldn't be used in the given record type. We want to cache this result in 1783 // VFTablesMap, thus a simple zero check is not sufficient. 1784 1785 VFTableIdTy ID(RD, VPtrOffset); 1786 VTablesMapTy::iterator I; 1787 bool Inserted; 1788 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1789 if (!Inserted) 1790 return I->second; 1791 1792 llvm::GlobalVariable *&VTable = I->second; 1793 1794 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1795 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1796 1797 if (DeferredVFTables.insert(RD).second) { 1798 // We haven't processed this record type before. 1799 // Queue up this vtable for possible deferred emission. 1800 CGM.addDeferredVTable(RD); 1801 1802 #ifndef NDEBUG 1803 // Create all the vftables at once in order to make sure each vftable has 1804 // a unique mangled name. 1805 llvm::StringSet<> ObservedMangledNames; 1806 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1807 SmallString<256> Name; 1808 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1809 if (!ObservedMangledNames.insert(Name.str()).second) 1810 llvm_unreachable("Already saw this mangling before?"); 1811 } 1812 #endif 1813 } 1814 1815 const std::unique_ptr<VPtrInfo> *VFPtrI = 1816 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) { 1817 return VPI->FullOffsetInMDC == VPtrOffset; 1818 }); 1819 if (VFPtrI == VFPtrs.end()) { 1820 VFTablesMap[ID] = nullptr; 1821 return nullptr; 1822 } 1823 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1824 1825 SmallString<256> VFTableName; 1826 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1827 1828 // Classes marked __declspec(dllimport) need vftables generated on the 1829 // import-side in order to support features like constexpr. No other 1830 // translation unit relies on the emission of the local vftable, translation 1831 // units are expected to generate them as needed. 1832 // 1833 // Because of this unique behavior, we maintain this logic here instead of 1834 // getVTableLinkage. 1835 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1836 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1837 : CGM.getVTableLinkage(RD); 1838 bool VFTableComesFromAnotherTU = 1839 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1840 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1841 bool VTableAliasIsRequred = 1842 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1843 1844 if (llvm::GlobalValue *VFTable = 1845 CGM.getModule().getNamedGlobal(VFTableName)) { 1846 VFTablesMap[ID] = VFTable; 1847 VTable = VTableAliasIsRequred 1848 ? cast<llvm::GlobalVariable>( 1849 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject()) 1850 : cast<llvm::GlobalVariable>(VFTable); 1851 return VTable; 1852 } 1853 1854 const VTableLayout &VTLayout = 1855 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1856 llvm::GlobalValue::LinkageTypes VTableLinkage = 1857 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1858 1859 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1860 1861 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1862 1863 // Create a backing variable for the contents of VTable. The VTable may 1864 // or may not include space for a pointer to RTTI data. 1865 llvm::GlobalValue *VFTable; 1866 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1867 /*isConstant=*/true, VTableLinkage, 1868 /*Initializer=*/nullptr, VTableName); 1869 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1870 1871 llvm::Comdat *C = nullptr; 1872 if (!VFTableComesFromAnotherTU && 1873 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1874 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1875 VTableAliasIsRequred))) 1876 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1877 1878 // Only insert a pointer into the VFTable for RTTI data if we are not 1879 // importing it. We never reference the RTTI data directly so there is no 1880 // need to make room for it. 1881 if (VTableAliasIsRequred) { 1882 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1883 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1884 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1885 // Create a GEP which points just after the first entry in the VFTable, 1886 // this should be the location of the first virtual method. 1887 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1888 VTable->getValueType(), VTable, GEPIndices); 1889 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1890 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1891 if (C) 1892 C->setSelectionKind(llvm::Comdat::Largest); 1893 } 1894 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1895 /*AddressSpace=*/0, VFTableLinkage, 1896 VFTableName.str(), VTableGEP, 1897 &CGM.getModule()); 1898 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1899 } else { 1900 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1901 // be referencing any RTTI data. 1902 // The GlobalVariable will end up being an appropriate definition of the 1903 // VFTable. 1904 VFTable = VTable; 1905 } 1906 if (C) 1907 VTable->setComdat(C); 1908 1909 if (RD->hasAttr<DLLExportAttr>()) 1910 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1911 1912 VFTablesMap[ID] = VFTable; 1913 return VTable; 1914 } 1915 1916 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1917 GlobalDecl GD, 1918 Address This, 1919 llvm::Type *Ty, 1920 SourceLocation Loc) { 1921 CGBuilderTy &Builder = CGF.Builder; 1922 1923 Ty = Ty->getPointerTo(); 1924 Address VPtr = 1925 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1926 1927 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1928 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(), 1929 MethodDecl->getParent()); 1930 1931 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1932 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1933 1934 // Compute the identity of the most derived class whose virtual table is 1935 // located at the MethodVFTableLocation ML. 1936 auto getObjectWithVPtr = [&] { 1937 return llvm::find_if(VFTContext.getVFPtrOffsets( 1938 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1939 [&](const std::unique_ptr<VPtrInfo> &Info) { 1940 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1941 }) 1942 ->get() 1943 ->ObjectWithVPtr; 1944 }; 1945 1946 llvm::Value *VFunc; 1947 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1948 VFunc = CGF.EmitVTableTypeCheckedLoad( 1949 getObjectWithVPtr(), VTable, 1950 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); 1951 } else { 1952 if (CGM.getCodeGenOpts().PrepareForLTO) 1953 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1954 1955 llvm::Value *VFuncPtr = 1956 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn"); 1957 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); 1958 } 1959 1960 CGCallee Callee(GD, VFunc); 1961 return Callee; 1962 } 1963 1964 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1965 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1966 Address This, DeleteOrMemberCallExpr E) { 1967 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1968 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1969 assert((CE != nullptr) ^ (D != nullptr)); 1970 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1971 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1972 1973 // We have only one destructor in the vftable but can get both behaviors 1974 // by passing an implicit int parameter. 1975 GlobalDecl GD(Dtor, Dtor_Deleting); 1976 const CGFunctionInfo *FInfo = 1977 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 1978 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1979 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 1980 1981 ASTContext &Context = getContext(); 1982 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1983 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1984 DtorType == Dtor_Deleting); 1985 1986 QualType ThisTy; 1987 if (CE) { 1988 ThisTy = CE->getObjectType(); 1989 } else { 1990 ThisTy = D->getDestroyedType(); 1991 } 1992 1993 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1994 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1995 ImplicitParam, Context.IntTy, CE); 1996 return RV.getScalarVal(); 1997 } 1998 1999 const VBTableGlobals & 2000 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 2001 // At this layer, we can key the cache off of a single class, which is much 2002 // easier than caching each vbtable individually. 2003 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 2004 bool Added; 2005 std::tie(Entry, Added) = 2006 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 2007 VBTableGlobals &VBGlobals = Entry->second; 2008 if (!Added) 2009 return VBGlobals; 2010 2011 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2012 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 2013 2014 // Cache the globals for all vbtables so we don't have to recompute the 2015 // mangled names. 2016 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 2017 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 2018 E = VBGlobals.VBTables->end(); 2019 I != E; ++I) { 2020 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 2021 } 2022 2023 return VBGlobals; 2024 } 2025 2026 llvm::Function * 2027 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2028 const MethodVFTableLocation &ML) { 2029 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2030 "can't form pointers to ctors or virtual dtors"); 2031 2032 // Calculate the mangled name. 2033 SmallString<256> ThunkName; 2034 llvm::raw_svector_ostream Out(ThunkName); 2035 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2036 2037 // If the thunk has been generated previously, just return it. 2038 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2039 return cast<llvm::Function>(GV); 2040 2041 // Create the llvm::Function. 2042 const CGFunctionInfo &FnInfo = 2043 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2044 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2045 llvm::Function *ThunkFn = 2046 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2047 ThunkName.str(), &CGM.getModule()); 2048 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2049 2050 ThunkFn->setLinkage(MD->isExternallyVisible() 2051 ? llvm::GlobalValue::LinkOnceODRLinkage 2052 : llvm::GlobalValue::InternalLinkage); 2053 if (MD->isExternallyVisible()) 2054 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2055 2056 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 2057 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2058 2059 // Add the "thunk" attribute so that LLVM knows that the return type is 2060 // meaningless. These thunks can be used to call functions with differing 2061 // return types, and the caller is required to cast the prototype 2062 // appropriately to extract the correct value. 2063 ThunkFn->addFnAttr("thunk"); 2064 2065 // These thunks can be compared, so they are not unnamed. 2066 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2067 2068 // Start codegen. 2069 CodeGenFunction CGF(CGM); 2070 CGF.CurGD = GlobalDecl(MD); 2071 CGF.CurFuncIsThunk = true; 2072 2073 // Build FunctionArgs, but only include the implicit 'this' parameter 2074 // declaration. 2075 FunctionArgList FunctionArgs; 2076 buildThisParam(CGF, FunctionArgs); 2077 2078 // Start defining the function. 2079 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2080 FunctionArgs, MD->getLocation(), SourceLocation()); 2081 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2082 2083 // Load the vfptr and then callee from the vftable. The callee should have 2084 // adjusted 'this' so that the vfptr is at offset zero. 2085 llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo(); 2086 llvm::Value *VTable = CGF.GetVTablePtr( 2087 getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent()); 2088 2089 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( 2090 ThunkPtrTy, VTable, ML.Index, "vfn"); 2091 llvm::Value *Callee = 2092 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); 2093 2094 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2095 2096 return ThunkFn; 2097 } 2098 2099 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2100 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2101 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2102 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2103 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2104 if (GV->isDeclaration()) 2105 emitVBTableDefinition(*VBT, RD, GV); 2106 } 2107 } 2108 2109 llvm::GlobalVariable * 2110 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2111 llvm::GlobalVariable::LinkageTypes Linkage) { 2112 SmallString<256> OutName; 2113 llvm::raw_svector_ostream Out(OutName); 2114 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2115 StringRef Name = OutName.str(); 2116 2117 llvm::ArrayType *VBTableType = 2118 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2119 2120 assert(!CGM.getModule().getNamedGlobal(Name) && 2121 "vbtable with this name already exists: mangling bug?"); 2122 CharUnits Alignment = 2123 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2124 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2125 Name, VBTableType, Linkage, Alignment.getQuantity()); 2126 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2127 2128 if (RD->hasAttr<DLLImportAttr>()) 2129 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2130 else if (RD->hasAttr<DLLExportAttr>()) 2131 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2132 2133 if (!GV->hasExternalLinkage()) 2134 emitVBTableDefinition(VBT, RD, GV); 2135 2136 return GV; 2137 } 2138 2139 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2140 const CXXRecordDecl *RD, 2141 llvm::GlobalVariable *GV) const { 2142 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2143 2144 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2145 "should only emit vbtables for classes with vbtables"); 2146 2147 const ASTRecordLayout &BaseLayout = 2148 getContext().getASTRecordLayout(VBT.IntroducingObject); 2149 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2150 2151 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2152 nullptr); 2153 2154 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2155 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2156 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2157 2158 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2159 for (const auto &I : ObjectWithVPtr->vbases()) { 2160 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2161 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2162 assert(!Offset.isNegative()); 2163 2164 // Make it relative to the subobject vbptr. 2165 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2166 if (VBT.getVBaseWithVPtr()) 2167 CompleteVBPtrOffset += 2168 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2169 Offset -= CompleteVBPtrOffset; 2170 2171 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2172 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2173 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2174 } 2175 2176 assert(Offsets.size() == 2177 cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); 2178 llvm::ArrayType *VBTableType = 2179 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2180 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2181 GV->setInitializer(Init); 2182 2183 if (RD->hasAttr<DLLImportAttr>()) 2184 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2185 } 2186 2187 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2188 Address This, 2189 const ThisAdjustment &TA) { 2190 if (TA.isEmpty()) 2191 return This.getPointer(); 2192 2193 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2194 2195 llvm::Value *V; 2196 if (TA.Virtual.isEmpty()) { 2197 V = This.getPointer(); 2198 } else { 2199 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2200 // Adjust the this argument based on the vtordisp value. 2201 Address VtorDispPtr = 2202 CGF.Builder.CreateConstInBoundsByteGEP(This, 2203 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2204 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2205 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2206 V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(), 2207 CGF.Builder.CreateNeg(VtorDisp)); 2208 2209 // Unfortunately, having applied the vtordisp means that we no 2210 // longer really have a known alignment for the vbptr step. 2211 // We'll assume the vbptr is pointer-aligned. 2212 2213 if (TA.Virtual.Microsoft.VBPtrOffset) { 2214 // If the final overrider is defined in a virtual base other than the one 2215 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2216 // the vbtable of the derived class. 2217 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2218 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2219 llvm::Value *VBPtr; 2220 llvm::Value *VBaseOffset = 2221 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()), 2222 -TA.Virtual.Microsoft.VBPtrOffset, 2223 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2224 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2225 } 2226 } 2227 2228 if (TA.NonVirtual) { 2229 // Non-virtual adjustment might result in a pointer outside the allocated 2230 // object, e.g. if the final overrider class is laid out after the virtual 2231 // base that declares a method in the most derived class. 2232 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual); 2233 } 2234 2235 // Don't need to bitcast back, the call CodeGen will handle this. 2236 return V; 2237 } 2238 2239 llvm::Value * 2240 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2241 const ReturnAdjustment &RA) { 2242 if (RA.isEmpty()) 2243 return Ret.getPointer(); 2244 2245 auto OrigTy = Ret.getType(); 2246 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2247 2248 llvm::Value *V = Ret.getPointer(); 2249 if (RA.Virtual.Microsoft.VBIndex) { 2250 assert(RA.Virtual.Microsoft.VBIndex > 0); 2251 int32_t IntSize = CGF.getIntSize().getQuantity(); 2252 llvm::Value *VBPtr; 2253 llvm::Value *VBaseOffset = 2254 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2255 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2256 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2257 } 2258 2259 if (RA.NonVirtual) 2260 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2261 2262 // Cast back to the original type. 2263 return CGF.Builder.CreateBitCast(V, OrigTy); 2264 } 2265 2266 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2267 QualType elementType) { 2268 // Microsoft seems to completely ignore the possibility of a 2269 // two-argument usual deallocation function. 2270 return elementType.isDestructedType(); 2271 } 2272 2273 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2274 // Microsoft seems to completely ignore the possibility of a 2275 // two-argument usual deallocation function. 2276 return expr->getAllocatedType().isDestructedType(); 2277 } 2278 2279 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2280 // The array cookie is always a size_t; we then pad that out to the 2281 // alignment of the element type. 2282 ASTContext &Ctx = getContext(); 2283 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2284 Ctx.getTypeAlignInChars(type)); 2285 } 2286 2287 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2288 Address allocPtr, 2289 CharUnits cookieSize) { 2290 Address numElementsPtr = 2291 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2292 return CGF.Builder.CreateLoad(numElementsPtr); 2293 } 2294 2295 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2296 Address newPtr, 2297 llvm::Value *numElements, 2298 const CXXNewExpr *expr, 2299 QualType elementType) { 2300 assert(requiresArrayCookie(expr)); 2301 2302 // The size of the cookie. 2303 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2304 2305 // Compute an offset to the cookie. 2306 Address cookiePtr = newPtr; 2307 2308 // Write the number of elements into the appropriate slot. 2309 Address numElementsPtr 2310 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2311 CGF.Builder.CreateStore(numElements, numElementsPtr); 2312 2313 // Finally, compute a pointer to the actual data buffer by skipping 2314 // over the cookie completely. 2315 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2316 } 2317 2318 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2319 llvm::FunctionCallee Dtor, 2320 llvm::Constant *Addr) { 2321 // Create a function which calls the destructor. 2322 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2323 2324 // extern "C" int __tlregdtor(void (*f)(void)); 2325 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2326 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2327 2328 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2329 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2330 if (llvm::Function *TLRegDtorFn = 2331 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2332 TLRegDtorFn->setDoesNotThrow(); 2333 2334 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2335 } 2336 2337 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2338 llvm::FunctionCallee Dtor, 2339 llvm::Constant *Addr) { 2340 if (D.isNoDestroy(CGM.getContext())) 2341 return; 2342 2343 if (D.getTLSKind()) 2344 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2345 2346 // The default behavior is to use atexit. 2347 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2348 } 2349 2350 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2351 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2352 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2353 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2354 if (CXXThreadLocalInits.empty()) 2355 return; 2356 2357 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2358 llvm::Triple::x86 2359 ? "/include:___dyn_tls_init@12" 2360 : "/include:__dyn_tls_init"); 2361 2362 // This will create a GV in the .CRT$XDU section. It will point to our 2363 // initialization function. The CRT will call all of these function 2364 // pointers at start-up time and, eventually, at thread-creation time. 2365 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2366 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2367 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2368 llvm::GlobalVariable::InternalLinkage, InitFunc, 2369 Twine(InitFunc->getName(), "$initializer$")); 2370 InitFuncPtr->setSection(".CRT$XDU"); 2371 // This variable has discardable linkage, we have to add it to @llvm.used to 2372 // ensure it won't get discarded. 2373 CGM.addUsedGlobal(InitFuncPtr); 2374 return InitFuncPtr; 2375 }; 2376 2377 std::vector<llvm::Function *> NonComdatInits; 2378 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2379 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2380 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2381 llvm::Function *F = CXXThreadLocalInits[I]; 2382 2383 // If the GV is already in a comdat group, then we have to join it. 2384 if (llvm::Comdat *C = GV->getComdat()) 2385 AddToXDU(F)->setComdat(C); 2386 else 2387 NonComdatInits.push_back(F); 2388 } 2389 2390 if (!NonComdatInits.empty()) { 2391 llvm::FunctionType *FTy = 2392 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2393 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2394 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2395 SourceLocation(), /*TLS=*/true); 2396 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2397 2398 AddToXDU(InitFunc); 2399 } 2400 } 2401 2402 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { 2403 // __tls_guard comes from the MSVC runtime and reflects 2404 // whether TLS has been initialized for a particular thread. 2405 // It is set from within __dyn_tls_init by the runtime. 2406 // Every library and executable has its own variable. 2407 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext()); 2408 llvm::Constant *TlsGuardConstant = 2409 CGM.CreateRuntimeVariable(VTy, "__tls_guard"); 2410 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant); 2411 2412 TlsGuard->setThreadLocal(true); 2413 2414 return TlsGuard; 2415 } 2416 2417 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { 2418 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers 2419 // dynamic TLS initialization by calling __dyn_tls_init internally. 2420 llvm::FunctionType *FTy = 2421 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {}, 2422 /*isVarArg=*/false); 2423 return CGM.CreateRuntimeFunction( 2424 FTy, "__dyn_tls_on_demand_init", 2425 llvm::AttributeList::get(CGM.getLLVMContext(), 2426 llvm::AttributeList::FunctionIndex, 2427 llvm::Attribute::NoUnwind), 2428 /*Local=*/true); 2429 } 2430 2431 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, 2432 llvm::BasicBlock *DynInitBB, 2433 llvm::BasicBlock *ContinueBB) { 2434 llvm::LoadInst *TlsGuardValue = 2435 CGF.Builder.CreateLoad(Address(TlsGuard, CharUnits::One())); 2436 llvm::Value *CmpResult = 2437 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0)); 2438 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB); 2439 } 2440 2441 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, 2442 llvm::GlobalValue *TlsGuard, 2443 llvm::BasicBlock *ContinueBB) { 2444 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM); 2445 llvm::Function *InitializerFunction = 2446 cast<llvm::Function>(Initializer.getCallee()); 2447 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction); 2448 CallVal->setCallingConv(InitializerFunction->getCallingConv()); 2449 2450 CGF.Builder.CreateBr(ContinueBB); 2451 } 2452 2453 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { 2454 llvm::BasicBlock *DynInitBB = 2455 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn); 2456 llvm::BasicBlock *ContinueBB = 2457 CGF.createBasicBlock("dyntls.continue", CGF.CurFn); 2458 2459 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM); 2460 2461 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); 2462 CGF.Builder.SetInsertPoint(DynInitBB); 2463 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); 2464 CGF.Builder.SetInsertPoint(ContinueBB); 2465 } 2466 2467 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2468 const VarDecl *VD, 2469 QualType LValType) { 2470 // Dynamic TLS initialization works by checking the state of a 2471 // guard variable (__tls_guard) to see whether TLS initialization 2472 // for a thread has happend yet. 2473 // If not, the initialization is triggered on-demand 2474 // by calling __dyn_tls_on_demand_init. 2475 emitDynamicTlsInitialization(CGF); 2476 2477 // Emit the variable just like any regular global variable. 2478 2479 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2480 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2481 2482 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2483 V = CGF.Builder.CreateBitCast(V, RealVarTy->getPointerTo(AS)); 2484 2485 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2486 Address Addr(V, Alignment); 2487 2488 LValue LV = VD->getType()->isReferenceType() 2489 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2490 AlignmentSource::Decl) 2491 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl); 2492 return LV; 2493 } 2494 2495 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2496 StringRef VarName("_Init_thread_epoch"); 2497 CharUnits Align = CGM.getIntAlign(); 2498 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2499 return ConstantAddress(GV, GV->getValueType(), Align); 2500 auto *GV = new llvm::GlobalVariable( 2501 CGM.getModule(), CGM.IntTy, 2502 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2503 /*Initializer=*/nullptr, VarName, 2504 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2505 GV->setAlignment(Align.getAsAlign()); 2506 return ConstantAddress(GV, GV->getValueType(), Align); 2507 } 2508 2509 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2510 llvm::FunctionType *FTy = 2511 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2512 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2513 return CGM.CreateRuntimeFunction( 2514 FTy, "_Init_thread_header", 2515 llvm::AttributeList::get(CGM.getLLVMContext(), 2516 llvm::AttributeList::FunctionIndex, 2517 llvm::Attribute::NoUnwind), 2518 /*Local=*/true); 2519 } 2520 2521 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2522 llvm::FunctionType *FTy = 2523 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2524 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2525 return CGM.CreateRuntimeFunction( 2526 FTy, "_Init_thread_footer", 2527 llvm::AttributeList::get(CGM.getLLVMContext(), 2528 llvm::AttributeList::FunctionIndex, 2529 llvm::Attribute::NoUnwind), 2530 /*Local=*/true); 2531 } 2532 2533 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2534 llvm::FunctionType *FTy = 2535 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2536 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2537 return CGM.CreateRuntimeFunction( 2538 FTy, "_Init_thread_abort", 2539 llvm::AttributeList::get(CGM.getLLVMContext(), 2540 llvm::AttributeList::FunctionIndex, 2541 llvm::Attribute::NoUnwind), 2542 /*Local=*/true); 2543 } 2544 2545 namespace { 2546 struct ResetGuardBit final : EHScopeStack::Cleanup { 2547 Address Guard; 2548 unsigned GuardNum; 2549 ResetGuardBit(Address Guard, unsigned GuardNum) 2550 : Guard(Guard), GuardNum(GuardNum) {} 2551 2552 void Emit(CodeGenFunction &CGF, Flags flags) override { 2553 // Reset the bit in the mask so that the static variable may be 2554 // reinitialized. 2555 CGBuilderTy &Builder = CGF.Builder; 2556 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2557 llvm::ConstantInt *Mask = 2558 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2559 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2560 } 2561 }; 2562 2563 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2564 llvm::Value *Guard; 2565 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2566 2567 void Emit(CodeGenFunction &CGF, Flags flags) override { 2568 // Calling _Init_thread_abort will reset the guard's state. 2569 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2570 } 2571 }; 2572 } 2573 2574 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2575 llvm::GlobalVariable *GV, 2576 bool PerformInit) { 2577 // MSVC only uses guards for static locals. 2578 if (!D.isStaticLocal()) { 2579 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2580 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2581 llvm::Function *F = CGF.CurFn; 2582 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2583 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2584 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2585 return; 2586 } 2587 2588 bool ThreadlocalStatic = D.getTLSKind(); 2589 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2590 2591 // Thread-safe static variables which aren't thread-specific have a 2592 // per-variable guard. 2593 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2594 2595 CGBuilderTy &Builder = CGF.Builder; 2596 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2597 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2598 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2599 2600 // Get the guard variable for this function if we have one already. 2601 GuardInfo *GI = nullptr; 2602 if (ThreadlocalStatic) 2603 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2604 else if (!ThreadsafeStatic) 2605 GI = &GuardVariableMap[D.getDeclContext()]; 2606 2607 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2608 unsigned GuardNum; 2609 if (D.isExternallyVisible()) { 2610 // Externally visible variables have to be numbered in Sema to properly 2611 // handle unreachable VarDecls. 2612 GuardNum = getContext().getStaticLocalNumber(&D); 2613 assert(GuardNum > 0); 2614 GuardNum--; 2615 } else if (HasPerVariableGuard) { 2616 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2617 } else { 2618 // Non-externally visible variables are numbered here in CodeGen. 2619 GuardNum = GI->BitIndex++; 2620 } 2621 2622 if (!HasPerVariableGuard && GuardNum >= 32) { 2623 if (D.isExternallyVisible()) 2624 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2625 GuardNum %= 32; 2626 GuardVar = nullptr; 2627 } 2628 2629 if (!GuardVar) { 2630 // Mangle the name for the guard. 2631 SmallString<256> GuardName; 2632 { 2633 llvm::raw_svector_ostream Out(GuardName); 2634 if (HasPerVariableGuard) 2635 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2636 Out); 2637 else 2638 getMangleContext().mangleStaticGuardVariable(&D, Out); 2639 } 2640 2641 // Create the guard variable with a zero-initializer. Just absorb linkage, 2642 // visibility and dll storage class from the guarded variable. 2643 GuardVar = 2644 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2645 GV->getLinkage(), Zero, GuardName.str()); 2646 GuardVar->setVisibility(GV->getVisibility()); 2647 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2648 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2649 if (GuardVar->isWeakForLinker()) 2650 GuardVar->setComdat( 2651 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2652 if (D.getTLSKind()) 2653 CGM.setTLSMode(GuardVar, D); 2654 if (GI && !HasPerVariableGuard) 2655 GI->Guard = GuardVar; 2656 } 2657 2658 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); 2659 2660 assert(GuardVar->getLinkage() == GV->getLinkage() && 2661 "static local from the same function had different linkage"); 2662 2663 if (!HasPerVariableGuard) { 2664 // Pseudo code for the test: 2665 // if (!(GuardVar & MyGuardBit)) { 2666 // GuardVar |= MyGuardBit; 2667 // ... initialize the object ...; 2668 // } 2669 2670 // Test our bit from the guard variable. 2671 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2672 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2673 llvm::Value *NeedsInit = 2674 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2675 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2676 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2677 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2678 CodeGenFunction::GuardKind::VariableGuard, &D); 2679 2680 // Set our bit in the guard variable and emit the initializer and add a global 2681 // destructor if appropriate. 2682 CGF.EmitBlock(InitBlock); 2683 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2684 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2685 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2686 CGF.PopCleanupBlock(); 2687 Builder.CreateBr(EndBlock); 2688 2689 // Continue. 2690 CGF.EmitBlock(EndBlock); 2691 } else { 2692 // Pseudo code for the test: 2693 // if (TSS > _Init_thread_epoch) { 2694 // _Init_thread_header(&TSS); 2695 // if (TSS == -1) { 2696 // ... initialize the object ...; 2697 // _Init_thread_footer(&TSS); 2698 // } 2699 // } 2700 // 2701 // The algorithm is almost identical to what can be found in the appendix 2702 // found in N2325. 2703 2704 // This BasicBLock determines whether or not we have any work to do. 2705 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2706 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2707 llvm::LoadInst *InitThreadEpoch = 2708 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2709 llvm::Value *IsUninitialized = 2710 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2711 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2712 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2713 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2714 CodeGenFunction::GuardKind::VariableGuard, &D); 2715 2716 // This BasicBlock attempts to determine whether or not this thread is 2717 // responsible for doing the initialization. 2718 CGF.EmitBlock(AttemptInitBlock); 2719 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2720 GuardAddr.getPointer()); 2721 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2722 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2723 llvm::Value *ShouldDoInit = 2724 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2725 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2726 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2727 2728 // Ok, we ended up getting selected as the initializing thread. 2729 CGF.EmitBlock(InitBlock); 2730 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2731 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2732 CGF.PopCleanupBlock(); 2733 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2734 GuardAddr.getPointer()); 2735 Builder.CreateBr(EndBlock); 2736 2737 CGF.EmitBlock(EndBlock); 2738 } 2739 } 2740 2741 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2742 // Null-ness for function memptrs only depends on the first field, which is 2743 // the function pointer. The rest don't matter, so we can zero initialize. 2744 if (MPT->isMemberFunctionPointer()) 2745 return true; 2746 2747 // The virtual base adjustment field is always -1 for null, so if we have one 2748 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2749 // valid field offset. 2750 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2751 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2752 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2753 RD->nullFieldOffsetIsZero()); 2754 } 2755 2756 llvm::Type * 2757 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2758 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2759 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2760 llvm::SmallVector<llvm::Type *, 4> fields; 2761 if (MPT->isMemberFunctionPointer()) 2762 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2763 else 2764 fields.push_back(CGM.IntTy); // FieldOffset 2765 2766 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2767 Inheritance)) 2768 fields.push_back(CGM.IntTy); 2769 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2770 fields.push_back(CGM.IntTy); 2771 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2772 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2773 2774 if (fields.size() == 1) 2775 return fields[0]; 2776 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2777 } 2778 2779 void MicrosoftCXXABI:: 2780 GetNullMemberPointerFields(const MemberPointerType *MPT, 2781 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2782 assert(fields.empty()); 2783 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2784 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2785 if (MPT->isMemberFunctionPointer()) { 2786 // FunctionPointerOrVirtualThunk 2787 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2788 } else { 2789 if (RD->nullFieldOffsetIsZero()) 2790 fields.push_back(getZeroInt()); // FieldOffset 2791 else 2792 fields.push_back(getAllOnesInt()); // FieldOffset 2793 } 2794 2795 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2796 Inheritance)) 2797 fields.push_back(getZeroInt()); 2798 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2799 fields.push_back(getZeroInt()); 2800 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2801 fields.push_back(getAllOnesInt()); 2802 } 2803 2804 llvm::Constant * 2805 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2806 llvm::SmallVector<llvm::Constant *, 4> fields; 2807 GetNullMemberPointerFields(MPT, fields); 2808 if (fields.size() == 1) 2809 return fields[0]; 2810 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2811 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2812 return Res; 2813 } 2814 2815 llvm::Constant * 2816 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2817 bool IsMemberFunction, 2818 const CXXRecordDecl *RD, 2819 CharUnits NonVirtualBaseAdjustment, 2820 unsigned VBTableIndex) { 2821 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2822 2823 // Single inheritance class member pointer are represented as scalars instead 2824 // of aggregates. 2825 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2826 return FirstField; 2827 2828 llvm::SmallVector<llvm::Constant *, 4> fields; 2829 fields.push_back(FirstField); 2830 2831 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2832 fields.push_back(llvm::ConstantInt::get( 2833 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2834 2835 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2836 CharUnits Offs = CharUnits::Zero(); 2837 if (VBTableIndex) 2838 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2839 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2840 } 2841 2842 // The rest of the fields are adjusted by conversions to a more derived class. 2843 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2844 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2845 2846 return llvm::ConstantStruct::getAnon(fields); 2847 } 2848 2849 llvm::Constant * 2850 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2851 CharUnits offset) { 2852 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2853 } 2854 2855 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2856 CharUnits offset) { 2857 if (RD->getMSInheritanceModel() == 2858 MSInheritanceModel::Virtual) 2859 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2860 llvm::Constant *FirstField = 2861 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2862 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2863 CharUnits::Zero(), /*VBTableIndex=*/0); 2864 } 2865 2866 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2867 QualType MPType) { 2868 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2869 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2870 if (!MPD) 2871 return EmitNullMemberPointer(DstTy); 2872 2873 ASTContext &Ctx = getContext(); 2874 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2875 2876 llvm::Constant *C; 2877 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2878 C = EmitMemberFunctionPointer(MD); 2879 } else { 2880 // For a pointer to data member, start off with the offset of the field in 2881 // the class in which it was declared, and convert from there if necessary. 2882 // For indirect field decls, get the outermost anonymous field and use the 2883 // parent class. 2884 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2885 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2886 if (!FD) 2887 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2888 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2889 RD = RD->getMostRecentNonInjectedDecl(); 2890 C = EmitMemberDataPointer(RD, FieldOffset); 2891 } 2892 2893 if (!MemberPointerPath.empty()) { 2894 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2895 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2896 const MemberPointerType *SrcTy = 2897 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2898 ->castAs<MemberPointerType>(); 2899 2900 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2901 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2902 const CXXRecordDecl *PrevRD = SrcRD; 2903 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2904 const CXXRecordDecl *Base = nullptr; 2905 const CXXRecordDecl *Derived = nullptr; 2906 if (DerivedMember) { 2907 Base = PathElem; 2908 Derived = PrevRD; 2909 } else { 2910 Base = PrevRD; 2911 Derived = PathElem; 2912 } 2913 for (const CXXBaseSpecifier &BS : Derived->bases()) 2914 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2915 Base->getCanonicalDecl()) 2916 DerivedToBasePath.push_back(&BS); 2917 PrevRD = PathElem; 2918 } 2919 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2920 2921 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2922 : CK_BaseToDerivedMemberPointer; 2923 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2924 DerivedToBasePath.end(), C); 2925 } 2926 return C; 2927 } 2928 2929 llvm::Constant * 2930 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2931 assert(MD->isInstance() && "Member function must not be static!"); 2932 2933 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2934 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2935 CodeGenTypes &Types = CGM.getTypes(); 2936 2937 unsigned VBTableIndex = 0; 2938 llvm::Constant *FirstField; 2939 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2940 if (!MD->isVirtual()) { 2941 llvm::Type *Ty; 2942 // Check whether the function has a computable LLVM signature. 2943 if (Types.isFuncTypeConvertible(FPT)) { 2944 // The function has a computable LLVM signature; use the correct type. 2945 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2946 } else { 2947 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2948 // function type is incomplete. 2949 Ty = CGM.PtrDiffTy; 2950 } 2951 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2952 } else { 2953 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2954 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2955 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2956 // Include the vfptr adjustment if the method is in a non-primary vftable. 2957 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2958 if (ML.VBase) 2959 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2960 } 2961 2962 if (VBTableIndex == 0 && 2963 RD->getMSInheritanceModel() == 2964 MSInheritanceModel::Virtual) 2965 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2966 2967 // The rest of the fields are common with data member pointers. 2968 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2969 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2970 NonVirtualBaseAdjustment, VBTableIndex); 2971 } 2972 2973 /// Member pointers are the same if they're either bitwise identical *or* both 2974 /// null. Null-ness for function members is determined by the first field, 2975 /// while for data member pointers we must compare all fields. 2976 llvm::Value * 2977 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2978 llvm::Value *L, 2979 llvm::Value *R, 2980 const MemberPointerType *MPT, 2981 bool Inequality) { 2982 CGBuilderTy &Builder = CGF.Builder; 2983 2984 // Handle != comparisons by switching the sense of all boolean operations. 2985 llvm::ICmpInst::Predicate Eq; 2986 llvm::Instruction::BinaryOps And, Or; 2987 if (Inequality) { 2988 Eq = llvm::ICmpInst::ICMP_NE; 2989 And = llvm::Instruction::Or; 2990 Or = llvm::Instruction::And; 2991 } else { 2992 Eq = llvm::ICmpInst::ICMP_EQ; 2993 And = llvm::Instruction::And; 2994 Or = llvm::Instruction::Or; 2995 } 2996 2997 // If this is a single field member pointer (single inheritance), this is a 2998 // single icmp. 2999 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3000 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3001 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 3002 Inheritance)) 3003 return Builder.CreateICmp(Eq, L, R); 3004 3005 // Compare the first field. 3006 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 3007 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 3008 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 3009 3010 // Compare everything other than the first field. 3011 llvm::Value *Res = nullptr; 3012 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 3013 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 3014 llvm::Value *LF = Builder.CreateExtractValue(L, I); 3015 llvm::Value *RF = Builder.CreateExtractValue(R, I); 3016 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 3017 if (Res) 3018 Res = Builder.CreateBinOp(And, Res, Cmp); 3019 else 3020 Res = Cmp; 3021 } 3022 3023 // Check if the first field is 0 if this is a function pointer. 3024 if (MPT->isMemberFunctionPointer()) { 3025 // (l1 == r1 && ...) || l0 == 0 3026 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 3027 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 3028 Res = Builder.CreateBinOp(Or, Res, IsZero); 3029 } 3030 3031 // Combine the comparison of the first field, which must always be true for 3032 // this comparison to succeeed. 3033 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 3034 } 3035 3036 llvm::Value * 3037 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 3038 llvm::Value *MemPtr, 3039 const MemberPointerType *MPT) { 3040 CGBuilderTy &Builder = CGF.Builder; 3041 llvm::SmallVector<llvm::Constant *, 4> fields; 3042 // We only need one field for member functions. 3043 if (MPT->isMemberFunctionPointer()) 3044 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 3045 else 3046 GetNullMemberPointerFields(MPT, fields); 3047 assert(!fields.empty()); 3048 llvm::Value *FirstField = MemPtr; 3049 if (MemPtr->getType()->isStructTy()) 3050 FirstField = Builder.CreateExtractValue(MemPtr, 0); 3051 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 3052 3053 // For function member pointers, we only need to test the function pointer 3054 // field. The other fields if any can be garbage. 3055 if (MPT->isMemberFunctionPointer()) 3056 return Res; 3057 3058 // Otherwise, emit a series of compares and combine the results. 3059 for (int I = 1, E = fields.size(); I < E; ++I) { 3060 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 3061 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 3062 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 3063 } 3064 return Res; 3065 } 3066 3067 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 3068 llvm::Constant *Val) { 3069 // Function pointers are null if the pointer in the first field is null. 3070 if (MPT->isMemberFunctionPointer()) { 3071 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 3072 Val->getAggregateElement(0U) : Val; 3073 return FirstField->isNullValue(); 3074 } 3075 3076 // If it's not a function pointer and it's zero initializable, we can easily 3077 // check zero. 3078 if (isZeroInitializable(MPT) && Val->isNullValue()) 3079 return true; 3080 3081 // Otherwise, break down all the fields for comparison. Hopefully these 3082 // little Constants are reused, while a big null struct might not be. 3083 llvm::SmallVector<llvm::Constant *, 4> Fields; 3084 GetNullMemberPointerFields(MPT, Fields); 3085 if (Fields.size() == 1) { 3086 assert(Val->getType()->isIntegerTy()); 3087 return Val == Fields[0]; 3088 } 3089 3090 unsigned I, E; 3091 for (I = 0, E = Fields.size(); I != E; ++I) { 3092 if (Val->getAggregateElement(I) != Fields[I]) 3093 break; 3094 } 3095 return I == E; 3096 } 3097 3098 llvm::Value * 3099 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 3100 Address This, 3101 llvm::Value *VBPtrOffset, 3102 llvm::Value *VBTableOffset, 3103 llvm::Value **VBPtrOut) { 3104 CGBuilderTy &Builder = CGF.Builder; 3105 // Load the vbtable pointer from the vbptr in the instance. 3106 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 3107 llvm::Value *VBPtr = Builder.CreateInBoundsGEP( 3108 This.getElementType(), This.getPointer(), VBPtrOffset, "vbptr"); 3109 if (VBPtrOut) *VBPtrOut = VBPtr; 3110 VBPtr = Builder.CreateBitCast(VBPtr, 3111 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 3112 3113 CharUnits VBPtrAlign; 3114 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3115 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3116 CharUnits::fromQuantity(CI->getSExtValue())); 3117 } else { 3118 VBPtrAlign = CGF.getPointerAlign(); 3119 } 3120 3121 llvm::Value *VBTable = Builder.CreateAlignedLoad( 3122 CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable"); 3123 3124 // Translate from byte offset to table index. It improves analyzability. 3125 llvm::Value *VBTableIndex = Builder.CreateAShr( 3126 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3127 "vbtindex", /*isExact=*/true); 3128 3129 // Load an i32 offset from the vb-table. 3130 llvm::Value *VBaseOffs = 3131 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex); 3132 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 3133 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs, 3134 CharUnits::fromQuantity(4), "vbase_offs"); 3135 } 3136 3137 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3138 // it. 3139 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3140 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3141 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3142 CGBuilderTy &Builder = CGF.Builder; 3143 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 3144 llvm::BasicBlock *OriginalBB = nullptr; 3145 llvm::BasicBlock *SkipAdjustBB = nullptr; 3146 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3147 3148 // In the unspecified inheritance model, there might not be a vbtable at all, 3149 // in which case we need to skip the virtual base lookup. If there is a 3150 // vbtable, the first entry is a no-op entry that gives back the original 3151 // base, so look for a virtual base adjustment offset of zero. 3152 if (VBPtrOffset) { 3153 OriginalBB = Builder.GetInsertBlock(); 3154 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3155 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3156 llvm::Value *IsVirtual = 3157 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3158 "memptr.is_vbase"); 3159 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3160 CGF.EmitBlock(VBaseAdjustBB); 3161 } 3162 3163 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3164 // know the vbptr offset. 3165 if (!VBPtrOffset) { 3166 CharUnits offs = CharUnits::Zero(); 3167 if (!RD->hasDefinition()) { 3168 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3169 unsigned DiagID = Diags.getCustomDiagID( 3170 DiagnosticsEngine::Error, 3171 "member pointer representation requires a " 3172 "complete class type for %0 to perform this expression"); 3173 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3174 } else if (RD->getNumVBases()) 3175 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3176 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3177 } 3178 llvm::Value *VBPtr = nullptr; 3179 llvm::Value *VBaseOffs = 3180 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3181 llvm::Value *AdjustedBase = 3182 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs); 3183 3184 // Merge control flow with the case where we didn't have to adjust. 3185 if (VBaseAdjustBB) { 3186 Builder.CreateBr(SkipAdjustBB); 3187 CGF.EmitBlock(SkipAdjustBB); 3188 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3189 Phi->addIncoming(Base.getPointer(), OriginalBB); 3190 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3191 return Phi; 3192 } 3193 return AdjustedBase; 3194 } 3195 3196 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3197 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3198 const MemberPointerType *MPT) { 3199 assert(MPT->isMemberDataPointer()); 3200 unsigned AS = Base.getAddressSpace(); 3201 llvm::Type *PType = 3202 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 3203 CGBuilderTy &Builder = CGF.Builder; 3204 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3205 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3206 3207 // Extract the fields we need, regardless of model. We'll apply them if we 3208 // have them. 3209 llvm::Value *FieldOffset = MemPtr; 3210 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3211 llvm::Value *VBPtrOffset = nullptr; 3212 if (MemPtr->getType()->isStructTy()) { 3213 // We need to extract values. 3214 unsigned I = 0; 3215 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3216 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3217 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3218 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3219 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3220 } 3221 3222 llvm::Value *Addr; 3223 if (VirtualBaseAdjustmentOffset) { 3224 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3225 VBPtrOffset); 3226 } else { 3227 Addr = Base.getPointer(); 3228 } 3229 3230 // Cast to char*. 3231 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 3232 3233 // Apply the offset, which we assume is non-null. 3234 Addr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset, 3235 "memptr.offset"); 3236 3237 // Cast the address to the appropriate pointer type, adopting the address 3238 // space of the base pointer. 3239 return Builder.CreateBitCast(Addr, PType); 3240 } 3241 3242 llvm::Value * 3243 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3244 const CastExpr *E, 3245 llvm::Value *Src) { 3246 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3247 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3248 E->getCastKind() == CK_ReinterpretMemberPointer); 3249 3250 // Use constant emission if we can. 3251 if (isa<llvm::Constant>(Src)) 3252 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3253 3254 // We may be adding or dropping fields from the member pointer, so we need 3255 // both types and the inheritance models of both records. 3256 const MemberPointerType *SrcTy = 3257 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3258 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3259 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3260 3261 // If the classes use the same null representation, reinterpret_cast is a nop. 3262 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3263 if (IsReinterpret && IsFunc) 3264 return Src; 3265 3266 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3267 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3268 if (IsReinterpret && 3269 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3270 return Src; 3271 3272 CGBuilderTy &Builder = CGF.Builder; 3273 3274 // Branch past the conversion if Src is null. 3275 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3276 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3277 3278 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3279 // pointer value of the destination type. 3280 if (IsReinterpret) { 3281 // For reinterpret casts, sema ensures that src and dst are both functions 3282 // or data and have the same size, which means the LLVM types should match. 3283 assert(Src->getType() == DstNull->getType()); 3284 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3285 } 3286 3287 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3288 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3289 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3290 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3291 CGF.EmitBlock(ConvertBB); 3292 3293 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3294 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3295 Builder); 3296 3297 Builder.CreateBr(ContinueBB); 3298 3299 // In the continuation, choose between DstNull and Dst. 3300 CGF.EmitBlock(ContinueBB); 3301 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3302 Phi->addIncoming(DstNull, OriginalBB); 3303 Phi->addIncoming(Dst, ConvertBB); 3304 return Phi; 3305 } 3306 3307 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3308 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3309 CastExpr::path_const_iterator PathBegin, 3310 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3311 CGBuilderTy &Builder) { 3312 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3313 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3314 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3315 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3316 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3317 bool IsConstant = isa<llvm::Constant>(Src); 3318 3319 // Decompose src. 3320 llvm::Value *FirstField = Src; 3321 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3322 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3323 llvm::Value *VBPtrOffset = getZeroInt(); 3324 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3325 // We need to extract values. 3326 unsigned I = 0; 3327 FirstField = Builder.CreateExtractValue(Src, I++); 3328 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3329 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3330 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3331 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3332 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3333 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3334 } 3335 3336 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3337 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3338 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3339 3340 // For data pointers, we adjust the field offset directly. For functions, we 3341 // have a separate field. 3342 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3343 3344 // The virtual inheritance model has a quirk: the virtual base table is always 3345 // referenced when dereferencing a member pointer even if the member pointer 3346 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3347 // to point backwards to the top of the MDC from the first VBase. Undo this 3348 // adjustment to normalize the member pointer. 3349 llvm::Value *SrcVBIndexEqZero = 3350 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3351 if (SrcInheritance == MSInheritanceModel::Virtual) { 3352 if (int64_t SrcOffsetToFirstVBase = 3353 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3354 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3355 SrcVBIndexEqZero, 3356 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3357 getZeroInt()); 3358 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3359 } 3360 } 3361 3362 // A non-zero vbindex implies that we are dealing with a source member in a 3363 // floating virtual base in addition to some non-virtual offset. If the 3364 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3365 // fixed, base. The difference between these two cases is that the vbindex + 3366 // nvoffset *always* point to the member regardless of what context they are 3367 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3368 // base requires explicit nv adjustment. 3369 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3370 CGM.IntTy, 3371 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3372 .getQuantity()); 3373 3374 llvm::Value *NVDisp; 3375 if (IsDerivedToBase) 3376 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3377 else 3378 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3379 3380 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3381 3382 // Update the vbindex to an appropriate value in the destination because 3383 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3384 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3385 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3386 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3387 if (llvm::GlobalVariable *VDispMap = 3388 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3389 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3390 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3391 if (IsConstant) { 3392 llvm::Constant *Mapping = VDispMap->getInitializer(); 3393 VirtualBaseAdjustmentOffset = 3394 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3395 } else { 3396 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3397 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( 3398 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(), 3399 VDispMap, Idxs), 3400 CharUnits::fromQuantity(4)); 3401 } 3402 3403 DstVBIndexEqZero = 3404 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3405 } 3406 } 3407 3408 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3409 // it to the offset of the vbptr. 3410 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3411 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3412 CGM.IntTy, 3413 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3414 VBPtrOffset = 3415 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3416 } 3417 3418 // Likewise, apply a similar adjustment so that dereferencing the member 3419 // pointer correctly accounts for the distance between the start of the first 3420 // virtual base and the top of the MDC. 3421 if (DstInheritance == MSInheritanceModel::Virtual) { 3422 if (int64_t DstOffsetToFirstVBase = 3423 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3424 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3425 DstVBIndexEqZero, 3426 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3427 getZeroInt()); 3428 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3429 } 3430 } 3431 3432 // Recompose dst from the null struct and the adjusted fields from src. 3433 llvm::Value *Dst; 3434 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3435 Dst = FirstField; 3436 } else { 3437 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3438 unsigned Idx = 0; 3439 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3440 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3441 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3442 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3443 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3444 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3445 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3446 } 3447 return Dst; 3448 } 3449 3450 llvm::Constant * 3451 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3452 llvm::Constant *Src) { 3453 const MemberPointerType *SrcTy = 3454 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3455 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3456 3457 CastKind CK = E->getCastKind(); 3458 3459 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3460 E->path_end(), Src); 3461 } 3462 3463 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3464 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3465 CastExpr::path_const_iterator PathBegin, 3466 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3467 assert(CK == CK_DerivedToBaseMemberPointer || 3468 CK == CK_BaseToDerivedMemberPointer || 3469 CK == CK_ReinterpretMemberPointer); 3470 // If src is null, emit a new null for dst. We can't return src because dst 3471 // might have a new representation. 3472 if (MemberPointerConstantIsNull(SrcTy, Src)) 3473 return EmitNullMemberPointer(DstTy); 3474 3475 // We don't need to do anything for reinterpret_casts of non-null member 3476 // pointers. We should only get here when the two type representations have 3477 // the same size. 3478 if (CK == CK_ReinterpretMemberPointer) 3479 return Src; 3480 3481 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3482 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3483 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3484 3485 return Dst; 3486 } 3487 3488 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3489 CodeGenFunction &CGF, const Expr *E, Address This, 3490 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3491 const MemberPointerType *MPT) { 3492 assert(MPT->isMemberFunctionPointer()); 3493 const FunctionProtoType *FPT = 3494 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3495 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3496 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3497 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3498 CGBuilderTy &Builder = CGF.Builder; 3499 3500 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3501 3502 // Extract the fields we need, regardless of model. We'll apply them if we 3503 // have them. 3504 llvm::Value *FunctionPointer = MemPtr; 3505 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3506 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3507 llvm::Value *VBPtrOffset = nullptr; 3508 if (MemPtr->getType()->isStructTy()) { 3509 // We need to extract values. 3510 unsigned I = 0; 3511 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3512 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3513 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3514 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3515 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3516 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3517 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3518 } 3519 3520 if (VirtualBaseAdjustmentOffset) { 3521 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3522 VirtualBaseAdjustmentOffset, VBPtrOffset); 3523 } else { 3524 ThisPtrForCall = This.getPointer(); 3525 } 3526 3527 if (NonVirtualBaseAdjustment) { 3528 // Apply the adjustment and cast back to the original struct type. 3529 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3530 Ptr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Ptr, NonVirtualBaseAdjustment); 3531 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3532 "this.adjusted"); 3533 } 3534 3535 FunctionPointer = 3536 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3537 CGCallee Callee(FPT, FunctionPointer); 3538 return Callee; 3539 } 3540 3541 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3542 return new MicrosoftCXXABI(CGM); 3543 } 3544 3545 // MS RTTI Overview: 3546 // The run time type information emitted by cl.exe contains 5 distinct types of 3547 // structures. Many of them reference each other. 3548 // 3549 // TypeInfo: Static classes that are returned by typeid. 3550 // 3551 // CompleteObjectLocator: Referenced by vftables. They contain information 3552 // required for dynamic casting, including OffsetFromTop. They also contain 3553 // a reference to the TypeInfo for the type and a reference to the 3554 // CompleteHierarchyDescriptor for the type. 3555 // 3556 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3557 // Used during dynamic_cast to walk a class hierarchy. References a base 3558 // class array and the size of said array. 3559 // 3560 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3561 // somewhat of a misnomer because the most derived class is also in the list 3562 // as well as multiple copies of virtual bases (if they occur multiple times 3563 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3564 // every path in the hierarchy, in pre-order depth first order. Note, we do 3565 // not declare a specific llvm type for BaseClassArray, it's merely an array 3566 // of BaseClassDescriptor pointers. 3567 // 3568 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3569 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3570 // BaseClassArray is. It contains information about a class within a 3571 // hierarchy such as: is this base is ambiguous and what is its offset in the 3572 // vbtable. The names of the BaseClassDescriptors have all of their fields 3573 // mangled into them so they can be aggressively deduplicated by the linker. 3574 3575 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3576 StringRef MangledName("??_7type_info@@6B@"); 3577 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3578 return VTable; 3579 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3580 /*isConstant=*/true, 3581 llvm::GlobalVariable::ExternalLinkage, 3582 /*Initializer=*/nullptr, MangledName); 3583 } 3584 3585 namespace { 3586 3587 /// A Helper struct that stores information about a class in a class 3588 /// hierarchy. The information stored in these structs struct is used during 3589 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3590 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3591 // implicit depth first pre-order tree connectivity. getFirstChild and 3592 // getNextSibling allow us to walk the tree efficiently. 3593 struct MSRTTIClass { 3594 enum { 3595 IsPrivateOnPath = 1 | 8, 3596 IsAmbiguous = 2, 3597 IsPrivate = 4, 3598 IsVirtual = 16, 3599 HasHierarchyDescriptor = 64 3600 }; 3601 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3602 uint32_t initialize(const MSRTTIClass *Parent, 3603 const CXXBaseSpecifier *Specifier); 3604 3605 MSRTTIClass *getFirstChild() { return this + 1; } 3606 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3607 return Child + 1 + Child->NumBases; 3608 } 3609 3610 const CXXRecordDecl *RD, *VirtualRoot; 3611 uint32_t Flags, NumBases, OffsetInVBase; 3612 }; 3613 3614 /// Recursively initialize the base class array. 3615 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3616 const CXXBaseSpecifier *Specifier) { 3617 Flags = HasHierarchyDescriptor; 3618 if (!Parent) { 3619 VirtualRoot = nullptr; 3620 OffsetInVBase = 0; 3621 } else { 3622 if (Specifier->getAccessSpecifier() != AS_public) 3623 Flags |= IsPrivate | IsPrivateOnPath; 3624 if (Specifier->isVirtual()) { 3625 Flags |= IsVirtual; 3626 VirtualRoot = RD; 3627 OffsetInVBase = 0; 3628 } else { 3629 if (Parent->Flags & IsPrivateOnPath) 3630 Flags |= IsPrivateOnPath; 3631 VirtualRoot = Parent->VirtualRoot; 3632 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3633 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3634 } 3635 } 3636 NumBases = 0; 3637 MSRTTIClass *Child = getFirstChild(); 3638 for (const CXXBaseSpecifier &Base : RD->bases()) { 3639 NumBases += Child->initialize(this, &Base) + 1; 3640 Child = getNextChild(Child); 3641 } 3642 return NumBases; 3643 } 3644 3645 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3646 switch (Ty->getLinkage()) { 3647 case NoLinkage: 3648 case InternalLinkage: 3649 case UniqueExternalLinkage: 3650 return llvm::GlobalValue::InternalLinkage; 3651 3652 case VisibleNoLinkage: 3653 case ModuleInternalLinkage: 3654 case ModuleLinkage: 3655 case ExternalLinkage: 3656 return llvm::GlobalValue::LinkOnceODRLinkage; 3657 } 3658 llvm_unreachable("Invalid linkage!"); 3659 } 3660 3661 /// An ephemeral helper class for building MS RTTI types. It caches some 3662 /// calls to the module and information about the most derived class in a 3663 /// hierarchy. 3664 struct MSRTTIBuilder { 3665 enum { 3666 HasBranchingHierarchy = 1, 3667 HasVirtualBranchingHierarchy = 2, 3668 HasAmbiguousBases = 4 3669 }; 3670 3671 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3672 : CGM(ABI.CGM), Context(CGM.getContext()), 3673 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3674 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3675 ABI(ABI) {} 3676 3677 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3678 llvm::GlobalVariable * 3679 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3680 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3681 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3682 3683 CodeGenModule &CGM; 3684 ASTContext &Context; 3685 llvm::LLVMContext &VMContext; 3686 llvm::Module &Module; 3687 const CXXRecordDecl *RD; 3688 llvm::GlobalVariable::LinkageTypes Linkage; 3689 MicrosoftCXXABI &ABI; 3690 }; 3691 3692 } // namespace 3693 3694 /// Recursively serializes a class hierarchy in pre-order depth first 3695 /// order. 3696 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3697 const CXXRecordDecl *RD) { 3698 Classes.push_back(MSRTTIClass(RD)); 3699 for (const CXXBaseSpecifier &Base : RD->bases()) 3700 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3701 } 3702 3703 /// Find ambiguity among base classes. 3704 static void 3705 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3706 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3707 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3708 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3709 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3710 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3711 !VirtualBases.insert(Class->RD).second) { 3712 Class = MSRTTIClass::getNextChild(Class); 3713 continue; 3714 } 3715 if (!UniqueBases.insert(Class->RD).second) 3716 AmbiguousBases.insert(Class->RD); 3717 Class++; 3718 } 3719 if (AmbiguousBases.empty()) 3720 return; 3721 for (MSRTTIClass &Class : Classes) 3722 if (AmbiguousBases.count(Class.RD)) 3723 Class.Flags |= MSRTTIClass::IsAmbiguous; 3724 } 3725 3726 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3727 SmallString<256> MangledName; 3728 { 3729 llvm::raw_svector_ostream Out(MangledName); 3730 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3731 } 3732 3733 // Check to see if we've already declared this ClassHierarchyDescriptor. 3734 if (auto CHD = Module.getNamedGlobal(MangledName)) 3735 return CHD; 3736 3737 // Serialize the class hierarchy and initialize the CHD Fields. 3738 SmallVector<MSRTTIClass, 8> Classes; 3739 serializeClassHierarchy(Classes, RD); 3740 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3741 detectAmbiguousBases(Classes); 3742 int Flags = 0; 3743 for (auto Class : Classes) { 3744 if (Class.RD->getNumBases() > 1) 3745 Flags |= HasBranchingHierarchy; 3746 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3747 // believe the field isn't actually used. 3748 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3749 Flags |= HasAmbiguousBases; 3750 } 3751 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3752 Flags |= HasVirtualBranchingHierarchy; 3753 // These gep indices are used to get the address of the first element of the 3754 // base class array. 3755 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3756 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3757 3758 // Forward-declare the class hierarchy descriptor 3759 auto Type = ABI.getClassHierarchyDescriptorType(); 3760 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3761 /*Initializer=*/nullptr, 3762 MangledName); 3763 if (CHD->isWeakForLinker()) 3764 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3765 3766 auto *Bases = getBaseClassArray(Classes); 3767 3768 // Initialize the base class ClassHierarchyDescriptor. 3769 llvm::Constant *Fields[] = { 3770 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3771 llvm::ConstantInt::get(CGM.IntTy, Flags), 3772 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3773 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3774 Bases->getValueType(), Bases, 3775 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3776 }; 3777 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3778 return CHD; 3779 } 3780 3781 llvm::GlobalVariable * 3782 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3783 SmallString<256> MangledName; 3784 { 3785 llvm::raw_svector_ostream Out(MangledName); 3786 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3787 } 3788 3789 // Forward-declare the base class array. 3790 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3791 // mode) bytes of padding. We provide a pointer sized amount of padding by 3792 // adding +1 to Classes.size(). The sections have pointer alignment and are 3793 // marked pick-any so it shouldn't matter. 3794 llvm::Type *PtrType = ABI.getImageRelativeType( 3795 ABI.getBaseClassDescriptorType()->getPointerTo()); 3796 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3797 auto *BCA = 3798 new llvm::GlobalVariable(Module, ArrType, 3799 /*isConstant=*/true, Linkage, 3800 /*Initializer=*/nullptr, MangledName); 3801 if (BCA->isWeakForLinker()) 3802 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3803 3804 // Initialize the BaseClassArray. 3805 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3806 for (MSRTTIClass &Class : Classes) 3807 BaseClassArrayData.push_back( 3808 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3809 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3810 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3811 return BCA; 3812 } 3813 3814 llvm::GlobalVariable * 3815 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3816 // Compute the fields for the BaseClassDescriptor. They are computed up front 3817 // because they are mangled into the name of the object. 3818 uint32_t OffsetInVBTable = 0; 3819 int32_t VBPtrOffset = -1; 3820 if (Class.VirtualRoot) { 3821 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3822 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3823 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3824 } 3825 3826 SmallString<256> MangledName; 3827 { 3828 llvm::raw_svector_ostream Out(MangledName); 3829 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3830 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3831 Class.Flags, Out); 3832 } 3833 3834 // Check to see if we've already declared this object. 3835 if (auto BCD = Module.getNamedGlobal(MangledName)) 3836 return BCD; 3837 3838 // Forward-declare the base class descriptor. 3839 auto Type = ABI.getBaseClassDescriptorType(); 3840 auto BCD = 3841 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3842 /*Initializer=*/nullptr, MangledName); 3843 if (BCD->isWeakForLinker()) 3844 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3845 3846 // Initialize the BaseClassDescriptor. 3847 llvm::Constant *Fields[] = { 3848 ABI.getImageRelativeConstant( 3849 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3850 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3851 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3852 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3853 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3854 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3855 ABI.getImageRelativeConstant( 3856 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3857 }; 3858 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3859 return BCD; 3860 } 3861 3862 llvm::GlobalVariable * 3863 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3864 SmallString<256> MangledName; 3865 { 3866 llvm::raw_svector_ostream Out(MangledName); 3867 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3868 } 3869 3870 // Check to see if we've already computed this complete object locator. 3871 if (auto COL = Module.getNamedGlobal(MangledName)) 3872 return COL; 3873 3874 // Compute the fields of the complete object locator. 3875 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3876 int VFPtrOffset = 0; 3877 // The offset includes the vtordisp if one exists. 3878 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3879 if (Context.getASTRecordLayout(RD) 3880 .getVBaseOffsetsMap() 3881 .find(VBase) 3882 ->second.hasVtorDisp()) 3883 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3884 3885 // Forward-declare the complete object locator. 3886 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3887 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3888 /*Initializer=*/nullptr, MangledName); 3889 3890 // Initialize the CompleteObjectLocator. 3891 llvm::Constant *Fields[] = { 3892 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3893 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3894 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3895 ABI.getImageRelativeConstant( 3896 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3897 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3898 ABI.getImageRelativeConstant(COL), 3899 }; 3900 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3901 if (!ABI.isImageRelative()) 3902 FieldsRef = FieldsRef.drop_back(); 3903 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3904 if (COL->isWeakForLinker()) 3905 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3906 return COL; 3907 } 3908 3909 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3910 bool &IsConst, bool &IsVolatile, 3911 bool &IsUnaligned) { 3912 T = Context.getExceptionObjectType(T); 3913 3914 // C++14 [except.handle]p3: 3915 // A handler is a match for an exception object of type E if [...] 3916 // - the handler is of type cv T or const T& where T is a pointer type and 3917 // E is a pointer type that can be converted to T by [...] 3918 // - a qualification conversion 3919 IsConst = false; 3920 IsVolatile = false; 3921 IsUnaligned = false; 3922 QualType PointeeType = T->getPointeeType(); 3923 if (!PointeeType.isNull()) { 3924 IsConst = PointeeType.isConstQualified(); 3925 IsVolatile = PointeeType.isVolatileQualified(); 3926 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3927 } 3928 3929 // Member pointer types like "const int A::*" are represented by having RTTI 3930 // for "int A::*" and separately storing the const qualifier. 3931 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3932 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3933 MPTy->getClass()); 3934 3935 // Pointer types like "const int * const *" are represented by having RTTI 3936 // for "const int **" and separately storing the const qualifier. 3937 if (T->isPointerType()) 3938 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3939 3940 return T; 3941 } 3942 3943 CatchTypeInfo 3944 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3945 QualType CatchHandlerType) { 3946 // TypeDescriptors for exceptions never have qualified pointer types, 3947 // qualifiers are stored separately in order to support qualification 3948 // conversions. 3949 bool IsConst, IsVolatile, IsUnaligned; 3950 Type = 3951 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3952 3953 bool IsReference = CatchHandlerType->isReferenceType(); 3954 3955 uint32_t Flags = 0; 3956 if (IsConst) 3957 Flags |= 1; 3958 if (IsVolatile) 3959 Flags |= 2; 3960 if (IsUnaligned) 3961 Flags |= 4; 3962 if (IsReference) 3963 Flags |= 8; 3964 3965 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3966 Flags}; 3967 } 3968 3969 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3970 /// llvm::GlobalVariable * because different type descriptors have different 3971 /// types, and need to be abstracted. They are abstracting by casting the 3972 /// address to an Int8PtrTy. 3973 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3974 SmallString<256> MangledName; 3975 { 3976 llvm::raw_svector_ostream Out(MangledName); 3977 getMangleContext().mangleCXXRTTI(Type, Out); 3978 } 3979 3980 // Check to see if we've already declared this TypeDescriptor. 3981 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3982 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 3983 3984 // Note for the future: If we would ever like to do deferred emission of 3985 // RTTI, check if emitting vtables opportunistically need any adjustment. 3986 3987 // Compute the fields for the TypeDescriptor. 3988 SmallString<256> TypeInfoString; 3989 { 3990 llvm::raw_svector_ostream Out(TypeInfoString); 3991 getMangleContext().mangleCXXRTTIName(Type, Out); 3992 } 3993 3994 // Declare and initialize the TypeDescriptor. 3995 llvm::Constant *Fields[] = { 3996 getTypeInfoVTable(CGM), // VFPtr 3997 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 3998 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 3999 llvm::StructType *TypeDescriptorType = 4000 getTypeDescriptorType(TypeInfoString); 4001 auto *Var = new llvm::GlobalVariable( 4002 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 4003 getLinkageForRTTI(Type), 4004 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 4005 MangledName); 4006 if (Var->isWeakForLinker()) 4007 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 4008 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 4009 } 4010 4011 /// Gets or a creates a Microsoft CompleteObjectLocator. 4012 llvm::GlobalVariable * 4013 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 4014 const VPtrInfo &Info) { 4015 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 4016 } 4017 4018 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 4019 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 4020 // There are no constructor variants, always emit the complete destructor. 4021 llvm::Function *Fn = 4022 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 4023 CGM.maybeSetTrivialComdat(*ctor, *Fn); 4024 return; 4025 } 4026 4027 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 4028 4029 // Emit the base destructor if the base and complete (vbase) destructors are 4030 // equivalent. This effectively implements -mconstructor-aliases as part of 4031 // the ABI. 4032 if (GD.getDtorType() == Dtor_Complete && 4033 dtor->getParent()->getNumVBases() == 0) 4034 GD = GD.getWithDtorType(Dtor_Base); 4035 4036 // The base destructor is equivalent to the base destructor of its 4037 // base class if there is exactly one non-virtual base class with a 4038 // non-trivial destructor, there are no fields with a non-trivial 4039 // destructor, and the body of the destructor is trivial. 4040 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 4041 return; 4042 4043 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 4044 if (Fn->isWeakForLinker()) 4045 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 4046 } 4047 4048 llvm::Function * 4049 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 4050 CXXCtorType CT) { 4051 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 4052 4053 // Calculate the mangled name. 4054 SmallString<256> ThunkName; 4055 llvm::raw_svector_ostream Out(ThunkName); 4056 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 4057 4058 // If the thunk has been generated previously, just return it. 4059 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 4060 return cast<llvm::Function>(GV); 4061 4062 // Create the llvm::Function. 4063 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 4064 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 4065 const CXXRecordDecl *RD = CD->getParent(); 4066 QualType RecordTy = getContext().getRecordType(RD); 4067 llvm::Function *ThunkFn = llvm::Function::Create( 4068 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 4069 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 4070 FnInfo.getEffectiveCallingConvention())); 4071 if (ThunkFn->isWeakForLinker()) 4072 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 4073 bool IsCopy = CT == Ctor_CopyingClosure; 4074 4075 // Start codegen. 4076 CodeGenFunction CGF(CGM); 4077 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 4078 4079 // Build FunctionArgs. 4080 FunctionArgList FunctionArgs; 4081 4082 // A constructor always starts with a 'this' pointer as its first argument. 4083 buildThisParam(CGF, FunctionArgs); 4084 4085 // Following the 'this' pointer is a reference to the source object that we 4086 // are copying from. 4087 ImplicitParamDecl SrcParam( 4088 getContext(), /*DC=*/nullptr, SourceLocation(), 4089 &getContext().Idents.get("src"), 4090 getContext().getLValueReferenceType(RecordTy, 4091 /*SpelledAsLValue=*/true), 4092 ImplicitParamDecl::Other); 4093 if (IsCopy) 4094 FunctionArgs.push_back(&SrcParam); 4095 4096 // Constructors for classes which utilize virtual bases have an additional 4097 // parameter which indicates whether or not it is being delegated to by a more 4098 // derived constructor. 4099 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 4100 SourceLocation(), 4101 &getContext().Idents.get("is_most_derived"), 4102 getContext().IntTy, ImplicitParamDecl::Other); 4103 // Only add the parameter to the list if the class has virtual bases. 4104 if (RD->getNumVBases() > 0) 4105 FunctionArgs.push_back(&IsMostDerived); 4106 4107 // Start defining the function. 4108 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4109 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 4110 FunctionArgs, CD->getLocation(), SourceLocation()); 4111 // Create a scope with an artificial location for the body of this function. 4112 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 4113 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 4114 llvm::Value *This = getThisValue(CGF); 4115 4116 llvm::Value *SrcVal = 4117 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4118 : nullptr; 4119 4120 CallArgList Args; 4121 4122 // Push the this ptr. 4123 Args.add(RValue::get(This), CD->getThisType()); 4124 4125 // Push the src ptr. 4126 if (SrcVal) 4127 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4128 4129 // Add the rest of the default arguments. 4130 SmallVector<const Stmt *, 4> ArgVec; 4131 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4132 for (const ParmVarDecl *PD : params) { 4133 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4134 ArgVec.push_back(PD->getDefaultArg()); 4135 } 4136 4137 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4138 4139 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4140 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4141 4142 // Insert any ABI-specific implicit constructor arguments. 4143 AddedStructorArgCounts ExtraArgs = 4144 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4145 /*ForVirtualBase=*/false, 4146 /*Delegating=*/false, Args); 4147 // Call the destructor with our arguments. 4148 llvm::Constant *CalleePtr = 4149 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4150 CGCallee Callee = 4151 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4152 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4153 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4154 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4155 4156 Cleanups.ForceCleanup(); 4157 4158 // Emit the ret instruction, remove any temporary instructions created for the 4159 // aid of CodeGen. 4160 CGF.FinishFunction(SourceLocation()); 4161 4162 return ThunkFn; 4163 } 4164 4165 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4166 uint32_t NVOffset, 4167 int32_t VBPtrOffset, 4168 uint32_t VBIndex) { 4169 assert(!T->isReferenceType()); 4170 4171 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4172 const CXXConstructorDecl *CD = 4173 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4174 CXXCtorType CT = Ctor_Complete; 4175 if (CD) 4176 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4177 CT = Ctor_CopyingClosure; 4178 4179 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4180 SmallString<256> MangledName; 4181 { 4182 llvm::raw_svector_ostream Out(MangledName); 4183 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4184 VBPtrOffset, VBIndex, Out); 4185 } 4186 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4187 return getImageRelativeConstant(GV); 4188 4189 // The TypeDescriptor is used by the runtime to determine if a catch handler 4190 // is appropriate for the exception object. 4191 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4192 4193 // The runtime is responsible for calling the copy constructor if the 4194 // exception is caught by value. 4195 llvm::Constant *CopyCtor; 4196 if (CD) { 4197 if (CT == Ctor_CopyingClosure) 4198 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4199 else 4200 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4201 4202 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 4203 } else { 4204 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4205 } 4206 CopyCtor = getImageRelativeConstant(CopyCtor); 4207 4208 bool IsScalar = !RD; 4209 bool HasVirtualBases = false; 4210 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4211 QualType PointeeType = T; 4212 if (T->isPointerType()) 4213 PointeeType = T->getPointeeType(); 4214 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4215 HasVirtualBases = RD->getNumVBases() > 0; 4216 if (IdentifierInfo *II = RD->getIdentifier()) 4217 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4218 } 4219 4220 // Encode the relevant CatchableType properties into the Flags bitfield. 4221 // FIXME: Figure out how bits 2 or 8 can get set. 4222 uint32_t Flags = 0; 4223 if (IsScalar) 4224 Flags |= 1; 4225 if (HasVirtualBases) 4226 Flags |= 4; 4227 if (IsStdBadAlloc) 4228 Flags |= 16; 4229 4230 llvm::Constant *Fields[] = { 4231 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4232 TD, // TypeDescriptor 4233 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4234 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4235 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4236 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4237 CopyCtor // CopyCtor 4238 }; 4239 llvm::StructType *CTType = getCatchableTypeType(); 4240 auto *GV = new llvm::GlobalVariable( 4241 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4242 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4243 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4244 GV->setSection(".xdata"); 4245 if (GV->isWeakForLinker()) 4246 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4247 return getImageRelativeConstant(GV); 4248 } 4249 4250 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4251 assert(!T->isReferenceType()); 4252 4253 // See if we've already generated a CatchableTypeArray for this type before. 4254 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4255 if (CTA) 4256 return CTA; 4257 4258 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4259 // using a SmallSetVector. Duplicates may arise due to virtual bases 4260 // occurring more than once in the hierarchy. 4261 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4262 4263 // C++14 [except.handle]p3: 4264 // A handler is a match for an exception object of type E if [...] 4265 // - the handler is of type cv T or cv T& and T is an unambiguous public 4266 // base class of E, or 4267 // - the handler is of type cv T or const T& where T is a pointer type and 4268 // E is a pointer type that can be converted to T by [...] 4269 // - a standard pointer conversion (4.10) not involving conversions to 4270 // pointers to private or protected or ambiguous classes 4271 const CXXRecordDecl *MostDerivedClass = nullptr; 4272 bool IsPointer = T->isPointerType(); 4273 if (IsPointer) 4274 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4275 else 4276 MostDerivedClass = T->getAsCXXRecordDecl(); 4277 4278 // Collect all the unambiguous public bases of the MostDerivedClass. 4279 if (MostDerivedClass) { 4280 const ASTContext &Context = getContext(); 4281 const ASTRecordLayout &MostDerivedLayout = 4282 Context.getASTRecordLayout(MostDerivedClass); 4283 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4284 SmallVector<MSRTTIClass, 8> Classes; 4285 serializeClassHierarchy(Classes, MostDerivedClass); 4286 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4287 detectAmbiguousBases(Classes); 4288 for (const MSRTTIClass &Class : Classes) { 4289 // Skip any ambiguous or private bases. 4290 if (Class.Flags & 4291 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4292 continue; 4293 // Write down how to convert from a derived pointer to a base pointer. 4294 uint32_t OffsetInVBTable = 0; 4295 int32_t VBPtrOffset = -1; 4296 if (Class.VirtualRoot) { 4297 OffsetInVBTable = 4298 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4299 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4300 } 4301 4302 // Turn our record back into a pointer if the exception object is a 4303 // pointer. 4304 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4305 if (IsPointer) 4306 RTTITy = Context.getPointerType(RTTITy); 4307 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4308 VBPtrOffset, OffsetInVBTable)); 4309 } 4310 } 4311 4312 // C++14 [except.handle]p3: 4313 // A handler is a match for an exception object of type E if 4314 // - The handler is of type cv T or cv T& and E and T are the same type 4315 // (ignoring the top-level cv-qualifiers) 4316 CatchableTypes.insert(getCatchableType(T)); 4317 4318 // C++14 [except.handle]p3: 4319 // A handler is a match for an exception object of type E if 4320 // - the handler is of type cv T or const T& where T is a pointer type and 4321 // E is a pointer type that can be converted to T by [...] 4322 // - a standard pointer conversion (4.10) not involving conversions to 4323 // pointers to private or protected or ambiguous classes 4324 // 4325 // C++14 [conv.ptr]p2: 4326 // A prvalue of type "pointer to cv T," where T is an object type, can be 4327 // converted to a prvalue of type "pointer to cv void". 4328 if (IsPointer && T->getPointeeType()->isObjectType()) 4329 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4330 4331 // C++14 [except.handle]p3: 4332 // A handler is a match for an exception object of type E if [...] 4333 // - the handler is of type cv T or const T& where T is a pointer or 4334 // pointer to member type and E is std::nullptr_t. 4335 // 4336 // We cannot possibly list all possible pointer types here, making this 4337 // implementation incompatible with the standard. However, MSVC includes an 4338 // entry for pointer-to-void in this case. Let's do the same. 4339 if (T->isNullPtrType()) 4340 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4341 4342 uint32_t NumEntries = CatchableTypes.size(); 4343 llvm::Type *CTType = 4344 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4345 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4346 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4347 llvm::Constant *Fields[] = { 4348 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4349 llvm::ConstantArray::get( 4350 AT, llvm::makeArrayRef(CatchableTypes.begin(), 4351 CatchableTypes.end())) // CatchableTypes 4352 }; 4353 SmallString<256> MangledName; 4354 { 4355 llvm::raw_svector_ostream Out(MangledName); 4356 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4357 } 4358 CTA = new llvm::GlobalVariable( 4359 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4360 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4361 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4362 CTA->setSection(".xdata"); 4363 if (CTA->isWeakForLinker()) 4364 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4365 return CTA; 4366 } 4367 4368 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4369 bool IsConst, IsVolatile, IsUnaligned; 4370 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4371 4372 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4373 // the exception object may be caught as. 4374 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4375 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4376 // This is used as a component of the mangled name which means that we need to 4377 // know what it is in order to see if we have previously generated the 4378 // ThrowInfo. 4379 uint32_t NumEntries = 4380 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4381 ->getLimitedValue(); 4382 4383 SmallString<256> MangledName; 4384 { 4385 llvm::raw_svector_ostream Out(MangledName); 4386 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4387 NumEntries, Out); 4388 } 4389 4390 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4391 // one before. 4392 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4393 return GV; 4394 4395 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4396 // be at least as CV qualified. Encode this requirement into the Flags 4397 // bitfield. 4398 uint32_t Flags = 0; 4399 if (IsConst) 4400 Flags |= 1; 4401 if (IsVolatile) 4402 Flags |= 2; 4403 if (IsUnaligned) 4404 Flags |= 4; 4405 4406 // The cleanup-function (a destructor) must be called when the exception 4407 // object's lifetime ends. 4408 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4409 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4410 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4411 if (!DtorD->isTrivial()) 4412 CleanupFn = llvm::ConstantExpr::getBitCast( 4413 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), 4414 CGM.Int8PtrTy); 4415 // This is unused as far as we can tell, initialize it to null. 4416 llvm::Constant *ForwardCompat = 4417 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4418 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4419 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4420 llvm::StructType *TIType = getThrowInfoType(); 4421 llvm::Constant *Fields[] = { 4422 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4423 getImageRelativeConstant(CleanupFn), // CleanupFn 4424 ForwardCompat, // ForwardCompat 4425 PointerToCatchableTypes // CatchableTypeArray 4426 }; 4427 auto *GV = new llvm::GlobalVariable( 4428 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4429 llvm::ConstantStruct::get(TIType, Fields), MangledName.str()); 4430 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4431 GV->setSection(".xdata"); 4432 if (GV->isWeakForLinker()) 4433 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4434 return GV; 4435 } 4436 4437 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4438 const Expr *SubExpr = E->getSubExpr(); 4439 assert(SubExpr && "SubExpr cannot be null"); 4440 QualType ThrowType = SubExpr->getType(); 4441 // The exception object lives on the stack and it's address is passed to the 4442 // runtime function. 4443 Address AI = CGF.CreateMemTemp(ThrowType); 4444 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4445 /*IsInit=*/true); 4446 4447 // The so-called ThrowInfo is used to describe how the exception object may be 4448 // caught. 4449 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4450 4451 // Call into the runtime to throw the exception. 4452 llvm::Value *Args[] = { 4453 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4454 TI 4455 }; 4456 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4457 } 4458 4459 std::pair<llvm::Value *, const CXXRecordDecl *> 4460 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4461 const CXXRecordDecl *RD) { 4462 std::tie(This, std::ignore, RD) = 4463 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4464 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4465 } 4466 4467 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( 4468 const CXXRecordDecl *CXXRD) const { 4469 // MSVC Windows on Arm64 considers a type not HFA if it is not an 4470 // aggregate according to the C++14 spec. This is not consistent with the 4471 // AAPCS64, but is defacto spec on that platform. 4472 return !CGM.getTarget().getTriple().isAArch64() || 4473 isTrivialForAArch64MSVC(CXXRD); 4474 } 4475