1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenTypes.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/CXXInheritance.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/AST/VTableBuilder.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/IR/Intrinsics.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 namespace { 37 38 /// Holds all the vbtable globals for a given class. 39 struct VBTableGlobals { 40 const VPtrInfoVector *VBTables; 41 SmallVector<llvm::GlobalVariable *, 2> Globals; 42 }; 43 44 class MicrosoftCXXABI : public CGCXXABI { 45 public: 46 MicrosoftCXXABI(CodeGenModule &CGM) 47 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 48 ClassHierarchyDescriptorType(nullptr), 49 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 50 ThrowInfoType(nullptr) {} 51 52 bool HasThisReturn(GlobalDecl GD) const override; 53 bool hasMostDerivedReturn(GlobalDecl GD) const override; 54 55 bool classifyReturnType(CGFunctionInfo &FI) const override; 56 57 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 58 59 bool isSRetParameterAfterThis() const override { return true; } 60 61 bool isThisCompleteObject(GlobalDecl GD) const override { 62 // The Microsoft ABI doesn't use separate complete-object vs. 63 // base-object variants of constructors, but it does of destructors. 64 if (isa<CXXDestructorDecl>(GD.getDecl())) { 65 switch (GD.getDtorType()) { 66 case Dtor_Complete: 67 case Dtor_Deleting: 68 return true; 69 70 case Dtor_Base: 71 return false; 72 73 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 74 } 75 llvm_unreachable("bad dtor kind"); 76 } 77 78 // No other kinds. 79 return false; 80 } 81 82 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 83 FunctionArgList &Args) const override { 84 assert(Args.size() >= 2 && 85 "expected the arglist to have at least two args!"); 86 // The 'most_derived' parameter goes second if the ctor is variadic and 87 // has v-bases. 88 if (CD->getParent()->getNumVBases() > 0 && 89 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 90 return 2; 91 return 1; 92 } 93 94 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 95 std::vector<CharUnits> VBPtrOffsets; 96 const ASTContext &Context = getContext(); 97 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 98 99 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 100 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 101 const ASTRecordLayout &SubobjectLayout = 102 Context.getASTRecordLayout(VBT->IntroducingObject); 103 CharUnits Offs = VBT->NonVirtualOffset; 104 Offs += SubobjectLayout.getVBPtrOffset(); 105 if (VBT->getVBaseWithVPtr()) 106 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 107 VBPtrOffsets.push_back(Offs); 108 } 109 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 110 return VBPtrOffsets; 111 } 112 113 StringRef GetPureVirtualCallName() override { return "_purecall"; } 114 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 115 116 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 117 Address Ptr, QualType ElementType, 118 const CXXDestructorDecl *Dtor) override; 119 120 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 121 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 122 123 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 124 125 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 126 const VPtrInfo &Info); 127 128 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 129 CatchTypeInfo 130 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 131 132 /// MSVC needs an extra flag to indicate a catchall. 133 CatchTypeInfo getCatchAllTypeInfo() override { 134 return CatchTypeInfo{nullptr, 0x40}; 135 } 136 137 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 138 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 139 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 140 Address ThisPtr, 141 llvm::Type *StdTypeInfoPtrTy) override; 142 143 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 144 QualType SrcRecordTy) override; 145 146 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 147 QualType SrcRecordTy, QualType DestTy, 148 QualType DestRecordTy, 149 llvm::BasicBlock *CastEnd) override; 150 151 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 152 QualType SrcRecordTy, 153 QualType DestTy) override; 154 155 bool EmitBadCastCall(CodeGenFunction &CGF) override; 156 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 157 return false; 158 } 159 160 llvm::Value * 161 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 162 const CXXRecordDecl *ClassDecl, 163 const CXXRecordDecl *BaseClassDecl) override; 164 165 llvm::BasicBlock * 166 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 167 const CXXRecordDecl *RD) override; 168 169 llvm::BasicBlock * 170 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 171 172 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 173 const CXXRecordDecl *RD) override; 174 175 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 176 177 // Background on MSVC destructors 178 // ============================== 179 // 180 // Both Itanium and MSVC ABIs have destructor variants. The variant names 181 // roughly correspond in the following way: 182 // Itanium Microsoft 183 // Base -> no name, just ~Class 184 // Complete -> vbase destructor 185 // Deleting -> scalar deleting destructor 186 // vector deleting destructor 187 // 188 // The base and complete destructors are the same as in Itanium, although the 189 // complete destructor does not accept a VTT parameter when there are virtual 190 // bases. A separate mechanism involving vtordisps is used to ensure that 191 // virtual methods of destroyed subobjects are not called. 192 // 193 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 194 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 195 // pointer points to an array. The scalar deleting destructor assumes that 196 // bit 2 is zero, and therefore does not contain a loop. 197 // 198 // For virtual destructors, only one entry is reserved in the vftable, and it 199 // always points to the vector deleting destructor. The vector deleting 200 // destructor is the most general, so it can be used to destroy objects in 201 // place, delete single heap objects, or delete arrays. 202 // 203 // A TU defining a non-inline destructor is only guaranteed to emit a base 204 // destructor, and all of the other variants are emitted on an as-needed basis 205 // in COMDATs. Because a non-base destructor can be emitted in a TU that 206 // lacks a definition for the destructor, non-base destructors must always 207 // delegate to or alias the base destructor. 208 209 AddedStructorArgs 210 buildStructorSignature(GlobalDecl GD, 211 SmallVectorImpl<CanQualType> &ArgTys) override; 212 213 /// Non-base dtors should be emitted as delegating thunks in this ABI. 214 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 215 CXXDtorType DT) const override { 216 return DT != Dtor_Base; 217 } 218 219 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 220 const CXXDestructorDecl *Dtor, 221 CXXDtorType DT) const override; 222 223 llvm::GlobalValue::LinkageTypes 224 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 225 CXXDtorType DT) const override; 226 227 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 228 229 const CXXRecordDecl * 230 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 231 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 232 MethodVFTableLocation ML = 233 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 234 // The vbases might be ordered differently in the final overrider object 235 // and the complete object, so the "this" argument may sometimes point to 236 // memory that has no particular type (e.g. past the complete object). 237 // In this case, we just use a generic pointer type. 238 // FIXME: might want to have a more precise type in the non-virtual 239 // multiple inheritance case. 240 if (ML.VBase || !ML.VFPtrOffset.isZero()) 241 return nullptr; 242 } 243 return MD->getParent(); 244 } 245 246 Address 247 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 248 Address This, 249 bool VirtualCall) override; 250 251 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 252 FunctionArgList &Params) override; 253 254 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 255 256 AddedStructorArgs 257 addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, 258 CXXCtorType Type, bool ForVirtualBase, 259 bool Delegating, CallArgList &Args) override; 260 261 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 262 CXXDtorType Type, bool ForVirtualBase, 263 bool Delegating, Address This, 264 QualType ThisTy) override; 265 266 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 267 llvm::GlobalVariable *VTable); 268 269 void emitVTableDefinitions(CodeGenVTables &CGVT, 270 const CXXRecordDecl *RD) override; 271 272 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 273 CodeGenFunction::VPtr Vptr) override; 274 275 /// Don't initialize vptrs if dynamic class 276 /// is marked with with the 'novtable' attribute. 277 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 278 return !VTableClass->hasAttr<MSNoVTableAttr>(); 279 } 280 281 llvm::Constant * 282 getVTableAddressPoint(BaseSubobject Base, 283 const CXXRecordDecl *VTableClass) override; 284 285 llvm::Value *getVTableAddressPointInStructor( 286 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 287 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 288 289 llvm::Constant * 290 getVTableAddressPointForConstExpr(BaseSubobject Base, 291 const CXXRecordDecl *VTableClass) override; 292 293 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 294 CharUnits VPtrOffset) override; 295 296 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 297 Address This, llvm::Type *Ty, 298 SourceLocation Loc) override; 299 300 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 301 const CXXDestructorDecl *Dtor, 302 CXXDtorType DtorType, Address This, 303 DeleteOrMemberCallExpr E) override; 304 305 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 306 CallArgList &CallArgs) override { 307 assert(GD.getDtorType() == Dtor_Deleting && 308 "Only deleting destructor thunks are available in this ABI"); 309 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 310 getContext().IntTy); 311 } 312 313 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 314 315 llvm::GlobalVariable * 316 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 317 llvm::GlobalVariable::LinkageTypes Linkage); 318 319 llvm::GlobalVariable * 320 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 321 const CXXRecordDecl *DstRD) { 322 SmallString<256> OutName; 323 llvm::raw_svector_ostream Out(OutName); 324 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 325 StringRef MangledName = OutName.str(); 326 327 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 328 return VDispMap; 329 330 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 331 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 332 SmallVector<llvm::Constant *, 4> Map(NumEntries, 333 llvm::UndefValue::get(CGM.IntTy)); 334 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 335 bool AnyDifferent = false; 336 for (const auto &I : SrcRD->vbases()) { 337 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 338 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 339 continue; 340 341 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 342 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 343 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 344 AnyDifferent |= SrcVBIndex != DstVBIndex; 345 } 346 // This map would be useless, don't use it. 347 if (!AnyDifferent) 348 return nullptr; 349 350 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 351 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 352 llvm::GlobalValue::LinkageTypes Linkage = 353 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 354 ? llvm::GlobalValue::LinkOnceODRLinkage 355 : llvm::GlobalValue::InternalLinkage; 356 auto *VDispMap = new llvm::GlobalVariable( 357 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 358 /*Initializer=*/Init, MangledName); 359 return VDispMap; 360 } 361 362 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 363 llvm::GlobalVariable *GV) const; 364 365 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 366 GlobalDecl GD, bool ReturnAdjustment) override { 367 GVALinkage Linkage = 368 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 369 370 if (Linkage == GVA_Internal) 371 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 372 else if (ReturnAdjustment) 373 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 374 else 375 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 376 } 377 378 bool exportThunk() override { return false; } 379 380 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 381 const ThisAdjustment &TA) override; 382 383 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 384 const ReturnAdjustment &RA) override; 385 386 void EmitThreadLocalInitFuncs( 387 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 388 ArrayRef<llvm::Function *> CXXThreadLocalInits, 389 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 390 391 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 392 return false; 393 } 394 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 395 QualType LValType) override; 396 397 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 398 llvm::GlobalVariable *DeclPtr, 399 bool PerformInit) override; 400 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 401 llvm::FunctionCallee Dtor, 402 llvm::Constant *Addr) override; 403 404 // ==== Notes on array cookies ========= 405 // 406 // MSVC seems to only use cookies when the class has a destructor; a 407 // two-argument usual array deallocation function isn't sufficient. 408 // 409 // For example, this code prints "100" and "1": 410 // struct A { 411 // char x; 412 // void *operator new[](size_t sz) { 413 // printf("%u\n", sz); 414 // return malloc(sz); 415 // } 416 // void operator delete[](void *p, size_t sz) { 417 // printf("%u\n", sz); 418 // free(p); 419 // } 420 // }; 421 // int main() { 422 // A *p = new A[100]; 423 // delete[] p; 424 // } 425 // Whereas it prints "104" and "104" if you give A a destructor. 426 427 bool requiresArrayCookie(const CXXDeleteExpr *expr, 428 QualType elementType) override; 429 bool requiresArrayCookie(const CXXNewExpr *expr) override; 430 CharUnits getArrayCookieSizeImpl(QualType type) override; 431 Address InitializeArrayCookie(CodeGenFunction &CGF, 432 Address NewPtr, 433 llvm::Value *NumElements, 434 const CXXNewExpr *expr, 435 QualType ElementType) override; 436 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 437 Address allocPtr, 438 CharUnits cookieSize) override; 439 440 friend struct MSRTTIBuilder; 441 442 bool isImageRelative() const { 443 return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64; 444 } 445 446 // 5 routines for constructing the llvm types for MS RTTI structs. 447 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 448 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 449 TDTypeName += llvm::utostr(TypeInfoString.size()); 450 llvm::StructType *&TypeDescriptorType = 451 TypeDescriptorTypeMap[TypeInfoString.size()]; 452 if (TypeDescriptorType) 453 return TypeDescriptorType; 454 llvm::Type *FieldTypes[] = { 455 CGM.Int8PtrPtrTy, 456 CGM.Int8PtrTy, 457 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 458 TypeDescriptorType = 459 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 460 return TypeDescriptorType; 461 } 462 463 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 464 if (!isImageRelative()) 465 return PtrType; 466 return CGM.IntTy; 467 } 468 469 llvm::StructType *getBaseClassDescriptorType() { 470 if (BaseClassDescriptorType) 471 return BaseClassDescriptorType; 472 llvm::Type *FieldTypes[] = { 473 getImageRelativeType(CGM.Int8PtrTy), 474 CGM.IntTy, 475 CGM.IntTy, 476 CGM.IntTy, 477 CGM.IntTy, 478 CGM.IntTy, 479 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 480 }; 481 BaseClassDescriptorType = llvm::StructType::create( 482 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 483 return BaseClassDescriptorType; 484 } 485 486 llvm::StructType *getClassHierarchyDescriptorType() { 487 if (ClassHierarchyDescriptorType) 488 return ClassHierarchyDescriptorType; 489 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 490 ClassHierarchyDescriptorType = llvm::StructType::create( 491 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 492 llvm::Type *FieldTypes[] = { 493 CGM.IntTy, 494 CGM.IntTy, 495 CGM.IntTy, 496 getImageRelativeType( 497 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 498 }; 499 ClassHierarchyDescriptorType->setBody(FieldTypes); 500 return ClassHierarchyDescriptorType; 501 } 502 503 llvm::StructType *getCompleteObjectLocatorType() { 504 if (CompleteObjectLocatorType) 505 return CompleteObjectLocatorType; 506 CompleteObjectLocatorType = llvm::StructType::create( 507 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 508 llvm::Type *FieldTypes[] = { 509 CGM.IntTy, 510 CGM.IntTy, 511 CGM.IntTy, 512 getImageRelativeType(CGM.Int8PtrTy), 513 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 514 getImageRelativeType(CompleteObjectLocatorType), 515 }; 516 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 517 if (!isImageRelative()) 518 FieldTypesRef = FieldTypesRef.drop_back(); 519 CompleteObjectLocatorType->setBody(FieldTypesRef); 520 return CompleteObjectLocatorType; 521 } 522 523 llvm::GlobalVariable *getImageBase() { 524 StringRef Name = "__ImageBase"; 525 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 526 return GV; 527 528 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 529 /*isConstant=*/true, 530 llvm::GlobalValue::ExternalLinkage, 531 /*Initializer=*/nullptr, Name); 532 CGM.setDSOLocal(GV); 533 return GV; 534 } 535 536 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 537 if (!isImageRelative()) 538 return PtrVal; 539 540 if (PtrVal->isNullValue()) 541 return llvm::Constant::getNullValue(CGM.IntTy); 542 543 llvm::Constant *ImageBaseAsInt = 544 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 545 llvm::Constant *PtrValAsInt = 546 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 547 llvm::Constant *Diff = 548 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 549 /*HasNUW=*/true, /*HasNSW=*/true); 550 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 551 } 552 553 private: 554 MicrosoftMangleContext &getMangleContext() { 555 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 556 } 557 558 llvm::Constant *getZeroInt() { 559 return llvm::ConstantInt::get(CGM.IntTy, 0); 560 } 561 562 llvm::Constant *getAllOnesInt() { 563 return llvm::Constant::getAllOnesValue(CGM.IntTy); 564 } 565 566 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 567 568 void 569 GetNullMemberPointerFields(const MemberPointerType *MPT, 570 llvm::SmallVectorImpl<llvm::Constant *> &fields); 571 572 /// Shared code for virtual base adjustment. Returns the offset from 573 /// the vbptr to the virtual base. Optionally returns the address of the 574 /// vbptr itself. 575 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 576 Address Base, 577 llvm::Value *VBPtrOffset, 578 llvm::Value *VBTableOffset, 579 llvm::Value **VBPtr = nullptr); 580 581 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 582 Address Base, 583 int32_t VBPtrOffset, 584 int32_t VBTableOffset, 585 llvm::Value **VBPtr = nullptr) { 586 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 587 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 588 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 589 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 590 } 591 592 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 593 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 594 QualType SrcRecordTy); 595 596 /// Performs a full virtual base adjustment. Used to dereference 597 /// pointers to members of virtual bases. 598 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 599 const CXXRecordDecl *RD, Address Base, 600 llvm::Value *VirtualBaseAdjustmentOffset, 601 llvm::Value *VBPtrOffset /* optional */); 602 603 /// Emits a full member pointer with the fields common to data and 604 /// function member pointers. 605 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 606 bool IsMemberFunction, 607 const CXXRecordDecl *RD, 608 CharUnits NonVirtualBaseAdjustment, 609 unsigned VBTableIndex); 610 611 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 612 llvm::Constant *MP); 613 614 /// - Initialize all vbptrs of 'this' with RD as the complete type. 615 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 616 617 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 618 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 619 620 /// Generate a thunk for calling a virtual member function MD. 621 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 622 const MethodVFTableLocation &ML); 623 624 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 625 CharUnits offset); 626 627 public: 628 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 629 630 bool isZeroInitializable(const MemberPointerType *MPT) override; 631 632 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 633 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 634 return RD->hasAttr<MSInheritanceAttr>(); 635 } 636 637 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 638 639 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 640 CharUnits offset) override; 641 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 642 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 643 644 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 645 llvm::Value *L, 646 llvm::Value *R, 647 const MemberPointerType *MPT, 648 bool Inequality) override; 649 650 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 651 llvm::Value *MemPtr, 652 const MemberPointerType *MPT) override; 653 654 llvm::Value * 655 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 656 Address Base, llvm::Value *MemPtr, 657 const MemberPointerType *MPT) override; 658 659 llvm::Value *EmitNonNullMemberPointerConversion( 660 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 661 CastKind CK, CastExpr::path_const_iterator PathBegin, 662 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 663 CGBuilderTy &Builder); 664 665 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 666 const CastExpr *E, 667 llvm::Value *Src) override; 668 669 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 670 llvm::Constant *Src) override; 671 672 llvm::Constant *EmitMemberPointerConversion( 673 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 674 CastKind CK, CastExpr::path_const_iterator PathBegin, 675 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 676 677 CGCallee 678 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 679 Address This, llvm::Value *&ThisPtrForCall, 680 llvm::Value *MemPtr, 681 const MemberPointerType *MPT) override; 682 683 void emitCXXStructor(GlobalDecl GD) override; 684 685 llvm::StructType *getCatchableTypeType() { 686 if (CatchableTypeType) 687 return CatchableTypeType; 688 llvm::Type *FieldTypes[] = { 689 CGM.IntTy, // Flags 690 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 691 CGM.IntTy, // NonVirtualAdjustment 692 CGM.IntTy, // OffsetToVBPtr 693 CGM.IntTy, // VBTableIndex 694 CGM.IntTy, // Size 695 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 696 }; 697 CatchableTypeType = llvm::StructType::create( 698 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 699 return CatchableTypeType; 700 } 701 702 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 703 llvm::StructType *&CatchableTypeArrayType = 704 CatchableTypeArrayTypeMap[NumEntries]; 705 if (CatchableTypeArrayType) 706 return CatchableTypeArrayType; 707 708 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 709 CTATypeName += llvm::utostr(NumEntries); 710 llvm::Type *CTType = 711 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 712 llvm::Type *FieldTypes[] = { 713 CGM.IntTy, // NumEntries 714 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 715 }; 716 CatchableTypeArrayType = 717 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 718 return CatchableTypeArrayType; 719 } 720 721 llvm::StructType *getThrowInfoType() { 722 if (ThrowInfoType) 723 return ThrowInfoType; 724 llvm::Type *FieldTypes[] = { 725 CGM.IntTy, // Flags 726 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 727 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 728 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 729 }; 730 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 731 "eh.ThrowInfo"); 732 return ThrowInfoType; 733 } 734 735 llvm::FunctionCallee getThrowFn() { 736 // _CxxThrowException is passed an exception object and a ThrowInfo object 737 // which describes the exception. 738 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 739 llvm::FunctionType *FTy = 740 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 741 llvm::FunctionCallee Throw = 742 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 743 // _CxxThrowException is stdcall on 32-bit x86 platforms. 744 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 745 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 746 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 747 } 748 return Throw; 749 } 750 751 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 752 CXXCtorType CT); 753 754 llvm::Constant *getCatchableType(QualType T, 755 uint32_t NVOffset = 0, 756 int32_t VBPtrOffset = -1, 757 uint32_t VBIndex = 0); 758 759 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 760 761 llvm::GlobalVariable *getThrowInfo(QualType T) override; 762 763 std::pair<llvm::Value *, const CXXRecordDecl *> 764 LoadVTablePtr(CodeGenFunction &CGF, Address This, 765 const CXXRecordDecl *RD) override; 766 767 private: 768 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 769 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 770 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 771 /// All the vftables that have been referenced. 772 VFTablesMapTy VFTablesMap; 773 VTablesMapTy VTablesMap; 774 775 /// This set holds the record decls we've deferred vtable emission for. 776 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 777 778 779 /// All the vbtables which have been referenced. 780 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 781 782 /// Info on the global variable used to guard initialization of static locals. 783 /// The BitIndex field is only used for externally invisible declarations. 784 struct GuardInfo { 785 GuardInfo() : Guard(nullptr), BitIndex(0) {} 786 llvm::GlobalVariable *Guard; 787 unsigned BitIndex; 788 }; 789 790 /// Map from DeclContext to the current guard variable. We assume that the 791 /// AST is visited in source code order. 792 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 793 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 794 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 795 796 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 797 llvm::StructType *BaseClassDescriptorType; 798 llvm::StructType *ClassHierarchyDescriptorType; 799 llvm::StructType *CompleteObjectLocatorType; 800 801 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 802 803 llvm::StructType *CatchableTypeType; 804 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 805 llvm::StructType *ThrowInfoType; 806 }; 807 808 } 809 810 CGCXXABI::RecordArgABI 811 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 812 switch (CGM.getTarget().getTriple().getArch()) { 813 default: 814 // FIXME: Implement for other architectures. 815 return RAA_Default; 816 817 case llvm::Triple::thumb: 818 // Use the simple Itanium rules for now. 819 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 820 // copy ctor. 821 return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; 822 823 case llvm::Triple::x86: 824 // All record arguments are passed in memory on x86. Decide whether to 825 // construct the object directly in argument memory, or to construct the 826 // argument elsewhere and copy the bytes during the call. 827 828 // If C++ prohibits us from making a copy, construct the arguments directly 829 // into argument memory. 830 if (!RD->canPassInRegisters()) 831 return RAA_DirectInMemory; 832 833 // Otherwise, construct the argument into a temporary and copy the bytes 834 // into the outgoing argument memory. 835 return RAA_Default; 836 837 case llvm::Triple::x86_64: 838 case llvm::Triple::aarch64: 839 return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; 840 } 841 842 llvm_unreachable("invalid enum"); 843 } 844 845 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 846 const CXXDeleteExpr *DE, 847 Address Ptr, 848 QualType ElementType, 849 const CXXDestructorDecl *Dtor) { 850 // FIXME: Provide a source location here even though there's no 851 // CXXMemberCallExpr for dtor call. 852 bool UseGlobalDelete = DE->isGlobalDelete(); 853 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 854 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 855 if (UseGlobalDelete) 856 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 857 } 858 859 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 860 llvm::Value *Args[] = { 861 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 862 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 863 llvm::FunctionCallee Fn = getThrowFn(); 864 if (isNoReturn) 865 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 866 else 867 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 868 } 869 870 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 871 const CXXCatchStmt *S) { 872 // In the MS ABI, the runtime handles the copy, and the catch handler is 873 // responsible for destruction. 874 VarDecl *CatchParam = S->getExceptionDecl(); 875 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 876 llvm::CatchPadInst *CPI = 877 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 878 CGF.CurrentFuncletPad = CPI; 879 880 // If this is a catch-all or the catch parameter is unnamed, we don't need to 881 // emit an alloca to the object. 882 if (!CatchParam || !CatchParam->getDeclName()) { 883 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 884 return; 885 } 886 887 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 888 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 889 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 890 CGF.EmitAutoVarCleanups(var); 891 } 892 893 /// We need to perform a generic polymorphic operation (like a typeid 894 /// or a cast), which requires an object with a vfptr. Adjust the 895 /// address to point to an object with a vfptr. 896 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 897 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 898 QualType SrcRecordTy) { 899 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); 900 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 901 const ASTContext &Context = getContext(); 902 903 // If the class itself has a vfptr, great. This check implicitly 904 // covers non-virtual base subobjects: a class with its own virtual 905 // functions would be a candidate to be a primary base. 906 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 907 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 908 SrcDecl); 909 910 // Okay, one of the vbases must have a vfptr, or else this isn't 911 // actually a polymorphic class. 912 const CXXRecordDecl *PolymorphicBase = nullptr; 913 for (auto &Base : SrcDecl->vbases()) { 914 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 915 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 916 PolymorphicBase = BaseDecl; 917 break; 918 } 919 } 920 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 921 922 llvm::Value *Offset = 923 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 924 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset); 925 CharUnits VBaseAlign = 926 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 927 return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase); 928 } 929 930 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 931 QualType SrcRecordTy) { 932 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 933 return IsDeref && 934 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 935 } 936 937 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 938 llvm::Value *Argument) { 939 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 940 llvm::FunctionType *FTy = 941 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 942 llvm::Value *Args[] = {Argument}; 943 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 944 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 945 } 946 947 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 948 llvm::CallBase *Call = 949 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 950 Call->setDoesNotReturn(); 951 CGF.Builder.CreateUnreachable(); 952 } 953 954 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 955 QualType SrcRecordTy, 956 Address ThisPtr, 957 llvm::Type *StdTypeInfoPtrTy) { 958 std::tie(ThisPtr, std::ignore, std::ignore) = 959 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 960 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 961 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 962 } 963 964 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 965 QualType SrcRecordTy) { 966 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 967 return SrcIsPtr && 968 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 969 } 970 971 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 972 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 973 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 974 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 975 976 llvm::Value *SrcRTTI = 977 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 978 llvm::Value *DestRTTI = 979 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 980 981 llvm::Value *Offset; 982 std::tie(This, Offset, std::ignore) = 983 performBaseAdjustment(CGF, This, SrcRecordTy); 984 llvm::Value *ThisPtr = This.getPointer(); 985 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 986 987 // PVOID __RTDynamicCast( 988 // PVOID inptr, 989 // LONG VfDelta, 990 // PVOID SrcType, 991 // PVOID TargetType, 992 // BOOL isReference) 993 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 994 CGF.Int8PtrTy, CGF.Int32Ty}; 995 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 996 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 997 "__RTDynamicCast"); 998 llvm::Value *Args[] = { 999 ThisPtr, Offset, SrcRTTI, DestRTTI, 1000 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1001 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); 1002 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 1003 } 1004 1005 llvm::Value * 1006 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1007 QualType SrcRecordTy, 1008 QualType DestTy) { 1009 std::tie(Value, std::ignore, std::ignore) = 1010 performBaseAdjustment(CGF, Value, SrcRecordTy); 1011 1012 // PVOID __RTCastToVoid( 1013 // PVOID inptr) 1014 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1015 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1016 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1017 "__RTCastToVoid"); 1018 llvm::Value *Args[] = {Value.getPointer()}; 1019 return CGF.EmitRuntimeCall(Function, Args); 1020 } 1021 1022 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1023 return false; 1024 } 1025 1026 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1027 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1028 const CXXRecordDecl *BaseClassDecl) { 1029 const ASTContext &Context = getContext(); 1030 int64_t VBPtrChars = 1031 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1032 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1033 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1034 CharUnits VBTableChars = 1035 IntSize * 1036 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1037 llvm::Value *VBTableOffset = 1038 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1039 1040 llvm::Value *VBPtrToNewBase = 1041 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1042 VBPtrToNewBase = 1043 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1044 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1045 } 1046 1047 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1048 return isa<CXXConstructorDecl>(GD.getDecl()); 1049 } 1050 1051 static bool isDeletingDtor(GlobalDecl GD) { 1052 return isa<CXXDestructorDecl>(GD.getDecl()) && 1053 GD.getDtorType() == Dtor_Deleting; 1054 } 1055 1056 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1057 return isDeletingDtor(GD); 1058 } 1059 1060 static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) { 1061 return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128; 1062 } 1063 1064 static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) { 1065 // For AArch64, we use the C++14 definition of an aggregate, so we also 1066 // check for: 1067 // No private or protected non static data members. 1068 // No base classes 1069 // No virtual functions 1070 // Additionally, we need to ensure that there is a trivial copy assignment 1071 // operator, a trivial destructor and no user-provided constructors. 1072 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1073 return true; 1074 if (RD->getNumBases() > 0) 1075 return true; 1076 if (RD->isPolymorphic()) 1077 return true; 1078 if (RD->hasNonTrivialCopyAssignment()) 1079 return true; 1080 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1081 if (Ctor->isUserProvided()) 1082 return true; 1083 if (RD->hasNonTrivialDestructor()) 1084 return true; 1085 return false; 1086 } 1087 1088 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1089 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1090 if (!RD) 1091 return false; 1092 1093 bool isAArch64 = CGM.getTarget().getTriple().isAArch64(); 1094 bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD); 1095 bool isIndirectReturn = 1096 isAArch64 ? (!RD->canPassInRegisters() || 1097 IsSizeGreaterThan128(RD)) 1098 : !RD->isPOD(); 1099 bool isInstanceMethod = FI.isInstanceMethod(); 1100 1101 if (isIndirectReturn || !isSimple || isInstanceMethod) { 1102 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1103 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1104 FI.getReturnInfo().setSRetAfterThis(isInstanceMethod); 1105 1106 FI.getReturnInfo().setInReg(isAArch64 && 1107 !(isSimple && IsSizeGreaterThan128(RD))); 1108 1109 return true; 1110 } 1111 1112 // Otherwise, use the C ABI rules. 1113 return false; 1114 } 1115 1116 llvm::BasicBlock * 1117 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1118 const CXXRecordDecl *RD) { 1119 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1120 assert(IsMostDerivedClass && 1121 "ctor for a class with virtual bases must have an implicit parameter"); 1122 llvm::Value *IsCompleteObject = 1123 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1124 1125 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1126 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1127 CGF.Builder.CreateCondBr(IsCompleteObject, 1128 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1129 1130 CGF.EmitBlock(CallVbaseCtorsBB); 1131 1132 // Fill in the vbtable pointers here. 1133 EmitVBPtrStores(CGF, RD); 1134 1135 // CGF will put the base ctor calls in this basic block for us later. 1136 1137 return SkipVbaseCtorsBB; 1138 } 1139 1140 llvm::BasicBlock * 1141 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1142 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1143 assert(IsMostDerivedClass && 1144 "ctor for a class with virtual bases must have an implicit parameter"); 1145 llvm::Value *IsCompleteObject = 1146 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1147 1148 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1149 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1150 CGF.Builder.CreateCondBr(IsCompleteObject, 1151 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1152 1153 CGF.EmitBlock(CallVbaseDtorsBB); 1154 // CGF will put the base dtor calls in this basic block for us later. 1155 1156 return SkipVbaseDtorsBB; 1157 } 1158 1159 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1160 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1161 // In most cases, an override for a vbase virtual method can adjust 1162 // the "this" parameter by applying a constant offset. 1163 // However, this is not enough while a constructor or a destructor of some 1164 // class X is being executed if all the following conditions are met: 1165 // - X has virtual bases, (1) 1166 // - X overrides a virtual method M of a vbase Y, (2) 1167 // - X itself is a vbase of the most derived class. 1168 // 1169 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1170 // which holds the extra amount of "this" adjustment we must do when we use 1171 // the X vftables (i.e. during X ctor or dtor). 1172 // Outside the ctors and dtors, the values of vtorDisps are zero. 1173 1174 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1175 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1176 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1177 CGBuilderTy &Builder = CGF.Builder; 1178 1179 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1180 llvm::Value *Int8This = nullptr; // Initialize lazily. 1181 1182 for (const CXXBaseSpecifier &S : RD->vbases()) { 1183 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1184 auto I = VBaseMap.find(VBase); 1185 assert(I != VBaseMap.end()); 1186 if (!I->second.hasVtorDisp()) 1187 continue; 1188 1189 llvm::Value *VBaseOffset = 1190 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1191 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1192 1193 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1194 llvm::Value *VtorDispValue = Builder.CreateSub( 1195 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1196 "vtordisp.value"); 1197 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1198 1199 if (!Int8This) 1200 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1201 CGF.Int8Ty->getPointerTo(AS)); 1202 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); 1203 // vtorDisp is always the 32-bits before the vbase in the class layout. 1204 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); 1205 VtorDispPtr = Builder.CreateBitCast( 1206 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1207 1208 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1209 CharUnits::fromQuantity(4)); 1210 } 1211 } 1212 1213 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1214 const CXXMethodDecl *MD) { 1215 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1216 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1217 CallingConv ActualCallingConv = 1218 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1219 return ExpectedCallingConv == ActualCallingConv; 1220 } 1221 1222 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1223 // There's only one constructor type in this ABI. 1224 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1225 1226 // Exported default constructors either have a simple call-site where they use 1227 // the typical calling convention and have a single 'this' pointer for an 1228 // argument -or- they get a wrapper function which appropriately thunks to the 1229 // real default constructor. This thunk is the default constructor closure. 1230 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor()) 1231 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1232 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1233 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1234 CGM.setGVProperties(Fn, D); 1235 } 1236 } 1237 1238 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1239 const CXXRecordDecl *RD) { 1240 Address This = getThisAddress(CGF); 1241 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1242 const ASTContext &Context = getContext(); 1243 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1244 1245 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1246 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1247 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1248 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1249 const ASTRecordLayout &SubobjectLayout = 1250 Context.getASTRecordLayout(VBT->IntroducingObject); 1251 CharUnits Offs = VBT->NonVirtualOffset; 1252 Offs += SubobjectLayout.getVBPtrOffset(); 1253 if (VBT->getVBaseWithVPtr()) 1254 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1255 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1256 llvm::Value *GVPtr = 1257 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1258 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1259 "vbptr." + VBT->ObjectWithVPtr->getName()); 1260 CGF.Builder.CreateStore(GVPtr, VBPtr); 1261 } 1262 } 1263 1264 CGCXXABI::AddedStructorArgs 1265 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1266 SmallVectorImpl<CanQualType> &ArgTys) { 1267 AddedStructorArgs Added; 1268 // TODO: 'for base' flag 1269 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1270 GD.getDtorType() == Dtor_Deleting) { 1271 // The scalar deleting destructor takes an implicit int parameter. 1272 ArgTys.push_back(getContext().IntTy); 1273 ++Added.Suffix; 1274 } 1275 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1276 if (!CD) 1277 return Added; 1278 1279 // All parameters are already in place except is_most_derived, which goes 1280 // after 'this' if it's variadic and last if it's not. 1281 1282 const CXXRecordDecl *Class = CD->getParent(); 1283 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1284 if (Class->getNumVBases()) { 1285 if (FPT->isVariadic()) { 1286 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1287 ++Added.Prefix; 1288 } else { 1289 ArgTys.push_back(getContext().IntTy); 1290 ++Added.Suffix; 1291 } 1292 } 1293 1294 return Added; 1295 } 1296 1297 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1298 const CXXDestructorDecl *Dtor, 1299 CXXDtorType DT) const { 1300 // Deleting destructor variants are never imported or exported. Give them the 1301 // default storage class. 1302 if (DT == Dtor_Deleting) { 1303 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1304 } else { 1305 const NamedDecl *ND = Dtor; 1306 CGM.setDLLImportDLLExport(GV, ND); 1307 } 1308 } 1309 1310 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1311 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1312 // Internal things are always internal, regardless of attributes. After this, 1313 // we know the thunk is externally visible. 1314 if (Linkage == GVA_Internal) 1315 return llvm::GlobalValue::InternalLinkage; 1316 1317 switch (DT) { 1318 case Dtor_Base: 1319 // The base destructor most closely tracks the user-declared constructor, so 1320 // we delegate back to the normal declarator case. 1321 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, 1322 /*IsConstantVariable=*/false); 1323 case Dtor_Complete: 1324 // The complete destructor is like an inline function, but it may be 1325 // imported and therefore must be exported as well. This requires changing 1326 // the linkage if a DLL attribute is present. 1327 if (Dtor->hasAttr<DLLExportAttr>()) 1328 return llvm::GlobalValue::WeakODRLinkage; 1329 if (Dtor->hasAttr<DLLImportAttr>()) 1330 return llvm::GlobalValue::AvailableExternallyLinkage; 1331 return llvm::GlobalValue::LinkOnceODRLinkage; 1332 case Dtor_Deleting: 1333 // Deleting destructors are like inline functions. They have vague linkage 1334 // and are emitted everywhere they are used. They are internal if the class 1335 // is internal. 1336 return llvm::GlobalValue::LinkOnceODRLinkage; 1337 case Dtor_Comdat: 1338 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1339 } 1340 llvm_unreachable("invalid dtor type"); 1341 } 1342 1343 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1344 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1345 // other destructor variants are delegating thunks. 1346 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1347 1348 // If the class is dllexported, emit the complete (vbase) destructor wherever 1349 // the base dtor is emitted. 1350 // FIXME: To match MSVC, this should only be done when the class is exported 1351 // with -fdllexport-inlines enabled. 1352 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1353 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1354 } 1355 1356 CharUnits 1357 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1358 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1359 1360 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1361 // Complete destructors take a pointer to the complete object as a 1362 // parameter, thus don't need this adjustment. 1363 if (GD.getDtorType() == Dtor_Complete) 1364 return CharUnits(); 1365 1366 // There's no Dtor_Base in vftable but it shares the this adjustment with 1367 // the deleting one, so look it up instead. 1368 GD = GlobalDecl(DD, Dtor_Deleting); 1369 } 1370 1371 MethodVFTableLocation ML = 1372 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1373 CharUnits Adjustment = ML.VFPtrOffset; 1374 1375 // Normal virtual instance methods need to adjust from the vfptr that first 1376 // defined the virtual method to the virtual base subobject, but destructors 1377 // do not. The vector deleting destructor thunk applies this adjustment for 1378 // us if necessary. 1379 if (isa<CXXDestructorDecl>(MD)) 1380 Adjustment = CharUnits::Zero(); 1381 1382 if (ML.VBase) { 1383 const ASTRecordLayout &DerivedLayout = 1384 getContext().getASTRecordLayout(MD->getParent()); 1385 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1386 } 1387 1388 return Adjustment; 1389 } 1390 1391 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1392 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1393 bool VirtualCall) { 1394 if (!VirtualCall) { 1395 // If the call of a virtual function is not virtual, we just have to 1396 // compensate for the adjustment the virtual function does in its prologue. 1397 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1398 if (Adjustment.isZero()) 1399 return This; 1400 1401 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1402 assert(Adjustment.isPositive()); 1403 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1404 } 1405 1406 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1407 1408 GlobalDecl LookupGD = GD; 1409 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1410 // Complete dtors take a pointer to the complete object, 1411 // thus don't need adjustment. 1412 if (GD.getDtorType() == Dtor_Complete) 1413 return This; 1414 1415 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1416 // with the base one, so look up the deleting one instead. 1417 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1418 } 1419 MethodVFTableLocation ML = 1420 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1421 1422 CharUnits StaticOffset = ML.VFPtrOffset; 1423 1424 // Base destructors expect 'this' to point to the beginning of the base 1425 // subobject, not the first vfptr that happens to contain the virtual dtor. 1426 // However, we still need to apply the virtual base adjustment. 1427 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1428 StaticOffset = CharUnits::Zero(); 1429 1430 Address Result = This; 1431 if (ML.VBase) { 1432 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1433 1434 const CXXRecordDecl *Derived = MD->getParent(); 1435 const CXXRecordDecl *VBase = ML.VBase; 1436 llvm::Value *VBaseOffset = 1437 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1438 llvm::Value *VBasePtr = 1439 CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset); 1440 CharUnits VBaseAlign = 1441 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1442 Result = Address(VBasePtr, VBaseAlign); 1443 } 1444 if (!StaticOffset.isZero()) { 1445 assert(StaticOffset.isPositive()); 1446 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1447 if (ML.VBase) { 1448 // Non-virtual adjustment might result in a pointer outside the allocated 1449 // object, e.g. if the final overrider class is laid out after the virtual 1450 // base that declares a method in the most derived class. 1451 // FIXME: Update the code that emits this adjustment in thunks prologues. 1452 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1453 } else { 1454 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1455 } 1456 } 1457 return Result; 1458 } 1459 1460 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1461 QualType &ResTy, 1462 FunctionArgList &Params) { 1463 ASTContext &Context = getContext(); 1464 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1465 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1466 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1467 auto *IsMostDerived = ImplicitParamDecl::Create( 1468 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1469 &Context.Idents.get("is_most_derived"), Context.IntTy, 1470 ImplicitParamDecl::Other); 1471 // The 'most_derived' parameter goes second if the ctor is variadic and last 1472 // if it's not. Dtors can't be variadic. 1473 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1474 if (FPT->isVariadic()) 1475 Params.insert(Params.begin() + 1, IsMostDerived); 1476 else 1477 Params.push_back(IsMostDerived); 1478 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1479 } else if (isDeletingDtor(CGF.CurGD)) { 1480 auto *ShouldDelete = ImplicitParamDecl::Create( 1481 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1482 &Context.Idents.get("should_call_delete"), Context.IntTy, 1483 ImplicitParamDecl::Other); 1484 Params.push_back(ShouldDelete); 1485 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1486 } 1487 } 1488 1489 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1490 // Naked functions have no prolog. 1491 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1492 return; 1493 1494 // Overridden virtual methods of non-primary bases need to adjust the incoming 1495 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1496 // sizeof(void*) to adjust from B* to C*: 1497 // struct A { virtual void a(); }; 1498 // struct B { virtual void b(); }; 1499 // struct C : A, B { virtual void b(); }; 1500 // 1501 // Leave the value stored in the 'this' alloca unadjusted, so that the 1502 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1503 // will apply the ThisAdjustment in the method type information. 1504 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1505 // without making our codegen depend on debug info settings. 1506 llvm::Value *This = loadIncomingCXXThis(CGF); 1507 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1508 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1509 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1510 if (!Adjustment.isZero()) { 1511 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1512 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1513 *thisTy = This->getType(); 1514 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1515 assert(Adjustment.isPositive()); 1516 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1517 -Adjustment.getQuantity()); 1518 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); 1519 } 1520 } 1521 setCXXABIThisValue(CGF, This); 1522 1523 // If this is a function that the ABI specifies returns 'this', initialize 1524 // the return slot to 'this' at the start of the function. 1525 // 1526 // Unlike the setting of return types, this is done within the ABI 1527 // implementation instead of by clients of CGCXXABI because: 1528 // 1) getThisValue is currently protected 1529 // 2) in theory, an ABI could implement 'this' returns some other way; 1530 // HasThisReturn only specifies a contract, not the implementation 1531 if (HasThisReturn(CGF.CurGD)) 1532 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1533 else if (hasMostDerivedReturn(CGF.CurGD)) 1534 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1535 CGF.ReturnValue); 1536 1537 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1538 assert(getStructorImplicitParamDecl(CGF) && 1539 "no implicit parameter for a constructor with virtual bases?"); 1540 getStructorImplicitParamValue(CGF) 1541 = CGF.Builder.CreateLoad( 1542 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1543 "is_most_derived"); 1544 } 1545 1546 if (isDeletingDtor(CGF.CurGD)) { 1547 assert(getStructorImplicitParamDecl(CGF) && 1548 "no implicit parameter for a deleting destructor?"); 1549 getStructorImplicitParamValue(CGF) 1550 = CGF.Builder.CreateLoad( 1551 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1552 "should_call_delete"); 1553 } 1554 } 1555 1556 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::addImplicitConstructorArgs( 1557 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1558 bool ForVirtualBase, bool Delegating, CallArgList &Args) { 1559 assert(Type == Ctor_Complete || Type == Ctor_Base); 1560 1561 // Check if we need a 'most_derived' parameter. 1562 if (!D->getParent()->getNumVBases()) 1563 return AddedStructorArgs{}; 1564 1565 // Add the 'most_derived' argument second if we are variadic or last if not. 1566 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1567 llvm::Value *MostDerivedArg; 1568 if (Delegating) { 1569 MostDerivedArg = getStructorImplicitParamValue(CGF); 1570 } else { 1571 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1572 } 1573 RValue RV = RValue::get(MostDerivedArg); 1574 if (FPT->isVariadic()) { 1575 Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy)); 1576 return AddedStructorArgs::prefix(1); 1577 } 1578 Args.add(RV, getContext().IntTy); 1579 return AddedStructorArgs::suffix(1); 1580 } 1581 1582 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1583 const CXXDestructorDecl *DD, 1584 CXXDtorType Type, bool ForVirtualBase, 1585 bool Delegating, Address This, 1586 QualType ThisTy) { 1587 // Use the base destructor variant in place of the complete destructor variant 1588 // if the class has no virtual bases. This effectively implements some of the 1589 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1590 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1591 Type = Dtor_Base; 1592 1593 GlobalDecl GD(DD, Type); 1594 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1595 1596 if (DD->isVirtual()) { 1597 assert(Type != CXXDtorType::Dtor_Deleting && 1598 "The deleting destructor should only be called via a virtual call"); 1599 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1600 This, false); 1601 } 1602 1603 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1604 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1605 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1606 } 1607 1608 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1609 /*ImplicitParam=*/nullptr, 1610 /*ImplicitParamTy=*/QualType(), nullptr); 1611 if (BaseDtorEndBB) { 1612 // Complete object handler should continue to be the remaining 1613 CGF.Builder.CreateBr(BaseDtorEndBB); 1614 CGF.EmitBlock(BaseDtorEndBB); 1615 } 1616 } 1617 1618 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1619 const CXXRecordDecl *RD, 1620 llvm::GlobalVariable *VTable) { 1621 if (!CGM.getCodeGenOpts().LTOUnit) 1622 return; 1623 1624 // The location of the first virtual function pointer in the virtual table, 1625 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1626 // disabled, or sizeof(void*) if RTTI is enabled. 1627 CharUnits AddressPoint = 1628 getContext().getLangOpts().RTTIData 1629 ? getContext().toCharUnitsFromBits( 1630 getContext().getTargetInfo().getPointerWidth(0)) 1631 : CharUnits::Zero(); 1632 1633 if (Info.PathToIntroducingObject.empty()) { 1634 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1635 return; 1636 } 1637 1638 // Add a bitset entry for the least derived base belonging to this vftable. 1639 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1640 Info.PathToIntroducingObject.back()); 1641 1642 // Add a bitset entry for each derived class that is laid out at the same 1643 // offset as the least derived base. 1644 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1645 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1646 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1647 1648 const ASTRecordLayout &Layout = 1649 getContext().getASTRecordLayout(DerivedRD); 1650 CharUnits Offset; 1651 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1652 if (VBI == Layout.getVBaseOffsetsMap().end()) 1653 Offset = Layout.getBaseClassOffset(BaseRD); 1654 else 1655 Offset = VBI->second.VBaseOffset; 1656 if (!Offset.isZero()) 1657 return; 1658 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1659 } 1660 1661 // Finally do the same for the most derived class. 1662 if (Info.FullOffsetInMDC.isZero()) 1663 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1664 } 1665 1666 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1667 const CXXRecordDecl *RD) { 1668 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1669 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1670 1671 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1672 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1673 if (VTable->hasInitializer()) 1674 continue; 1675 1676 const VTableLayout &VTLayout = 1677 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1678 1679 llvm::Constant *RTTI = nullptr; 1680 if (any_of(VTLayout.vtable_components(), 1681 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1682 RTTI = getMSCompleteObjectLocator(RD, *Info); 1683 1684 ConstantInitBuilder Builder(CGM); 1685 auto Components = Builder.beginStruct(); 1686 CGVT.createVTableInitializer(Components, VTLayout, RTTI); 1687 Components.finishAndSetAsInitializer(VTable); 1688 1689 emitVTableTypeMetadata(*Info, RD, VTable); 1690 } 1691 } 1692 1693 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1694 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1695 return Vptr.NearestVBase != nullptr; 1696 } 1697 1698 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1699 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1700 const CXXRecordDecl *NearestVBase) { 1701 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1702 if (!VTableAddressPoint) { 1703 assert(Base.getBase()->getNumVBases() && 1704 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1705 } 1706 return VTableAddressPoint; 1707 } 1708 1709 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1710 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1711 SmallString<256> &Name) { 1712 llvm::raw_svector_ostream Out(Name); 1713 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1714 } 1715 1716 llvm::Constant * 1717 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1718 const CXXRecordDecl *VTableClass) { 1719 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1720 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1721 return VFTablesMap[ID]; 1722 } 1723 1724 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1725 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1726 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1727 assert(VFTable && "Couldn't find a vftable for the given base?"); 1728 return VFTable; 1729 } 1730 1731 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1732 CharUnits VPtrOffset) { 1733 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1734 // shouldn't be used in the given record type. We want to cache this result in 1735 // VFTablesMap, thus a simple zero check is not sufficient. 1736 1737 VFTableIdTy ID(RD, VPtrOffset); 1738 VTablesMapTy::iterator I; 1739 bool Inserted; 1740 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1741 if (!Inserted) 1742 return I->second; 1743 1744 llvm::GlobalVariable *&VTable = I->second; 1745 1746 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1747 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1748 1749 if (DeferredVFTables.insert(RD).second) { 1750 // We haven't processed this record type before. 1751 // Queue up this vtable for possible deferred emission. 1752 CGM.addDeferredVTable(RD); 1753 1754 #ifndef NDEBUG 1755 // Create all the vftables at once in order to make sure each vftable has 1756 // a unique mangled name. 1757 llvm::StringSet<> ObservedMangledNames; 1758 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1759 SmallString<256> Name; 1760 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1761 if (!ObservedMangledNames.insert(Name.str()).second) 1762 llvm_unreachable("Already saw this mangling before?"); 1763 } 1764 #endif 1765 } 1766 1767 const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if( 1768 VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) { 1769 return VPI->FullOffsetInMDC == VPtrOffset; 1770 }); 1771 if (VFPtrI == VFPtrs.end()) { 1772 VFTablesMap[ID] = nullptr; 1773 return nullptr; 1774 } 1775 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1776 1777 SmallString<256> VFTableName; 1778 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1779 1780 // Classes marked __declspec(dllimport) need vftables generated on the 1781 // import-side in order to support features like constexpr. No other 1782 // translation unit relies on the emission of the local vftable, translation 1783 // units are expected to generate them as needed. 1784 // 1785 // Because of this unique behavior, we maintain this logic here instead of 1786 // getVTableLinkage. 1787 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1788 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1789 : CGM.getVTableLinkage(RD); 1790 bool VFTableComesFromAnotherTU = 1791 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1792 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1793 bool VTableAliasIsRequred = 1794 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1795 1796 if (llvm::GlobalValue *VFTable = 1797 CGM.getModule().getNamedGlobal(VFTableName)) { 1798 VFTablesMap[ID] = VFTable; 1799 VTable = VTableAliasIsRequred 1800 ? cast<llvm::GlobalVariable>( 1801 cast<llvm::GlobalAlias>(VFTable)->getBaseObject()) 1802 : cast<llvm::GlobalVariable>(VFTable); 1803 return VTable; 1804 } 1805 1806 const VTableLayout &VTLayout = 1807 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1808 llvm::GlobalValue::LinkageTypes VTableLinkage = 1809 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1810 1811 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1812 1813 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1814 1815 // Create a backing variable for the contents of VTable. The VTable may 1816 // or may not include space for a pointer to RTTI data. 1817 llvm::GlobalValue *VFTable; 1818 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1819 /*isConstant=*/true, VTableLinkage, 1820 /*Initializer=*/nullptr, VTableName); 1821 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1822 1823 llvm::Comdat *C = nullptr; 1824 if (!VFTableComesFromAnotherTU && 1825 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1826 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1827 VTableAliasIsRequred))) 1828 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1829 1830 // Only insert a pointer into the VFTable for RTTI data if we are not 1831 // importing it. We never reference the RTTI data directly so there is no 1832 // need to make room for it. 1833 if (VTableAliasIsRequred) { 1834 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1835 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1836 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1837 // Create a GEP which points just after the first entry in the VFTable, 1838 // this should be the location of the first virtual method. 1839 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1840 VTable->getValueType(), VTable, GEPIndices); 1841 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1842 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1843 if (C) 1844 C->setSelectionKind(llvm::Comdat::Largest); 1845 } 1846 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1847 /*AddressSpace=*/0, VFTableLinkage, 1848 VFTableName.str(), VTableGEP, 1849 &CGM.getModule()); 1850 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1851 } else { 1852 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1853 // be referencing any RTTI data. 1854 // The GlobalVariable will end up being an appropriate definition of the 1855 // VFTable. 1856 VFTable = VTable; 1857 } 1858 if (C) 1859 VTable->setComdat(C); 1860 1861 if (RD->hasAttr<DLLExportAttr>()) 1862 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1863 1864 VFTablesMap[ID] = VFTable; 1865 return VTable; 1866 } 1867 1868 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1869 GlobalDecl GD, 1870 Address This, 1871 llvm::Type *Ty, 1872 SourceLocation Loc) { 1873 CGBuilderTy &Builder = CGF.Builder; 1874 1875 Ty = Ty->getPointerTo()->getPointerTo(); 1876 Address VPtr = 1877 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1878 1879 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1880 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent()); 1881 1882 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1883 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1884 1885 // Compute the identity of the most derived class whose virtual table is 1886 // located at the MethodVFTableLocation ML. 1887 auto getObjectWithVPtr = [&] { 1888 return llvm::find_if(VFTContext.getVFPtrOffsets( 1889 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1890 [&](const std::unique_ptr<VPtrInfo> &Info) { 1891 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1892 }) 1893 ->get() 1894 ->ObjectWithVPtr; 1895 }; 1896 1897 llvm::Value *VFunc; 1898 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1899 VFunc = CGF.EmitVTableTypeCheckedLoad( 1900 getObjectWithVPtr(), VTable, 1901 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); 1902 } else { 1903 if (CGM.getCodeGenOpts().PrepareForLTO) 1904 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1905 1906 llvm::Value *VFuncPtr = 1907 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1908 VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 1909 } 1910 1911 CGCallee Callee(GD, VFunc); 1912 return Callee; 1913 } 1914 1915 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1916 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1917 Address This, DeleteOrMemberCallExpr E) { 1918 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1919 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1920 assert((CE != nullptr) ^ (D != nullptr)); 1921 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1922 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1923 1924 // We have only one destructor in the vftable but can get both behaviors 1925 // by passing an implicit int parameter. 1926 GlobalDecl GD(Dtor, Dtor_Deleting); 1927 const CGFunctionInfo *FInfo = 1928 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 1929 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1930 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 1931 1932 ASTContext &Context = getContext(); 1933 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1934 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1935 DtorType == Dtor_Deleting); 1936 1937 QualType ThisTy; 1938 if (CE) { 1939 ThisTy = CE->getObjectType(); 1940 } else { 1941 ThisTy = D->getDestroyedType(); 1942 } 1943 1944 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1945 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1946 ImplicitParam, Context.IntTy, CE); 1947 return RV.getScalarVal(); 1948 } 1949 1950 const VBTableGlobals & 1951 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 1952 // At this layer, we can key the cache off of a single class, which is much 1953 // easier than caching each vbtable individually. 1954 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 1955 bool Added; 1956 std::tie(Entry, Added) = 1957 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 1958 VBTableGlobals &VBGlobals = Entry->second; 1959 if (!Added) 1960 return VBGlobals; 1961 1962 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 1963 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 1964 1965 // Cache the globals for all vbtables so we don't have to recompute the 1966 // mangled names. 1967 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 1968 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 1969 E = VBGlobals.VBTables->end(); 1970 I != E; ++I) { 1971 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 1972 } 1973 1974 return VBGlobals; 1975 } 1976 1977 llvm::Function * 1978 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 1979 const MethodVFTableLocation &ML) { 1980 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 1981 "can't form pointers to ctors or virtual dtors"); 1982 1983 // Calculate the mangled name. 1984 SmallString<256> ThunkName; 1985 llvm::raw_svector_ostream Out(ThunkName); 1986 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 1987 1988 // If the thunk has been generated previously, just return it. 1989 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 1990 return cast<llvm::Function>(GV); 1991 1992 // Create the llvm::Function. 1993 const CGFunctionInfo &FnInfo = 1994 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 1995 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 1996 llvm::Function *ThunkFn = 1997 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 1998 ThunkName.str(), &CGM.getModule()); 1999 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2000 2001 ThunkFn->setLinkage(MD->isExternallyVisible() 2002 ? llvm::GlobalValue::LinkOnceODRLinkage 2003 : llvm::GlobalValue::InternalLinkage); 2004 if (MD->isExternallyVisible()) 2005 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2006 2007 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 2008 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2009 2010 // Add the "thunk" attribute so that LLVM knows that the return type is 2011 // meaningless. These thunks can be used to call functions with differing 2012 // return types, and the caller is required to cast the prototype 2013 // appropriately to extract the correct value. 2014 ThunkFn->addFnAttr("thunk"); 2015 2016 // These thunks can be compared, so they are not unnamed. 2017 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2018 2019 // Start codegen. 2020 CodeGenFunction CGF(CGM); 2021 CGF.CurGD = GlobalDecl(MD); 2022 CGF.CurFuncIsThunk = true; 2023 2024 // Build FunctionArgs, but only include the implicit 'this' parameter 2025 // declaration. 2026 FunctionArgList FunctionArgs; 2027 buildThisParam(CGF, FunctionArgs); 2028 2029 // Start defining the function. 2030 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2031 FunctionArgs, MD->getLocation(), SourceLocation()); 2032 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2033 2034 // Load the vfptr and then callee from the vftable. The callee should have 2035 // adjusted 'this' so that the vfptr is at offset zero. 2036 llvm::Value *VTable = CGF.GetVTablePtr( 2037 getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent()); 2038 2039 llvm::Value *VFuncPtr = 2040 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 2041 llvm::Value *Callee = 2042 CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 2043 2044 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2045 2046 return ThunkFn; 2047 } 2048 2049 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2050 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2051 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2052 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2053 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2054 if (GV->isDeclaration()) 2055 emitVBTableDefinition(*VBT, RD, GV); 2056 } 2057 } 2058 2059 llvm::GlobalVariable * 2060 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2061 llvm::GlobalVariable::LinkageTypes Linkage) { 2062 SmallString<256> OutName; 2063 llvm::raw_svector_ostream Out(OutName); 2064 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2065 StringRef Name = OutName.str(); 2066 2067 llvm::ArrayType *VBTableType = 2068 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2069 2070 assert(!CGM.getModule().getNamedGlobal(Name) && 2071 "vbtable with this name already exists: mangling bug?"); 2072 CharUnits Alignment = 2073 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2074 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2075 Name, VBTableType, Linkage, Alignment.getQuantity()); 2076 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2077 2078 if (RD->hasAttr<DLLImportAttr>()) 2079 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2080 else if (RD->hasAttr<DLLExportAttr>()) 2081 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2082 2083 if (!GV->hasExternalLinkage()) 2084 emitVBTableDefinition(VBT, RD, GV); 2085 2086 return GV; 2087 } 2088 2089 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2090 const CXXRecordDecl *RD, 2091 llvm::GlobalVariable *GV) const { 2092 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2093 2094 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2095 "should only emit vbtables for classes with vbtables"); 2096 2097 const ASTRecordLayout &BaseLayout = 2098 getContext().getASTRecordLayout(VBT.IntroducingObject); 2099 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2100 2101 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2102 nullptr); 2103 2104 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2105 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2106 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2107 2108 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2109 for (const auto &I : ObjectWithVPtr->vbases()) { 2110 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2111 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2112 assert(!Offset.isNegative()); 2113 2114 // Make it relative to the subobject vbptr. 2115 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2116 if (VBT.getVBaseWithVPtr()) 2117 CompleteVBPtrOffset += 2118 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2119 Offset -= CompleteVBPtrOffset; 2120 2121 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2122 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2123 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2124 } 2125 2126 assert(Offsets.size() == 2127 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) 2128 ->getElementType())->getNumElements()); 2129 llvm::ArrayType *VBTableType = 2130 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2131 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2132 GV->setInitializer(Init); 2133 2134 if (RD->hasAttr<DLLImportAttr>()) 2135 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2136 } 2137 2138 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2139 Address This, 2140 const ThisAdjustment &TA) { 2141 if (TA.isEmpty()) 2142 return This.getPointer(); 2143 2144 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2145 2146 llvm::Value *V; 2147 if (TA.Virtual.isEmpty()) { 2148 V = This.getPointer(); 2149 } else { 2150 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2151 // Adjust the this argument based on the vtordisp value. 2152 Address VtorDispPtr = 2153 CGF.Builder.CreateConstInBoundsByteGEP(This, 2154 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2155 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2156 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2157 V = CGF.Builder.CreateGEP(This.getPointer(), 2158 CGF.Builder.CreateNeg(VtorDisp)); 2159 2160 // Unfortunately, having applied the vtordisp means that we no 2161 // longer really have a known alignment for the vbptr step. 2162 // We'll assume the vbptr is pointer-aligned. 2163 2164 if (TA.Virtual.Microsoft.VBPtrOffset) { 2165 // If the final overrider is defined in a virtual base other than the one 2166 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2167 // the vbtable of the derived class. 2168 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2169 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2170 llvm::Value *VBPtr; 2171 llvm::Value *VBaseOffset = 2172 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()), 2173 -TA.Virtual.Microsoft.VBPtrOffset, 2174 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2175 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2176 } 2177 } 2178 2179 if (TA.NonVirtual) { 2180 // Non-virtual adjustment might result in a pointer outside the allocated 2181 // object, e.g. if the final overrider class is laid out after the virtual 2182 // base that declares a method in the most derived class. 2183 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); 2184 } 2185 2186 // Don't need to bitcast back, the call CodeGen will handle this. 2187 return V; 2188 } 2189 2190 llvm::Value * 2191 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2192 const ReturnAdjustment &RA) { 2193 if (RA.isEmpty()) 2194 return Ret.getPointer(); 2195 2196 auto OrigTy = Ret.getType(); 2197 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2198 2199 llvm::Value *V = Ret.getPointer(); 2200 if (RA.Virtual.Microsoft.VBIndex) { 2201 assert(RA.Virtual.Microsoft.VBIndex > 0); 2202 int32_t IntSize = CGF.getIntSize().getQuantity(); 2203 llvm::Value *VBPtr; 2204 llvm::Value *VBaseOffset = 2205 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2206 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2207 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2208 } 2209 2210 if (RA.NonVirtual) 2211 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2212 2213 // Cast back to the original type. 2214 return CGF.Builder.CreateBitCast(V, OrigTy); 2215 } 2216 2217 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2218 QualType elementType) { 2219 // Microsoft seems to completely ignore the possibility of a 2220 // two-argument usual deallocation function. 2221 return elementType.isDestructedType(); 2222 } 2223 2224 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2225 // Microsoft seems to completely ignore the possibility of a 2226 // two-argument usual deallocation function. 2227 return expr->getAllocatedType().isDestructedType(); 2228 } 2229 2230 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2231 // The array cookie is always a size_t; we then pad that out to the 2232 // alignment of the element type. 2233 ASTContext &Ctx = getContext(); 2234 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2235 Ctx.getTypeAlignInChars(type)); 2236 } 2237 2238 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2239 Address allocPtr, 2240 CharUnits cookieSize) { 2241 Address numElementsPtr = 2242 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2243 return CGF.Builder.CreateLoad(numElementsPtr); 2244 } 2245 2246 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2247 Address newPtr, 2248 llvm::Value *numElements, 2249 const CXXNewExpr *expr, 2250 QualType elementType) { 2251 assert(requiresArrayCookie(expr)); 2252 2253 // The size of the cookie. 2254 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2255 2256 // Compute an offset to the cookie. 2257 Address cookiePtr = newPtr; 2258 2259 // Write the number of elements into the appropriate slot. 2260 Address numElementsPtr 2261 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2262 CGF.Builder.CreateStore(numElements, numElementsPtr); 2263 2264 // Finally, compute a pointer to the actual data buffer by skipping 2265 // over the cookie completely. 2266 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2267 } 2268 2269 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2270 llvm::FunctionCallee Dtor, 2271 llvm::Constant *Addr) { 2272 // Create a function which calls the destructor. 2273 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2274 2275 // extern "C" int __tlregdtor(void (*f)(void)); 2276 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2277 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2278 2279 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2280 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2281 if (llvm::Function *TLRegDtorFn = 2282 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2283 TLRegDtorFn->setDoesNotThrow(); 2284 2285 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2286 } 2287 2288 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2289 llvm::FunctionCallee Dtor, 2290 llvm::Constant *Addr) { 2291 if (D.isNoDestroy(CGM.getContext())) 2292 return; 2293 2294 if (D.getTLSKind()) 2295 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2296 2297 // The default behavior is to use atexit. 2298 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2299 } 2300 2301 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2302 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2303 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2304 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2305 if (CXXThreadLocalInits.empty()) 2306 return; 2307 2308 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2309 llvm::Triple::x86 2310 ? "/include:___dyn_tls_init@12" 2311 : "/include:__dyn_tls_init"); 2312 2313 // This will create a GV in the .CRT$XDU section. It will point to our 2314 // initialization function. The CRT will call all of these function 2315 // pointers at start-up time and, eventually, at thread-creation time. 2316 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2317 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2318 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2319 llvm::GlobalVariable::InternalLinkage, InitFunc, 2320 Twine(InitFunc->getName(), "$initializer$")); 2321 InitFuncPtr->setSection(".CRT$XDU"); 2322 // This variable has discardable linkage, we have to add it to @llvm.used to 2323 // ensure it won't get discarded. 2324 CGM.addUsedGlobal(InitFuncPtr); 2325 return InitFuncPtr; 2326 }; 2327 2328 std::vector<llvm::Function *> NonComdatInits; 2329 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2330 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2331 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2332 llvm::Function *F = CXXThreadLocalInits[I]; 2333 2334 // If the GV is already in a comdat group, then we have to join it. 2335 if (llvm::Comdat *C = GV->getComdat()) 2336 AddToXDU(F)->setComdat(C); 2337 else 2338 NonComdatInits.push_back(F); 2339 } 2340 2341 if (!NonComdatInits.empty()) { 2342 llvm::FunctionType *FTy = 2343 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2344 llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction( 2345 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2346 SourceLocation(), /*TLS=*/true); 2347 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2348 2349 AddToXDU(InitFunc); 2350 } 2351 } 2352 2353 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2354 const VarDecl *VD, 2355 QualType LValType) { 2356 CGF.CGM.ErrorUnsupported(VD, "thread wrappers"); 2357 return LValue(); 2358 } 2359 2360 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2361 StringRef VarName("_Init_thread_epoch"); 2362 CharUnits Align = CGM.getIntAlign(); 2363 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2364 return ConstantAddress(GV, Align); 2365 auto *GV = new llvm::GlobalVariable( 2366 CGM.getModule(), CGM.IntTy, 2367 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2368 /*Initializer=*/nullptr, VarName, 2369 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2370 GV->setAlignment(Align.getAsAlign()); 2371 return ConstantAddress(GV, Align); 2372 } 2373 2374 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2375 llvm::FunctionType *FTy = 2376 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2377 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2378 return CGM.CreateRuntimeFunction( 2379 FTy, "_Init_thread_header", 2380 llvm::AttributeList::get(CGM.getLLVMContext(), 2381 llvm::AttributeList::FunctionIndex, 2382 llvm::Attribute::NoUnwind), 2383 /*Local=*/true); 2384 } 2385 2386 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2387 llvm::FunctionType *FTy = 2388 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2389 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2390 return CGM.CreateRuntimeFunction( 2391 FTy, "_Init_thread_footer", 2392 llvm::AttributeList::get(CGM.getLLVMContext(), 2393 llvm::AttributeList::FunctionIndex, 2394 llvm::Attribute::NoUnwind), 2395 /*Local=*/true); 2396 } 2397 2398 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2399 llvm::FunctionType *FTy = 2400 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2401 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2402 return CGM.CreateRuntimeFunction( 2403 FTy, "_Init_thread_abort", 2404 llvm::AttributeList::get(CGM.getLLVMContext(), 2405 llvm::AttributeList::FunctionIndex, 2406 llvm::Attribute::NoUnwind), 2407 /*Local=*/true); 2408 } 2409 2410 namespace { 2411 struct ResetGuardBit final : EHScopeStack::Cleanup { 2412 Address Guard; 2413 unsigned GuardNum; 2414 ResetGuardBit(Address Guard, unsigned GuardNum) 2415 : Guard(Guard), GuardNum(GuardNum) {} 2416 2417 void Emit(CodeGenFunction &CGF, Flags flags) override { 2418 // Reset the bit in the mask so that the static variable may be 2419 // reinitialized. 2420 CGBuilderTy &Builder = CGF.Builder; 2421 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2422 llvm::ConstantInt *Mask = 2423 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2424 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2425 } 2426 }; 2427 2428 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2429 llvm::Value *Guard; 2430 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2431 2432 void Emit(CodeGenFunction &CGF, Flags flags) override { 2433 // Calling _Init_thread_abort will reset the guard's state. 2434 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2435 } 2436 }; 2437 } 2438 2439 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2440 llvm::GlobalVariable *GV, 2441 bool PerformInit) { 2442 // MSVC only uses guards for static locals. 2443 if (!D.isStaticLocal()) { 2444 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2445 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2446 llvm::Function *F = CGF.CurFn; 2447 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2448 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2449 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2450 return; 2451 } 2452 2453 bool ThreadlocalStatic = D.getTLSKind(); 2454 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2455 2456 // Thread-safe static variables which aren't thread-specific have a 2457 // per-variable guard. 2458 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2459 2460 CGBuilderTy &Builder = CGF.Builder; 2461 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2462 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2463 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2464 2465 // Get the guard variable for this function if we have one already. 2466 GuardInfo *GI = nullptr; 2467 if (ThreadlocalStatic) 2468 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2469 else if (!ThreadsafeStatic) 2470 GI = &GuardVariableMap[D.getDeclContext()]; 2471 2472 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2473 unsigned GuardNum; 2474 if (D.isExternallyVisible()) { 2475 // Externally visible variables have to be numbered in Sema to properly 2476 // handle unreachable VarDecls. 2477 GuardNum = getContext().getStaticLocalNumber(&D); 2478 assert(GuardNum > 0); 2479 GuardNum--; 2480 } else if (HasPerVariableGuard) { 2481 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2482 } else { 2483 // Non-externally visible variables are numbered here in CodeGen. 2484 GuardNum = GI->BitIndex++; 2485 } 2486 2487 if (!HasPerVariableGuard && GuardNum >= 32) { 2488 if (D.isExternallyVisible()) 2489 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2490 GuardNum %= 32; 2491 GuardVar = nullptr; 2492 } 2493 2494 if (!GuardVar) { 2495 // Mangle the name for the guard. 2496 SmallString<256> GuardName; 2497 { 2498 llvm::raw_svector_ostream Out(GuardName); 2499 if (HasPerVariableGuard) 2500 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2501 Out); 2502 else 2503 getMangleContext().mangleStaticGuardVariable(&D, Out); 2504 } 2505 2506 // Create the guard variable with a zero-initializer. Just absorb linkage, 2507 // visibility and dll storage class from the guarded variable. 2508 GuardVar = 2509 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2510 GV->getLinkage(), Zero, GuardName.str()); 2511 GuardVar->setVisibility(GV->getVisibility()); 2512 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2513 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2514 if (GuardVar->isWeakForLinker()) 2515 GuardVar->setComdat( 2516 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2517 if (D.getTLSKind()) 2518 GuardVar->setThreadLocal(true); 2519 if (GI && !HasPerVariableGuard) 2520 GI->Guard = GuardVar; 2521 } 2522 2523 ConstantAddress GuardAddr(GuardVar, GuardAlign); 2524 2525 assert(GuardVar->getLinkage() == GV->getLinkage() && 2526 "static local from the same function had different linkage"); 2527 2528 if (!HasPerVariableGuard) { 2529 // Pseudo code for the test: 2530 // if (!(GuardVar & MyGuardBit)) { 2531 // GuardVar |= MyGuardBit; 2532 // ... initialize the object ...; 2533 // } 2534 2535 // Test our bit from the guard variable. 2536 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2537 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2538 llvm::Value *NeedsInit = 2539 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2540 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2541 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2542 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2543 CodeGenFunction::GuardKind::VariableGuard, &D); 2544 2545 // Set our bit in the guard variable and emit the initializer and add a global 2546 // destructor if appropriate. 2547 CGF.EmitBlock(InitBlock); 2548 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2549 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2550 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2551 CGF.PopCleanupBlock(); 2552 Builder.CreateBr(EndBlock); 2553 2554 // Continue. 2555 CGF.EmitBlock(EndBlock); 2556 } else { 2557 // Pseudo code for the test: 2558 // if (TSS > _Init_thread_epoch) { 2559 // _Init_thread_header(&TSS); 2560 // if (TSS == -1) { 2561 // ... initialize the object ...; 2562 // _Init_thread_footer(&TSS); 2563 // } 2564 // } 2565 // 2566 // The algorithm is almost identical to what can be found in the appendix 2567 // found in N2325. 2568 2569 // This BasicBLock determines whether or not we have any work to do. 2570 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2571 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2572 llvm::LoadInst *InitThreadEpoch = 2573 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2574 llvm::Value *IsUninitialized = 2575 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2576 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2577 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2578 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2579 CodeGenFunction::GuardKind::VariableGuard, &D); 2580 2581 // This BasicBlock attempts to determine whether or not this thread is 2582 // responsible for doing the initialization. 2583 CGF.EmitBlock(AttemptInitBlock); 2584 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2585 GuardAddr.getPointer()); 2586 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2587 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2588 llvm::Value *ShouldDoInit = 2589 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2590 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2591 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2592 2593 // Ok, we ended up getting selected as the initializing thread. 2594 CGF.EmitBlock(InitBlock); 2595 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2596 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2597 CGF.PopCleanupBlock(); 2598 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2599 GuardAddr.getPointer()); 2600 Builder.CreateBr(EndBlock); 2601 2602 CGF.EmitBlock(EndBlock); 2603 } 2604 } 2605 2606 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2607 // Null-ness for function memptrs only depends on the first field, which is 2608 // the function pointer. The rest don't matter, so we can zero initialize. 2609 if (MPT->isMemberFunctionPointer()) 2610 return true; 2611 2612 // The virtual base adjustment field is always -1 for null, so if we have one 2613 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2614 // valid field offset. 2615 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2616 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2617 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2618 RD->nullFieldOffsetIsZero()); 2619 } 2620 2621 llvm::Type * 2622 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2623 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2624 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2625 llvm::SmallVector<llvm::Type *, 4> fields; 2626 if (MPT->isMemberFunctionPointer()) 2627 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2628 else 2629 fields.push_back(CGM.IntTy); // FieldOffset 2630 2631 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2632 Inheritance)) 2633 fields.push_back(CGM.IntTy); 2634 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2635 fields.push_back(CGM.IntTy); 2636 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2637 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2638 2639 if (fields.size() == 1) 2640 return fields[0]; 2641 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2642 } 2643 2644 void MicrosoftCXXABI:: 2645 GetNullMemberPointerFields(const MemberPointerType *MPT, 2646 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2647 assert(fields.empty()); 2648 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2649 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2650 if (MPT->isMemberFunctionPointer()) { 2651 // FunctionPointerOrVirtualThunk 2652 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2653 } else { 2654 if (RD->nullFieldOffsetIsZero()) 2655 fields.push_back(getZeroInt()); // FieldOffset 2656 else 2657 fields.push_back(getAllOnesInt()); // FieldOffset 2658 } 2659 2660 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2661 Inheritance)) 2662 fields.push_back(getZeroInt()); 2663 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2664 fields.push_back(getZeroInt()); 2665 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2666 fields.push_back(getAllOnesInt()); 2667 } 2668 2669 llvm::Constant * 2670 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2671 llvm::SmallVector<llvm::Constant *, 4> fields; 2672 GetNullMemberPointerFields(MPT, fields); 2673 if (fields.size() == 1) 2674 return fields[0]; 2675 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2676 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2677 return Res; 2678 } 2679 2680 llvm::Constant * 2681 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2682 bool IsMemberFunction, 2683 const CXXRecordDecl *RD, 2684 CharUnits NonVirtualBaseAdjustment, 2685 unsigned VBTableIndex) { 2686 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2687 2688 // Single inheritance class member pointer are represented as scalars instead 2689 // of aggregates. 2690 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2691 return FirstField; 2692 2693 llvm::SmallVector<llvm::Constant *, 4> fields; 2694 fields.push_back(FirstField); 2695 2696 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2697 fields.push_back(llvm::ConstantInt::get( 2698 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2699 2700 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2701 CharUnits Offs = CharUnits::Zero(); 2702 if (VBTableIndex) 2703 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2704 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2705 } 2706 2707 // The rest of the fields are adjusted by conversions to a more derived class. 2708 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2709 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2710 2711 return llvm::ConstantStruct::getAnon(fields); 2712 } 2713 2714 llvm::Constant * 2715 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2716 CharUnits offset) { 2717 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2718 } 2719 2720 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2721 CharUnits offset) { 2722 if (RD->getMSInheritanceModel() == 2723 MSInheritanceModel::Virtual) 2724 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2725 llvm::Constant *FirstField = 2726 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2727 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2728 CharUnits::Zero(), /*VBTableIndex=*/0); 2729 } 2730 2731 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2732 QualType MPType) { 2733 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2734 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2735 if (!MPD) 2736 return EmitNullMemberPointer(DstTy); 2737 2738 ASTContext &Ctx = getContext(); 2739 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2740 2741 llvm::Constant *C; 2742 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2743 C = EmitMemberFunctionPointer(MD); 2744 } else { 2745 // For a pointer to data member, start off with the offset of the field in 2746 // the class in which it was declared, and convert from there if necessary. 2747 // For indirect field decls, get the outermost anonymous field and use the 2748 // parent class. 2749 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2750 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2751 if (!FD) 2752 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2753 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2754 RD = RD->getMostRecentNonInjectedDecl(); 2755 C = EmitMemberDataPointer(RD, FieldOffset); 2756 } 2757 2758 if (!MemberPointerPath.empty()) { 2759 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2760 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2761 const MemberPointerType *SrcTy = 2762 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2763 ->castAs<MemberPointerType>(); 2764 2765 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2766 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2767 const CXXRecordDecl *PrevRD = SrcRD; 2768 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2769 const CXXRecordDecl *Base = nullptr; 2770 const CXXRecordDecl *Derived = nullptr; 2771 if (DerivedMember) { 2772 Base = PathElem; 2773 Derived = PrevRD; 2774 } else { 2775 Base = PrevRD; 2776 Derived = PathElem; 2777 } 2778 for (const CXXBaseSpecifier &BS : Derived->bases()) 2779 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2780 Base->getCanonicalDecl()) 2781 DerivedToBasePath.push_back(&BS); 2782 PrevRD = PathElem; 2783 } 2784 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2785 2786 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2787 : CK_BaseToDerivedMemberPointer; 2788 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2789 DerivedToBasePath.end(), C); 2790 } 2791 return C; 2792 } 2793 2794 llvm::Constant * 2795 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2796 assert(MD->isInstance() && "Member function must not be static!"); 2797 2798 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2799 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2800 CodeGenTypes &Types = CGM.getTypes(); 2801 2802 unsigned VBTableIndex = 0; 2803 llvm::Constant *FirstField; 2804 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2805 if (!MD->isVirtual()) { 2806 llvm::Type *Ty; 2807 // Check whether the function has a computable LLVM signature. 2808 if (Types.isFuncTypeConvertible(FPT)) { 2809 // The function has a computable LLVM signature; use the correct type. 2810 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2811 } else { 2812 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2813 // function type is incomplete. 2814 Ty = CGM.PtrDiffTy; 2815 } 2816 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2817 } else { 2818 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2819 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2820 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2821 // Include the vfptr adjustment if the method is in a non-primary vftable. 2822 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2823 if (ML.VBase) 2824 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2825 } 2826 2827 if (VBTableIndex == 0 && 2828 RD->getMSInheritanceModel() == 2829 MSInheritanceModel::Virtual) 2830 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2831 2832 // The rest of the fields are common with data member pointers. 2833 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2834 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2835 NonVirtualBaseAdjustment, VBTableIndex); 2836 } 2837 2838 /// Member pointers are the same if they're either bitwise identical *or* both 2839 /// null. Null-ness for function members is determined by the first field, 2840 /// while for data member pointers we must compare all fields. 2841 llvm::Value * 2842 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2843 llvm::Value *L, 2844 llvm::Value *R, 2845 const MemberPointerType *MPT, 2846 bool Inequality) { 2847 CGBuilderTy &Builder = CGF.Builder; 2848 2849 // Handle != comparisons by switching the sense of all boolean operations. 2850 llvm::ICmpInst::Predicate Eq; 2851 llvm::Instruction::BinaryOps And, Or; 2852 if (Inequality) { 2853 Eq = llvm::ICmpInst::ICMP_NE; 2854 And = llvm::Instruction::Or; 2855 Or = llvm::Instruction::And; 2856 } else { 2857 Eq = llvm::ICmpInst::ICMP_EQ; 2858 And = llvm::Instruction::And; 2859 Or = llvm::Instruction::Or; 2860 } 2861 2862 // If this is a single field member pointer (single inheritance), this is a 2863 // single icmp. 2864 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2865 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2866 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 2867 Inheritance)) 2868 return Builder.CreateICmp(Eq, L, R); 2869 2870 // Compare the first field. 2871 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 2872 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 2873 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 2874 2875 // Compare everything other than the first field. 2876 llvm::Value *Res = nullptr; 2877 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 2878 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 2879 llvm::Value *LF = Builder.CreateExtractValue(L, I); 2880 llvm::Value *RF = Builder.CreateExtractValue(R, I); 2881 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 2882 if (Res) 2883 Res = Builder.CreateBinOp(And, Res, Cmp); 2884 else 2885 Res = Cmp; 2886 } 2887 2888 // Check if the first field is 0 if this is a function pointer. 2889 if (MPT->isMemberFunctionPointer()) { 2890 // (l1 == r1 && ...) || l0 == 0 2891 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 2892 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 2893 Res = Builder.CreateBinOp(Or, Res, IsZero); 2894 } 2895 2896 // Combine the comparison of the first field, which must always be true for 2897 // this comparison to succeeed. 2898 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 2899 } 2900 2901 llvm::Value * 2902 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 2903 llvm::Value *MemPtr, 2904 const MemberPointerType *MPT) { 2905 CGBuilderTy &Builder = CGF.Builder; 2906 llvm::SmallVector<llvm::Constant *, 4> fields; 2907 // We only need one field for member functions. 2908 if (MPT->isMemberFunctionPointer()) 2909 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2910 else 2911 GetNullMemberPointerFields(MPT, fields); 2912 assert(!fields.empty()); 2913 llvm::Value *FirstField = MemPtr; 2914 if (MemPtr->getType()->isStructTy()) 2915 FirstField = Builder.CreateExtractValue(MemPtr, 0); 2916 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 2917 2918 // For function member pointers, we only need to test the function pointer 2919 // field. The other fields if any can be garbage. 2920 if (MPT->isMemberFunctionPointer()) 2921 return Res; 2922 2923 // Otherwise, emit a series of compares and combine the results. 2924 for (int I = 1, E = fields.size(); I < E; ++I) { 2925 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 2926 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 2927 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 2928 } 2929 return Res; 2930 } 2931 2932 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 2933 llvm::Constant *Val) { 2934 // Function pointers are null if the pointer in the first field is null. 2935 if (MPT->isMemberFunctionPointer()) { 2936 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 2937 Val->getAggregateElement(0U) : Val; 2938 return FirstField->isNullValue(); 2939 } 2940 2941 // If it's not a function pointer and it's zero initializable, we can easily 2942 // check zero. 2943 if (isZeroInitializable(MPT) && Val->isNullValue()) 2944 return true; 2945 2946 // Otherwise, break down all the fields for comparison. Hopefully these 2947 // little Constants are reused, while a big null struct might not be. 2948 llvm::SmallVector<llvm::Constant *, 4> Fields; 2949 GetNullMemberPointerFields(MPT, Fields); 2950 if (Fields.size() == 1) { 2951 assert(Val->getType()->isIntegerTy()); 2952 return Val == Fields[0]; 2953 } 2954 2955 unsigned I, E; 2956 for (I = 0, E = Fields.size(); I != E; ++I) { 2957 if (Val->getAggregateElement(I) != Fields[I]) 2958 break; 2959 } 2960 return I == E; 2961 } 2962 2963 llvm::Value * 2964 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 2965 Address This, 2966 llvm::Value *VBPtrOffset, 2967 llvm::Value *VBTableOffset, 2968 llvm::Value **VBPtrOut) { 2969 CGBuilderTy &Builder = CGF.Builder; 2970 // Load the vbtable pointer from the vbptr in the instance. 2971 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 2972 llvm::Value *VBPtr = 2973 Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr"); 2974 if (VBPtrOut) *VBPtrOut = VBPtr; 2975 VBPtr = Builder.CreateBitCast(VBPtr, 2976 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 2977 2978 CharUnits VBPtrAlign; 2979 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 2980 VBPtrAlign = This.getAlignment().alignmentAtOffset( 2981 CharUnits::fromQuantity(CI->getSExtValue())); 2982 } else { 2983 VBPtrAlign = CGF.getPointerAlign(); 2984 } 2985 2986 llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable"); 2987 2988 // Translate from byte offset to table index. It improves analyzability. 2989 llvm::Value *VBTableIndex = Builder.CreateAShr( 2990 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 2991 "vbtindex", /*isExact=*/true); 2992 2993 // Load an i32 offset from the vb-table. 2994 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex); 2995 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 2996 return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4), 2997 "vbase_offs"); 2998 } 2999 3000 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3001 // it. 3002 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3003 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3004 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3005 CGBuilderTy &Builder = CGF.Builder; 3006 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 3007 llvm::BasicBlock *OriginalBB = nullptr; 3008 llvm::BasicBlock *SkipAdjustBB = nullptr; 3009 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3010 3011 // In the unspecified inheritance model, there might not be a vbtable at all, 3012 // in which case we need to skip the virtual base lookup. If there is a 3013 // vbtable, the first entry is a no-op entry that gives back the original 3014 // base, so look for a virtual base adjustment offset of zero. 3015 if (VBPtrOffset) { 3016 OriginalBB = Builder.GetInsertBlock(); 3017 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3018 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3019 llvm::Value *IsVirtual = 3020 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3021 "memptr.is_vbase"); 3022 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3023 CGF.EmitBlock(VBaseAdjustBB); 3024 } 3025 3026 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3027 // know the vbptr offset. 3028 if (!VBPtrOffset) { 3029 CharUnits offs = CharUnits::Zero(); 3030 if (!RD->hasDefinition()) { 3031 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3032 unsigned DiagID = Diags.getCustomDiagID( 3033 DiagnosticsEngine::Error, 3034 "member pointer representation requires a " 3035 "complete class type for %0 to perform this expression"); 3036 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3037 } else if (RD->getNumVBases()) 3038 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3039 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3040 } 3041 llvm::Value *VBPtr = nullptr; 3042 llvm::Value *VBaseOffs = 3043 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3044 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); 3045 3046 // Merge control flow with the case where we didn't have to adjust. 3047 if (VBaseAdjustBB) { 3048 Builder.CreateBr(SkipAdjustBB); 3049 CGF.EmitBlock(SkipAdjustBB); 3050 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3051 Phi->addIncoming(Base.getPointer(), OriginalBB); 3052 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3053 return Phi; 3054 } 3055 return AdjustedBase; 3056 } 3057 3058 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3059 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3060 const MemberPointerType *MPT) { 3061 assert(MPT->isMemberDataPointer()); 3062 unsigned AS = Base.getAddressSpace(); 3063 llvm::Type *PType = 3064 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 3065 CGBuilderTy &Builder = CGF.Builder; 3066 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3067 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3068 3069 // Extract the fields we need, regardless of model. We'll apply them if we 3070 // have them. 3071 llvm::Value *FieldOffset = MemPtr; 3072 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3073 llvm::Value *VBPtrOffset = nullptr; 3074 if (MemPtr->getType()->isStructTy()) { 3075 // We need to extract values. 3076 unsigned I = 0; 3077 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3078 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3079 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3080 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3081 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3082 } 3083 3084 llvm::Value *Addr; 3085 if (VirtualBaseAdjustmentOffset) { 3086 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3087 VBPtrOffset); 3088 } else { 3089 Addr = Base.getPointer(); 3090 } 3091 3092 // Cast to char*. 3093 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 3094 3095 // Apply the offset, which we assume is non-null. 3096 Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset"); 3097 3098 // Cast the address to the appropriate pointer type, adopting the address 3099 // space of the base pointer. 3100 return Builder.CreateBitCast(Addr, PType); 3101 } 3102 3103 llvm::Value * 3104 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3105 const CastExpr *E, 3106 llvm::Value *Src) { 3107 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3108 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3109 E->getCastKind() == CK_ReinterpretMemberPointer); 3110 3111 // Use constant emission if we can. 3112 if (isa<llvm::Constant>(Src)) 3113 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3114 3115 // We may be adding or dropping fields from the member pointer, so we need 3116 // both types and the inheritance models of both records. 3117 const MemberPointerType *SrcTy = 3118 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3119 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3120 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3121 3122 // If the classes use the same null representation, reinterpret_cast is a nop. 3123 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3124 if (IsReinterpret && IsFunc) 3125 return Src; 3126 3127 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3128 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3129 if (IsReinterpret && 3130 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3131 return Src; 3132 3133 CGBuilderTy &Builder = CGF.Builder; 3134 3135 // Branch past the conversion if Src is null. 3136 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3137 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3138 3139 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3140 // pointer value of the destination type. 3141 if (IsReinterpret) { 3142 // For reinterpret casts, sema ensures that src and dst are both functions 3143 // or data and have the same size, which means the LLVM types should match. 3144 assert(Src->getType() == DstNull->getType()); 3145 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3146 } 3147 3148 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3149 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3150 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3151 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3152 CGF.EmitBlock(ConvertBB); 3153 3154 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3155 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3156 Builder); 3157 3158 Builder.CreateBr(ContinueBB); 3159 3160 // In the continuation, choose between DstNull and Dst. 3161 CGF.EmitBlock(ContinueBB); 3162 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3163 Phi->addIncoming(DstNull, OriginalBB); 3164 Phi->addIncoming(Dst, ConvertBB); 3165 return Phi; 3166 } 3167 3168 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3169 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3170 CastExpr::path_const_iterator PathBegin, 3171 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3172 CGBuilderTy &Builder) { 3173 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3174 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3175 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3176 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3177 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3178 bool IsConstant = isa<llvm::Constant>(Src); 3179 3180 // Decompose src. 3181 llvm::Value *FirstField = Src; 3182 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3183 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3184 llvm::Value *VBPtrOffset = getZeroInt(); 3185 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3186 // We need to extract values. 3187 unsigned I = 0; 3188 FirstField = Builder.CreateExtractValue(Src, I++); 3189 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3190 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3191 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3192 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3193 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3194 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3195 } 3196 3197 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3198 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3199 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3200 3201 // For data pointers, we adjust the field offset directly. For functions, we 3202 // have a separate field. 3203 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3204 3205 // The virtual inheritance model has a quirk: the virtual base table is always 3206 // referenced when dereferencing a member pointer even if the member pointer 3207 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3208 // to point backwards to the top of the MDC from the first VBase. Undo this 3209 // adjustment to normalize the member pointer. 3210 llvm::Value *SrcVBIndexEqZero = 3211 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3212 if (SrcInheritance == MSInheritanceModel::Virtual) { 3213 if (int64_t SrcOffsetToFirstVBase = 3214 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3215 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3216 SrcVBIndexEqZero, 3217 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3218 getZeroInt()); 3219 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3220 } 3221 } 3222 3223 // A non-zero vbindex implies that we are dealing with a source member in a 3224 // floating virtual base in addition to some non-virtual offset. If the 3225 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3226 // fixed, base. The difference between these two cases is that the vbindex + 3227 // nvoffset *always* point to the member regardless of what context they are 3228 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3229 // base requires explicit nv adjustment. 3230 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3231 CGM.IntTy, 3232 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3233 .getQuantity()); 3234 3235 llvm::Value *NVDisp; 3236 if (IsDerivedToBase) 3237 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3238 else 3239 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3240 3241 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3242 3243 // Update the vbindex to an appropriate value in the destination because 3244 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3245 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3246 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3247 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3248 if (llvm::GlobalVariable *VDispMap = 3249 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3250 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3251 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3252 if (IsConstant) { 3253 llvm::Constant *Mapping = VDispMap->getInitializer(); 3254 VirtualBaseAdjustmentOffset = 3255 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3256 } else { 3257 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3258 VirtualBaseAdjustmentOffset = 3259 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs), 3260 CharUnits::fromQuantity(4)); 3261 } 3262 3263 DstVBIndexEqZero = 3264 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3265 } 3266 } 3267 3268 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3269 // it to the offset of the vbptr. 3270 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3271 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3272 CGM.IntTy, 3273 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3274 VBPtrOffset = 3275 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3276 } 3277 3278 // Likewise, apply a similar adjustment so that dereferencing the member 3279 // pointer correctly accounts for the distance between the start of the first 3280 // virtual base and the top of the MDC. 3281 if (DstInheritance == MSInheritanceModel::Virtual) { 3282 if (int64_t DstOffsetToFirstVBase = 3283 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3284 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3285 DstVBIndexEqZero, 3286 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3287 getZeroInt()); 3288 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3289 } 3290 } 3291 3292 // Recompose dst from the null struct and the adjusted fields from src. 3293 llvm::Value *Dst; 3294 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3295 Dst = FirstField; 3296 } else { 3297 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3298 unsigned Idx = 0; 3299 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3300 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3301 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3302 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3303 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3304 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3305 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3306 } 3307 return Dst; 3308 } 3309 3310 llvm::Constant * 3311 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3312 llvm::Constant *Src) { 3313 const MemberPointerType *SrcTy = 3314 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3315 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3316 3317 CastKind CK = E->getCastKind(); 3318 3319 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3320 E->path_end(), Src); 3321 } 3322 3323 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3324 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3325 CastExpr::path_const_iterator PathBegin, 3326 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3327 assert(CK == CK_DerivedToBaseMemberPointer || 3328 CK == CK_BaseToDerivedMemberPointer || 3329 CK == CK_ReinterpretMemberPointer); 3330 // If src is null, emit a new null for dst. We can't return src because dst 3331 // might have a new representation. 3332 if (MemberPointerConstantIsNull(SrcTy, Src)) 3333 return EmitNullMemberPointer(DstTy); 3334 3335 // We don't need to do anything for reinterpret_casts of non-null member 3336 // pointers. We should only get here when the two type representations have 3337 // the same size. 3338 if (CK == CK_ReinterpretMemberPointer) 3339 return Src; 3340 3341 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3342 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3343 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3344 3345 return Dst; 3346 } 3347 3348 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3349 CodeGenFunction &CGF, const Expr *E, Address This, 3350 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3351 const MemberPointerType *MPT) { 3352 assert(MPT->isMemberFunctionPointer()); 3353 const FunctionProtoType *FPT = 3354 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3355 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3356 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3357 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3358 CGBuilderTy &Builder = CGF.Builder; 3359 3360 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3361 3362 // Extract the fields we need, regardless of model. We'll apply them if we 3363 // have them. 3364 llvm::Value *FunctionPointer = MemPtr; 3365 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3366 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3367 llvm::Value *VBPtrOffset = nullptr; 3368 if (MemPtr->getType()->isStructTy()) { 3369 // We need to extract values. 3370 unsigned I = 0; 3371 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3372 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3373 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3374 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3375 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3376 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3377 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3378 } 3379 3380 if (VirtualBaseAdjustmentOffset) { 3381 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3382 VirtualBaseAdjustmentOffset, VBPtrOffset); 3383 } else { 3384 ThisPtrForCall = This.getPointer(); 3385 } 3386 3387 if (NonVirtualBaseAdjustment) { 3388 // Apply the adjustment and cast back to the original struct type. 3389 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3390 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); 3391 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3392 "this.adjusted"); 3393 } 3394 3395 FunctionPointer = 3396 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3397 CGCallee Callee(FPT, FunctionPointer); 3398 return Callee; 3399 } 3400 3401 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3402 return new MicrosoftCXXABI(CGM); 3403 } 3404 3405 // MS RTTI Overview: 3406 // The run time type information emitted by cl.exe contains 5 distinct types of 3407 // structures. Many of them reference each other. 3408 // 3409 // TypeInfo: Static classes that are returned by typeid. 3410 // 3411 // CompleteObjectLocator: Referenced by vftables. They contain information 3412 // required for dynamic casting, including OffsetFromTop. They also contain 3413 // a reference to the TypeInfo for the type and a reference to the 3414 // CompleteHierarchyDescriptor for the type. 3415 // 3416 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3417 // Used during dynamic_cast to walk a class hierarchy. References a base 3418 // class array and the size of said array. 3419 // 3420 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3421 // somewhat of a misnomer because the most derived class is also in the list 3422 // as well as multiple copies of virtual bases (if they occur multiple times 3423 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3424 // every path in the hierarchy, in pre-order depth first order. Note, we do 3425 // not declare a specific llvm type for BaseClassArray, it's merely an array 3426 // of BaseClassDescriptor pointers. 3427 // 3428 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3429 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3430 // BaseClassArray is. It contains information about a class within a 3431 // hierarchy such as: is this base is ambiguous and what is its offset in the 3432 // vbtable. The names of the BaseClassDescriptors have all of their fields 3433 // mangled into them so they can be aggressively deduplicated by the linker. 3434 3435 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3436 StringRef MangledName("??_7type_info@@6B@"); 3437 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3438 return VTable; 3439 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3440 /*isConstant=*/true, 3441 llvm::GlobalVariable::ExternalLinkage, 3442 /*Initializer=*/nullptr, MangledName); 3443 } 3444 3445 namespace { 3446 3447 /// A Helper struct that stores information about a class in a class 3448 /// hierarchy. The information stored in these structs struct is used during 3449 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3450 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3451 // implicit depth first pre-order tree connectivity. getFirstChild and 3452 // getNextSibling allow us to walk the tree efficiently. 3453 struct MSRTTIClass { 3454 enum { 3455 IsPrivateOnPath = 1 | 8, 3456 IsAmbiguous = 2, 3457 IsPrivate = 4, 3458 IsVirtual = 16, 3459 HasHierarchyDescriptor = 64 3460 }; 3461 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3462 uint32_t initialize(const MSRTTIClass *Parent, 3463 const CXXBaseSpecifier *Specifier); 3464 3465 MSRTTIClass *getFirstChild() { return this + 1; } 3466 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3467 return Child + 1 + Child->NumBases; 3468 } 3469 3470 const CXXRecordDecl *RD, *VirtualRoot; 3471 uint32_t Flags, NumBases, OffsetInVBase; 3472 }; 3473 3474 /// Recursively initialize the base class array. 3475 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3476 const CXXBaseSpecifier *Specifier) { 3477 Flags = HasHierarchyDescriptor; 3478 if (!Parent) { 3479 VirtualRoot = nullptr; 3480 OffsetInVBase = 0; 3481 } else { 3482 if (Specifier->getAccessSpecifier() != AS_public) 3483 Flags |= IsPrivate | IsPrivateOnPath; 3484 if (Specifier->isVirtual()) { 3485 Flags |= IsVirtual; 3486 VirtualRoot = RD; 3487 OffsetInVBase = 0; 3488 } else { 3489 if (Parent->Flags & IsPrivateOnPath) 3490 Flags |= IsPrivateOnPath; 3491 VirtualRoot = Parent->VirtualRoot; 3492 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3493 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3494 } 3495 } 3496 NumBases = 0; 3497 MSRTTIClass *Child = getFirstChild(); 3498 for (const CXXBaseSpecifier &Base : RD->bases()) { 3499 NumBases += Child->initialize(this, &Base) + 1; 3500 Child = getNextChild(Child); 3501 } 3502 return NumBases; 3503 } 3504 3505 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3506 switch (Ty->getLinkage()) { 3507 case NoLinkage: 3508 case InternalLinkage: 3509 case UniqueExternalLinkage: 3510 return llvm::GlobalValue::InternalLinkage; 3511 3512 case VisibleNoLinkage: 3513 case ModuleInternalLinkage: 3514 case ModuleLinkage: 3515 case ExternalLinkage: 3516 return llvm::GlobalValue::LinkOnceODRLinkage; 3517 } 3518 llvm_unreachable("Invalid linkage!"); 3519 } 3520 3521 /// An ephemeral helper class for building MS RTTI types. It caches some 3522 /// calls to the module and information about the most derived class in a 3523 /// hierarchy. 3524 struct MSRTTIBuilder { 3525 enum { 3526 HasBranchingHierarchy = 1, 3527 HasVirtualBranchingHierarchy = 2, 3528 HasAmbiguousBases = 4 3529 }; 3530 3531 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3532 : CGM(ABI.CGM), Context(CGM.getContext()), 3533 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3534 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3535 ABI(ABI) {} 3536 3537 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3538 llvm::GlobalVariable * 3539 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3540 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3541 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3542 3543 CodeGenModule &CGM; 3544 ASTContext &Context; 3545 llvm::LLVMContext &VMContext; 3546 llvm::Module &Module; 3547 const CXXRecordDecl *RD; 3548 llvm::GlobalVariable::LinkageTypes Linkage; 3549 MicrosoftCXXABI &ABI; 3550 }; 3551 3552 } // namespace 3553 3554 /// Recursively serializes a class hierarchy in pre-order depth first 3555 /// order. 3556 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3557 const CXXRecordDecl *RD) { 3558 Classes.push_back(MSRTTIClass(RD)); 3559 for (const CXXBaseSpecifier &Base : RD->bases()) 3560 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3561 } 3562 3563 /// Find ambiguity among base classes. 3564 static void 3565 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3566 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3567 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3568 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3569 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3570 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3571 !VirtualBases.insert(Class->RD).second) { 3572 Class = MSRTTIClass::getNextChild(Class); 3573 continue; 3574 } 3575 if (!UniqueBases.insert(Class->RD).second) 3576 AmbiguousBases.insert(Class->RD); 3577 Class++; 3578 } 3579 if (AmbiguousBases.empty()) 3580 return; 3581 for (MSRTTIClass &Class : Classes) 3582 if (AmbiguousBases.count(Class.RD)) 3583 Class.Flags |= MSRTTIClass::IsAmbiguous; 3584 } 3585 3586 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3587 SmallString<256> MangledName; 3588 { 3589 llvm::raw_svector_ostream Out(MangledName); 3590 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3591 } 3592 3593 // Check to see if we've already declared this ClassHierarchyDescriptor. 3594 if (auto CHD = Module.getNamedGlobal(MangledName)) 3595 return CHD; 3596 3597 // Serialize the class hierarchy and initialize the CHD Fields. 3598 SmallVector<MSRTTIClass, 8> Classes; 3599 serializeClassHierarchy(Classes, RD); 3600 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3601 detectAmbiguousBases(Classes); 3602 int Flags = 0; 3603 for (auto Class : Classes) { 3604 if (Class.RD->getNumBases() > 1) 3605 Flags |= HasBranchingHierarchy; 3606 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3607 // believe the field isn't actually used. 3608 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3609 Flags |= HasAmbiguousBases; 3610 } 3611 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3612 Flags |= HasVirtualBranchingHierarchy; 3613 // These gep indices are used to get the address of the first element of the 3614 // base class array. 3615 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3616 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3617 3618 // Forward-declare the class hierarchy descriptor 3619 auto Type = ABI.getClassHierarchyDescriptorType(); 3620 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3621 /*Initializer=*/nullptr, 3622 MangledName); 3623 if (CHD->isWeakForLinker()) 3624 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3625 3626 auto *Bases = getBaseClassArray(Classes); 3627 3628 // Initialize the base class ClassHierarchyDescriptor. 3629 llvm::Constant *Fields[] = { 3630 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3631 llvm::ConstantInt::get(CGM.IntTy, Flags), 3632 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3633 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3634 Bases->getValueType(), Bases, 3635 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3636 }; 3637 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3638 return CHD; 3639 } 3640 3641 llvm::GlobalVariable * 3642 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3643 SmallString<256> MangledName; 3644 { 3645 llvm::raw_svector_ostream Out(MangledName); 3646 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3647 } 3648 3649 // Forward-declare the base class array. 3650 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3651 // mode) bytes of padding. We provide a pointer sized amount of padding by 3652 // adding +1 to Classes.size(). The sections have pointer alignment and are 3653 // marked pick-any so it shouldn't matter. 3654 llvm::Type *PtrType = ABI.getImageRelativeType( 3655 ABI.getBaseClassDescriptorType()->getPointerTo()); 3656 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3657 auto *BCA = 3658 new llvm::GlobalVariable(Module, ArrType, 3659 /*isConstant=*/true, Linkage, 3660 /*Initializer=*/nullptr, MangledName); 3661 if (BCA->isWeakForLinker()) 3662 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3663 3664 // Initialize the BaseClassArray. 3665 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3666 for (MSRTTIClass &Class : Classes) 3667 BaseClassArrayData.push_back( 3668 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3669 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3670 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3671 return BCA; 3672 } 3673 3674 llvm::GlobalVariable * 3675 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3676 // Compute the fields for the BaseClassDescriptor. They are computed up front 3677 // because they are mangled into the name of the object. 3678 uint32_t OffsetInVBTable = 0; 3679 int32_t VBPtrOffset = -1; 3680 if (Class.VirtualRoot) { 3681 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3682 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3683 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3684 } 3685 3686 SmallString<256> MangledName; 3687 { 3688 llvm::raw_svector_ostream Out(MangledName); 3689 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3690 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3691 Class.Flags, Out); 3692 } 3693 3694 // Check to see if we've already declared this object. 3695 if (auto BCD = Module.getNamedGlobal(MangledName)) 3696 return BCD; 3697 3698 // Forward-declare the base class descriptor. 3699 auto Type = ABI.getBaseClassDescriptorType(); 3700 auto BCD = 3701 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3702 /*Initializer=*/nullptr, MangledName); 3703 if (BCD->isWeakForLinker()) 3704 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3705 3706 // Initialize the BaseClassDescriptor. 3707 llvm::Constant *Fields[] = { 3708 ABI.getImageRelativeConstant( 3709 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3710 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3711 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3712 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3713 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3714 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3715 ABI.getImageRelativeConstant( 3716 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3717 }; 3718 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3719 return BCD; 3720 } 3721 3722 llvm::GlobalVariable * 3723 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3724 SmallString<256> MangledName; 3725 { 3726 llvm::raw_svector_ostream Out(MangledName); 3727 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3728 } 3729 3730 // Check to see if we've already computed this complete object locator. 3731 if (auto COL = Module.getNamedGlobal(MangledName)) 3732 return COL; 3733 3734 // Compute the fields of the complete object locator. 3735 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3736 int VFPtrOffset = 0; 3737 // The offset includes the vtordisp if one exists. 3738 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3739 if (Context.getASTRecordLayout(RD) 3740 .getVBaseOffsetsMap() 3741 .find(VBase) 3742 ->second.hasVtorDisp()) 3743 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3744 3745 // Forward-declare the complete object locator. 3746 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3747 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3748 /*Initializer=*/nullptr, MangledName); 3749 3750 // Initialize the CompleteObjectLocator. 3751 llvm::Constant *Fields[] = { 3752 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3753 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3754 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3755 ABI.getImageRelativeConstant( 3756 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3757 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3758 ABI.getImageRelativeConstant(COL), 3759 }; 3760 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3761 if (!ABI.isImageRelative()) 3762 FieldsRef = FieldsRef.drop_back(); 3763 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3764 if (COL->isWeakForLinker()) 3765 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3766 return COL; 3767 } 3768 3769 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3770 bool &IsConst, bool &IsVolatile, 3771 bool &IsUnaligned) { 3772 T = Context.getExceptionObjectType(T); 3773 3774 // C++14 [except.handle]p3: 3775 // A handler is a match for an exception object of type E if [...] 3776 // - the handler is of type cv T or const T& where T is a pointer type and 3777 // E is a pointer type that can be converted to T by [...] 3778 // - a qualification conversion 3779 IsConst = false; 3780 IsVolatile = false; 3781 IsUnaligned = false; 3782 QualType PointeeType = T->getPointeeType(); 3783 if (!PointeeType.isNull()) { 3784 IsConst = PointeeType.isConstQualified(); 3785 IsVolatile = PointeeType.isVolatileQualified(); 3786 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3787 } 3788 3789 // Member pointer types like "const int A::*" are represented by having RTTI 3790 // for "int A::*" and separately storing the const qualifier. 3791 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3792 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3793 MPTy->getClass()); 3794 3795 // Pointer types like "const int * const *" are represented by having RTTI 3796 // for "const int **" and separately storing the const qualifier. 3797 if (T->isPointerType()) 3798 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3799 3800 return T; 3801 } 3802 3803 CatchTypeInfo 3804 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3805 QualType CatchHandlerType) { 3806 // TypeDescriptors for exceptions never have qualified pointer types, 3807 // qualifiers are stored separately in order to support qualification 3808 // conversions. 3809 bool IsConst, IsVolatile, IsUnaligned; 3810 Type = 3811 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3812 3813 bool IsReference = CatchHandlerType->isReferenceType(); 3814 3815 uint32_t Flags = 0; 3816 if (IsConst) 3817 Flags |= 1; 3818 if (IsVolatile) 3819 Flags |= 2; 3820 if (IsUnaligned) 3821 Flags |= 4; 3822 if (IsReference) 3823 Flags |= 8; 3824 3825 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3826 Flags}; 3827 } 3828 3829 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3830 /// llvm::GlobalVariable * because different type descriptors have different 3831 /// types, and need to be abstracted. They are abstracting by casting the 3832 /// address to an Int8PtrTy. 3833 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3834 SmallString<256> MangledName; 3835 { 3836 llvm::raw_svector_ostream Out(MangledName); 3837 getMangleContext().mangleCXXRTTI(Type, Out); 3838 } 3839 3840 // Check to see if we've already declared this TypeDescriptor. 3841 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3842 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 3843 3844 // Note for the future: If we would ever like to do deferred emission of 3845 // RTTI, check if emitting vtables opportunistically need any adjustment. 3846 3847 // Compute the fields for the TypeDescriptor. 3848 SmallString<256> TypeInfoString; 3849 { 3850 llvm::raw_svector_ostream Out(TypeInfoString); 3851 getMangleContext().mangleCXXRTTIName(Type, Out); 3852 } 3853 3854 // Declare and initialize the TypeDescriptor. 3855 llvm::Constant *Fields[] = { 3856 getTypeInfoVTable(CGM), // VFPtr 3857 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 3858 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 3859 llvm::StructType *TypeDescriptorType = 3860 getTypeDescriptorType(TypeInfoString); 3861 auto *Var = new llvm::GlobalVariable( 3862 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 3863 getLinkageForRTTI(Type), 3864 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 3865 MangledName); 3866 if (Var->isWeakForLinker()) 3867 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 3868 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 3869 } 3870 3871 /// Gets or a creates a Microsoft CompleteObjectLocator. 3872 llvm::GlobalVariable * 3873 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 3874 const VPtrInfo &Info) { 3875 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 3876 } 3877 3878 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 3879 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 3880 // There are no constructor variants, always emit the complete destructor. 3881 llvm::Function *Fn = 3882 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 3883 CGM.maybeSetTrivialComdat(*ctor, *Fn); 3884 return; 3885 } 3886 3887 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 3888 3889 // Emit the base destructor if the base and complete (vbase) destructors are 3890 // equivalent. This effectively implements -mconstructor-aliases as part of 3891 // the ABI. 3892 if (GD.getDtorType() == Dtor_Complete && 3893 dtor->getParent()->getNumVBases() == 0) 3894 GD = GD.getWithDtorType(Dtor_Base); 3895 3896 // The base destructor is equivalent to the base destructor of its 3897 // base class if there is exactly one non-virtual base class with a 3898 // non-trivial destructor, there are no fields with a non-trivial 3899 // destructor, and the body of the destructor is trivial. 3900 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 3901 return; 3902 3903 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 3904 if (Fn->isWeakForLinker()) 3905 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 3906 } 3907 3908 llvm::Function * 3909 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 3910 CXXCtorType CT) { 3911 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 3912 3913 // Calculate the mangled name. 3914 SmallString<256> ThunkName; 3915 llvm::raw_svector_ostream Out(ThunkName); 3916 getMangleContext().mangleCXXCtor(CD, CT, Out); 3917 3918 // If the thunk has been generated previously, just return it. 3919 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 3920 return cast<llvm::Function>(GV); 3921 3922 // Create the llvm::Function. 3923 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 3924 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 3925 const CXXRecordDecl *RD = CD->getParent(); 3926 QualType RecordTy = getContext().getRecordType(RD); 3927 llvm::Function *ThunkFn = llvm::Function::Create( 3928 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 3929 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 3930 FnInfo.getEffectiveCallingConvention())); 3931 if (ThunkFn->isWeakForLinker()) 3932 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 3933 bool IsCopy = CT == Ctor_CopyingClosure; 3934 3935 // Start codegen. 3936 CodeGenFunction CGF(CGM); 3937 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 3938 3939 // Build FunctionArgs. 3940 FunctionArgList FunctionArgs; 3941 3942 // A constructor always starts with a 'this' pointer as its first argument. 3943 buildThisParam(CGF, FunctionArgs); 3944 3945 // Following the 'this' pointer is a reference to the source object that we 3946 // are copying from. 3947 ImplicitParamDecl SrcParam( 3948 getContext(), /*DC=*/nullptr, SourceLocation(), 3949 &getContext().Idents.get("src"), 3950 getContext().getLValueReferenceType(RecordTy, 3951 /*SpelledAsLValue=*/true), 3952 ImplicitParamDecl::Other); 3953 if (IsCopy) 3954 FunctionArgs.push_back(&SrcParam); 3955 3956 // Constructors for classes which utilize virtual bases have an additional 3957 // parameter which indicates whether or not it is being delegated to by a more 3958 // derived constructor. 3959 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 3960 SourceLocation(), 3961 &getContext().Idents.get("is_most_derived"), 3962 getContext().IntTy, ImplicitParamDecl::Other); 3963 // Only add the parameter to the list if the class has virtual bases. 3964 if (RD->getNumVBases() > 0) 3965 FunctionArgs.push_back(&IsMostDerived); 3966 3967 // Start defining the function. 3968 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3969 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 3970 FunctionArgs, CD->getLocation(), SourceLocation()); 3971 // Create a scope with an artificial location for the body of this function. 3972 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 3973 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 3974 llvm::Value *This = getThisValue(CGF); 3975 3976 llvm::Value *SrcVal = 3977 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 3978 : nullptr; 3979 3980 CallArgList Args; 3981 3982 // Push the this ptr. 3983 Args.add(RValue::get(This), CD->getThisType()); 3984 3985 // Push the src ptr. 3986 if (SrcVal) 3987 Args.add(RValue::get(SrcVal), SrcParam.getType()); 3988 3989 // Add the rest of the default arguments. 3990 SmallVector<const Stmt *, 4> ArgVec; 3991 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 3992 for (const ParmVarDecl *PD : params) { 3993 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 3994 ArgVec.push_back(PD->getDefaultArg()); 3995 } 3996 3997 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 3998 3999 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4000 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4001 4002 // Insert any ABI-specific implicit constructor arguments. 4003 AddedStructorArgs ExtraArgs = 4004 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4005 /*ForVirtualBase=*/false, 4006 /*Delegating=*/false, Args); 4007 // Call the destructor with our arguments. 4008 llvm::Constant *CalleePtr = 4009 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4010 CGCallee Callee = 4011 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4012 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4013 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4014 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4015 4016 Cleanups.ForceCleanup(); 4017 4018 // Emit the ret instruction, remove any temporary instructions created for the 4019 // aid of CodeGen. 4020 CGF.FinishFunction(SourceLocation()); 4021 4022 return ThunkFn; 4023 } 4024 4025 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4026 uint32_t NVOffset, 4027 int32_t VBPtrOffset, 4028 uint32_t VBIndex) { 4029 assert(!T->isReferenceType()); 4030 4031 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4032 const CXXConstructorDecl *CD = 4033 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4034 CXXCtorType CT = Ctor_Complete; 4035 if (CD) 4036 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4037 CT = Ctor_CopyingClosure; 4038 4039 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4040 SmallString<256> MangledName; 4041 { 4042 llvm::raw_svector_ostream Out(MangledName); 4043 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4044 VBPtrOffset, VBIndex, Out); 4045 } 4046 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4047 return getImageRelativeConstant(GV); 4048 4049 // The TypeDescriptor is used by the runtime to determine if a catch handler 4050 // is appropriate for the exception object. 4051 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4052 4053 // The runtime is responsible for calling the copy constructor if the 4054 // exception is caught by value. 4055 llvm::Constant *CopyCtor; 4056 if (CD) { 4057 if (CT == Ctor_CopyingClosure) 4058 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4059 else 4060 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4061 4062 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 4063 } else { 4064 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4065 } 4066 CopyCtor = getImageRelativeConstant(CopyCtor); 4067 4068 bool IsScalar = !RD; 4069 bool HasVirtualBases = false; 4070 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4071 QualType PointeeType = T; 4072 if (T->isPointerType()) 4073 PointeeType = T->getPointeeType(); 4074 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4075 HasVirtualBases = RD->getNumVBases() > 0; 4076 if (IdentifierInfo *II = RD->getIdentifier()) 4077 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4078 } 4079 4080 // Encode the relevant CatchableType properties into the Flags bitfield. 4081 // FIXME: Figure out how bits 2 or 8 can get set. 4082 uint32_t Flags = 0; 4083 if (IsScalar) 4084 Flags |= 1; 4085 if (HasVirtualBases) 4086 Flags |= 4; 4087 if (IsStdBadAlloc) 4088 Flags |= 16; 4089 4090 llvm::Constant *Fields[] = { 4091 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4092 TD, // TypeDescriptor 4093 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4094 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4095 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4096 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4097 CopyCtor // CopyCtor 4098 }; 4099 llvm::StructType *CTType = getCatchableTypeType(); 4100 auto *GV = new llvm::GlobalVariable( 4101 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4102 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4103 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4104 GV->setSection(".xdata"); 4105 if (GV->isWeakForLinker()) 4106 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4107 return getImageRelativeConstant(GV); 4108 } 4109 4110 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4111 assert(!T->isReferenceType()); 4112 4113 // See if we've already generated a CatchableTypeArray for this type before. 4114 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4115 if (CTA) 4116 return CTA; 4117 4118 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4119 // using a SmallSetVector. Duplicates may arise due to virtual bases 4120 // occurring more than once in the hierarchy. 4121 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4122 4123 // C++14 [except.handle]p3: 4124 // A handler is a match for an exception object of type E if [...] 4125 // - the handler is of type cv T or cv T& and T is an unambiguous public 4126 // base class of E, or 4127 // - the handler is of type cv T or const T& where T is a pointer type and 4128 // E is a pointer type that can be converted to T by [...] 4129 // - a standard pointer conversion (4.10) not involving conversions to 4130 // pointers to private or protected or ambiguous classes 4131 const CXXRecordDecl *MostDerivedClass = nullptr; 4132 bool IsPointer = T->isPointerType(); 4133 if (IsPointer) 4134 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4135 else 4136 MostDerivedClass = T->getAsCXXRecordDecl(); 4137 4138 // Collect all the unambiguous public bases of the MostDerivedClass. 4139 if (MostDerivedClass) { 4140 const ASTContext &Context = getContext(); 4141 const ASTRecordLayout &MostDerivedLayout = 4142 Context.getASTRecordLayout(MostDerivedClass); 4143 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4144 SmallVector<MSRTTIClass, 8> Classes; 4145 serializeClassHierarchy(Classes, MostDerivedClass); 4146 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4147 detectAmbiguousBases(Classes); 4148 for (const MSRTTIClass &Class : Classes) { 4149 // Skip any ambiguous or private bases. 4150 if (Class.Flags & 4151 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4152 continue; 4153 // Write down how to convert from a derived pointer to a base pointer. 4154 uint32_t OffsetInVBTable = 0; 4155 int32_t VBPtrOffset = -1; 4156 if (Class.VirtualRoot) { 4157 OffsetInVBTable = 4158 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4159 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4160 } 4161 4162 // Turn our record back into a pointer if the exception object is a 4163 // pointer. 4164 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4165 if (IsPointer) 4166 RTTITy = Context.getPointerType(RTTITy); 4167 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4168 VBPtrOffset, OffsetInVBTable)); 4169 } 4170 } 4171 4172 // C++14 [except.handle]p3: 4173 // A handler is a match for an exception object of type E if 4174 // - The handler is of type cv T or cv T& and E and T are the same type 4175 // (ignoring the top-level cv-qualifiers) 4176 CatchableTypes.insert(getCatchableType(T)); 4177 4178 // C++14 [except.handle]p3: 4179 // A handler is a match for an exception object of type E if 4180 // - the handler is of type cv T or const T& where T is a pointer type and 4181 // E is a pointer type that can be converted to T by [...] 4182 // - a standard pointer conversion (4.10) not involving conversions to 4183 // pointers to private or protected or ambiguous classes 4184 // 4185 // C++14 [conv.ptr]p2: 4186 // A prvalue of type "pointer to cv T," where T is an object type, can be 4187 // converted to a prvalue of type "pointer to cv void". 4188 if (IsPointer && T->getPointeeType()->isObjectType()) 4189 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4190 4191 // C++14 [except.handle]p3: 4192 // A handler is a match for an exception object of type E if [...] 4193 // - the handler is of type cv T or const T& where T is a pointer or 4194 // pointer to member type and E is std::nullptr_t. 4195 // 4196 // We cannot possibly list all possible pointer types here, making this 4197 // implementation incompatible with the standard. However, MSVC includes an 4198 // entry for pointer-to-void in this case. Let's do the same. 4199 if (T->isNullPtrType()) 4200 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4201 4202 uint32_t NumEntries = CatchableTypes.size(); 4203 llvm::Type *CTType = 4204 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4205 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4206 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4207 llvm::Constant *Fields[] = { 4208 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4209 llvm::ConstantArray::get( 4210 AT, llvm::makeArrayRef(CatchableTypes.begin(), 4211 CatchableTypes.end())) // CatchableTypes 4212 }; 4213 SmallString<256> MangledName; 4214 { 4215 llvm::raw_svector_ostream Out(MangledName); 4216 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4217 } 4218 CTA = new llvm::GlobalVariable( 4219 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4220 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4221 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4222 CTA->setSection(".xdata"); 4223 if (CTA->isWeakForLinker()) 4224 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4225 return CTA; 4226 } 4227 4228 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4229 bool IsConst, IsVolatile, IsUnaligned; 4230 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4231 4232 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4233 // the exception object may be caught as. 4234 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4235 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4236 // This is used as a component of the mangled name which means that we need to 4237 // know what it is in order to see if we have previously generated the 4238 // ThrowInfo. 4239 uint32_t NumEntries = 4240 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4241 ->getLimitedValue(); 4242 4243 SmallString<256> MangledName; 4244 { 4245 llvm::raw_svector_ostream Out(MangledName); 4246 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4247 NumEntries, Out); 4248 } 4249 4250 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4251 // one before. 4252 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4253 return GV; 4254 4255 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4256 // be at least as CV qualified. Encode this requirement into the Flags 4257 // bitfield. 4258 uint32_t Flags = 0; 4259 if (IsConst) 4260 Flags |= 1; 4261 if (IsVolatile) 4262 Flags |= 2; 4263 if (IsUnaligned) 4264 Flags |= 4; 4265 4266 // The cleanup-function (a destructor) must be called when the exception 4267 // object's lifetime ends. 4268 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4269 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4270 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4271 if (!DtorD->isTrivial()) 4272 CleanupFn = llvm::ConstantExpr::getBitCast( 4273 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), 4274 CGM.Int8PtrTy); 4275 // This is unused as far as we can tell, initialize it to null. 4276 llvm::Constant *ForwardCompat = 4277 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4278 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4279 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4280 llvm::StructType *TIType = getThrowInfoType(); 4281 llvm::Constant *Fields[] = { 4282 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4283 getImageRelativeConstant(CleanupFn), // CleanupFn 4284 ForwardCompat, // ForwardCompat 4285 PointerToCatchableTypes // CatchableTypeArray 4286 }; 4287 auto *GV = new llvm::GlobalVariable( 4288 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4289 llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName)); 4290 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4291 GV->setSection(".xdata"); 4292 if (GV->isWeakForLinker()) 4293 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4294 return GV; 4295 } 4296 4297 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4298 const Expr *SubExpr = E->getSubExpr(); 4299 QualType ThrowType = SubExpr->getType(); 4300 // The exception object lives on the stack and it's address is passed to the 4301 // runtime function. 4302 Address AI = CGF.CreateMemTemp(ThrowType); 4303 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4304 /*IsInit=*/true); 4305 4306 // The so-called ThrowInfo is used to describe how the exception object may be 4307 // caught. 4308 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4309 4310 // Call into the runtime to throw the exception. 4311 llvm::Value *Args[] = { 4312 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4313 TI 4314 }; 4315 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4316 } 4317 4318 std::pair<llvm::Value *, const CXXRecordDecl *> 4319 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4320 const CXXRecordDecl *RD) { 4321 std::tie(This, std::ignore, RD) = 4322 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4323 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4324 } 4325