1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenTypes.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/CXXInheritance.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/AST/VTableBuilder.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/IR/Intrinsics.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 namespace { 37 38 /// Holds all the vbtable globals for a given class. 39 struct VBTableGlobals { 40 const VPtrInfoVector *VBTables; 41 SmallVector<llvm::GlobalVariable *, 2> Globals; 42 }; 43 44 class MicrosoftCXXABI : public CGCXXABI { 45 public: 46 MicrosoftCXXABI(CodeGenModule &CGM) 47 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 48 ClassHierarchyDescriptorType(nullptr), 49 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 50 ThrowInfoType(nullptr) {} 51 52 bool HasThisReturn(GlobalDecl GD) const override; 53 bool hasMostDerivedReturn(GlobalDecl GD) const override; 54 55 bool classifyReturnType(CGFunctionInfo &FI) const override; 56 57 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 58 59 bool isSRetParameterAfterThis() const override { return true; } 60 61 bool isThisCompleteObject(GlobalDecl GD) const override { 62 // The Microsoft ABI doesn't use separate complete-object vs. 63 // base-object variants of constructors, but it does of destructors. 64 if (isa<CXXDestructorDecl>(GD.getDecl())) { 65 switch (GD.getDtorType()) { 66 case Dtor_Complete: 67 case Dtor_Deleting: 68 return true; 69 70 case Dtor_Base: 71 return false; 72 73 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 74 } 75 llvm_unreachable("bad dtor kind"); 76 } 77 78 // No other kinds. 79 return false; 80 } 81 82 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 83 FunctionArgList &Args) const override { 84 assert(Args.size() >= 2 && 85 "expected the arglist to have at least two args!"); 86 // The 'most_derived' parameter goes second if the ctor is variadic and 87 // has v-bases. 88 if (CD->getParent()->getNumVBases() > 0 && 89 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 90 return 2; 91 return 1; 92 } 93 94 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 95 std::vector<CharUnits> VBPtrOffsets; 96 const ASTContext &Context = getContext(); 97 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 98 99 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 100 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 101 const ASTRecordLayout &SubobjectLayout = 102 Context.getASTRecordLayout(VBT->IntroducingObject); 103 CharUnits Offs = VBT->NonVirtualOffset; 104 Offs += SubobjectLayout.getVBPtrOffset(); 105 if (VBT->getVBaseWithVPtr()) 106 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 107 VBPtrOffsets.push_back(Offs); 108 } 109 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 110 return VBPtrOffsets; 111 } 112 113 StringRef GetPureVirtualCallName() override { return "_purecall"; } 114 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 115 116 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 117 Address Ptr, QualType ElementType, 118 const CXXDestructorDecl *Dtor) override; 119 120 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 121 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 122 123 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 124 125 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 126 const VPtrInfo &Info); 127 128 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 129 CatchTypeInfo 130 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 131 132 /// MSVC needs an extra flag to indicate a catchall. 133 CatchTypeInfo getCatchAllTypeInfo() override { 134 return CatchTypeInfo{nullptr, 0x40}; 135 } 136 137 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 138 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 139 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 140 Address ThisPtr, 141 llvm::Type *StdTypeInfoPtrTy) override; 142 143 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 144 QualType SrcRecordTy) override; 145 146 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 147 QualType SrcRecordTy, QualType DestTy, 148 QualType DestRecordTy, 149 llvm::BasicBlock *CastEnd) override; 150 151 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 152 QualType SrcRecordTy, 153 QualType DestTy) override; 154 155 bool EmitBadCastCall(CodeGenFunction &CGF) override; 156 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 157 return false; 158 } 159 160 llvm::Value * 161 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 162 const CXXRecordDecl *ClassDecl, 163 const CXXRecordDecl *BaseClassDecl) override; 164 165 llvm::BasicBlock * 166 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 167 const CXXRecordDecl *RD) override; 168 169 llvm::BasicBlock * 170 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 171 172 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 173 const CXXRecordDecl *RD) override; 174 175 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 176 177 // Background on MSVC destructors 178 // ============================== 179 // 180 // Both Itanium and MSVC ABIs have destructor variants. The variant names 181 // roughly correspond in the following way: 182 // Itanium Microsoft 183 // Base -> no name, just ~Class 184 // Complete -> vbase destructor 185 // Deleting -> scalar deleting destructor 186 // vector deleting destructor 187 // 188 // The base and complete destructors are the same as in Itanium, although the 189 // complete destructor does not accept a VTT parameter when there are virtual 190 // bases. A separate mechanism involving vtordisps is used to ensure that 191 // virtual methods of destroyed subobjects are not called. 192 // 193 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 194 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 195 // pointer points to an array. The scalar deleting destructor assumes that 196 // bit 2 is zero, and therefore does not contain a loop. 197 // 198 // For virtual destructors, only one entry is reserved in the vftable, and it 199 // always points to the vector deleting destructor. The vector deleting 200 // destructor is the most general, so it can be used to destroy objects in 201 // place, delete single heap objects, or delete arrays. 202 // 203 // A TU defining a non-inline destructor is only guaranteed to emit a base 204 // destructor, and all of the other variants are emitted on an as-needed basis 205 // in COMDATs. Because a non-base destructor can be emitted in a TU that 206 // lacks a definition for the destructor, non-base destructors must always 207 // delegate to or alias the base destructor. 208 209 AddedStructorArgCounts 210 buildStructorSignature(GlobalDecl GD, 211 SmallVectorImpl<CanQualType> &ArgTys) override; 212 213 /// Non-base dtors should be emitted as delegating thunks in this ABI. 214 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 215 CXXDtorType DT) const override { 216 return DT != Dtor_Base; 217 } 218 219 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 220 const CXXDestructorDecl *Dtor, 221 CXXDtorType DT) const override; 222 223 llvm::GlobalValue::LinkageTypes 224 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 225 CXXDtorType DT) const override; 226 227 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 228 229 const CXXRecordDecl * 230 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 231 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 232 MethodVFTableLocation ML = 233 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 234 // The vbases might be ordered differently in the final overrider object 235 // and the complete object, so the "this" argument may sometimes point to 236 // memory that has no particular type (e.g. past the complete object). 237 // In this case, we just use a generic pointer type. 238 // FIXME: might want to have a more precise type in the non-virtual 239 // multiple inheritance case. 240 if (ML.VBase || !ML.VFPtrOffset.isZero()) 241 return nullptr; 242 } 243 return MD->getParent(); 244 } 245 246 Address 247 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 248 Address This, 249 bool VirtualCall) override; 250 251 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 252 FunctionArgList &Params) override; 253 254 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 255 256 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 257 const CXXConstructorDecl *D, 258 CXXCtorType Type, 259 bool ForVirtualBase, 260 bool Delegating) override; 261 262 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 263 const CXXDestructorDecl *DD, 264 CXXDtorType Type, 265 bool ForVirtualBase, 266 bool Delegating) override; 267 268 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 269 CXXDtorType Type, bool ForVirtualBase, 270 bool Delegating, Address This, 271 QualType ThisTy) override; 272 273 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 274 llvm::GlobalVariable *VTable); 275 276 void emitVTableDefinitions(CodeGenVTables &CGVT, 277 const CXXRecordDecl *RD) override; 278 279 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 280 CodeGenFunction::VPtr Vptr) override; 281 282 /// Don't initialize vptrs if dynamic class 283 /// is marked with with the 'novtable' attribute. 284 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 285 return !VTableClass->hasAttr<MSNoVTableAttr>(); 286 } 287 288 llvm::Constant * 289 getVTableAddressPoint(BaseSubobject Base, 290 const CXXRecordDecl *VTableClass) override; 291 292 llvm::Value *getVTableAddressPointInStructor( 293 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 294 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 295 296 llvm::Constant * 297 getVTableAddressPointForConstExpr(BaseSubobject Base, 298 const CXXRecordDecl *VTableClass) override; 299 300 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 301 CharUnits VPtrOffset) override; 302 303 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 304 Address This, llvm::Type *Ty, 305 SourceLocation Loc) override; 306 307 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 308 const CXXDestructorDecl *Dtor, 309 CXXDtorType DtorType, Address This, 310 DeleteOrMemberCallExpr E) override; 311 312 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 313 CallArgList &CallArgs) override { 314 assert(GD.getDtorType() == Dtor_Deleting && 315 "Only deleting destructor thunks are available in this ABI"); 316 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 317 getContext().IntTy); 318 } 319 320 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 321 322 llvm::GlobalVariable * 323 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 324 llvm::GlobalVariable::LinkageTypes Linkage); 325 326 llvm::GlobalVariable * 327 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 328 const CXXRecordDecl *DstRD) { 329 SmallString<256> OutName; 330 llvm::raw_svector_ostream Out(OutName); 331 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 332 StringRef MangledName = OutName.str(); 333 334 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 335 return VDispMap; 336 337 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 338 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 339 SmallVector<llvm::Constant *, 4> Map(NumEntries, 340 llvm::UndefValue::get(CGM.IntTy)); 341 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 342 bool AnyDifferent = false; 343 for (const auto &I : SrcRD->vbases()) { 344 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 345 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 346 continue; 347 348 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 349 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 350 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 351 AnyDifferent |= SrcVBIndex != DstVBIndex; 352 } 353 // This map would be useless, don't use it. 354 if (!AnyDifferent) 355 return nullptr; 356 357 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 358 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 359 llvm::GlobalValue::LinkageTypes Linkage = 360 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 361 ? llvm::GlobalValue::LinkOnceODRLinkage 362 : llvm::GlobalValue::InternalLinkage; 363 auto *VDispMap = new llvm::GlobalVariable( 364 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 365 /*Initializer=*/Init, MangledName); 366 return VDispMap; 367 } 368 369 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 370 llvm::GlobalVariable *GV) const; 371 372 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 373 GlobalDecl GD, bool ReturnAdjustment) override { 374 GVALinkage Linkage = 375 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 376 377 if (Linkage == GVA_Internal) 378 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 379 else if (ReturnAdjustment) 380 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 381 else 382 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 383 } 384 385 bool exportThunk() override { return false; } 386 387 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 388 const ThisAdjustment &TA) override; 389 390 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 391 const ReturnAdjustment &RA) override; 392 393 void EmitThreadLocalInitFuncs( 394 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 395 ArrayRef<llvm::Function *> CXXThreadLocalInits, 396 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 397 398 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 399 return false; 400 } 401 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 402 QualType LValType) override; 403 404 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 405 llvm::GlobalVariable *DeclPtr, 406 bool PerformInit) override; 407 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 408 llvm::FunctionCallee Dtor, 409 llvm::Constant *Addr) override; 410 411 // ==== Notes on array cookies ========= 412 // 413 // MSVC seems to only use cookies when the class has a destructor; a 414 // two-argument usual array deallocation function isn't sufficient. 415 // 416 // For example, this code prints "100" and "1": 417 // struct A { 418 // char x; 419 // void *operator new[](size_t sz) { 420 // printf("%u\n", sz); 421 // return malloc(sz); 422 // } 423 // void operator delete[](void *p, size_t sz) { 424 // printf("%u\n", sz); 425 // free(p); 426 // } 427 // }; 428 // int main() { 429 // A *p = new A[100]; 430 // delete[] p; 431 // } 432 // Whereas it prints "104" and "104" if you give A a destructor. 433 434 bool requiresArrayCookie(const CXXDeleteExpr *expr, 435 QualType elementType) override; 436 bool requiresArrayCookie(const CXXNewExpr *expr) override; 437 CharUnits getArrayCookieSizeImpl(QualType type) override; 438 Address InitializeArrayCookie(CodeGenFunction &CGF, 439 Address NewPtr, 440 llvm::Value *NumElements, 441 const CXXNewExpr *expr, 442 QualType ElementType) override; 443 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 444 Address allocPtr, 445 CharUnits cookieSize) override; 446 447 friend struct MSRTTIBuilder; 448 449 bool isImageRelative() const { 450 return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64; 451 } 452 453 // 5 routines for constructing the llvm types for MS RTTI structs. 454 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 455 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 456 TDTypeName += llvm::utostr(TypeInfoString.size()); 457 llvm::StructType *&TypeDescriptorType = 458 TypeDescriptorTypeMap[TypeInfoString.size()]; 459 if (TypeDescriptorType) 460 return TypeDescriptorType; 461 llvm::Type *FieldTypes[] = { 462 CGM.Int8PtrPtrTy, 463 CGM.Int8PtrTy, 464 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 465 TypeDescriptorType = 466 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 467 return TypeDescriptorType; 468 } 469 470 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 471 if (!isImageRelative()) 472 return PtrType; 473 return CGM.IntTy; 474 } 475 476 llvm::StructType *getBaseClassDescriptorType() { 477 if (BaseClassDescriptorType) 478 return BaseClassDescriptorType; 479 llvm::Type *FieldTypes[] = { 480 getImageRelativeType(CGM.Int8PtrTy), 481 CGM.IntTy, 482 CGM.IntTy, 483 CGM.IntTy, 484 CGM.IntTy, 485 CGM.IntTy, 486 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 487 }; 488 BaseClassDescriptorType = llvm::StructType::create( 489 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 490 return BaseClassDescriptorType; 491 } 492 493 llvm::StructType *getClassHierarchyDescriptorType() { 494 if (ClassHierarchyDescriptorType) 495 return ClassHierarchyDescriptorType; 496 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 497 ClassHierarchyDescriptorType = llvm::StructType::create( 498 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 499 llvm::Type *FieldTypes[] = { 500 CGM.IntTy, 501 CGM.IntTy, 502 CGM.IntTy, 503 getImageRelativeType( 504 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 505 }; 506 ClassHierarchyDescriptorType->setBody(FieldTypes); 507 return ClassHierarchyDescriptorType; 508 } 509 510 llvm::StructType *getCompleteObjectLocatorType() { 511 if (CompleteObjectLocatorType) 512 return CompleteObjectLocatorType; 513 CompleteObjectLocatorType = llvm::StructType::create( 514 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 515 llvm::Type *FieldTypes[] = { 516 CGM.IntTy, 517 CGM.IntTy, 518 CGM.IntTy, 519 getImageRelativeType(CGM.Int8PtrTy), 520 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 521 getImageRelativeType(CompleteObjectLocatorType), 522 }; 523 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 524 if (!isImageRelative()) 525 FieldTypesRef = FieldTypesRef.drop_back(); 526 CompleteObjectLocatorType->setBody(FieldTypesRef); 527 return CompleteObjectLocatorType; 528 } 529 530 llvm::GlobalVariable *getImageBase() { 531 StringRef Name = "__ImageBase"; 532 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 533 return GV; 534 535 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 536 /*isConstant=*/true, 537 llvm::GlobalValue::ExternalLinkage, 538 /*Initializer=*/nullptr, Name); 539 CGM.setDSOLocal(GV); 540 return GV; 541 } 542 543 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 544 if (!isImageRelative()) 545 return PtrVal; 546 547 if (PtrVal->isNullValue()) 548 return llvm::Constant::getNullValue(CGM.IntTy); 549 550 llvm::Constant *ImageBaseAsInt = 551 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 552 llvm::Constant *PtrValAsInt = 553 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 554 llvm::Constant *Diff = 555 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 556 /*HasNUW=*/true, /*HasNSW=*/true); 557 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 558 } 559 560 private: 561 MicrosoftMangleContext &getMangleContext() { 562 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 563 } 564 565 llvm::Constant *getZeroInt() { 566 return llvm::ConstantInt::get(CGM.IntTy, 0); 567 } 568 569 llvm::Constant *getAllOnesInt() { 570 return llvm::Constant::getAllOnesValue(CGM.IntTy); 571 } 572 573 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 574 575 void 576 GetNullMemberPointerFields(const MemberPointerType *MPT, 577 llvm::SmallVectorImpl<llvm::Constant *> &fields); 578 579 /// Shared code for virtual base adjustment. Returns the offset from 580 /// the vbptr to the virtual base. Optionally returns the address of the 581 /// vbptr itself. 582 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 583 Address Base, 584 llvm::Value *VBPtrOffset, 585 llvm::Value *VBTableOffset, 586 llvm::Value **VBPtr = nullptr); 587 588 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 589 Address Base, 590 int32_t VBPtrOffset, 591 int32_t VBTableOffset, 592 llvm::Value **VBPtr = nullptr) { 593 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 594 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 595 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 596 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 597 } 598 599 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 600 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 601 QualType SrcRecordTy); 602 603 /// Performs a full virtual base adjustment. Used to dereference 604 /// pointers to members of virtual bases. 605 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 606 const CXXRecordDecl *RD, Address Base, 607 llvm::Value *VirtualBaseAdjustmentOffset, 608 llvm::Value *VBPtrOffset /* optional */); 609 610 /// Emits a full member pointer with the fields common to data and 611 /// function member pointers. 612 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 613 bool IsMemberFunction, 614 const CXXRecordDecl *RD, 615 CharUnits NonVirtualBaseAdjustment, 616 unsigned VBTableIndex); 617 618 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 619 llvm::Constant *MP); 620 621 /// - Initialize all vbptrs of 'this' with RD as the complete type. 622 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 623 624 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 625 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 626 627 /// Generate a thunk for calling a virtual member function MD. 628 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 629 const MethodVFTableLocation &ML); 630 631 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 632 CharUnits offset); 633 634 public: 635 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 636 637 bool isZeroInitializable(const MemberPointerType *MPT) override; 638 639 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 640 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 641 return RD->hasAttr<MSInheritanceAttr>(); 642 } 643 644 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 645 646 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 647 CharUnits offset) override; 648 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 649 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 650 651 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 652 llvm::Value *L, 653 llvm::Value *R, 654 const MemberPointerType *MPT, 655 bool Inequality) override; 656 657 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 658 llvm::Value *MemPtr, 659 const MemberPointerType *MPT) override; 660 661 llvm::Value * 662 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 663 Address Base, llvm::Value *MemPtr, 664 const MemberPointerType *MPT) override; 665 666 llvm::Value *EmitNonNullMemberPointerConversion( 667 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 668 CastKind CK, CastExpr::path_const_iterator PathBegin, 669 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 670 CGBuilderTy &Builder); 671 672 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 673 const CastExpr *E, 674 llvm::Value *Src) override; 675 676 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 677 llvm::Constant *Src) override; 678 679 llvm::Constant *EmitMemberPointerConversion( 680 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 681 CastKind CK, CastExpr::path_const_iterator PathBegin, 682 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 683 684 CGCallee 685 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 686 Address This, llvm::Value *&ThisPtrForCall, 687 llvm::Value *MemPtr, 688 const MemberPointerType *MPT) override; 689 690 void emitCXXStructor(GlobalDecl GD) override; 691 692 llvm::StructType *getCatchableTypeType() { 693 if (CatchableTypeType) 694 return CatchableTypeType; 695 llvm::Type *FieldTypes[] = { 696 CGM.IntTy, // Flags 697 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 698 CGM.IntTy, // NonVirtualAdjustment 699 CGM.IntTy, // OffsetToVBPtr 700 CGM.IntTy, // VBTableIndex 701 CGM.IntTy, // Size 702 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 703 }; 704 CatchableTypeType = llvm::StructType::create( 705 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 706 return CatchableTypeType; 707 } 708 709 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 710 llvm::StructType *&CatchableTypeArrayType = 711 CatchableTypeArrayTypeMap[NumEntries]; 712 if (CatchableTypeArrayType) 713 return CatchableTypeArrayType; 714 715 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 716 CTATypeName += llvm::utostr(NumEntries); 717 llvm::Type *CTType = 718 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 719 llvm::Type *FieldTypes[] = { 720 CGM.IntTy, // NumEntries 721 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 722 }; 723 CatchableTypeArrayType = 724 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 725 return CatchableTypeArrayType; 726 } 727 728 llvm::StructType *getThrowInfoType() { 729 if (ThrowInfoType) 730 return ThrowInfoType; 731 llvm::Type *FieldTypes[] = { 732 CGM.IntTy, // Flags 733 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 734 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 735 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 736 }; 737 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 738 "eh.ThrowInfo"); 739 return ThrowInfoType; 740 } 741 742 llvm::FunctionCallee getThrowFn() { 743 // _CxxThrowException is passed an exception object and a ThrowInfo object 744 // which describes the exception. 745 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 746 llvm::FunctionType *FTy = 747 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 748 llvm::FunctionCallee Throw = 749 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 750 // _CxxThrowException is stdcall on 32-bit x86 platforms. 751 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 752 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 753 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 754 } 755 return Throw; 756 } 757 758 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 759 CXXCtorType CT); 760 761 llvm::Constant *getCatchableType(QualType T, 762 uint32_t NVOffset = 0, 763 int32_t VBPtrOffset = -1, 764 uint32_t VBIndex = 0); 765 766 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 767 768 llvm::GlobalVariable *getThrowInfo(QualType T) override; 769 770 std::pair<llvm::Value *, const CXXRecordDecl *> 771 LoadVTablePtr(CodeGenFunction &CGF, Address This, 772 const CXXRecordDecl *RD) override; 773 774 private: 775 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 776 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 777 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 778 /// All the vftables that have been referenced. 779 VFTablesMapTy VFTablesMap; 780 VTablesMapTy VTablesMap; 781 782 /// This set holds the record decls we've deferred vtable emission for. 783 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 784 785 786 /// All the vbtables which have been referenced. 787 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 788 789 /// Info on the global variable used to guard initialization of static locals. 790 /// The BitIndex field is only used for externally invisible declarations. 791 struct GuardInfo { 792 GuardInfo() : Guard(nullptr), BitIndex(0) {} 793 llvm::GlobalVariable *Guard; 794 unsigned BitIndex; 795 }; 796 797 /// Map from DeclContext to the current guard variable. We assume that the 798 /// AST is visited in source code order. 799 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 800 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 801 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 802 803 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 804 llvm::StructType *BaseClassDescriptorType; 805 llvm::StructType *ClassHierarchyDescriptorType; 806 llvm::StructType *CompleteObjectLocatorType; 807 808 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 809 810 llvm::StructType *CatchableTypeType; 811 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 812 llvm::StructType *ThrowInfoType; 813 }; 814 815 } 816 817 CGCXXABI::RecordArgABI 818 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 819 switch (CGM.getTarget().getTriple().getArch()) { 820 default: 821 // FIXME: Implement for other architectures. 822 return RAA_Default; 823 824 case llvm::Triple::thumb: 825 // Use the simple Itanium rules for now. 826 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 827 // copy ctor. 828 return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; 829 830 case llvm::Triple::x86: 831 // All record arguments are passed in memory on x86. Decide whether to 832 // construct the object directly in argument memory, or to construct the 833 // argument elsewhere and copy the bytes during the call. 834 835 // If C++ prohibits us from making a copy, construct the arguments directly 836 // into argument memory. 837 if (!RD->canPassInRegisters()) 838 return RAA_DirectInMemory; 839 840 // Otherwise, construct the argument into a temporary and copy the bytes 841 // into the outgoing argument memory. 842 return RAA_Default; 843 844 case llvm::Triple::x86_64: 845 case llvm::Triple::aarch64: 846 return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; 847 } 848 849 llvm_unreachable("invalid enum"); 850 } 851 852 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 853 const CXXDeleteExpr *DE, 854 Address Ptr, 855 QualType ElementType, 856 const CXXDestructorDecl *Dtor) { 857 // FIXME: Provide a source location here even though there's no 858 // CXXMemberCallExpr for dtor call. 859 bool UseGlobalDelete = DE->isGlobalDelete(); 860 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 861 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 862 if (UseGlobalDelete) 863 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 864 } 865 866 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 867 llvm::Value *Args[] = { 868 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 869 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 870 llvm::FunctionCallee Fn = getThrowFn(); 871 if (isNoReturn) 872 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 873 else 874 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 875 } 876 877 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 878 const CXXCatchStmt *S) { 879 // In the MS ABI, the runtime handles the copy, and the catch handler is 880 // responsible for destruction. 881 VarDecl *CatchParam = S->getExceptionDecl(); 882 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 883 llvm::CatchPadInst *CPI = 884 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 885 CGF.CurrentFuncletPad = CPI; 886 887 // If this is a catch-all or the catch parameter is unnamed, we don't need to 888 // emit an alloca to the object. 889 if (!CatchParam || !CatchParam->getDeclName()) { 890 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 891 return; 892 } 893 894 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 895 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 896 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 897 CGF.EmitAutoVarCleanups(var); 898 } 899 900 /// We need to perform a generic polymorphic operation (like a typeid 901 /// or a cast), which requires an object with a vfptr. Adjust the 902 /// address to point to an object with a vfptr. 903 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 904 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 905 QualType SrcRecordTy) { 906 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); 907 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 908 const ASTContext &Context = getContext(); 909 910 // If the class itself has a vfptr, great. This check implicitly 911 // covers non-virtual base subobjects: a class with its own virtual 912 // functions would be a candidate to be a primary base. 913 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 914 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 915 SrcDecl); 916 917 // Okay, one of the vbases must have a vfptr, or else this isn't 918 // actually a polymorphic class. 919 const CXXRecordDecl *PolymorphicBase = nullptr; 920 for (auto &Base : SrcDecl->vbases()) { 921 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 922 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 923 PolymorphicBase = BaseDecl; 924 break; 925 } 926 } 927 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 928 929 llvm::Value *Offset = 930 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 931 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset); 932 CharUnits VBaseAlign = 933 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 934 return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase); 935 } 936 937 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 938 QualType SrcRecordTy) { 939 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 940 return IsDeref && 941 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 942 } 943 944 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 945 llvm::Value *Argument) { 946 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 947 llvm::FunctionType *FTy = 948 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 949 llvm::Value *Args[] = {Argument}; 950 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 951 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 952 } 953 954 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 955 llvm::CallBase *Call = 956 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 957 Call->setDoesNotReturn(); 958 CGF.Builder.CreateUnreachable(); 959 } 960 961 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 962 QualType SrcRecordTy, 963 Address ThisPtr, 964 llvm::Type *StdTypeInfoPtrTy) { 965 std::tie(ThisPtr, std::ignore, std::ignore) = 966 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 967 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 968 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 969 } 970 971 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 972 QualType SrcRecordTy) { 973 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 974 return SrcIsPtr && 975 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 976 } 977 978 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 979 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 980 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 981 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 982 983 llvm::Value *SrcRTTI = 984 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 985 llvm::Value *DestRTTI = 986 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 987 988 llvm::Value *Offset; 989 std::tie(This, Offset, std::ignore) = 990 performBaseAdjustment(CGF, This, SrcRecordTy); 991 llvm::Value *ThisPtr = This.getPointer(); 992 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 993 994 // PVOID __RTDynamicCast( 995 // PVOID inptr, 996 // LONG VfDelta, 997 // PVOID SrcType, 998 // PVOID TargetType, 999 // BOOL isReference) 1000 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1001 CGF.Int8PtrTy, CGF.Int32Ty}; 1002 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1003 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1004 "__RTDynamicCast"); 1005 llvm::Value *Args[] = { 1006 ThisPtr, Offset, SrcRTTI, DestRTTI, 1007 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1008 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); 1009 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 1010 } 1011 1012 llvm::Value * 1013 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1014 QualType SrcRecordTy, 1015 QualType DestTy) { 1016 std::tie(Value, std::ignore, std::ignore) = 1017 performBaseAdjustment(CGF, Value, SrcRecordTy); 1018 1019 // PVOID __RTCastToVoid( 1020 // PVOID inptr) 1021 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1022 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1023 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1024 "__RTCastToVoid"); 1025 llvm::Value *Args[] = {Value.getPointer()}; 1026 return CGF.EmitRuntimeCall(Function, Args); 1027 } 1028 1029 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1030 return false; 1031 } 1032 1033 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1034 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1035 const CXXRecordDecl *BaseClassDecl) { 1036 const ASTContext &Context = getContext(); 1037 int64_t VBPtrChars = 1038 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1039 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1040 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1041 CharUnits VBTableChars = 1042 IntSize * 1043 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1044 llvm::Value *VBTableOffset = 1045 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1046 1047 llvm::Value *VBPtrToNewBase = 1048 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1049 VBPtrToNewBase = 1050 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1051 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1052 } 1053 1054 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1055 return isa<CXXConstructorDecl>(GD.getDecl()); 1056 } 1057 1058 static bool isDeletingDtor(GlobalDecl GD) { 1059 return isa<CXXDestructorDecl>(GD.getDecl()) && 1060 GD.getDtorType() == Dtor_Deleting; 1061 } 1062 1063 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1064 return isDeletingDtor(GD); 1065 } 1066 1067 static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) { 1068 return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128; 1069 } 1070 1071 static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) { 1072 // For AArch64, we use the C++14 definition of an aggregate, so we also 1073 // check for: 1074 // No private or protected non static data members. 1075 // No base classes 1076 // No virtual functions 1077 // Additionally, we need to ensure that there is a trivial copy assignment 1078 // operator, a trivial destructor and no user-provided constructors. 1079 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1080 return true; 1081 if (RD->getNumBases() > 0) 1082 return true; 1083 if (RD->isPolymorphic()) 1084 return true; 1085 if (RD->hasNonTrivialCopyAssignment()) 1086 return true; 1087 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1088 if (Ctor->isUserProvided()) 1089 return true; 1090 if (RD->hasNonTrivialDestructor()) 1091 return true; 1092 return false; 1093 } 1094 1095 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1096 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1097 if (!RD) 1098 return false; 1099 1100 bool isAArch64 = CGM.getTarget().getTriple().isAArch64(); 1101 bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD); 1102 bool isIndirectReturn = 1103 isAArch64 ? (!RD->canPassInRegisters() || 1104 IsSizeGreaterThan128(RD)) 1105 : !RD->isPOD(); 1106 bool isInstanceMethod = FI.isInstanceMethod(); 1107 1108 if (isIndirectReturn || !isSimple || isInstanceMethod) { 1109 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1110 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1111 FI.getReturnInfo().setSRetAfterThis(isInstanceMethod); 1112 1113 FI.getReturnInfo().setInReg(isAArch64 && 1114 !(isSimple && IsSizeGreaterThan128(RD))); 1115 1116 return true; 1117 } 1118 1119 // Otherwise, use the C ABI rules. 1120 return false; 1121 } 1122 1123 llvm::BasicBlock * 1124 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1125 const CXXRecordDecl *RD) { 1126 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1127 assert(IsMostDerivedClass && 1128 "ctor for a class with virtual bases must have an implicit parameter"); 1129 llvm::Value *IsCompleteObject = 1130 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1131 1132 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1133 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1134 CGF.Builder.CreateCondBr(IsCompleteObject, 1135 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1136 1137 CGF.EmitBlock(CallVbaseCtorsBB); 1138 1139 // Fill in the vbtable pointers here. 1140 EmitVBPtrStores(CGF, RD); 1141 1142 // CGF will put the base ctor calls in this basic block for us later. 1143 1144 return SkipVbaseCtorsBB; 1145 } 1146 1147 llvm::BasicBlock * 1148 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1149 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1150 assert(IsMostDerivedClass && 1151 "ctor for a class with virtual bases must have an implicit parameter"); 1152 llvm::Value *IsCompleteObject = 1153 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1154 1155 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1156 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1157 CGF.Builder.CreateCondBr(IsCompleteObject, 1158 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1159 1160 CGF.EmitBlock(CallVbaseDtorsBB); 1161 // CGF will put the base dtor calls in this basic block for us later. 1162 1163 return SkipVbaseDtorsBB; 1164 } 1165 1166 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1167 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1168 // In most cases, an override for a vbase virtual method can adjust 1169 // the "this" parameter by applying a constant offset. 1170 // However, this is not enough while a constructor or a destructor of some 1171 // class X is being executed if all the following conditions are met: 1172 // - X has virtual bases, (1) 1173 // - X overrides a virtual method M of a vbase Y, (2) 1174 // - X itself is a vbase of the most derived class. 1175 // 1176 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1177 // which holds the extra amount of "this" adjustment we must do when we use 1178 // the X vftables (i.e. during X ctor or dtor). 1179 // Outside the ctors and dtors, the values of vtorDisps are zero. 1180 1181 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1182 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1183 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1184 CGBuilderTy &Builder = CGF.Builder; 1185 1186 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1187 llvm::Value *Int8This = nullptr; // Initialize lazily. 1188 1189 for (const CXXBaseSpecifier &S : RD->vbases()) { 1190 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1191 auto I = VBaseMap.find(VBase); 1192 assert(I != VBaseMap.end()); 1193 if (!I->second.hasVtorDisp()) 1194 continue; 1195 1196 llvm::Value *VBaseOffset = 1197 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1198 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1199 1200 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1201 llvm::Value *VtorDispValue = Builder.CreateSub( 1202 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1203 "vtordisp.value"); 1204 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1205 1206 if (!Int8This) 1207 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1208 CGF.Int8Ty->getPointerTo(AS)); 1209 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); 1210 // vtorDisp is always the 32-bits before the vbase in the class layout. 1211 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); 1212 VtorDispPtr = Builder.CreateBitCast( 1213 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1214 1215 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1216 CharUnits::fromQuantity(4)); 1217 } 1218 } 1219 1220 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1221 const CXXMethodDecl *MD) { 1222 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1223 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1224 CallingConv ActualCallingConv = 1225 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1226 return ExpectedCallingConv == ActualCallingConv; 1227 } 1228 1229 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1230 // There's only one constructor type in this ABI. 1231 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1232 1233 // Exported default constructors either have a simple call-site where they use 1234 // the typical calling convention and have a single 'this' pointer for an 1235 // argument -or- they get a wrapper function which appropriately thunks to the 1236 // real default constructor. This thunk is the default constructor closure. 1237 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor()) 1238 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1239 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1240 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1241 CGM.setGVProperties(Fn, D); 1242 } 1243 } 1244 1245 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1246 const CXXRecordDecl *RD) { 1247 Address This = getThisAddress(CGF); 1248 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1249 const ASTContext &Context = getContext(); 1250 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1251 1252 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1253 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1254 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1255 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1256 const ASTRecordLayout &SubobjectLayout = 1257 Context.getASTRecordLayout(VBT->IntroducingObject); 1258 CharUnits Offs = VBT->NonVirtualOffset; 1259 Offs += SubobjectLayout.getVBPtrOffset(); 1260 if (VBT->getVBaseWithVPtr()) 1261 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1262 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1263 llvm::Value *GVPtr = 1264 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1265 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1266 "vbptr." + VBT->ObjectWithVPtr->getName()); 1267 CGF.Builder.CreateStore(GVPtr, VBPtr); 1268 } 1269 } 1270 1271 CGCXXABI::AddedStructorArgCounts 1272 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1273 SmallVectorImpl<CanQualType> &ArgTys) { 1274 AddedStructorArgCounts Added; 1275 // TODO: 'for base' flag 1276 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1277 GD.getDtorType() == Dtor_Deleting) { 1278 // The scalar deleting destructor takes an implicit int parameter. 1279 ArgTys.push_back(getContext().IntTy); 1280 ++Added.Suffix; 1281 } 1282 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1283 if (!CD) 1284 return Added; 1285 1286 // All parameters are already in place except is_most_derived, which goes 1287 // after 'this' if it's variadic and last if it's not. 1288 1289 const CXXRecordDecl *Class = CD->getParent(); 1290 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1291 if (Class->getNumVBases()) { 1292 if (FPT->isVariadic()) { 1293 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1294 ++Added.Prefix; 1295 } else { 1296 ArgTys.push_back(getContext().IntTy); 1297 ++Added.Suffix; 1298 } 1299 } 1300 1301 return Added; 1302 } 1303 1304 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1305 const CXXDestructorDecl *Dtor, 1306 CXXDtorType DT) const { 1307 // Deleting destructor variants are never imported or exported. Give them the 1308 // default storage class. 1309 if (DT == Dtor_Deleting) { 1310 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1311 } else { 1312 const NamedDecl *ND = Dtor; 1313 CGM.setDLLImportDLLExport(GV, ND); 1314 } 1315 } 1316 1317 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1318 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1319 // Internal things are always internal, regardless of attributes. After this, 1320 // we know the thunk is externally visible. 1321 if (Linkage == GVA_Internal) 1322 return llvm::GlobalValue::InternalLinkage; 1323 1324 switch (DT) { 1325 case Dtor_Base: 1326 // The base destructor most closely tracks the user-declared constructor, so 1327 // we delegate back to the normal declarator case. 1328 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, 1329 /*IsConstantVariable=*/false); 1330 case Dtor_Complete: 1331 // The complete destructor is like an inline function, but it may be 1332 // imported and therefore must be exported as well. This requires changing 1333 // the linkage if a DLL attribute is present. 1334 if (Dtor->hasAttr<DLLExportAttr>()) 1335 return llvm::GlobalValue::WeakODRLinkage; 1336 if (Dtor->hasAttr<DLLImportAttr>()) 1337 return llvm::GlobalValue::AvailableExternallyLinkage; 1338 return llvm::GlobalValue::LinkOnceODRLinkage; 1339 case Dtor_Deleting: 1340 // Deleting destructors are like inline functions. They have vague linkage 1341 // and are emitted everywhere they are used. They are internal if the class 1342 // is internal. 1343 return llvm::GlobalValue::LinkOnceODRLinkage; 1344 case Dtor_Comdat: 1345 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1346 } 1347 llvm_unreachable("invalid dtor type"); 1348 } 1349 1350 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1351 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1352 // other destructor variants are delegating thunks. 1353 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1354 1355 // If the class is dllexported, emit the complete (vbase) destructor wherever 1356 // the base dtor is emitted. 1357 // FIXME: To match MSVC, this should only be done when the class is exported 1358 // with -fdllexport-inlines enabled. 1359 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1360 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1361 } 1362 1363 CharUnits 1364 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1365 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1366 1367 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1368 // Complete destructors take a pointer to the complete object as a 1369 // parameter, thus don't need this adjustment. 1370 if (GD.getDtorType() == Dtor_Complete) 1371 return CharUnits(); 1372 1373 // There's no Dtor_Base in vftable but it shares the this adjustment with 1374 // the deleting one, so look it up instead. 1375 GD = GlobalDecl(DD, Dtor_Deleting); 1376 } 1377 1378 MethodVFTableLocation ML = 1379 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1380 CharUnits Adjustment = ML.VFPtrOffset; 1381 1382 // Normal virtual instance methods need to adjust from the vfptr that first 1383 // defined the virtual method to the virtual base subobject, but destructors 1384 // do not. The vector deleting destructor thunk applies this adjustment for 1385 // us if necessary. 1386 if (isa<CXXDestructorDecl>(MD)) 1387 Adjustment = CharUnits::Zero(); 1388 1389 if (ML.VBase) { 1390 const ASTRecordLayout &DerivedLayout = 1391 getContext().getASTRecordLayout(MD->getParent()); 1392 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1393 } 1394 1395 return Adjustment; 1396 } 1397 1398 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1399 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1400 bool VirtualCall) { 1401 if (!VirtualCall) { 1402 // If the call of a virtual function is not virtual, we just have to 1403 // compensate for the adjustment the virtual function does in its prologue. 1404 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1405 if (Adjustment.isZero()) 1406 return This; 1407 1408 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1409 assert(Adjustment.isPositive()); 1410 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1411 } 1412 1413 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1414 1415 GlobalDecl LookupGD = GD; 1416 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1417 // Complete dtors take a pointer to the complete object, 1418 // thus don't need adjustment. 1419 if (GD.getDtorType() == Dtor_Complete) 1420 return This; 1421 1422 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1423 // with the base one, so look up the deleting one instead. 1424 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1425 } 1426 MethodVFTableLocation ML = 1427 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1428 1429 CharUnits StaticOffset = ML.VFPtrOffset; 1430 1431 // Base destructors expect 'this' to point to the beginning of the base 1432 // subobject, not the first vfptr that happens to contain the virtual dtor. 1433 // However, we still need to apply the virtual base adjustment. 1434 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1435 StaticOffset = CharUnits::Zero(); 1436 1437 Address Result = This; 1438 if (ML.VBase) { 1439 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1440 1441 const CXXRecordDecl *Derived = MD->getParent(); 1442 const CXXRecordDecl *VBase = ML.VBase; 1443 llvm::Value *VBaseOffset = 1444 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1445 llvm::Value *VBasePtr = 1446 CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset); 1447 CharUnits VBaseAlign = 1448 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1449 Result = Address(VBasePtr, VBaseAlign); 1450 } 1451 if (!StaticOffset.isZero()) { 1452 assert(StaticOffset.isPositive()); 1453 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1454 if (ML.VBase) { 1455 // Non-virtual adjustment might result in a pointer outside the allocated 1456 // object, e.g. if the final overrider class is laid out after the virtual 1457 // base that declares a method in the most derived class. 1458 // FIXME: Update the code that emits this adjustment in thunks prologues. 1459 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1460 } else { 1461 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1462 } 1463 } 1464 return Result; 1465 } 1466 1467 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1468 QualType &ResTy, 1469 FunctionArgList &Params) { 1470 ASTContext &Context = getContext(); 1471 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1472 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1473 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1474 auto *IsMostDerived = ImplicitParamDecl::Create( 1475 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1476 &Context.Idents.get("is_most_derived"), Context.IntTy, 1477 ImplicitParamDecl::Other); 1478 // The 'most_derived' parameter goes second if the ctor is variadic and last 1479 // if it's not. Dtors can't be variadic. 1480 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1481 if (FPT->isVariadic()) 1482 Params.insert(Params.begin() + 1, IsMostDerived); 1483 else 1484 Params.push_back(IsMostDerived); 1485 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1486 } else if (isDeletingDtor(CGF.CurGD)) { 1487 auto *ShouldDelete = ImplicitParamDecl::Create( 1488 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1489 &Context.Idents.get("should_call_delete"), Context.IntTy, 1490 ImplicitParamDecl::Other); 1491 Params.push_back(ShouldDelete); 1492 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1493 } 1494 } 1495 1496 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1497 // Naked functions have no prolog. 1498 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1499 return; 1500 1501 // Overridden virtual methods of non-primary bases need to adjust the incoming 1502 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1503 // sizeof(void*) to adjust from B* to C*: 1504 // struct A { virtual void a(); }; 1505 // struct B { virtual void b(); }; 1506 // struct C : A, B { virtual void b(); }; 1507 // 1508 // Leave the value stored in the 'this' alloca unadjusted, so that the 1509 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1510 // will apply the ThisAdjustment in the method type information. 1511 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1512 // without making our codegen depend on debug info settings. 1513 llvm::Value *This = loadIncomingCXXThis(CGF); 1514 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1515 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1516 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1517 if (!Adjustment.isZero()) { 1518 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1519 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1520 *thisTy = This->getType(); 1521 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1522 assert(Adjustment.isPositive()); 1523 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1524 -Adjustment.getQuantity()); 1525 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); 1526 } 1527 } 1528 setCXXABIThisValue(CGF, This); 1529 1530 // If this is a function that the ABI specifies returns 'this', initialize 1531 // the return slot to 'this' at the start of the function. 1532 // 1533 // Unlike the setting of return types, this is done within the ABI 1534 // implementation instead of by clients of CGCXXABI because: 1535 // 1) getThisValue is currently protected 1536 // 2) in theory, an ABI could implement 'this' returns some other way; 1537 // HasThisReturn only specifies a contract, not the implementation 1538 if (HasThisReturn(CGF.CurGD)) 1539 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1540 else if (hasMostDerivedReturn(CGF.CurGD)) 1541 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1542 CGF.ReturnValue); 1543 1544 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1545 assert(getStructorImplicitParamDecl(CGF) && 1546 "no implicit parameter for a constructor with virtual bases?"); 1547 getStructorImplicitParamValue(CGF) 1548 = CGF.Builder.CreateLoad( 1549 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1550 "is_most_derived"); 1551 } 1552 1553 if (isDeletingDtor(CGF.CurGD)) { 1554 assert(getStructorImplicitParamDecl(CGF) && 1555 "no implicit parameter for a deleting destructor?"); 1556 getStructorImplicitParamValue(CGF) 1557 = CGF.Builder.CreateLoad( 1558 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1559 "should_call_delete"); 1560 } 1561 } 1562 1563 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1564 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1565 bool ForVirtualBase, bool Delegating) { 1566 assert(Type == Ctor_Complete || Type == Ctor_Base); 1567 1568 // Check if we need a 'most_derived' parameter. 1569 if (!D->getParent()->getNumVBases()) 1570 return AddedStructorArgs{}; 1571 1572 // Add the 'most_derived' argument second if we are variadic or last if not. 1573 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1574 llvm::Value *MostDerivedArg; 1575 if (Delegating) { 1576 MostDerivedArg = getStructorImplicitParamValue(CGF); 1577 } else { 1578 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1579 } 1580 if (FPT->isVariadic()) { 1581 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1582 } 1583 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1584 } 1585 1586 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1587 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1588 bool ForVirtualBase, bool Delegating) { 1589 return nullptr; 1590 } 1591 1592 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1593 const CXXDestructorDecl *DD, 1594 CXXDtorType Type, bool ForVirtualBase, 1595 bool Delegating, Address This, 1596 QualType ThisTy) { 1597 // Use the base destructor variant in place of the complete destructor variant 1598 // if the class has no virtual bases. This effectively implements some of the 1599 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1600 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1601 Type = Dtor_Base; 1602 1603 GlobalDecl GD(DD, Type); 1604 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1605 1606 if (DD->isVirtual()) { 1607 assert(Type != CXXDtorType::Dtor_Deleting && 1608 "The deleting destructor should only be called via a virtual call"); 1609 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1610 This, false); 1611 } 1612 1613 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1614 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1615 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1616 } 1617 1618 llvm::Value *Implicit = 1619 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1620 Delegating); // = nullptr 1621 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1622 /*ImplicitParam=*/Implicit, 1623 /*ImplicitParamTy=*/QualType(), nullptr); 1624 if (BaseDtorEndBB) { 1625 // Complete object handler should continue to be the remaining 1626 CGF.Builder.CreateBr(BaseDtorEndBB); 1627 CGF.EmitBlock(BaseDtorEndBB); 1628 } 1629 } 1630 1631 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1632 const CXXRecordDecl *RD, 1633 llvm::GlobalVariable *VTable) { 1634 if (!CGM.getCodeGenOpts().LTOUnit) 1635 return; 1636 1637 // TODO: Should VirtualFunctionElimination also be supported here? 1638 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1639 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1640 llvm::GlobalObject::VCallVisibility TypeVis = 1641 CGM.GetVCallVisibilityLevel(RD); 1642 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1643 VTable->setVCallVisibilityMetadata(TypeVis); 1644 } 1645 1646 // The location of the first virtual function pointer in the virtual table, 1647 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1648 // disabled, or sizeof(void*) if RTTI is enabled. 1649 CharUnits AddressPoint = 1650 getContext().getLangOpts().RTTIData 1651 ? getContext().toCharUnitsFromBits( 1652 getContext().getTargetInfo().getPointerWidth(0)) 1653 : CharUnits::Zero(); 1654 1655 if (Info.PathToIntroducingObject.empty()) { 1656 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1657 return; 1658 } 1659 1660 // Add a bitset entry for the least derived base belonging to this vftable. 1661 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1662 Info.PathToIntroducingObject.back()); 1663 1664 // Add a bitset entry for each derived class that is laid out at the same 1665 // offset as the least derived base. 1666 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1667 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1668 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1669 1670 const ASTRecordLayout &Layout = 1671 getContext().getASTRecordLayout(DerivedRD); 1672 CharUnits Offset; 1673 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1674 if (VBI == Layout.getVBaseOffsetsMap().end()) 1675 Offset = Layout.getBaseClassOffset(BaseRD); 1676 else 1677 Offset = VBI->second.VBaseOffset; 1678 if (!Offset.isZero()) 1679 return; 1680 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1681 } 1682 1683 // Finally do the same for the most derived class. 1684 if (Info.FullOffsetInMDC.isZero()) 1685 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1686 } 1687 1688 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1689 const CXXRecordDecl *RD) { 1690 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1691 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1692 1693 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1694 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1695 if (VTable->hasInitializer()) 1696 continue; 1697 1698 const VTableLayout &VTLayout = 1699 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1700 1701 llvm::Constant *RTTI = nullptr; 1702 if (any_of(VTLayout.vtable_components(), 1703 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1704 RTTI = getMSCompleteObjectLocator(RD, *Info); 1705 1706 ConstantInitBuilder builder(CGM); 1707 auto components = builder.beginStruct(); 1708 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1709 VTable->hasLocalLinkage()); 1710 components.finishAndSetAsInitializer(VTable); 1711 1712 emitVTableTypeMetadata(*Info, RD, VTable); 1713 } 1714 } 1715 1716 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1717 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1718 return Vptr.NearestVBase != nullptr; 1719 } 1720 1721 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1722 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1723 const CXXRecordDecl *NearestVBase) { 1724 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1725 if (!VTableAddressPoint) { 1726 assert(Base.getBase()->getNumVBases() && 1727 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1728 } 1729 return VTableAddressPoint; 1730 } 1731 1732 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1733 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1734 SmallString<256> &Name) { 1735 llvm::raw_svector_ostream Out(Name); 1736 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1737 } 1738 1739 llvm::Constant * 1740 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1741 const CXXRecordDecl *VTableClass) { 1742 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1743 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1744 return VFTablesMap[ID]; 1745 } 1746 1747 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1748 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1749 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1750 assert(VFTable && "Couldn't find a vftable for the given base?"); 1751 return VFTable; 1752 } 1753 1754 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1755 CharUnits VPtrOffset) { 1756 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1757 // shouldn't be used in the given record type. We want to cache this result in 1758 // VFTablesMap, thus a simple zero check is not sufficient. 1759 1760 VFTableIdTy ID(RD, VPtrOffset); 1761 VTablesMapTy::iterator I; 1762 bool Inserted; 1763 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1764 if (!Inserted) 1765 return I->second; 1766 1767 llvm::GlobalVariable *&VTable = I->second; 1768 1769 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1770 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1771 1772 if (DeferredVFTables.insert(RD).second) { 1773 // We haven't processed this record type before. 1774 // Queue up this vtable for possible deferred emission. 1775 CGM.addDeferredVTable(RD); 1776 1777 #ifndef NDEBUG 1778 // Create all the vftables at once in order to make sure each vftable has 1779 // a unique mangled name. 1780 llvm::StringSet<> ObservedMangledNames; 1781 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1782 SmallString<256> Name; 1783 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1784 if (!ObservedMangledNames.insert(Name.str()).second) 1785 llvm_unreachable("Already saw this mangling before?"); 1786 } 1787 #endif 1788 } 1789 1790 const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if( 1791 VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) { 1792 return VPI->FullOffsetInMDC == VPtrOffset; 1793 }); 1794 if (VFPtrI == VFPtrs.end()) { 1795 VFTablesMap[ID] = nullptr; 1796 return nullptr; 1797 } 1798 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1799 1800 SmallString<256> VFTableName; 1801 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1802 1803 // Classes marked __declspec(dllimport) need vftables generated on the 1804 // import-side in order to support features like constexpr. No other 1805 // translation unit relies on the emission of the local vftable, translation 1806 // units are expected to generate them as needed. 1807 // 1808 // Because of this unique behavior, we maintain this logic here instead of 1809 // getVTableLinkage. 1810 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1811 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1812 : CGM.getVTableLinkage(RD); 1813 bool VFTableComesFromAnotherTU = 1814 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1815 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1816 bool VTableAliasIsRequred = 1817 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1818 1819 if (llvm::GlobalValue *VFTable = 1820 CGM.getModule().getNamedGlobal(VFTableName)) { 1821 VFTablesMap[ID] = VFTable; 1822 VTable = VTableAliasIsRequred 1823 ? cast<llvm::GlobalVariable>( 1824 cast<llvm::GlobalAlias>(VFTable)->getBaseObject()) 1825 : cast<llvm::GlobalVariable>(VFTable); 1826 return VTable; 1827 } 1828 1829 const VTableLayout &VTLayout = 1830 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1831 llvm::GlobalValue::LinkageTypes VTableLinkage = 1832 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1833 1834 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1835 1836 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1837 1838 // Create a backing variable for the contents of VTable. The VTable may 1839 // or may not include space for a pointer to RTTI data. 1840 llvm::GlobalValue *VFTable; 1841 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1842 /*isConstant=*/true, VTableLinkage, 1843 /*Initializer=*/nullptr, VTableName); 1844 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1845 1846 llvm::Comdat *C = nullptr; 1847 if (!VFTableComesFromAnotherTU && 1848 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1849 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1850 VTableAliasIsRequred))) 1851 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1852 1853 // Only insert a pointer into the VFTable for RTTI data if we are not 1854 // importing it. We never reference the RTTI data directly so there is no 1855 // need to make room for it. 1856 if (VTableAliasIsRequred) { 1857 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1858 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1859 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1860 // Create a GEP which points just after the first entry in the VFTable, 1861 // this should be the location of the first virtual method. 1862 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1863 VTable->getValueType(), VTable, GEPIndices); 1864 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1865 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1866 if (C) 1867 C->setSelectionKind(llvm::Comdat::Largest); 1868 } 1869 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1870 /*AddressSpace=*/0, VFTableLinkage, 1871 VFTableName.str(), VTableGEP, 1872 &CGM.getModule()); 1873 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1874 } else { 1875 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1876 // be referencing any RTTI data. 1877 // The GlobalVariable will end up being an appropriate definition of the 1878 // VFTable. 1879 VFTable = VTable; 1880 } 1881 if (C) 1882 VTable->setComdat(C); 1883 1884 if (RD->hasAttr<DLLExportAttr>()) 1885 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1886 1887 VFTablesMap[ID] = VFTable; 1888 return VTable; 1889 } 1890 1891 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1892 GlobalDecl GD, 1893 Address This, 1894 llvm::Type *Ty, 1895 SourceLocation Loc) { 1896 CGBuilderTy &Builder = CGF.Builder; 1897 1898 Ty = Ty->getPointerTo()->getPointerTo(); 1899 Address VPtr = 1900 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1901 1902 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1903 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent()); 1904 1905 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1906 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1907 1908 // Compute the identity of the most derived class whose virtual table is 1909 // located at the MethodVFTableLocation ML. 1910 auto getObjectWithVPtr = [&] { 1911 return llvm::find_if(VFTContext.getVFPtrOffsets( 1912 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1913 [&](const std::unique_ptr<VPtrInfo> &Info) { 1914 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1915 }) 1916 ->get() 1917 ->ObjectWithVPtr; 1918 }; 1919 1920 llvm::Value *VFunc; 1921 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1922 VFunc = CGF.EmitVTableTypeCheckedLoad( 1923 getObjectWithVPtr(), VTable, 1924 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); 1925 } else { 1926 if (CGM.getCodeGenOpts().PrepareForLTO) 1927 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1928 1929 llvm::Value *VFuncPtr = 1930 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1931 VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 1932 } 1933 1934 CGCallee Callee(GD, VFunc); 1935 return Callee; 1936 } 1937 1938 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1939 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1940 Address This, DeleteOrMemberCallExpr E) { 1941 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1942 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1943 assert((CE != nullptr) ^ (D != nullptr)); 1944 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1945 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1946 1947 // We have only one destructor in the vftable but can get both behaviors 1948 // by passing an implicit int parameter. 1949 GlobalDecl GD(Dtor, Dtor_Deleting); 1950 const CGFunctionInfo *FInfo = 1951 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 1952 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1953 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 1954 1955 ASTContext &Context = getContext(); 1956 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1957 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1958 DtorType == Dtor_Deleting); 1959 1960 QualType ThisTy; 1961 if (CE) { 1962 ThisTy = CE->getObjectType(); 1963 } else { 1964 ThisTy = D->getDestroyedType(); 1965 } 1966 1967 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1968 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1969 ImplicitParam, Context.IntTy, CE); 1970 return RV.getScalarVal(); 1971 } 1972 1973 const VBTableGlobals & 1974 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 1975 // At this layer, we can key the cache off of a single class, which is much 1976 // easier than caching each vbtable individually. 1977 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 1978 bool Added; 1979 std::tie(Entry, Added) = 1980 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 1981 VBTableGlobals &VBGlobals = Entry->second; 1982 if (!Added) 1983 return VBGlobals; 1984 1985 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 1986 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 1987 1988 // Cache the globals for all vbtables so we don't have to recompute the 1989 // mangled names. 1990 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 1991 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 1992 E = VBGlobals.VBTables->end(); 1993 I != E; ++I) { 1994 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 1995 } 1996 1997 return VBGlobals; 1998 } 1999 2000 llvm::Function * 2001 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2002 const MethodVFTableLocation &ML) { 2003 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2004 "can't form pointers to ctors or virtual dtors"); 2005 2006 // Calculate the mangled name. 2007 SmallString<256> ThunkName; 2008 llvm::raw_svector_ostream Out(ThunkName); 2009 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2010 2011 // If the thunk has been generated previously, just return it. 2012 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2013 return cast<llvm::Function>(GV); 2014 2015 // Create the llvm::Function. 2016 const CGFunctionInfo &FnInfo = 2017 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2018 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2019 llvm::Function *ThunkFn = 2020 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2021 ThunkName.str(), &CGM.getModule()); 2022 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2023 2024 ThunkFn->setLinkage(MD->isExternallyVisible() 2025 ? llvm::GlobalValue::LinkOnceODRLinkage 2026 : llvm::GlobalValue::InternalLinkage); 2027 if (MD->isExternallyVisible()) 2028 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2029 2030 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 2031 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2032 2033 // Add the "thunk" attribute so that LLVM knows that the return type is 2034 // meaningless. These thunks can be used to call functions with differing 2035 // return types, and the caller is required to cast the prototype 2036 // appropriately to extract the correct value. 2037 ThunkFn->addFnAttr("thunk"); 2038 2039 // These thunks can be compared, so they are not unnamed. 2040 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2041 2042 // Start codegen. 2043 CodeGenFunction CGF(CGM); 2044 CGF.CurGD = GlobalDecl(MD); 2045 CGF.CurFuncIsThunk = true; 2046 2047 // Build FunctionArgs, but only include the implicit 'this' parameter 2048 // declaration. 2049 FunctionArgList FunctionArgs; 2050 buildThisParam(CGF, FunctionArgs); 2051 2052 // Start defining the function. 2053 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2054 FunctionArgs, MD->getLocation(), SourceLocation()); 2055 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2056 2057 // Load the vfptr and then callee from the vftable. The callee should have 2058 // adjusted 'this' so that the vfptr is at offset zero. 2059 llvm::Value *VTable = CGF.GetVTablePtr( 2060 getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent()); 2061 2062 llvm::Value *VFuncPtr = 2063 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 2064 llvm::Value *Callee = 2065 CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 2066 2067 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2068 2069 return ThunkFn; 2070 } 2071 2072 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2073 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2074 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2075 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2076 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2077 if (GV->isDeclaration()) 2078 emitVBTableDefinition(*VBT, RD, GV); 2079 } 2080 } 2081 2082 llvm::GlobalVariable * 2083 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2084 llvm::GlobalVariable::LinkageTypes Linkage) { 2085 SmallString<256> OutName; 2086 llvm::raw_svector_ostream Out(OutName); 2087 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2088 StringRef Name = OutName.str(); 2089 2090 llvm::ArrayType *VBTableType = 2091 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2092 2093 assert(!CGM.getModule().getNamedGlobal(Name) && 2094 "vbtable with this name already exists: mangling bug?"); 2095 CharUnits Alignment = 2096 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2097 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2098 Name, VBTableType, Linkage, Alignment.getQuantity()); 2099 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2100 2101 if (RD->hasAttr<DLLImportAttr>()) 2102 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2103 else if (RD->hasAttr<DLLExportAttr>()) 2104 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2105 2106 if (!GV->hasExternalLinkage()) 2107 emitVBTableDefinition(VBT, RD, GV); 2108 2109 return GV; 2110 } 2111 2112 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2113 const CXXRecordDecl *RD, 2114 llvm::GlobalVariable *GV) const { 2115 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2116 2117 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2118 "should only emit vbtables for classes with vbtables"); 2119 2120 const ASTRecordLayout &BaseLayout = 2121 getContext().getASTRecordLayout(VBT.IntroducingObject); 2122 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2123 2124 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2125 nullptr); 2126 2127 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2128 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2129 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2130 2131 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2132 for (const auto &I : ObjectWithVPtr->vbases()) { 2133 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2134 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2135 assert(!Offset.isNegative()); 2136 2137 // Make it relative to the subobject vbptr. 2138 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2139 if (VBT.getVBaseWithVPtr()) 2140 CompleteVBPtrOffset += 2141 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2142 Offset -= CompleteVBPtrOffset; 2143 2144 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2145 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2146 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2147 } 2148 2149 assert(Offsets.size() == 2150 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) 2151 ->getElementType())->getNumElements()); 2152 llvm::ArrayType *VBTableType = 2153 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2154 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2155 GV->setInitializer(Init); 2156 2157 if (RD->hasAttr<DLLImportAttr>()) 2158 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2159 } 2160 2161 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2162 Address This, 2163 const ThisAdjustment &TA) { 2164 if (TA.isEmpty()) 2165 return This.getPointer(); 2166 2167 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2168 2169 llvm::Value *V; 2170 if (TA.Virtual.isEmpty()) { 2171 V = This.getPointer(); 2172 } else { 2173 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2174 // Adjust the this argument based on the vtordisp value. 2175 Address VtorDispPtr = 2176 CGF.Builder.CreateConstInBoundsByteGEP(This, 2177 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2178 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2179 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2180 V = CGF.Builder.CreateGEP(This.getPointer(), 2181 CGF.Builder.CreateNeg(VtorDisp)); 2182 2183 // Unfortunately, having applied the vtordisp means that we no 2184 // longer really have a known alignment for the vbptr step. 2185 // We'll assume the vbptr is pointer-aligned. 2186 2187 if (TA.Virtual.Microsoft.VBPtrOffset) { 2188 // If the final overrider is defined in a virtual base other than the one 2189 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2190 // the vbtable of the derived class. 2191 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2192 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2193 llvm::Value *VBPtr; 2194 llvm::Value *VBaseOffset = 2195 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()), 2196 -TA.Virtual.Microsoft.VBPtrOffset, 2197 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2198 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2199 } 2200 } 2201 2202 if (TA.NonVirtual) { 2203 // Non-virtual adjustment might result in a pointer outside the allocated 2204 // object, e.g. if the final overrider class is laid out after the virtual 2205 // base that declares a method in the most derived class. 2206 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); 2207 } 2208 2209 // Don't need to bitcast back, the call CodeGen will handle this. 2210 return V; 2211 } 2212 2213 llvm::Value * 2214 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2215 const ReturnAdjustment &RA) { 2216 if (RA.isEmpty()) 2217 return Ret.getPointer(); 2218 2219 auto OrigTy = Ret.getType(); 2220 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2221 2222 llvm::Value *V = Ret.getPointer(); 2223 if (RA.Virtual.Microsoft.VBIndex) { 2224 assert(RA.Virtual.Microsoft.VBIndex > 0); 2225 int32_t IntSize = CGF.getIntSize().getQuantity(); 2226 llvm::Value *VBPtr; 2227 llvm::Value *VBaseOffset = 2228 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2229 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2230 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2231 } 2232 2233 if (RA.NonVirtual) 2234 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2235 2236 // Cast back to the original type. 2237 return CGF.Builder.CreateBitCast(V, OrigTy); 2238 } 2239 2240 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2241 QualType elementType) { 2242 // Microsoft seems to completely ignore the possibility of a 2243 // two-argument usual deallocation function. 2244 return elementType.isDestructedType(); 2245 } 2246 2247 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2248 // Microsoft seems to completely ignore the possibility of a 2249 // two-argument usual deallocation function. 2250 return expr->getAllocatedType().isDestructedType(); 2251 } 2252 2253 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2254 // The array cookie is always a size_t; we then pad that out to the 2255 // alignment of the element type. 2256 ASTContext &Ctx = getContext(); 2257 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2258 Ctx.getTypeAlignInChars(type)); 2259 } 2260 2261 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2262 Address allocPtr, 2263 CharUnits cookieSize) { 2264 Address numElementsPtr = 2265 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2266 return CGF.Builder.CreateLoad(numElementsPtr); 2267 } 2268 2269 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2270 Address newPtr, 2271 llvm::Value *numElements, 2272 const CXXNewExpr *expr, 2273 QualType elementType) { 2274 assert(requiresArrayCookie(expr)); 2275 2276 // The size of the cookie. 2277 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2278 2279 // Compute an offset to the cookie. 2280 Address cookiePtr = newPtr; 2281 2282 // Write the number of elements into the appropriate slot. 2283 Address numElementsPtr 2284 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2285 CGF.Builder.CreateStore(numElements, numElementsPtr); 2286 2287 // Finally, compute a pointer to the actual data buffer by skipping 2288 // over the cookie completely. 2289 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2290 } 2291 2292 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2293 llvm::FunctionCallee Dtor, 2294 llvm::Constant *Addr) { 2295 // Create a function which calls the destructor. 2296 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2297 2298 // extern "C" int __tlregdtor(void (*f)(void)); 2299 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2300 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2301 2302 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2303 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2304 if (llvm::Function *TLRegDtorFn = 2305 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2306 TLRegDtorFn->setDoesNotThrow(); 2307 2308 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2309 } 2310 2311 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2312 llvm::FunctionCallee Dtor, 2313 llvm::Constant *Addr) { 2314 if (D.isNoDestroy(CGM.getContext())) 2315 return; 2316 2317 if (D.getTLSKind()) 2318 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2319 2320 // The default behavior is to use atexit. 2321 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2322 } 2323 2324 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2325 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2326 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2327 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2328 if (CXXThreadLocalInits.empty()) 2329 return; 2330 2331 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2332 llvm::Triple::x86 2333 ? "/include:___dyn_tls_init@12" 2334 : "/include:__dyn_tls_init"); 2335 2336 // This will create a GV in the .CRT$XDU section. It will point to our 2337 // initialization function. The CRT will call all of these function 2338 // pointers at start-up time and, eventually, at thread-creation time. 2339 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2340 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2341 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2342 llvm::GlobalVariable::InternalLinkage, InitFunc, 2343 Twine(InitFunc->getName(), "$initializer$")); 2344 InitFuncPtr->setSection(".CRT$XDU"); 2345 // This variable has discardable linkage, we have to add it to @llvm.used to 2346 // ensure it won't get discarded. 2347 CGM.addUsedGlobal(InitFuncPtr); 2348 return InitFuncPtr; 2349 }; 2350 2351 std::vector<llvm::Function *> NonComdatInits; 2352 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2353 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2354 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2355 llvm::Function *F = CXXThreadLocalInits[I]; 2356 2357 // If the GV is already in a comdat group, then we have to join it. 2358 if (llvm::Comdat *C = GV->getComdat()) 2359 AddToXDU(F)->setComdat(C); 2360 else 2361 NonComdatInits.push_back(F); 2362 } 2363 2364 if (!NonComdatInits.empty()) { 2365 llvm::FunctionType *FTy = 2366 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2367 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2368 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2369 SourceLocation(), /*TLS=*/true); 2370 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2371 2372 AddToXDU(InitFunc); 2373 } 2374 } 2375 2376 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2377 const VarDecl *VD, 2378 QualType LValType) { 2379 CGF.CGM.ErrorUnsupported(VD, "thread wrappers"); 2380 return LValue(); 2381 } 2382 2383 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2384 StringRef VarName("_Init_thread_epoch"); 2385 CharUnits Align = CGM.getIntAlign(); 2386 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2387 return ConstantAddress(GV, Align); 2388 auto *GV = new llvm::GlobalVariable( 2389 CGM.getModule(), CGM.IntTy, 2390 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2391 /*Initializer=*/nullptr, VarName, 2392 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2393 GV->setAlignment(Align.getAsAlign()); 2394 return ConstantAddress(GV, Align); 2395 } 2396 2397 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2398 llvm::FunctionType *FTy = 2399 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2400 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2401 return CGM.CreateRuntimeFunction( 2402 FTy, "_Init_thread_header", 2403 llvm::AttributeList::get(CGM.getLLVMContext(), 2404 llvm::AttributeList::FunctionIndex, 2405 llvm::Attribute::NoUnwind), 2406 /*Local=*/true); 2407 } 2408 2409 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2410 llvm::FunctionType *FTy = 2411 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2412 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2413 return CGM.CreateRuntimeFunction( 2414 FTy, "_Init_thread_footer", 2415 llvm::AttributeList::get(CGM.getLLVMContext(), 2416 llvm::AttributeList::FunctionIndex, 2417 llvm::Attribute::NoUnwind), 2418 /*Local=*/true); 2419 } 2420 2421 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2422 llvm::FunctionType *FTy = 2423 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2424 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2425 return CGM.CreateRuntimeFunction( 2426 FTy, "_Init_thread_abort", 2427 llvm::AttributeList::get(CGM.getLLVMContext(), 2428 llvm::AttributeList::FunctionIndex, 2429 llvm::Attribute::NoUnwind), 2430 /*Local=*/true); 2431 } 2432 2433 namespace { 2434 struct ResetGuardBit final : EHScopeStack::Cleanup { 2435 Address Guard; 2436 unsigned GuardNum; 2437 ResetGuardBit(Address Guard, unsigned GuardNum) 2438 : Guard(Guard), GuardNum(GuardNum) {} 2439 2440 void Emit(CodeGenFunction &CGF, Flags flags) override { 2441 // Reset the bit in the mask so that the static variable may be 2442 // reinitialized. 2443 CGBuilderTy &Builder = CGF.Builder; 2444 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2445 llvm::ConstantInt *Mask = 2446 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2447 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2448 } 2449 }; 2450 2451 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2452 llvm::Value *Guard; 2453 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2454 2455 void Emit(CodeGenFunction &CGF, Flags flags) override { 2456 // Calling _Init_thread_abort will reset the guard's state. 2457 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2458 } 2459 }; 2460 } 2461 2462 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2463 llvm::GlobalVariable *GV, 2464 bool PerformInit) { 2465 // MSVC only uses guards for static locals. 2466 if (!D.isStaticLocal()) { 2467 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2468 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2469 llvm::Function *F = CGF.CurFn; 2470 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2471 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2472 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2473 return; 2474 } 2475 2476 bool ThreadlocalStatic = D.getTLSKind(); 2477 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2478 2479 // Thread-safe static variables which aren't thread-specific have a 2480 // per-variable guard. 2481 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2482 2483 CGBuilderTy &Builder = CGF.Builder; 2484 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2485 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2486 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2487 2488 // Get the guard variable for this function if we have one already. 2489 GuardInfo *GI = nullptr; 2490 if (ThreadlocalStatic) 2491 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2492 else if (!ThreadsafeStatic) 2493 GI = &GuardVariableMap[D.getDeclContext()]; 2494 2495 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2496 unsigned GuardNum; 2497 if (D.isExternallyVisible()) { 2498 // Externally visible variables have to be numbered in Sema to properly 2499 // handle unreachable VarDecls. 2500 GuardNum = getContext().getStaticLocalNumber(&D); 2501 assert(GuardNum > 0); 2502 GuardNum--; 2503 } else if (HasPerVariableGuard) { 2504 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2505 } else { 2506 // Non-externally visible variables are numbered here in CodeGen. 2507 GuardNum = GI->BitIndex++; 2508 } 2509 2510 if (!HasPerVariableGuard && GuardNum >= 32) { 2511 if (D.isExternallyVisible()) 2512 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2513 GuardNum %= 32; 2514 GuardVar = nullptr; 2515 } 2516 2517 if (!GuardVar) { 2518 // Mangle the name for the guard. 2519 SmallString<256> GuardName; 2520 { 2521 llvm::raw_svector_ostream Out(GuardName); 2522 if (HasPerVariableGuard) 2523 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2524 Out); 2525 else 2526 getMangleContext().mangleStaticGuardVariable(&D, Out); 2527 } 2528 2529 // Create the guard variable with a zero-initializer. Just absorb linkage, 2530 // visibility and dll storage class from the guarded variable. 2531 GuardVar = 2532 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2533 GV->getLinkage(), Zero, GuardName.str()); 2534 GuardVar->setVisibility(GV->getVisibility()); 2535 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2536 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2537 if (GuardVar->isWeakForLinker()) 2538 GuardVar->setComdat( 2539 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2540 if (D.getTLSKind()) 2541 CGM.setTLSMode(GuardVar, D); 2542 if (GI && !HasPerVariableGuard) 2543 GI->Guard = GuardVar; 2544 } 2545 2546 ConstantAddress GuardAddr(GuardVar, GuardAlign); 2547 2548 assert(GuardVar->getLinkage() == GV->getLinkage() && 2549 "static local from the same function had different linkage"); 2550 2551 if (!HasPerVariableGuard) { 2552 // Pseudo code for the test: 2553 // if (!(GuardVar & MyGuardBit)) { 2554 // GuardVar |= MyGuardBit; 2555 // ... initialize the object ...; 2556 // } 2557 2558 // Test our bit from the guard variable. 2559 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2560 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2561 llvm::Value *NeedsInit = 2562 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2563 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2564 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2565 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2566 CodeGenFunction::GuardKind::VariableGuard, &D); 2567 2568 // Set our bit in the guard variable and emit the initializer and add a global 2569 // destructor if appropriate. 2570 CGF.EmitBlock(InitBlock); 2571 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2572 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2573 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2574 CGF.PopCleanupBlock(); 2575 Builder.CreateBr(EndBlock); 2576 2577 // Continue. 2578 CGF.EmitBlock(EndBlock); 2579 } else { 2580 // Pseudo code for the test: 2581 // if (TSS > _Init_thread_epoch) { 2582 // _Init_thread_header(&TSS); 2583 // if (TSS == -1) { 2584 // ... initialize the object ...; 2585 // _Init_thread_footer(&TSS); 2586 // } 2587 // } 2588 // 2589 // The algorithm is almost identical to what can be found in the appendix 2590 // found in N2325. 2591 2592 // This BasicBLock determines whether or not we have any work to do. 2593 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2594 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2595 llvm::LoadInst *InitThreadEpoch = 2596 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2597 llvm::Value *IsUninitialized = 2598 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2599 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2600 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2601 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2602 CodeGenFunction::GuardKind::VariableGuard, &D); 2603 2604 // This BasicBlock attempts to determine whether or not this thread is 2605 // responsible for doing the initialization. 2606 CGF.EmitBlock(AttemptInitBlock); 2607 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2608 GuardAddr.getPointer()); 2609 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2610 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2611 llvm::Value *ShouldDoInit = 2612 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2613 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2614 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2615 2616 // Ok, we ended up getting selected as the initializing thread. 2617 CGF.EmitBlock(InitBlock); 2618 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2619 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2620 CGF.PopCleanupBlock(); 2621 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2622 GuardAddr.getPointer()); 2623 Builder.CreateBr(EndBlock); 2624 2625 CGF.EmitBlock(EndBlock); 2626 } 2627 } 2628 2629 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2630 // Null-ness for function memptrs only depends on the first field, which is 2631 // the function pointer. The rest don't matter, so we can zero initialize. 2632 if (MPT->isMemberFunctionPointer()) 2633 return true; 2634 2635 // The virtual base adjustment field is always -1 for null, so if we have one 2636 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2637 // valid field offset. 2638 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2639 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2640 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2641 RD->nullFieldOffsetIsZero()); 2642 } 2643 2644 llvm::Type * 2645 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2646 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2647 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2648 llvm::SmallVector<llvm::Type *, 4> fields; 2649 if (MPT->isMemberFunctionPointer()) 2650 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2651 else 2652 fields.push_back(CGM.IntTy); // FieldOffset 2653 2654 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2655 Inheritance)) 2656 fields.push_back(CGM.IntTy); 2657 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2658 fields.push_back(CGM.IntTy); 2659 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2660 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2661 2662 if (fields.size() == 1) 2663 return fields[0]; 2664 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2665 } 2666 2667 void MicrosoftCXXABI:: 2668 GetNullMemberPointerFields(const MemberPointerType *MPT, 2669 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2670 assert(fields.empty()); 2671 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2672 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2673 if (MPT->isMemberFunctionPointer()) { 2674 // FunctionPointerOrVirtualThunk 2675 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2676 } else { 2677 if (RD->nullFieldOffsetIsZero()) 2678 fields.push_back(getZeroInt()); // FieldOffset 2679 else 2680 fields.push_back(getAllOnesInt()); // FieldOffset 2681 } 2682 2683 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2684 Inheritance)) 2685 fields.push_back(getZeroInt()); 2686 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2687 fields.push_back(getZeroInt()); 2688 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2689 fields.push_back(getAllOnesInt()); 2690 } 2691 2692 llvm::Constant * 2693 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2694 llvm::SmallVector<llvm::Constant *, 4> fields; 2695 GetNullMemberPointerFields(MPT, fields); 2696 if (fields.size() == 1) 2697 return fields[0]; 2698 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2699 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2700 return Res; 2701 } 2702 2703 llvm::Constant * 2704 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2705 bool IsMemberFunction, 2706 const CXXRecordDecl *RD, 2707 CharUnits NonVirtualBaseAdjustment, 2708 unsigned VBTableIndex) { 2709 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2710 2711 // Single inheritance class member pointer are represented as scalars instead 2712 // of aggregates. 2713 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2714 return FirstField; 2715 2716 llvm::SmallVector<llvm::Constant *, 4> fields; 2717 fields.push_back(FirstField); 2718 2719 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2720 fields.push_back(llvm::ConstantInt::get( 2721 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2722 2723 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2724 CharUnits Offs = CharUnits::Zero(); 2725 if (VBTableIndex) 2726 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2727 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2728 } 2729 2730 // The rest of the fields are adjusted by conversions to a more derived class. 2731 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2732 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2733 2734 return llvm::ConstantStruct::getAnon(fields); 2735 } 2736 2737 llvm::Constant * 2738 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2739 CharUnits offset) { 2740 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2741 } 2742 2743 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2744 CharUnits offset) { 2745 if (RD->getMSInheritanceModel() == 2746 MSInheritanceModel::Virtual) 2747 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2748 llvm::Constant *FirstField = 2749 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2750 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2751 CharUnits::Zero(), /*VBTableIndex=*/0); 2752 } 2753 2754 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2755 QualType MPType) { 2756 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2757 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2758 if (!MPD) 2759 return EmitNullMemberPointer(DstTy); 2760 2761 ASTContext &Ctx = getContext(); 2762 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2763 2764 llvm::Constant *C; 2765 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2766 C = EmitMemberFunctionPointer(MD); 2767 } else { 2768 // For a pointer to data member, start off with the offset of the field in 2769 // the class in which it was declared, and convert from there if necessary. 2770 // For indirect field decls, get the outermost anonymous field and use the 2771 // parent class. 2772 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2773 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2774 if (!FD) 2775 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2776 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2777 RD = RD->getMostRecentNonInjectedDecl(); 2778 C = EmitMemberDataPointer(RD, FieldOffset); 2779 } 2780 2781 if (!MemberPointerPath.empty()) { 2782 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2783 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2784 const MemberPointerType *SrcTy = 2785 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2786 ->castAs<MemberPointerType>(); 2787 2788 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2789 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2790 const CXXRecordDecl *PrevRD = SrcRD; 2791 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2792 const CXXRecordDecl *Base = nullptr; 2793 const CXXRecordDecl *Derived = nullptr; 2794 if (DerivedMember) { 2795 Base = PathElem; 2796 Derived = PrevRD; 2797 } else { 2798 Base = PrevRD; 2799 Derived = PathElem; 2800 } 2801 for (const CXXBaseSpecifier &BS : Derived->bases()) 2802 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2803 Base->getCanonicalDecl()) 2804 DerivedToBasePath.push_back(&BS); 2805 PrevRD = PathElem; 2806 } 2807 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2808 2809 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2810 : CK_BaseToDerivedMemberPointer; 2811 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2812 DerivedToBasePath.end(), C); 2813 } 2814 return C; 2815 } 2816 2817 llvm::Constant * 2818 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2819 assert(MD->isInstance() && "Member function must not be static!"); 2820 2821 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2822 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2823 CodeGenTypes &Types = CGM.getTypes(); 2824 2825 unsigned VBTableIndex = 0; 2826 llvm::Constant *FirstField; 2827 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2828 if (!MD->isVirtual()) { 2829 llvm::Type *Ty; 2830 // Check whether the function has a computable LLVM signature. 2831 if (Types.isFuncTypeConvertible(FPT)) { 2832 // The function has a computable LLVM signature; use the correct type. 2833 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2834 } else { 2835 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2836 // function type is incomplete. 2837 Ty = CGM.PtrDiffTy; 2838 } 2839 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2840 } else { 2841 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2842 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2843 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2844 // Include the vfptr adjustment if the method is in a non-primary vftable. 2845 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2846 if (ML.VBase) 2847 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2848 } 2849 2850 if (VBTableIndex == 0 && 2851 RD->getMSInheritanceModel() == 2852 MSInheritanceModel::Virtual) 2853 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2854 2855 // The rest of the fields are common with data member pointers. 2856 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2857 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2858 NonVirtualBaseAdjustment, VBTableIndex); 2859 } 2860 2861 /// Member pointers are the same if they're either bitwise identical *or* both 2862 /// null. Null-ness for function members is determined by the first field, 2863 /// while for data member pointers we must compare all fields. 2864 llvm::Value * 2865 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2866 llvm::Value *L, 2867 llvm::Value *R, 2868 const MemberPointerType *MPT, 2869 bool Inequality) { 2870 CGBuilderTy &Builder = CGF.Builder; 2871 2872 // Handle != comparisons by switching the sense of all boolean operations. 2873 llvm::ICmpInst::Predicate Eq; 2874 llvm::Instruction::BinaryOps And, Or; 2875 if (Inequality) { 2876 Eq = llvm::ICmpInst::ICMP_NE; 2877 And = llvm::Instruction::Or; 2878 Or = llvm::Instruction::And; 2879 } else { 2880 Eq = llvm::ICmpInst::ICMP_EQ; 2881 And = llvm::Instruction::And; 2882 Or = llvm::Instruction::Or; 2883 } 2884 2885 // If this is a single field member pointer (single inheritance), this is a 2886 // single icmp. 2887 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2888 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2889 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 2890 Inheritance)) 2891 return Builder.CreateICmp(Eq, L, R); 2892 2893 // Compare the first field. 2894 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 2895 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 2896 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 2897 2898 // Compare everything other than the first field. 2899 llvm::Value *Res = nullptr; 2900 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 2901 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 2902 llvm::Value *LF = Builder.CreateExtractValue(L, I); 2903 llvm::Value *RF = Builder.CreateExtractValue(R, I); 2904 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 2905 if (Res) 2906 Res = Builder.CreateBinOp(And, Res, Cmp); 2907 else 2908 Res = Cmp; 2909 } 2910 2911 // Check if the first field is 0 if this is a function pointer. 2912 if (MPT->isMemberFunctionPointer()) { 2913 // (l1 == r1 && ...) || l0 == 0 2914 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 2915 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 2916 Res = Builder.CreateBinOp(Or, Res, IsZero); 2917 } 2918 2919 // Combine the comparison of the first field, which must always be true for 2920 // this comparison to succeeed. 2921 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 2922 } 2923 2924 llvm::Value * 2925 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 2926 llvm::Value *MemPtr, 2927 const MemberPointerType *MPT) { 2928 CGBuilderTy &Builder = CGF.Builder; 2929 llvm::SmallVector<llvm::Constant *, 4> fields; 2930 // We only need one field for member functions. 2931 if (MPT->isMemberFunctionPointer()) 2932 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2933 else 2934 GetNullMemberPointerFields(MPT, fields); 2935 assert(!fields.empty()); 2936 llvm::Value *FirstField = MemPtr; 2937 if (MemPtr->getType()->isStructTy()) 2938 FirstField = Builder.CreateExtractValue(MemPtr, 0); 2939 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 2940 2941 // For function member pointers, we only need to test the function pointer 2942 // field. The other fields if any can be garbage. 2943 if (MPT->isMemberFunctionPointer()) 2944 return Res; 2945 2946 // Otherwise, emit a series of compares and combine the results. 2947 for (int I = 1, E = fields.size(); I < E; ++I) { 2948 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 2949 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 2950 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 2951 } 2952 return Res; 2953 } 2954 2955 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 2956 llvm::Constant *Val) { 2957 // Function pointers are null if the pointer in the first field is null. 2958 if (MPT->isMemberFunctionPointer()) { 2959 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 2960 Val->getAggregateElement(0U) : Val; 2961 return FirstField->isNullValue(); 2962 } 2963 2964 // If it's not a function pointer and it's zero initializable, we can easily 2965 // check zero. 2966 if (isZeroInitializable(MPT) && Val->isNullValue()) 2967 return true; 2968 2969 // Otherwise, break down all the fields for comparison. Hopefully these 2970 // little Constants are reused, while a big null struct might not be. 2971 llvm::SmallVector<llvm::Constant *, 4> Fields; 2972 GetNullMemberPointerFields(MPT, Fields); 2973 if (Fields.size() == 1) { 2974 assert(Val->getType()->isIntegerTy()); 2975 return Val == Fields[0]; 2976 } 2977 2978 unsigned I, E; 2979 for (I = 0, E = Fields.size(); I != E; ++I) { 2980 if (Val->getAggregateElement(I) != Fields[I]) 2981 break; 2982 } 2983 return I == E; 2984 } 2985 2986 llvm::Value * 2987 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 2988 Address This, 2989 llvm::Value *VBPtrOffset, 2990 llvm::Value *VBTableOffset, 2991 llvm::Value **VBPtrOut) { 2992 CGBuilderTy &Builder = CGF.Builder; 2993 // Load the vbtable pointer from the vbptr in the instance. 2994 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 2995 llvm::Value *VBPtr = 2996 Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr"); 2997 if (VBPtrOut) *VBPtrOut = VBPtr; 2998 VBPtr = Builder.CreateBitCast(VBPtr, 2999 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 3000 3001 CharUnits VBPtrAlign; 3002 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3003 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3004 CharUnits::fromQuantity(CI->getSExtValue())); 3005 } else { 3006 VBPtrAlign = CGF.getPointerAlign(); 3007 } 3008 3009 llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable"); 3010 3011 // Translate from byte offset to table index. It improves analyzability. 3012 llvm::Value *VBTableIndex = Builder.CreateAShr( 3013 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3014 "vbtindex", /*isExact=*/true); 3015 3016 // Load an i32 offset from the vb-table. 3017 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex); 3018 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 3019 return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4), 3020 "vbase_offs"); 3021 } 3022 3023 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3024 // it. 3025 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3026 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3027 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3028 CGBuilderTy &Builder = CGF.Builder; 3029 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 3030 llvm::BasicBlock *OriginalBB = nullptr; 3031 llvm::BasicBlock *SkipAdjustBB = nullptr; 3032 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3033 3034 // In the unspecified inheritance model, there might not be a vbtable at all, 3035 // in which case we need to skip the virtual base lookup. If there is a 3036 // vbtable, the first entry is a no-op entry that gives back the original 3037 // base, so look for a virtual base adjustment offset of zero. 3038 if (VBPtrOffset) { 3039 OriginalBB = Builder.GetInsertBlock(); 3040 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3041 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3042 llvm::Value *IsVirtual = 3043 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3044 "memptr.is_vbase"); 3045 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3046 CGF.EmitBlock(VBaseAdjustBB); 3047 } 3048 3049 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3050 // know the vbptr offset. 3051 if (!VBPtrOffset) { 3052 CharUnits offs = CharUnits::Zero(); 3053 if (!RD->hasDefinition()) { 3054 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3055 unsigned DiagID = Diags.getCustomDiagID( 3056 DiagnosticsEngine::Error, 3057 "member pointer representation requires a " 3058 "complete class type for %0 to perform this expression"); 3059 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3060 } else if (RD->getNumVBases()) 3061 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3062 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3063 } 3064 llvm::Value *VBPtr = nullptr; 3065 llvm::Value *VBaseOffs = 3066 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3067 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); 3068 3069 // Merge control flow with the case where we didn't have to adjust. 3070 if (VBaseAdjustBB) { 3071 Builder.CreateBr(SkipAdjustBB); 3072 CGF.EmitBlock(SkipAdjustBB); 3073 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3074 Phi->addIncoming(Base.getPointer(), OriginalBB); 3075 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3076 return Phi; 3077 } 3078 return AdjustedBase; 3079 } 3080 3081 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3082 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3083 const MemberPointerType *MPT) { 3084 assert(MPT->isMemberDataPointer()); 3085 unsigned AS = Base.getAddressSpace(); 3086 llvm::Type *PType = 3087 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 3088 CGBuilderTy &Builder = CGF.Builder; 3089 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3090 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3091 3092 // Extract the fields we need, regardless of model. We'll apply them if we 3093 // have them. 3094 llvm::Value *FieldOffset = MemPtr; 3095 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3096 llvm::Value *VBPtrOffset = nullptr; 3097 if (MemPtr->getType()->isStructTy()) { 3098 // We need to extract values. 3099 unsigned I = 0; 3100 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3101 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3102 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3103 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3104 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3105 } 3106 3107 llvm::Value *Addr; 3108 if (VirtualBaseAdjustmentOffset) { 3109 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3110 VBPtrOffset); 3111 } else { 3112 Addr = Base.getPointer(); 3113 } 3114 3115 // Cast to char*. 3116 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 3117 3118 // Apply the offset, which we assume is non-null. 3119 Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset"); 3120 3121 // Cast the address to the appropriate pointer type, adopting the address 3122 // space of the base pointer. 3123 return Builder.CreateBitCast(Addr, PType); 3124 } 3125 3126 llvm::Value * 3127 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3128 const CastExpr *E, 3129 llvm::Value *Src) { 3130 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3131 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3132 E->getCastKind() == CK_ReinterpretMemberPointer); 3133 3134 // Use constant emission if we can. 3135 if (isa<llvm::Constant>(Src)) 3136 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3137 3138 // We may be adding or dropping fields from the member pointer, so we need 3139 // both types and the inheritance models of both records. 3140 const MemberPointerType *SrcTy = 3141 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3142 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3143 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3144 3145 // If the classes use the same null representation, reinterpret_cast is a nop. 3146 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3147 if (IsReinterpret && IsFunc) 3148 return Src; 3149 3150 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3151 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3152 if (IsReinterpret && 3153 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3154 return Src; 3155 3156 CGBuilderTy &Builder = CGF.Builder; 3157 3158 // Branch past the conversion if Src is null. 3159 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3160 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3161 3162 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3163 // pointer value of the destination type. 3164 if (IsReinterpret) { 3165 // For reinterpret casts, sema ensures that src and dst are both functions 3166 // or data and have the same size, which means the LLVM types should match. 3167 assert(Src->getType() == DstNull->getType()); 3168 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3169 } 3170 3171 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3172 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3173 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3174 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3175 CGF.EmitBlock(ConvertBB); 3176 3177 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3178 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3179 Builder); 3180 3181 Builder.CreateBr(ContinueBB); 3182 3183 // In the continuation, choose between DstNull and Dst. 3184 CGF.EmitBlock(ContinueBB); 3185 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3186 Phi->addIncoming(DstNull, OriginalBB); 3187 Phi->addIncoming(Dst, ConvertBB); 3188 return Phi; 3189 } 3190 3191 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3192 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3193 CastExpr::path_const_iterator PathBegin, 3194 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3195 CGBuilderTy &Builder) { 3196 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3197 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3198 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3199 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3200 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3201 bool IsConstant = isa<llvm::Constant>(Src); 3202 3203 // Decompose src. 3204 llvm::Value *FirstField = Src; 3205 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3206 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3207 llvm::Value *VBPtrOffset = getZeroInt(); 3208 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3209 // We need to extract values. 3210 unsigned I = 0; 3211 FirstField = Builder.CreateExtractValue(Src, I++); 3212 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3213 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3214 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3215 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3216 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3217 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3218 } 3219 3220 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3221 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3222 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3223 3224 // For data pointers, we adjust the field offset directly. For functions, we 3225 // have a separate field. 3226 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3227 3228 // The virtual inheritance model has a quirk: the virtual base table is always 3229 // referenced when dereferencing a member pointer even if the member pointer 3230 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3231 // to point backwards to the top of the MDC from the first VBase. Undo this 3232 // adjustment to normalize the member pointer. 3233 llvm::Value *SrcVBIndexEqZero = 3234 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3235 if (SrcInheritance == MSInheritanceModel::Virtual) { 3236 if (int64_t SrcOffsetToFirstVBase = 3237 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3238 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3239 SrcVBIndexEqZero, 3240 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3241 getZeroInt()); 3242 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3243 } 3244 } 3245 3246 // A non-zero vbindex implies that we are dealing with a source member in a 3247 // floating virtual base in addition to some non-virtual offset. If the 3248 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3249 // fixed, base. The difference between these two cases is that the vbindex + 3250 // nvoffset *always* point to the member regardless of what context they are 3251 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3252 // base requires explicit nv adjustment. 3253 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3254 CGM.IntTy, 3255 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3256 .getQuantity()); 3257 3258 llvm::Value *NVDisp; 3259 if (IsDerivedToBase) 3260 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3261 else 3262 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3263 3264 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3265 3266 // Update the vbindex to an appropriate value in the destination because 3267 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3268 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3269 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3270 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3271 if (llvm::GlobalVariable *VDispMap = 3272 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3273 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3274 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3275 if (IsConstant) { 3276 llvm::Constant *Mapping = VDispMap->getInitializer(); 3277 VirtualBaseAdjustmentOffset = 3278 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3279 } else { 3280 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3281 VirtualBaseAdjustmentOffset = 3282 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs), 3283 CharUnits::fromQuantity(4)); 3284 } 3285 3286 DstVBIndexEqZero = 3287 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3288 } 3289 } 3290 3291 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3292 // it to the offset of the vbptr. 3293 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3294 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3295 CGM.IntTy, 3296 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3297 VBPtrOffset = 3298 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3299 } 3300 3301 // Likewise, apply a similar adjustment so that dereferencing the member 3302 // pointer correctly accounts for the distance between the start of the first 3303 // virtual base and the top of the MDC. 3304 if (DstInheritance == MSInheritanceModel::Virtual) { 3305 if (int64_t DstOffsetToFirstVBase = 3306 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3307 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3308 DstVBIndexEqZero, 3309 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3310 getZeroInt()); 3311 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3312 } 3313 } 3314 3315 // Recompose dst from the null struct and the adjusted fields from src. 3316 llvm::Value *Dst; 3317 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3318 Dst = FirstField; 3319 } else { 3320 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3321 unsigned Idx = 0; 3322 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3323 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3324 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3325 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3326 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3327 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3328 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3329 } 3330 return Dst; 3331 } 3332 3333 llvm::Constant * 3334 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3335 llvm::Constant *Src) { 3336 const MemberPointerType *SrcTy = 3337 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3338 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3339 3340 CastKind CK = E->getCastKind(); 3341 3342 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3343 E->path_end(), Src); 3344 } 3345 3346 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3347 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3348 CastExpr::path_const_iterator PathBegin, 3349 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3350 assert(CK == CK_DerivedToBaseMemberPointer || 3351 CK == CK_BaseToDerivedMemberPointer || 3352 CK == CK_ReinterpretMemberPointer); 3353 // If src is null, emit a new null for dst. We can't return src because dst 3354 // might have a new representation. 3355 if (MemberPointerConstantIsNull(SrcTy, Src)) 3356 return EmitNullMemberPointer(DstTy); 3357 3358 // We don't need to do anything for reinterpret_casts of non-null member 3359 // pointers. We should only get here when the two type representations have 3360 // the same size. 3361 if (CK == CK_ReinterpretMemberPointer) 3362 return Src; 3363 3364 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3365 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3366 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3367 3368 return Dst; 3369 } 3370 3371 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3372 CodeGenFunction &CGF, const Expr *E, Address This, 3373 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3374 const MemberPointerType *MPT) { 3375 assert(MPT->isMemberFunctionPointer()); 3376 const FunctionProtoType *FPT = 3377 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3378 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3379 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3380 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3381 CGBuilderTy &Builder = CGF.Builder; 3382 3383 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3384 3385 // Extract the fields we need, regardless of model. We'll apply them if we 3386 // have them. 3387 llvm::Value *FunctionPointer = MemPtr; 3388 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3389 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3390 llvm::Value *VBPtrOffset = nullptr; 3391 if (MemPtr->getType()->isStructTy()) { 3392 // We need to extract values. 3393 unsigned I = 0; 3394 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3395 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3396 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3397 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3398 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3399 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3400 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3401 } 3402 3403 if (VirtualBaseAdjustmentOffset) { 3404 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3405 VirtualBaseAdjustmentOffset, VBPtrOffset); 3406 } else { 3407 ThisPtrForCall = This.getPointer(); 3408 } 3409 3410 if (NonVirtualBaseAdjustment) { 3411 // Apply the adjustment and cast back to the original struct type. 3412 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3413 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); 3414 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3415 "this.adjusted"); 3416 } 3417 3418 FunctionPointer = 3419 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3420 CGCallee Callee(FPT, FunctionPointer); 3421 return Callee; 3422 } 3423 3424 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3425 return new MicrosoftCXXABI(CGM); 3426 } 3427 3428 // MS RTTI Overview: 3429 // The run time type information emitted by cl.exe contains 5 distinct types of 3430 // structures. Many of them reference each other. 3431 // 3432 // TypeInfo: Static classes that are returned by typeid. 3433 // 3434 // CompleteObjectLocator: Referenced by vftables. They contain information 3435 // required for dynamic casting, including OffsetFromTop. They also contain 3436 // a reference to the TypeInfo for the type and a reference to the 3437 // CompleteHierarchyDescriptor for the type. 3438 // 3439 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3440 // Used during dynamic_cast to walk a class hierarchy. References a base 3441 // class array and the size of said array. 3442 // 3443 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3444 // somewhat of a misnomer because the most derived class is also in the list 3445 // as well as multiple copies of virtual bases (if they occur multiple times 3446 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3447 // every path in the hierarchy, in pre-order depth first order. Note, we do 3448 // not declare a specific llvm type for BaseClassArray, it's merely an array 3449 // of BaseClassDescriptor pointers. 3450 // 3451 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3452 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3453 // BaseClassArray is. It contains information about a class within a 3454 // hierarchy such as: is this base is ambiguous and what is its offset in the 3455 // vbtable. The names of the BaseClassDescriptors have all of their fields 3456 // mangled into them so they can be aggressively deduplicated by the linker. 3457 3458 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3459 StringRef MangledName("??_7type_info@@6B@"); 3460 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3461 return VTable; 3462 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3463 /*isConstant=*/true, 3464 llvm::GlobalVariable::ExternalLinkage, 3465 /*Initializer=*/nullptr, MangledName); 3466 } 3467 3468 namespace { 3469 3470 /// A Helper struct that stores information about a class in a class 3471 /// hierarchy. The information stored in these structs struct is used during 3472 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3473 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3474 // implicit depth first pre-order tree connectivity. getFirstChild and 3475 // getNextSibling allow us to walk the tree efficiently. 3476 struct MSRTTIClass { 3477 enum { 3478 IsPrivateOnPath = 1 | 8, 3479 IsAmbiguous = 2, 3480 IsPrivate = 4, 3481 IsVirtual = 16, 3482 HasHierarchyDescriptor = 64 3483 }; 3484 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3485 uint32_t initialize(const MSRTTIClass *Parent, 3486 const CXXBaseSpecifier *Specifier); 3487 3488 MSRTTIClass *getFirstChild() { return this + 1; } 3489 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3490 return Child + 1 + Child->NumBases; 3491 } 3492 3493 const CXXRecordDecl *RD, *VirtualRoot; 3494 uint32_t Flags, NumBases, OffsetInVBase; 3495 }; 3496 3497 /// Recursively initialize the base class array. 3498 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3499 const CXXBaseSpecifier *Specifier) { 3500 Flags = HasHierarchyDescriptor; 3501 if (!Parent) { 3502 VirtualRoot = nullptr; 3503 OffsetInVBase = 0; 3504 } else { 3505 if (Specifier->getAccessSpecifier() != AS_public) 3506 Flags |= IsPrivate | IsPrivateOnPath; 3507 if (Specifier->isVirtual()) { 3508 Flags |= IsVirtual; 3509 VirtualRoot = RD; 3510 OffsetInVBase = 0; 3511 } else { 3512 if (Parent->Flags & IsPrivateOnPath) 3513 Flags |= IsPrivateOnPath; 3514 VirtualRoot = Parent->VirtualRoot; 3515 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3516 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3517 } 3518 } 3519 NumBases = 0; 3520 MSRTTIClass *Child = getFirstChild(); 3521 for (const CXXBaseSpecifier &Base : RD->bases()) { 3522 NumBases += Child->initialize(this, &Base) + 1; 3523 Child = getNextChild(Child); 3524 } 3525 return NumBases; 3526 } 3527 3528 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3529 switch (Ty->getLinkage()) { 3530 case NoLinkage: 3531 case InternalLinkage: 3532 case UniqueExternalLinkage: 3533 return llvm::GlobalValue::InternalLinkage; 3534 3535 case VisibleNoLinkage: 3536 case ModuleInternalLinkage: 3537 case ModuleLinkage: 3538 case ExternalLinkage: 3539 return llvm::GlobalValue::LinkOnceODRLinkage; 3540 } 3541 llvm_unreachable("Invalid linkage!"); 3542 } 3543 3544 /// An ephemeral helper class for building MS RTTI types. It caches some 3545 /// calls to the module and information about the most derived class in a 3546 /// hierarchy. 3547 struct MSRTTIBuilder { 3548 enum { 3549 HasBranchingHierarchy = 1, 3550 HasVirtualBranchingHierarchy = 2, 3551 HasAmbiguousBases = 4 3552 }; 3553 3554 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3555 : CGM(ABI.CGM), Context(CGM.getContext()), 3556 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3557 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3558 ABI(ABI) {} 3559 3560 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3561 llvm::GlobalVariable * 3562 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3563 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3564 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3565 3566 CodeGenModule &CGM; 3567 ASTContext &Context; 3568 llvm::LLVMContext &VMContext; 3569 llvm::Module &Module; 3570 const CXXRecordDecl *RD; 3571 llvm::GlobalVariable::LinkageTypes Linkage; 3572 MicrosoftCXXABI &ABI; 3573 }; 3574 3575 } // namespace 3576 3577 /// Recursively serializes a class hierarchy in pre-order depth first 3578 /// order. 3579 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3580 const CXXRecordDecl *RD) { 3581 Classes.push_back(MSRTTIClass(RD)); 3582 for (const CXXBaseSpecifier &Base : RD->bases()) 3583 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3584 } 3585 3586 /// Find ambiguity among base classes. 3587 static void 3588 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3589 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3590 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3591 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3592 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3593 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3594 !VirtualBases.insert(Class->RD).second) { 3595 Class = MSRTTIClass::getNextChild(Class); 3596 continue; 3597 } 3598 if (!UniqueBases.insert(Class->RD).second) 3599 AmbiguousBases.insert(Class->RD); 3600 Class++; 3601 } 3602 if (AmbiguousBases.empty()) 3603 return; 3604 for (MSRTTIClass &Class : Classes) 3605 if (AmbiguousBases.count(Class.RD)) 3606 Class.Flags |= MSRTTIClass::IsAmbiguous; 3607 } 3608 3609 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3610 SmallString<256> MangledName; 3611 { 3612 llvm::raw_svector_ostream Out(MangledName); 3613 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3614 } 3615 3616 // Check to see if we've already declared this ClassHierarchyDescriptor. 3617 if (auto CHD = Module.getNamedGlobal(MangledName)) 3618 return CHD; 3619 3620 // Serialize the class hierarchy and initialize the CHD Fields. 3621 SmallVector<MSRTTIClass, 8> Classes; 3622 serializeClassHierarchy(Classes, RD); 3623 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3624 detectAmbiguousBases(Classes); 3625 int Flags = 0; 3626 for (auto Class : Classes) { 3627 if (Class.RD->getNumBases() > 1) 3628 Flags |= HasBranchingHierarchy; 3629 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3630 // believe the field isn't actually used. 3631 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3632 Flags |= HasAmbiguousBases; 3633 } 3634 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3635 Flags |= HasVirtualBranchingHierarchy; 3636 // These gep indices are used to get the address of the first element of the 3637 // base class array. 3638 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3639 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3640 3641 // Forward-declare the class hierarchy descriptor 3642 auto Type = ABI.getClassHierarchyDescriptorType(); 3643 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3644 /*Initializer=*/nullptr, 3645 MangledName); 3646 if (CHD->isWeakForLinker()) 3647 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3648 3649 auto *Bases = getBaseClassArray(Classes); 3650 3651 // Initialize the base class ClassHierarchyDescriptor. 3652 llvm::Constant *Fields[] = { 3653 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3654 llvm::ConstantInt::get(CGM.IntTy, Flags), 3655 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3656 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3657 Bases->getValueType(), Bases, 3658 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3659 }; 3660 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3661 return CHD; 3662 } 3663 3664 llvm::GlobalVariable * 3665 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3666 SmallString<256> MangledName; 3667 { 3668 llvm::raw_svector_ostream Out(MangledName); 3669 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3670 } 3671 3672 // Forward-declare the base class array. 3673 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3674 // mode) bytes of padding. We provide a pointer sized amount of padding by 3675 // adding +1 to Classes.size(). The sections have pointer alignment and are 3676 // marked pick-any so it shouldn't matter. 3677 llvm::Type *PtrType = ABI.getImageRelativeType( 3678 ABI.getBaseClassDescriptorType()->getPointerTo()); 3679 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3680 auto *BCA = 3681 new llvm::GlobalVariable(Module, ArrType, 3682 /*isConstant=*/true, Linkage, 3683 /*Initializer=*/nullptr, MangledName); 3684 if (BCA->isWeakForLinker()) 3685 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3686 3687 // Initialize the BaseClassArray. 3688 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3689 for (MSRTTIClass &Class : Classes) 3690 BaseClassArrayData.push_back( 3691 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3692 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3693 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3694 return BCA; 3695 } 3696 3697 llvm::GlobalVariable * 3698 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3699 // Compute the fields for the BaseClassDescriptor. They are computed up front 3700 // because they are mangled into the name of the object. 3701 uint32_t OffsetInVBTable = 0; 3702 int32_t VBPtrOffset = -1; 3703 if (Class.VirtualRoot) { 3704 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3705 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3706 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3707 } 3708 3709 SmallString<256> MangledName; 3710 { 3711 llvm::raw_svector_ostream Out(MangledName); 3712 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3713 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3714 Class.Flags, Out); 3715 } 3716 3717 // Check to see if we've already declared this object. 3718 if (auto BCD = Module.getNamedGlobal(MangledName)) 3719 return BCD; 3720 3721 // Forward-declare the base class descriptor. 3722 auto Type = ABI.getBaseClassDescriptorType(); 3723 auto BCD = 3724 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3725 /*Initializer=*/nullptr, MangledName); 3726 if (BCD->isWeakForLinker()) 3727 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3728 3729 // Initialize the BaseClassDescriptor. 3730 llvm::Constant *Fields[] = { 3731 ABI.getImageRelativeConstant( 3732 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3733 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3734 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3735 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3736 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3737 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3738 ABI.getImageRelativeConstant( 3739 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3740 }; 3741 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3742 return BCD; 3743 } 3744 3745 llvm::GlobalVariable * 3746 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3747 SmallString<256> MangledName; 3748 { 3749 llvm::raw_svector_ostream Out(MangledName); 3750 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3751 } 3752 3753 // Check to see if we've already computed this complete object locator. 3754 if (auto COL = Module.getNamedGlobal(MangledName)) 3755 return COL; 3756 3757 // Compute the fields of the complete object locator. 3758 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3759 int VFPtrOffset = 0; 3760 // The offset includes the vtordisp if one exists. 3761 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3762 if (Context.getASTRecordLayout(RD) 3763 .getVBaseOffsetsMap() 3764 .find(VBase) 3765 ->second.hasVtorDisp()) 3766 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3767 3768 // Forward-declare the complete object locator. 3769 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3770 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3771 /*Initializer=*/nullptr, MangledName); 3772 3773 // Initialize the CompleteObjectLocator. 3774 llvm::Constant *Fields[] = { 3775 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3776 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3777 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3778 ABI.getImageRelativeConstant( 3779 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3780 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3781 ABI.getImageRelativeConstant(COL), 3782 }; 3783 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3784 if (!ABI.isImageRelative()) 3785 FieldsRef = FieldsRef.drop_back(); 3786 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3787 if (COL->isWeakForLinker()) 3788 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3789 return COL; 3790 } 3791 3792 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3793 bool &IsConst, bool &IsVolatile, 3794 bool &IsUnaligned) { 3795 T = Context.getExceptionObjectType(T); 3796 3797 // C++14 [except.handle]p3: 3798 // A handler is a match for an exception object of type E if [...] 3799 // - the handler is of type cv T or const T& where T is a pointer type and 3800 // E is a pointer type that can be converted to T by [...] 3801 // - a qualification conversion 3802 IsConst = false; 3803 IsVolatile = false; 3804 IsUnaligned = false; 3805 QualType PointeeType = T->getPointeeType(); 3806 if (!PointeeType.isNull()) { 3807 IsConst = PointeeType.isConstQualified(); 3808 IsVolatile = PointeeType.isVolatileQualified(); 3809 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3810 } 3811 3812 // Member pointer types like "const int A::*" are represented by having RTTI 3813 // for "int A::*" and separately storing the const qualifier. 3814 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3815 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3816 MPTy->getClass()); 3817 3818 // Pointer types like "const int * const *" are represented by having RTTI 3819 // for "const int **" and separately storing the const qualifier. 3820 if (T->isPointerType()) 3821 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3822 3823 return T; 3824 } 3825 3826 CatchTypeInfo 3827 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3828 QualType CatchHandlerType) { 3829 // TypeDescriptors for exceptions never have qualified pointer types, 3830 // qualifiers are stored separately in order to support qualification 3831 // conversions. 3832 bool IsConst, IsVolatile, IsUnaligned; 3833 Type = 3834 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3835 3836 bool IsReference = CatchHandlerType->isReferenceType(); 3837 3838 uint32_t Flags = 0; 3839 if (IsConst) 3840 Flags |= 1; 3841 if (IsVolatile) 3842 Flags |= 2; 3843 if (IsUnaligned) 3844 Flags |= 4; 3845 if (IsReference) 3846 Flags |= 8; 3847 3848 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3849 Flags}; 3850 } 3851 3852 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3853 /// llvm::GlobalVariable * because different type descriptors have different 3854 /// types, and need to be abstracted. They are abstracting by casting the 3855 /// address to an Int8PtrTy. 3856 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3857 SmallString<256> MangledName; 3858 { 3859 llvm::raw_svector_ostream Out(MangledName); 3860 getMangleContext().mangleCXXRTTI(Type, Out); 3861 } 3862 3863 // Check to see if we've already declared this TypeDescriptor. 3864 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3865 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 3866 3867 // Note for the future: If we would ever like to do deferred emission of 3868 // RTTI, check if emitting vtables opportunistically need any adjustment. 3869 3870 // Compute the fields for the TypeDescriptor. 3871 SmallString<256> TypeInfoString; 3872 { 3873 llvm::raw_svector_ostream Out(TypeInfoString); 3874 getMangleContext().mangleCXXRTTIName(Type, Out); 3875 } 3876 3877 // Declare and initialize the TypeDescriptor. 3878 llvm::Constant *Fields[] = { 3879 getTypeInfoVTable(CGM), // VFPtr 3880 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 3881 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 3882 llvm::StructType *TypeDescriptorType = 3883 getTypeDescriptorType(TypeInfoString); 3884 auto *Var = new llvm::GlobalVariable( 3885 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 3886 getLinkageForRTTI(Type), 3887 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 3888 MangledName); 3889 if (Var->isWeakForLinker()) 3890 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 3891 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 3892 } 3893 3894 /// Gets or a creates a Microsoft CompleteObjectLocator. 3895 llvm::GlobalVariable * 3896 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 3897 const VPtrInfo &Info) { 3898 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 3899 } 3900 3901 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 3902 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 3903 // There are no constructor variants, always emit the complete destructor. 3904 llvm::Function *Fn = 3905 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 3906 CGM.maybeSetTrivialComdat(*ctor, *Fn); 3907 return; 3908 } 3909 3910 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 3911 3912 // Emit the base destructor if the base and complete (vbase) destructors are 3913 // equivalent. This effectively implements -mconstructor-aliases as part of 3914 // the ABI. 3915 if (GD.getDtorType() == Dtor_Complete && 3916 dtor->getParent()->getNumVBases() == 0) 3917 GD = GD.getWithDtorType(Dtor_Base); 3918 3919 // The base destructor is equivalent to the base destructor of its 3920 // base class if there is exactly one non-virtual base class with a 3921 // non-trivial destructor, there are no fields with a non-trivial 3922 // destructor, and the body of the destructor is trivial. 3923 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 3924 return; 3925 3926 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 3927 if (Fn->isWeakForLinker()) 3928 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 3929 } 3930 3931 llvm::Function * 3932 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 3933 CXXCtorType CT) { 3934 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 3935 3936 // Calculate the mangled name. 3937 SmallString<256> ThunkName; 3938 llvm::raw_svector_ostream Out(ThunkName); 3939 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 3940 3941 // If the thunk has been generated previously, just return it. 3942 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 3943 return cast<llvm::Function>(GV); 3944 3945 // Create the llvm::Function. 3946 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 3947 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 3948 const CXXRecordDecl *RD = CD->getParent(); 3949 QualType RecordTy = getContext().getRecordType(RD); 3950 llvm::Function *ThunkFn = llvm::Function::Create( 3951 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 3952 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 3953 FnInfo.getEffectiveCallingConvention())); 3954 if (ThunkFn->isWeakForLinker()) 3955 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 3956 bool IsCopy = CT == Ctor_CopyingClosure; 3957 3958 // Start codegen. 3959 CodeGenFunction CGF(CGM); 3960 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 3961 3962 // Build FunctionArgs. 3963 FunctionArgList FunctionArgs; 3964 3965 // A constructor always starts with a 'this' pointer as its first argument. 3966 buildThisParam(CGF, FunctionArgs); 3967 3968 // Following the 'this' pointer is a reference to the source object that we 3969 // are copying from. 3970 ImplicitParamDecl SrcParam( 3971 getContext(), /*DC=*/nullptr, SourceLocation(), 3972 &getContext().Idents.get("src"), 3973 getContext().getLValueReferenceType(RecordTy, 3974 /*SpelledAsLValue=*/true), 3975 ImplicitParamDecl::Other); 3976 if (IsCopy) 3977 FunctionArgs.push_back(&SrcParam); 3978 3979 // Constructors for classes which utilize virtual bases have an additional 3980 // parameter which indicates whether or not it is being delegated to by a more 3981 // derived constructor. 3982 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 3983 SourceLocation(), 3984 &getContext().Idents.get("is_most_derived"), 3985 getContext().IntTy, ImplicitParamDecl::Other); 3986 // Only add the parameter to the list if the class has virtual bases. 3987 if (RD->getNumVBases() > 0) 3988 FunctionArgs.push_back(&IsMostDerived); 3989 3990 // Start defining the function. 3991 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3992 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 3993 FunctionArgs, CD->getLocation(), SourceLocation()); 3994 // Create a scope with an artificial location for the body of this function. 3995 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 3996 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 3997 llvm::Value *This = getThisValue(CGF); 3998 3999 llvm::Value *SrcVal = 4000 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4001 : nullptr; 4002 4003 CallArgList Args; 4004 4005 // Push the this ptr. 4006 Args.add(RValue::get(This), CD->getThisType()); 4007 4008 // Push the src ptr. 4009 if (SrcVal) 4010 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4011 4012 // Add the rest of the default arguments. 4013 SmallVector<const Stmt *, 4> ArgVec; 4014 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4015 for (const ParmVarDecl *PD : params) { 4016 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4017 ArgVec.push_back(PD->getDefaultArg()); 4018 } 4019 4020 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4021 4022 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4023 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4024 4025 // Insert any ABI-specific implicit constructor arguments. 4026 AddedStructorArgCounts ExtraArgs = 4027 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4028 /*ForVirtualBase=*/false, 4029 /*Delegating=*/false, Args); 4030 // Call the destructor with our arguments. 4031 llvm::Constant *CalleePtr = 4032 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4033 CGCallee Callee = 4034 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4035 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4036 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4037 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4038 4039 Cleanups.ForceCleanup(); 4040 4041 // Emit the ret instruction, remove any temporary instructions created for the 4042 // aid of CodeGen. 4043 CGF.FinishFunction(SourceLocation()); 4044 4045 return ThunkFn; 4046 } 4047 4048 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4049 uint32_t NVOffset, 4050 int32_t VBPtrOffset, 4051 uint32_t VBIndex) { 4052 assert(!T->isReferenceType()); 4053 4054 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4055 const CXXConstructorDecl *CD = 4056 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4057 CXXCtorType CT = Ctor_Complete; 4058 if (CD) 4059 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4060 CT = Ctor_CopyingClosure; 4061 4062 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4063 SmallString<256> MangledName; 4064 { 4065 llvm::raw_svector_ostream Out(MangledName); 4066 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4067 VBPtrOffset, VBIndex, Out); 4068 } 4069 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4070 return getImageRelativeConstant(GV); 4071 4072 // The TypeDescriptor is used by the runtime to determine if a catch handler 4073 // is appropriate for the exception object. 4074 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4075 4076 // The runtime is responsible for calling the copy constructor if the 4077 // exception is caught by value. 4078 llvm::Constant *CopyCtor; 4079 if (CD) { 4080 if (CT == Ctor_CopyingClosure) 4081 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4082 else 4083 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4084 4085 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 4086 } else { 4087 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4088 } 4089 CopyCtor = getImageRelativeConstant(CopyCtor); 4090 4091 bool IsScalar = !RD; 4092 bool HasVirtualBases = false; 4093 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4094 QualType PointeeType = T; 4095 if (T->isPointerType()) 4096 PointeeType = T->getPointeeType(); 4097 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4098 HasVirtualBases = RD->getNumVBases() > 0; 4099 if (IdentifierInfo *II = RD->getIdentifier()) 4100 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4101 } 4102 4103 // Encode the relevant CatchableType properties into the Flags bitfield. 4104 // FIXME: Figure out how bits 2 or 8 can get set. 4105 uint32_t Flags = 0; 4106 if (IsScalar) 4107 Flags |= 1; 4108 if (HasVirtualBases) 4109 Flags |= 4; 4110 if (IsStdBadAlloc) 4111 Flags |= 16; 4112 4113 llvm::Constant *Fields[] = { 4114 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4115 TD, // TypeDescriptor 4116 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4117 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4118 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4119 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4120 CopyCtor // CopyCtor 4121 }; 4122 llvm::StructType *CTType = getCatchableTypeType(); 4123 auto *GV = new llvm::GlobalVariable( 4124 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4125 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4126 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4127 GV->setSection(".xdata"); 4128 if (GV->isWeakForLinker()) 4129 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4130 return getImageRelativeConstant(GV); 4131 } 4132 4133 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4134 assert(!T->isReferenceType()); 4135 4136 // See if we've already generated a CatchableTypeArray for this type before. 4137 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4138 if (CTA) 4139 return CTA; 4140 4141 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4142 // using a SmallSetVector. Duplicates may arise due to virtual bases 4143 // occurring more than once in the hierarchy. 4144 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4145 4146 // C++14 [except.handle]p3: 4147 // A handler is a match for an exception object of type E if [...] 4148 // - the handler is of type cv T or cv T& and T is an unambiguous public 4149 // base class of E, or 4150 // - the handler is of type cv T or const T& where T is a pointer type and 4151 // E is a pointer type that can be converted to T by [...] 4152 // - a standard pointer conversion (4.10) not involving conversions to 4153 // pointers to private or protected or ambiguous classes 4154 const CXXRecordDecl *MostDerivedClass = nullptr; 4155 bool IsPointer = T->isPointerType(); 4156 if (IsPointer) 4157 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4158 else 4159 MostDerivedClass = T->getAsCXXRecordDecl(); 4160 4161 // Collect all the unambiguous public bases of the MostDerivedClass. 4162 if (MostDerivedClass) { 4163 const ASTContext &Context = getContext(); 4164 const ASTRecordLayout &MostDerivedLayout = 4165 Context.getASTRecordLayout(MostDerivedClass); 4166 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4167 SmallVector<MSRTTIClass, 8> Classes; 4168 serializeClassHierarchy(Classes, MostDerivedClass); 4169 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4170 detectAmbiguousBases(Classes); 4171 for (const MSRTTIClass &Class : Classes) { 4172 // Skip any ambiguous or private bases. 4173 if (Class.Flags & 4174 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4175 continue; 4176 // Write down how to convert from a derived pointer to a base pointer. 4177 uint32_t OffsetInVBTable = 0; 4178 int32_t VBPtrOffset = -1; 4179 if (Class.VirtualRoot) { 4180 OffsetInVBTable = 4181 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4182 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4183 } 4184 4185 // Turn our record back into a pointer if the exception object is a 4186 // pointer. 4187 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4188 if (IsPointer) 4189 RTTITy = Context.getPointerType(RTTITy); 4190 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4191 VBPtrOffset, OffsetInVBTable)); 4192 } 4193 } 4194 4195 // C++14 [except.handle]p3: 4196 // A handler is a match for an exception object of type E if 4197 // - The handler is of type cv T or cv T& and E and T are the same type 4198 // (ignoring the top-level cv-qualifiers) 4199 CatchableTypes.insert(getCatchableType(T)); 4200 4201 // C++14 [except.handle]p3: 4202 // A handler is a match for an exception object of type E if 4203 // - the handler is of type cv T or const T& where T is a pointer type and 4204 // E is a pointer type that can be converted to T by [...] 4205 // - a standard pointer conversion (4.10) not involving conversions to 4206 // pointers to private or protected or ambiguous classes 4207 // 4208 // C++14 [conv.ptr]p2: 4209 // A prvalue of type "pointer to cv T," where T is an object type, can be 4210 // converted to a prvalue of type "pointer to cv void". 4211 if (IsPointer && T->getPointeeType()->isObjectType()) 4212 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4213 4214 // C++14 [except.handle]p3: 4215 // A handler is a match for an exception object of type E if [...] 4216 // - the handler is of type cv T or const T& where T is a pointer or 4217 // pointer to member type and E is std::nullptr_t. 4218 // 4219 // We cannot possibly list all possible pointer types here, making this 4220 // implementation incompatible with the standard. However, MSVC includes an 4221 // entry for pointer-to-void in this case. Let's do the same. 4222 if (T->isNullPtrType()) 4223 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4224 4225 uint32_t NumEntries = CatchableTypes.size(); 4226 llvm::Type *CTType = 4227 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4228 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4229 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4230 llvm::Constant *Fields[] = { 4231 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4232 llvm::ConstantArray::get( 4233 AT, llvm::makeArrayRef(CatchableTypes.begin(), 4234 CatchableTypes.end())) // CatchableTypes 4235 }; 4236 SmallString<256> MangledName; 4237 { 4238 llvm::raw_svector_ostream Out(MangledName); 4239 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4240 } 4241 CTA = new llvm::GlobalVariable( 4242 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4243 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4244 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4245 CTA->setSection(".xdata"); 4246 if (CTA->isWeakForLinker()) 4247 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4248 return CTA; 4249 } 4250 4251 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4252 bool IsConst, IsVolatile, IsUnaligned; 4253 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4254 4255 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4256 // the exception object may be caught as. 4257 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4258 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4259 // This is used as a component of the mangled name which means that we need to 4260 // know what it is in order to see if we have previously generated the 4261 // ThrowInfo. 4262 uint32_t NumEntries = 4263 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4264 ->getLimitedValue(); 4265 4266 SmallString<256> MangledName; 4267 { 4268 llvm::raw_svector_ostream Out(MangledName); 4269 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4270 NumEntries, Out); 4271 } 4272 4273 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4274 // one before. 4275 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4276 return GV; 4277 4278 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4279 // be at least as CV qualified. Encode this requirement into the Flags 4280 // bitfield. 4281 uint32_t Flags = 0; 4282 if (IsConst) 4283 Flags |= 1; 4284 if (IsVolatile) 4285 Flags |= 2; 4286 if (IsUnaligned) 4287 Flags |= 4; 4288 4289 // The cleanup-function (a destructor) must be called when the exception 4290 // object's lifetime ends. 4291 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4292 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4293 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4294 if (!DtorD->isTrivial()) 4295 CleanupFn = llvm::ConstantExpr::getBitCast( 4296 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), 4297 CGM.Int8PtrTy); 4298 // This is unused as far as we can tell, initialize it to null. 4299 llvm::Constant *ForwardCompat = 4300 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4301 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4302 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4303 llvm::StructType *TIType = getThrowInfoType(); 4304 llvm::Constant *Fields[] = { 4305 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4306 getImageRelativeConstant(CleanupFn), // CleanupFn 4307 ForwardCompat, // ForwardCompat 4308 PointerToCatchableTypes // CatchableTypeArray 4309 }; 4310 auto *GV = new llvm::GlobalVariable( 4311 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4312 llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName)); 4313 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4314 GV->setSection(".xdata"); 4315 if (GV->isWeakForLinker()) 4316 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4317 return GV; 4318 } 4319 4320 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4321 const Expr *SubExpr = E->getSubExpr(); 4322 QualType ThrowType = SubExpr->getType(); 4323 // The exception object lives on the stack and it's address is passed to the 4324 // runtime function. 4325 Address AI = CGF.CreateMemTemp(ThrowType); 4326 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4327 /*IsInit=*/true); 4328 4329 // The so-called ThrowInfo is used to describe how the exception object may be 4330 // caught. 4331 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4332 4333 // Call into the runtime to throw the exception. 4334 llvm::Value *Args[] = { 4335 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4336 TI 4337 }; 4338 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4339 } 4340 4341 std::pair<llvm::Value *, const CXXRecordDecl *> 4342 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4343 const CXXRecordDecl *RD) { 4344 std::tie(This, std::ignore, RD) = 4345 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4346 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4347 } 4348