1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenTypes.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/CXXInheritance.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/AST/VTableBuilder.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/IR/Intrinsics.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 namespace { 37 38 /// Holds all the vbtable globals for a given class. 39 struct VBTableGlobals { 40 const VPtrInfoVector *VBTables; 41 SmallVector<llvm::GlobalVariable *, 2> Globals; 42 }; 43 44 class MicrosoftCXXABI : public CGCXXABI { 45 public: 46 MicrosoftCXXABI(CodeGenModule &CGM) 47 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 48 ClassHierarchyDescriptorType(nullptr), 49 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 50 ThrowInfoType(nullptr) { 51 assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || 52 CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && 53 "visibility export mapping option unimplemented in this ABI"); 54 } 55 56 bool HasThisReturn(GlobalDecl GD) const override; 57 bool hasMostDerivedReturn(GlobalDecl GD) const override; 58 59 bool classifyReturnType(CGFunctionInfo &FI) const override; 60 61 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 62 63 bool isSRetParameterAfterThis() const override { return true; } 64 65 bool isThisCompleteObject(GlobalDecl GD) const override { 66 // The Microsoft ABI doesn't use separate complete-object vs. 67 // base-object variants of constructors, but it does of destructors. 68 if (isa<CXXDestructorDecl>(GD.getDecl())) { 69 switch (GD.getDtorType()) { 70 case Dtor_Complete: 71 case Dtor_Deleting: 72 return true; 73 74 case Dtor_Base: 75 return false; 76 77 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 78 } 79 llvm_unreachable("bad dtor kind"); 80 } 81 82 // No other kinds. 83 return false; 84 } 85 86 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 87 FunctionArgList &Args) const override { 88 assert(Args.size() >= 2 && 89 "expected the arglist to have at least two args!"); 90 // The 'most_derived' parameter goes second if the ctor is variadic and 91 // has v-bases. 92 if (CD->getParent()->getNumVBases() > 0 && 93 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 94 return 2; 95 return 1; 96 } 97 98 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 99 std::vector<CharUnits> VBPtrOffsets; 100 const ASTContext &Context = getContext(); 101 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 102 103 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 104 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 105 const ASTRecordLayout &SubobjectLayout = 106 Context.getASTRecordLayout(VBT->IntroducingObject); 107 CharUnits Offs = VBT->NonVirtualOffset; 108 Offs += SubobjectLayout.getVBPtrOffset(); 109 if (VBT->getVBaseWithVPtr()) 110 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 111 VBPtrOffsets.push_back(Offs); 112 } 113 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 114 return VBPtrOffsets; 115 } 116 117 StringRef GetPureVirtualCallName() override { return "_purecall"; } 118 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 119 120 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 121 Address Ptr, QualType ElementType, 122 const CXXDestructorDecl *Dtor) override; 123 124 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 125 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 126 127 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 128 129 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 130 const VPtrInfo &Info); 131 132 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 133 CatchTypeInfo 134 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 135 136 /// MSVC needs an extra flag to indicate a catchall. 137 CatchTypeInfo getCatchAllTypeInfo() override { 138 // For -EHa catch(...) must handle HW exception 139 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions 140 if (getContext().getLangOpts().EHAsynch) 141 return CatchTypeInfo{nullptr, 0}; 142 else 143 return CatchTypeInfo{nullptr, 0x40}; 144 } 145 146 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 147 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 148 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 149 Address ThisPtr, 150 llvm::Type *StdTypeInfoPtrTy) override; 151 152 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 153 QualType SrcRecordTy) override; 154 155 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 156 QualType SrcRecordTy, QualType DestTy, 157 QualType DestRecordTy, 158 llvm::BasicBlock *CastEnd) override; 159 160 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 161 QualType SrcRecordTy, 162 QualType DestTy) override; 163 164 bool EmitBadCastCall(CodeGenFunction &CGF) override; 165 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 166 return false; 167 } 168 169 llvm::Value * 170 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 171 const CXXRecordDecl *ClassDecl, 172 const CXXRecordDecl *BaseClassDecl) override; 173 174 llvm::BasicBlock * 175 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 176 const CXXRecordDecl *RD) override; 177 178 llvm::BasicBlock * 179 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 180 181 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 182 const CXXRecordDecl *RD) override; 183 184 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 185 186 // Background on MSVC destructors 187 // ============================== 188 // 189 // Both Itanium and MSVC ABIs have destructor variants. The variant names 190 // roughly correspond in the following way: 191 // Itanium Microsoft 192 // Base -> no name, just ~Class 193 // Complete -> vbase destructor 194 // Deleting -> scalar deleting destructor 195 // vector deleting destructor 196 // 197 // The base and complete destructors are the same as in Itanium, although the 198 // complete destructor does not accept a VTT parameter when there are virtual 199 // bases. A separate mechanism involving vtordisps is used to ensure that 200 // virtual methods of destroyed subobjects are not called. 201 // 202 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 203 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 204 // pointer points to an array. The scalar deleting destructor assumes that 205 // bit 2 is zero, and therefore does not contain a loop. 206 // 207 // For virtual destructors, only one entry is reserved in the vftable, and it 208 // always points to the vector deleting destructor. The vector deleting 209 // destructor is the most general, so it can be used to destroy objects in 210 // place, delete single heap objects, or delete arrays. 211 // 212 // A TU defining a non-inline destructor is only guaranteed to emit a base 213 // destructor, and all of the other variants are emitted on an as-needed basis 214 // in COMDATs. Because a non-base destructor can be emitted in a TU that 215 // lacks a definition for the destructor, non-base destructors must always 216 // delegate to or alias the base destructor. 217 218 AddedStructorArgCounts 219 buildStructorSignature(GlobalDecl GD, 220 SmallVectorImpl<CanQualType> &ArgTys) override; 221 222 /// Non-base dtors should be emitted as delegating thunks in this ABI. 223 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 224 CXXDtorType DT) const override { 225 return DT != Dtor_Base; 226 } 227 228 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 229 const CXXDestructorDecl *Dtor, 230 CXXDtorType DT) const override; 231 232 llvm::GlobalValue::LinkageTypes 233 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 234 CXXDtorType DT) const override; 235 236 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 237 238 const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { 239 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 240 241 if (MD->isVirtual()) { 242 GlobalDecl LookupGD = GD; 243 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { 244 // Complete dtors take a pointer to the complete object, 245 // thus don't need adjustment. 246 if (GD.getDtorType() == Dtor_Complete) 247 return MD->getParent(); 248 249 // There's only Dtor_Deleting in vftable but it shares the this 250 // adjustment with the base one, so look up the deleting one instead. 251 LookupGD = GlobalDecl(DD, Dtor_Deleting); 252 } 253 MethodVFTableLocation ML = 254 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 255 256 // The vbases might be ordered differently in the final overrider object 257 // and the complete object, so the "this" argument may sometimes point to 258 // memory that has no particular type (e.g. past the complete object). 259 // In this case, we just use a generic pointer type. 260 // FIXME: might want to have a more precise type in the non-virtual 261 // multiple inheritance case. 262 if (ML.VBase || !ML.VFPtrOffset.isZero()) 263 return nullptr; 264 } 265 return MD->getParent(); 266 } 267 268 Address 269 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 270 Address This, 271 bool VirtualCall) override; 272 273 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 274 FunctionArgList &Params) override; 275 276 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 277 278 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 279 const CXXConstructorDecl *D, 280 CXXCtorType Type, 281 bool ForVirtualBase, 282 bool Delegating) override; 283 284 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 285 const CXXDestructorDecl *DD, 286 CXXDtorType Type, 287 bool ForVirtualBase, 288 bool Delegating) override; 289 290 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 291 CXXDtorType Type, bool ForVirtualBase, 292 bool Delegating, Address This, 293 QualType ThisTy) override; 294 295 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 296 llvm::GlobalVariable *VTable); 297 298 void emitVTableDefinitions(CodeGenVTables &CGVT, 299 const CXXRecordDecl *RD) override; 300 301 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 302 CodeGenFunction::VPtr Vptr) override; 303 304 /// Don't initialize vptrs if dynamic class 305 /// is marked with the 'novtable' attribute. 306 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 307 return !VTableClass->hasAttr<MSNoVTableAttr>(); 308 } 309 310 llvm::Constant * 311 getVTableAddressPoint(BaseSubobject Base, 312 const CXXRecordDecl *VTableClass) override; 313 314 llvm::Value *getVTableAddressPointInStructor( 315 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 316 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 317 318 llvm::Constant * 319 getVTableAddressPointForConstExpr(BaseSubobject Base, 320 const CXXRecordDecl *VTableClass) override; 321 322 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 323 CharUnits VPtrOffset) override; 324 325 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 326 Address This, llvm::Type *Ty, 327 SourceLocation Loc) override; 328 329 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 330 const CXXDestructorDecl *Dtor, 331 CXXDtorType DtorType, Address This, 332 DeleteOrMemberCallExpr E) override; 333 334 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 335 CallArgList &CallArgs) override { 336 assert(GD.getDtorType() == Dtor_Deleting && 337 "Only deleting destructor thunks are available in this ABI"); 338 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 339 getContext().IntTy); 340 } 341 342 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 343 344 llvm::GlobalVariable * 345 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 346 llvm::GlobalVariable::LinkageTypes Linkage); 347 348 llvm::GlobalVariable * 349 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 350 const CXXRecordDecl *DstRD) { 351 SmallString<256> OutName; 352 llvm::raw_svector_ostream Out(OutName); 353 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 354 StringRef MangledName = OutName.str(); 355 356 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 357 return VDispMap; 358 359 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 360 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 361 SmallVector<llvm::Constant *, 4> Map(NumEntries, 362 llvm::UndefValue::get(CGM.IntTy)); 363 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 364 bool AnyDifferent = false; 365 for (const auto &I : SrcRD->vbases()) { 366 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 367 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 368 continue; 369 370 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 371 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 372 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 373 AnyDifferent |= SrcVBIndex != DstVBIndex; 374 } 375 // This map would be useless, don't use it. 376 if (!AnyDifferent) 377 return nullptr; 378 379 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 380 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 381 llvm::GlobalValue::LinkageTypes Linkage = 382 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 383 ? llvm::GlobalValue::LinkOnceODRLinkage 384 : llvm::GlobalValue::InternalLinkage; 385 auto *VDispMap = new llvm::GlobalVariable( 386 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 387 /*Initializer=*/Init, MangledName); 388 return VDispMap; 389 } 390 391 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 392 llvm::GlobalVariable *GV) const; 393 394 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 395 GlobalDecl GD, bool ReturnAdjustment) override { 396 GVALinkage Linkage = 397 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 398 399 if (Linkage == GVA_Internal) 400 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 401 else if (ReturnAdjustment) 402 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 403 else 404 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 405 } 406 407 bool exportThunk() override { return false; } 408 409 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 410 const ThisAdjustment &TA) override; 411 412 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 413 const ReturnAdjustment &RA) override; 414 415 void EmitThreadLocalInitFuncs( 416 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 417 ArrayRef<llvm::Function *> CXXThreadLocalInits, 418 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 419 420 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 421 return getContext().getLangOpts().isCompatibleWithMSVC( 422 LangOptions::MSVC2019_5) && 423 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); 424 } 425 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 426 QualType LValType) override; 427 428 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 429 llvm::GlobalVariable *DeclPtr, 430 bool PerformInit) override; 431 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 432 llvm::FunctionCallee Dtor, 433 llvm::Constant *Addr) override; 434 435 // ==== Notes on array cookies ========= 436 // 437 // MSVC seems to only use cookies when the class has a destructor; a 438 // two-argument usual array deallocation function isn't sufficient. 439 // 440 // For example, this code prints "100" and "1": 441 // struct A { 442 // char x; 443 // void *operator new[](size_t sz) { 444 // printf("%u\n", sz); 445 // return malloc(sz); 446 // } 447 // void operator delete[](void *p, size_t sz) { 448 // printf("%u\n", sz); 449 // free(p); 450 // } 451 // }; 452 // int main() { 453 // A *p = new A[100]; 454 // delete[] p; 455 // } 456 // Whereas it prints "104" and "104" if you give A a destructor. 457 458 bool requiresArrayCookie(const CXXDeleteExpr *expr, 459 QualType elementType) override; 460 bool requiresArrayCookie(const CXXNewExpr *expr) override; 461 CharUnits getArrayCookieSizeImpl(QualType type) override; 462 Address InitializeArrayCookie(CodeGenFunction &CGF, 463 Address NewPtr, 464 llvm::Value *NumElements, 465 const CXXNewExpr *expr, 466 QualType ElementType) override; 467 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 468 Address allocPtr, 469 CharUnits cookieSize) override; 470 471 friend struct MSRTTIBuilder; 472 473 bool isImageRelative() const { 474 return CGM.getTarget().getPointerWidth(LangAS::Default) == 64; 475 } 476 477 // 5 routines for constructing the llvm types for MS RTTI structs. 478 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 479 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 480 TDTypeName += llvm::utostr(TypeInfoString.size()); 481 llvm::StructType *&TypeDescriptorType = 482 TypeDescriptorTypeMap[TypeInfoString.size()]; 483 if (TypeDescriptorType) 484 return TypeDescriptorType; 485 llvm::Type *FieldTypes[] = { 486 CGM.Int8PtrPtrTy, 487 CGM.Int8PtrTy, 488 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 489 TypeDescriptorType = 490 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 491 return TypeDescriptorType; 492 } 493 494 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 495 if (!isImageRelative()) 496 return PtrType; 497 return CGM.IntTy; 498 } 499 500 llvm::StructType *getBaseClassDescriptorType() { 501 if (BaseClassDescriptorType) 502 return BaseClassDescriptorType; 503 llvm::Type *FieldTypes[] = { 504 getImageRelativeType(CGM.Int8PtrTy), 505 CGM.IntTy, 506 CGM.IntTy, 507 CGM.IntTy, 508 CGM.IntTy, 509 CGM.IntTy, 510 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 511 }; 512 BaseClassDescriptorType = llvm::StructType::create( 513 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 514 return BaseClassDescriptorType; 515 } 516 517 llvm::StructType *getClassHierarchyDescriptorType() { 518 if (ClassHierarchyDescriptorType) 519 return ClassHierarchyDescriptorType; 520 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 521 ClassHierarchyDescriptorType = llvm::StructType::create( 522 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 523 llvm::Type *FieldTypes[] = { 524 CGM.IntTy, 525 CGM.IntTy, 526 CGM.IntTy, 527 getImageRelativeType( 528 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 529 }; 530 ClassHierarchyDescriptorType->setBody(FieldTypes); 531 return ClassHierarchyDescriptorType; 532 } 533 534 llvm::StructType *getCompleteObjectLocatorType() { 535 if (CompleteObjectLocatorType) 536 return CompleteObjectLocatorType; 537 CompleteObjectLocatorType = llvm::StructType::create( 538 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 539 llvm::Type *FieldTypes[] = { 540 CGM.IntTy, 541 CGM.IntTy, 542 CGM.IntTy, 543 getImageRelativeType(CGM.Int8PtrTy), 544 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 545 getImageRelativeType(CompleteObjectLocatorType), 546 }; 547 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 548 if (!isImageRelative()) 549 FieldTypesRef = FieldTypesRef.drop_back(); 550 CompleteObjectLocatorType->setBody(FieldTypesRef); 551 return CompleteObjectLocatorType; 552 } 553 554 llvm::GlobalVariable *getImageBase() { 555 StringRef Name = "__ImageBase"; 556 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 557 return GV; 558 559 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 560 /*isConstant=*/true, 561 llvm::GlobalValue::ExternalLinkage, 562 /*Initializer=*/nullptr, Name); 563 CGM.setDSOLocal(GV); 564 return GV; 565 } 566 567 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 568 if (!isImageRelative()) 569 return PtrVal; 570 571 if (PtrVal->isNullValue()) 572 return llvm::Constant::getNullValue(CGM.IntTy); 573 574 llvm::Constant *ImageBaseAsInt = 575 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 576 llvm::Constant *PtrValAsInt = 577 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 578 llvm::Constant *Diff = 579 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 580 /*HasNUW=*/true, /*HasNSW=*/true); 581 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 582 } 583 584 private: 585 MicrosoftMangleContext &getMangleContext() { 586 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 587 } 588 589 llvm::Constant *getZeroInt() { 590 return llvm::ConstantInt::get(CGM.IntTy, 0); 591 } 592 593 llvm::Constant *getAllOnesInt() { 594 return llvm::Constant::getAllOnesValue(CGM.IntTy); 595 } 596 597 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 598 599 void 600 GetNullMemberPointerFields(const MemberPointerType *MPT, 601 llvm::SmallVectorImpl<llvm::Constant *> &fields); 602 603 /// Shared code for virtual base adjustment. Returns the offset from 604 /// the vbptr to the virtual base. Optionally returns the address of the 605 /// vbptr itself. 606 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 607 Address Base, 608 llvm::Value *VBPtrOffset, 609 llvm::Value *VBTableOffset, 610 llvm::Value **VBPtr = nullptr); 611 612 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 613 Address Base, 614 int32_t VBPtrOffset, 615 int32_t VBTableOffset, 616 llvm::Value **VBPtr = nullptr) { 617 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 618 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 619 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 620 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 621 } 622 623 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 624 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 625 QualType SrcRecordTy); 626 627 /// Performs a full virtual base adjustment. Used to dereference 628 /// pointers to members of virtual bases. 629 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 630 const CXXRecordDecl *RD, Address Base, 631 llvm::Value *VirtualBaseAdjustmentOffset, 632 llvm::Value *VBPtrOffset /* optional */); 633 634 /// Emits a full member pointer with the fields common to data and 635 /// function member pointers. 636 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 637 bool IsMemberFunction, 638 const CXXRecordDecl *RD, 639 CharUnits NonVirtualBaseAdjustment, 640 unsigned VBTableIndex); 641 642 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 643 llvm::Constant *MP); 644 645 /// - Initialize all vbptrs of 'this' with RD as the complete type. 646 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 647 648 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 649 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 650 651 /// Generate a thunk for calling a virtual member function MD. 652 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 653 const MethodVFTableLocation &ML); 654 655 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 656 CharUnits offset); 657 658 public: 659 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 660 661 bool isZeroInitializable(const MemberPointerType *MPT) override; 662 663 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 664 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 665 return RD->hasAttr<MSInheritanceAttr>(); 666 } 667 668 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 669 670 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 671 CharUnits offset) override; 672 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 673 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 674 675 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 676 llvm::Value *L, 677 llvm::Value *R, 678 const MemberPointerType *MPT, 679 bool Inequality) override; 680 681 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 682 llvm::Value *MemPtr, 683 const MemberPointerType *MPT) override; 684 685 llvm::Value * 686 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 687 Address Base, llvm::Value *MemPtr, 688 const MemberPointerType *MPT) override; 689 690 llvm::Value *EmitNonNullMemberPointerConversion( 691 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 692 CastKind CK, CastExpr::path_const_iterator PathBegin, 693 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 694 CGBuilderTy &Builder); 695 696 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 697 const CastExpr *E, 698 llvm::Value *Src) override; 699 700 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 701 llvm::Constant *Src) override; 702 703 llvm::Constant *EmitMemberPointerConversion( 704 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 705 CastKind CK, CastExpr::path_const_iterator PathBegin, 706 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 707 708 CGCallee 709 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 710 Address This, llvm::Value *&ThisPtrForCall, 711 llvm::Value *MemPtr, 712 const MemberPointerType *MPT) override; 713 714 void emitCXXStructor(GlobalDecl GD) override; 715 716 llvm::StructType *getCatchableTypeType() { 717 if (CatchableTypeType) 718 return CatchableTypeType; 719 llvm::Type *FieldTypes[] = { 720 CGM.IntTy, // Flags 721 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 722 CGM.IntTy, // NonVirtualAdjustment 723 CGM.IntTy, // OffsetToVBPtr 724 CGM.IntTy, // VBTableIndex 725 CGM.IntTy, // Size 726 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 727 }; 728 CatchableTypeType = llvm::StructType::create( 729 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 730 return CatchableTypeType; 731 } 732 733 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 734 llvm::StructType *&CatchableTypeArrayType = 735 CatchableTypeArrayTypeMap[NumEntries]; 736 if (CatchableTypeArrayType) 737 return CatchableTypeArrayType; 738 739 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 740 CTATypeName += llvm::utostr(NumEntries); 741 llvm::Type *CTType = 742 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 743 llvm::Type *FieldTypes[] = { 744 CGM.IntTy, // NumEntries 745 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 746 }; 747 CatchableTypeArrayType = 748 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 749 return CatchableTypeArrayType; 750 } 751 752 llvm::StructType *getThrowInfoType() { 753 if (ThrowInfoType) 754 return ThrowInfoType; 755 llvm::Type *FieldTypes[] = { 756 CGM.IntTy, // Flags 757 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 758 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 759 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 760 }; 761 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 762 "eh.ThrowInfo"); 763 return ThrowInfoType; 764 } 765 766 llvm::FunctionCallee getThrowFn() { 767 // _CxxThrowException is passed an exception object and a ThrowInfo object 768 // which describes the exception. 769 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 770 llvm::FunctionType *FTy = 771 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 772 llvm::FunctionCallee Throw = 773 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 774 // _CxxThrowException is stdcall on 32-bit x86 platforms. 775 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 776 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 777 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 778 } 779 return Throw; 780 } 781 782 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 783 CXXCtorType CT); 784 785 llvm::Constant *getCatchableType(QualType T, 786 uint32_t NVOffset = 0, 787 int32_t VBPtrOffset = -1, 788 uint32_t VBIndex = 0); 789 790 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 791 792 llvm::GlobalVariable *getThrowInfo(QualType T) override; 793 794 std::pair<llvm::Value *, const CXXRecordDecl *> 795 LoadVTablePtr(CodeGenFunction &CGF, Address This, 796 const CXXRecordDecl *RD) override; 797 798 bool 799 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; 800 801 private: 802 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 803 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 804 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 805 /// All the vftables that have been referenced. 806 VFTablesMapTy VFTablesMap; 807 VTablesMapTy VTablesMap; 808 809 /// This set holds the record decls we've deferred vtable emission for. 810 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 811 812 813 /// All the vbtables which have been referenced. 814 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 815 816 /// Info on the global variable used to guard initialization of static locals. 817 /// The BitIndex field is only used for externally invisible declarations. 818 struct GuardInfo { 819 GuardInfo() : Guard(nullptr), BitIndex(0) {} 820 llvm::GlobalVariable *Guard; 821 unsigned BitIndex; 822 }; 823 824 /// Map from DeclContext to the current guard variable. We assume that the 825 /// AST is visited in source code order. 826 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 827 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 828 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 829 830 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 831 llvm::StructType *BaseClassDescriptorType; 832 llvm::StructType *ClassHierarchyDescriptorType; 833 llvm::StructType *CompleteObjectLocatorType; 834 835 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 836 837 llvm::StructType *CatchableTypeType; 838 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 839 llvm::StructType *ThrowInfoType; 840 }; 841 842 } 843 844 CGCXXABI::RecordArgABI 845 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 846 // Use the default C calling convention rules for things that can be passed in 847 // registers, i.e. non-trivially copyable records or records marked with 848 // [[trivial_abi]]. 849 if (RD->canPassInRegisters()) 850 return RAA_Default; 851 852 switch (CGM.getTarget().getTriple().getArch()) { 853 default: 854 // FIXME: Implement for other architectures. 855 return RAA_Indirect; 856 857 case llvm::Triple::thumb: 858 // Pass things indirectly for now because it is simple. 859 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 860 // copy ctor. 861 return RAA_Indirect; 862 863 case llvm::Triple::x86: { 864 // If the argument has *required* alignment greater than four bytes, pass 865 // it indirectly. Prior to MSVC version 19.14, passing overaligned 866 // arguments was not supported and resulted in a compiler error. In 19.14 867 // and later versions, such arguments are now passed indirectly. 868 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); 869 if (Info.isAlignRequired() && Info.Align > 4) 870 return RAA_Indirect; 871 872 // If C++ prohibits us from making a copy, construct the arguments directly 873 // into argument memory. 874 return RAA_DirectInMemory; 875 } 876 877 case llvm::Triple::x86_64: 878 case llvm::Triple::aarch64: 879 return RAA_Indirect; 880 } 881 882 llvm_unreachable("invalid enum"); 883 } 884 885 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 886 const CXXDeleteExpr *DE, 887 Address Ptr, 888 QualType ElementType, 889 const CXXDestructorDecl *Dtor) { 890 // FIXME: Provide a source location here even though there's no 891 // CXXMemberCallExpr for dtor call. 892 bool UseGlobalDelete = DE->isGlobalDelete(); 893 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 894 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 895 if (UseGlobalDelete) 896 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 897 } 898 899 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 900 llvm::Value *Args[] = { 901 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 902 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 903 llvm::FunctionCallee Fn = getThrowFn(); 904 if (isNoReturn) 905 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 906 else 907 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 908 } 909 910 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 911 const CXXCatchStmt *S) { 912 // In the MS ABI, the runtime handles the copy, and the catch handler is 913 // responsible for destruction. 914 VarDecl *CatchParam = S->getExceptionDecl(); 915 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 916 llvm::CatchPadInst *CPI = 917 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 918 CGF.CurrentFuncletPad = CPI; 919 920 // If this is a catch-all or the catch parameter is unnamed, we don't need to 921 // emit an alloca to the object. 922 if (!CatchParam || !CatchParam->getDeclName()) { 923 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 924 return; 925 } 926 927 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 928 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 929 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 930 CGF.EmitAutoVarCleanups(var); 931 } 932 933 /// We need to perform a generic polymorphic operation (like a typeid 934 /// or a cast), which requires an object with a vfptr. Adjust the 935 /// address to point to an object with a vfptr. 936 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 937 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 938 QualType SrcRecordTy) { 939 Value = CGF.Builder.CreateElementBitCast(Value, CGF.Int8Ty); 940 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 941 const ASTContext &Context = getContext(); 942 943 // If the class itself has a vfptr, great. This check implicitly 944 // covers non-virtual base subobjects: a class with its own virtual 945 // functions would be a candidate to be a primary base. 946 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 947 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 948 SrcDecl); 949 950 // Okay, one of the vbases must have a vfptr, or else this isn't 951 // actually a polymorphic class. 952 const CXXRecordDecl *PolymorphicBase = nullptr; 953 for (auto &Base : SrcDecl->vbases()) { 954 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 955 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 956 PolymorphicBase = BaseDecl; 957 break; 958 } 959 } 960 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 961 962 llvm::Value *Offset = 963 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 964 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 965 Value.getElementType(), Value.getPointer(), Offset); 966 CharUnits VBaseAlign = 967 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 968 return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset, 969 PolymorphicBase); 970 } 971 972 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 973 QualType SrcRecordTy) { 974 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 975 return IsDeref && 976 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 977 } 978 979 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 980 llvm::Value *Argument) { 981 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 982 llvm::FunctionType *FTy = 983 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 984 llvm::Value *Args[] = {Argument}; 985 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 986 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 987 } 988 989 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 990 llvm::CallBase *Call = 991 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 992 Call->setDoesNotReturn(); 993 CGF.Builder.CreateUnreachable(); 994 } 995 996 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 997 QualType SrcRecordTy, 998 Address ThisPtr, 999 llvm::Type *StdTypeInfoPtrTy) { 1000 std::tie(ThisPtr, std::ignore, std::ignore) = 1001 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 1002 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 1003 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 1004 } 1005 1006 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 1007 QualType SrcRecordTy) { 1008 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1009 return SrcIsPtr && 1010 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 1011 } 1012 1013 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 1014 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 1015 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 1016 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1017 1018 llvm::Value *SrcRTTI = 1019 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1020 llvm::Value *DestRTTI = 1021 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1022 1023 llvm::Value *Offset; 1024 std::tie(This, Offset, std::ignore) = 1025 performBaseAdjustment(CGF, This, SrcRecordTy); 1026 llvm::Value *ThisPtr = This.getPointer(); 1027 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 1028 1029 // PVOID __RTDynamicCast( 1030 // PVOID inptr, 1031 // LONG VfDelta, 1032 // PVOID SrcType, 1033 // PVOID TargetType, 1034 // BOOL isReference) 1035 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1036 CGF.Int8PtrTy, CGF.Int32Ty}; 1037 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1038 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1039 "__RTDynamicCast"); 1040 llvm::Value *Args[] = { 1041 ThisPtr, Offset, SrcRTTI, DestRTTI, 1042 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1043 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); 1044 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 1045 } 1046 1047 llvm::Value * 1048 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1049 QualType SrcRecordTy, 1050 QualType DestTy) { 1051 std::tie(Value, std::ignore, std::ignore) = 1052 performBaseAdjustment(CGF, Value, SrcRecordTy); 1053 1054 // PVOID __RTCastToVoid( 1055 // PVOID inptr) 1056 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1057 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1058 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1059 "__RTCastToVoid"); 1060 llvm::Value *Args[] = {Value.getPointer()}; 1061 return CGF.EmitRuntimeCall(Function, Args); 1062 } 1063 1064 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1065 return false; 1066 } 1067 1068 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1069 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1070 const CXXRecordDecl *BaseClassDecl) { 1071 const ASTContext &Context = getContext(); 1072 int64_t VBPtrChars = 1073 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1074 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1075 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1076 CharUnits VBTableChars = 1077 IntSize * 1078 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1079 llvm::Value *VBTableOffset = 1080 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1081 1082 llvm::Value *VBPtrToNewBase = 1083 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1084 VBPtrToNewBase = 1085 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1086 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1087 } 1088 1089 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1090 return isa<CXXConstructorDecl>(GD.getDecl()); 1091 } 1092 1093 static bool isDeletingDtor(GlobalDecl GD) { 1094 return isa<CXXDestructorDecl>(GD.getDecl()) && 1095 GD.getDtorType() == Dtor_Deleting; 1096 } 1097 1098 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1099 return isDeletingDtor(GD); 1100 } 1101 1102 static bool isTrivialForMSVC(const CXXRecordDecl *RD) { 1103 // We use the C++14 definition of an aggregate, so we also 1104 // check for: 1105 // No private or protected non static data members. 1106 // No base classes 1107 // No virtual functions 1108 // Additionally, we need to ensure that there is a trivial copy assignment 1109 // operator, a trivial destructor and no user-provided constructors. 1110 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1111 return false; 1112 if (RD->getNumBases() > 0) 1113 return false; 1114 if (RD->isPolymorphic()) 1115 return false; 1116 if (RD->hasNonTrivialCopyAssignment()) 1117 return false; 1118 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1119 if (Ctor->isUserProvided()) 1120 return false; 1121 if (RD->hasNonTrivialDestructor()) 1122 return false; 1123 return true; 1124 } 1125 1126 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1127 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1128 if (!RD) 1129 return false; 1130 1131 bool isTrivialForABI = RD->canPassInRegisters() && isTrivialForMSVC(RD); 1132 1133 // MSVC always returns structs indirectly from C++ instance methods. 1134 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); 1135 1136 if (isIndirectReturn) { 1137 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1138 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1139 1140 // MSVC always passes `this` before the `sret` parameter. 1141 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1142 1143 // On AArch64, use the `inreg` attribute if the object is considered to not 1144 // be trivially copyable, or if this is an instance method struct return. 1145 FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); 1146 1147 return true; 1148 } 1149 1150 // Otherwise, use the C ABI rules. 1151 return false; 1152 } 1153 1154 llvm::BasicBlock * 1155 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1156 const CXXRecordDecl *RD) { 1157 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1158 assert(IsMostDerivedClass && 1159 "ctor for a class with virtual bases must have an implicit parameter"); 1160 llvm::Value *IsCompleteObject = 1161 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1162 1163 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1164 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1165 CGF.Builder.CreateCondBr(IsCompleteObject, 1166 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1167 1168 CGF.EmitBlock(CallVbaseCtorsBB); 1169 1170 // Fill in the vbtable pointers here. 1171 EmitVBPtrStores(CGF, RD); 1172 1173 // CGF will put the base ctor calls in this basic block for us later. 1174 1175 return SkipVbaseCtorsBB; 1176 } 1177 1178 llvm::BasicBlock * 1179 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1180 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1181 assert(IsMostDerivedClass && 1182 "ctor for a class with virtual bases must have an implicit parameter"); 1183 llvm::Value *IsCompleteObject = 1184 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1185 1186 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1187 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1188 CGF.Builder.CreateCondBr(IsCompleteObject, 1189 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1190 1191 CGF.EmitBlock(CallVbaseDtorsBB); 1192 // CGF will put the base dtor calls in this basic block for us later. 1193 1194 return SkipVbaseDtorsBB; 1195 } 1196 1197 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1198 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1199 // In most cases, an override for a vbase virtual method can adjust 1200 // the "this" parameter by applying a constant offset. 1201 // However, this is not enough while a constructor or a destructor of some 1202 // class X is being executed if all the following conditions are met: 1203 // - X has virtual bases, (1) 1204 // - X overrides a virtual method M of a vbase Y, (2) 1205 // - X itself is a vbase of the most derived class. 1206 // 1207 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1208 // which holds the extra amount of "this" adjustment we must do when we use 1209 // the X vftables (i.e. during X ctor or dtor). 1210 // Outside the ctors and dtors, the values of vtorDisps are zero. 1211 1212 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1213 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1214 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1215 CGBuilderTy &Builder = CGF.Builder; 1216 1217 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1218 llvm::Value *Int8This = nullptr; // Initialize lazily. 1219 1220 for (const CXXBaseSpecifier &S : RD->vbases()) { 1221 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1222 auto I = VBaseMap.find(VBase); 1223 assert(I != VBaseMap.end()); 1224 if (!I->second.hasVtorDisp()) 1225 continue; 1226 1227 llvm::Value *VBaseOffset = 1228 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1229 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1230 1231 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1232 llvm::Value *VtorDispValue = Builder.CreateSub( 1233 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1234 "vtordisp.value"); 1235 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1236 1237 if (!Int8This) 1238 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1239 CGF.Int8Ty->getPointerTo(AS)); 1240 llvm::Value *VtorDispPtr = 1241 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset); 1242 // vtorDisp is always the 32-bits before the vbase in the class layout. 1243 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4); 1244 VtorDispPtr = Builder.CreateBitCast( 1245 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1246 1247 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1248 CharUnits::fromQuantity(4)); 1249 } 1250 } 1251 1252 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1253 const CXXMethodDecl *MD) { 1254 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1255 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1256 CallingConv ActualCallingConv = 1257 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1258 return ExpectedCallingConv == ActualCallingConv; 1259 } 1260 1261 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1262 // There's only one constructor type in this ABI. 1263 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1264 1265 // Exported default constructors either have a simple call-site where they use 1266 // the typical calling convention and have a single 'this' pointer for an 1267 // argument -or- they get a wrapper function which appropriately thunks to the 1268 // real default constructor. This thunk is the default constructor closure. 1269 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && 1270 D->isDefined()) { 1271 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1272 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1273 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1274 CGM.setGVProperties(Fn, D); 1275 } 1276 } 1277 } 1278 1279 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1280 const CXXRecordDecl *RD) { 1281 Address This = getThisAddress(CGF); 1282 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1283 const ASTContext &Context = getContext(); 1284 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1285 1286 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1287 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1288 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1289 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1290 const ASTRecordLayout &SubobjectLayout = 1291 Context.getASTRecordLayout(VBT->IntroducingObject); 1292 CharUnits Offs = VBT->NonVirtualOffset; 1293 Offs += SubobjectLayout.getVBPtrOffset(); 1294 if (VBT->getVBaseWithVPtr()) 1295 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1296 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1297 llvm::Value *GVPtr = 1298 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1299 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1300 "vbptr." + VBT->ObjectWithVPtr->getName()); 1301 CGF.Builder.CreateStore(GVPtr, VBPtr); 1302 } 1303 } 1304 1305 CGCXXABI::AddedStructorArgCounts 1306 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1307 SmallVectorImpl<CanQualType> &ArgTys) { 1308 AddedStructorArgCounts Added; 1309 // TODO: 'for base' flag 1310 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1311 GD.getDtorType() == Dtor_Deleting) { 1312 // The scalar deleting destructor takes an implicit int parameter. 1313 ArgTys.push_back(getContext().IntTy); 1314 ++Added.Suffix; 1315 } 1316 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1317 if (!CD) 1318 return Added; 1319 1320 // All parameters are already in place except is_most_derived, which goes 1321 // after 'this' if it's variadic and last if it's not. 1322 1323 const CXXRecordDecl *Class = CD->getParent(); 1324 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1325 if (Class->getNumVBases()) { 1326 if (FPT->isVariadic()) { 1327 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1328 ++Added.Prefix; 1329 } else { 1330 ArgTys.push_back(getContext().IntTy); 1331 ++Added.Suffix; 1332 } 1333 } 1334 1335 return Added; 1336 } 1337 1338 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1339 const CXXDestructorDecl *Dtor, 1340 CXXDtorType DT) const { 1341 // Deleting destructor variants are never imported or exported. Give them the 1342 // default storage class. 1343 if (DT == Dtor_Deleting) { 1344 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1345 } else { 1346 const NamedDecl *ND = Dtor; 1347 CGM.setDLLImportDLLExport(GV, ND); 1348 } 1349 } 1350 1351 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1352 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1353 // Internal things are always internal, regardless of attributes. After this, 1354 // we know the thunk is externally visible. 1355 if (Linkage == GVA_Internal) 1356 return llvm::GlobalValue::InternalLinkage; 1357 1358 switch (DT) { 1359 case Dtor_Base: 1360 // The base destructor most closely tracks the user-declared constructor, so 1361 // we delegate back to the normal declarator case. 1362 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, 1363 /*IsConstantVariable=*/false); 1364 case Dtor_Complete: 1365 // The complete destructor is like an inline function, but it may be 1366 // imported and therefore must be exported as well. This requires changing 1367 // the linkage if a DLL attribute is present. 1368 if (Dtor->hasAttr<DLLExportAttr>()) 1369 return llvm::GlobalValue::WeakODRLinkage; 1370 if (Dtor->hasAttr<DLLImportAttr>()) 1371 return llvm::GlobalValue::AvailableExternallyLinkage; 1372 return llvm::GlobalValue::LinkOnceODRLinkage; 1373 case Dtor_Deleting: 1374 // Deleting destructors are like inline functions. They have vague linkage 1375 // and are emitted everywhere they are used. They are internal if the class 1376 // is internal. 1377 return llvm::GlobalValue::LinkOnceODRLinkage; 1378 case Dtor_Comdat: 1379 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1380 } 1381 llvm_unreachable("invalid dtor type"); 1382 } 1383 1384 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1385 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1386 // other destructor variants are delegating thunks. 1387 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1388 1389 // If the class is dllexported, emit the complete (vbase) destructor wherever 1390 // the base dtor is emitted. 1391 // FIXME: To match MSVC, this should only be done when the class is exported 1392 // with -fdllexport-inlines enabled. 1393 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1394 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1395 } 1396 1397 CharUnits 1398 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1399 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1400 1401 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1402 // Complete destructors take a pointer to the complete object as a 1403 // parameter, thus don't need this adjustment. 1404 if (GD.getDtorType() == Dtor_Complete) 1405 return CharUnits(); 1406 1407 // There's no Dtor_Base in vftable but it shares the this adjustment with 1408 // the deleting one, so look it up instead. 1409 GD = GlobalDecl(DD, Dtor_Deleting); 1410 } 1411 1412 MethodVFTableLocation ML = 1413 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1414 CharUnits Adjustment = ML.VFPtrOffset; 1415 1416 // Normal virtual instance methods need to adjust from the vfptr that first 1417 // defined the virtual method to the virtual base subobject, but destructors 1418 // do not. The vector deleting destructor thunk applies this adjustment for 1419 // us if necessary. 1420 if (isa<CXXDestructorDecl>(MD)) 1421 Adjustment = CharUnits::Zero(); 1422 1423 if (ML.VBase) { 1424 const ASTRecordLayout &DerivedLayout = 1425 getContext().getASTRecordLayout(MD->getParent()); 1426 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1427 } 1428 1429 return Adjustment; 1430 } 1431 1432 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1433 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1434 bool VirtualCall) { 1435 if (!VirtualCall) { 1436 // If the call of a virtual function is not virtual, we just have to 1437 // compensate for the adjustment the virtual function does in its prologue. 1438 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1439 if (Adjustment.isZero()) 1440 return This; 1441 1442 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1443 assert(Adjustment.isPositive()); 1444 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1445 } 1446 1447 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1448 1449 GlobalDecl LookupGD = GD; 1450 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1451 // Complete dtors take a pointer to the complete object, 1452 // thus don't need adjustment. 1453 if (GD.getDtorType() == Dtor_Complete) 1454 return This; 1455 1456 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1457 // with the base one, so look up the deleting one instead. 1458 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1459 } 1460 MethodVFTableLocation ML = 1461 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1462 1463 CharUnits StaticOffset = ML.VFPtrOffset; 1464 1465 // Base destructors expect 'this' to point to the beginning of the base 1466 // subobject, not the first vfptr that happens to contain the virtual dtor. 1467 // However, we still need to apply the virtual base adjustment. 1468 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1469 StaticOffset = CharUnits::Zero(); 1470 1471 Address Result = This; 1472 if (ML.VBase) { 1473 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1474 1475 const CXXRecordDecl *Derived = MD->getParent(); 1476 const CXXRecordDecl *VBase = ML.VBase; 1477 llvm::Value *VBaseOffset = 1478 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1479 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( 1480 Result.getElementType(), Result.getPointer(), VBaseOffset); 1481 CharUnits VBaseAlign = 1482 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1483 Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); 1484 } 1485 if (!StaticOffset.isZero()) { 1486 assert(StaticOffset.isPositive()); 1487 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1488 if (ML.VBase) { 1489 // Non-virtual adjustment might result in a pointer outside the allocated 1490 // object, e.g. if the final overrider class is laid out after the virtual 1491 // base that declares a method in the most derived class. 1492 // FIXME: Update the code that emits this adjustment in thunks prologues. 1493 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1494 } else { 1495 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1496 } 1497 } 1498 return Result; 1499 } 1500 1501 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1502 QualType &ResTy, 1503 FunctionArgList &Params) { 1504 ASTContext &Context = getContext(); 1505 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1506 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1507 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1508 auto *IsMostDerived = ImplicitParamDecl::Create( 1509 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1510 &Context.Idents.get("is_most_derived"), Context.IntTy, 1511 ImplicitParamDecl::Other); 1512 // The 'most_derived' parameter goes second if the ctor is variadic and last 1513 // if it's not. Dtors can't be variadic. 1514 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1515 if (FPT->isVariadic()) 1516 Params.insert(Params.begin() + 1, IsMostDerived); 1517 else 1518 Params.push_back(IsMostDerived); 1519 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1520 } else if (isDeletingDtor(CGF.CurGD)) { 1521 auto *ShouldDelete = ImplicitParamDecl::Create( 1522 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1523 &Context.Idents.get("should_call_delete"), Context.IntTy, 1524 ImplicitParamDecl::Other); 1525 Params.push_back(ShouldDelete); 1526 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1527 } 1528 } 1529 1530 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1531 // Naked functions have no prolog. 1532 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1533 return; 1534 1535 // Overridden virtual methods of non-primary bases need to adjust the incoming 1536 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1537 // sizeof(void*) to adjust from B* to C*: 1538 // struct A { virtual void a(); }; 1539 // struct B { virtual void b(); }; 1540 // struct C : A, B { virtual void b(); }; 1541 // 1542 // Leave the value stored in the 'this' alloca unadjusted, so that the 1543 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1544 // will apply the ThisAdjustment in the method type information. 1545 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1546 // without making our codegen depend on debug info settings. 1547 llvm::Value *This = loadIncomingCXXThis(CGF); 1548 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1549 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1550 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1551 if (!Adjustment.isZero()) { 1552 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1553 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1554 *thisTy = This->getType(); 1555 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1556 assert(Adjustment.isPositive()); 1557 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1558 -Adjustment.getQuantity()); 1559 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); 1560 } 1561 } 1562 setCXXABIThisValue(CGF, This); 1563 1564 // If this is a function that the ABI specifies returns 'this', initialize 1565 // the return slot to 'this' at the start of the function. 1566 // 1567 // Unlike the setting of return types, this is done within the ABI 1568 // implementation instead of by clients of CGCXXABI because: 1569 // 1) getThisValue is currently protected 1570 // 2) in theory, an ABI could implement 'this' returns some other way; 1571 // HasThisReturn only specifies a contract, not the implementation 1572 if (HasThisReturn(CGF.CurGD)) 1573 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1574 else if (hasMostDerivedReturn(CGF.CurGD)) 1575 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1576 CGF.ReturnValue); 1577 1578 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1579 assert(getStructorImplicitParamDecl(CGF) && 1580 "no implicit parameter for a constructor with virtual bases?"); 1581 getStructorImplicitParamValue(CGF) 1582 = CGF.Builder.CreateLoad( 1583 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1584 "is_most_derived"); 1585 } 1586 1587 if (isDeletingDtor(CGF.CurGD)) { 1588 assert(getStructorImplicitParamDecl(CGF) && 1589 "no implicit parameter for a deleting destructor?"); 1590 getStructorImplicitParamValue(CGF) 1591 = CGF.Builder.CreateLoad( 1592 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1593 "should_call_delete"); 1594 } 1595 } 1596 1597 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1598 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1599 bool ForVirtualBase, bool Delegating) { 1600 assert(Type == Ctor_Complete || Type == Ctor_Base); 1601 1602 // Check if we need a 'most_derived' parameter. 1603 if (!D->getParent()->getNumVBases()) 1604 return AddedStructorArgs{}; 1605 1606 // Add the 'most_derived' argument second if we are variadic or last if not. 1607 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1608 llvm::Value *MostDerivedArg; 1609 if (Delegating) { 1610 MostDerivedArg = getStructorImplicitParamValue(CGF); 1611 } else { 1612 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1613 } 1614 if (FPT->isVariadic()) { 1615 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1616 } 1617 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1618 } 1619 1620 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1621 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1622 bool ForVirtualBase, bool Delegating) { 1623 return nullptr; 1624 } 1625 1626 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1627 const CXXDestructorDecl *DD, 1628 CXXDtorType Type, bool ForVirtualBase, 1629 bool Delegating, Address This, 1630 QualType ThisTy) { 1631 // Use the base destructor variant in place of the complete destructor variant 1632 // if the class has no virtual bases. This effectively implements some of the 1633 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1634 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1635 Type = Dtor_Base; 1636 1637 GlobalDecl GD(DD, Type); 1638 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1639 1640 if (DD->isVirtual()) { 1641 assert(Type != CXXDtorType::Dtor_Deleting && 1642 "The deleting destructor should only be called via a virtual call"); 1643 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1644 This, false); 1645 } 1646 1647 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1648 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1649 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1650 } 1651 1652 llvm::Value *Implicit = 1653 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1654 Delegating); // = nullptr 1655 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1656 /*ImplicitParam=*/Implicit, 1657 /*ImplicitParamTy=*/QualType(), nullptr); 1658 if (BaseDtorEndBB) { 1659 // Complete object handler should continue to be the remaining 1660 CGF.Builder.CreateBr(BaseDtorEndBB); 1661 CGF.EmitBlock(BaseDtorEndBB); 1662 } 1663 } 1664 1665 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1666 const CXXRecordDecl *RD, 1667 llvm::GlobalVariable *VTable) { 1668 if (!CGM.getCodeGenOpts().LTOUnit) 1669 return; 1670 1671 // TODO: Should VirtualFunctionElimination also be supported here? 1672 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1673 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1674 llvm::DenseSet<const CXXRecordDecl *> Visited; 1675 llvm::GlobalObject::VCallVisibility TypeVis = 1676 CGM.GetVCallVisibilityLevel(RD, Visited); 1677 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1678 VTable->setVCallVisibilityMetadata(TypeVis); 1679 } 1680 1681 // The location of the first virtual function pointer in the virtual table, 1682 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1683 // disabled, or sizeof(void*) if RTTI is enabled. 1684 CharUnits AddressPoint = 1685 getContext().getLangOpts().RTTIData 1686 ? getContext().toCharUnitsFromBits( 1687 getContext().getTargetInfo().getPointerWidth(LangAS::Default)) 1688 : CharUnits::Zero(); 1689 1690 if (Info.PathToIntroducingObject.empty()) { 1691 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1692 return; 1693 } 1694 1695 // Add a bitset entry for the least derived base belonging to this vftable. 1696 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1697 Info.PathToIntroducingObject.back()); 1698 1699 // Add a bitset entry for each derived class that is laid out at the same 1700 // offset as the least derived base. 1701 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1702 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1703 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1704 1705 const ASTRecordLayout &Layout = 1706 getContext().getASTRecordLayout(DerivedRD); 1707 CharUnits Offset; 1708 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1709 if (VBI == Layout.getVBaseOffsetsMap().end()) 1710 Offset = Layout.getBaseClassOffset(BaseRD); 1711 else 1712 Offset = VBI->second.VBaseOffset; 1713 if (!Offset.isZero()) 1714 return; 1715 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1716 } 1717 1718 // Finally do the same for the most derived class. 1719 if (Info.FullOffsetInMDC.isZero()) 1720 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1721 } 1722 1723 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1724 const CXXRecordDecl *RD) { 1725 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1726 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1727 1728 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1729 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1730 if (VTable->hasInitializer()) 1731 continue; 1732 1733 const VTableLayout &VTLayout = 1734 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1735 1736 llvm::Constant *RTTI = nullptr; 1737 if (any_of(VTLayout.vtable_components(), 1738 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1739 RTTI = getMSCompleteObjectLocator(RD, *Info); 1740 1741 ConstantInitBuilder builder(CGM); 1742 auto components = builder.beginStruct(); 1743 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1744 VTable->hasLocalLinkage()); 1745 components.finishAndSetAsInitializer(VTable); 1746 1747 emitVTableTypeMetadata(*Info, RD, VTable); 1748 } 1749 } 1750 1751 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1752 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1753 return Vptr.NearestVBase != nullptr; 1754 } 1755 1756 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1757 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1758 const CXXRecordDecl *NearestVBase) { 1759 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1760 if (!VTableAddressPoint) { 1761 assert(Base.getBase()->getNumVBases() && 1762 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1763 } 1764 return VTableAddressPoint; 1765 } 1766 1767 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1768 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1769 SmallString<256> &Name) { 1770 llvm::raw_svector_ostream Out(Name); 1771 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1772 } 1773 1774 llvm::Constant * 1775 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1776 const CXXRecordDecl *VTableClass) { 1777 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1778 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1779 return VFTablesMap[ID]; 1780 } 1781 1782 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1783 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1784 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1785 assert(VFTable && "Couldn't find a vftable for the given base?"); 1786 return VFTable; 1787 } 1788 1789 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1790 CharUnits VPtrOffset) { 1791 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1792 // shouldn't be used in the given record type. We want to cache this result in 1793 // VFTablesMap, thus a simple zero check is not sufficient. 1794 1795 VFTableIdTy ID(RD, VPtrOffset); 1796 VTablesMapTy::iterator I; 1797 bool Inserted; 1798 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1799 if (!Inserted) 1800 return I->second; 1801 1802 llvm::GlobalVariable *&VTable = I->second; 1803 1804 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1805 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1806 1807 if (DeferredVFTables.insert(RD).second) { 1808 // We haven't processed this record type before. 1809 // Queue up this vtable for possible deferred emission. 1810 CGM.addDeferredVTable(RD); 1811 1812 #ifndef NDEBUG 1813 // Create all the vftables at once in order to make sure each vftable has 1814 // a unique mangled name. 1815 llvm::StringSet<> ObservedMangledNames; 1816 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1817 SmallString<256> Name; 1818 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1819 if (!ObservedMangledNames.insert(Name.str()).second) 1820 llvm_unreachable("Already saw this mangling before?"); 1821 } 1822 #endif 1823 } 1824 1825 const std::unique_ptr<VPtrInfo> *VFPtrI = 1826 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) { 1827 return VPI->FullOffsetInMDC == VPtrOffset; 1828 }); 1829 if (VFPtrI == VFPtrs.end()) { 1830 VFTablesMap[ID] = nullptr; 1831 return nullptr; 1832 } 1833 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1834 1835 SmallString<256> VFTableName; 1836 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1837 1838 // Classes marked __declspec(dllimport) need vftables generated on the 1839 // import-side in order to support features like constexpr. No other 1840 // translation unit relies on the emission of the local vftable, translation 1841 // units are expected to generate them as needed. 1842 // 1843 // Because of this unique behavior, we maintain this logic here instead of 1844 // getVTableLinkage. 1845 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1846 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1847 : CGM.getVTableLinkage(RD); 1848 bool VFTableComesFromAnotherTU = 1849 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1850 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1851 bool VTableAliasIsRequred = 1852 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1853 1854 if (llvm::GlobalValue *VFTable = 1855 CGM.getModule().getNamedGlobal(VFTableName)) { 1856 VFTablesMap[ID] = VFTable; 1857 VTable = VTableAliasIsRequred 1858 ? cast<llvm::GlobalVariable>( 1859 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject()) 1860 : cast<llvm::GlobalVariable>(VFTable); 1861 return VTable; 1862 } 1863 1864 const VTableLayout &VTLayout = 1865 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1866 llvm::GlobalValue::LinkageTypes VTableLinkage = 1867 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1868 1869 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1870 1871 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1872 1873 // Create a backing variable for the contents of VTable. The VTable may 1874 // or may not include space for a pointer to RTTI data. 1875 llvm::GlobalValue *VFTable; 1876 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1877 /*isConstant=*/true, VTableLinkage, 1878 /*Initializer=*/nullptr, VTableName); 1879 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1880 1881 llvm::Comdat *C = nullptr; 1882 if (!VFTableComesFromAnotherTU && 1883 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1884 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1885 VTableAliasIsRequred))) 1886 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1887 1888 // Only insert a pointer into the VFTable for RTTI data if we are not 1889 // importing it. We never reference the RTTI data directly so there is no 1890 // need to make room for it. 1891 if (VTableAliasIsRequred) { 1892 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1893 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1894 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1895 // Create a GEP which points just after the first entry in the VFTable, 1896 // this should be the location of the first virtual method. 1897 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1898 VTable->getValueType(), VTable, GEPIndices); 1899 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1900 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1901 if (C) 1902 C->setSelectionKind(llvm::Comdat::Largest); 1903 } 1904 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1905 /*AddressSpace=*/0, VFTableLinkage, 1906 VFTableName.str(), VTableGEP, 1907 &CGM.getModule()); 1908 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1909 } else { 1910 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1911 // be referencing any RTTI data. 1912 // The GlobalVariable will end up being an appropriate definition of the 1913 // VFTable. 1914 VFTable = VTable; 1915 } 1916 if (C) 1917 VTable->setComdat(C); 1918 1919 if (RD->hasAttr<DLLExportAttr>()) 1920 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1921 1922 VFTablesMap[ID] = VFTable; 1923 return VTable; 1924 } 1925 1926 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1927 GlobalDecl GD, 1928 Address This, 1929 llvm::Type *Ty, 1930 SourceLocation Loc) { 1931 CGBuilderTy &Builder = CGF.Builder; 1932 1933 Ty = Ty->getPointerTo(); 1934 Address VPtr = 1935 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1936 1937 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1938 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(), 1939 MethodDecl->getParent()); 1940 1941 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1942 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1943 1944 // Compute the identity of the most derived class whose virtual table is 1945 // located at the MethodVFTableLocation ML. 1946 auto getObjectWithVPtr = [&] { 1947 return llvm::find_if(VFTContext.getVFPtrOffsets( 1948 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1949 [&](const std::unique_ptr<VPtrInfo> &Info) { 1950 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1951 }) 1952 ->get() 1953 ->ObjectWithVPtr; 1954 }; 1955 1956 llvm::Value *VFunc; 1957 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1958 VFunc = CGF.EmitVTableTypeCheckedLoad( 1959 getObjectWithVPtr(), VTable, Ty, 1960 ML.Index * 1961 CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) / 1962 8); 1963 } else { 1964 if (CGM.getCodeGenOpts().PrepareForLTO) 1965 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1966 1967 llvm::Value *VFuncPtr = 1968 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn"); 1969 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); 1970 } 1971 1972 CGCallee Callee(GD, VFunc); 1973 return Callee; 1974 } 1975 1976 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1977 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1978 Address This, DeleteOrMemberCallExpr E) { 1979 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1980 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1981 assert((CE != nullptr) ^ (D != nullptr)); 1982 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1983 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1984 1985 // We have only one destructor in the vftable but can get both behaviors 1986 // by passing an implicit int parameter. 1987 GlobalDecl GD(Dtor, Dtor_Deleting); 1988 const CGFunctionInfo *FInfo = 1989 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 1990 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1991 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 1992 1993 ASTContext &Context = getContext(); 1994 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1995 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1996 DtorType == Dtor_Deleting); 1997 1998 QualType ThisTy; 1999 if (CE) { 2000 ThisTy = CE->getObjectType(); 2001 } else { 2002 ThisTy = D->getDestroyedType(); 2003 } 2004 2005 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 2006 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 2007 ImplicitParam, Context.IntTy, CE); 2008 return RV.getScalarVal(); 2009 } 2010 2011 const VBTableGlobals & 2012 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 2013 // At this layer, we can key the cache off of a single class, which is much 2014 // easier than caching each vbtable individually. 2015 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 2016 bool Added; 2017 std::tie(Entry, Added) = 2018 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 2019 VBTableGlobals &VBGlobals = Entry->second; 2020 if (!Added) 2021 return VBGlobals; 2022 2023 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2024 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 2025 2026 // Cache the globals for all vbtables so we don't have to recompute the 2027 // mangled names. 2028 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 2029 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 2030 E = VBGlobals.VBTables->end(); 2031 I != E; ++I) { 2032 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 2033 } 2034 2035 return VBGlobals; 2036 } 2037 2038 llvm::Function * 2039 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2040 const MethodVFTableLocation &ML) { 2041 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2042 "can't form pointers to ctors or virtual dtors"); 2043 2044 // Calculate the mangled name. 2045 SmallString<256> ThunkName; 2046 llvm::raw_svector_ostream Out(ThunkName); 2047 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2048 2049 // If the thunk has been generated previously, just return it. 2050 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2051 return cast<llvm::Function>(GV); 2052 2053 // Create the llvm::Function. 2054 const CGFunctionInfo &FnInfo = 2055 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2056 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2057 llvm::Function *ThunkFn = 2058 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2059 ThunkName.str(), &CGM.getModule()); 2060 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2061 2062 ThunkFn->setLinkage(MD->isExternallyVisible() 2063 ? llvm::GlobalValue::LinkOnceODRLinkage 2064 : llvm::GlobalValue::InternalLinkage); 2065 if (MD->isExternallyVisible()) 2066 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2067 2068 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 2069 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2070 2071 // Add the "thunk" attribute so that LLVM knows that the return type is 2072 // meaningless. These thunks can be used to call functions with differing 2073 // return types, and the caller is required to cast the prototype 2074 // appropriately to extract the correct value. 2075 ThunkFn->addFnAttr("thunk"); 2076 2077 // These thunks can be compared, so they are not unnamed. 2078 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2079 2080 // Start codegen. 2081 CodeGenFunction CGF(CGM); 2082 CGF.CurGD = GlobalDecl(MD); 2083 CGF.CurFuncIsThunk = true; 2084 2085 // Build FunctionArgs, but only include the implicit 'this' parameter 2086 // declaration. 2087 FunctionArgList FunctionArgs; 2088 buildThisParam(CGF, FunctionArgs); 2089 2090 // Start defining the function. 2091 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2092 FunctionArgs, MD->getLocation(), SourceLocation()); 2093 2094 ApplyDebugLocation AL(CGF, MD->getLocation()); 2095 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2096 2097 // Load the vfptr and then callee from the vftable. The callee should have 2098 // adjusted 'this' so that the vfptr is at offset zero. 2099 llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo(); 2100 llvm::Value *VTable = CGF.GetVTablePtr( 2101 getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent()); 2102 2103 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( 2104 ThunkPtrTy, VTable, ML.Index, "vfn"); 2105 llvm::Value *Callee = 2106 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); 2107 2108 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2109 2110 return ThunkFn; 2111 } 2112 2113 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2114 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2115 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2116 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2117 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2118 if (GV->isDeclaration()) 2119 emitVBTableDefinition(*VBT, RD, GV); 2120 } 2121 } 2122 2123 llvm::GlobalVariable * 2124 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2125 llvm::GlobalVariable::LinkageTypes Linkage) { 2126 SmallString<256> OutName; 2127 llvm::raw_svector_ostream Out(OutName); 2128 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2129 StringRef Name = OutName.str(); 2130 2131 llvm::ArrayType *VBTableType = 2132 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2133 2134 assert(!CGM.getModule().getNamedGlobal(Name) && 2135 "vbtable with this name already exists: mangling bug?"); 2136 CharUnits Alignment = 2137 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2138 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2139 Name, VBTableType, Linkage, Alignment.getAsAlign()); 2140 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2141 2142 if (RD->hasAttr<DLLImportAttr>()) 2143 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2144 else if (RD->hasAttr<DLLExportAttr>()) 2145 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2146 2147 if (!GV->hasExternalLinkage()) 2148 emitVBTableDefinition(VBT, RD, GV); 2149 2150 return GV; 2151 } 2152 2153 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2154 const CXXRecordDecl *RD, 2155 llvm::GlobalVariable *GV) const { 2156 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2157 2158 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2159 "should only emit vbtables for classes with vbtables"); 2160 2161 const ASTRecordLayout &BaseLayout = 2162 getContext().getASTRecordLayout(VBT.IntroducingObject); 2163 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2164 2165 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2166 nullptr); 2167 2168 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2169 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2170 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2171 2172 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2173 for (const auto &I : ObjectWithVPtr->vbases()) { 2174 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2175 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2176 assert(!Offset.isNegative()); 2177 2178 // Make it relative to the subobject vbptr. 2179 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2180 if (VBT.getVBaseWithVPtr()) 2181 CompleteVBPtrOffset += 2182 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2183 Offset -= CompleteVBPtrOffset; 2184 2185 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2186 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2187 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2188 } 2189 2190 assert(Offsets.size() == 2191 cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); 2192 llvm::ArrayType *VBTableType = 2193 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2194 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2195 GV->setInitializer(Init); 2196 2197 if (RD->hasAttr<DLLImportAttr>()) 2198 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2199 } 2200 2201 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2202 Address This, 2203 const ThisAdjustment &TA) { 2204 if (TA.isEmpty()) 2205 return This.getPointer(); 2206 2207 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2208 2209 llvm::Value *V; 2210 if (TA.Virtual.isEmpty()) { 2211 V = This.getPointer(); 2212 } else { 2213 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2214 // Adjust the this argument based on the vtordisp value. 2215 Address VtorDispPtr = 2216 CGF.Builder.CreateConstInBoundsByteGEP(This, 2217 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2218 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2219 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2220 V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(), 2221 CGF.Builder.CreateNeg(VtorDisp)); 2222 2223 // Unfortunately, having applied the vtordisp means that we no 2224 // longer really have a known alignment for the vbptr step. 2225 // We'll assume the vbptr is pointer-aligned. 2226 2227 if (TA.Virtual.Microsoft.VBPtrOffset) { 2228 // If the final overrider is defined in a virtual base other than the one 2229 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2230 // the vbtable of the derived class. 2231 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2232 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2233 llvm::Value *VBPtr; 2234 llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( 2235 CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()), 2236 -TA.Virtual.Microsoft.VBPtrOffset, 2237 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2238 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2239 } 2240 } 2241 2242 if (TA.NonVirtual) { 2243 // Non-virtual adjustment might result in a pointer outside the allocated 2244 // object, e.g. if the final overrider class is laid out after the virtual 2245 // base that declares a method in the most derived class. 2246 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual); 2247 } 2248 2249 // Don't need to bitcast back, the call CodeGen will handle this. 2250 return V; 2251 } 2252 2253 llvm::Value * 2254 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2255 const ReturnAdjustment &RA) { 2256 if (RA.isEmpty()) 2257 return Ret.getPointer(); 2258 2259 auto OrigTy = Ret.getType(); 2260 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2261 2262 llvm::Value *V = Ret.getPointer(); 2263 if (RA.Virtual.Microsoft.VBIndex) { 2264 assert(RA.Virtual.Microsoft.VBIndex > 0); 2265 int32_t IntSize = CGF.getIntSize().getQuantity(); 2266 llvm::Value *VBPtr; 2267 llvm::Value *VBaseOffset = 2268 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2269 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2270 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2271 } 2272 2273 if (RA.NonVirtual) 2274 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2275 2276 // Cast back to the original type. 2277 return CGF.Builder.CreateBitCast(V, OrigTy); 2278 } 2279 2280 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2281 QualType elementType) { 2282 // Microsoft seems to completely ignore the possibility of a 2283 // two-argument usual deallocation function. 2284 return elementType.isDestructedType(); 2285 } 2286 2287 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2288 // Microsoft seems to completely ignore the possibility of a 2289 // two-argument usual deallocation function. 2290 return expr->getAllocatedType().isDestructedType(); 2291 } 2292 2293 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2294 // The array cookie is always a size_t; we then pad that out to the 2295 // alignment of the element type. 2296 ASTContext &Ctx = getContext(); 2297 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2298 Ctx.getTypeAlignInChars(type)); 2299 } 2300 2301 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2302 Address allocPtr, 2303 CharUnits cookieSize) { 2304 Address numElementsPtr = 2305 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2306 return CGF.Builder.CreateLoad(numElementsPtr); 2307 } 2308 2309 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2310 Address newPtr, 2311 llvm::Value *numElements, 2312 const CXXNewExpr *expr, 2313 QualType elementType) { 2314 assert(requiresArrayCookie(expr)); 2315 2316 // The size of the cookie. 2317 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2318 2319 // Compute an offset to the cookie. 2320 Address cookiePtr = newPtr; 2321 2322 // Write the number of elements into the appropriate slot. 2323 Address numElementsPtr 2324 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2325 CGF.Builder.CreateStore(numElements, numElementsPtr); 2326 2327 // Finally, compute a pointer to the actual data buffer by skipping 2328 // over the cookie completely. 2329 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2330 } 2331 2332 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2333 llvm::FunctionCallee Dtor, 2334 llvm::Constant *Addr) { 2335 // Create a function which calls the destructor. 2336 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2337 2338 // extern "C" int __tlregdtor(void (*f)(void)); 2339 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2340 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2341 2342 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2343 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2344 if (llvm::Function *TLRegDtorFn = 2345 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2346 TLRegDtorFn->setDoesNotThrow(); 2347 2348 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2349 } 2350 2351 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2352 llvm::FunctionCallee Dtor, 2353 llvm::Constant *Addr) { 2354 if (D.isNoDestroy(CGM.getContext())) 2355 return; 2356 2357 if (D.getTLSKind()) 2358 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2359 2360 // HLSL doesn't support atexit. 2361 if (CGM.getLangOpts().HLSL) 2362 return CGM.AddCXXDtorEntry(Dtor, Addr); 2363 2364 // The default behavior is to use atexit. 2365 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2366 } 2367 2368 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2369 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2370 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2371 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2372 if (CXXThreadLocalInits.empty()) 2373 return; 2374 2375 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2376 llvm::Triple::x86 2377 ? "/include:___dyn_tls_init@12" 2378 : "/include:__dyn_tls_init"); 2379 2380 // This will create a GV in the .CRT$XDU section. It will point to our 2381 // initialization function. The CRT will call all of these function 2382 // pointers at start-up time and, eventually, at thread-creation time. 2383 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2384 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2385 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2386 llvm::GlobalVariable::InternalLinkage, InitFunc, 2387 Twine(InitFunc->getName(), "$initializer$")); 2388 InitFuncPtr->setSection(".CRT$XDU"); 2389 // This variable has discardable linkage, we have to add it to @llvm.used to 2390 // ensure it won't get discarded. 2391 CGM.addUsedGlobal(InitFuncPtr); 2392 return InitFuncPtr; 2393 }; 2394 2395 std::vector<llvm::Function *> NonComdatInits; 2396 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2397 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2398 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2399 llvm::Function *F = CXXThreadLocalInits[I]; 2400 2401 // If the GV is already in a comdat group, then we have to join it. 2402 if (llvm::Comdat *C = GV->getComdat()) 2403 AddToXDU(F)->setComdat(C); 2404 else 2405 NonComdatInits.push_back(F); 2406 } 2407 2408 if (!NonComdatInits.empty()) { 2409 llvm::FunctionType *FTy = 2410 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2411 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2412 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2413 SourceLocation(), /*TLS=*/true); 2414 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2415 2416 AddToXDU(InitFunc); 2417 } 2418 } 2419 2420 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { 2421 // __tls_guard comes from the MSVC runtime and reflects 2422 // whether TLS has been initialized for a particular thread. 2423 // It is set from within __dyn_tls_init by the runtime. 2424 // Every library and executable has its own variable. 2425 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext()); 2426 llvm::Constant *TlsGuardConstant = 2427 CGM.CreateRuntimeVariable(VTy, "__tls_guard"); 2428 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant); 2429 2430 TlsGuard->setThreadLocal(true); 2431 2432 return TlsGuard; 2433 } 2434 2435 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { 2436 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers 2437 // dynamic TLS initialization by calling __dyn_tls_init internally. 2438 llvm::FunctionType *FTy = 2439 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {}, 2440 /*isVarArg=*/false); 2441 return CGM.CreateRuntimeFunction( 2442 FTy, "__dyn_tls_on_demand_init", 2443 llvm::AttributeList::get(CGM.getLLVMContext(), 2444 llvm::AttributeList::FunctionIndex, 2445 llvm::Attribute::NoUnwind), 2446 /*Local=*/true); 2447 } 2448 2449 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, 2450 llvm::BasicBlock *DynInitBB, 2451 llvm::BasicBlock *ContinueBB) { 2452 llvm::LoadInst *TlsGuardValue = 2453 CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); 2454 llvm::Value *CmpResult = 2455 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0)); 2456 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB); 2457 } 2458 2459 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, 2460 llvm::GlobalValue *TlsGuard, 2461 llvm::BasicBlock *ContinueBB) { 2462 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM); 2463 llvm::Function *InitializerFunction = 2464 cast<llvm::Function>(Initializer.getCallee()); 2465 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction); 2466 CallVal->setCallingConv(InitializerFunction->getCallingConv()); 2467 2468 CGF.Builder.CreateBr(ContinueBB); 2469 } 2470 2471 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { 2472 llvm::BasicBlock *DynInitBB = 2473 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn); 2474 llvm::BasicBlock *ContinueBB = 2475 CGF.createBasicBlock("dyntls.continue", CGF.CurFn); 2476 2477 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM); 2478 2479 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); 2480 CGF.Builder.SetInsertPoint(DynInitBB); 2481 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); 2482 CGF.Builder.SetInsertPoint(ContinueBB); 2483 } 2484 2485 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2486 const VarDecl *VD, 2487 QualType LValType) { 2488 // Dynamic TLS initialization works by checking the state of a 2489 // guard variable (__tls_guard) to see whether TLS initialization 2490 // for a thread has happend yet. 2491 // If not, the initialization is triggered on-demand 2492 // by calling __dyn_tls_on_demand_init. 2493 emitDynamicTlsInitialization(CGF); 2494 2495 // Emit the variable just like any regular global variable. 2496 2497 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2498 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2499 2500 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2501 V = CGF.Builder.CreateBitCast(V, RealVarTy->getPointerTo(AS)); 2502 2503 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2504 Address Addr(V, RealVarTy, Alignment); 2505 2506 LValue LV = VD->getType()->isReferenceType() 2507 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2508 AlignmentSource::Decl) 2509 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl); 2510 return LV; 2511 } 2512 2513 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2514 StringRef VarName("_Init_thread_epoch"); 2515 CharUnits Align = CGM.getIntAlign(); 2516 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2517 return ConstantAddress(GV, GV->getValueType(), Align); 2518 auto *GV = new llvm::GlobalVariable( 2519 CGM.getModule(), CGM.IntTy, 2520 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2521 /*Initializer=*/nullptr, VarName, 2522 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2523 GV->setAlignment(Align.getAsAlign()); 2524 return ConstantAddress(GV, GV->getValueType(), Align); 2525 } 2526 2527 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2528 llvm::FunctionType *FTy = 2529 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2530 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2531 return CGM.CreateRuntimeFunction( 2532 FTy, "_Init_thread_header", 2533 llvm::AttributeList::get(CGM.getLLVMContext(), 2534 llvm::AttributeList::FunctionIndex, 2535 llvm::Attribute::NoUnwind), 2536 /*Local=*/true); 2537 } 2538 2539 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2540 llvm::FunctionType *FTy = 2541 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2542 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2543 return CGM.CreateRuntimeFunction( 2544 FTy, "_Init_thread_footer", 2545 llvm::AttributeList::get(CGM.getLLVMContext(), 2546 llvm::AttributeList::FunctionIndex, 2547 llvm::Attribute::NoUnwind), 2548 /*Local=*/true); 2549 } 2550 2551 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2552 llvm::FunctionType *FTy = 2553 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2554 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2555 return CGM.CreateRuntimeFunction( 2556 FTy, "_Init_thread_abort", 2557 llvm::AttributeList::get(CGM.getLLVMContext(), 2558 llvm::AttributeList::FunctionIndex, 2559 llvm::Attribute::NoUnwind), 2560 /*Local=*/true); 2561 } 2562 2563 namespace { 2564 struct ResetGuardBit final : EHScopeStack::Cleanup { 2565 Address Guard; 2566 unsigned GuardNum; 2567 ResetGuardBit(Address Guard, unsigned GuardNum) 2568 : Guard(Guard), GuardNum(GuardNum) {} 2569 2570 void Emit(CodeGenFunction &CGF, Flags flags) override { 2571 // Reset the bit in the mask so that the static variable may be 2572 // reinitialized. 2573 CGBuilderTy &Builder = CGF.Builder; 2574 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2575 llvm::ConstantInt *Mask = 2576 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2577 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2578 } 2579 }; 2580 2581 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2582 llvm::Value *Guard; 2583 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2584 2585 void Emit(CodeGenFunction &CGF, Flags flags) override { 2586 // Calling _Init_thread_abort will reset the guard's state. 2587 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2588 } 2589 }; 2590 } 2591 2592 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2593 llvm::GlobalVariable *GV, 2594 bool PerformInit) { 2595 // MSVC only uses guards for static locals. 2596 if (!D.isStaticLocal()) { 2597 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2598 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2599 llvm::Function *F = CGF.CurFn; 2600 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2601 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2602 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2603 return; 2604 } 2605 2606 bool ThreadlocalStatic = D.getTLSKind(); 2607 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2608 2609 // Thread-safe static variables which aren't thread-specific have a 2610 // per-variable guard. 2611 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2612 2613 CGBuilderTy &Builder = CGF.Builder; 2614 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2615 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2616 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2617 2618 // Get the guard variable for this function if we have one already. 2619 GuardInfo *GI = nullptr; 2620 if (ThreadlocalStatic) 2621 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2622 else if (!ThreadsafeStatic) 2623 GI = &GuardVariableMap[D.getDeclContext()]; 2624 2625 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2626 unsigned GuardNum; 2627 if (D.isExternallyVisible()) { 2628 // Externally visible variables have to be numbered in Sema to properly 2629 // handle unreachable VarDecls. 2630 GuardNum = getContext().getStaticLocalNumber(&D); 2631 assert(GuardNum > 0); 2632 GuardNum--; 2633 } else if (HasPerVariableGuard) { 2634 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2635 } else { 2636 // Non-externally visible variables are numbered here in CodeGen. 2637 GuardNum = GI->BitIndex++; 2638 } 2639 2640 if (!HasPerVariableGuard && GuardNum >= 32) { 2641 if (D.isExternallyVisible()) 2642 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2643 GuardNum %= 32; 2644 GuardVar = nullptr; 2645 } 2646 2647 if (!GuardVar) { 2648 // Mangle the name for the guard. 2649 SmallString<256> GuardName; 2650 { 2651 llvm::raw_svector_ostream Out(GuardName); 2652 if (HasPerVariableGuard) 2653 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2654 Out); 2655 else 2656 getMangleContext().mangleStaticGuardVariable(&D, Out); 2657 } 2658 2659 // Create the guard variable with a zero-initializer. Just absorb linkage, 2660 // visibility and dll storage class from the guarded variable. 2661 GuardVar = 2662 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2663 GV->getLinkage(), Zero, GuardName.str()); 2664 GuardVar->setVisibility(GV->getVisibility()); 2665 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2666 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2667 if (GuardVar->isWeakForLinker()) 2668 GuardVar->setComdat( 2669 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2670 if (D.getTLSKind()) 2671 CGM.setTLSMode(GuardVar, D); 2672 if (GI && !HasPerVariableGuard) 2673 GI->Guard = GuardVar; 2674 } 2675 2676 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); 2677 2678 assert(GuardVar->getLinkage() == GV->getLinkage() && 2679 "static local from the same function had different linkage"); 2680 2681 if (!HasPerVariableGuard) { 2682 // Pseudo code for the test: 2683 // if (!(GuardVar & MyGuardBit)) { 2684 // GuardVar |= MyGuardBit; 2685 // ... initialize the object ...; 2686 // } 2687 2688 // Test our bit from the guard variable. 2689 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2690 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2691 llvm::Value *NeedsInit = 2692 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2693 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2694 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2695 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2696 CodeGenFunction::GuardKind::VariableGuard, &D); 2697 2698 // Set our bit in the guard variable and emit the initializer and add a global 2699 // destructor if appropriate. 2700 CGF.EmitBlock(InitBlock); 2701 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2702 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2703 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2704 CGF.PopCleanupBlock(); 2705 Builder.CreateBr(EndBlock); 2706 2707 // Continue. 2708 CGF.EmitBlock(EndBlock); 2709 } else { 2710 // Pseudo code for the test: 2711 // if (TSS > _Init_thread_epoch) { 2712 // _Init_thread_header(&TSS); 2713 // if (TSS == -1) { 2714 // ... initialize the object ...; 2715 // _Init_thread_footer(&TSS); 2716 // } 2717 // } 2718 // 2719 // The algorithm is almost identical to what can be found in the appendix 2720 // found in N2325. 2721 2722 // This BasicBLock determines whether or not we have any work to do. 2723 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2724 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2725 llvm::LoadInst *InitThreadEpoch = 2726 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2727 llvm::Value *IsUninitialized = 2728 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2729 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2730 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2731 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2732 CodeGenFunction::GuardKind::VariableGuard, &D); 2733 2734 // This BasicBlock attempts to determine whether or not this thread is 2735 // responsible for doing the initialization. 2736 CGF.EmitBlock(AttemptInitBlock); 2737 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2738 GuardAddr.getPointer()); 2739 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2740 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2741 llvm::Value *ShouldDoInit = 2742 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2743 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2744 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2745 2746 // Ok, we ended up getting selected as the initializing thread. 2747 CGF.EmitBlock(InitBlock); 2748 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2749 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2750 CGF.PopCleanupBlock(); 2751 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2752 GuardAddr.getPointer()); 2753 Builder.CreateBr(EndBlock); 2754 2755 CGF.EmitBlock(EndBlock); 2756 } 2757 } 2758 2759 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2760 // Null-ness for function memptrs only depends on the first field, which is 2761 // the function pointer. The rest don't matter, so we can zero initialize. 2762 if (MPT->isMemberFunctionPointer()) 2763 return true; 2764 2765 // The virtual base adjustment field is always -1 for null, so if we have one 2766 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2767 // valid field offset. 2768 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2769 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2770 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2771 RD->nullFieldOffsetIsZero()); 2772 } 2773 2774 llvm::Type * 2775 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2776 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2777 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2778 llvm::SmallVector<llvm::Type *, 4> fields; 2779 if (MPT->isMemberFunctionPointer()) 2780 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2781 else 2782 fields.push_back(CGM.IntTy); // FieldOffset 2783 2784 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2785 Inheritance)) 2786 fields.push_back(CGM.IntTy); 2787 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2788 fields.push_back(CGM.IntTy); 2789 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2790 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2791 2792 if (fields.size() == 1) 2793 return fields[0]; 2794 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2795 } 2796 2797 void MicrosoftCXXABI:: 2798 GetNullMemberPointerFields(const MemberPointerType *MPT, 2799 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2800 assert(fields.empty()); 2801 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2802 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2803 if (MPT->isMemberFunctionPointer()) { 2804 // FunctionPointerOrVirtualThunk 2805 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2806 } else { 2807 if (RD->nullFieldOffsetIsZero()) 2808 fields.push_back(getZeroInt()); // FieldOffset 2809 else 2810 fields.push_back(getAllOnesInt()); // FieldOffset 2811 } 2812 2813 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2814 Inheritance)) 2815 fields.push_back(getZeroInt()); 2816 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2817 fields.push_back(getZeroInt()); 2818 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2819 fields.push_back(getAllOnesInt()); 2820 } 2821 2822 llvm::Constant * 2823 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2824 llvm::SmallVector<llvm::Constant *, 4> fields; 2825 GetNullMemberPointerFields(MPT, fields); 2826 if (fields.size() == 1) 2827 return fields[0]; 2828 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2829 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2830 return Res; 2831 } 2832 2833 llvm::Constant * 2834 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2835 bool IsMemberFunction, 2836 const CXXRecordDecl *RD, 2837 CharUnits NonVirtualBaseAdjustment, 2838 unsigned VBTableIndex) { 2839 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2840 2841 // Single inheritance class member pointer are represented as scalars instead 2842 // of aggregates. 2843 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2844 return FirstField; 2845 2846 llvm::SmallVector<llvm::Constant *, 4> fields; 2847 fields.push_back(FirstField); 2848 2849 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2850 fields.push_back(llvm::ConstantInt::get( 2851 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2852 2853 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2854 CharUnits Offs = CharUnits::Zero(); 2855 if (VBTableIndex) 2856 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2857 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2858 } 2859 2860 // The rest of the fields are adjusted by conversions to a more derived class. 2861 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2862 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2863 2864 return llvm::ConstantStruct::getAnon(fields); 2865 } 2866 2867 llvm::Constant * 2868 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2869 CharUnits offset) { 2870 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2871 } 2872 2873 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2874 CharUnits offset) { 2875 if (RD->getMSInheritanceModel() == 2876 MSInheritanceModel::Virtual) 2877 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2878 llvm::Constant *FirstField = 2879 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2880 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2881 CharUnits::Zero(), /*VBTableIndex=*/0); 2882 } 2883 2884 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2885 QualType MPType) { 2886 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2887 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2888 if (!MPD) 2889 return EmitNullMemberPointer(DstTy); 2890 2891 ASTContext &Ctx = getContext(); 2892 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2893 2894 llvm::Constant *C; 2895 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2896 C = EmitMemberFunctionPointer(MD); 2897 } else { 2898 // For a pointer to data member, start off with the offset of the field in 2899 // the class in which it was declared, and convert from there if necessary. 2900 // For indirect field decls, get the outermost anonymous field and use the 2901 // parent class. 2902 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2903 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2904 if (!FD) 2905 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2906 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2907 RD = RD->getMostRecentNonInjectedDecl(); 2908 C = EmitMemberDataPointer(RD, FieldOffset); 2909 } 2910 2911 if (!MemberPointerPath.empty()) { 2912 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2913 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2914 const MemberPointerType *SrcTy = 2915 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2916 ->castAs<MemberPointerType>(); 2917 2918 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2919 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2920 const CXXRecordDecl *PrevRD = SrcRD; 2921 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2922 const CXXRecordDecl *Base = nullptr; 2923 const CXXRecordDecl *Derived = nullptr; 2924 if (DerivedMember) { 2925 Base = PathElem; 2926 Derived = PrevRD; 2927 } else { 2928 Base = PrevRD; 2929 Derived = PathElem; 2930 } 2931 for (const CXXBaseSpecifier &BS : Derived->bases()) 2932 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2933 Base->getCanonicalDecl()) 2934 DerivedToBasePath.push_back(&BS); 2935 PrevRD = PathElem; 2936 } 2937 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2938 2939 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2940 : CK_BaseToDerivedMemberPointer; 2941 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2942 DerivedToBasePath.end(), C); 2943 } 2944 return C; 2945 } 2946 2947 llvm::Constant * 2948 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2949 assert(MD->isInstance() && "Member function must not be static!"); 2950 2951 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2952 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2953 CodeGenTypes &Types = CGM.getTypes(); 2954 2955 unsigned VBTableIndex = 0; 2956 llvm::Constant *FirstField; 2957 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2958 if (!MD->isVirtual()) { 2959 llvm::Type *Ty; 2960 // Check whether the function has a computable LLVM signature. 2961 if (Types.isFuncTypeConvertible(FPT)) { 2962 // The function has a computable LLVM signature; use the correct type. 2963 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2964 } else { 2965 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2966 // function type is incomplete. 2967 Ty = CGM.PtrDiffTy; 2968 } 2969 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2970 } else { 2971 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2972 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2973 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2974 // Include the vfptr adjustment if the method is in a non-primary vftable. 2975 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2976 if (ML.VBase) 2977 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2978 } 2979 2980 if (VBTableIndex == 0 && 2981 RD->getMSInheritanceModel() == 2982 MSInheritanceModel::Virtual) 2983 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2984 2985 // The rest of the fields are common with data member pointers. 2986 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2987 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2988 NonVirtualBaseAdjustment, VBTableIndex); 2989 } 2990 2991 /// Member pointers are the same if they're either bitwise identical *or* both 2992 /// null. Null-ness for function members is determined by the first field, 2993 /// while for data member pointers we must compare all fields. 2994 llvm::Value * 2995 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2996 llvm::Value *L, 2997 llvm::Value *R, 2998 const MemberPointerType *MPT, 2999 bool Inequality) { 3000 CGBuilderTy &Builder = CGF.Builder; 3001 3002 // Handle != comparisons by switching the sense of all boolean operations. 3003 llvm::ICmpInst::Predicate Eq; 3004 llvm::Instruction::BinaryOps And, Or; 3005 if (Inequality) { 3006 Eq = llvm::ICmpInst::ICMP_NE; 3007 And = llvm::Instruction::Or; 3008 Or = llvm::Instruction::And; 3009 } else { 3010 Eq = llvm::ICmpInst::ICMP_EQ; 3011 And = llvm::Instruction::And; 3012 Or = llvm::Instruction::Or; 3013 } 3014 3015 // If this is a single field member pointer (single inheritance), this is a 3016 // single icmp. 3017 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3018 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3019 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 3020 Inheritance)) 3021 return Builder.CreateICmp(Eq, L, R); 3022 3023 // Compare the first field. 3024 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 3025 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 3026 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 3027 3028 // Compare everything other than the first field. 3029 llvm::Value *Res = nullptr; 3030 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 3031 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 3032 llvm::Value *LF = Builder.CreateExtractValue(L, I); 3033 llvm::Value *RF = Builder.CreateExtractValue(R, I); 3034 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 3035 if (Res) 3036 Res = Builder.CreateBinOp(And, Res, Cmp); 3037 else 3038 Res = Cmp; 3039 } 3040 3041 // Check if the first field is 0 if this is a function pointer. 3042 if (MPT->isMemberFunctionPointer()) { 3043 // (l1 == r1 && ...) || l0 == 0 3044 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 3045 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 3046 Res = Builder.CreateBinOp(Or, Res, IsZero); 3047 } 3048 3049 // Combine the comparison of the first field, which must always be true for 3050 // this comparison to succeeed. 3051 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 3052 } 3053 3054 llvm::Value * 3055 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 3056 llvm::Value *MemPtr, 3057 const MemberPointerType *MPT) { 3058 CGBuilderTy &Builder = CGF.Builder; 3059 llvm::SmallVector<llvm::Constant *, 4> fields; 3060 // We only need one field for member functions. 3061 if (MPT->isMemberFunctionPointer()) 3062 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 3063 else 3064 GetNullMemberPointerFields(MPT, fields); 3065 assert(!fields.empty()); 3066 llvm::Value *FirstField = MemPtr; 3067 if (MemPtr->getType()->isStructTy()) 3068 FirstField = Builder.CreateExtractValue(MemPtr, 0); 3069 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 3070 3071 // For function member pointers, we only need to test the function pointer 3072 // field. The other fields if any can be garbage. 3073 if (MPT->isMemberFunctionPointer()) 3074 return Res; 3075 3076 // Otherwise, emit a series of compares and combine the results. 3077 for (int I = 1, E = fields.size(); I < E; ++I) { 3078 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 3079 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 3080 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 3081 } 3082 return Res; 3083 } 3084 3085 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 3086 llvm::Constant *Val) { 3087 // Function pointers are null if the pointer in the first field is null. 3088 if (MPT->isMemberFunctionPointer()) { 3089 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 3090 Val->getAggregateElement(0U) : Val; 3091 return FirstField->isNullValue(); 3092 } 3093 3094 // If it's not a function pointer and it's zero initializable, we can easily 3095 // check zero. 3096 if (isZeroInitializable(MPT) && Val->isNullValue()) 3097 return true; 3098 3099 // Otherwise, break down all the fields for comparison. Hopefully these 3100 // little Constants are reused, while a big null struct might not be. 3101 llvm::SmallVector<llvm::Constant *, 4> Fields; 3102 GetNullMemberPointerFields(MPT, Fields); 3103 if (Fields.size() == 1) { 3104 assert(Val->getType()->isIntegerTy()); 3105 return Val == Fields[0]; 3106 } 3107 3108 unsigned I, E; 3109 for (I = 0, E = Fields.size(); I != E; ++I) { 3110 if (Val->getAggregateElement(I) != Fields[I]) 3111 break; 3112 } 3113 return I == E; 3114 } 3115 3116 llvm::Value * 3117 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 3118 Address This, 3119 llvm::Value *VBPtrOffset, 3120 llvm::Value *VBTableOffset, 3121 llvm::Value **VBPtrOut) { 3122 CGBuilderTy &Builder = CGF.Builder; 3123 // Load the vbtable pointer from the vbptr in the instance. 3124 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 3125 llvm::Value *VBPtr = Builder.CreateInBoundsGEP( 3126 This.getElementType(), This.getPointer(), VBPtrOffset, "vbptr"); 3127 if (VBPtrOut) *VBPtrOut = VBPtr; 3128 VBPtr = Builder.CreateBitCast(VBPtr, 3129 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 3130 3131 CharUnits VBPtrAlign; 3132 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3133 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3134 CharUnits::fromQuantity(CI->getSExtValue())); 3135 } else { 3136 VBPtrAlign = CGF.getPointerAlign(); 3137 } 3138 3139 llvm::Value *VBTable = Builder.CreateAlignedLoad( 3140 CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable"); 3141 3142 // Translate from byte offset to table index. It improves analyzability. 3143 llvm::Value *VBTableIndex = Builder.CreateAShr( 3144 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3145 "vbtindex", /*isExact=*/true); 3146 3147 // Load an i32 offset from the vb-table. 3148 llvm::Value *VBaseOffs = 3149 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex); 3150 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 3151 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs, 3152 CharUnits::fromQuantity(4), "vbase_offs"); 3153 } 3154 3155 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3156 // it. 3157 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3158 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3159 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3160 CGBuilderTy &Builder = CGF.Builder; 3161 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 3162 llvm::BasicBlock *OriginalBB = nullptr; 3163 llvm::BasicBlock *SkipAdjustBB = nullptr; 3164 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3165 3166 // In the unspecified inheritance model, there might not be a vbtable at all, 3167 // in which case we need to skip the virtual base lookup. If there is a 3168 // vbtable, the first entry is a no-op entry that gives back the original 3169 // base, so look for a virtual base adjustment offset of zero. 3170 if (VBPtrOffset) { 3171 OriginalBB = Builder.GetInsertBlock(); 3172 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3173 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3174 llvm::Value *IsVirtual = 3175 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3176 "memptr.is_vbase"); 3177 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3178 CGF.EmitBlock(VBaseAdjustBB); 3179 } 3180 3181 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3182 // know the vbptr offset. 3183 if (!VBPtrOffset) { 3184 CharUnits offs = CharUnits::Zero(); 3185 if (!RD->hasDefinition()) { 3186 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3187 unsigned DiagID = Diags.getCustomDiagID( 3188 DiagnosticsEngine::Error, 3189 "member pointer representation requires a " 3190 "complete class type for %0 to perform this expression"); 3191 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3192 } else if (RD->getNumVBases()) 3193 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3194 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3195 } 3196 llvm::Value *VBPtr = nullptr; 3197 llvm::Value *VBaseOffs = 3198 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3199 llvm::Value *AdjustedBase = 3200 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs); 3201 3202 // Merge control flow with the case where we didn't have to adjust. 3203 if (VBaseAdjustBB) { 3204 Builder.CreateBr(SkipAdjustBB); 3205 CGF.EmitBlock(SkipAdjustBB); 3206 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3207 Phi->addIncoming(Base.getPointer(), OriginalBB); 3208 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3209 return Phi; 3210 } 3211 return AdjustedBase; 3212 } 3213 3214 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3215 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3216 const MemberPointerType *MPT) { 3217 assert(MPT->isMemberDataPointer()); 3218 unsigned AS = Base.getAddressSpace(); 3219 llvm::Type *PType = 3220 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 3221 CGBuilderTy &Builder = CGF.Builder; 3222 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3223 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3224 3225 // Extract the fields we need, regardless of model. We'll apply them if we 3226 // have them. 3227 llvm::Value *FieldOffset = MemPtr; 3228 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3229 llvm::Value *VBPtrOffset = nullptr; 3230 if (MemPtr->getType()->isStructTy()) { 3231 // We need to extract values. 3232 unsigned I = 0; 3233 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3234 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3235 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3236 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3237 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3238 } 3239 3240 llvm::Value *Addr; 3241 if (VirtualBaseAdjustmentOffset) { 3242 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3243 VBPtrOffset); 3244 } else { 3245 Addr = Base.getPointer(); 3246 } 3247 3248 // Cast to char*. 3249 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 3250 3251 // Apply the offset, which we assume is non-null. 3252 Addr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset, 3253 "memptr.offset"); 3254 3255 // Cast the address to the appropriate pointer type, adopting the address 3256 // space of the base pointer. 3257 return Builder.CreateBitCast(Addr, PType); 3258 } 3259 3260 llvm::Value * 3261 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3262 const CastExpr *E, 3263 llvm::Value *Src) { 3264 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3265 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3266 E->getCastKind() == CK_ReinterpretMemberPointer); 3267 3268 // Use constant emission if we can. 3269 if (isa<llvm::Constant>(Src)) 3270 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3271 3272 // We may be adding or dropping fields from the member pointer, so we need 3273 // both types and the inheritance models of both records. 3274 const MemberPointerType *SrcTy = 3275 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3276 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3277 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3278 3279 // If the classes use the same null representation, reinterpret_cast is a nop. 3280 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3281 if (IsReinterpret && IsFunc) 3282 return Src; 3283 3284 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3285 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3286 if (IsReinterpret && 3287 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3288 return Src; 3289 3290 CGBuilderTy &Builder = CGF.Builder; 3291 3292 // Branch past the conversion if Src is null. 3293 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3294 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3295 3296 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3297 // pointer value of the destination type. 3298 if (IsReinterpret) { 3299 // For reinterpret casts, sema ensures that src and dst are both functions 3300 // or data and have the same size, which means the LLVM types should match. 3301 assert(Src->getType() == DstNull->getType()); 3302 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3303 } 3304 3305 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3306 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3307 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3308 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3309 CGF.EmitBlock(ConvertBB); 3310 3311 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3312 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3313 Builder); 3314 3315 Builder.CreateBr(ContinueBB); 3316 3317 // In the continuation, choose between DstNull and Dst. 3318 CGF.EmitBlock(ContinueBB); 3319 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3320 Phi->addIncoming(DstNull, OriginalBB); 3321 Phi->addIncoming(Dst, ConvertBB); 3322 return Phi; 3323 } 3324 3325 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3326 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3327 CastExpr::path_const_iterator PathBegin, 3328 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3329 CGBuilderTy &Builder) { 3330 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3331 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3332 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3333 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3334 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3335 bool IsConstant = isa<llvm::Constant>(Src); 3336 3337 // Decompose src. 3338 llvm::Value *FirstField = Src; 3339 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3340 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3341 llvm::Value *VBPtrOffset = getZeroInt(); 3342 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3343 // We need to extract values. 3344 unsigned I = 0; 3345 FirstField = Builder.CreateExtractValue(Src, I++); 3346 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3347 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3348 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3349 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3350 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3351 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3352 } 3353 3354 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3355 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3356 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3357 3358 // For data pointers, we adjust the field offset directly. For functions, we 3359 // have a separate field. 3360 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3361 3362 // The virtual inheritance model has a quirk: the virtual base table is always 3363 // referenced when dereferencing a member pointer even if the member pointer 3364 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3365 // to point backwards to the top of the MDC from the first VBase. Undo this 3366 // adjustment to normalize the member pointer. 3367 llvm::Value *SrcVBIndexEqZero = 3368 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3369 if (SrcInheritance == MSInheritanceModel::Virtual) { 3370 if (int64_t SrcOffsetToFirstVBase = 3371 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3372 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3373 SrcVBIndexEqZero, 3374 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3375 getZeroInt()); 3376 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3377 } 3378 } 3379 3380 // A non-zero vbindex implies that we are dealing with a source member in a 3381 // floating virtual base in addition to some non-virtual offset. If the 3382 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3383 // fixed, base. The difference between these two cases is that the vbindex + 3384 // nvoffset *always* point to the member regardless of what context they are 3385 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3386 // base requires explicit nv adjustment. 3387 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3388 CGM.IntTy, 3389 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3390 .getQuantity()); 3391 3392 llvm::Value *NVDisp; 3393 if (IsDerivedToBase) 3394 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3395 else 3396 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3397 3398 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3399 3400 // Update the vbindex to an appropriate value in the destination because 3401 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3402 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3403 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3404 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3405 if (llvm::GlobalVariable *VDispMap = 3406 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3407 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3408 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3409 if (IsConstant) { 3410 llvm::Constant *Mapping = VDispMap->getInitializer(); 3411 VirtualBaseAdjustmentOffset = 3412 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3413 } else { 3414 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3415 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( 3416 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(), 3417 VDispMap, Idxs), 3418 CharUnits::fromQuantity(4)); 3419 } 3420 3421 DstVBIndexEqZero = 3422 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3423 } 3424 } 3425 3426 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3427 // it to the offset of the vbptr. 3428 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3429 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3430 CGM.IntTy, 3431 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3432 VBPtrOffset = 3433 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3434 } 3435 3436 // Likewise, apply a similar adjustment so that dereferencing the member 3437 // pointer correctly accounts for the distance between the start of the first 3438 // virtual base and the top of the MDC. 3439 if (DstInheritance == MSInheritanceModel::Virtual) { 3440 if (int64_t DstOffsetToFirstVBase = 3441 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3442 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3443 DstVBIndexEqZero, 3444 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3445 getZeroInt()); 3446 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3447 } 3448 } 3449 3450 // Recompose dst from the null struct and the adjusted fields from src. 3451 llvm::Value *Dst; 3452 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3453 Dst = FirstField; 3454 } else { 3455 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3456 unsigned Idx = 0; 3457 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3458 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3459 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3460 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3461 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3462 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3463 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3464 } 3465 return Dst; 3466 } 3467 3468 llvm::Constant * 3469 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3470 llvm::Constant *Src) { 3471 const MemberPointerType *SrcTy = 3472 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3473 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3474 3475 CastKind CK = E->getCastKind(); 3476 3477 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3478 E->path_end(), Src); 3479 } 3480 3481 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3482 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3483 CastExpr::path_const_iterator PathBegin, 3484 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3485 assert(CK == CK_DerivedToBaseMemberPointer || 3486 CK == CK_BaseToDerivedMemberPointer || 3487 CK == CK_ReinterpretMemberPointer); 3488 // If src is null, emit a new null for dst. We can't return src because dst 3489 // might have a new representation. 3490 if (MemberPointerConstantIsNull(SrcTy, Src)) 3491 return EmitNullMemberPointer(DstTy); 3492 3493 // We don't need to do anything for reinterpret_casts of non-null member 3494 // pointers. We should only get here when the two type representations have 3495 // the same size. 3496 if (CK == CK_ReinterpretMemberPointer) 3497 return Src; 3498 3499 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3500 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3501 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3502 3503 return Dst; 3504 } 3505 3506 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3507 CodeGenFunction &CGF, const Expr *E, Address This, 3508 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3509 const MemberPointerType *MPT) { 3510 assert(MPT->isMemberFunctionPointer()); 3511 const FunctionProtoType *FPT = 3512 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3513 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3514 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3515 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3516 CGBuilderTy &Builder = CGF.Builder; 3517 3518 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3519 3520 // Extract the fields we need, regardless of model. We'll apply them if we 3521 // have them. 3522 llvm::Value *FunctionPointer = MemPtr; 3523 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3524 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3525 llvm::Value *VBPtrOffset = nullptr; 3526 if (MemPtr->getType()->isStructTy()) { 3527 // We need to extract values. 3528 unsigned I = 0; 3529 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3530 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3531 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3532 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3533 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3534 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3535 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3536 } 3537 3538 if (VirtualBaseAdjustmentOffset) { 3539 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3540 VirtualBaseAdjustmentOffset, VBPtrOffset); 3541 } else { 3542 ThisPtrForCall = This.getPointer(); 3543 } 3544 3545 if (NonVirtualBaseAdjustment) { 3546 // Apply the adjustment and cast back to the original struct type. 3547 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3548 Ptr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Ptr, NonVirtualBaseAdjustment); 3549 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3550 "this.adjusted"); 3551 } 3552 3553 FunctionPointer = 3554 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3555 CGCallee Callee(FPT, FunctionPointer); 3556 return Callee; 3557 } 3558 3559 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3560 return new MicrosoftCXXABI(CGM); 3561 } 3562 3563 // MS RTTI Overview: 3564 // The run time type information emitted by cl.exe contains 5 distinct types of 3565 // structures. Many of them reference each other. 3566 // 3567 // TypeInfo: Static classes that are returned by typeid. 3568 // 3569 // CompleteObjectLocator: Referenced by vftables. They contain information 3570 // required for dynamic casting, including OffsetFromTop. They also contain 3571 // a reference to the TypeInfo for the type and a reference to the 3572 // CompleteHierarchyDescriptor for the type. 3573 // 3574 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3575 // Used during dynamic_cast to walk a class hierarchy. References a base 3576 // class array and the size of said array. 3577 // 3578 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3579 // somewhat of a misnomer because the most derived class is also in the list 3580 // as well as multiple copies of virtual bases (if they occur multiple times 3581 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3582 // every path in the hierarchy, in pre-order depth first order. Note, we do 3583 // not declare a specific llvm type for BaseClassArray, it's merely an array 3584 // of BaseClassDescriptor pointers. 3585 // 3586 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3587 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3588 // BaseClassArray is. It contains information about a class within a 3589 // hierarchy such as: is this base is ambiguous and what is its offset in the 3590 // vbtable. The names of the BaseClassDescriptors have all of their fields 3591 // mangled into them so they can be aggressively deduplicated by the linker. 3592 3593 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3594 StringRef MangledName("??_7type_info@@6B@"); 3595 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3596 return VTable; 3597 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3598 /*isConstant=*/true, 3599 llvm::GlobalVariable::ExternalLinkage, 3600 /*Initializer=*/nullptr, MangledName); 3601 } 3602 3603 namespace { 3604 3605 /// A Helper struct that stores information about a class in a class 3606 /// hierarchy. The information stored in these structs struct is used during 3607 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3608 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3609 // implicit depth first pre-order tree connectivity. getFirstChild and 3610 // getNextSibling allow us to walk the tree efficiently. 3611 struct MSRTTIClass { 3612 enum { 3613 IsPrivateOnPath = 1 | 8, 3614 IsAmbiguous = 2, 3615 IsPrivate = 4, 3616 IsVirtual = 16, 3617 HasHierarchyDescriptor = 64 3618 }; 3619 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3620 uint32_t initialize(const MSRTTIClass *Parent, 3621 const CXXBaseSpecifier *Specifier); 3622 3623 MSRTTIClass *getFirstChild() { return this + 1; } 3624 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3625 return Child + 1 + Child->NumBases; 3626 } 3627 3628 const CXXRecordDecl *RD, *VirtualRoot; 3629 uint32_t Flags, NumBases, OffsetInVBase; 3630 }; 3631 3632 /// Recursively initialize the base class array. 3633 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3634 const CXXBaseSpecifier *Specifier) { 3635 Flags = HasHierarchyDescriptor; 3636 if (!Parent) { 3637 VirtualRoot = nullptr; 3638 OffsetInVBase = 0; 3639 } else { 3640 if (Specifier->getAccessSpecifier() != AS_public) 3641 Flags |= IsPrivate | IsPrivateOnPath; 3642 if (Specifier->isVirtual()) { 3643 Flags |= IsVirtual; 3644 VirtualRoot = RD; 3645 OffsetInVBase = 0; 3646 } else { 3647 if (Parent->Flags & IsPrivateOnPath) 3648 Flags |= IsPrivateOnPath; 3649 VirtualRoot = Parent->VirtualRoot; 3650 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3651 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3652 } 3653 } 3654 NumBases = 0; 3655 MSRTTIClass *Child = getFirstChild(); 3656 for (const CXXBaseSpecifier &Base : RD->bases()) { 3657 NumBases += Child->initialize(this, &Base) + 1; 3658 Child = getNextChild(Child); 3659 } 3660 return NumBases; 3661 } 3662 3663 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3664 switch (Ty->getLinkage()) { 3665 case NoLinkage: 3666 case InternalLinkage: 3667 case UniqueExternalLinkage: 3668 return llvm::GlobalValue::InternalLinkage; 3669 3670 case VisibleNoLinkage: 3671 case ModuleInternalLinkage: 3672 case ModuleLinkage: 3673 case ExternalLinkage: 3674 return llvm::GlobalValue::LinkOnceODRLinkage; 3675 } 3676 llvm_unreachable("Invalid linkage!"); 3677 } 3678 3679 /// An ephemeral helper class for building MS RTTI types. It caches some 3680 /// calls to the module and information about the most derived class in a 3681 /// hierarchy. 3682 struct MSRTTIBuilder { 3683 enum { 3684 HasBranchingHierarchy = 1, 3685 HasVirtualBranchingHierarchy = 2, 3686 HasAmbiguousBases = 4 3687 }; 3688 3689 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3690 : CGM(ABI.CGM), Context(CGM.getContext()), 3691 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3692 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3693 ABI(ABI) {} 3694 3695 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3696 llvm::GlobalVariable * 3697 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3698 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3699 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3700 3701 CodeGenModule &CGM; 3702 ASTContext &Context; 3703 llvm::LLVMContext &VMContext; 3704 llvm::Module &Module; 3705 const CXXRecordDecl *RD; 3706 llvm::GlobalVariable::LinkageTypes Linkage; 3707 MicrosoftCXXABI &ABI; 3708 }; 3709 3710 } // namespace 3711 3712 /// Recursively serializes a class hierarchy in pre-order depth first 3713 /// order. 3714 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3715 const CXXRecordDecl *RD) { 3716 Classes.push_back(MSRTTIClass(RD)); 3717 for (const CXXBaseSpecifier &Base : RD->bases()) 3718 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3719 } 3720 3721 /// Find ambiguity among base classes. 3722 static void 3723 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3724 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3725 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3726 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3727 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3728 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3729 !VirtualBases.insert(Class->RD).second) { 3730 Class = MSRTTIClass::getNextChild(Class); 3731 continue; 3732 } 3733 if (!UniqueBases.insert(Class->RD).second) 3734 AmbiguousBases.insert(Class->RD); 3735 Class++; 3736 } 3737 if (AmbiguousBases.empty()) 3738 return; 3739 for (MSRTTIClass &Class : Classes) 3740 if (AmbiguousBases.count(Class.RD)) 3741 Class.Flags |= MSRTTIClass::IsAmbiguous; 3742 } 3743 3744 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3745 SmallString<256> MangledName; 3746 { 3747 llvm::raw_svector_ostream Out(MangledName); 3748 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3749 } 3750 3751 // Check to see if we've already declared this ClassHierarchyDescriptor. 3752 if (auto CHD = Module.getNamedGlobal(MangledName)) 3753 return CHD; 3754 3755 // Serialize the class hierarchy and initialize the CHD Fields. 3756 SmallVector<MSRTTIClass, 8> Classes; 3757 serializeClassHierarchy(Classes, RD); 3758 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3759 detectAmbiguousBases(Classes); 3760 int Flags = 0; 3761 for (auto Class : Classes) { 3762 if (Class.RD->getNumBases() > 1) 3763 Flags |= HasBranchingHierarchy; 3764 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3765 // believe the field isn't actually used. 3766 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3767 Flags |= HasAmbiguousBases; 3768 } 3769 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3770 Flags |= HasVirtualBranchingHierarchy; 3771 // These gep indices are used to get the address of the first element of the 3772 // base class array. 3773 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3774 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3775 3776 // Forward-declare the class hierarchy descriptor 3777 auto Type = ABI.getClassHierarchyDescriptorType(); 3778 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3779 /*Initializer=*/nullptr, 3780 MangledName); 3781 if (CHD->isWeakForLinker()) 3782 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3783 3784 auto *Bases = getBaseClassArray(Classes); 3785 3786 // Initialize the base class ClassHierarchyDescriptor. 3787 llvm::Constant *Fields[] = { 3788 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3789 llvm::ConstantInt::get(CGM.IntTy, Flags), 3790 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3791 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3792 Bases->getValueType(), Bases, 3793 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3794 }; 3795 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3796 return CHD; 3797 } 3798 3799 llvm::GlobalVariable * 3800 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3801 SmallString<256> MangledName; 3802 { 3803 llvm::raw_svector_ostream Out(MangledName); 3804 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3805 } 3806 3807 // Forward-declare the base class array. 3808 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3809 // mode) bytes of padding. We provide a pointer sized amount of padding by 3810 // adding +1 to Classes.size(). The sections have pointer alignment and are 3811 // marked pick-any so it shouldn't matter. 3812 llvm::Type *PtrType = ABI.getImageRelativeType( 3813 ABI.getBaseClassDescriptorType()->getPointerTo()); 3814 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3815 auto *BCA = 3816 new llvm::GlobalVariable(Module, ArrType, 3817 /*isConstant=*/true, Linkage, 3818 /*Initializer=*/nullptr, MangledName); 3819 if (BCA->isWeakForLinker()) 3820 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3821 3822 // Initialize the BaseClassArray. 3823 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3824 for (MSRTTIClass &Class : Classes) 3825 BaseClassArrayData.push_back( 3826 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3827 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3828 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3829 return BCA; 3830 } 3831 3832 llvm::GlobalVariable * 3833 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3834 // Compute the fields for the BaseClassDescriptor. They are computed up front 3835 // because they are mangled into the name of the object. 3836 uint32_t OffsetInVBTable = 0; 3837 int32_t VBPtrOffset = -1; 3838 if (Class.VirtualRoot) { 3839 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3840 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3841 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3842 } 3843 3844 SmallString<256> MangledName; 3845 { 3846 llvm::raw_svector_ostream Out(MangledName); 3847 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3848 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3849 Class.Flags, Out); 3850 } 3851 3852 // Check to see if we've already declared this object. 3853 if (auto BCD = Module.getNamedGlobal(MangledName)) 3854 return BCD; 3855 3856 // Forward-declare the base class descriptor. 3857 auto Type = ABI.getBaseClassDescriptorType(); 3858 auto BCD = 3859 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3860 /*Initializer=*/nullptr, MangledName); 3861 if (BCD->isWeakForLinker()) 3862 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3863 3864 // Initialize the BaseClassDescriptor. 3865 llvm::Constant *Fields[] = { 3866 ABI.getImageRelativeConstant( 3867 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3868 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3869 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3870 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3871 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3872 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3873 ABI.getImageRelativeConstant( 3874 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3875 }; 3876 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3877 return BCD; 3878 } 3879 3880 llvm::GlobalVariable * 3881 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3882 SmallString<256> MangledName; 3883 { 3884 llvm::raw_svector_ostream Out(MangledName); 3885 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3886 } 3887 3888 // Check to see if we've already computed this complete object locator. 3889 if (auto COL = Module.getNamedGlobal(MangledName)) 3890 return COL; 3891 3892 // Compute the fields of the complete object locator. 3893 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3894 int VFPtrOffset = 0; 3895 // The offset includes the vtordisp if one exists. 3896 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3897 if (Context.getASTRecordLayout(RD) 3898 .getVBaseOffsetsMap() 3899 .find(VBase) 3900 ->second.hasVtorDisp()) 3901 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3902 3903 // Forward-declare the complete object locator. 3904 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3905 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3906 /*Initializer=*/nullptr, MangledName); 3907 3908 // Initialize the CompleteObjectLocator. 3909 llvm::Constant *Fields[] = { 3910 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3911 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3912 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3913 ABI.getImageRelativeConstant( 3914 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3915 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3916 ABI.getImageRelativeConstant(COL), 3917 }; 3918 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3919 if (!ABI.isImageRelative()) 3920 FieldsRef = FieldsRef.drop_back(); 3921 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3922 if (COL->isWeakForLinker()) 3923 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3924 return COL; 3925 } 3926 3927 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3928 bool &IsConst, bool &IsVolatile, 3929 bool &IsUnaligned) { 3930 T = Context.getExceptionObjectType(T); 3931 3932 // C++14 [except.handle]p3: 3933 // A handler is a match for an exception object of type E if [...] 3934 // - the handler is of type cv T or const T& where T is a pointer type and 3935 // E is a pointer type that can be converted to T by [...] 3936 // - a qualification conversion 3937 IsConst = false; 3938 IsVolatile = false; 3939 IsUnaligned = false; 3940 QualType PointeeType = T->getPointeeType(); 3941 if (!PointeeType.isNull()) { 3942 IsConst = PointeeType.isConstQualified(); 3943 IsVolatile = PointeeType.isVolatileQualified(); 3944 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3945 } 3946 3947 // Member pointer types like "const int A::*" are represented by having RTTI 3948 // for "int A::*" and separately storing the const qualifier. 3949 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3950 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3951 MPTy->getClass()); 3952 3953 // Pointer types like "const int * const *" are represented by having RTTI 3954 // for "const int **" and separately storing the const qualifier. 3955 if (T->isPointerType()) 3956 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3957 3958 return T; 3959 } 3960 3961 CatchTypeInfo 3962 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3963 QualType CatchHandlerType) { 3964 // TypeDescriptors for exceptions never have qualified pointer types, 3965 // qualifiers are stored separately in order to support qualification 3966 // conversions. 3967 bool IsConst, IsVolatile, IsUnaligned; 3968 Type = 3969 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3970 3971 bool IsReference = CatchHandlerType->isReferenceType(); 3972 3973 uint32_t Flags = 0; 3974 if (IsConst) 3975 Flags |= 1; 3976 if (IsVolatile) 3977 Flags |= 2; 3978 if (IsUnaligned) 3979 Flags |= 4; 3980 if (IsReference) 3981 Flags |= 8; 3982 3983 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3984 Flags}; 3985 } 3986 3987 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3988 /// llvm::GlobalVariable * because different type descriptors have different 3989 /// types, and need to be abstracted. They are abstracting by casting the 3990 /// address to an Int8PtrTy. 3991 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3992 SmallString<256> MangledName; 3993 { 3994 llvm::raw_svector_ostream Out(MangledName); 3995 getMangleContext().mangleCXXRTTI(Type, Out); 3996 } 3997 3998 // Check to see if we've already declared this TypeDescriptor. 3999 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4000 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 4001 4002 // Note for the future: If we would ever like to do deferred emission of 4003 // RTTI, check if emitting vtables opportunistically need any adjustment. 4004 4005 // Compute the fields for the TypeDescriptor. 4006 SmallString<256> TypeInfoString; 4007 { 4008 llvm::raw_svector_ostream Out(TypeInfoString); 4009 getMangleContext().mangleCXXRTTIName(Type, Out); 4010 } 4011 4012 // Declare and initialize the TypeDescriptor. 4013 llvm::Constant *Fields[] = { 4014 getTypeInfoVTable(CGM), // VFPtr 4015 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 4016 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 4017 llvm::StructType *TypeDescriptorType = 4018 getTypeDescriptorType(TypeInfoString); 4019 auto *Var = new llvm::GlobalVariable( 4020 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 4021 getLinkageForRTTI(Type), 4022 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 4023 MangledName); 4024 if (Var->isWeakForLinker()) 4025 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 4026 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 4027 } 4028 4029 /// Gets or a creates a Microsoft CompleteObjectLocator. 4030 llvm::GlobalVariable * 4031 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 4032 const VPtrInfo &Info) { 4033 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 4034 } 4035 4036 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 4037 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 4038 // There are no constructor variants, always emit the complete destructor. 4039 llvm::Function *Fn = 4040 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 4041 CGM.maybeSetTrivialComdat(*ctor, *Fn); 4042 return; 4043 } 4044 4045 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 4046 4047 // Emit the base destructor if the base and complete (vbase) destructors are 4048 // equivalent. This effectively implements -mconstructor-aliases as part of 4049 // the ABI. 4050 if (GD.getDtorType() == Dtor_Complete && 4051 dtor->getParent()->getNumVBases() == 0) 4052 GD = GD.getWithDtorType(Dtor_Base); 4053 4054 // The base destructor is equivalent to the base destructor of its 4055 // base class if there is exactly one non-virtual base class with a 4056 // non-trivial destructor, there are no fields with a non-trivial 4057 // destructor, and the body of the destructor is trivial. 4058 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 4059 return; 4060 4061 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 4062 if (Fn->isWeakForLinker()) 4063 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 4064 } 4065 4066 llvm::Function * 4067 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 4068 CXXCtorType CT) { 4069 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 4070 4071 // Calculate the mangled name. 4072 SmallString<256> ThunkName; 4073 llvm::raw_svector_ostream Out(ThunkName); 4074 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 4075 4076 // If the thunk has been generated previously, just return it. 4077 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 4078 return cast<llvm::Function>(GV); 4079 4080 // Create the llvm::Function. 4081 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 4082 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 4083 const CXXRecordDecl *RD = CD->getParent(); 4084 QualType RecordTy = getContext().getRecordType(RD); 4085 llvm::Function *ThunkFn = llvm::Function::Create( 4086 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 4087 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 4088 FnInfo.getEffectiveCallingConvention())); 4089 if (ThunkFn->isWeakForLinker()) 4090 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 4091 bool IsCopy = CT == Ctor_CopyingClosure; 4092 4093 // Start codegen. 4094 CodeGenFunction CGF(CGM); 4095 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 4096 4097 // Build FunctionArgs. 4098 FunctionArgList FunctionArgs; 4099 4100 // A constructor always starts with a 'this' pointer as its first argument. 4101 buildThisParam(CGF, FunctionArgs); 4102 4103 // Following the 'this' pointer is a reference to the source object that we 4104 // are copying from. 4105 ImplicitParamDecl SrcParam( 4106 getContext(), /*DC=*/nullptr, SourceLocation(), 4107 &getContext().Idents.get("src"), 4108 getContext().getLValueReferenceType(RecordTy, 4109 /*SpelledAsLValue=*/true), 4110 ImplicitParamDecl::Other); 4111 if (IsCopy) 4112 FunctionArgs.push_back(&SrcParam); 4113 4114 // Constructors for classes which utilize virtual bases have an additional 4115 // parameter which indicates whether or not it is being delegated to by a more 4116 // derived constructor. 4117 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 4118 SourceLocation(), 4119 &getContext().Idents.get("is_most_derived"), 4120 getContext().IntTy, ImplicitParamDecl::Other); 4121 // Only add the parameter to the list if the class has virtual bases. 4122 if (RD->getNumVBases() > 0) 4123 FunctionArgs.push_back(&IsMostDerived); 4124 4125 // Start defining the function. 4126 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4127 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 4128 FunctionArgs, CD->getLocation(), SourceLocation()); 4129 // Create a scope with an artificial location for the body of this function. 4130 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 4131 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 4132 llvm::Value *This = getThisValue(CGF); 4133 4134 llvm::Value *SrcVal = 4135 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4136 : nullptr; 4137 4138 CallArgList Args; 4139 4140 // Push the this ptr. 4141 Args.add(RValue::get(This), CD->getThisType()); 4142 4143 // Push the src ptr. 4144 if (SrcVal) 4145 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4146 4147 // Add the rest of the default arguments. 4148 SmallVector<const Stmt *, 4> ArgVec; 4149 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4150 for (const ParmVarDecl *PD : params) { 4151 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4152 ArgVec.push_back(PD->getDefaultArg()); 4153 } 4154 4155 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4156 4157 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4158 CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4159 4160 // Insert any ABI-specific implicit constructor arguments. 4161 AddedStructorArgCounts ExtraArgs = 4162 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4163 /*ForVirtualBase=*/false, 4164 /*Delegating=*/false, Args); 4165 // Call the destructor with our arguments. 4166 llvm::Constant *CalleePtr = 4167 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4168 CGCallee Callee = 4169 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4170 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4171 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4172 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4173 4174 Cleanups.ForceCleanup(); 4175 4176 // Emit the ret instruction, remove any temporary instructions created for the 4177 // aid of CodeGen. 4178 CGF.FinishFunction(SourceLocation()); 4179 4180 return ThunkFn; 4181 } 4182 4183 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4184 uint32_t NVOffset, 4185 int32_t VBPtrOffset, 4186 uint32_t VBIndex) { 4187 assert(!T->isReferenceType()); 4188 4189 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4190 const CXXConstructorDecl *CD = 4191 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4192 CXXCtorType CT = Ctor_Complete; 4193 if (CD) 4194 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4195 CT = Ctor_CopyingClosure; 4196 4197 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4198 SmallString<256> MangledName; 4199 { 4200 llvm::raw_svector_ostream Out(MangledName); 4201 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4202 VBPtrOffset, VBIndex, Out); 4203 } 4204 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4205 return getImageRelativeConstant(GV); 4206 4207 // The TypeDescriptor is used by the runtime to determine if a catch handler 4208 // is appropriate for the exception object. 4209 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4210 4211 // The runtime is responsible for calling the copy constructor if the 4212 // exception is caught by value. 4213 llvm::Constant *CopyCtor; 4214 if (CD) { 4215 if (CT == Ctor_CopyingClosure) 4216 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4217 else 4218 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4219 4220 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 4221 } else { 4222 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4223 } 4224 CopyCtor = getImageRelativeConstant(CopyCtor); 4225 4226 bool IsScalar = !RD; 4227 bool HasVirtualBases = false; 4228 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4229 QualType PointeeType = T; 4230 if (T->isPointerType()) 4231 PointeeType = T->getPointeeType(); 4232 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4233 HasVirtualBases = RD->getNumVBases() > 0; 4234 if (IdentifierInfo *II = RD->getIdentifier()) 4235 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4236 } 4237 4238 // Encode the relevant CatchableType properties into the Flags bitfield. 4239 // FIXME: Figure out how bits 2 or 8 can get set. 4240 uint32_t Flags = 0; 4241 if (IsScalar) 4242 Flags |= 1; 4243 if (HasVirtualBases) 4244 Flags |= 4; 4245 if (IsStdBadAlloc) 4246 Flags |= 16; 4247 4248 llvm::Constant *Fields[] = { 4249 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4250 TD, // TypeDescriptor 4251 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4252 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4253 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4254 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4255 CopyCtor // CopyCtor 4256 }; 4257 llvm::StructType *CTType = getCatchableTypeType(); 4258 auto *GV = new llvm::GlobalVariable( 4259 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4260 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4261 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4262 GV->setSection(".xdata"); 4263 if (GV->isWeakForLinker()) 4264 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4265 return getImageRelativeConstant(GV); 4266 } 4267 4268 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4269 assert(!T->isReferenceType()); 4270 4271 // See if we've already generated a CatchableTypeArray for this type before. 4272 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4273 if (CTA) 4274 return CTA; 4275 4276 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4277 // using a SmallSetVector. Duplicates may arise due to virtual bases 4278 // occurring more than once in the hierarchy. 4279 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4280 4281 // C++14 [except.handle]p3: 4282 // A handler is a match for an exception object of type E if [...] 4283 // - the handler is of type cv T or cv T& and T is an unambiguous public 4284 // base class of E, or 4285 // - the handler is of type cv T or const T& where T is a pointer type and 4286 // E is a pointer type that can be converted to T by [...] 4287 // - a standard pointer conversion (4.10) not involving conversions to 4288 // pointers to private or protected or ambiguous classes 4289 const CXXRecordDecl *MostDerivedClass = nullptr; 4290 bool IsPointer = T->isPointerType(); 4291 if (IsPointer) 4292 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4293 else 4294 MostDerivedClass = T->getAsCXXRecordDecl(); 4295 4296 // Collect all the unambiguous public bases of the MostDerivedClass. 4297 if (MostDerivedClass) { 4298 const ASTContext &Context = getContext(); 4299 const ASTRecordLayout &MostDerivedLayout = 4300 Context.getASTRecordLayout(MostDerivedClass); 4301 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4302 SmallVector<MSRTTIClass, 8> Classes; 4303 serializeClassHierarchy(Classes, MostDerivedClass); 4304 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4305 detectAmbiguousBases(Classes); 4306 for (const MSRTTIClass &Class : Classes) { 4307 // Skip any ambiguous or private bases. 4308 if (Class.Flags & 4309 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4310 continue; 4311 // Write down how to convert from a derived pointer to a base pointer. 4312 uint32_t OffsetInVBTable = 0; 4313 int32_t VBPtrOffset = -1; 4314 if (Class.VirtualRoot) { 4315 OffsetInVBTable = 4316 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4317 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4318 } 4319 4320 // Turn our record back into a pointer if the exception object is a 4321 // pointer. 4322 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4323 if (IsPointer) 4324 RTTITy = Context.getPointerType(RTTITy); 4325 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4326 VBPtrOffset, OffsetInVBTable)); 4327 } 4328 } 4329 4330 // C++14 [except.handle]p3: 4331 // A handler is a match for an exception object of type E if 4332 // - The handler is of type cv T or cv T& and E and T are the same type 4333 // (ignoring the top-level cv-qualifiers) 4334 CatchableTypes.insert(getCatchableType(T)); 4335 4336 // C++14 [except.handle]p3: 4337 // A handler is a match for an exception object of type E if 4338 // - the handler is of type cv T or const T& where T is a pointer type and 4339 // E is a pointer type that can be converted to T by [...] 4340 // - a standard pointer conversion (4.10) not involving conversions to 4341 // pointers to private or protected or ambiguous classes 4342 // 4343 // C++14 [conv.ptr]p2: 4344 // A prvalue of type "pointer to cv T," where T is an object type, can be 4345 // converted to a prvalue of type "pointer to cv void". 4346 if (IsPointer && T->getPointeeType()->isObjectType()) 4347 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4348 4349 // C++14 [except.handle]p3: 4350 // A handler is a match for an exception object of type E if [...] 4351 // - the handler is of type cv T or const T& where T is a pointer or 4352 // pointer to member type and E is std::nullptr_t. 4353 // 4354 // We cannot possibly list all possible pointer types here, making this 4355 // implementation incompatible with the standard. However, MSVC includes an 4356 // entry for pointer-to-void in this case. Let's do the same. 4357 if (T->isNullPtrType()) 4358 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4359 4360 uint32_t NumEntries = CatchableTypes.size(); 4361 llvm::Type *CTType = 4362 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4363 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4364 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4365 llvm::Constant *Fields[] = { 4366 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4367 llvm::ConstantArray::get( 4368 AT, llvm::ArrayRef(CatchableTypes.begin(), 4369 CatchableTypes.end())) // CatchableTypes 4370 }; 4371 SmallString<256> MangledName; 4372 { 4373 llvm::raw_svector_ostream Out(MangledName); 4374 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4375 } 4376 CTA = new llvm::GlobalVariable( 4377 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4378 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4379 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4380 CTA->setSection(".xdata"); 4381 if (CTA->isWeakForLinker()) 4382 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4383 return CTA; 4384 } 4385 4386 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4387 bool IsConst, IsVolatile, IsUnaligned; 4388 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4389 4390 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4391 // the exception object may be caught as. 4392 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4393 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4394 // This is used as a component of the mangled name which means that we need to 4395 // know what it is in order to see if we have previously generated the 4396 // ThrowInfo. 4397 uint32_t NumEntries = 4398 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4399 ->getLimitedValue(); 4400 4401 SmallString<256> MangledName; 4402 { 4403 llvm::raw_svector_ostream Out(MangledName); 4404 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4405 NumEntries, Out); 4406 } 4407 4408 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4409 // one before. 4410 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4411 return GV; 4412 4413 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4414 // be at least as CV qualified. Encode this requirement into the Flags 4415 // bitfield. 4416 uint32_t Flags = 0; 4417 if (IsConst) 4418 Flags |= 1; 4419 if (IsVolatile) 4420 Flags |= 2; 4421 if (IsUnaligned) 4422 Flags |= 4; 4423 4424 // The cleanup-function (a destructor) must be called when the exception 4425 // object's lifetime ends. 4426 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4427 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4428 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4429 if (!DtorD->isTrivial()) 4430 CleanupFn = llvm::ConstantExpr::getBitCast( 4431 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), 4432 CGM.Int8PtrTy); 4433 // This is unused as far as we can tell, initialize it to null. 4434 llvm::Constant *ForwardCompat = 4435 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4436 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4437 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4438 llvm::StructType *TIType = getThrowInfoType(); 4439 llvm::Constant *Fields[] = { 4440 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4441 getImageRelativeConstant(CleanupFn), // CleanupFn 4442 ForwardCompat, // ForwardCompat 4443 PointerToCatchableTypes // CatchableTypeArray 4444 }; 4445 auto *GV = new llvm::GlobalVariable( 4446 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4447 llvm::ConstantStruct::get(TIType, Fields), MangledName.str()); 4448 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4449 GV->setSection(".xdata"); 4450 if (GV->isWeakForLinker()) 4451 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4452 return GV; 4453 } 4454 4455 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4456 const Expr *SubExpr = E->getSubExpr(); 4457 assert(SubExpr && "SubExpr cannot be null"); 4458 QualType ThrowType = SubExpr->getType(); 4459 // The exception object lives on the stack and it's address is passed to the 4460 // runtime function. 4461 Address AI = CGF.CreateMemTemp(ThrowType); 4462 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4463 /*IsInit=*/true); 4464 4465 // The so-called ThrowInfo is used to describe how the exception object may be 4466 // caught. 4467 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4468 4469 // Call into the runtime to throw the exception. 4470 llvm::Value *Args[] = { 4471 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4472 TI 4473 }; 4474 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4475 } 4476 4477 std::pair<llvm::Value *, const CXXRecordDecl *> 4478 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4479 const CXXRecordDecl *RD) { 4480 std::tie(This, std::ignore, RD) = 4481 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4482 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4483 } 4484 4485 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( 4486 const CXXRecordDecl *RD) const { 4487 // All aggregates are permitted to be HFA on non-ARM platforms, which mostly 4488 // affects vectorcall on x64/x86. 4489 if (!CGM.getTarget().getTriple().isAArch64()) 4490 return true; 4491 // MSVC Windows on Arm64 has its own rules for determining if a type is HFA 4492 // that are inconsistent with the AAPCS64 ABI. The following are our best 4493 // determination of those rules so far, based on observation of MSVC's 4494 // behavior. 4495 if (RD->isEmpty()) 4496 return false; 4497 if (RD->isPolymorphic()) 4498 return false; 4499 if (RD->hasNonTrivialCopyAssignment()) 4500 return false; 4501 if (RD->hasNonTrivialDestructor()) 4502 return false; 4503 if (RD->hasNonTrivialDefaultConstructor()) 4504 return false; 4505 // These two are somewhat redundant given the caller 4506 // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that 4507 // caller doesn't consider empty bases/fields to be non-homogenous, but it 4508 // looks like Microsoft's AArch64 ABI does care about these empty types & 4509 // anything containing/derived from one is non-homogeneous. 4510 // Instead we could add another CXXABI entry point to query this property and 4511 // have ABIInfo::isHomogeneousAggregate use that property. 4512 // I don't think any other of the features listed above could be true of a 4513 // base/field while not true of the outer struct. For example, if you have a 4514 // base/field that has an non-trivial copy assignment/dtor/default ctor, then 4515 // the outer struct's corresponding operation must be non-trivial. 4516 for (const CXXBaseSpecifier &B : RD->bases()) { 4517 if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { 4518 if (!isPermittedToBeHomogeneousAggregate(FRD)) 4519 return false; 4520 } 4521 } 4522 // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate 4523 // checking for padding - but maybe there are ways to end up with an empty 4524 // field without padding? Not that I know of, so don't check fields here & 4525 // rely on the padding check. 4526 return true; 4527 } 4528