xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/MicrosoftCXXABI.cpp (revision 162ae9c834f6d9f9cb443bd62cceb23e0b5fef48)
1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10 // The class in this file generates structures that follow the Microsoft
11 // Visual C++ ABI, which is actually not very well documented at all outside
12 // of Microsoft.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGVTables.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenTypes.h"
21 #include "TargetInfo.h"
22 #include "clang/CodeGen/ConstantInitBuilder.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/VTableBuilder.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSet.h"
29 #include "llvm/IR/Intrinsics.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 namespace {
35 
36 /// Holds all the vbtable globals for a given class.
37 struct VBTableGlobals {
38   const VPtrInfoVector *VBTables;
39   SmallVector<llvm::GlobalVariable *, 2> Globals;
40 };
41 
42 class MicrosoftCXXABI : public CGCXXABI {
43 public:
44   MicrosoftCXXABI(CodeGenModule &CGM)
45       : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
46         ClassHierarchyDescriptorType(nullptr),
47         CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
48         ThrowInfoType(nullptr) {}
49 
50   bool HasThisReturn(GlobalDecl GD) const override;
51   bool hasMostDerivedReturn(GlobalDecl GD) const override;
52 
53   bool classifyReturnType(CGFunctionInfo &FI) const override;
54 
55   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
56 
57   bool isSRetParameterAfterThis() const override { return true; }
58 
59   bool isThisCompleteObject(GlobalDecl GD) const override {
60     // The Microsoft ABI doesn't use separate complete-object vs.
61     // base-object variants of constructors, but it does of destructors.
62     if (isa<CXXDestructorDecl>(GD.getDecl())) {
63       switch (GD.getDtorType()) {
64       case Dtor_Complete:
65       case Dtor_Deleting:
66         return true;
67 
68       case Dtor_Base:
69         return false;
70 
71       case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
72       }
73       llvm_unreachable("bad dtor kind");
74     }
75 
76     // No other kinds.
77     return false;
78   }
79 
80   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
81                               FunctionArgList &Args) const override {
82     assert(Args.size() >= 2 &&
83            "expected the arglist to have at least two args!");
84     // The 'most_derived' parameter goes second if the ctor is variadic and
85     // has v-bases.
86     if (CD->getParent()->getNumVBases() > 0 &&
87         CD->getType()->castAs<FunctionProtoType>()->isVariadic())
88       return 2;
89     return 1;
90   }
91 
92   std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
93     std::vector<CharUnits> VBPtrOffsets;
94     const ASTContext &Context = getContext();
95     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
96 
97     const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
98     for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
99       const ASTRecordLayout &SubobjectLayout =
100           Context.getASTRecordLayout(VBT->IntroducingObject);
101       CharUnits Offs = VBT->NonVirtualOffset;
102       Offs += SubobjectLayout.getVBPtrOffset();
103       if (VBT->getVBaseWithVPtr())
104         Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
105       VBPtrOffsets.push_back(Offs);
106     }
107     llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
108     return VBPtrOffsets;
109   }
110 
111   StringRef GetPureVirtualCallName() override { return "_purecall"; }
112   StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
113 
114   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
115                                Address Ptr, QualType ElementType,
116                                const CXXDestructorDecl *Dtor) override;
117 
118   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
119   void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
120 
121   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
122 
123   llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
124                                                    const VPtrInfo &Info);
125 
126   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
127   CatchTypeInfo
128   getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
129 
130   /// MSVC needs an extra flag to indicate a catchall.
131   CatchTypeInfo getCatchAllTypeInfo() override {
132     return CatchTypeInfo{nullptr, 0x40};
133   }
134 
135   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
136   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
137   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
138                           Address ThisPtr,
139                           llvm::Type *StdTypeInfoPtrTy) override;
140 
141   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
142                                           QualType SrcRecordTy) override;
143 
144   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
145                                    QualType SrcRecordTy, QualType DestTy,
146                                    QualType DestRecordTy,
147                                    llvm::BasicBlock *CastEnd) override;
148 
149   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
150                                      QualType SrcRecordTy,
151                                      QualType DestTy) override;
152 
153   bool EmitBadCastCall(CodeGenFunction &CGF) override;
154   bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
155     return false;
156   }
157 
158   llvm::Value *
159   GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
160                             const CXXRecordDecl *ClassDecl,
161                             const CXXRecordDecl *BaseClassDecl) override;
162 
163   llvm::BasicBlock *
164   EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
165                                 const CXXRecordDecl *RD) override;
166 
167   llvm::BasicBlock *
168   EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
169 
170   void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
171                                               const CXXRecordDecl *RD) override;
172 
173   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
174 
175   // Background on MSVC destructors
176   // ==============================
177   //
178   // Both Itanium and MSVC ABIs have destructor variants.  The variant names
179   // roughly correspond in the following way:
180   //   Itanium       Microsoft
181   //   Base       -> no name, just ~Class
182   //   Complete   -> vbase destructor
183   //   Deleting   -> scalar deleting destructor
184   //                 vector deleting destructor
185   //
186   // The base and complete destructors are the same as in Itanium, although the
187   // complete destructor does not accept a VTT parameter when there are virtual
188   // bases.  A separate mechanism involving vtordisps is used to ensure that
189   // virtual methods of destroyed subobjects are not called.
190   //
191   // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
192   // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
193   // pointer points to an array.  The scalar deleting destructor assumes that
194   // bit 2 is zero, and therefore does not contain a loop.
195   //
196   // For virtual destructors, only one entry is reserved in the vftable, and it
197   // always points to the vector deleting destructor.  The vector deleting
198   // destructor is the most general, so it can be used to destroy objects in
199   // place, delete single heap objects, or delete arrays.
200   //
201   // A TU defining a non-inline destructor is only guaranteed to emit a base
202   // destructor, and all of the other variants are emitted on an as-needed basis
203   // in COMDATs.  Because a non-base destructor can be emitted in a TU that
204   // lacks a definition for the destructor, non-base destructors must always
205   // delegate to or alias the base destructor.
206 
207   AddedStructorArgs
208   buildStructorSignature(GlobalDecl GD,
209                          SmallVectorImpl<CanQualType> &ArgTys) override;
210 
211   /// Non-base dtors should be emitted as delegating thunks in this ABI.
212   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
213                               CXXDtorType DT) const override {
214     return DT != Dtor_Base;
215   }
216 
217   void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
218                                   const CXXDestructorDecl *Dtor,
219                                   CXXDtorType DT) const override;
220 
221   llvm::GlobalValue::LinkageTypes
222   getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
223                           CXXDtorType DT) const override;
224 
225   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
226 
227   const CXXRecordDecl *
228   getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
229     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
230       MethodVFTableLocation ML =
231           CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
232       // The vbases might be ordered differently in the final overrider object
233       // and the complete object, so the "this" argument may sometimes point to
234       // memory that has no particular type (e.g. past the complete object).
235       // In this case, we just use a generic pointer type.
236       // FIXME: might want to have a more precise type in the non-virtual
237       // multiple inheritance case.
238       if (ML.VBase || !ML.VFPtrOffset.isZero())
239         return nullptr;
240     }
241     return MD->getParent();
242   }
243 
244   Address
245   adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
246                                            Address This,
247                                            bool VirtualCall) override;
248 
249   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
250                                  FunctionArgList &Params) override;
251 
252   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
253 
254   AddedStructorArgs
255   addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D,
256                              CXXCtorType Type, bool ForVirtualBase,
257                              bool Delegating, CallArgList &Args) override;
258 
259   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
260                           CXXDtorType Type, bool ForVirtualBase,
261                           bool Delegating, Address This,
262                           QualType ThisTy) override;
263 
264   void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
265                               llvm::GlobalVariable *VTable);
266 
267   void emitVTableDefinitions(CodeGenVTables &CGVT,
268                              const CXXRecordDecl *RD) override;
269 
270   bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
271                                            CodeGenFunction::VPtr Vptr) override;
272 
273   /// Don't initialize vptrs if dynamic class
274   /// is marked with with the 'novtable' attribute.
275   bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
276     return !VTableClass->hasAttr<MSNoVTableAttr>();
277   }
278 
279   llvm::Constant *
280   getVTableAddressPoint(BaseSubobject Base,
281                         const CXXRecordDecl *VTableClass) override;
282 
283   llvm::Value *getVTableAddressPointInStructor(
284       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
285       BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
286 
287   llvm::Constant *
288   getVTableAddressPointForConstExpr(BaseSubobject Base,
289                                     const CXXRecordDecl *VTableClass) override;
290 
291   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
292                                         CharUnits VPtrOffset) override;
293 
294   CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
295                                      Address This, llvm::Type *Ty,
296                                      SourceLocation Loc) override;
297 
298   llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
299                                          const CXXDestructorDecl *Dtor,
300                                          CXXDtorType DtorType, Address This,
301                                          DeleteOrMemberCallExpr E) override;
302 
303   void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
304                                         CallArgList &CallArgs) override {
305     assert(GD.getDtorType() == Dtor_Deleting &&
306            "Only deleting destructor thunks are available in this ABI");
307     CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
308                  getContext().IntTy);
309   }
310 
311   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
312 
313   llvm::GlobalVariable *
314   getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
315                    llvm::GlobalVariable::LinkageTypes Linkage);
316 
317   llvm::GlobalVariable *
318   getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
319                                   const CXXRecordDecl *DstRD) {
320     SmallString<256> OutName;
321     llvm::raw_svector_ostream Out(OutName);
322     getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
323     StringRef MangledName = OutName.str();
324 
325     if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
326       return VDispMap;
327 
328     MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
329     unsigned NumEntries = 1 + SrcRD->getNumVBases();
330     SmallVector<llvm::Constant *, 4> Map(NumEntries,
331                                          llvm::UndefValue::get(CGM.IntTy));
332     Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
333     bool AnyDifferent = false;
334     for (const auto &I : SrcRD->vbases()) {
335       const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
336       if (!DstRD->isVirtuallyDerivedFrom(VBase))
337         continue;
338 
339       unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
340       unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
341       Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
342       AnyDifferent |= SrcVBIndex != DstVBIndex;
343     }
344     // This map would be useless, don't use it.
345     if (!AnyDifferent)
346       return nullptr;
347 
348     llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
349     llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
350     llvm::GlobalValue::LinkageTypes Linkage =
351         SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
352             ? llvm::GlobalValue::LinkOnceODRLinkage
353             : llvm::GlobalValue::InternalLinkage;
354     auto *VDispMap = new llvm::GlobalVariable(
355         CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
356         /*Initializer=*/Init, MangledName);
357     return VDispMap;
358   }
359 
360   void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
361                              llvm::GlobalVariable *GV) const;
362 
363   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
364                        GlobalDecl GD, bool ReturnAdjustment) override {
365     GVALinkage Linkage =
366         getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
367 
368     if (Linkage == GVA_Internal)
369       Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
370     else if (ReturnAdjustment)
371       Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
372     else
373       Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
374   }
375 
376   bool exportThunk() override { return false; }
377 
378   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
379                                      const ThisAdjustment &TA) override;
380 
381   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
382                                        const ReturnAdjustment &RA) override;
383 
384   void EmitThreadLocalInitFuncs(
385       CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
386       ArrayRef<llvm::Function *> CXXThreadLocalInits,
387       ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
388 
389   bool usesThreadWrapperFunction() const override { return false; }
390   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
391                                       QualType LValType) override;
392 
393   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
394                        llvm::GlobalVariable *DeclPtr,
395                        bool PerformInit) override;
396   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
397                           llvm::FunctionCallee Dtor,
398                           llvm::Constant *Addr) override;
399 
400   // ==== Notes on array cookies =========
401   //
402   // MSVC seems to only use cookies when the class has a destructor; a
403   // two-argument usual array deallocation function isn't sufficient.
404   //
405   // For example, this code prints "100" and "1":
406   //   struct A {
407   //     char x;
408   //     void *operator new[](size_t sz) {
409   //       printf("%u\n", sz);
410   //       return malloc(sz);
411   //     }
412   //     void operator delete[](void *p, size_t sz) {
413   //       printf("%u\n", sz);
414   //       free(p);
415   //     }
416   //   };
417   //   int main() {
418   //     A *p = new A[100];
419   //     delete[] p;
420   //   }
421   // Whereas it prints "104" and "104" if you give A a destructor.
422 
423   bool requiresArrayCookie(const CXXDeleteExpr *expr,
424                            QualType elementType) override;
425   bool requiresArrayCookie(const CXXNewExpr *expr) override;
426   CharUnits getArrayCookieSizeImpl(QualType type) override;
427   Address InitializeArrayCookie(CodeGenFunction &CGF,
428                                 Address NewPtr,
429                                 llvm::Value *NumElements,
430                                 const CXXNewExpr *expr,
431                                 QualType ElementType) override;
432   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
433                                    Address allocPtr,
434                                    CharUnits cookieSize) override;
435 
436   friend struct MSRTTIBuilder;
437 
438   bool isImageRelative() const {
439     return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64;
440   }
441 
442   // 5 routines for constructing the llvm types for MS RTTI structs.
443   llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
444     llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
445     TDTypeName += llvm::utostr(TypeInfoString.size());
446     llvm::StructType *&TypeDescriptorType =
447         TypeDescriptorTypeMap[TypeInfoString.size()];
448     if (TypeDescriptorType)
449       return TypeDescriptorType;
450     llvm::Type *FieldTypes[] = {
451         CGM.Int8PtrPtrTy,
452         CGM.Int8PtrTy,
453         llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
454     TypeDescriptorType =
455         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
456     return TypeDescriptorType;
457   }
458 
459   llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
460     if (!isImageRelative())
461       return PtrType;
462     return CGM.IntTy;
463   }
464 
465   llvm::StructType *getBaseClassDescriptorType() {
466     if (BaseClassDescriptorType)
467       return BaseClassDescriptorType;
468     llvm::Type *FieldTypes[] = {
469         getImageRelativeType(CGM.Int8PtrTy),
470         CGM.IntTy,
471         CGM.IntTy,
472         CGM.IntTy,
473         CGM.IntTy,
474         CGM.IntTy,
475         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
476     };
477     BaseClassDescriptorType = llvm::StructType::create(
478         CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
479     return BaseClassDescriptorType;
480   }
481 
482   llvm::StructType *getClassHierarchyDescriptorType() {
483     if (ClassHierarchyDescriptorType)
484       return ClassHierarchyDescriptorType;
485     // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
486     ClassHierarchyDescriptorType = llvm::StructType::create(
487         CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
488     llvm::Type *FieldTypes[] = {
489         CGM.IntTy,
490         CGM.IntTy,
491         CGM.IntTy,
492         getImageRelativeType(
493             getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
494     };
495     ClassHierarchyDescriptorType->setBody(FieldTypes);
496     return ClassHierarchyDescriptorType;
497   }
498 
499   llvm::StructType *getCompleteObjectLocatorType() {
500     if (CompleteObjectLocatorType)
501       return CompleteObjectLocatorType;
502     CompleteObjectLocatorType = llvm::StructType::create(
503         CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
504     llvm::Type *FieldTypes[] = {
505         CGM.IntTy,
506         CGM.IntTy,
507         CGM.IntTy,
508         getImageRelativeType(CGM.Int8PtrTy),
509         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
510         getImageRelativeType(CompleteObjectLocatorType),
511     };
512     llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
513     if (!isImageRelative())
514       FieldTypesRef = FieldTypesRef.drop_back();
515     CompleteObjectLocatorType->setBody(FieldTypesRef);
516     return CompleteObjectLocatorType;
517   }
518 
519   llvm::GlobalVariable *getImageBase() {
520     StringRef Name = "__ImageBase";
521     if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
522       return GV;
523 
524     auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
525                                         /*isConstant=*/true,
526                                         llvm::GlobalValue::ExternalLinkage,
527                                         /*Initializer=*/nullptr, Name);
528     CGM.setDSOLocal(GV);
529     return GV;
530   }
531 
532   llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
533     if (!isImageRelative())
534       return PtrVal;
535 
536     if (PtrVal->isNullValue())
537       return llvm::Constant::getNullValue(CGM.IntTy);
538 
539     llvm::Constant *ImageBaseAsInt =
540         llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
541     llvm::Constant *PtrValAsInt =
542         llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
543     llvm::Constant *Diff =
544         llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
545                                    /*HasNUW=*/true, /*HasNSW=*/true);
546     return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
547   }
548 
549 private:
550   MicrosoftMangleContext &getMangleContext() {
551     return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
552   }
553 
554   llvm::Constant *getZeroInt() {
555     return llvm::ConstantInt::get(CGM.IntTy, 0);
556   }
557 
558   llvm::Constant *getAllOnesInt() {
559     return  llvm::Constant::getAllOnesValue(CGM.IntTy);
560   }
561 
562   CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
563 
564   void
565   GetNullMemberPointerFields(const MemberPointerType *MPT,
566                              llvm::SmallVectorImpl<llvm::Constant *> &fields);
567 
568   /// Shared code for virtual base adjustment.  Returns the offset from
569   /// the vbptr to the virtual base.  Optionally returns the address of the
570   /// vbptr itself.
571   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
572                                        Address Base,
573                                        llvm::Value *VBPtrOffset,
574                                        llvm::Value *VBTableOffset,
575                                        llvm::Value **VBPtr = nullptr);
576 
577   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
578                                        Address Base,
579                                        int32_t VBPtrOffset,
580                                        int32_t VBTableOffset,
581                                        llvm::Value **VBPtr = nullptr) {
582     assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
583     llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
584                 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
585     return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
586   }
587 
588   std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
589   performBaseAdjustment(CodeGenFunction &CGF, Address Value,
590                         QualType SrcRecordTy);
591 
592   /// Performs a full virtual base adjustment.  Used to dereference
593   /// pointers to members of virtual bases.
594   llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
595                                  const CXXRecordDecl *RD, Address Base,
596                                  llvm::Value *VirtualBaseAdjustmentOffset,
597                                  llvm::Value *VBPtrOffset /* optional */);
598 
599   /// Emits a full member pointer with the fields common to data and
600   /// function member pointers.
601   llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
602                                         bool IsMemberFunction,
603                                         const CXXRecordDecl *RD,
604                                         CharUnits NonVirtualBaseAdjustment,
605                                         unsigned VBTableIndex);
606 
607   bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
608                                    llvm::Constant *MP);
609 
610   /// - Initialize all vbptrs of 'this' with RD as the complete type.
611   void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
612 
613   /// Caching wrapper around VBTableBuilder::enumerateVBTables().
614   const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
615 
616   /// Generate a thunk for calling a virtual member function MD.
617   llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
618                                          const MethodVFTableLocation &ML);
619 
620   llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
621                                         CharUnits offset);
622 
623 public:
624   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
625 
626   bool isZeroInitializable(const MemberPointerType *MPT) override;
627 
628   bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
629     const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
630     return RD->hasAttr<MSInheritanceAttr>();
631   }
632 
633   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
634 
635   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
636                                         CharUnits offset) override;
637   llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
638   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
639 
640   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
641                                            llvm::Value *L,
642                                            llvm::Value *R,
643                                            const MemberPointerType *MPT,
644                                            bool Inequality) override;
645 
646   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
647                                           llvm::Value *MemPtr,
648                                           const MemberPointerType *MPT) override;
649 
650   llvm::Value *
651   EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
652                                Address Base, llvm::Value *MemPtr,
653                                const MemberPointerType *MPT) override;
654 
655   llvm::Value *EmitNonNullMemberPointerConversion(
656       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
657       CastKind CK, CastExpr::path_const_iterator PathBegin,
658       CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
659       CGBuilderTy &Builder);
660 
661   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
662                                            const CastExpr *E,
663                                            llvm::Value *Src) override;
664 
665   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
666                                               llvm::Constant *Src) override;
667 
668   llvm::Constant *EmitMemberPointerConversion(
669       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
670       CastKind CK, CastExpr::path_const_iterator PathBegin,
671       CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
672 
673   CGCallee
674   EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
675                                   Address This, llvm::Value *&ThisPtrForCall,
676                                   llvm::Value *MemPtr,
677                                   const MemberPointerType *MPT) override;
678 
679   void emitCXXStructor(GlobalDecl GD) override;
680 
681   llvm::StructType *getCatchableTypeType() {
682     if (CatchableTypeType)
683       return CatchableTypeType;
684     llvm::Type *FieldTypes[] = {
685         CGM.IntTy,                           // Flags
686         getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
687         CGM.IntTy,                           // NonVirtualAdjustment
688         CGM.IntTy,                           // OffsetToVBPtr
689         CGM.IntTy,                           // VBTableIndex
690         CGM.IntTy,                           // Size
691         getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
692     };
693     CatchableTypeType = llvm::StructType::create(
694         CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
695     return CatchableTypeType;
696   }
697 
698   llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
699     llvm::StructType *&CatchableTypeArrayType =
700         CatchableTypeArrayTypeMap[NumEntries];
701     if (CatchableTypeArrayType)
702       return CatchableTypeArrayType;
703 
704     llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
705     CTATypeName += llvm::utostr(NumEntries);
706     llvm::Type *CTType =
707         getImageRelativeType(getCatchableTypeType()->getPointerTo());
708     llvm::Type *FieldTypes[] = {
709         CGM.IntTy,                               // NumEntries
710         llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
711     };
712     CatchableTypeArrayType =
713         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
714     return CatchableTypeArrayType;
715   }
716 
717   llvm::StructType *getThrowInfoType() {
718     if (ThrowInfoType)
719       return ThrowInfoType;
720     llvm::Type *FieldTypes[] = {
721         CGM.IntTy,                           // Flags
722         getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
723         getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
724         getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
725     };
726     ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
727                                              "eh.ThrowInfo");
728     return ThrowInfoType;
729   }
730 
731   llvm::FunctionCallee getThrowFn() {
732     // _CxxThrowException is passed an exception object and a ThrowInfo object
733     // which describes the exception.
734     llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
735     llvm::FunctionType *FTy =
736         llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
737     llvm::FunctionCallee Throw =
738         CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
739     // _CxxThrowException is stdcall on 32-bit x86 platforms.
740     if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
741       if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
742         Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
743     }
744     return Throw;
745   }
746 
747   llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
748                                           CXXCtorType CT);
749 
750   llvm::Constant *getCatchableType(QualType T,
751                                    uint32_t NVOffset = 0,
752                                    int32_t VBPtrOffset = -1,
753                                    uint32_t VBIndex = 0);
754 
755   llvm::GlobalVariable *getCatchableTypeArray(QualType T);
756 
757   llvm::GlobalVariable *getThrowInfo(QualType T) override;
758 
759   std::pair<llvm::Value *, const CXXRecordDecl *>
760   LoadVTablePtr(CodeGenFunction &CGF, Address This,
761                 const CXXRecordDecl *RD) override;
762 
763 private:
764   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
765   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
766   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
767   /// All the vftables that have been referenced.
768   VFTablesMapTy VFTablesMap;
769   VTablesMapTy VTablesMap;
770 
771   /// This set holds the record decls we've deferred vtable emission for.
772   llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
773 
774 
775   /// All the vbtables which have been referenced.
776   llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
777 
778   /// Info on the global variable used to guard initialization of static locals.
779   /// The BitIndex field is only used for externally invisible declarations.
780   struct GuardInfo {
781     GuardInfo() : Guard(nullptr), BitIndex(0) {}
782     llvm::GlobalVariable *Guard;
783     unsigned BitIndex;
784   };
785 
786   /// Map from DeclContext to the current guard variable.  We assume that the
787   /// AST is visited in source code order.
788   llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
789   llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
790   llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
791 
792   llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
793   llvm::StructType *BaseClassDescriptorType;
794   llvm::StructType *ClassHierarchyDescriptorType;
795   llvm::StructType *CompleteObjectLocatorType;
796 
797   llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
798 
799   llvm::StructType *CatchableTypeType;
800   llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
801   llvm::StructType *ThrowInfoType;
802 };
803 
804 }
805 
806 CGCXXABI::RecordArgABI
807 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
808   switch (CGM.getTarget().getTriple().getArch()) {
809   default:
810     // FIXME: Implement for other architectures.
811     return RAA_Default;
812 
813   case llvm::Triple::thumb:
814     // Use the simple Itanium rules for now.
815     // FIXME: This is incompatible with MSVC for arguments with a dtor and no
816     // copy ctor.
817     return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;
818 
819   case llvm::Triple::x86:
820     // All record arguments are passed in memory on x86.  Decide whether to
821     // construct the object directly in argument memory, or to construct the
822     // argument elsewhere and copy the bytes during the call.
823 
824     // If C++ prohibits us from making a copy, construct the arguments directly
825     // into argument memory.
826     if (!RD->canPassInRegisters())
827       return RAA_DirectInMemory;
828 
829     // Otherwise, construct the argument into a temporary and copy the bytes
830     // into the outgoing argument memory.
831     return RAA_Default;
832 
833   case llvm::Triple::x86_64:
834   case llvm::Triple::aarch64:
835     return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;
836   }
837 
838   llvm_unreachable("invalid enum");
839 }
840 
841 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
842                                               const CXXDeleteExpr *DE,
843                                               Address Ptr,
844                                               QualType ElementType,
845                                               const CXXDestructorDecl *Dtor) {
846   // FIXME: Provide a source location here even though there's no
847   // CXXMemberCallExpr for dtor call.
848   bool UseGlobalDelete = DE->isGlobalDelete();
849   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
850   llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
851   if (UseGlobalDelete)
852     CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
853 }
854 
855 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
856   llvm::Value *Args[] = {
857       llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
858       llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
859   llvm::FunctionCallee Fn = getThrowFn();
860   if (isNoReturn)
861     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
862   else
863     CGF.EmitRuntimeCallOrInvoke(Fn, Args);
864 }
865 
866 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
867                                      const CXXCatchStmt *S) {
868   // In the MS ABI, the runtime handles the copy, and the catch handler is
869   // responsible for destruction.
870   VarDecl *CatchParam = S->getExceptionDecl();
871   llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
872   llvm::CatchPadInst *CPI =
873       cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
874   CGF.CurrentFuncletPad = CPI;
875 
876   // If this is a catch-all or the catch parameter is unnamed, we don't need to
877   // emit an alloca to the object.
878   if (!CatchParam || !CatchParam->getDeclName()) {
879     CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
880     return;
881   }
882 
883   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
884   CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
885   CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
886   CGF.EmitAutoVarCleanups(var);
887 }
888 
889 /// We need to perform a generic polymorphic operation (like a typeid
890 /// or a cast), which requires an object with a vfptr.  Adjust the
891 /// address to point to an object with a vfptr.
892 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
893 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
894                                        QualType SrcRecordTy) {
895   Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
896   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
897   const ASTContext &Context = getContext();
898 
899   // If the class itself has a vfptr, great.  This check implicitly
900   // covers non-virtual base subobjects: a class with its own virtual
901   // functions would be a candidate to be a primary base.
902   if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
903     return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
904                            SrcDecl);
905 
906   // Okay, one of the vbases must have a vfptr, or else this isn't
907   // actually a polymorphic class.
908   const CXXRecordDecl *PolymorphicBase = nullptr;
909   for (auto &Base : SrcDecl->vbases()) {
910     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
911     if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
912       PolymorphicBase = BaseDecl;
913       break;
914     }
915   }
916   assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
917 
918   llvm::Value *Offset =
919     GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
920   llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
921   CharUnits VBaseAlign =
922     CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
923   return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase);
924 }
925 
926 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
927                                                 QualType SrcRecordTy) {
928   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
929   return IsDeref &&
930          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
931 }
932 
933 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
934                                         llvm::Value *Argument) {
935   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
936   llvm::FunctionType *FTy =
937       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
938   llvm::Value *Args[] = {Argument};
939   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
940   return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
941 }
942 
943 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
944   llvm::CallBase *Call =
945       emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
946   Call->setDoesNotReturn();
947   CGF.Builder.CreateUnreachable();
948 }
949 
950 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
951                                          QualType SrcRecordTy,
952                                          Address ThisPtr,
953                                          llvm::Type *StdTypeInfoPtrTy) {
954   std::tie(ThisPtr, std::ignore, std::ignore) =
955       performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
956   llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
957   return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
958 }
959 
960 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
961                                                          QualType SrcRecordTy) {
962   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
963   return SrcIsPtr &&
964          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
965 }
966 
967 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
968     CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
969     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
970   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
971 
972   llvm::Value *SrcRTTI =
973       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
974   llvm::Value *DestRTTI =
975       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
976 
977   llvm::Value *Offset;
978   std::tie(This, Offset, std::ignore) =
979       performBaseAdjustment(CGF, This, SrcRecordTy);
980   llvm::Value *ThisPtr = This.getPointer();
981   Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
982 
983   // PVOID __RTDynamicCast(
984   //   PVOID inptr,
985   //   LONG VfDelta,
986   //   PVOID SrcType,
987   //   PVOID TargetType,
988   //   BOOL isReference)
989   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
990                             CGF.Int8PtrTy, CGF.Int32Ty};
991   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
992       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
993       "__RTDynamicCast");
994   llvm::Value *Args[] = {
995       ThisPtr, Offset, SrcRTTI, DestRTTI,
996       llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
997   ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args);
998   return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
999 }
1000 
1001 llvm::Value *
1002 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
1003                                        QualType SrcRecordTy,
1004                                        QualType DestTy) {
1005   std::tie(Value, std::ignore, std::ignore) =
1006       performBaseAdjustment(CGF, Value, SrcRecordTy);
1007 
1008   // PVOID __RTCastToVoid(
1009   //   PVOID inptr)
1010   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1011   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1012       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1013       "__RTCastToVoid");
1014   llvm::Value *Args[] = {Value.getPointer()};
1015   return CGF.EmitRuntimeCall(Function, Args);
1016 }
1017 
1018 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1019   return false;
1020 }
1021 
1022 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1023     CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1024     const CXXRecordDecl *BaseClassDecl) {
1025   const ASTContext &Context = getContext();
1026   int64_t VBPtrChars =
1027       Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1028   llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1029   CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1030   CharUnits VBTableChars =
1031       IntSize *
1032       CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1033   llvm::Value *VBTableOffset =
1034       llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1035 
1036   llvm::Value *VBPtrToNewBase =
1037       GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1038   VBPtrToNewBase =
1039       CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1040   return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1041 }
1042 
1043 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1044   return isa<CXXConstructorDecl>(GD.getDecl());
1045 }
1046 
1047 static bool isDeletingDtor(GlobalDecl GD) {
1048   return isa<CXXDestructorDecl>(GD.getDecl()) &&
1049          GD.getDtorType() == Dtor_Deleting;
1050 }
1051 
1052 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1053   return isDeletingDtor(GD);
1054 }
1055 
1056 static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) {
1057   return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128;
1058 }
1059 
1060 static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) {
1061   // For AArch64, we use the C++14 definition of an aggregate, so we also
1062   // check for:
1063   //   No private or protected non static data members.
1064   //   No base classes
1065   //   No virtual functions
1066   // Additionally, we need to ensure that there is a trivial copy assignment
1067   // operator, a trivial destructor and no user-provided constructors.
1068   if (RD->hasProtectedFields() || RD->hasPrivateFields())
1069     return true;
1070   if (RD->getNumBases() > 0)
1071     return true;
1072   if (RD->isPolymorphic())
1073     return true;
1074   if (RD->hasNonTrivialCopyAssignment())
1075     return true;
1076   for (const CXXConstructorDecl *Ctor : RD->ctors())
1077     if (Ctor->isUserProvided())
1078       return true;
1079   if (RD->hasNonTrivialDestructor())
1080     return true;
1081   return false;
1082 }
1083 
1084 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1085   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1086   if (!RD)
1087     return false;
1088 
1089   bool isAArch64 = CGM.getTarget().getTriple().isAArch64();
1090   bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD);
1091   bool isIndirectReturn =
1092       isAArch64 ? (!RD->canPassInRegisters() ||
1093                    IsSizeGreaterThan128(RD))
1094                 : !RD->isPOD();
1095   bool isInstanceMethod = FI.isInstanceMethod();
1096 
1097   if (isIndirectReturn || !isSimple || isInstanceMethod) {
1098     CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1099     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1100     FI.getReturnInfo().setSRetAfterThis(isInstanceMethod);
1101 
1102     FI.getReturnInfo().setInReg(isAArch64 &&
1103                                 !(isSimple && IsSizeGreaterThan128(RD)));
1104 
1105     return true;
1106   }
1107 
1108   // Otherwise, use the C ABI rules.
1109   return false;
1110 }
1111 
1112 llvm::BasicBlock *
1113 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1114                                                const CXXRecordDecl *RD) {
1115   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1116   assert(IsMostDerivedClass &&
1117          "ctor for a class with virtual bases must have an implicit parameter");
1118   llvm::Value *IsCompleteObject =
1119     CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1120 
1121   llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1122   llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1123   CGF.Builder.CreateCondBr(IsCompleteObject,
1124                            CallVbaseCtorsBB, SkipVbaseCtorsBB);
1125 
1126   CGF.EmitBlock(CallVbaseCtorsBB);
1127 
1128   // Fill in the vbtable pointers here.
1129   EmitVBPtrStores(CGF, RD);
1130 
1131   // CGF will put the base ctor calls in this basic block for us later.
1132 
1133   return SkipVbaseCtorsBB;
1134 }
1135 
1136 llvm::BasicBlock *
1137 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1138   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1139   assert(IsMostDerivedClass &&
1140          "ctor for a class with virtual bases must have an implicit parameter");
1141   llvm::Value *IsCompleteObject =
1142       CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1143 
1144   llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1145   llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1146   CGF.Builder.CreateCondBr(IsCompleteObject,
1147                            CallVbaseDtorsBB, SkipVbaseDtorsBB);
1148 
1149   CGF.EmitBlock(CallVbaseDtorsBB);
1150   // CGF will put the base dtor calls in this basic block for us later.
1151 
1152   return SkipVbaseDtorsBB;
1153 }
1154 
1155 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1156     CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1157   // In most cases, an override for a vbase virtual method can adjust
1158   // the "this" parameter by applying a constant offset.
1159   // However, this is not enough while a constructor or a destructor of some
1160   // class X is being executed if all the following conditions are met:
1161   //  - X has virtual bases, (1)
1162   //  - X overrides a virtual method M of a vbase Y, (2)
1163   //  - X itself is a vbase of the most derived class.
1164   //
1165   // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1166   // which holds the extra amount of "this" adjustment we must do when we use
1167   // the X vftables (i.e. during X ctor or dtor).
1168   // Outside the ctors and dtors, the values of vtorDisps are zero.
1169 
1170   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1171   typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1172   const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1173   CGBuilderTy &Builder = CGF.Builder;
1174 
1175   unsigned AS = getThisAddress(CGF).getAddressSpace();
1176   llvm::Value *Int8This = nullptr;  // Initialize lazily.
1177 
1178   for (const CXXBaseSpecifier &S : RD->vbases()) {
1179     const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1180     auto I = VBaseMap.find(VBase);
1181     assert(I != VBaseMap.end());
1182     if (!I->second.hasVtorDisp())
1183       continue;
1184 
1185     llvm::Value *VBaseOffset =
1186         GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1187     uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1188 
1189     // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1190     llvm::Value *VtorDispValue = Builder.CreateSub(
1191         VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1192         "vtordisp.value");
1193     VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1194 
1195     if (!Int8This)
1196       Int8This = Builder.CreateBitCast(getThisValue(CGF),
1197                                        CGF.Int8Ty->getPointerTo(AS));
1198     llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
1199     // vtorDisp is always the 32-bits before the vbase in the class layout.
1200     VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
1201     VtorDispPtr = Builder.CreateBitCast(
1202         VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1203 
1204     Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1205                                CharUnits::fromQuantity(4));
1206   }
1207 }
1208 
1209 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1210                                   const CXXMethodDecl *MD) {
1211   CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1212       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1213   CallingConv ActualCallingConv =
1214       MD->getType()->getAs<FunctionProtoType>()->getCallConv();
1215   return ExpectedCallingConv == ActualCallingConv;
1216 }
1217 
1218 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1219   // There's only one constructor type in this ABI.
1220   CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1221 
1222   // Exported default constructors either have a simple call-site where they use
1223   // the typical calling convention and have a single 'this' pointer for an
1224   // argument -or- they get a wrapper function which appropriately thunks to the
1225   // real default constructor.  This thunk is the default constructor closure.
1226   if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
1227     if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1228       llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1229       Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1230       CGM.setGVProperties(Fn, D);
1231     }
1232 }
1233 
1234 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1235                                       const CXXRecordDecl *RD) {
1236   Address This = getThisAddress(CGF);
1237   This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
1238   const ASTContext &Context = getContext();
1239   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1240 
1241   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1242   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1243     const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1244     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1245     const ASTRecordLayout &SubobjectLayout =
1246         Context.getASTRecordLayout(VBT->IntroducingObject);
1247     CharUnits Offs = VBT->NonVirtualOffset;
1248     Offs += SubobjectLayout.getVBPtrOffset();
1249     if (VBT->getVBaseWithVPtr())
1250       Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1251     Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1252     llvm::Value *GVPtr =
1253         CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1254     VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
1255                                       "vbptr." + VBT->ObjectWithVPtr->getName());
1256     CGF.Builder.CreateStore(GVPtr, VBPtr);
1257   }
1258 }
1259 
1260 CGCXXABI::AddedStructorArgs
1261 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1262                                         SmallVectorImpl<CanQualType> &ArgTys) {
1263   AddedStructorArgs Added;
1264   // TODO: 'for base' flag
1265   if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1266       GD.getDtorType() == Dtor_Deleting) {
1267     // The scalar deleting destructor takes an implicit int parameter.
1268     ArgTys.push_back(getContext().IntTy);
1269     ++Added.Suffix;
1270   }
1271   auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1272   if (!CD)
1273     return Added;
1274 
1275   // All parameters are already in place except is_most_derived, which goes
1276   // after 'this' if it's variadic and last if it's not.
1277 
1278   const CXXRecordDecl *Class = CD->getParent();
1279   const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1280   if (Class->getNumVBases()) {
1281     if (FPT->isVariadic()) {
1282       ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1283       ++Added.Prefix;
1284     } else {
1285       ArgTys.push_back(getContext().IntTy);
1286       ++Added.Suffix;
1287     }
1288   }
1289 
1290   return Added;
1291 }
1292 
1293 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1294                                                  const CXXDestructorDecl *Dtor,
1295                                                  CXXDtorType DT) const {
1296   // Deleting destructor variants are never imported or exported. Give them the
1297   // default storage class.
1298   if (DT == Dtor_Deleting) {
1299     GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1300   } else {
1301     const NamedDecl *ND = Dtor;
1302     CGM.setDLLImportDLLExport(GV, ND);
1303   }
1304 }
1305 
1306 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1307     GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1308   // Internal things are always internal, regardless of attributes. After this,
1309   // we know the thunk is externally visible.
1310   if (Linkage == GVA_Internal)
1311     return llvm::GlobalValue::InternalLinkage;
1312 
1313   switch (DT) {
1314   case Dtor_Base:
1315     // The base destructor most closely tracks the user-declared constructor, so
1316     // we delegate back to the normal declarator case.
1317     return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage,
1318                                            /*IsConstantVariable=*/false);
1319   case Dtor_Complete:
1320     // The complete destructor is like an inline function, but it may be
1321     // imported and therefore must be exported as well. This requires changing
1322     // the linkage if a DLL attribute is present.
1323     if (Dtor->hasAttr<DLLExportAttr>())
1324       return llvm::GlobalValue::WeakODRLinkage;
1325     if (Dtor->hasAttr<DLLImportAttr>())
1326       return llvm::GlobalValue::AvailableExternallyLinkage;
1327     return llvm::GlobalValue::LinkOnceODRLinkage;
1328   case Dtor_Deleting:
1329     // Deleting destructors are like inline functions. They have vague linkage
1330     // and are emitted everywhere they are used. They are internal if the class
1331     // is internal.
1332     return llvm::GlobalValue::LinkOnceODRLinkage;
1333   case Dtor_Comdat:
1334     llvm_unreachable("MS C++ ABI does not support comdat dtors");
1335   }
1336   llvm_unreachable("invalid dtor type");
1337 }
1338 
1339 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1340   // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1341   // other destructor variants are delegating thunks.
1342   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1343 }
1344 
1345 CharUnits
1346 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1347   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1348 
1349   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1350     // Complete destructors take a pointer to the complete object as a
1351     // parameter, thus don't need this adjustment.
1352     if (GD.getDtorType() == Dtor_Complete)
1353       return CharUnits();
1354 
1355     // There's no Dtor_Base in vftable but it shares the this adjustment with
1356     // the deleting one, so look it up instead.
1357     GD = GlobalDecl(DD, Dtor_Deleting);
1358   }
1359 
1360   MethodVFTableLocation ML =
1361       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1362   CharUnits Adjustment = ML.VFPtrOffset;
1363 
1364   // Normal virtual instance methods need to adjust from the vfptr that first
1365   // defined the virtual method to the virtual base subobject, but destructors
1366   // do not.  The vector deleting destructor thunk applies this adjustment for
1367   // us if necessary.
1368   if (isa<CXXDestructorDecl>(MD))
1369     Adjustment = CharUnits::Zero();
1370 
1371   if (ML.VBase) {
1372     const ASTRecordLayout &DerivedLayout =
1373         getContext().getASTRecordLayout(MD->getParent());
1374     Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1375   }
1376 
1377   return Adjustment;
1378 }
1379 
1380 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1381     CodeGenFunction &CGF, GlobalDecl GD, Address This,
1382     bool VirtualCall) {
1383   if (!VirtualCall) {
1384     // If the call of a virtual function is not virtual, we just have to
1385     // compensate for the adjustment the virtual function does in its prologue.
1386     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1387     if (Adjustment.isZero())
1388       return This;
1389 
1390     This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
1391     assert(Adjustment.isPositive());
1392     return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1393   }
1394 
1395   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1396 
1397   GlobalDecl LookupGD = GD;
1398   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1399     // Complete dtors take a pointer to the complete object,
1400     // thus don't need adjustment.
1401     if (GD.getDtorType() == Dtor_Complete)
1402       return This;
1403 
1404     // There's only Dtor_Deleting in vftable but it shares the this adjustment
1405     // with the base one, so look up the deleting one instead.
1406     LookupGD = GlobalDecl(DD, Dtor_Deleting);
1407   }
1408   MethodVFTableLocation ML =
1409       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1410 
1411   CharUnits StaticOffset = ML.VFPtrOffset;
1412 
1413   // Base destructors expect 'this' to point to the beginning of the base
1414   // subobject, not the first vfptr that happens to contain the virtual dtor.
1415   // However, we still need to apply the virtual base adjustment.
1416   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1417     StaticOffset = CharUnits::Zero();
1418 
1419   Address Result = This;
1420   if (ML.VBase) {
1421     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1422 
1423     const CXXRecordDecl *Derived = MD->getParent();
1424     const CXXRecordDecl *VBase = ML.VBase;
1425     llvm::Value *VBaseOffset =
1426       GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1427     llvm::Value *VBasePtr =
1428       CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
1429     CharUnits VBaseAlign =
1430       CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1431     Result = Address(VBasePtr, VBaseAlign);
1432   }
1433   if (!StaticOffset.isZero()) {
1434     assert(StaticOffset.isPositive());
1435     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1436     if (ML.VBase) {
1437       // Non-virtual adjustment might result in a pointer outside the allocated
1438       // object, e.g. if the final overrider class is laid out after the virtual
1439       // base that declares a method in the most derived class.
1440       // FIXME: Update the code that emits this adjustment in thunks prologues.
1441       Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1442     } else {
1443       Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1444     }
1445   }
1446   return Result;
1447 }
1448 
1449 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1450                                                 QualType &ResTy,
1451                                                 FunctionArgList &Params) {
1452   ASTContext &Context = getContext();
1453   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1454   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1455   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1456     auto *IsMostDerived = ImplicitParamDecl::Create(
1457         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1458         &Context.Idents.get("is_most_derived"), Context.IntTy,
1459         ImplicitParamDecl::Other);
1460     // The 'most_derived' parameter goes second if the ctor is variadic and last
1461     // if it's not.  Dtors can't be variadic.
1462     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1463     if (FPT->isVariadic())
1464       Params.insert(Params.begin() + 1, IsMostDerived);
1465     else
1466       Params.push_back(IsMostDerived);
1467     getStructorImplicitParamDecl(CGF) = IsMostDerived;
1468   } else if (isDeletingDtor(CGF.CurGD)) {
1469     auto *ShouldDelete = ImplicitParamDecl::Create(
1470         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1471         &Context.Idents.get("should_call_delete"), Context.IntTy,
1472         ImplicitParamDecl::Other);
1473     Params.push_back(ShouldDelete);
1474     getStructorImplicitParamDecl(CGF) = ShouldDelete;
1475   }
1476 }
1477 
1478 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1479   // Naked functions have no prolog.
1480   if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1481     return;
1482 
1483   // Overridden virtual methods of non-primary bases need to adjust the incoming
1484   // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1485   // sizeof(void*) to adjust from B* to C*:
1486   //   struct A { virtual void a(); };
1487   //   struct B { virtual void b(); };
1488   //   struct C : A, B { virtual void b(); };
1489   //
1490   // Leave the value stored in the 'this' alloca unadjusted, so that the
1491   // debugger sees the unadjusted value. Microsoft debuggers require this, and
1492   // will apply the ThisAdjustment in the method type information.
1493   // FIXME: Do something better for DWARF debuggers, which won't expect this,
1494   // without making our codegen depend on debug info settings.
1495   llvm::Value *This = loadIncomingCXXThis(CGF);
1496   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1497   if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1498     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1499     if (!Adjustment.isZero()) {
1500       unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1501       llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1502                  *thisTy = This->getType();
1503       This = CGF.Builder.CreateBitCast(This, charPtrTy);
1504       assert(Adjustment.isPositive());
1505       This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1506                                                     -Adjustment.getQuantity());
1507       This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted");
1508     }
1509   }
1510   setCXXABIThisValue(CGF, This);
1511 
1512   // If this is a function that the ABI specifies returns 'this', initialize
1513   // the return slot to 'this' at the start of the function.
1514   //
1515   // Unlike the setting of return types, this is done within the ABI
1516   // implementation instead of by clients of CGCXXABI because:
1517   // 1) getThisValue is currently protected
1518   // 2) in theory, an ABI could implement 'this' returns some other way;
1519   //    HasThisReturn only specifies a contract, not the implementation
1520   if (HasThisReturn(CGF.CurGD))
1521     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1522   else if (hasMostDerivedReturn(CGF.CurGD))
1523     CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1524                             CGF.ReturnValue);
1525 
1526   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1527     assert(getStructorImplicitParamDecl(CGF) &&
1528            "no implicit parameter for a constructor with virtual bases?");
1529     getStructorImplicitParamValue(CGF)
1530       = CGF.Builder.CreateLoad(
1531           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1532           "is_most_derived");
1533   }
1534 
1535   if (isDeletingDtor(CGF.CurGD)) {
1536     assert(getStructorImplicitParamDecl(CGF) &&
1537            "no implicit parameter for a deleting destructor?");
1538     getStructorImplicitParamValue(CGF)
1539       = CGF.Builder.CreateLoad(
1540           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1541           "should_call_delete");
1542   }
1543 }
1544 
1545 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::addImplicitConstructorArgs(
1546     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1547     bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1548   assert(Type == Ctor_Complete || Type == Ctor_Base);
1549 
1550   // Check if we need a 'most_derived' parameter.
1551   if (!D->getParent()->getNumVBases())
1552     return AddedStructorArgs{};
1553 
1554   // Add the 'most_derived' argument second if we are variadic or last if not.
1555   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1556   llvm::Value *MostDerivedArg;
1557   if (Delegating) {
1558     MostDerivedArg = getStructorImplicitParamValue(CGF);
1559   } else {
1560     MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1561   }
1562   RValue RV = RValue::get(MostDerivedArg);
1563   if (FPT->isVariadic()) {
1564     Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy));
1565     return AddedStructorArgs::prefix(1);
1566   }
1567   Args.add(RV, getContext().IntTy);
1568   return AddedStructorArgs::suffix(1);
1569 }
1570 
1571 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1572                                          const CXXDestructorDecl *DD,
1573                                          CXXDtorType Type, bool ForVirtualBase,
1574                                          bool Delegating, Address This,
1575                                          QualType ThisTy) {
1576   // Use the base destructor variant in place of the complete destructor variant
1577   // if the class has no virtual bases. This effectively implements some of the
1578   // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1579   if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1580     Type = Dtor_Base;
1581 
1582   GlobalDecl GD(DD, Type);
1583   CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1584 
1585   if (DD->isVirtual()) {
1586     assert(Type != CXXDtorType::Dtor_Deleting &&
1587            "The deleting destructor should only be called via a virtual call");
1588     This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1589                                                     This, false);
1590   }
1591 
1592   llvm::BasicBlock *BaseDtorEndBB = nullptr;
1593   if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1594     BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1595   }
1596 
1597   CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1598                             /*ImplicitParam=*/nullptr,
1599                             /*ImplicitParamTy=*/QualType(), nullptr);
1600   if (BaseDtorEndBB) {
1601     // Complete object handler should continue to be the remaining
1602     CGF.Builder.CreateBr(BaseDtorEndBB);
1603     CGF.EmitBlock(BaseDtorEndBB);
1604   }
1605 }
1606 
1607 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1608                                              const CXXRecordDecl *RD,
1609                                              llvm::GlobalVariable *VTable) {
1610   if (!CGM.getCodeGenOpts().LTOUnit)
1611     return;
1612 
1613   // The location of the first virtual function pointer in the virtual table,
1614   // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1615   // disabled, or sizeof(void*) if RTTI is enabled.
1616   CharUnits AddressPoint =
1617       getContext().getLangOpts().RTTIData
1618           ? getContext().toCharUnitsFromBits(
1619                 getContext().getTargetInfo().getPointerWidth(0))
1620           : CharUnits::Zero();
1621 
1622   if (Info.PathToIntroducingObject.empty()) {
1623     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1624     return;
1625   }
1626 
1627   // Add a bitset entry for the least derived base belonging to this vftable.
1628   CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1629                             Info.PathToIntroducingObject.back());
1630 
1631   // Add a bitset entry for each derived class that is laid out at the same
1632   // offset as the least derived base.
1633   for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1634     const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1635     const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1636 
1637     const ASTRecordLayout &Layout =
1638         getContext().getASTRecordLayout(DerivedRD);
1639     CharUnits Offset;
1640     auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1641     if (VBI == Layout.getVBaseOffsetsMap().end())
1642       Offset = Layout.getBaseClassOffset(BaseRD);
1643     else
1644       Offset = VBI->second.VBaseOffset;
1645     if (!Offset.isZero())
1646       return;
1647     CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1648   }
1649 
1650   // Finally do the same for the most derived class.
1651   if (Info.FullOffsetInMDC.isZero())
1652     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1653 }
1654 
1655 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1656                                             const CXXRecordDecl *RD) {
1657   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1658   const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1659 
1660   for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1661     llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1662     if (VTable->hasInitializer())
1663       continue;
1664 
1665     const VTableLayout &VTLayout =
1666       VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1667 
1668     llvm::Constant *RTTI = nullptr;
1669     if (any_of(VTLayout.vtable_components(),
1670                [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1671       RTTI = getMSCompleteObjectLocator(RD, *Info);
1672 
1673     ConstantInitBuilder Builder(CGM);
1674     auto Components = Builder.beginStruct();
1675     CGVT.createVTableInitializer(Components, VTLayout, RTTI);
1676     Components.finishAndSetAsInitializer(VTable);
1677 
1678     emitVTableTypeMetadata(*Info, RD, VTable);
1679   }
1680 }
1681 
1682 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1683     CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1684   return Vptr.NearestVBase != nullptr;
1685 }
1686 
1687 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1688     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1689     const CXXRecordDecl *NearestVBase) {
1690   llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1691   if (!VTableAddressPoint) {
1692     assert(Base.getBase()->getNumVBases() &&
1693            !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1694   }
1695   return VTableAddressPoint;
1696 }
1697 
1698 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1699                               const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1700                               SmallString<256> &Name) {
1701   llvm::raw_svector_ostream Out(Name);
1702   MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1703 }
1704 
1705 llvm::Constant *
1706 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1707                                        const CXXRecordDecl *VTableClass) {
1708   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1709   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1710   return VFTablesMap[ID];
1711 }
1712 
1713 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1714     BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1715   llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1716   assert(VFTable && "Couldn't find a vftable for the given base?");
1717   return VFTable;
1718 }
1719 
1720 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1721                                                        CharUnits VPtrOffset) {
1722   // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1723   // shouldn't be used in the given record type. We want to cache this result in
1724   // VFTablesMap, thus a simple zero check is not sufficient.
1725 
1726   VFTableIdTy ID(RD, VPtrOffset);
1727   VTablesMapTy::iterator I;
1728   bool Inserted;
1729   std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1730   if (!Inserted)
1731     return I->second;
1732 
1733   llvm::GlobalVariable *&VTable = I->second;
1734 
1735   MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1736   const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1737 
1738   if (DeferredVFTables.insert(RD).second) {
1739     // We haven't processed this record type before.
1740     // Queue up this vtable for possible deferred emission.
1741     CGM.addDeferredVTable(RD);
1742 
1743 #ifndef NDEBUG
1744     // Create all the vftables at once in order to make sure each vftable has
1745     // a unique mangled name.
1746     llvm::StringSet<> ObservedMangledNames;
1747     for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1748       SmallString<256> Name;
1749       mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1750       if (!ObservedMangledNames.insert(Name.str()).second)
1751         llvm_unreachable("Already saw this mangling before?");
1752     }
1753 #endif
1754   }
1755 
1756   const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if(
1757       VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) {
1758         return VPI->FullOffsetInMDC == VPtrOffset;
1759       });
1760   if (VFPtrI == VFPtrs.end()) {
1761     VFTablesMap[ID] = nullptr;
1762     return nullptr;
1763   }
1764   const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1765 
1766   SmallString<256> VFTableName;
1767   mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1768 
1769   // Classes marked __declspec(dllimport) need vftables generated on the
1770   // import-side in order to support features like constexpr.  No other
1771   // translation unit relies on the emission of the local vftable, translation
1772   // units are expected to generate them as needed.
1773   //
1774   // Because of this unique behavior, we maintain this logic here instead of
1775   // getVTableLinkage.
1776   llvm::GlobalValue::LinkageTypes VFTableLinkage =
1777       RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1778                                    : CGM.getVTableLinkage(RD);
1779   bool VFTableComesFromAnotherTU =
1780       llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1781       llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1782   bool VTableAliasIsRequred =
1783       !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1784 
1785   if (llvm::GlobalValue *VFTable =
1786           CGM.getModule().getNamedGlobal(VFTableName)) {
1787     VFTablesMap[ID] = VFTable;
1788     VTable = VTableAliasIsRequred
1789                  ? cast<llvm::GlobalVariable>(
1790                        cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
1791                  : cast<llvm::GlobalVariable>(VFTable);
1792     return VTable;
1793   }
1794 
1795   const VTableLayout &VTLayout =
1796       VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1797   llvm::GlobalValue::LinkageTypes VTableLinkage =
1798       VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1799 
1800   StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1801 
1802   llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1803 
1804   // Create a backing variable for the contents of VTable.  The VTable may
1805   // or may not include space for a pointer to RTTI data.
1806   llvm::GlobalValue *VFTable;
1807   VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1808                                     /*isConstant=*/true, VTableLinkage,
1809                                     /*Initializer=*/nullptr, VTableName);
1810   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1811 
1812   llvm::Comdat *C = nullptr;
1813   if (!VFTableComesFromAnotherTU &&
1814       (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1815        (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1816         VTableAliasIsRequred)))
1817     C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1818 
1819   // Only insert a pointer into the VFTable for RTTI data if we are not
1820   // importing it.  We never reference the RTTI data directly so there is no
1821   // need to make room for it.
1822   if (VTableAliasIsRequred) {
1823     llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1824                                  llvm::ConstantInt::get(CGM.Int32Ty, 0),
1825                                  llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1826     // Create a GEP which points just after the first entry in the VFTable,
1827     // this should be the location of the first virtual method.
1828     llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1829         VTable->getValueType(), VTable, GEPIndices);
1830     if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1831       VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1832       if (C)
1833         C->setSelectionKind(llvm::Comdat::Largest);
1834     }
1835     VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1836                                         /*AddressSpace=*/0, VFTableLinkage,
1837                                         VFTableName.str(), VTableGEP,
1838                                         &CGM.getModule());
1839     VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1840   } else {
1841     // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1842     // be referencing any RTTI data.
1843     // The GlobalVariable will end up being an appropriate definition of the
1844     // VFTable.
1845     VFTable = VTable;
1846   }
1847   if (C)
1848     VTable->setComdat(C);
1849 
1850   if (RD->hasAttr<DLLExportAttr>())
1851     VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1852 
1853   VFTablesMap[ID] = VFTable;
1854   return VTable;
1855 }
1856 
1857 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1858                                                     GlobalDecl GD,
1859                                                     Address This,
1860                                                     llvm::Type *Ty,
1861                                                     SourceLocation Loc) {
1862   CGBuilderTy &Builder = CGF.Builder;
1863 
1864   Ty = Ty->getPointerTo()->getPointerTo();
1865   Address VPtr =
1866       adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1867 
1868   auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1869   llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
1870 
1871   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1872   MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1873 
1874   // Compute the identity of the most derived class whose virtual table is
1875   // located at the MethodVFTableLocation ML.
1876   auto getObjectWithVPtr = [&] {
1877     return llvm::find_if(VFTContext.getVFPtrOffsets(
1878                              ML.VBase ? ML.VBase : MethodDecl->getParent()),
1879                          [&](const std::unique_ptr<VPtrInfo> &Info) {
1880                            return Info->FullOffsetInMDC == ML.VFPtrOffset;
1881                          })
1882         ->get()
1883         ->ObjectWithVPtr;
1884   };
1885 
1886   llvm::Value *VFunc;
1887   if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1888     VFunc = CGF.EmitVTableTypeCheckedLoad(
1889         getObjectWithVPtr(), VTable,
1890         ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
1891   } else {
1892     if (CGM.getCodeGenOpts().PrepareForLTO)
1893       CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1894 
1895     llvm::Value *VFuncPtr =
1896         Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1897     VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1898   }
1899 
1900   CGCallee Callee(GD, VFunc);
1901   return Callee;
1902 }
1903 
1904 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1905     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1906     Address This, DeleteOrMemberCallExpr E) {
1907   auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
1908   auto *D = E.dyn_cast<const CXXDeleteExpr *>();
1909   assert((CE != nullptr) ^ (D != nullptr));
1910   assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1911   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1912 
1913   // We have only one destructor in the vftable but can get both behaviors
1914   // by passing an implicit int parameter.
1915   GlobalDecl GD(Dtor, Dtor_Deleting);
1916   const CGFunctionInfo *FInfo =
1917       &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
1918   llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1919   CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
1920 
1921   ASTContext &Context = getContext();
1922   llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1923       llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1924       DtorType == Dtor_Deleting);
1925 
1926   QualType ThisTy;
1927   if (CE) {
1928     ThisTy = CE->getObjectType();
1929   } else {
1930     ThisTy = D->getDestroyedType();
1931   }
1932 
1933   This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1934   RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1935                                         ImplicitParam, Context.IntTy, CE);
1936   return RV.getScalarVal();
1937 }
1938 
1939 const VBTableGlobals &
1940 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1941   // At this layer, we can key the cache off of a single class, which is much
1942   // easier than caching each vbtable individually.
1943   llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1944   bool Added;
1945   std::tie(Entry, Added) =
1946       VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1947   VBTableGlobals &VBGlobals = Entry->second;
1948   if (!Added)
1949     return VBGlobals;
1950 
1951   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1952   VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1953 
1954   // Cache the globals for all vbtables so we don't have to recompute the
1955   // mangled names.
1956   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1957   for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1958                                       E = VBGlobals.VBTables->end();
1959        I != E; ++I) {
1960     VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1961   }
1962 
1963   return VBGlobals;
1964 }
1965 
1966 llvm::Function *
1967 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
1968                                         const MethodVFTableLocation &ML) {
1969   assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1970          "can't form pointers to ctors or virtual dtors");
1971 
1972   // Calculate the mangled name.
1973   SmallString<256> ThunkName;
1974   llvm::raw_svector_ostream Out(ThunkName);
1975   getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
1976 
1977   // If the thunk has been generated previously, just return it.
1978   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1979     return cast<llvm::Function>(GV);
1980 
1981   // Create the llvm::Function.
1982   const CGFunctionInfo &FnInfo =
1983       CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
1984   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1985   llvm::Function *ThunkFn =
1986       llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1987                              ThunkName.str(), &CGM.getModule());
1988   assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1989 
1990   ThunkFn->setLinkage(MD->isExternallyVisible()
1991                           ? llvm::GlobalValue::LinkOnceODRLinkage
1992                           : llvm::GlobalValue::InternalLinkage);
1993   if (MD->isExternallyVisible())
1994     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
1995 
1996   CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1997   CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1998 
1999   // Add the "thunk" attribute so that LLVM knows that the return type is
2000   // meaningless. These thunks can be used to call functions with differing
2001   // return types, and the caller is required to cast the prototype
2002   // appropriately to extract the correct value.
2003   ThunkFn->addFnAttr("thunk");
2004 
2005   // These thunks can be compared, so they are not unnamed.
2006   ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2007 
2008   // Start codegen.
2009   CodeGenFunction CGF(CGM);
2010   CGF.CurGD = GlobalDecl(MD);
2011   CGF.CurFuncIsThunk = true;
2012 
2013   // Build FunctionArgs, but only include the implicit 'this' parameter
2014   // declaration.
2015   FunctionArgList FunctionArgs;
2016   buildThisParam(CGF, FunctionArgs);
2017 
2018   // Start defining the function.
2019   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2020                     FunctionArgs, MD->getLocation(), SourceLocation());
2021   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2022 
2023   // Load the vfptr and then callee from the vftable.  The callee should have
2024   // adjusted 'this' so that the vfptr is at offset zero.
2025   llvm::Value *VTable = CGF.GetVTablePtr(
2026       getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
2027 
2028   llvm::Value *VFuncPtr =
2029       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
2030   llvm::Value *Callee =
2031     CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
2032 
2033   CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2034 
2035   return ThunkFn;
2036 }
2037 
2038 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2039   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2040   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2041     const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2042     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2043     if (GV->isDeclaration())
2044       emitVBTableDefinition(*VBT, RD, GV);
2045   }
2046 }
2047 
2048 llvm::GlobalVariable *
2049 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2050                                   llvm::GlobalVariable::LinkageTypes Linkage) {
2051   SmallString<256> OutName;
2052   llvm::raw_svector_ostream Out(OutName);
2053   getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2054   StringRef Name = OutName.str();
2055 
2056   llvm::ArrayType *VBTableType =
2057       llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2058 
2059   assert(!CGM.getModule().getNamedGlobal(Name) &&
2060          "vbtable with this name already exists: mangling bug?");
2061   CharUnits Alignment =
2062       CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2063   llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2064       Name, VBTableType, Linkage, Alignment.getQuantity());
2065   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2066 
2067   if (RD->hasAttr<DLLImportAttr>())
2068     GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2069   else if (RD->hasAttr<DLLExportAttr>())
2070     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2071 
2072   if (!GV->hasExternalLinkage())
2073     emitVBTableDefinition(VBT, RD, GV);
2074 
2075   return GV;
2076 }
2077 
2078 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2079                                             const CXXRecordDecl *RD,
2080                                             llvm::GlobalVariable *GV) const {
2081   const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2082 
2083   assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2084          "should only emit vbtables for classes with vbtables");
2085 
2086   const ASTRecordLayout &BaseLayout =
2087       getContext().getASTRecordLayout(VBT.IntroducingObject);
2088   const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2089 
2090   SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2091                                            nullptr);
2092 
2093   // The offset from ObjectWithVPtr's vbptr to itself always leads.
2094   CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2095   Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2096 
2097   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2098   for (const auto &I : ObjectWithVPtr->vbases()) {
2099     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2100     CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2101     assert(!Offset.isNegative());
2102 
2103     // Make it relative to the subobject vbptr.
2104     CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2105     if (VBT.getVBaseWithVPtr())
2106       CompleteVBPtrOffset +=
2107           DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2108     Offset -= CompleteVBPtrOffset;
2109 
2110     unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2111     assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2112     Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2113   }
2114 
2115   assert(Offsets.size() ==
2116          cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
2117                                ->getElementType())->getNumElements());
2118   llvm::ArrayType *VBTableType =
2119     llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2120   llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2121   GV->setInitializer(Init);
2122 
2123   if (RD->hasAttr<DLLImportAttr>())
2124     GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2125 }
2126 
2127 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2128                                                     Address This,
2129                                                     const ThisAdjustment &TA) {
2130   if (TA.isEmpty())
2131     return This.getPointer();
2132 
2133   This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
2134 
2135   llvm::Value *V;
2136   if (TA.Virtual.isEmpty()) {
2137     V = This.getPointer();
2138   } else {
2139     assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2140     // Adjust the this argument based on the vtordisp value.
2141     Address VtorDispPtr =
2142         CGF.Builder.CreateConstInBoundsByteGEP(This,
2143                  CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2144     VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
2145     llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2146     V = CGF.Builder.CreateGEP(This.getPointer(),
2147                               CGF.Builder.CreateNeg(VtorDisp));
2148 
2149     // Unfortunately, having applied the vtordisp means that we no
2150     // longer really have a known alignment for the vbptr step.
2151     // We'll assume the vbptr is pointer-aligned.
2152 
2153     if (TA.Virtual.Microsoft.VBPtrOffset) {
2154       // If the final overrider is defined in a virtual base other than the one
2155       // that holds the vfptr, we have to use a vtordispex thunk which looks up
2156       // the vbtable of the derived class.
2157       assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2158       assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2159       llvm::Value *VBPtr;
2160       llvm::Value *VBaseOffset =
2161           GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
2162                                   -TA.Virtual.Microsoft.VBPtrOffset,
2163                                   TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2164       V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2165     }
2166   }
2167 
2168   if (TA.NonVirtual) {
2169     // Non-virtual adjustment might result in a pointer outside the allocated
2170     // object, e.g. if the final overrider class is laid out after the virtual
2171     // base that declares a method in the most derived class.
2172     V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
2173   }
2174 
2175   // Don't need to bitcast back, the call CodeGen will handle this.
2176   return V;
2177 }
2178 
2179 llvm::Value *
2180 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2181                                          const ReturnAdjustment &RA) {
2182   if (RA.isEmpty())
2183     return Ret.getPointer();
2184 
2185   auto OrigTy = Ret.getType();
2186   Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
2187 
2188   llvm::Value *V = Ret.getPointer();
2189   if (RA.Virtual.Microsoft.VBIndex) {
2190     assert(RA.Virtual.Microsoft.VBIndex > 0);
2191     int32_t IntSize = CGF.getIntSize().getQuantity();
2192     llvm::Value *VBPtr;
2193     llvm::Value *VBaseOffset =
2194         GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2195                                 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2196     V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2197   }
2198 
2199   if (RA.NonVirtual)
2200     V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2201 
2202   // Cast back to the original type.
2203   return CGF.Builder.CreateBitCast(V, OrigTy);
2204 }
2205 
2206 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2207                                    QualType elementType) {
2208   // Microsoft seems to completely ignore the possibility of a
2209   // two-argument usual deallocation function.
2210   return elementType.isDestructedType();
2211 }
2212 
2213 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2214   // Microsoft seems to completely ignore the possibility of a
2215   // two-argument usual deallocation function.
2216   return expr->getAllocatedType().isDestructedType();
2217 }
2218 
2219 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2220   // The array cookie is always a size_t; we then pad that out to the
2221   // alignment of the element type.
2222   ASTContext &Ctx = getContext();
2223   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2224                   Ctx.getTypeAlignInChars(type));
2225 }
2226 
2227 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2228                                                   Address allocPtr,
2229                                                   CharUnits cookieSize) {
2230   Address numElementsPtr =
2231     CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
2232   return CGF.Builder.CreateLoad(numElementsPtr);
2233 }
2234 
2235 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2236                                                Address newPtr,
2237                                                llvm::Value *numElements,
2238                                                const CXXNewExpr *expr,
2239                                                QualType elementType) {
2240   assert(requiresArrayCookie(expr));
2241 
2242   // The size of the cookie.
2243   CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2244 
2245   // Compute an offset to the cookie.
2246   Address cookiePtr = newPtr;
2247 
2248   // Write the number of elements into the appropriate slot.
2249   Address numElementsPtr
2250     = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
2251   CGF.Builder.CreateStore(numElements, numElementsPtr);
2252 
2253   // Finally, compute a pointer to the actual data buffer by skipping
2254   // over the cookie completely.
2255   return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2256 }
2257 
2258 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2259                                         llvm::FunctionCallee Dtor,
2260                                         llvm::Constant *Addr) {
2261   // Create a function which calls the destructor.
2262   llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2263 
2264   // extern "C" int __tlregdtor(void (*f)(void));
2265   llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2266       CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2267 
2268   llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2269       TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2270   if (llvm::Function *TLRegDtorFn =
2271           dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2272     TLRegDtorFn->setDoesNotThrow();
2273 
2274   CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2275 }
2276 
2277 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2278                                          llvm::FunctionCallee Dtor,
2279                                          llvm::Constant *Addr) {
2280   if (D.isNoDestroy(CGM.getContext()))
2281     return;
2282 
2283   if (D.getTLSKind())
2284     return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2285 
2286   // The default behavior is to use atexit.
2287   CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2288 }
2289 
2290 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2291     CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2292     ArrayRef<llvm::Function *> CXXThreadLocalInits,
2293     ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2294   if (CXXThreadLocalInits.empty())
2295     return;
2296 
2297   CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2298                                   llvm::Triple::x86
2299                               ? "/include:___dyn_tls_init@12"
2300                               : "/include:__dyn_tls_init");
2301 
2302   // This will create a GV in the .CRT$XDU section.  It will point to our
2303   // initialization function.  The CRT will call all of these function
2304   // pointers at start-up time and, eventually, at thread-creation time.
2305   auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2306     llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2307         CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2308         llvm::GlobalVariable::InternalLinkage, InitFunc,
2309         Twine(InitFunc->getName(), "$initializer$"));
2310     InitFuncPtr->setSection(".CRT$XDU");
2311     // This variable has discardable linkage, we have to add it to @llvm.used to
2312     // ensure it won't get discarded.
2313     CGM.addUsedGlobal(InitFuncPtr);
2314     return InitFuncPtr;
2315   };
2316 
2317   std::vector<llvm::Function *> NonComdatInits;
2318   for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2319     llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2320         CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2321     llvm::Function *F = CXXThreadLocalInits[I];
2322 
2323     // If the GV is already in a comdat group, then we have to join it.
2324     if (llvm::Comdat *C = GV->getComdat())
2325       AddToXDU(F)->setComdat(C);
2326     else
2327       NonComdatInits.push_back(F);
2328   }
2329 
2330   if (!NonComdatInits.empty()) {
2331     llvm::FunctionType *FTy =
2332         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2333     llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
2334         FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2335         SourceLocation(), /*TLS=*/true);
2336     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2337 
2338     AddToXDU(InitFunc);
2339   }
2340 }
2341 
2342 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2343                                                      const VarDecl *VD,
2344                                                      QualType LValType) {
2345   CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
2346   return LValue();
2347 }
2348 
2349 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2350   StringRef VarName("_Init_thread_epoch");
2351   CharUnits Align = CGM.getIntAlign();
2352   if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2353     return ConstantAddress(GV, Align);
2354   auto *GV = new llvm::GlobalVariable(
2355       CGM.getModule(), CGM.IntTy,
2356       /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2357       /*Initializer=*/nullptr, VarName,
2358       /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2359   GV->setAlignment(Align.getQuantity());
2360   return ConstantAddress(GV, Align);
2361 }
2362 
2363 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2364   llvm::FunctionType *FTy =
2365       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2366                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2367   return CGM.CreateRuntimeFunction(
2368       FTy, "_Init_thread_header",
2369       llvm::AttributeList::get(CGM.getLLVMContext(),
2370                                llvm::AttributeList::FunctionIndex,
2371                                llvm::Attribute::NoUnwind),
2372       /*Local=*/true);
2373 }
2374 
2375 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2376   llvm::FunctionType *FTy =
2377       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2378                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2379   return CGM.CreateRuntimeFunction(
2380       FTy, "_Init_thread_footer",
2381       llvm::AttributeList::get(CGM.getLLVMContext(),
2382                                llvm::AttributeList::FunctionIndex,
2383                                llvm::Attribute::NoUnwind),
2384       /*Local=*/true);
2385 }
2386 
2387 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2388   llvm::FunctionType *FTy =
2389       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2390                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2391   return CGM.CreateRuntimeFunction(
2392       FTy, "_Init_thread_abort",
2393       llvm::AttributeList::get(CGM.getLLVMContext(),
2394                                llvm::AttributeList::FunctionIndex,
2395                                llvm::Attribute::NoUnwind),
2396       /*Local=*/true);
2397 }
2398 
2399 namespace {
2400 struct ResetGuardBit final : EHScopeStack::Cleanup {
2401   Address Guard;
2402   unsigned GuardNum;
2403   ResetGuardBit(Address Guard, unsigned GuardNum)
2404       : Guard(Guard), GuardNum(GuardNum) {}
2405 
2406   void Emit(CodeGenFunction &CGF, Flags flags) override {
2407     // Reset the bit in the mask so that the static variable may be
2408     // reinitialized.
2409     CGBuilderTy &Builder = CGF.Builder;
2410     llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2411     llvm::ConstantInt *Mask =
2412         llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2413     Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2414   }
2415 };
2416 
2417 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2418   llvm::Value *Guard;
2419   CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2420 
2421   void Emit(CodeGenFunction &CGF, Flags flags) override {
2422     // Calling _Init_thread_abort will reset the guard's state.
2423     CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2424   }
2425 };
2426 }
2427 
2428 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2429                                       llvm::GlobalVariable *GV,
2430                                       bool PerformInit) {
2431   // MSVC only uses guards for static locals.
2432   if (!D.isStaticLocal()) {
2433     assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2434     // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2435     llvm::Function *F = CGF.CurFn;
2436     F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2437     F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2438     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2439     return;
2440   }
2441 
2442   bool ThreadlocalStatic = D.getTLSKind();
2443   bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2444 
2445   // Thread-safe static variables which aren't thread-specific have a
2446   // per-variable guard.
2447   bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2448 
2449   CGBuilderTy &Builder = CGF.Builder;
2450   llvm::IntegerType *GuardTy = CGF.Int32Ty;
2451   llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2452   CharUnits GuardAlign = CharUnits::fromQuantity(4);
2453 
2454   // Get the guard variable for this function if we have one already.
2455   GuardInfo *GI = nullptr;
2456   if (ThreadlocalStatic)
2457     GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2458   else if (!ThreadsafeStatic)
2459     GI = &GuardVariableMap[D.getDeclContext()];
2460 
2461   llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2462   unsigned GuardNum;
2463   if (D.isExternallyVisible()) {
2464     // Externally visible variables have to be numbered in Sema to properly
2465     // handle unreachable VarDecls.
2466     GuardNum = getContext().getStaticLocalNumber(&D);
2467     assert(GuardNum > 0);
2468     GuardNum--;
2469   } else if (HasPerVariableGuard) {
2470     GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2471   } else {
2472     // Non-externally visible variables are numbered here in CodeGen.
2473     GuardNum = GI->BitIndex++;
2474   }
2475 
2476   if (!HasPerVariableGuard && GuardNum >= 32) {
2477     if (D.isExternallyVisible())
2478       ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2479     GuardNum %= 32;
2480     GuardVar = nullptr;
2481   }
2482 
2483   if (!GuardVar) {
2484     // Mangle the name for the guard.
2485     SmallString<256> GuardName;
2486     {
2487       llvm::raw_svector_ostream Out(GuardName);
2488       if (HasPerVariableGuard)
2489         getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2490                                                                Out);
2491       else
2492         getMangleContext().mangleStaticGuardVariable(&D, Out);
2493     }
2494 
2495     // Create the guard variable with a zero-initializer. Just absorb linkage,
2496     // visibility and dll storage class from the guarded variable.
2497     GuardVar =
2498         new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2499                                  GV->getLinkage(), Zero, GuardName.str());
2500     GuardVar->setVisibility(GV->getVisibility());
2501     GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2502     GuardVar->setAlignment(GuardAlign.getQuantity());
2503     if (GuardVar->isWeakForLinker())
2504       GuardVar->setComdat(
2505           CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2506     if (D.getTLSKind())
2507       GuardVar->setThreadLocal(true);
2508     if (GI && !HasPerVariableGuard)
2509       GI->Guard = GuardVar;
2510   }
2511 
2512   ConstantAddress GuardAddr(GuardVar, GuardAlign);
2513 
2514   assert(GuardVar->getLinkage() == GV->getLinkage() &&
2515          "static local from the same function had different linkage");
2516 
2517   if (!HasPerVariableGuard) {
2518     // Pseudo code for the test:
2519     // if (!(GuardVar & MyGuardBit)) {
2520     //   GuardVar |= MyGuardBit;
2521     //   ... initialize the object ...;
2522     // }
2523 
2524     // Test our bit from the guard variable.
2525     llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2526     llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2527     llvm::Value *NeedsInit =
2528         Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2529     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2530     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2531     CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2532                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2533 
2534     // Set our bit in the guard variable and emit the initializer and add a global
2535     // destructor if appropriate.
2536     CGF.EmitBlock(InitBlock);
2537     Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2538     CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2539     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2540     CGF.PopCleanupBlock();
2541     Builder.CreateBr(EndBlock);
2542 
2543     // Continue.
2544     CGF.EmitBlock(EndBlock);
2545   } else {
2546     // Pseudo code for the test:
2547     // if (TSS > _Init_thread_epoch) {
2548     //   _Init_thread_header(&TSS);
2549     //   if (TSS == -1) {
2550     //     ... initialize the object ...;
2551     //     _Init_thread_footer(&TSS);
2552     //   }
2553     // }
2554     //
2555     // The algorithm is almost identical to what can be found in the appendix
2556     // found in N2325.
2557 
2558     // This BasicBLock determines whether or not we have any work to do.
2559     llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2560     FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2561     llvm::LoadInst *InitThreadEpoch =
2562         Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2563     llvm::Value *IsUninitialized =
2564         Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2565     llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2566     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2567     CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2568                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2569 
2570     // This BasicBlock attempts to determine whether or not this thread is
2571     // responsible for doing the initialization.
2572     CGF.EmitBlock(AttemptInitBlock);
2573     CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2574                                 GuardAddr.getPointer());
2575     llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2576     SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2577     llvm::Value *ShouldDoInit =
2578         Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2579     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2580     Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2581 
2582     // Ok, we ended up getting selected as the initializing thread.
2583     CGF.EmitBlock(InitBlock);
2584     CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2585     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2586     CGF.PopCleanupBlock();
2587     CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2588                                 GuardAddr.getPointer());
2589     Builder.CreateBr(EndBlock);
2590 
2591     CGF.EmitBlock(EndBlock);
2592   }
2593 }
2594 
2595 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2596   // Null-ness for function memptrs only depends on the first field, which is
2597   // the function pointer.  The rest don't matter, so we can zero initialize.
2598   if (MPT->isMemberFunctionPointer())
2599     return true;
2600 
2601   // The virtual base adjustment field is always -1 for null, so if we have one
2602   // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
2603   // valid field offset.
2604   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2605   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2606   return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
2607           RD->nullFieldOffsetIsZero());
2608 }
2609 
2610 llvm::Type *
2611 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2612   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2613   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2614   llvm::SmallVector<llvm::Type *, 4> fields;
2615   if (MPT->isMemberFunctionPointer())
2616     fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
2617   else
2618     fields.push_back(CGM.IntTy);  // FieldOffset
2619 
2620   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2621                                           Inheritance))
2622     fields.push_back(CGM.IntTy);
2623   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2624     fields.push_back(CGM.IntTy);
2625   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2626     fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
2627 
2628   if (fields.size() == 1)
2629     return fields[0];
2630   return llvm::StructType::get(CGM.getLLVMContext(), fields);
2631 }
2632 
2633 void MicrosoftCXXABI::
2634 GetNullMemberPointerFields(const MemberPointerType *MPT,
2635                            llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2636   assert(fields.empty());
2637   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2638   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2639   if (MPT->isMemberFunctionPointer()) {
2640     // FunctionPointerOrVirtualThunk
2641     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2642   } else {
2643     if (RD->nullFieldOffsetIsZero())
2644       fields.push_back(getZeroInt());  // FieldOffset
2645     else
2646       fields.push_back(getAllOnesInt());  // FieldOffset
2647   }
2648 
2649   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2650                                           Inheritance))
2651     fields.push_back(getZeroInt());
2652   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2653     fields.push_back(getZeroInt());
2654   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2655     fields.push_back(getAllOnesInt());
2656 }
2657 
2658 llvm::Constant *
2659 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2660   llvm::SmallVector<llvm::Constant *, 4> fields;
2661   GetNullMemberPointerFields(MPT, fields);
2662   if (fields.size() == 1)
2663     return fields[0];
2664   llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2665   assert(Res->getType() == ConvertMemberPointerType(MPT));
2666   return Res;
2667 }
2668 
2669 llvm::Constant *
2670 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2671                                        bool IsMemberFunction,
2672                                        const CXXRecordDecl *RD,
2673                                        CharUnits NonVirtualBaseAdjustment,
2674                                        unsigned VBTableIndex) {
2675   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2676 
2677   // Single inheritance class member pointer are represented as scalars instead
2678   // of aggregates.
2679   if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2680     return FirstField;
2681 
2682   llvm::SmallVector<llvm::Constant *, 4> fields;
2683   fields.push_back(FirstField);
2684 
2685   if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2686     fields.push_back(llvm::ConstantInt::get(
2687       CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2688 
2689   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2690     CharUnits Offs = CharUnits::Zero();
2691     if (VBTableIndex)
2692       Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2693     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2694   }
2695 
2696   // The rest of the fields are adjusted by conversions to a more derived class.
2697   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2698     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2699 
2700   return llvm::ConstantStruct::getAnon(fields);
2701 }
2702 
2703 llvm::Constant *
2704 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2705                                        CharUnits offset) {
2706   return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
2707 }
2708 
2709 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
2710                                                        CharUnits offset) {
2711   if (RD->getMSInheritanceModel() ==
2712       MSInheritanceAttr::Keyword_virtual_inheritance)
2713     offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2714   llvm::Constant *FirstField =
2715     llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2716   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2717                                CharUnits::Zero(), /*VBTableIndex=*/0);
2718 }
2719 
2720 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2721                                                    QualType MPType) {
2722   const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2723   const ValueDecl *MPD = MP.getMemberPointerDecl();
2724   if (!MPD)
2725     return EmitNullMemberPointer(DstTy);
2726 
2727   ASTContext &Ctx = getContext();
2728   ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2729 
2730   llvm::Constant *C;
2731   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2732     C = EmitMemberFunctionPointer(MD);
2733   } else {
2734     // For a pointer to data member, start off with the offset of the field in
2735     // the class in which it was declared, and convert from there if necessary.
2736     // For indirect field decls, get the outermost anonymous field and use the
2737     // parent class.
2738     CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2739     const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
2740     if (!FD)
2741       FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
2742     const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
2743     RD = RD->getMostRecentNonInjectedDecl();
2744     C = EmitMemberDataPointer(RD, FieldOffset);
2745   }
2746 
2747   if (!MemberPointerPath.empty()) {
2748     const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2749     const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2750     const MemberPointerType *SrcTy =
2751         Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2752             ->castAs<MemberPointerType>();
2753 
2754     bool DerivedMember = MP.isMemberPointerToDerivedMember();
2755     SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2756     const CXXRecordDecl *PrevRD = SrcRD;
2757     for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2758       const CXXRecordDecl *Base = nullptr;
2759       const CXXRecordDecl *Derived = nullptr;
2760       if (DerivedMember) {
2761         Base = PathElem;
2762         Derived = PrevRD;
2763       } else {
2764         Base = PrevRD;
2765         Derived = PathElem;
2766       }
2767       for (const CXXBaseSpecifier &BS : Derived->bases())
2768         if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2769             Base->getCanonicalDecl())
2770           DerivedToBasePath.push_back(&BS);
2771       PrevRD = PathElem;
2772     }
2773     assert(DerivedToBasePath.size() == MemberPointerPath.size());
2774 
2775     CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2776                                 : CK_BaseToDerivedMemberPointer;
2777     C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2778                                     DerivedToBasePath.end(), C);
2779   }
2780   return C;
2781 }
2782 
2783 llvm::Constant *
2784 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2785   assert(MD->isInstance() && "Member function must not be static!");
2786 
2787   CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2788   const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2789   CodeGenTypes &Types = CGM.getTypes();
2790 
2791   unsigned VBTableIndex = 0;
2792   llvm::Constant *FirstField;
2793   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2794   if (!MD->isVirtual()) {
2795     llvm::Type *Ty;
2796     // Check whether the function has a computable LLVM signature.
2797     if (Types.isFuncTypeConvertible(FPT)) {
2798       // The function has a computable LLVM signature; use the correct type.
2799       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2800     } else {
2801       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2802       // function type is incomplete.
2803       Ty = CGM.PtrDiffTy;
2804     }
2805     FirstField = CGM.GetAddrOfFunction(MD, Ty);
2806   } else {
2807     auto &VTableContext = CGM.getMicrosoftVTableContext();
2808     MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2809     FirstField = EmitVirtualMemPtrThunk(MD, ML);
2810     // Include the vfptr adjustment if the method is in a non-primary vftable.
2811     NonVirtualBaseAdjustment += ML.VFPtrOffset;
2812     if (ML.VBase)
2813       VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2814   }
2815 
2816   if (VBTableIndex == 0 &&
2817       RD->getMSInheritanceModel() ==
2818           MSInheritanceAttr::Keyword_virtual_inheritance)
2819     NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2820 
2821   // The rest of the fields are common with data member pointers.
2822   FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2823   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2824                                NonVirtualBaseAdjustment, VBTableIndex);
2825 }
2826 
2827 /// Member pointers are the same if they're either bitwise identical *or* both
2828 /// null.  Null-ness for function members is determined by the first field,
2829 /// while for data member pointers we must compare all fields.
2830 llvm::Value *
2831 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2832                                              llvm::Value *L,
2833                                              llvm::Value *R,
2834                                              const MemberPointerType *MPT,
2835                                              bool Inequality) {
2836   CGBuilderTy &Builder = CGF.Builder;
2837 
2838   // Handle != comparisons by switching the sense of all boolean operations.
2839   llvm::ICmpInst::Predicate Eq;
2840   llvm::Instruction::BinaryOps And, Or;
2841   if (Inequality) {
2842     Eq = llvm::ICmpInst::ICMP_NE;
2843     And = llvm::Instruction::Or;
2844     Or = llvm::Instruction::And;
2845   } else {
2846     Eq = llvm::ICmpInst::ICMP_EQ;
2847     And = llvm::Instruction::And;
2848     Or = llvm::Instruction::Or;
2849   }
2850 
2851   // If this is a single field member pointer (single inheritance), this is a
2852   // single icmp.
2853   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2854   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2855   if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2856                                          Inheritance))
2857     return Builder.CreateICmp(Eq, L, R);
2858 
2859   // Compare the first field.
2860   llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2861   llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2862   llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2863 
2864   // Compare everything other than the first field.
2865   llvm::Value *Res = nullptr;
2866   llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2867   for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2868     llvm::Value *LF = Builder.CreateExtractValue(L, I);
2869     llvm::Value *RF = Builder.CreateExtractValue(R, I);
2870     llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2871     if (Res)
2872       Res = Builder.CreateBinOp(And, Res, Cmp);
2873     else
2874       Res = Cmp;
2875   }
2876 
2877   // Check if the first field is 0 if this is a function pointer.
2878   if (MPT->isMemberFunctionPointer()) {
2879     // (l1 == r1 && ...) || l0 == 0
2880     llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2881     llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2882     Res = Builder.CreateBinOp(Or, Res, IsZero);
2883   }
2884 
2885   // Combine the comparison of the first field, which must always be true for
2886   // this comparison to succeeed.
2887   return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2888 }
2889 
2890 llvm::Value *
2891 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2892                                             llvm::Value *MemPtr,
2893                                             const MemberPointerType *MPT) {
2894   CGBuilderTy &Builder = CGF.Builder;
2895   llvm::SmallVector<llvm::Constant *, 4> fields;
2896   // We only need one field for member functions.
2897   if (MPT->isMemberFunctionPointer())
2898     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2899   else
2900     GetNullMemberPointerFields(MPT, fields);
2901   assert(!fields.empty());
2902   llvm::Value *FirstField = MemPtr;
2903   if (MemPtr->getType()->isStructTy())
2904     FirstField = Builder.CreateExtractValue(MemPtr, 0);
2905   llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2906 
2907   // For function member pointers, we only need to test the function pointer
2908   // field.  The other fields if any can be garbage.
2909   if (MPT->isMemberFunctionPointer())
2910     return Res;
2911 
2912   // Otherwise, emit a series of compares and combine the results.
2913   for (int I = 1, E = fields.size(); I < E; ++I) {
2914     llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2915     llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2916     Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2917   }
2918   return Res;
2919 }
2920 
2921 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2922                                                   llvm::Constant *Val) {
2923   // Function pointers are null if the pointer in the first field is null.
2924   if (MPT->isMemberFunctionPointer()) {
2925     llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2926       Val->getAggregateElement(0U) : Val;
2927     return FirstField->isNullValue();
2928   }
2929 
2930   // If it's not a function pointer and it's zero initializable, we can easily
2931   // check zero.
2932   if (isZeroInitializable(MPT) && Val->isNullValue())
2933     return true;
2934 
2935   // Otherwise, break down all the fields for comparison.  Hopefully these
2936   // little Constants are reused, while a big null struct might not be.
2937   llvm::SmallVector<llvm::Constant *, 4> Fields;
2938   GetNullMemberPointerFields(MPT, Fields);
2939   if (Fields.size() == 1) {
2940     assert(Val->getType()->isIntegerTy());
2941     return Val == Fields[0];
2942   }
2943 
2944   unsigned I, E;
2945   for (I = 0, E = Fields.size(); I != E; ++I) {
2946     if (Val->getAggregateElement(I) != Fields[I])
2947       break;
2948   }
2949   return I == E;
2950 }
2951 
2952 llvm::Value *
2953 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2954                                          Address This,
2955                                          llvm::Value *VBPtrOffset,
2956                                          llvm::Value *VBTableOffset,
2957                                          llvm::Value **VBPtrOut) {
2958   CGBuilderTy &Builder = CGF.Builder;
2959   // Load the vbtable pointer from the vbptr in the instance.
2960   This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
2961   llvm::Value *VBPtr =
2962     Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
2963   if (VBPtrOut) *VBPtrOut = VBPtr;
2964   VBPtr = Builder.CreateBitCast(VBPtr,
2965             CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
2966 
2967   CharUnits VBPtrAlign;
2968   if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
2969     VBPtrAlign = This.getAlignment().alignmentAtOffset(
2970                                    CharUnits::fromQuantity(CI->getSExtValue()));
2971   } else {
2972     VBPtrAlign = CGF.getPointerAlign();
2973   }
2974 
2975   llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
2976 
2977   // Translate from byte offset to table index. It improves analyzability.
2978   llvm::Value *VBTableIndex = Builder.CreateAShr(
2979       VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2980       "vbtindex", /*isExact=*/true);
2981 
2982   // Load an i32 offset from the vb-table.
2983   llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2984   VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2985   return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
2986                                    "vbase_offs");
2987 }
2988 
2989 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
2990 // it.
2991 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2992     CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2993     Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2994   CGBuilderTy &Builder = CGF.Builder;
2995   Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
2996   llvm::BasicBlock *OriginalBB = nullptr;
2997   llvm::BasicBlock *SkipAdjustBB = nullptr;
2998   llvm::BasicBlock *VBaseAdjustBB = nullptr;
2999 
3000   // In the unspecified inheritance model, there might not be a vbtable at all,
3001   // in which case we need to skip the virtual base lookup.  If there is a
3002   // vbtable, the first entry is a no-op entry that gives back the original
3003   // base, so look for a virtual base adjustment offset of zero.
3004   if (VBPtrOffset) {
3005     OriginalBB = Builder.GetInsertBlock();
3006     VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
3007     SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
3008     llvm::Value *IsVirtual =
3009       Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
3010                            "memptr.is_vbase");
3011     Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
3012     CGF.EmitBlock(VBaseAdjustBB);
3013   }
3014 
3015   // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3016   // know the vbptr offset.
3017   if (!VBPtrOffset) {
3018     CharUnits offs = CharUnits::Zero();
3019     if (!RD->hasDefinition()) {
3020       DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3021       unsigned DiagID = Diags.getCustomDiagID(
3022           DiagnosticsEngine::Error,
3023           "member pointer representation requires a "
3024           "complete class type for %0 to perform this expression");
3025       Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3026     } else if (RD->getNumVBases())
3027       offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3028     VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3029   }
3030   llvm::Value *VBPtr = nullptr;
3031   llvm::Value *VBaseOffs =
3032     GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3033   llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
3034 
3035   // Merge control flow with the case where we didn't have to adjust.
3036   if (VBaseAdjustBB) {
3037     Builder.CreateBr(SkipAdjustBB);
3038     CGF.EmitBlock(SkipAdjustBB);
3039     llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3040     Phi->addIncoming(Base.getPointer(), OriginalBB);
3041     Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3042     return Phi;
3043   }
3044   return AdjustedBase;
3045 }
3046 
3047 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3048     CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3049     const MemberPointerType *MPT) {
3050   assert(MPT->isMemberDataPointer());
3051   unsigned AS = Base.getAddressSpace();
3052   llvm::Type *PType =
3053       CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
3054   CGBuilderTy &Builder = CGF.Builder;
3055   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3056   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
3057 
3058   // Extract the fields we need, regardless of model.  We'll apply them if we
3059   // have them.
3060   llvm::Value *FieldOffset = MemPtr;
3061   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3062   llvm::Value *VBPtrOffset = nullptr;
3063   if (MemPtr->getType()->isStructTy()) {
3064     // We need to extract values.
3065     unsigned I = 0;
3066     FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3067     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
3068       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3069     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
3070       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3071   }
3072 
3073   llvm::Value *Addr;
3074   if (VirtualBaseAdjustmentOffset) {
3075     Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3076                              VBPtrOffset);
3077   } else {
3078     Addr = Base.getPointer();
3079   }
3080 
3081   // Cast to char*.
3082   Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
3083 
3084   // Apply the offset, which we assume is non-null.
3085   Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
3086 
3087   // Cast the address to the appropriate pointer type, adopting the address
3088   // space of the base pointer.
3089   return Builder.CreateBitCast(Addr, PType);
3090 }
3091 
3092 llvm::Value *
3093 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3094                                              const CastExpr *E,
3095                                              llvm::Value *Src) {
3096   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3097          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3098          E->getCastKind() == CK_ReinterpretMemberPointer);
3099 
3100   // Use constant emission if we can.
3101   if (isa<llvm::Constant>(Src))
3102     return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3103 
3104   // We may be adding or dropping fields from the member pointer, so we need
3105   // both types and the inheritance models of both records.
3106   const MemberPointerType *SrcTy =
3107     E->getSubExpr()->getType()->castAs<MemberPointerType>();
3108   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3109   bool IsFunc = SrcTy->isMemberFunctionPointer();
3110 
3111   // If the classes use the same null representation, reinterpret_cast is a nop.
3112   bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3113   if (IsReinterpret && IsFunc)
3114     return Src;
3115 
3116   CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3117   CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3118   if (IsReinterpret &&
3119       SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3120     return Src;
3121 
3122   CGBuilderTy &Builder = CGF.Builder;
3123 
3124   // Branch past the conversion if Src is null.
3125   llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3126   llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3127 
3128   // C++ 5.2.10p9: The null member pointer value is converted to the null member
3129   //   pointer value of the destination type.
3130   if (IsReinterpret) {
3131     // For reinterpret casts, sema ensures that src and dst are both functions
3132     // or data and have the same size, which means the LLVM types should match.
3133     assert(Src->getType() == DstNull->getType());
3134     return Builder.CreateSelect(IsNotNull, Src, DstNull);
3135   }
3136 
3137   llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3138   llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3139   llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3140   Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3141   CGF.EmitBlock(ConvertBB);
3142 
3143   llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3144       SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3145       Builder);
3146 
3147   Builder.CreateBr(ContinueBB);
3148 
3149   // In the continuation, choose between DstNull and Dst.
3150   CGF.EmitBlock(ContinueBB);
3151   llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3152   Phi->addIncoming(DstNull, OriginalBB);
3153   Phi->addIncoming(Dst, ConvertBB);
3154   return Phi;
3155 }
3156 
3157 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3158     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3159     CastExpr::path_const_iterator PathBegin,
3160     CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3161     CGBuilderTy &Builder) {
3162   const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3163   const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3164   MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
3165   MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
3166   bool IsFunc = SrcTy->isMemberFunctionPointer();
3167   bool IsConstant = isa<llvm::Constant>(Src);
3168 
3169   // Decompose src.
3170   llvm::Value *FirstField = Src;
3171   llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3172   llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3173   llvm::Value *VBPtrOffset = getZeroInt();
3174   if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
3175     // We need to extract values.
3176     unsigned I = 0;
3177     FirstField = Builder.CreateExtractValue(Src, I++);
3178     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
3179       NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3180     if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
3181       VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3182     if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
3183       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3184   }
3185 
3186   bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3187   const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3188   const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3189 
3190   // For data pointers, we adjust the field offset directly.  For functions, we
3191   // have a separate field.
3192   llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3193 
3194   // The virtual inheritance model has a quirk: the virtual base table is always
3195   // referenced when dereferencing a member pointer even if the member pointer
3196   // is non-virtual.  This is accounted for by adjusting the non-virtual offset
3197   // to point backwards to the top of the MDC from the first VBase.  Undo this
3198   // adjustment to normalize the member pointer.
3199   llvm::Value *SrcVBIndexEqZero =
3200       Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3201   if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3202     if (int64_t SrcOffsetToFirstVBase =
3203             getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3204       llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3205           SrcVBIndexEqZero,
3206           llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3207           getZeroInt());
3208       NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3209     }
3210   }
3211 
3212   // A non-zero vbindex implies that we are dealing with a source member in a
3213   // floating virtual base in addition to some non-virtual offset.  If the
3214   // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3215   // fixed, base.  The difference between these two cases is that the vbindex +
3216   // nvoffset *always* point to the member regardless of what context they are
3217   // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
3218   // base requires explicit nv adjustment.
3219   llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3220       CGM.IntTy,
3221       CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3222           .getQuantity());
3223 
3224   llvm::Value *NVDisp;
3225   if (IsDerivedToBase)
3226     NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3227   else
3228     NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3229 
3230   NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3231 
3232   // Update the vbindex to an appropriate value in the destination because
3233   // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3234   llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3235   if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) &&
3236       MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) {
3237     if (llvm::GlobalVariable *VDispMap =
3238             getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3239       llvm::Value *VBIndex = Builder.CreateExactUDiv(
3240           VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3241       if (IsConstant) {
3242         llvm::Constant *Mapping = VDispMap->getInitializer();
3243         VirtualBaseAdjustmentOffset =
3244             Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3245       } else {
3246         llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3247         VirtualBaseAdjustmentOffset =
3248             Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
3249                                       CharUnits::fromQuantity(4));
3250       }
3251 
3252       DstVBIndexEqZero =
3253           Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3254     }
3255   }
3256 
3257   // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
3258   // it to the offset of the vbptr.
3259   if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) {
3260     llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3261         CGM.IntTy,
3262         getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3263     VBPtrOffset =
3264         Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3265   }
3266 
3267   // Likewise, apply a similar adjustment so that dereferencing the member
3268   // pointer correctly accounts for the distance between the start of the first
3269   // virtual base and the top of the MDC.
3270   if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3271     if (int64_t DstOffsetToFirstVBase =
3272             getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3273       llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3274           DstVBIndexEqZero,
3275           llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3276           getZeroInt());
3277       NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3278     }
3279   }
3280 
3281   // Recompose dst from the null struct and the adjusted fields from src.
3282   llvm::Value *Dst;
3283   if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
3284     Dst = FirstField;
3285   } else {
3286     Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3287     unsigned Idx = 0;
3288     Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3289     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
3290       Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3291     if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
3292       Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3293     if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
3294       Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3295   }
3296   return Dst;
3297 }
3298 
3299 llvm::Constant *
3300 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3301                                              llvm::Constant *Src) {
3302   const MemberPointerType *SrcTy =
3303       E->getSubExpr()->getType()->castAs<MemberPointerType>();
3304   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3305 
3306   CastKind CK = E->getCastKind();
3307 
3308   return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3309                                      E->path_end(), Src);
3310 }
3311 
3312 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3313     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3314     CastExpr::path_const_iterator PathBegin,
3315     CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3316   assert(CK == CK_DerivedToBaseMemberPointer ||
3317          CK == CK_BaseToDerivedMemberPointer ||
3318          CK == CK_ReinterpretMemberPointer);
3319   // If src is null, emit a new null for dst.  We can't return src because dst
3320   // might have a new representation.
3321   if (MemberPointerConstantIsNull(SrcTy, Src))
3322     return EmitNullMemberPointer(DstTy);
3323 
3324   // We don't need to do anything for reinterpret_casts of non-null member
3325   // pointers.  We should only get here when the two type representations have
3326   // the same size.
3327   if (CK == CK_ReinterpretMemberPointer)
3328     return Src;
3329 
3330   CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3331   auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3332       SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3333 
3334   return Dst;
3335 }
3336 
3337 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3338     CodeGenFunction &CGF, const Expr *E, Address This,
3339     llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3340     const MemberPointerType *MPT) {
3341   assert(MPT->isMemberFunctionPointer());
3342   const FunctionProtoType *FPT =
3343     MPT->getPointeeType()->castAs<FunctionProtoType>();
3344   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3345   llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
3346       CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
3347   CGBuilderTy &Builder = CGF.Builder;
3348 
3349   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
3350 
3351   // Extract the fields we need, regardless of model.  We'll apply them if we
3352   // have them.
3353   llvm::Value *FunctionPointer = MemPtr;
3354   llvm::Value *NonVirtualBaseAdjustment = nullptr;
3355   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3356   llvm::Value *VBPtrOffset = nullptr;
3357   if (MemPtr->getType()->isStructTy()) {
3358     // We need to extract values.
3359     unsigned I = 0;
3360     FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3361     if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
3362       NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3363     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
3364       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3365     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
3366       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3367   }
3368 
3369   if (VirtualBaseAdjustmentOffset) {
3370     ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3371                                    VirtualBaseAdjustmentOffset, VBPtrOffset);
3372   } else {
3373     ThisPtrForCall = This.getPointer();
3374   }
3375 
3376   if (NonVirtualBaseAdjustment) {
3377     // Apply the adjustment and cast back to the original struct type.
3378     llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
3379     Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
3380     ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
3381                                            "this.adjusted");
3382   }
3383 
3384   FunctionPointer =
3385     Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
3386   CGCallee Callee(FPT, FunctionPointer);
3387   return Callee;
3388 }
3389 
3390 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3391   return new MicrosoftCXXABI(CGM);
3392 }
3393 
3394 // MS RTTI Overview:
3395 // The run time type information emitted by cl.exe contains 5 distinct types of
3396 // structures.  Many of them reference each other.
3397 //
3398 // TypeInfo:  Static classes that are returned by typeid.
3399 //
3400 // CompleteObjectLocator:  Referenced by vftables.  They contain information
3401 //   required for dynamic casting, including OffsetFromTop.  They also contain
3402 //   a reference to the TypeInfo for the type and a reference to the
3403 //   CompleteHierarchyDescriptor for the type.
3404 //
3405 // ClassHierarchyDescriptor: Contains information about a class hierarchy.
3406 //   Used during dynamic_cast to walk a class hierarchy.  References a base
3407 //   class array and the size of said array.
3408 //
3409 // BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
3410 //   somewhat of a misnomer because the most derived class is also in the list
3411 //   as well as multiple copies of virtual bases (if they occur multiple times
3412 //   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for
3413 //   every path in the hierarchy, in pre-order depth first order.  Note, we do
3414 //   not declare a specific llvm type for BaseClassArray, it's merely an array
3415 //   of BaseClassDescriptor pointers.
3416 //
3417 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3418 //   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3419 //   BaseClassArray is.  It contains information about a class within a
3420 //   hierarchy such as: is this base is ambiguous and what is its offset in the
3421 //   vbtable.  The names of the BaseClassDescriptors have all of their fields
3422 //   mangled into them so they can be aggressively deduplicated by the linker.
3423 
3424 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3425   StringRef MangledName("??_7type_info@@6B@");
3426   if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3427     return VTable;
3428   return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3429                                   /*isConstant=*/true,
3430                                   llvm::GlobalVariable::ExternalLinkage,
3431                                   /*Initializer=*/nullptr, MangledName);
3432 }
3433 
3434 namespace {
3435 
3436 /// A Helper struct that stores information about a class in a class
3437 /// hierarchy.  The information stored in these structs struct is used during
3438 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3439 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3440 // implicit depth first pre-order tree connectivity.  getFirstChild and
3441 // getNextSibling allow us to walk the tree efficiently.
3442 struct MSRTTIClass {
3443   enum {
3444     IsPrivateOnPath = 1 | 8,
3445     IsAmbiguous = 2,
3446     IsPrivate = 4,
3447     IsVirtual = 16,
3448     HasHierarchyDescriptor = 64
3449   };
3450   MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3451   uint32_t initialize(const MSRTTIClass *Parent,
3452                       const CXXBaseSpecifier *Specifier);
3453 
3454   MSRTTIClass *getFirstChild() { return this + 1; }
3455   static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3456     return Child + 1 + Child->NumBases;
3457   }
3458 
3459   const CXXRecordDecl *RD, *VirtualRoot;
3460   uint32_t Flags, NumBases, OffsetInVBase;
3461 };
3462 
3463 /// Recursively initialize the base class array.
3464 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3465                                  const CXXBaseSpecifier *Specifier) {
3466   Flags = HasHierarchyDescriptor;
3467   if (!Parent) {
3468     VirtualRoot = nullptr;
3469     OffsetInVBase = 0;
3470   } else {
3471     if (Specifier->getAccessSpecifier() != AS_public)
3472       Flags |= IsPrivate | IsPrivateOnPath;
3473     if (Specifier->isVirtual()) {
3474       Flags |= IsVirtual;
3475       VirtualRoot = RD;
3476       OffsetInVBase = 0;
3477     } else {
3478       if (Parent->Flags & IsPrivateOnPath)
3479         Flags |= IsPrivateOnPath;
3480       VirtualRoot = Parent->VirtualRoot;
3481       OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3482           .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3483     }
3484   }
3485   NumBases = 0;
3486   MSRTTIClass *Child = getFirstChild();
3487   for (const CXXBaseSpecifier &Base : RD->bases()) {
3488     NumBases += Child->initialize(this, &Base) + 1;
3489     Child = getNextChild(Child);
3490   }
3491   return NumBases;
3492 }
3493 
3494 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3495   switch (Ty->getLinkage()) {
3496   case NoLinkage:
3497   case InternalLinkage:
3498   case UniqueExternalLinkage:
3499     return llvm::GlobalValue::InternalLinkage;
3500 
3501   case VisibleNoLinkage:
3502   case ModuleInternalLinkage:
3503   case ModuleLinkage:
3504   case ExternalLinkage:
3505     return llvm::GlobalValue::LinkOnceODRLinkage;
3506   }
3507   llvm_unreachable("Invalid linkage!");
3508 }
3509 
3510 /// An ephemeral helper class for building MS RTTI types.  It caches some
3511 /// calls to the module and information about the most derived class in a
3512 /// hierarchy.
3513 struct MSRTTIBuilder {
3514   enum {
3515     HasBranchingHierarchy = 1,
3516     HasVirtualBranchingHierarchy = 2,
3517     HasAmbiguousBases = 4
3518   };
3519 
3520   MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3521       : CGM(ABI.CGM), Context(CGM.getContext()),
3522         VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3523         Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3524         ABI(ABI) {}
3525 
3526   llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3527   llvm::GlobalVariable *
3528   getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3529   llvm::GlobalVariable *getClassHierarchyDescriptor();
3530   llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3531 
3532   CodeGenModule &CGM;
3533   ASTContext &Context;
3534   llvm::LLVMContext &VMContext;
3535   llvm::Module &Module;
3536   const CXXRecordDecl *RD;
3537   llvm::GlobalVariable::LinkageTypes Linkage;
3538   MicrosoftCXXABI &ABI;
3539 };
3540 
3541 } // namespace
3542 
3543 /// Recursively serializes a class hierarchy in pre-order depth first
3544 /// order.
3545 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3546                                     const CXXRecordDecl *RD) {
3547   Classes.push_back(MSRTTIClass(RD));
3548   for (const CXXBaseSpecifier &Base : RD->bases())
3549     serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3550 }
3551 
3552 /// Find ambiguity among base classes.
3553 static void
3554 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3555   llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3556   llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3557   llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3558   for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3559     if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3560         !VirtualBases.insert(Class->RD).second) {
3561       Class = MSRTTIClass::getNextChild(Class);
3562       continue;
3563     }
3564     if (!UniqueBases.insert(Class->RD).second)
3565       AmbiguousBases.insert(Class->RD);
3566     Class++;
3567   }
3568   if (AmbiguousBases.empty())
3569     return;
3570   for (MSRTTIClass &Class : Classes)
3571     if (AmbiguousBases.count(Class.RD))
3572       Class.Flags |= MSRTTIClass::IsAmbiguous;
3573 }
3574 
3575 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3576   SmallString<256> MangledName;
3577   {
3578     llvm::raw_svector_ostream Out(MangledName);
3579     ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3580   }
3581 
3582   // Check to see if we've already declared this ClassHierarchyDescriptor.
3583   if (auto CHD = Module.getNamedGlobal(MangledName))
3584     return CHD;
3585 
3586   // Serialize the class hierarchy and initialize the CHD Fields.
3587   SmallVector<MSRTTIClass, 8> Classes;
3588   serializeClassHierarchy(Classes, RD);
3589   Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3590   detectAmbiguousBases(Classes);
3591   int Flags = 0;
3592   for (auto Class : Classes) {
3593     if (Class.RD->getNumBases() > 1)
3594       Flags |= HasBranchingHierarchy;
3595     // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
3596     // believe the field isn't actually used.
3597     if (Class.Flags & MSRTTIClass::IsAmbiguous)
3598       Flags |= HasAmbiguousBases;
3599   }
3600   if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3601     Flags |= HasVirtualBranchingHierarchy;
3602   // These gep indices are used to get the address of the first element of the
3603   // base class array.
3604   llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3605                                llvm::ConstantInt::get(CGM.IntTy, 0)};
3606 
3607   // Forward-declare the class hierarchy descriptor
3608   auto Type = ABI.getClassHierarchyDescriptorType();
3609   auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3610                                       /*Initializer=*/nullptr,
3611                                       MangledName);
3612   if (CHD->isWeakForLinker())
3613     CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3614 
3615   auto *Bases = getBaseClassArray(Classes);
3616 
3617   // Initialize the base class ClassHierarchyDescriptor.
3618   llvm::Constant *Fields[] = {
3619       llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3620       llvm::ConstantInt::get(CGM.IntTy, Flags),
3621       llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3622       ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3623           Bases->getValueType(), Bases,
3624           llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3625   };
3626   CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3627   return CHD;
3628 }
3629 
3630 llvm::GlobalVariable *
3631 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3632   SmallString<256> MangledName;
3633   {
3634     llvm::raw_svector_ostream Out(MangledName);
3635     ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3636   }
3637 
3638   // Forward-declare the base class array.
3639   // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3640   // mode) bytes of padding.  We provide a pointer sized amount of padding by
3641   // adding +1 to Classes.size().  The sections have pointer alignment and are
3642   // marked pick-any so it shouldn't matter.
3643   llvm::Type *PtrType = ABI.getImageRelativeType(
3644       ABI.getBaseClassDescriptorType()->getPointerTo());
3645   auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3646   auto *BCA =
3647       new llvm::GlobalVariable(Module, ArrType,
3648                                /*isConstant=*/true, Linkage,
3649                                /*Initializer=*/nullptr, MangledName);
3650   if (BCA->isWeakForLinker())
3651     BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3652 
3653   // Initialize the BaseClassArray.
3654   SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3655   for (MSRTTIClass &Class : Classes)
3656     BaseClassArrayData.push_back(
3657         ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3658   BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3659   BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3660   return BCA;
3661 }
3662 
3663 llvm::GlobalVariable *
3664 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3665   // Compute the fields for the BaseClassDescriptor.  They are computed up front
3666   // because they are mangled into the name of the object.
3667   uint32_t OffsetInVBTable = 0;
3668   int32_t VBPtrOffset = -1;
3669   if (Class.VirtualRoot) {
3670     auto &VTableContext = CGM.getMicrosoftVTableContext();
3671     OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3672     VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3673   }
3674 
3675   SmallString<256> MangledName;
3676   {
3677     llvm::raw_svector_ostream Out(MangledName);
3678     ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3679         Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3680         Class.Flags, Out);
3681   }
3682 
3683   // Check to see if we've already declared this object.
3684   if (auto BCD = Module.getNamedGlobal(MangledName))
3685     return BCD;
3686 
3687   // Forward-declare the base class descriptor.
3688   auto Type = ABI.getBaseClassDescriptorType();
3689   auto BCD =
3690       new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3691                                /*Initializer=*/nullptr, MangledName);
3692   if (BCD->isWeakForLinker())
3693     BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3694 
3695   // Initialize the BaseClassDescriptor.
3696   llvm::Constant *Fields[] = {
3697       ABI.getImageRelativeConstant(
3698           ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3699       llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3700       llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3701       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3702       llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3703       llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3704       ABI.getImageRelativeConstant(
3705           MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3706   };
3707   BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3708   return BCD;
3709 }
3710 
3711 llvm::GlobalVariable *
3712 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3713   SmallString<256> MangledName;
3714   {
3715     llvm::raw_svector_ostream Out(MangledName);
3716     ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3717   }
3718 
3719   // Check to see if we've already computed this complete object locator.
3720   if (auto COL = Module.getNamedGlobal(MangledName))
3721     return COL;
3722 
3723   // Compute the fields of the complete object locator.
3724   int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3725   int VFPtrOffset = 0;
3726   // The offset includes the vtordisp if one exists.
3727   if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3728     if (Context.getASTRecordLayout(RD)
3729       .getVBaseOffsetsMap()
3730       .find(VBase)
3731       ->second.hasVtorDisp())
3732       VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3733 
3734   // Forward-declare the complete object locator.
3735   llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3736   auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3737     /*Initializer=*/nullptr, MangledName);
3738 
3739   // Initialize the CompleteObjectLocator.
3740   llvm::Constant *Fields[] = {
3741       llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3742       llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3743       llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3744       ABI.getImageRelativeConstant(
3745           CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3746       ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3747       ABI.getImageRelativeConstant(COL),
3748   };
3749   llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3750   if (!ABI.isImageRelative())
3751     FieldsRef = FieldsRef.drop_back();
3752   COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3753   if (COL->isWeakForLinker())
3754     COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3755   return COL;
3756 }
3757 
3758 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3759                                    bool &IsConst, bool &IsVolatile,
3760                                    bool &IsUnaligned) {
3761   T = Context.getExceptionObjectType(T);
3762 
3763   // C++14 [except.handle]p3:
3764   //   A handler is a match for an exception object of type E if [...]
3765   //     - the handler is of type cv T or const T& where T is a pointer type and
3766   //       E is a pointer type that can be converted to T by [...]
3767   //         - a qualification conversion
3768   IsConst = false;
3769   IsVolatile = false;
3770   IsUnaligned = false;
3771   QualType PointeeType = T->getPointeeType();
3772   if (!PointeeType.isNull()) {
3773     IsConst = PointeeType.isConstQualified();
3774     IsVolatile = PointeeType.isVolatileQualified();
3775     IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3776   }
3777 
3778   // Member pointer types like "const int A::*" are represented by having RTTI
3779   // for "int A::*" and separately storing the const qualifier.
3780   if (const auto *MPTy = T->getAs<MemberPointerType>())
3781     T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3782                                      MPTy->getClass());
3783 
3784   // Pointer types like "const int * const *" are represented by having RTTI
3785   // for "const int **" and separately storing the const qualifier.
3786   if (T->isPointerType())
3787     T = Context.getPointerType(PointeeType.getUnqualifiedType());
3788 
3789   return T;
3790 }
3791 
3792 CatchTypeInfo
3793 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3794                                               QualType CatchHandlerType) {
3795   // TypeDescriptors for exceptions never have qualified pointer types,
3796   // qualifiers are stored separately in order to support qualification
3797   // conversions.
3798   bool IsConst, IsVolatile, IsUnaligned;
3799   Type =
3800       decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3801 
3802   bool IsReference = CatchHandlerType->isReferenceType();
3803 
3804   uint32_t Flags = 0;
3805   if (IsConst)
3806     Flags |= 1;
3807   if (IsVolatile)
3808     Flags |= 2;
3809   if (IsUnaligned)
3810     Flags |= 4;
3811   if (IsReference)
3812     Flags |= 8;
3813 
3814   return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3815                        Flags};
3816 }
3817 
3818 /// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3819 /// llvm::GlobalVariable * because different type descriptors have different
3820 /// types, and need to be abstracted.  They are abstracting by casting the
3821 /// address to an Int8PtrTy.
3822 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3823   SmallString<256> MangledName;
3824   {
3825     llvm::raw_svector_ostream Out(MangledName);
3826     getMangleContext().mangleCXXRTTI(Type, Out);
3827   }
3828 
3829   // Check to see if we've already declared this TypeDescriptor.
3830   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3831     return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3832 
3833   // Note for the future: If we would ever like to do deferred emission of
3834   // RTTI, check if emitting vtables opportunistically need any adjustment.
3835 
3836   // Compute the fields for the TypeDescriptor.
3837   SmallString<256> TypeInfoString;
3838   {
3839     llvm::raw_svector_ostream Out(TypeInfoString);
3840     getMangleContext().mangleCXXRTTIName(Type, Out);
3841   }
3842 
3843   // Declare and initialize the TypeDescriptor.
3844   llvm::Constant *Fields[] = {
3845     getTypeInfoVTable(CGM),                        // VFPtr
3846     llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3847     llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3848   llvm::StructType *TypeDescriptorType =
3849       getTypeDescriptorType(TypeInfoString);
3850   auto *Var = new llvm::GlobalVariable(
3851       CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
3852       getLinkageForRTTI(Type),
3853       llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3854       MangledName);
3855   if (Var->isWeakForLinker())
3856     Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
3857   return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
3858 }
3859 
3860 /// Gets or a creates a Microsoft CompleteObjectLocator.
3861 llvm::GlobalVariable *
3862 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3863                                             const VPtrInfo &Info) {
3864   return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3865 }
3866 
3867 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
3868   if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
3869     // There are no constructor variants, always emit the complete destructor.
3870     llvm::Function *Fn =
3871         CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
3872     CGM.maybeSetTrivialComdat(*ctor, *Fn);
3873     return;
3874   }
3875 
3876   auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
3877 
3878   // Emit the base destructor if the base and complete (vbase) destructors are
3879   // equivalent. This effectively implements -mconstructor-aliases as part of
3880   // the ABI.
3881   if (GD.getDtorType() == Dtor_Complete &&
3882       dtor->getParent()->getNumVBases() == 0)
3883     GD = GD.getWithDtorType(Dtor_Base);
3884 
3885   // The base destructor is equivalent to the base destructor of its
3886   // base class if there is exactly one non-virtual base class with a
3887   // non-trivial destructor, there are no fields with a non-trivial
3888   // destructor, and the body of the destructor is trivial.
3889   if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3890     return;
3891 
3892   llvm::Function *Fn = CGM.codegenCXXStructor(GD);
3893   if (Fn->isWeakForLinker())
3894     Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
3895 }
3896 
3897 llvm::Function *
3898 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
3899                                          CXXCtorType CT) {
3900   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
3901 
3902   // Calculate the mangled name.
3903   SmallString<256> ThunkName;
3904   llvm::raw_svector_ostream Out(ThunkName);
3905   getMangleContext().mangleCXXCtor(CD, CT, Out);
3906 
3907   // If the thunk has been generated previously, just return it.
3908   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
3909     return cast<llvm::Function>(GV);
3910 
3911   // Create the llvm::Function.
3912   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
3913   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
3914   const CXXRecordDecl *RD = CD->getParent();
3915   QualType RecordTy = getContext().getRecordType(RD);
3916   llvm::Function *ThunkFn = llvm::Function::Create(
3917       ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
3918   ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
3919       FnInfo.getEffectiveCallingConvention()));
3920   if (ThunkFn->isWeakForLinker())
3921     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
3922   bool IsCopy = CT == Ctor_CopyingClosure;
3923 
3924   // Start codegen.
3925   CodeGenFunction CGF(CGM);
3926   CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
3927 
3928   // Build FunctionArgs.
3929   FunctionArgList FunctionArgs;
3930 
3931   // A constructor always starts with a 'this' pointer as its first argument.
3932   buildThisParam(CGF, FunctionArgs);
3933 
3934   // Following the 'this' pointer is a reference to the source object that we
3935   // are copying from.
3936   ImplicitParamDecl SrcParam(
3937       getContext(), /*DC=*/nullptr, SourceLocation(),
3938       &getContext().Idents.get("src"),
3939       getContext().getLValueReferenceType(RecordTy,
3940                                           /*SpelledAsLValue=*/true),
3941       ImplicitParamDecl::Other);
3942   if (IsCopy)
3943     FunctionArgs.push_back(&SrcParam);
3944 
3945   // Constructors for classes which utilize virtual bases have an additional
3946   // parameter which indicates whether or not it is being delegated to by a more
3947   // derived constructor.
3948   ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
3949                                   SourceLocation(),
3950                                   &getContext().Idents.get("is_most_derived"),
3951                                   getContext().IntTy, ImplicitParamDecl::Other);
3952   // Only add the parameter to the list if the class has virtual bases.
3953   if (RD->getNumVBases() > 0)
3954     FunctionArgs.push_back(&IsMostDerived);
3955 
3956   // Start defining the function.
3957   auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3958   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
3959                     FunctionArgs, CD->getLocation(), SourceLocation());
3960   // Create a scope with an artificial location for the body of this function.
3961   auto AL = ApplyDebugLocation::CreateArtificial(CGF);
3962   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
3963   llvm::Value *This = getThisValue(CGF);
3964 
3965   llvm::Value *SrcVal =
3966       IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
3967              : nullptr;
3968 
3969   CallArgList Args;
3970 
3971   // Push the this ptr.
3972   Args.add(RValue::get(This), CD->getThisType());
3973 
3974   // Push the src ptr.
3975   if (SrcVal)
3976     Args.add(RValue::get(SrcVal), SrcParam.getType());
3977 
3978   // Add the rest of the default arguments.
3979   SmallVector<const Stmt *, 4> ArgVec;
3980   ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
3981   for (const ParmVarDecl *PD : params) {
3982     assert(PD->hasDefaultArg() && "ctor closure lacks default args");
3983     ArgVec.push_back(PD->getDefaultArg());
3984   }
3985 
3986   CodeGenFunction::RunCleanupsScope Cleanups(CGF);
3987 
3988   const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
3989   CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
3990 
3991   // Insert any ABI-specific implicit constructor arguments.
3992   AddedStructorArgs ExtraArgs =
3993       addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
3994                                  /*ForVirtualBase=*/false,
3995                                  /*Delegating=*/false, Args);
3996   // Call the destructor with our arguments.
3997   llvm::Constant *CalleePtr =
3998       CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
3999   CGCallee Callee =
4000       CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
4001   const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
4002       Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
4003   CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
4004 
4005   Cleanups.ForceCleanup();
4006 
4007   // Emit the ret instruction, remove any temporary instructions created for the
4008   // aid of CodeGen.
4009   CGF.FinishFunction(SourceLocation());
4010 
4011   return ThunkFn;
4012 }
4013 
4014 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4015                                                   uint32_t NVOffset,
4016                                                   int32_t VBPtrOffset,
4017                                                   uint32_t VBIndex) {
4018   assert(!T->isReferenceType());
4019 
4020   CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4021   const CXXConstructorDecl *CD =
4022       RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4023   CXXCtorType CT = Ctor_Complete;
4024   if (CD)
4025     if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4026       CT = Ctor_CopyingClosure;
4027 
4028   uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4029   SmallString<256> MangledName;
4030   {
4031     llvm::raw_svector_ostream Out(MangledName);
4032     getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4033                                               VBPtrOffset, VBIndex, Out);
4034   }
4035   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4036     return getImageRelativeConstant(GV);
4037 
4038   // The TypeDescriptor is used by the runtime to determine if a catch handler
4039   // is appropriate for the exception object.
4040   llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4041 
4042   // The runtime is responsible for calling the copy constructor if the
4043   // exception is caught by value.
4044   llvm::Constant *CopyCtor;
4045   if (CD) {
4046     if (CT == Ctor_CopyingClosure)
4047       CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4048     else
4049       CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4050 
4051     CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
4052   } else {
4053     CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4054   }
4055   CopyCtor = getImageRelativeConstant(CopyCtor);
4056 
4057   bool IsScalar = !RD;
4058   bool HasVirtualBases = false;
4059   bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4060   QualType PointeeType = T;
4061   if (T->isPointerType())
4062     PointeeType = T->getPointeeType();
4063   if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4064     HasVirtualBases = RD->getNumVBases() > 0;
4065     if (IdentifierInfo *II = RD->getIdentifier())
4066       IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4067   }
4068 
4069   // Encode the relevant CatchableType properties into the Flags bitfield.
4070   // FIXME: Figure out how bits 2 or 8 can get set.
4071   uint32_t Flags = 0;
4072   if (IsScalar)
4073     Flags |= 1;
4074   if (HasVirtualBases)
4075     Flags |= 4;
4076   if (IsStdBadAlloc)
4077     Flags |= 16;
4078 
4079   llvm::Constant *Fields[] = {
4080       llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
4081       TD,                                             // TypeDescriptor
4082       llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
4083       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4084       llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
4085       llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
4086       CopyCtor                                        // CopyCtor
4087   };
4088   llvm::StructType *CTType = getCatchableTypeType();
4089   auto *GV = new llvm::GlobalVariable(
4090       CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4091       llvm::ConstantStruct::get(CTType, Fields), MangledName);
4092   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4093   GV->setSection(".xdata");
4094   if (GV->isWeakForLinker())
4095     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4096   return getImageRelativeConstant(GV);
4097 }
4098 
4099 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4100   assert(!T->isReferenceType());
4101 
4102   // See if we've already generated a CatchableTypeArray for this type before.
4103   llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4104   if (CTA)
4105     return CTA;
4106 
4107   // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4108   // using a SmallSetVector.  Duplicates may arise due to virtual bases
4109   // occurring more than once in the hierarchy.
4110   llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4111 
4112   // C++14 [except.handle]p3:
4113   //   A handler is a match for an exception object of type E if [...]
4114   //     - the handler is of type cv T or cv T& and T is an unambiguous public
4115   //       base class of E, or
4116   //     - the handler is of type cv T or const T& where T is a pointer type and
4117   //       E is a pointer type that can be converted to T by [...]
4118   //         - a standard pointer conversion (4.10) not involving conversions to
4119   //           pointers to private or protected or ambiguous classes
4120   const CXXRecordDecl *MostDerivedClass = nullptr;
4121   bool IsPointer = T->isPointerType();
4122   if (IsPointer)
4123     MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4124   else
4125     MostDerivedClass = T->getAsCXXRecordDecl();
4126 
4127   // Collect all the unambiguous public bases of the MostDerivedClass.
4128   if (MostDerivedClass) {
4129     const ASTContext &Context = getContext();
4130     const ASTRecordLayout &MostDerivedLayout =
4131         Context.getASTRecordLayout(MostDerivedClass);
4132     MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4133     SmallVector<MSRTTIClass, 8> Classes;
4134     serializeClassHierarchy(Classes, MostDerivedClass);
4135     Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4136     detectAmbiguousBases(Classes);
4137     for (const MSRTTIClass &Class : Classes) {
4138       // Skip any ambiguous or private bases.
4139       if (Class.Flags &
4140           (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4141         continue;
4142       // Write down how to convert from a derived pointer to a base pointer.
4143       uint32_t OffsetInVBTable = 0;
4144       int32_t VBPtrOffset = -1;
4145       if (Class.VirtualRoot) {
4146         OffsetInVBTable =
4147           VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4148         VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4149       }
4150 
4151       // Turn our record back into a pointer if the exception object is a
4152       // pointer.
4153       QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4154       if (IsPointer)
4155         RTTITy = Context.getPointerType(RTTITy);
4156       CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4157                                              VBPtrOffset, OffsetInVBTable));
4158     }
4159   }
4160 
4161   // C++14 [except.handle]p3:
4162   //   A handler is a match for an exception object of type E if
4163   //     - The handler is of type cv T or cv T& and E and T are the same type
4164   //       (ignoring the top-level cv-qualifiers)
4165   CatchableTypes.insert(getCatchableType(T));
4166 
4167   // C++14 [except.handle]p3:
4168   //   A handler is a match for an exception object of type E if
4169   //     - the handler is of type cv T or const T& where T is a pointer type and
4170   //       E is a pointer type that can be converted to T by [...]
4171   //         - a standard pointer conversion (4.10) not involving conversions to
4172   //           pointers to private or protected or ambiguous classes
4173   //
4174   // C++14 [conv.ptr]p2:
4175   //   A prvalue of type "pointer to cv T," where T is an object type, can be
4176   //   converted to a prvalue of type "pointer to cv void".
4177   if (IsPointer && T->getPointeeType()->isObjectType())
4178     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4179 
4180   // C++14 [except.handle]p3:
4181   //   A handler is a match for an exception object of type E if [...]
4182   //     - the handler is of type cv T or const T& where T is a pointer or
4183   //       pointer to member type and E is std::nullptr_t.
4184   //
4185   // We cannot possibly list all possible pointer types here, making this
4186   // implementation incompatible with the standard.  However, MSVC includes an
4187   // entry for pointer-to-void in this case.  Let's do the same.
4188   if (T->isNullPtrType())
4189     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4190 
4191   uint32_t NumEntries = CatchableTypes.size();
4192   llvm::Type *CTType =
4193       getImageRelativeType(getCatchableTypeType()->getPointerTo());
4194   llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4195   llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4196   llvm::Constant *Fields[] = {
4197       llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries
4198       llvm::ConstantArray::get(
4199           AT, llvm::makeArrayRef(CatchableTypes.begin(),
4200                                  CatchableTypes.end())) // CatchableTypes
4201   };
4202   SmallString<256> MangledName;
4203   {
4204     llvm::raw_svector_ostream Out(MangledName);
4205     getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4206   }
4207   CTA = new llvm::GlobalVariable(
4208       CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4209       llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4210   CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4211   CTA->setSection(".xdata");
4212   if (CTA->isWeakForLinker())
4213     CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4214   return CTA;
4215 }
4216 
4217 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4218   bool IsConst, IsVolatile, IsUnaligned;
4219   T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4220 
4221   // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4222   // the exception object may be caught as.
4223   llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4224   // The first field in a CatchableTypeArray is the number of CatchableTypes.
4225   // This is used as a component of the mangled name which means that we need to
4226   // know what it is in order to see if we have previously generated the
4227   // ThrowInfo.
4228   uint32_t NumEntries =
4229       cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4230           ->getLimitedValue();
4231 
4232   SmallString<256> MangledName;
4233   {
4234     llvm::raw_svector_ostream Out(MangledName);
4235     getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4236                                           NumEntries, Out);
4237   }
4238 
4239   // Reuse a previously generated ThrowInfo if we have generated an appropriate
4240   // one before.
4241   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4242     return GV;
4243 
4244   // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4245   // be at least as CV qualified.  Encode this requirement into the Flags
4246   // bitfield.
4247   uint32_t Flags = 0;
4248   if (IsConst)
4249     Flags |= 1;
4250   if (IsVolatile)
4251     Flags |= 2;
4252   if (IsUnaligned)
4253     Flags |= 4;
4254 
4255   // The cleanup-function (a destructor) must be called when the exception
4256   // object's lifetime ends.
4257   llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4258   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4259     if (CXXDestructorDecl *DtorD = RD->getDestructor())
4260       if (!DtorD->isTrivial())
4261         CleanupFn = llvm::ConstantExpr::getBitCast(
4262             CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)),
4263             CGM.Int8PtrTy);
4264   // This is unused as far as we can tell, initialize it to null.
4265   llvm::Constant *ForwardCompat =
4266       getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4267   llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4268       llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4269   llvm::StructType *TIType = getThrowInfoType();
4270   llvm::Constant *Fields[] = {
4271       llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4272       getImageRelativeConstant(CleanupFn),      // CleanupFn
4273       ForwardCompat,                            // ForwardCompat
4274       PointerToCatchableTypes                   // CatchableTypeArray
4275   };
4276   auto *GV = new llvm::GlobalVariable(
4277       CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4278       llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
4279   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4280   GV->setSection(".xdata");
4281   if (GV->isWeakForLinker())
4282     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4283   return GV;
4284 }
4285 
4286 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4287   const Expr *SubExpr = E->getSubExpr();
4288   QualType ThrowType = SubExpr->getType();
4289   // The exception object lives on the stack and it's address is passed to the
4290   // runtime function.
4291   Address AI = CGF.CreateMemTemp(ThrowType);
4292   CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4293                        /*IsInit=*/true);
4294 
4295   // The so-called ThrowInfo is used to describe how the exception object may be
4296   // caught.
4297   llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4298 
4299   // Call into the runtime to throw the exception.
4300   llvm::Value *Args[] = {
4301     CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
4302     TI
4303   };
4304   CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4305 }
4306 
4307 std::pair<llvm::Value *, const CXXRecordDecl *>
4308 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4309                                const CXXRecordDecl *RD) {
4310   std::tie(This, std::ignore, RD) =
4311       performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4312   return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4313 }
4314