1 //===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Instrumentation-based code coverage mapping generator 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CoverageMappingGen.h" 14 #include "CodeGenFunction.h" 15 #include "clang/AST/StmtVisitor.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/FileManager.h" 18 #include "clang/Frontend/FrontendDiagnostic.h" 19 #include "clang/Lex/Lexer.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/Coverage/CoverageMappingWriter.h" 25 #include "llvm/ProfileData/InstrProfReader.h" 26 #include "llvm/Support/FileSystem.h" 27 #include "llvm/Support/Path.h" 28 #include <optional> 29 30 // This selects the coverage mapping format defined when `InstrProfData.inc` 31 // is textually included. 32 #define COVMAP_V3 33 34 static llvm::cl::opt<bool> EmptyLineCommentCoverage( 35 "emptyline-comment-coverage", 36 llvm::cl::desc("Emit emptylines and comment lines as skipped regions (only " 37 "disable it on test)"), 38 llvm::cl::init(true), llvm::cl::Hidden); 39 40 static llvm::cl::opt<bool> SystemHeadersCoverage( 41 "system-headers-coverage", 42 llvm::cl::desc("Enable collecting coverage from system headers"), 43 llvm::cl::init(false), llvm::cl::Hidden); 44 45 using namespace clang; 46 using namespace CodeGen; 47 using namespace llvm::coverage; 48 49 CoverageSourceInfo * 50 CoverageMappingModuleGen::setUpCoverageCallbacks(Preprocessor &PP) { 51 CoverageSourceInfo *CoverageInfo = 52 new CoverageSourceInfo(PP.getSourceManager()); 53 PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(CoverageInfo)); 54 if (EmptyLineCommentCoverage) { 55 PP.addCommentHandler(CoverageInfo); 56 PP.setEmptylineHandler(CoverageInfo); 57 PP.setPreprocessToken(true); 58 PP.setTokenWatcher([CoverageInfo](clang::Token Tok) { 59 // Update previous token location. 60 CoverageInfo->PrevTokLoc = Tok.getLocation(); 61 if (Tok.getKind() != clang::tok::eod) 62 CoverageInfo->updateNextTokLoc(Tok.getLocation()); 63 }); 64 } 65 return CoverageInfo; 66 } 67 68 void CoverageSourceInfo::AddSkippedRange(SourceRange Range, 69 SkippedRange::Kind RangeKind) { 70 if (EmptyLineCommentCoverage && !SkippedRanges.empty() && 71 PrevTokLoc == SkippedRanges.back().PrevTokLoc && 72 SourceMgr.isWrittenInSameFile(SkippedRanges.back().Range.getEnd(), 73 Range.getBegin())) 74 SkippedRanges.back().Range.setEnd(Range.getEnd()); 75 else 76 SkippedRanges.push_back({Range, RangeKind, PrevTokLoc}); 77 } 78 79 void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range, SourceLocation) { 80 AddSkippedRange(Range, SkippedRange::PPIfElse); 81 } 82 83 void CoverageSourceInfo::HandleEmptyline(SourceRange Range) { 84 AddSkippedRange(Range, SkippedRange::EmptyLine); 85 } 86 87 bool CoverageSourceInfo::HandleComment(Preprocessor &PP, SourceRange Range) { 88 AddSkippedRange(Range, SkippedRange::Comment); 89 return false; 90 } 91 92 void CoverageSourceInfo::updateNextTokLoc(SourceLocation Loc) { 93 if (!SkippedRanges.empty() && SkippedRanges.back().NextTokLoc.isInvalid()) 94 SkippedRanges.back().NextTokLoc = Loc; 95 } 96 97 namespace { 98 using MCDCConditionID = CounterMappingRegion::MCDCConditionID; 99 using MCDCParameters = CounterMappingRegion::MCDCParameters; 100 101 /// A region of source code that can be mapped to a counter. 102 class SourceMappingRegion { 103 /// Primary Counter that is also used for Branch Regions for "True" branches. 104 Counter Count; 105 106 /// Secondary Counter used for Branch Regions for "False" branches. 107 std::optional<Counter> FalseCount; 108 109 /// Parameters used for Modified Condition/Decision Coverage 110 MCDCParameters MCDCParams; 111 112 /// The region's starting location. 113 std::optional<SourceLocation> LocStart; 114 115 /// The region's ending location. 116 std::optional<SourceLocation> LocEnd; 117 118 /// Whether this region is a gap region. The count from a gap region is set 119 /// as the line execution count if there are no other regions on the line. 120 bool GapRegion; 121 122 public: 123 SourceMappingRegion(Counter Count, std::optional<SourceLocation> LocStart, 124 std::optional<SourceLocation> LocEnd, 125 bool GapRegion = false) 126 : Count(Count), LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion) { 127 } 128 129 SourceMappingRegion(Counter Count, std::optional<Counter> FalseCount, 130 MCDCParameters MCDCParams, 131 std::optional<SourceLocation> LocStart, 132 std::optional<SourceLocation> LocEnd, 133 bool GapRegion = false) 134 : Count(Count), FalseCount(FalseCount), MCDCParams(MCDCParams), 135 LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion) {} 136 137 SourceMappingRegion(MCDCParameters MCDCParams, 138 std::optional<SourceLocation> LocStart, 139 std::optional<SourceLocation> LocEnd) 140 : MCDCParams(MCDCParams), LocStart(LocStart), LocEnd(LocEnd), 141 GapRegion(false) {} 142 143 const Counter &getCounter() const { return Count; } 144 145 const Counter &getFalseCounter() const { 146 assert(FalseCount && "Region has no alternate counter"); 147 return *FalseCount; 148 } 149 150 void setCounter(Counter C) { Count = C; } 151 152 bool hasStartLoc() const { return LocStart.has_value(); } 153 154 void setStartLoc(SourceLocation Loc) { LocStart = Loc; } 155 156 SourceLocation getBeginLoc() const { 157 assert(LocStart && "Region has no start location"); 158 return *LocStart; 159 } 160 161 bool hasEndLoc() const { return LocEnd.has_value(); } 162 163 void setEndLoc(SourceLocation Loc) { 164 assert(Loc.isValid() && "Setting an invalid end location"); 165 LocEnd = Loc; 166 } 167 168 SourceLocation getEndLoc() const { 169 assert(LocEnd && "Region has no end location"); 170 return *LocEnd; 171 } 172 173 bool isGap() const { return GapRegion; } 174 175 void setGap(bool Gap) { GapRegion = Gap; } 176 177 bool isBranch() const { return FalseCount.has_value(); } 178 179 bool isMCDCDecision() const { return MCDCParams.NumConditions != 0; } 180 181 const MCDCParameters &getMCDCParams() const { return MCDCParams; } 182 }; 183 184 /// Spelling locations for the start and end of a source region. 185 struct SpellingRegion { 186 /// The line where the region starts. 187 unsigned LineStart; 188 189 /// The column where the region starts. 190 unsigned ColumnStart; 191 192 /// The line where the region ends. 193 unsigned LineEnd; 194 195 /// The column where the region ends. 196 unsigned ColumnEnd; 197 198 SpellingRegion(SourceManager &SM, SourceLocation LocStart, 199 SourceLocation LocEnd) { 200 LineStart = SM.getSpellingLineNumber(LocStart); 201 ColumnStart = SM.getSpellingColumnNumber(LocStart); 202 LineEnd = SM.getSpellingLineNumber(LocEnd); 203 ColumnEnd = SM.getSpellingColumnNumber(LocEnd); 204 } 205 206 SpellingRegion(SourceManager &SM, SourceMappingRegion &R) 207 : SpellingRegion(SM, R.getBeginLoc(), R.getEndLoc()) {} 208 209 /// Check if the start and end locations appear in source order, i.e 210 /// top->bottom, left->right. 211 bool isInSourceOrder() const { 212 return (LineStart < LineEnd) || 213 (LineStart == LineEnd && ColumnStart <= ColumnEnd); 214 } 215 }; 216 217 /// Provides the common functionality for the different 218 /// coverage mapping region builders. 219 class CoverageMappingBuilder { 220 public: 221 CoverageMappingModuleGen &CVM; 222 SourceManager &SM; 223 const LangOptions &LangOpts; 224 225 private: 226 /// Map of clang's FileIDs to IDs used for coverage mapping. 227 llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8> 228 FileIDMapping; 229 230 public: 231 /// The coverage mapping regions for this function 232 llvm::SmallVector<CounterMappingRegion, 32> MappingRegions; 233 /// The source mapping regions for this function. 234 std::vector<SourceMappingRegion> SourceRegions; 235 236 /// A set of regions which can be used as a filter. 237 /// 238 /// It is produced by emitExpansionRegions() and is used in 239 /// emitSourceRegions() to suppress producing code regions if 240 /// the same area is covered by expansion regions. 241 typedef llvm::SmallSet<std::pair<SourceLocation, SourceLocation>, 8> 242 SourceRegionFilter; 243 244 CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM, 245 const LangOptions &LangOpts) 246 : CVM(CVM), SM(SM), LangOpts(LangOpts) {} 247 248 /// Return the precise end location for the given token. 249 SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) { 250 // We avoid getLocForEndOfToken here, because it doesn't do what we want for 251 // macro locations, which we just treat as expanded files. 252 unsigned TokLen = 253 Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts); 254 return Loc.getLocWithOffset(TokLen); 255 } 256 257 /// Return the start location of an included file or expanded macro. 258 SourceLocation getStartOfFileOrMacro(SourceLocation Loc) { 259 if (Loc.isMacroID()) 260 return Loc.getLocWithOffset(-SM.getFileOffset(Loc)); 261 return SM.getLocForStartOfFile(SM.getFileID(Loc)); 262 } 263 264 /// Return the end location of an included file or expanded macro. 265 SourceLocation getEndOfFileOrMacro(SourceLocation Loc) { 266 if (Loc.isMacroID()) 267 return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) - 268 SM.getFileOffset(Loc)); 269 return SM.getLocForEndOfFile(SM.getFileID(Loc)); 270 } 271 272 /// Find out where the current file is included or macro is expanded. 273 SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc) { 274 return Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).getBegin() 275 : SM.getIncludeLoc(SM.getFileID(Loc)); 276 } 277 278 /// Return true if \c Loc is a location in a built-in macro. 279 bool isInBuiltin(SourceLocation Loc) { 280 return SM.getBufferName(SM.getSpellingLoc(Loc)) == "<built-in>"; 281 } 282 283 /// Check whether \c Loc is included or expanded from \c Parent. 284 bool isNestedIn(SourceLocation Loc, FileID Parent) { 285 do { 286 Loc = getIncludeOrExpansionLoc(Loc); 287 if (Loc.isInvalid()) 288 return false; 289 } while (!SM.isInFileID(Loc, Parent)); 290 return true; 291 } 292 293 /// Get the start of \c S ignoring macro arguments and builtin macros. 294 SourceLocation getStart(const Stmt *S) { 295 SourceLocation Loc = S->getBeginLoc(); 296 while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc)) 297 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 298 return Loc; 299 } 300 301 /// Get the end of \c S ignoring macro arguments and builtin macros. 302 SourceLocation getEnd(const Stmt *S) { 303 SourceLocation Loc = S->getEndLoc(); 304 while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc)) 305 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 306 return getPreciseTokenLocEnd(Loc); 307 } 308 309 /// Find the set of files we have regions for and assign IDs 310 /// 311 /// Fills \c Mapping with the virtual file mapping needed to write out 312 /// coverage and collects the necessary file information to emit source and 313 /// expansion regions. 314 void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) { 315 FileIDMapping.clear(); 316 317 llvm::SmallSet<FileID, 8> Visited; 318 SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs; 319 for (const auto &Region : SourceRegions) { 320 SourceLocation Loc = Region.getBeginLoc(); 321 FileID File = SM.getFileID(Loc); 322 if (!Visited.insert(File).second) 323 continue; 324 325 // Do not map FileID's associated with system headers unless collecting 326 // coverage from system headers is explicitly enabled. 327 if (!SystemHeadersCoverage && SM.isInSystemHeader(SM.getSpellingLoc(Loc))) 328 continue; 329 330 unsigned Depth = 0; 331 for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc); 332 Parent.isValid(); Parent = getIncludeOrExpansionLoc(Parent)) 333 ++Depth; 334 FileLocs.push_back(std::make_pair(Loc, Depth)); 335 } 336 llvm::stable_sort(FileLocs, llvm::less_second()); 337 338 for (const auto &FL : FileLocs) { 339 SourceLocation Loc = FL.first; 340 FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first; 341 auto Entry = SM.getFileEntryRefForID(SpellingFile); 342 if (!Entry) 343 continue; 344 345 FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc); 346 Mapping.push_back(CVM.getFileID(*Entry)); 347 } 348 } 349 350 /// Get the coverage mapping file ID for \c Loc. 351 /// 352 /// If such file id doesn't exist, return std::nullopt. 353 std::optional<unsigned> getCoverageFileID(SourceLocation Loc) { 354 auto Mapping = FileIDMapping.find(SM.getFileID(Loc)); 355 if (Mapping != FileIDMapping.end()) 356 return Mapping->second.first; 357 return std::nullopt; 358 } 359 360 /// This shrinks the skipped range if it spans a line that contains a 361 /// non-comment token. If shrinking the skipped range would make it empty, 362 /// this returns std::nullopt. 363 /// Note this function can potentially be expensive because 364 /// getSpellingLineNumber uses getLineNumber, which is expensive. 365 std::optional<SpellingRegion> adjustSkippedRange(SourceManager &SM, 366 SourceLocation LocStart, 367 SourceLocation LocEnd, 368 SourceLocation PrevTokLoc, 369 SourceLocation NextTokLoc) { 370 SpellingRegion SR{SM, LocStart, LocEnd}; 371 SR.ColumnStart = 1; 372 if (PrevTokLoc.isValid() && SM.isWrittenInSameFile(LocStart, PrevTokLoc) && 373 SR.LineStart == SM.getSpellingLineNumber(PrevTokLoc)) 374 SR.LineStart++; 375 if (NextTokLoc.isValid() && SM.isWrittenInSameFile(LocEnd, NextTokLoc) && 376 SR.LineEnd == SM.getSpellingLineNumber(NextTokLoc)) { 377 SR.LineEnd--; 378 SR.ColumnEnd++; 379 } 380 if (SR.isInSourceOrder()) 381 return SR; 382 return std::nullopt; 383 } 384 385 /// Gather all the regions that were skipped by the preprocessor 386 /// using the constructs like #if or comments. 387 void gatherSkippedRegions() { 388 /// An array of the minimum lineStarts and the maximum lineEnds 389 /// for mapping regions from the appropriate source files. 390 llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges; 391 FileLineRanges.resize( 392 FileIDMapping.size(), 393 std::make_pair(std::numeric_limits<unsigned>::max(), 0)); 394 for (const auto &R : MappingRegions) { 395 FileLineRanges[R.FileID].first = 396 std::min(FileLineRanges[R.FileID].first, R.LineStart); 397 FileLineRanges[R.FileID].second = 398 std::max(FileLineRanges[R.FileID].second, R.LineEnd); 399 } 400 401 auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges(); 402 for (auto &I : SkippedRanges) { 403 SourceRange Range = I.Range; 404 auto LocStart = Range.getBegin(); 405 auto LocEnd = Range.getEnd(); 406 assert(SM.isWrittenInSameFile(LocStart, LocEnd) && 407 "region spans multiple files"); 408 409 auto CovFileID = getCoverageFileID(LocStart); 410 if (!CovFileID) 411 continue; 412 std::optional<SpellingRegion> SR; 413 if (I.isComment()) 414 SR = adjustSkippedRange(SM, LocStart, LocEnd, I.PrevTokLoc, 415 I.NextTokLoc); 416 else if (I.isPPIfElse() || I.isEmptyLine()) 417 SR = {SM, LocStart, LocEnd}; 418 419 if (!SR) 420 continue; 421 auto Region = CounterMappingRegion::makeSkipped( 422 *CovFileID, SR->LineStart, SR->ColumnStart, SR->LineEnd, 423 SR->ColumnEnd); 424 // Make sure that we only collect the regions that are inside 425 // the source code of this function. 426 if (Region.LineStart >= FileLineRanges[*CovFileID].first && 427 Region.LineEnd <= FileLineRanges[*CovFileID].second) 428 MappingRegions.push_back(Region); 429 } 430 } 431 432 /// Generate the coverage counter mapping regions from collected 433 /// source regions. 434 void emitSourceRegions(const SourceRegionFilter &Filter) { 435 for (const auto &Region : SourceRegions) { 436 assert(Region.hasEndLoc() && "incomplete region"); 437 438 SourceLocation LocStart = Region.getBeginLoc(); 439 assert(SM.getFileID(LocStart).isValid() && "region in invalid file"); 440 441 // Ignore regions from system headers unless collecting coverage from 442 // system headers is explicitly enabled. 443 if (!SystemHeadersCoverage && 444 SM.isInSystemHeader(SM.getSpellingLoc(LocStart))) 445 continue; 446 447 auto CovFileID = getCoverageFileID(LocStart); 448 // Ignore regions that don't have a file, such as builtin macros. 449 if (!CovFileID) 450 continue; 451 452 SourceLocation LocEnd = Region.getEndLoc(); 453 assert(SM.isWrittenInSameFile(LocStart, LocEnd) && 454 "region spans multiple files"); 455 456 // Don't add code regions for the area covered by expansion regions. 457 // This not only suppresses redundant regions, but sometimes prevents 458 // creating regions with wrong counters if, for example, a statement's 459 // body ends at the end of a nested macro. 460 if (Filter.count(std::make_pair(LocStart, LocEnd))) 461 continue; 462 463 // Find the spelling locations for the mapping region. 464 SpellingRegion SR{SM, LocStart, LocEnd}; 465 assert(SR.isInSourceOrder() && "region start and end out of order"); 466 467 if (Region.isGap()) { 468 MappingRegions.push_back(CounterMappingRegion::makeGapRegion( 469 Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart, 470 SR.LineEnd, SR.ColumnEnd)); 471 } else if (Region.isBranch()) { 472 MappingRegions.push_back(CounterMappingRegion::makeBranchRegion( 473 Region.getCounter(), Region.getFalseCounter(), 474 Region.getMCDCParams(), *CovFileID, SR.LineStart, SR.ColumnStart, 475 SR.LineEnd, SR.ColumnEnd)); 476 } else if (Region.isMCDCDecision()) { 477 MappingRegions.push_back(CounterMappingRegion::makeDecisionRegion( 478 Region.getMCDCParams(), *CovFileID, SR.LineStart, SR.ColumnStart, 479 SR.LineEnd, SR.ColumnEnd)); 480 } else { 481 MappingRegions.push_back(CounterMappingRegion::makeRegion( 482 Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart, 483 SR.LineEnd, SR.ColumnEnd)); 484 } 485 } 486 } 487 488 /// Generate expansion regions for each virtual file we've seen. 489 SourceRegionFilter emitExpansionRegions() { 490 SourceRegionFilter Filter; 491 for (const auto &FM : FileIDMapping) { 492 SourceLocation ExpandedLoc = FM.second.second; 493 SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc); 494 if (ParentLoc.isInvalid()) 495 continue; 496 497 auto ParentFileID = getCoverageFileID(ParentLoc); 498 if (!ParentFileID) 499 continue; 500 auto ExpandedFileID = getCoverageFileID(ExpandedLoc); 501 assert(ExpandedFileID && "expansion in uncovered file"); 502 503 SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc); 504 assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) && 505 "region spans multiple files"); 506 Filter.insert(std::make_pair(ParentLoc, LocEnd)); 507 508 SpellingRegion SR{SM, ParentLoc, LocEnd}; 509 assert(SR.isInSourceOrder() && "region start and end out of order"); 510 MappingRegions.push_back(CounterMappingRegion::makeExpansion( 511 *ParentFileID, *ExpandedFileID, SR.LineStart, SR.ColumnStart, 512 SR.LineEnd, SR.ColumnEnd)); 513 } 514 return Filter; 515 } 516 }; 517 518 /// Creates unreachable coverage regions for the functions that 519 /// are not emitted. 520 struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder { 521 EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM, 522 const LangOptions &LangOpts) 523 : CoverageMappingBuilder(CVM, SM, LangOpts) {} 524 525 void VisitDecl(const Decl *D) { 526 if (!D->hasBody()) 527 return; 528 auto Body = D->getBody(); 529 SourceLocation Start = getStart(Body); 530 SourceLocation End = getEnd(Body); 531 if (!SM.isWrittenInSameFile(Start, End)) { 532 // Walk up to find the common ancestor. 533 // Correct the locations accordingly. 534 FileID StartFileID = SM.getFileID(Start); 535 FileID EndFileID = SM.getFileID(End); 536 while (StartFileID != EndFileID && !isNestedIn(End, StartFileID)) { 537 Start = getIncludeOrExpansionLoc(Start); 538 assert(Start.isValid() && 539 "Declaration start location not nested within a known region"); 540 StartFileID = SM.getFileID(Start); 541 } 542 while (StartFileID != EndFileID) { 543 End = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(End)); 544 assert(End.isValid() && 545 "Declaration end location not nested within a known region"); 546 EndFileID = SM.getFileID(End); 547 } 548 } 549 SourceRegions.emplace_back(Counter(), Start, End); 550 } 551 552 /// Write the mapping data to the output stream 553 void write(llvm::raw_ostream &OS) { 554 SmallVector<unsigned, 16> FileIDMapping; 555 gatherFileIDs(FileIDMapping); 556 emitSourceRegions(SourceRegionFilter()); 557 558 if (MappingRegions.empty()) 559 return; 560 561 CoverageMappingWriter Writer(FileIDMapping, std::nullopt, MappingRegions); 562 Writer.write(OS); 563 } 564 }; 565 566 /// A wrapper object for maintaining stacks to track the resursive AST visitor 567 /// walks for the purpose of assigning IDs to leaf-level conditions measured by 568 /// MC/DC. The object is created with a reference to the MCDCBitmapMap that was 569 /// created during the initial AST walk. The presence of a bitmap associated 570 /// with a boolean expression (top-level logical operator nest) indicates that 571 /// the boolean expression qualified for MC/DC. The resulting condition IDs 572 /// are preserved in a map reference that is also provided during object 573 /// creation. 574 struct MCDCCoverageBuilder { 575 576 /// The AST walk recursively visits nested logical-AND or logical-OR binary 577 /// operator nodes and then visits their LHS and RHS children nodes. As this 578 /// happens, the algorithm will assign IDs to each operator's LHS and RHS side 579 /// as the walk moves deeper into the nest. At each level of the recursive 580 /// nest, the LHS and RHS may actually correspond to larger subtrees (not 581 /// leaf-conditions). If this is the case, when that node is visited, the ID 582 /// assigned to the subtree is re-assigned to its LHS, and a new ID is given 583 /// to its RHS. At the end of the walk, all leaf-level conditions will have a 584 /// unique ID -- keep in mind that the final set of IDs may not be in 585 /// numerical order from left to right. 586 /// 587 /// Example: "x = (A && B) || (C && D) || (D && F)" 588 /// 589 /// Visit Depth1: 590 /// (A && B) || (C && D) || (D && F) 591 /// ^-------LHS--------^ ^-RHS--^ 592 /// ID=1 ID=2 593 /// 594 /// Visit LHS-Depth2: 595 /// (A && B) || (C && D) 596 /// ^-LHS--^ ^-RHS--^ 597 /// ID=1 ID=3 598 /// 599 /// Visit LHS-Depth3: 600 /// (A && B) 601 /// LHS RHS 602 /// ID=1 ID=4 603 /// 604 /// Visit RHS-Depth3: 605 /// (C && D) 606 /// LHS RHS 607 /// ID=3 ID=5 608 /// 609 /// Visit RHS-Depth2: (D && F) 610 /// LHS RHS 611 /// ID=2 ID=6 612 /// 613 /// Visit Depth1: 614 /// (A && B) || (C && D) || (D && F) 615 /// ID=1 ID=4 ID=3 ID=5 ID=2 ID=6 616 /// 617 /// A node ID of '0' always means MC/DC isn't being tracked. 618 /// 619 /// As the AST walk proceeds recursively, the algorithm will also use stacks 620 /// to track the IDs of logical-AND and logical-OR operations on the RHS so 621 /// that it can be determined which nodes are executed next, depending on how 622 /// a LHS or RHS of a logical-AND or logical-OR is evaluated. This 623 /// information relies on the assigned IDs and are embedded within the 624 /// coverage region IDs of each branch region associated with a leaf-level 625 /// condition. This information helps the visualization tool reconstruct all 626 /// possible test vectors for the purposes of MC/DC analysis. if a "next" node 627 /// ID is '0', it means it's the end of the test vector. The following rules 628 /// are used: 629 /// 630 /// For logical-AND ("LHS && RHS"): 631 /// - If LHS is TRUE, execution goes to the RHS node. 632 /// - If LHS is FALSE, execution goes to the LHS node of the next logical-OR. 633 /// If that does not exist, execution exits (ID == 0). 634 /// 635 /// - If RHS is TRUE, execution goes to LHS node of the next logical-AND. 636 /// If that does not exist, execution exits (ID == 0). 637 /// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR. 638 /// If that does not exist, execution exits (ID == 0). 639 /// 640 /// For logical-OR ("LHS || RHS"): 641 /// - If LHS is TRUE, execution goes to the LHS node of the next logical-AND. 642 /// If that does not exist, execution exits (ID == 0). 643 /// - If LHS is FALSE, execution goes to the RHS node. 644 /// 645 /// - If RHS is TRUE, execution goes to LHS node of the next logical-AND. 646 /// If that does not exist, execution exits (ID == 0). 647 /// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR. 648 /// If that does not exist, execution exits (ID == 0). 649 /// 650 /// Finally, the condition IDs are also used when instrumenting the code to 651 /// indicate a unique offset into a temporary bitmap that represents the true 652 /// or false evaluation of that particular condition. 653 /// 654 /// NOTE regarding the use of CodeGenFunction::stripCond(). Even though, for 655 /// simplicity, parentheses and unary logical-NOT operators are considered 656 /// part of their underlying condition for both MC/DC and branch coverage, the 657 /// condition IDs themselves are assigned and tracked using the underlying 658 /// condition itself. This is done solely for consistency since parentheses 659 /// and logical-NOTs are ignored when checking whether the condition is 660 /// actually an instrumentable condition. This can also make debugging a bit 661 /// easier. 662 663 private: 664 CodeGenModule &CGM; 665 666 llvm::SmallVector<MCDCConditionID> AndRHS; 667 llvm::SmallVector<MCDCConditionID> OrRHS; 668 llvm::SmallVector<const BinaryOperator *> NestLevel; 669 llvm::DenseMap<const Stmt *, MCDCConditionID> &CondIDs; 670 llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap; 671 MCDCConditionID NextID = 1; 672 bool NotMapped = false; 673 674 /// Is this a logical-AND operation? 675 bool isLAnd(const BinaryOperator *E) const { 676 return E->getOpcode() == BO_LAnd; 677 } 678 679 /// Push an ID onto the corresponding RHS stack. 680 void pushRHS(const BinaryOperator *E) { 681 llvm::SmallVector<MCDCConditionID> &rhs = isLAnd(E) ? AndRHS : OrRHS; 682 rhs.push_back(CondIDs[CodeGenFunction::stripCond(E->getRHS())]); 683 } 684 685 /// Pop an ID from the corresponding RHS stack. 686 void popRHS(const BinaryOperator *E) { 687 llvm::SmallVector<MCDCConditionID> &rhs = isLAnd(E) ? AndRHS : OrRHS; 688 if (!rhs.empty()) 689 rhs.pop_back(); 690 } 691 692 /// If the expected ID is on top, pop it off the corresponding RHS stack. 693 void popRHSifTop(const BinaryOperator *E) { 694 if (!OrRHS.empty() && CondIDs[E] == OrRHS.back()) 695 OrRHS.pop_back(); 696 else if (!AndRHS.empty() && CondIDs[E] == AndRHS.back()) 697 AndRHS.pop_back(); 698 } 699 700 public: 701 MCDCCoverageBuilder(CodeGenModule &CGM, 702 llvm::DenseMap<const Stmt *, MCDCConditionID> &CondIDMap, 703 llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap) 704 : CGM(CGM), CondIDs(CondIDMap), MCDCBitmapMap(MCDCBitmapMap) {} 705 706 /// Return the ID of the RHS of the next, upper nest-level logical-OR. 707 MCDCConditionID getNextLOrCondID() const { 708 return OrRHS.empty() ? 0 : OrRHS.back(); 709 } 710 711 /// Return the ID of the RHS of the next, upper nest-level logical-AND. 712 MCDCConditionID getNextLAndCondID() const { 713 return AndRHS.empty() ? 0 : AndRHS.back(); 714 } 715 716 /// Return the ID of a given condition. 717 MCDCConditionID getCondID(const Expr *Cond) const { 718 auto I = CondIDs.find(CodeGenFunction::stripCond(Cond)); 719 if (I == CondIDs.end()) 720 return 0; 721 else 722 return I->second; 723 } 724 725 /// Push the binary operator statement to track the nest level and assign IDs 726 /// to the operator's LHS and RHS. The RHS may be a larger subtree that is 727 /// broken up on successive levels. 728 void pushAndAssignIDs(const BinaryOperator *E) { 729 if (!CGM.getCodeGenOpts().MCDCCoverage) 730 return; 731 732 // If binary expression is disqualified, don't do mapping. 733 if (NestLevel.empty() && MCDCBitmapMap.find(CodeGenFunction::stripCond( 734 E)) == MCDCBitmapMap.end()) 735 NotMapped = true; 736 737 // Push Stmt on 'NestLevel' stack to keep track of nest location. 738 NestLevel.push_back(E); 739 740 // Don't go any further if we don't need to map condition IDs. 741 if (NotMapped) 742 return; 743 744 // If the operator itself has an assigned ID, this means it represents a 745 // larger subtree. In this case, pop its ID out of the RHS stack and 746 // assign that ID to its LHS node. Its RHS will receive a new ID. 747 if (CondIDs.find(CodeGenFunction::stripCond(E)) != CondIDs.end()) { 748 // If Stmt has an ID, assign its ID to LHS 749 CondIDs[CodeGenFunction::stripCond(E->getLHS())] = CondIDs[E]; 750 751 // Since the operator's LHS assumes the operator's same ID, pop the 752 // operator from the RHS stack so that if LHS short-circuits, it won't be 753 // incorrectly re-used as the node executed next. 754 popRHSifTop(E); 755 } else { 756 // Otherwise, assign ID+1 to LHS. 757 CondIDs[CodeGenFunction::stripCond(E->getLHS())] = NextID++; 758 } 759 760 // Assign ID+1 to RHS. 761 CondIDs[CodeGenFunction::stripCond(E->getRHS())] = NextID++; 762 763 // Push ID of Stmt's RHS so that LHS nodes know about it 764 pushRHS(E); 765 } 766 767 /// Pop the binary operator from the next level. If the walk is at the top of 768 /// the next, assign the total number of conditions. 769 unsigned popAndReturnCondCount(const BinaryOperator *E) { 770 if (!CGM.getCodeGenOpts().MCDCCoverage) 771 return 0; 772 773 unsigned TotalConds = 0; 774 775 // Pop Stmt from 'NestLevel' stack. 776 assert(NestLevel.back() == E); 777 NestLevel.pop_back(); 778 779 // Reset state if not doing mapping. 780 if (NestLevel.empty() && NotMapped) { 781 NotMapped = false; 782 return 0; 783 } 784 785 // Pop RHS ID. 786 popRHS(E); 787 788 // If at the parent (NestLevel=0), set conds and reset. 789 if (NestLevel.empty()) { 790 TotalConds = NextID - 1; 791 792 // Reset ID back to beginning. 793 NextID = 1; 794 } 795 return TotalConds; 796 } 797 }; 798 799 /// A StmtVisitor that creates coverage mapping regions which map 800 /// from the source code locations to the PGO counters. 801 struct CounterCoverageMappingBuilder 802 : public CoverageMappingBuilder, 803 public ConstStmtVisitor<CounterCoverageMappingBuilder> { 804 /// The map of statements to count values. 805 llvm::DenseMap<const Stmt *, unsigned> &CounterMap; 806 807 /// The map of statements to bitmap coverage object values. 808 llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap; 809 810 /// A stack of currently live regions. 811 llvm::SmallVector<SourceMappingRegion> RegionStack; 812 813 /// An object to manage MCDC regions. 814 MCDCCoverageBuilder MCDCBuilder; 815 816 CounterExpressionBuilder Builder; 817 818 /// A location in the most recently visited file or macro. 819 /// 820 /// This is used to adjust the active source regions appropriately when 821 /// expressions cross file or macro boundaries. 822 SourceLocation MostRecentLocation; 823 824 /// Whether the visitor at a terminate statement. 825 bool HasTerminateStmt = false; 826 827 /// Gap region counter after terminate statement. 828 Counter GapRegionCounter; 829 830 /// Return a counter for the subtraction of \c RHS from \c LHS 831 Counter subtractCounters(Counter LHS, Counter RHS, bool Simplify = true) { 832 return Builder.subtract(LHS, RHS, Simplify); 833 } 834 835 /// Return a counter for the sum of \c LHS and \c RHS. 836 Counter addCounters(Counter LHS, Counter RHS, bool Simplify = true) { 837 return Builder.add(LHS, RHS, Simplify); 838 } 839 840 Counter addCounters(Counter C1, Counter C2, Counter C3, 841 bool Simplify = true) { 842 return addCounters(addCounters(C1, C2, Simplify), C3, Simplify); 843 } 844 845 /// Return the region counter for the given statement. 846 /// 847 /// This should only be called on statements that have a dedicated counter. 848 Counter getRegionCounter(const Stmt *S) { 849 return Counter::getCounter(CounterMap[S]); 850 } 851 852 unsigned getRegionBitmap(const Stmt *S) { return MCDCBitmapMap[S]; } 853 854 /// Push a region onto the stack. 855 /// 856 /// Returns the index on the stack where the region was pushed. This can be 857 /// used with popRegions to exit a "scope", ending the region that was pushed. 858 size_t pushRegion(Counter Count, 859 std::optional<SourceLocation> StartLoc = std::nullopt, 860 std::optional<SourceLocation> EndLoc = std::nullopt, 861 std::optional<Counter> FalseCount = std::nullopt, 862 MCDCConditionID ID = 0, MCDCConditionID TrueID = 0, 863 MCDCConditionID FalseID = 0) { 864 865 if (StartLoc && !FalseCount) { 866 MostRecentLocation = *StartLoc; 867 } 868 869 // If either of these locations is invalid, something elsewhere in the 870 // compiler has broken. 871 assert((!StartLoc || StartLoc->isValid()) && "Start location is not valid"); 872 assert((!EndLoc || EndLoc->isValid()) && "End location is not valid"); 873 874 // However, we can still recover without crashing. 875 // If either location is invalid, set it to std::nullopt to avoid 876 // letting users of RegionStack think that region has a valid start/end 877 // location. 878 if (StartLoc && StartLoc->isInvalid()) 879 StartLoc = std::nullopt; 880 if (EndLoc && EndLoc->isInvalid()) 881 EndLoc = std::nullopt; 882 RegionStack.emplace_back(Count, FalseCount, 883 MCDCParameters{0, 0, ID, TrueID, FalseID}, 884 StartLoc, EndLoc); 885 886 return RegionStack.size() - 1; 887 } 888 889 size_t pushRegion(unsigned BitmapIdx, unsigned Conditions, 890 std::optional<SourceLocation> StartLoc = std::nullopt, 891 std::optional<SourceLocation> EndLoc = std::nullopt) { 892 893 RegionStack.emplace_back(MCDCParameters{BitmapIdx, Conditions}, StartLoc, 894 EndLoc); 895 896 return RegionStack.size() - 1; 897 } 898 899 size_t locationDepth(SourceLocation Loc) { 900 size_t Depth = 0; 901 while (Loc.isValid()) { 902 Loc = getIncludeOrExpansionLoc(Loc); 903 Depth++; 904 } 905 return Depth; 906 } 907 908 /// Pop regions from the stack into the function's list of regions. 909 /// 910 /// Adds all regions from \c ParentIndex to the top of the stack to the 911 /// function's \c SourceRegions. 912 void popRegions(size_t ParentIndex) { 913 assert(RegionStack.size() >= ParentIndex && "parent not in stack"); 914 while (RegionStack.size() > ParentIndex) { 915 SourceMappingRegion &Region = RegionStack.back(); 916 if (Region.hasStartLoc() && 917 (Region.hasEndLoc() || RegionStack[ParentIndex].hasEndLoc())) { 918 SourceLocation StartLoc = Region.getBeginLoc(); 919 SourceLocation EndLoc = Region.hasEndLoc() 920 ? Region.getEndLoc() 921 : RegionStack[ParentIndex].getEndLoc(); 922 bool isBranch = Region.isBranch(); 923 size_t StartDepth = locationDepth(StartLoc); 924 size_t EndDepth = locationDepth(EndLoc); 925 while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) { 926 bool UnnestStart = StartDepth >= EndDepth; 927 bool UnnestEnd = EndDepth >= StartDepth; 928 if (UnnestEnd) { 929 // The region ends in a nested file or macro expansion. If the 930 // region is not a branch region, create a separate region for each 931 // expansion, and for all regions, update the EndLoc. Branch 932 // regions should not be split in order to keep a straightforward 933 // correspondance between the region and its associated branch 934 // condition, even if the condition spans multiple depths. 935 SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc); 936 assert(SM.isWrittenInSameFile(NestedLoc, EndLoc)); 937 938 if (!isBranch && !isRegionAlreadyAdded(NestedLoc, EndLoc)) 939 SourceRegions.emplace_back(Region.getCounter(), NestedLoc, 940 EndLoc); 941 942 EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc)); 943 if (EndLoc.isInvalid()) 944 llvm::report_fatal_error( 945 "File exit not handled before popRegions"); 946 EndDepth--; 947 } 948 if (UnnestStart) { 949 // The region ends in a nested file or macro expansion. If the 950 // region is not a branch region, create a separate region for each 951 // expansion, and for all regions, update the StartLoc. Branch 952 // regions should not be split in order to keep a straightforward 953 // correspondance between the region and its associated branch 954 // condition, even if the condition spans multiple depths. 955 SourceLocation NestedLoc = getEndOfFileOrMacro(StartLoc); 956 assert(SM.isWrittenInSameFile(StartLoc, NestedLoc)); 957 958 if (!isBranch && !isRegionAlreadyAdded(StartLoc, NestedLoc)) 959 SourceRegions.emplace_back(Region.getCounter(), StartLoc, 960 NestedLoc); 961 962 StartLoc = getIncludeOrExpansionLoc(StartLoc); 963 if (StartLoc.isInvalid()) 964 llvm::report_fatal_error( 965 "File exit not handled before popRegions"); 966 StartDepth--; 967 } 968 } 969 Region.setStartLoc(StartLoc); 970 Region.setEndLoc(EndLoc); 971 972 if (!isBranch) { 973 MostRecentLocation = EndLoc; 974 // If this region happens to span an entire expansion, we need to 975 // make sure we don't overlap the parent region with it. 976 if (StartLoc == getStartOfFileOrMacro(StartLoc) && 977 EndLoc == getEndOfFileOrMacro(EndLoc)) 978 MostRecentLocation = getIncludeOrExpansionLoc(EndLoc); 979 } 980 981 assert(SM.isWrittenInSameFile(Region.getBeginLoc(), EndLoc)); 982 assert(SpellingRegion(SM, Region).isInSourceOrder()); 983 SourceRegions.push_back(Region); 984 } 985 RegionStack.pop_back(); 986 } 987 } 988 989 /// Return the currently active region. 990 SourceMappingRegion &getRegion() { 991 assert(!RegionStack.empty() && "statement has no region"); 992 return RegionStack.back(); 993 } 994 995 /// Propagate counts through the children of \p S if \p VisitChildren is true. 996 /// Otherwise, only emit a count for \p S itself. 997 Counter propagateCounts(Counter TopCount, const Stmt *S, 998 bool VisitChildren = true) { 999 SourceLocation StartLoc = getStart(S); 1000 SourceLocation EndLoc = getEnd(S); 1001 size_t Index = pushRegion(TopCount, StartLoc, EndLoc); 1002 if (VisitChildren) 1003 Visit(S); 1004 Counter ExitCount = getRegion().getCounter(); 1005 popRegions(Index); 1006 1007 // The statement may be spanned by an expansion. Make sure we handle a file 1008 // exit out of this expansion before moving to the next statement. 1009 if (SM.isBeforeInTranslationUnit(StartLoc, S->getBeginLoc())) 1010 MostRecentLocation = EndLoc; 1011 1012 return ExitCount; 1013 } 1014 1015 /// Determine whether the given condition can be constant folded. 1016 bool ConditionFoldsToBool(const Expr *Cond) { 1017 Expr::EvalResult Result; 1018 return (Cond->EvaluateAsInt(Result, CVM.getCodeGenModule().getContext())); 1019 } 1020 1021 /// Create a Branch Region around an instrumentable condition for coverage 1022 /// and add it to the function's SourceRegions. A branch region tracks a 1023 /// "True" counter and a "False" counter for boolean expressions that 1024 /// result in the generation of a branch. 1025 void createBranchRegion(const Expr *C, Counter TrueCnt, Counter FalseCnt, 1026 MCDCConditionID ID = 0, MCDCConditionID TrueID = 0, 1027 MCDCConditionID FalseID = 0) { 1028 // Check for NULL conditions. 1029 if (!C) 1030 return; 1031 1032 // Ensure we are an instrumentable condition (i.e. no "&&" or "||"). Push 1033 // region onto RegionStack but immediately pop it (which adds it to the 1034 // function's SourceRegions) because it doesn't apply to any other source 1035 // code other than the Condition. 1036 if (CodeGenFunction::isInstrumentedCondition(C)) { 1037 // If a condition can fold to true or false, the corresponding branch 1038 // will be removed. Create a region with both counters hard-coded to 1039 // zero. This allows us to visualize them in a special way. 1040 // Alternatively, we can prevent any optimization done via 1041 // constant-folding by ensuring that ConstantFoldsToSimpleInteger() in 1042 // CodeGenFunction.c always returns false, but that is very heavy-handed. 1043 if (ConditionFoldsToBool(C)) 1044 popRegions(pushRegion(Counter::getZero(), getStart(C), getEnd(C), 1045 Counter::getZero(), ID, TrueID, FalseID)); 1046 else 1047 // Otherwise, create a region with the True counter and False counter. 1048 popRegions(pushRegion(TrueCnt, getStart(C), getEnd(C), FalseCnt, ID, 1049 TrueID, FalseID)); 1050 } 1051 } 1052 1053 /// Create a Decision Region with a BitmapIdx and number of Conditions. This 1054 /// type of region "contains" branch regions, one for each of the conditions. 1055 /// The visualization tool will group everything together. 1056 void createDecisionRegion(const Expr *C, unsigned BitmapIdx, unsigned Conds) { 1057 popRegions(pushRegion(BitmapIdx, Conds, getStart(C), getEnd(C))); 1058 } 1059 1060 /// Create a Branch Region around a SwitchCase for code coverage 1061 /// and add it to the function's SourceRegions. 1062 void createSwitchCaseRegion(const SwitchCase *SC, Counter TrueCnt, 1063 Counter FalseCnt) { 1064 // Push region onto RegionStack but immediately pop it (which adds it to 1065 // the function's SourceRegions) because it doesn't apply to any other 1066 // source other than the SwitchCase. 1067 popRegions(pushRegion(TrueCnt, getStart(SC), SC->getColonLoc(), FalseCnt)); 1068 } 1069 1070 /// Check whether a region with bounds \c StartLoc and \c EndLoc 1071 /// is already added to \c SourceRegions. 1072 bool isRegionAlreadyAdded(SourceLocation StartLoc, SourceLocation EndLoc, 1073 bool isBranch = false) { 1074 return llvm::any_of( 1075 llvm::reverse(SourceRegions), [&](const SourceMappingRegion &Region) { 1076 return Region.getBeginLoc() == StartLoc && 1077 Region.getEndLoc() == EndLoc && Region.isBranch() == isBranch; 1078 }); 1079 } 1080 1081 /// Adjust the most recently visited location to \c EndLoc. 1082 /// 1083 /// This should be used after visiting any statements in non-source order. 1084 void adjustForOutOfOrderTraversal(SourceLocation EndLoc) { 1085 MostRecentLocation = EndLoc; 1086 // The code region for a whole macro is created in handleFileExit() when 1087 // it detects exiting of the virtual file of that macro. If we visited 1088 // statements in non-source order, we might already have such a region 1089 // added, for example, if a body of a loop is divided among multiple 1090 // macros. Avoid adding duplicate regions in such case. 1091 if (getRegion().hasEndLoc() && 1092 MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation) && 1093 isRegionAlreadyAdded(getStartOfFileOrMacro(MostRecentLocation), 1094 MostRecentLocation, getRegion().isBranch())) 1095 MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation); 1096 } 1097 1098 /// Adjust regions and state when \c NewLoc exits a file. 1099 /// 1100 /// If moving from our most recently tracked location to \c NewLoc exits any 1101 /// files, this adjusts our current region stack and creates the file regions 1102 /// for the exited file. 1103 void handleFileExit(SourceLocation NewLoc) { 1104 if (NewLoc.isInvalid() || 1105 SM.isWrittenInSameFile(MostRecentLocation, NewLoc)) 1106 return; 1107 1108 // If NewLoc is not in a file that contains MostRecentLocation, walk up to 1109 // find the common ancestor. 1110 SourceLocation LCA = NewLoc; 1111 FileID ParentFile = SM.getFileID(LCA); 1112 while (!isNestedIn(MostRecentLocation, ParentFile)) { 1113 LCA = getIncludeOrExpansionLoc(LCA); 1114 if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) { 1115 // Since there isn't a common ancestor, no file was exited. We just need 1116 // to adjust our location to the new file. 1117 MostRecentLocation = NewLoc; 1118 return; 1119 } 1120 ParentFile = SM.getFileID(LCA); 1121 } 1122 1123 llvm::SmallSet<SourceLocation, 8> StartLocs; 1124 std::optional<Counter> ParentCounter; 1125 for (SourceMappingRegion &I : llvm::reverse(RegionStack)) { 1126 if (!I.hasStartLoc()) 1127 continue; 1128 SourceLocation Loc = I.getBeginLoc(); 1129 if (!isNestedIn(Loc, ParentFile)) { 1130 ParentCounter = I.getCounter(); 1131 break; 1132 } 1133 1134 while (!SM.isInFileID(Loc, ParentFile)) { 1135 // The most nested region for each start location is the one with the 1136 // correct count. We avoid creating redundant regions by stopping once 1137 // we've seen this region. 1138 if (StartLocs.insert(Loc).second) { 1139 if (I.isBranch()) 1140 SourceRegions.emplace_back( 1141 I.getCounter(), I.getFalseCounter(), 1142 MCDCParameters{0, 0, I.getMCDCParams().ID, 1143 I.getMCDCParams().TrueID, 1144 I.getMCDCParams().FalseID}, 1145 Loc, getEndOfFileOrMacro(Loc), I.isBranch()); 1146 else 1147 SourceRegions.emplace_back(I.getCounter(), Loc, 1148 getEndOfFileOrMacro(Loc)); 1149 } 1150 Loc = getIncludeOrExpansionLoc(Loc); 1151 } 1152 I.setStartLoc(getPreciseTokenLocEnd(Loc)); 1153 } 1154 1155 if (ParentCounter) { 1156 // If the file is contained completely by another region and doesn't 1157 // immediately start its own region, the whole file gets a region 1158 // corresponding to the parent. 1159 SourceLocation Loc = MostRecentLocation; 1160 while (isNestedIn(Loc, ParentFile)) { 1161 SourceLocation FileStart = getStartOfFileOrMacro(Loc); 1162 if (StartLocs.insert(FileStart).second) { 1163 SourceRegions.emplace_back(*ParentCounter, FileStart, 1164 getEndOfFileOrMacro(Loc)); 1165 assert(SpellingRegion(SM, SourceRegions.back()).isInSourceOrder()); 1166 } 1167 Loc = getIncludeOrExpansionLoc(Loc); 1168 } 1169 } 1170 1171 MostRecentLocation = NewLoc; 1172 } 1173 1174 /// Ensure that \c S is included in the current region. 1175 void extendRegion(const Stmt *S) { 1176 SourceMappingRegion &Region = getRegion(); 1177 SourceLocation StartLoc = getStart(S); 1178 1179 handleFileExit(StartLoc); 1180 if (!Region.hasStartLoc()) 1181 Region.setStartLoc(StartLoc); 1182 } 1183 1184 /// Mark \c S as a terminator, starting a zero region. 1185 void terminateRegion(const Stmt *S) { 1186 extendRegion(S); 1187 SourceMappingRegion &Region = getRegion(); 1188 SourceLocation EndLoc = getEnd(S); 1189 if (!Region.hasEndLoc()) 1190 Region.setEndLoc(EndLoc); 1191 pushRegion(Counter::getZero()); 1192 HasTerminateStmt = true; 1193 } 1194 1195 /// Find a valid gap range between \p AfterLoc and \p BeforeLoc. 1196 std::optional<SourceRange> findGapAreaBetween(SourceLocation AfterLoc, 1197 SourceLocation BeforeLoc) { 1198 // If AfterLoc is in function-like macro, use the right parenthesis 1199 // location. 1200 if (AfterLoc.isMacroID()) { 1201 FileID FID = SM.getFileID(AfterLoc); 1202 const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion(); 1203 if (EI->isFunctionMacroExpansion()) 1204 AfterLoc = EI->getExpansionLocEnd(); 1205 } 1206 1207 size_t StartDepth = locationDepth(AfterLoc); 1208 size_t EndDepth = locationDepth(BeforeLoc); 1209 while (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc)) { 1210 bool UnnestStart = StartDepth >= EndDepth; 1211 bool UnnestEnd = EndDepth >= StartDepth; 1212 if (UnnestEnd) { 1213 assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc), 1214 BeforeLoc)); 1215 1216 BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc); 1217 assert(BeforeLoc.isValid()); 1218 EndDepth--; 1219 } 1220 if (UnnestStart) { 1221 assert(SM.isWrittenInSameFile(AfterLoc, 1222 getEndOfFileOrMacro(AfterLoc))); 1223 1224 AfterLoc = getIncludeOrExpansionLoc(AfterLoc); 1225 assert(AfterLoc.isValid()); 1226 AfterLoc = getPreciseTokenLocEnd(AfterLoc); 1227 assert(AfterLoc.isValid()); 1228 StartDepth--; 1229 } 1230 } 1231 AfterLoc = getPreciseTokenLocEnd(AfterLoc); 1232 // If the start and end locations of the gap are both within the same macro 1233 // file, the range may not be in source order. 1234 if (AfterLoc.isMacroID() || BeforeLoc.isMacroID()) 1235 return std::nullopt; 1236 if (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc) || 1237 !SpellingRegion(SM, AfterLoc, BeforeLoc).isInSourceOrder()) 1238 return std::nullopt; 1239 return {{AfterLoc, BeforeLoc}}; 1240 } 1241 1242 /// Emit a gap region between \p StartLoc and \p EndLoc with the given count. 1243 void fillGapAreaWithCount(SourceLocation StartLoc, SourceLocation EndLoc, 1244 Counter Count) { 1245 if (StartLoc == EndLoc) 1246 return; 1247 assert(SpellingRegion(SM, StartLoc, EndLoc).isInSourceOrder()); 1248 handleFileExit(StartLoc); 1249 size_t Index = pushRegion(Count, StartLoc, EndLoc); 1250 getRegion().setGap(true); 1251 handleFileExit(EndLoc); 1252 popRegions(Index); 1253 } 1254 1255 /// Keep counts of breaks and continues inside loops. 1256 struct BreakContinue { 1257 Counter BreakCount; 1258 Counter ContinueCount; 1259 }; 1260 SmallVector<BreakContinue, 8> BreakContinueStack; 1261 1262 CounterCoverageMappingBuilder( 1263 CoverageMappingModuleGen &CVM, 1264 llvm::DenseMap<const Stmt *, unsigned> &CounterMap, 1265 llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap, 1266 llvm::DenseMap<const Stmt *, MCDCConditionID> &CondIDMap, 1267 SourceManager &SM, const LangOptions &LangOpts) 1268 : CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap), 1269 MCDCBitmapMap(MCDCBitmapMap), 1270 MCDCBuilder(CVM.getCodeGenModule(), CondIDMap, MCDCBitmapMap) {} 1271 1272 /// Write the mapping data to the output stream 1273 void write(llvm::raw_ostream &OS) { 1274 llvm::SmallVector<unsigned, 8> VirtualFileMapping; 1275 gatherFileIDs(VirtualFileMapping); 1276 SourceRegionFilter Filter = emitExpansionRegions(); 1277 emitSourceRegions(Filter); 1278 gatherSkippedRegions(); 1279 1280 if (MappingRegions.empty()) 1281 return; 1282 1283 CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(), 1284 MappingRegions); 1285 Writer.write(OS); 1286 } 1287 1288 void VisitStmt(const Stmt *S) { 1289 if (S->getBeginLoc().isValid()) 1290 extendRegion(S); 1291 const Stmt *LastStmt = nullptr; 1292 bool SaveTerminateStmt = HasTerminateStmt; 1293 HasTerminateStmt = false; 1294 GapRegionCounter = Counter::getZero(); 1295 for (const Stmt *Child : S->children()) 1296 if (Child) { 1297 // If last statement contains terminate statements, add a gap area 1298 // between the two statements. Skipping attributed statements, because 1299 // they don't have valid start location. 1300 if (LastStmt && HasTerminateStmt && !isa<AttributedStmt>(Child)) { 1301 auto Gap = findGapAreaBetween(getEnd(LastStmt), getStart(Child)); 1302 if (Gap) 1303 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), 1304 GapRegionCounter); 1305 SaveTerminateStmt = true; 1306 HasTerminateStmt = false; 1307 } 1308 this->Visit(Child); 1309 LastStmt = Child; 1310 } 1311 if (SaveTerminateStmt) 1312 HasTerminateStmt = true; 1313 handleFileExit(getEnd(S)); 1314 } 1315 1316 void VisitDecl(const Decl *D) { 1317 Stmt *Body = D->getBody(); 1318 1319 // Do not propagate region counts into system headers unless collecting 1320 // coverage from system headers is explicitly enabled. 1321 if (!SystemHeadersCoverage && Body && 1322 SM.isInSystemHeader(SM.getSpellingLoc(getStart(Body)))) 1323 return; 1324 1325 // Do not visit the artificial children nodes of defaulted methods. The 1326 // lexer may not be able to report back precise token end locations for 1327 // these children nodes (llvm.org/PR39822), and moreover users will not be 1328 // able to see coverage for them. 1329 Counter BodyCounter = getRegionCounter(Body); 1330 bool Defaulted = false; 1331 if (auto *Method = dyn_cast<CXXMethodDecl>(D)) 1332 Defaulted = Method->isDefaulted(); 1333 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) { 1334 for (auto *Initializer : Ctor->inits()) { 1335 if (Initializer->isWritten()) { 1336 auto *Init = Initializer->getInit(); 1337 if (getStart(Init).isValid() && getEnd(Init).isValid()) 1338 propagateCounts(BodyCounter, Init); 1339 } 1340 } 1341 } 1342 1343 propagateCounts(BodyCounter, Body, 1344 /*VisitChildren=*/!Defaulted); 1345 assert(RegionStack.empty() && "Regions entered but never exited"); 1346 } 1347 1348 void VisitReturnStmt(const ReturnStmt *S) { 1349 extendRegion(S); 1350 if (S->getRetValue()) 1351 Visit(S->getRetValue()); 1352 terminateRegion(S); 1353 } 1354 1355 void VisitCoroutineBodyStmt(const CoroutineBodyStmt *S) { 1356 extendRegion(S); 1357 Visit(S->getBody()); 1358 } 1359 1360 void VisitCoreturnStmt(const CoreturnStmt *S) { 1361 extendRegion(S); 1362 if (S->getOperand()) 1363 Visit(S->getOperand()); 1364 terminateRegion(S); 1365 } 1366 1367 void VisitCXXThrowExpr(const CXXThrowExpr *E) { 1368 extendRegion(E); 1369 if (E->getSubExpr()) 1370 Visit(E->getSubExpr()); 1371 terminateRegion(E); 1372 } 1373 1374 void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); } 1375 1376 void VisitLabelStmt(const LabelStmt *S) { 1377 Counter LabelCount = getRegionCounter(S); 1378 SourceLocation Start = getStart(S); 1379 // We can't extendRegion here or we risk overlapping with our new region. 1380 handleFileExit(Start); 1381 pushRegion(LabelCount, Start); 1382 Visit(S->getSubStmt()); 1383 } 1384 1385 void VisitBreakStmt(const BreakStmt *S) { 1386 assert(!BreakContinueStack.empty() && "break not in a loop or switch!"); 1387 BreakContinueStack.back().BreakCount = addCounters( 1388 BreakContinueStack.back().BreakCount, getRegion().getCounter()); 1389 // FIXME: a break in a switch should terminate regions for all preceding 1390 // case statements, not just the most recent one. 1391 terminateRegion(S); 1392 } 1393 1394 void VisitContinueStmt(const ContinueStmt *S) { 1395 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1396 BreakContinueStack.back().ContinueCount = addCounters( 1397 BreakContinueStack.back().ContinueCount, getRegion().getCounter()); 1398 terminateRegion(S); 1399 } 1400 1401 void VisitCallExpr(const CallExpr *E) { 1402 VisitStmt(E); 1403 1404 // Terminate the region when we hit a noreturn function. 1405 // (This is helpful dealing with switch statements.) 1406 QualType CalleeType = E->getCallee()->getType(); 1407 if (getFunctionExtInfo(*CalleeType).getNoReturn()) 1408 terminateRegion(E); 1409 } 1410 1411 void VisitWhileStmt(const WhileStmt *S) { 1412 extendRegion(S); 1413 1414 Counter ParentCount = getRegion().getCounter(); 1415 Counter BodyCount = getRegionCounter(S); 1416 1417 // Handle the body first so that we can get the backedge count. 1418 BreakContinueStack.push_back(BreakContinue()); 1419 extendRegion(S->getBody()); 1420 Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); 1421 BreakContinue BC = BreakContinueStack.pop_back_val(); 1422 1423 bool BodyHasTerminateStmt = HasTerminateStmt; 1424 HasTerminateStmt = false; 1425 1426 // Go back to handle the condition. 1427 Counter CondCount = 1428 addCounters(ParentCount, BackedgeCount, BC.ContinueCount); 1429 propagateCounts(CondCount, S->getCond()); 1430 adjustForOutOfOrderTraversal(getEnd(S)); 1431 1432 // The body count applies to the area immediately after the increment. 1433 auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody())); 1434 if (Gap) 1435 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount); 1436 1437 Counter OutCount = 1438 addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount)); 1439 if (OutCount != ParentCount) { 1440 pushRegion(OutCount); 1441 GapRegionCounter = OutCount; 1442 if (BodyHasTerminateStmt) 1443 HasTerminateStmt = true; 1444 } 1445 1446 // Create Branch Region around condition. 1447 createBranchRegion(S->getCond(), BodyCount, 1448 subtractCounters(CondCount, BodyCount)); 1449 } 1450 1451 void VisitDoStmt(const DoStmt *S) { 1452 extendRegion(S); 1453 1454 Counter ParentCount = getRegion().getCounter(); 1455 Counter BodyCount = getRegionCounter(S); 1456 1457 BreakContinueStack.push_back(BreakContinue()); 1458 extendRegion(S->getBody()); 1459 Counter BackedgeCount = 1460 propagateCounts(addCounters(ParentCount, BodyCount), S->getBody()); 1461 BreakContinue BC = BreakContinueStack.pop_back_val(); 1462 1463 bool BodyHasTerminateStmt = HasTerminateStmt; 1464 HasTerminateStmt = false; 1465 1466 Counter CondCount = addCounters(BackedgeCount, BC.ContinueCount); 1467 propagateCounts(CondCount, S->getCond()); 1468 1469 Counter OutCount = 1470 addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount)); 1471 if (OutCount != ParentCount) { 1472 pushRegion(OutCount); 1473 GapRegionCounter = OutCount; 1474 } 1475 1476 // Create Branch Region around condition. 1477 createBranchRegion(S->getCond(), BodyCount, 1478 subtractCounters(CondCount, BodyCount)); 1479 1480 if (BodyHasTerminateStmt) 1481 HasTerminateStmt = true; 1482 } 1483 1484 void VisitForStmt(const ForStmt *S) { 1485 extendRegion(S); 1486 if (S->getInit()) 1487 Visit(S->getInit()); 1488 1489 Counter ParentCount = getRegion().getCounter(); 1490 Counter BodyCount = getRegionCounter(S); 1491 1492 // The loop increment may contain a break or continue. 1493 if (S->getInc()) 1494 BreakContinueStack.emplace_back(); 1495 1496 // Handle the body first so that we can get the backedge count. 1497 BreakContinueStack.emplace_back(); 1498 extendRegion(S->getBody()); 1499 Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); 1500 BreakContinue BodyBC = BreakContinueStack.pop_back_val(); 1501 1502 bool BodyHasTerminateStmt = HasTerminateStmt; 1503 HasTerminateStmt = false; 1504 1505 // The increment is essentially part of the body but it needs to include 1506 // the count for all the continue statements. 1507 BreakContinue IncrementBC; 1508 if (const Stmt *Inc = S->getInc()) { 1509 propagateCounts(addCounters(BackedgeCount, BodyBC.ContinueCount), Inc); 1510 IncrementBC = BreakContinueStack.pop_back_val(); 1511 } 1512 1513 // Go back to handle the condition. 1514 Counter CondCount = addCounters( 1515 addCounters(ParentCount, BackedgeCount, BodyBC.ContinueCount), 1516 IncrementBC.ContinueCount); 1517 if (const Expr *Cond = S->getCond()) { 1518 propagateCounts(CondCount, Cond); 1519 adjustForOutOfOrderTraversal(getEnd(S)); 1520 } 1521 1522 // The body count applies to the area immediately after the increment. 1523 auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody())); 1524 if (Gap) 1525 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount); 1526 1527 Counter OutCount = addCounters(BodyBC.BreakCount, IncrementBC.BreakCount, 1528 subtractCounters(CondCount, BodyCount)); 1529 if (OutCount != ParentCount) { 1530 pushRegion(OutCount); 1531 GapRegionCounter = OutCount; 1532 if (BodyHasTerminateStmt) 1533 HasTerminateStmt = true; 1534 } 1535 1536 // Create Branch Region around condition. 1537 createBranchRegion(S->getCond(), BodyCount, 1538 subtractCounters(CondCount, BodyCount)); 1539 } 1540 1541 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { 1542 extendRegion(S); 1543 if (S->getInit()) 1544 Visit(S->getInit()); 1545 Visit(S->getLoopVarStmt()); 1546 Visit(S->getRangeStmt()); 1547 1548 Counter ParentCount = getRegion().getCounter(); 1549 Counter BodyCount = getRegionCounter(S); 1550 1551 BreakContinueStack.push_back(BreakContinue()); 1552 extendRegion(S->getBody()); 1553 Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); 1554 BreakContinue BC = BreakContinueStack.pop_back_val(); 1555 1556 bool BodyHasTerminateStmt = HasTerminateStmt; 1557 HasTerminateStmt = false; 1558 1559 // The body count applies to the area immediately after the range. 1560 auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody())); 1561 if (Gap) 1562 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount); 1563 1564 Counter LoopCount = 1565 addCounters(ParentCount, BackedgeCount, BC.ContinueCount); 1566 Counter OutCount = 1567 addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount)); 1568 if (OutCount != ParentCount) { 1569 pushRegion(OutCount); 1570 GapRegionCounter = OutCount; 1571 if (BodyHasTerminateStmt) 1572 HasTerminateStmt = true; 1573 } 1574 1575 // Create Branch Region around condition. 1576 createBranchRegion(S->getCond(), BodyCount, 1577 subtractCounters(LoopCount, BodyCount)); 1578 } 1579 1580 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { 1581 extendRegion(S); 1582 Visit(S->getElement()); 1583 1584 Counter ParentCount = getRegion().getCounter(); 1585 Counter BodyCount = getRegionCounter(S); 1586 1587 BreakContinueStack.push_back(BreakContinue()); 1588 extendRegion(S->getBody()); 1589 Counter BackedgeCount = propagateCounts(BodyCount, S->getBody()); 1590 BreakContinue BC = BreakContinueStack.pop_back_val(); 1591 1592 // The body count applies to the area immediately after the collection. 1593 auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody())); 1594 if (Gap) 1595 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount); 1596 1597 Counter LoopCount = 1598 addCounters(ParentCount, BackedgeCount, BC.ContinueCount); 1599 Counter OutCount = 1600 addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount)); 1601 if (OutCount != ParentCount) { 1602 pushRegion(OutCount); 1603 GapRegionCounter = OutCount; 1604 } 1605 } 1606 1607 void VisitSwitchStmt(const SwitchStmt *S) { 1608 extendRegion(S); 1609 if (S->getInit()) 1610 Visit(S->getInit()); 1611 Visit(S->getCond()); 1612 1613 BreakContinueStack.push_back(BreakContinue()); 1614 1615 const Stmt *Body = S->getBody(); 1616 extendRegion(Body); 1617 if (const auto *CS = dyn_cast<CompoundStmt>(Body)) { 1618 if (!CS->body_empty()) { 1619 // Make a region for the body of the switch. If the body starts with 1620 // a case, that case will reuse this region; otherwise, this covers 1621 // the unreachable code at the beginning of the switch body. 1622 size_t Index = pushRegion(Counter::getZero(), getStart(CS)); 1623 getRegion().setGap(true); 1624 Visit(Body); 1625 1626 // Set the end for the body of the switch, if it isn't already set. 1627 for (size_t i = RegionStack.size(); i != Index; --i) { 1628 if (!RegionStack[i - 1].hasEndLoc()) 1629 RegionStack[i - 1].setEndLoc(getEnd(CS->body_back())); 1630 } 1631 1632 popRegions(Index); 1633 } 1634 } else 1635 propagateCounts(Counter::getZero(), Body); 1636 BreakContinue BC = BreakContinueStack.pop_back_val(); 1637 1638 if (!BreakContinueStack.empty()) 1639 BreakContinueStack.back().ContinueCount = addCounters( 1640 BreakContinueStack.back().ContinueCount, BC.ContinueCount); 1641 1642 Counter ParentCount = getRegion().getCounter(); 1643 Counter ExitCount = getRegionCounter(S); 1644 SourceLocation ExitLoc = getEnd(S); 1645 pushRegion(ExitCount); 1646 GapRegionCounter = ExitCount; 1647 1648 // Ensure that handleFileExit recognizes when the end location is located 1649 // in a different file. 1650 MostRecentLocation = getStart(S); 1651 handleFileExit(ExitLoc); 1652 1653 // Create a Branch Region around each Case. Subtract the case's 1654 // counter from the Parent counter to track the "False" branch count. 1655 Counter CaseCountSum; 1656 bool HasDefaultCase = false; 1657 const SwitchCase *Case = S->getSwitchCaseList(); 1658 for (; Case; Case = Case->getNextSwitchCase()) { 1659 HasDefaultCase = HasDefaultCase || isa<DefaultStmt>(Case); 1660 CaseCountSum = 1661 addCounters(CaseCountSum, getRegionCounter(Case), /*Simplify=*/false); 1662 createSwitchCaseRegion( 1663 Case, getRegionCounter(Case), 1664 subtractCounters(ParentCount, getRegionCounter(Case))); 1665 } 1666 // Simplify is skipped while building the counters above: it can get really 1667 // slow on top of switches with thousands of cases. Instead, trigger 1668 // simplification by adding zero to the last counter. 1669 CaseCountSum = addCounters(CaseCountSum, Counter::getZero()); 1670 1671 // If no explicit default case exists, create a branch region to represent 1672 // the hidden branch, which will be added later by the CodeGen. This region 1673 // will be associated with the switch statement's condition. 1674 if (!HasDefaultCase) { 1675 Counter DefaultTrue = subtractCounters(ParentCount, CaseCountSum); 1676 Counter DefaultFalse = subtractCounters(ParentCount, DefaultTrue); 1677 createBranchRegion(S->getCond(), DefaultTrue, DefaultFalse); 1678 } 1679 } 1680 1681 void VisitSwitchCase(const SwitchCase *S) { 1682 extendRegion(S); 1683 1684 SourceMappingRegion &Parent = getRegion(); 1685 1686 Counter Count = addCounters(Parent.getCounter(), getRegionCounter(S)); 1687 // Reuse the existing region if it starts at our label. This is typical of 1688 // the first case in a switch. 1689 if (Parent.hasStartLoc() && Parent.getBeginLoc() == getStart(S)) 1690 Parent.setCounter(Count); 1691 else 1692 pushRegion(Count, getStart(S)); 1693 1694 GapRegionCounter = Count; 1695 1696 if (const auto *CS = dyn_cast<CaseStmt>(S)) { 1697 Visit(CS->getLHS()); 1698 if (const Expr *RHS = CS->getRHS()) 1699 Visit(RHS); 1700 } 1701 Visit(S->getSubStmt()); 1702 } 1703 1704 void VisitIfStmt(const IfStmt *S) { 1705 extendRegion(S); 1706 if (S->getInit()) 1707 Visit(S->getInit()); 1708 1709 // Extend into the condition before we propagate through it below - this is 1710 // needed to handle macros that generate the "if" but not the condition. 1711 if (!S->isConsteval()) 1712 extendRegion(S->getCond()); 1713 1714 Counter ParentCount = getRegion().getCounter(); 1715 Counter ThenCount = getRegionCounter(S); 1716 1717 if (!S->isConsteval()) { 1718 // Emitting a counter for the condition makes it easier to interpret the 1719 // counter for the body when looking at the coverage. 1720 propagateCounts(ParentCount, S->getCond()); 1721 1722 // The 'then' count applies to the area immediately after the condition. 1723 std::optional<SourceRange> Gap = 1724 findGapAreaBetween(S->getRParenLoc(), getStart(S->getThen())); 1725 if (Gap) 1726 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ThenCount); 1727 } 1728 1729 extendRegion(S->getThen()); 1730 Counter OutCount = propagateCounts(ThenCount, S->getThen()); 1731 1732 Counter ElseCount = subtractCounters(ParentCount, ThenCount); 1733 if (const Stmt *Else = S->getElse()) { 1734 bool ThenHasTerminateStmt = HasTerminateStmt; 1735 HasTerminateStmt = false; 1736 // The 'else' count applies to the area immediately after the 'then'. 1737 std::optional<SourceRange> Gap = 1738 findGapAreaBetween(getEnd(S->getThen()), getStart(Else)); 1739 if (Gap) 1740 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ElseCount); 1741 extendRegion(Else); 1742 OutCount = addCounters(OutCount, propagateCounts(ElseCount, Else)); 1743 1744 if (ThenHasTerminateStmt) 1745 HasTerminateStmt = true; 1746 } else 1747 OutCount = addCounters(OutCount, ElseCount); 1748 1749 if (OutCount != ParentCount) { 1750 pushRegion(OutCount); 1751 GapRegionCounter = OutCount; 1752 } 1753 1754 if (!S->isConsteval()) { 1755 // Create Branch Region around condition. 1756 createBranchRegion(S->getCond(), ThenCount, 1757 subtractCounters(ParentCount, ThenCount)); 1758 } 1759 } 1760 1761 void VisitCXXTryStmt(const CXXTryStmt *S) { 1762 extendRegion(S); 1763 // Handle macros that generate the "try" but not the rest. 1764 extendRegion(S->getTryBlock()); 1765 1766 Counter ParentCount = getRegion().getCounter(); 1767 propagateCounts(ParentCount, S->getTryBlock()); 1768 1769 for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I) 1770 Visit(S->getHandler(I)); 1771 1772 Counter ExitCount = getRegionCounter(S); 1773 pushRegion(ExitCount); 1774 } 1775 1776 void VisitCXXCatchStmt(const CXXCatchStmt *S) { 1777 propagateCounts(getRegionCounter(S), S->getHandlerBlock()); 1778 } 1779 1780 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1781 extendRegion(E); 1782 1783 Counter ParentCount = getRegion().getCounter(); 1784 Counter TrueCount = getRegionCounter(E); 1785 1786 propagateCounts(ParentCount, E->getCond()); 1787 Counter OutCount; 1788 1789 if (!isa<BinaryConditionalOperator>(E)) { 1790 // The 'then' count applies to the area immediately after the condition. 1791 auto Gap = 1792 findGapAreaBetween(E->getQuestionLoc(), getStart(E->getTrueExpr())); 1793 if (Gap) 1794 fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), TrueCount); 1795 1796 extendRegion(E->getTrueExpr()); 1797 OutCount = propagateCounts(TrueCount, E->getTrueExpr()); 1798 } 1799 1800 extendRegion(E->getFalseExpr()); 1801 OutCount = addCounters( 1802 OutCount, propagateCounts(subtractCounters(ParentCount, TrueCount), 1803 E->getFalseExpr())); 1804 1805 if (OutCount != ParentCount) { 1806 pushRegion(OutCount); 1807 GapRegionCounter = OutCount; 1808 } 1809 1810 // Create Branch Region around condition. 1811 createBranchRegion(E->getCond(), TrueCount, 1812 subtractCounters(ParentCount, TrueCount)); 1813 } 1814 1815 void VisitBinLAnd(const BinaryOperator *E) { 1816 // Keep track of Binary Operator and assign MCDC condition IDs 1817 MCDCBuilder.pushAndAssignIDs(E); 1818 1819 extendRegion(E->getLHS()); 1820 propagateCounts(getRegion().getCounter(), E->getLHS()); 1821 handleFileExit(getEnd(E->getLHS())); 1822 1823 // Counter tracks the right hand side of a logical and operator. 1824 extendRegion(E->getRHS()); 1825 propagateCounts(getRegionCounter(E), E->getRHS()); 1826 1827 // Process Binary Operator and create MCDC Decision Region if top-level 1828 unsigned NumConds = 0; 1829 if ((NumConds = MCDCBuilder.popAndReturnCondCount(E))) 1830 createDecisionRegion(E, getRegionBitmap(E), NumConds); 1831 1832 // Extract the RHS's Execution Counter. 1833 Counter RHSExecCnt = getRegionCounter(E); 1834 1835 // Extract the RHS's "True" Instance Counter. 1836 Counter RHSTrueCnt = getRegionCounter(E->getRHS()); 1837 1838 // Extract the Parent Region Counter. 1839 Counter ParentCnt = getRegion().getCounter(); 1840 1841 // Extract the MCDC condition IDs (returns 0 if not needed). 1842 MCDCConditionID NextOrID = MCDCBuilder.getNextLOrCondID(); 1843 MCDCConditionID NextAndID = MCDCBuilder.getNextLAndCondID(); 1844 MCDCConditionID LHSid = MCDCBuilder.getCondID(E->getLHS()); 1845 MCDCConditionID RHSid = MCDCBuilder.getCondID(E->getRHS()); 1846 1847 // Create Branch Region around LHS condition. 1848 // MC/DC: For "LHS && RHS" 1849 // - If LHS is TRUE, execution goes to the RHS. 1850 // - If LHS is FALSE, execution goes to the LHS of the next logical-OR. 1851 // If that does not exist, execution exits (ID == 0). 1852 createBranchRegion(E->getLHS(), RHSExecCnt, 1853 subtractCounters(ParentCnt, RHSExecCnt), LHSid, RHSid, 1854 NextOrID); 1855 1856 // Create Branch Region around RHS condition. 1857 // MC/DC: For "LHS && RHS" 1858 // - If RHS is TRUE, execution goes to LHS of the next logical-AND. 1859 // If that does not exist, execution exits (ID == 0). 1860 // - If RHS is FALSE, execution goes to the LHS of the next logical-OR. 1861 // If that does not exist, execution exits (ID == 0). 1862 createBranchRegion(E->getRHS(), RHSTrueCnt, 1863 subtractCounters(RHSExecCnt, RHSTrueCnt), RHSid, 1864 NextAndID, NextOrID); 1865 } 1866 1867 // Determine whether the right side of OR operation need to be visited. 1868 bool shouldVisitRHS(const Expr *LHS) { 1869 bool LHSIsTrue = false; 1870 bool LHSIsConst = false; 1871 if (!LHS->isValueDependent()) 1872 LHSIsConst = LHS->EvaluateAsBooleanCondition( 1873 LHSIsTrue, CVM.getCodeGenModule().getContext()); 1874 return !LHSIsConst || (LHSIsConst && !LHSIsTrue); 1875 } 1876 1877 void VisitBinLOr(const BinaryOperator *E) { 1878 // Keep track of Binary Operator and assign MCDC condition IDs 1879 MCDCBuilder.pushAndAssignIDs(E); 1880 1881 extendRegion(E->getLHS()); 1882 Counter OutCount = propagateCounts(getRegion().getCounter(), E->getLHS()); 1883 handleFileExit(getEnd(E->getLHS())); 1884 1885 // Counter tracks the right hand side of a logical or operator. 1886 extendRegion(E->getRHS()); 1887 propagateCounts(getRegionCounter(E), E->getRHS()); 1888 1889 // Process Binary Operator and create MCDC Decision Region if top-level 1890 unsigned NumConds = 0; 1891 if ((NumConds = MCDCBuilder.popAndReturnCondCount(E))) 1892 createDecisionRegion(E, getRegionBitmap(E), NumConds); 1893 1894 // Extract the RHS's Execution Counter. 1895 Counter RHSExecCnt = getRegionCounter(E); 1896 1897 // Extract the RHS's "False" Instance Counter. 1898 Counter RHSFalseCnt = getRegionCounter(E->getRHS()); 1899 1900 if (!shouldVisitRHS(E->getLHS())) { 1901 GapRegionCounter = OutCount; 1902 } 1903 1904 // Extract the Parent Region Counter. 1905 Counter ParentCnt = getRegion().getCounter(); 1906 1907 // Extract the MCDC condition IDs (returns 0 if not needed). 1908 MCDCConditionID NextOrID = MCDCBuilder.getNextLOrCondID(); 1909 MCDCConditionID NextAndID = MCDCBuilder.getNextLAndCondID(); 1910 MCDCConditionID LHSid = MCDCBuilder.getCondID(E->getLHS()); 1911 MCDCConditionID RHSid = MCDCBuilder.getCondID(E->getRHS()); 1912 1913 // Create Branch Region around LHS condition. 1914 // MC/DC: For "LHS || RHS" 1915 // - If LHS is TRUE, execution goes to the LHS of the next logical-AND. 1916 // If that does not exist, execution exits (ID == 0). 1917 // - If LHS is FALSE, execution goes to the RHS. 1918 createBranchRegion(E->getLHS(), subtractCounters(ParentCnt, RHSExecCnt), 1919 RHSExecCnt, LHSid, NextAndID, RHSid); 1920 1921 // Create Branch Region around RHS condition. 1922 // MC/DC: For "LHS || RHS" 1923 // - If RHS is TRUE, execution goes to LHS of the next logical-AND. 1924 // If that does not exist, execution exits (ID == 0). 1925 // - If RHS is FALSE, execution goes to the LHS of the next logical-OR. 1926 // If that does not exist, execution exits (ID == 0). 1927 createBranchRegion(E->getRHS(), subtractCounters(RHSExecCnt, RHSFalseCnt), 1928 RHSFalseCnt, RHSid, NextAndID, NextOrID); 1929 } 1930 1931 void VisitLambdaExpr(const LambdaExpr *LE) { 1932 // Lambdas are treated as their own functions for now, so we shouldn't 1933 // propagate counts into them. 1934 } 1935 1936 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) { 1937 // Just visit syntatic expression as this is what users actually write. 1938 VisitStmt(POE->getSyntacticForm()); 1939 } 1940 1941 void VisitOpaqueValueExpr(const OpaqueValueExpr* OVE) { 1942 Visit(OVE->getSourceExpr()); 1943 } 1944 }; 1945 1946 } // end anonymous namespace 1947 1948 static void dump(llvm::raw_ostream &OS, StringRef FunctionName, 1949 ArrayRef<CounterExpression> Expressions, 1950 ArrayRef<CounterMappingRegion> Regions) { 1951 OS << FunctionName << ":\n"; 1952 CounterMappingContext Ctx(Expressions); 1953 for (const auto &R : Regions) { 1954 OS.indent(2); 1955 switch (R.Kind) { 1956 case CounterMappingRegion::CodeRegion: 1957 break; 1958 case CounterMappingRegion::ExpansionRegion: 1959 OS << "Expansion,"; 1960 break; 1961 case CounterMappingRegion::SkippedRegion: 1962 OS << "Skipped,"; 1963 break; 1964 case CounterMappingRegion::GapRegion: 1965 OS << "Gap,"; 1966 break; 1967 case CounterMappingRegion::BranchRegion: 1968 case CounterMappingRegion::MCDCBranchRegion: 1969 OS << "Branch,"; 1970 break; 1971 case CounterMappingRegion::MCDCDecisionRegion: 1972 OS << "Decision,"; 1973 break; 1974 } 1975 1976 OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart 1977 << " -> " << R.LineEnd << ":" << R.ColumnEnd << " = "; 1978 1979 if (R.Kind == CounterMappingRegion::MCDCDecisionRegion) { 1980 OS << "M:" << R.MCDCParams.BitmapIdx; 1981 OS << ", C:" << R.MCDCParams.NumConditions; 1982 } else { 1983 Ctx.dump(R.Count, OS); 1984 1985 if (R.Kind == CounterMappingRegion::BranchRegion || 1986 R.Kind == CounterMappingRegion::MCDCBranchRegion) { 1987 OS << ", "; 1988 Ctx.dump(R.FalseCount, OS); 1989 } 1990 } 1991 1992 if (R.Kind == CounterMappingRegion::MCDCBranchRegion) { 1993 OS << " [" << R.MCDCParams.ID << "," << R.MCDCParams.TrueID; 1994 OS << "," << R.MCDCParams.FalseID << "] "; 1995 } 1996 1997 if (R.Kind == CounterMappingRegion::ExpansionRegion) 1998 OS << " (Expanded file = " << R.ExpandedFileID << ")"; 1999 OS << "\n"; 2000 } 2001 } 2002 2003 CoverageMappingModuleGen::CoverageMappingModuleGen( 2004 CodeGenModule &CGM, CoverageSourceInfo &SourceInfo) 2005 : CGM(CGM), SourceInfo(SourceInfo) {} 2006 2007 std::string CoverageMappingModuleGen::getCurrentDirname() { 2008 if (!CGM.getCodeGenOpts().CoverageCompilationDir.empty()) 2009 return CGM.getCodeGenOpts().CoverageCompilationDir; 2010 2011 SmallString<256> CWD; 2012 llvm::sys::fs::current_path(CWD); 2013 return CWD.str().str(); 2014 } 2015 2016 std::string CoverageMappingModuleGen::normalizeFilename(StringRef Filename) { 2017 llvm::SmallString<256> Path(Filename); 2018 llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); 2019 2020 /// Traverse coverage prefix map in reverse order because prefix replacements 2021 /// are applied in reverse order starting from the last one when multiple 2022 /// prefix replacement options are provided. 2023 for (const auto &[From, To] : 2024 llvm::reverse(CGM.getCodeGenOpts().CoveragePrefixMap)) { 2025 if (llvm::sys::path::replace_path_prefix(Path, From, To)) 2026 break; 2027 } 2028 return Path.str().str(); 2029 } 2030 2031 static std::string getInstrProfSection(const CodeGenModule &CGM, 2032 llvm::InstrProfSectKind SK) { 2033 return llvm::getInstrProfSectionName( 2034 SK, CGM.getContext().getTargetInfo().getTriple().getObjectFormat()); 2035 } 2036 2037 void CoverageMappingModuleGen::emitFunctionMappingRecord( 2038 const FunctionInfo &Info, uint64_t FilenamesRef) { 2039 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 2040 2041 // Assign a name to the function record. This is used to merge duplicates. 2042 std::string FuncRecordName = "__covrec_" + llvm::utohexstr(Info.NameHash); 2043 2044 // A dummy description for a function included-but-not-used in a TU can be 2045 // replaced by full description provided by a different TU. The two kinds of 2046 // descriptions play distinct roles: therefore, assign them different names 2047 // to prevent `linkonce_odr` merging. 2048 if (Info.IsUsed) 2049 FuncRecordName += "u"; 2050 2051 // Create the function record type. 2052 const uint64_t NameHash = Info.NameHash; 2053 const uint64_t FuncHash = Info.FuncHash; 2054 const std::string &CoverageMapping = Info.CoverageMapping; 2055 #define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) LLVMType, 2056 llvm::Type *FunctionRecordTypes[] = { 2057 #include "llvm/ProfileData/InstrProfData.inc" 2058 }; 2059 auto *FunctionRecordTy = 2060 llvm::StructType::get(Ctx, ArrayRef(FunctionRecordTypes), 2061 /*isPacked=*/true); 2062 2063 // Create the function record constant. 2064 #define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Init, 2065 llvm::Constant *FunctionRecordVals[] = { 2066 #include "llvm/ProfileData/InstrProfData.inc" 2067 }; 2068 auto *FuncRecordConstant = 2069 llvm::ConstantStruct::get(FunctionRecordTy, ArrayRef(FunctionRecordVals)); 2070 2071 // Create the function record global. 2072 auto *FuncRecord = new llvm::GlobalVariable( 2073 CGM.getModule(), FunctionRecordTy, /*isConstant=*/true, 2074 llvm::GlobalValue::LinkOnceODRLinkage, FuncRecordConstant, 2075 FuncRecordName); 2076 FuncRecord->setVisibility(llvm::GlobalValue::HiddenVisibility); 2077 FuncRecord->setSection(getInstrProfSection(CGM, llvm::IPSK_covfun)); 2078 FuncRecord->setAlignment(llvm::Align(8)); 2079 if (CGM.supportsCOMDAT()) 2080 FuncRecord->setComdat(CGM.getModule().getOrInsertComdat(FuncRecordName)); 2081 2082 // Make sure the data doesn't get deleted. 2083 CGM.addUsedGlobal(FuncRecord); 2084 } 2085 2086 void CoverageMappingModuleGen::addFunctionMappingRecord( 2087 llvm::GlobalVariable *NamePtr, StringRef NameValue, uint64_t FuncHash, 2088 const std::string &CoverageMapping, bool IsUsed) { 2089 const uint64_t NameHash = llvm::IndexedInstrProf::ComputeHash(NameValue); 2090 FunctionRecords.push_back({NameHash, FuncHash, CoverageMapping, IsUsed}); 2091 2092 if (!IsUsed) 2093 FunctionNames.push_back(NamePtr); 2094 2095 if (CGM.getCodeGenOpts().DumpCoverageMapping) { 2096 // Dump the coverage mapping data for this function by decoding the 2097 // encoded data. This allows us to dump the mapping regions which were 2098 // also processed by the CoverageMappingWriter which performs 2099 // additional minimization operations such as reducing the number of 2100 // expressions. 2101 llvm::SmallVector<std::string, 16> FilenameStrs; 2102 std::vector<StringRef> Filenames; 2103 std::vector<CounterExpression> Expressions; 2104 std::vector<CounterMappingRegion> Regions; 2105 FilenameStrs.resize(FileEntries.size() + 1); 2106 FilenameStrs[0] = normalizeFilename(getCurrentDirname()); 2107 for (const auto &Entry : FileEntries) { 2108 auto I = Entry.second; 2109 FilenameStrs[I] = normalizeFilename(Entry.first.getName()); 2110 } 2111 ArrayRef<std::string> FilenameRefs = llvm::ArrayRef(FilenameStrs); 2112 RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames, 2113 Expressions, Regions); 2114 if (Reader.read()) 2115 return; 2116 dump(llvm::outs(), NameValue, Expressions, Regions); 2117 } 2118 } 2119 2120 void CoverageMappingModuleGen::emit() { 2121 if (FunctionRecords.empty()) 2122 return; 2123 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 2124 auto *Int32Ty = llvm::Type::getInt32Ty(Ctx); 2125 2126 // Create the filenames and merge them with coverage mappings 2127 llvm::SmallVector<std::string, 16> FilenameStrs; 2128 FilenameStrs.resize(FileEntries.size() + 1); 2129 // The first filename is the current working directory. 2130 FilenameStrs[0] = normalizeFilename(getCurrentDirname()); 2131 for (const auto &Entry : FileEntries) { 2132 auto I = Entry.second; 2133 FilenameStrs[I] = normalizeFilename(Entry.first.getName()); 2134 } 2135 2136 std::string Filenames; 2137 { 2138 llvm::raw_string_ostream OS(Filenames); 2139 CoverageFilenamesSectionWriter(FilenameStrs).write(OS); 2140 } 2141 auto *FilenamesVal = 2142 llvm::ConstantDataArray::getString(Ctx, Filenames, false); 2143 const int64_t FilenamesRef = llvm::IndexedInstrProf::ComputeHash(Filenames); 2144 2145 // Emit the function records. 2146 for (const FunctionInfo &Info : FunctionRecords) 2147 emitFunctionMappingRecord(Info, FilenamesRef); 2148 2149 const unsigned NRecords = 0; 2150 const size_t FilenamesSize = Filenames.size(); 2151 const unsigned CoverageMappingSize = 0; 2152 llvm::Type *CovDataHeaderTypes[] = { 2153 #define COVMAP_HEADER(Type, LLVMType, Name, Init) LLVMType, 2154 #include "llvm/ProfileData/InstrProfData.inc" 2155 }; 2156 auto CovDataHeaderTy = 2157 llvm::StructType::get(Ctx, ArrayRef(CovDataHeaderTypes)); 2158 llvm::Constant *CovDataHeaderVals[] = { 2159 #define COVMAP_HEADER(Type, LLVMType, Name, Init) Init, 2160 #include "llvm/ProfileData/InstrProfData.inc" 2161 }; 2162 auto CovDataHeaderVal = 2163 llvm::ConstantStruct::get(CovDataHeaderTy, ArrayRef(CovDataHeaderVals)); 2164 2165 // Create the coverage data record 2166 llvm::Type *CovDataTypes[] = {CovDataHeaderTy, FilenamesVal->getType()}; 2167 auto CovDataTy = llvm::StructType::get(Ctx, ArrayRef(CovDataTypes)); 2168 llvm::Constant *TUDataVals[] = {CovDataHeaderVal, FilenamesVal}; 2169 auto CovDataVal = llvm::ConstantStruct::get(CovDataTy, ArrayRef(TUDataVals)); 2170 auto CovData = new llvm::GlobalVariable( 2171 CGM.getModule(), CovDataTy, true, llvm::GlobalValue::PrivateLinkage, 2172 CovDataVal, llvm::getCoverageMappingVarName()); 2173 2174 CovData->setSection(getInstrProfSection(CGM, llvm::IPSK_covmap)); 2175 CovData->setAlignment(llvm::Align(8)); 2176 2177 // Make sure the data doesn't get deleted. 2178 CGM.addUsedGlobal(CovData); 2179 // Create the deferred function records array 2180 if (!FunctionNames.empty()) { 2181 auto NamesArrTy = llvm::ArrayType::get(llvm::PointerType::getUnqual(Ctx), 2182 FunctionNames.size()); 2183 auto NamesArrVal = llvm::ConstantArray::get(NamesArrTy, FunctionNames); 2184 // This variable will *NOT* be emitted to the object file. It is used 2185 // to pass the list of names referenced to codegen. 2186 new llvm::GlobalVariable(CGM.getModule(), NamesArrTy, true, 2187 llvm::GlobalValue::InternalLinkage, NamesArrVal, 2188 llvm::getCoverageUnusedNamesVarName()); 2189 } 2190 } 2191 2192 unsigned CoverageMappingModuleGen::getFileID(FileEntryRef File) { 2193 auto It = FileEntries.find(File); 2194 if (It != FileEntries.end()) 2195 return It->second; 2196 unsigned FileID = FileEntries.size() + 1; 2197 FileEntries.insert(std::make_pair(File, FileID)); 2198 return FileID; 2199 } 2200 2201 void CoverageMappingGen::emitCounterMapping(const Decl *D, 2202 llvm::raw_ostream &OS) { 2203 assert(CounterMap && MCDCBitmapMap); 2204 CounterCoverageMappingBuilder Walker(CVM, *CounterMap, *MCDCBitmapMap, 2205 *CondIDMap, SM, LangOpts); 2206 Walker.VisitDecl(D); 2207 Walker.write(OS); 2208 } 2209 2210 void CoverageMappingGen::emitEmptyMapping(const Decl *D, 2211 llvm::raw_ostream &OS) { 2212 EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts); 2213 Walker.VisitDecl(D); 2214 Walker.write(OS); 2215 } 2216