xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CRC.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/ConvertUTF.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MD5.h"
67 #include "llvm/Support/TimeProfiler.h"
68 #include "llvm/Support/X86TargetParser.h"
69 
70 using namespace clang;
71 using namespace CodeGen;
72 
73 static llvm::cl::opt<bool> LimitedCoverage(
74     "limited-coverage-experimental", llvm::cl::Hidden,
75     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
76 
77 static const char AnnotationSection[] = "llvm.metadata";
78 
79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
80   switch (CGM.getContext().getCXXABIKind()) {
81   case TargetCXXABI::AppleARM64:
82   case TargetCXXABI::Fuchsia:
83   case TargetCXXABI::GenericAArch64:
84   case TargetCXXABI::GenericARM:
85   case TargetCXXABI::iOS:
86   case TargetCXXABI::WatchOS:
87   case TargetCXXABI::GenericMIPS:
88   case TargetCXXABI::GenericItanium:
89   case TargetCXXABI::WebAssembly:
90   case TargetCXXABI::XL:
91     return CreateItaniumCXXABI(CGM);
92   case TargetCXXABI::Microsoft:
93     return CreateMicrosoftCXXABI(CGM);
94   }
95 
96   llvm_unreachable("invalid C++ ABI kind");
97 }
98 
99 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
100                              const PreprocessorOptions &PPO,
101                              const CodeGenOptions &CGO, llvm::Module &M,
102                              DiagnosticsEngine &diags,
103                              CoverageSourceInfo *CoverageInfo)
104     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
105       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
106       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
107       VMContext(M.getContext()), Types(*this), VTables(*this),
108       SanitizerMD(new SanitizerMetadata(*this)) {
109 
110   // Initialize the type cache.
111   llvm::LLVMContext &LLVMContext = M.getContext();
112   VoidTy = llvm::Type::getVoidTy(LLVMContext);
113   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
114   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
115   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
116   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
117   HalfTy = llvm::Type::getHalfTy(LLVMContext);
118   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
119   FloatTy = llvm::Type::getFloatTy(LLVMContext);
120   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
121   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
122   PointerAlignInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
124   SizeSizeInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
126   IntAlignInBytes =
127     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
128   CharTy =
129     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
130   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
131   IntPtrTy = llvm::IntegerType::get(LLVMContext,
132     C.getTargetInfo().getMaxPointerWidth());
133   Int8PtrTy = Int8Ty->getPointerTo(0);
134   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
135   const llvm::DataLayout &DL = M.getDataLayout();
136   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
137   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
138   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
139 
140   // Build C++20 Module initializers.
141   // TODO: Add Microsoft here once we know the mangling required for the
142   // initializers.
143   CXX20ModuleInits =
144       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
145                                        ItaniumMangleContext::MK_Itanium;
146 
147   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
148 
149   if (LangOpts.ObjC)
150     createObjCRuntime();
151   if (LangOpts.OpenCL)
152     createOpenCLRuntime();
153   if (LangOpts.OpenMP)
154     createOpenMPRuntime();
155   if (LangOpts.CUDA)
156     createCUDARuntime();
157   if (LangOpts.HLSL)
158     createHLSLRuntime();
159 
160   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
161   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
162       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
163     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
164                                getCXXABI().getMangleContext()));
165 
166   // If debug info or coverage generation is enabled, create the CGDebugInfo
167   // object.
168   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
169       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
170     DebugInfo.reset(new CGDebugInfo(*this));
171 
172   Block.GlobalUniqueCount = 0;
173 
174   if (C.getLangOpts().ObjC)
175     ObjCData.reset(new ObjCEntrypoints());
176 
177   if (CodeGenOpts.hasProfileClangUse()) {
178     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
179         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
180     if (auto E = ReaderOrErr.takeError()) {
181       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
182                                               "Could not read profile %0: %1");
183       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
184         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
185                                   << EI.message();
186       });
187     } else
188       PGOReader = std::move(ReaderOrErr.get());
189   }
190 
191   // If coverage mapping generation is enabled, create the
192   // CoverageMappingModuleGen object.
193   if (CodeGenOpts.CoverageMapping)
194     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
195 
196   // Generate the module name hash here if needed.
197   if (CodeGenOpts.UniqueInternalLinkageNames &&
198       !getModule().getSourceFileName().empty()) {
199     std::string Path = getModule().getSourceFileName();
200     // Check if a path substitution is needed from the MacroPrefixMap.
201     for (const auto &Entry : LangOpts.MacroPrefixMap)
202       if (Path.rfind(Entry.first, 0) != std::string::npos) {
203         Path = Entry.second + Path.substr(Entry.first.size());
204         break;
205       }
206     llvm::MD5 Md5;
207     Md5.update(Path);
208     llvm::MD5::MD5Result R;
209     Md5.final(R);
210     SmallString<32> Str;
211     llvm::MD5::stringifyResult(R, Str);
212     // Convert MD5hash to Decimal. Demangler suffixes can either contain
213     // numbers or characters but not both.
214     llvm::APInt IntHash(128, Str.str(), 16);
215     // Prepend "__uniq" before the hash for tools like profilers to understand
216     // that this symbol is of internal linkage type.  The "__uniq" is the
217     // pre-determined prefix that is used to tell tools that this symbol was
218     // created with -funique-internal-linakge-symbols and the tools can strip or
219     // keep the prefix as needed.
220     ModuleNameHash = (Twine(".__uniq.") +
221         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
222   }
223 }
224 
225 CodeGenModule::~CodeGenModule() {}
226 
227 void CodeGenModule::createObjCRuntime() {
228   // This is just isGNUFamily(), but we want to force implementors of
229   // new ABIs to decide how best to do this.
230   switch (LangOpts.ObjCRuntime.getKind()) {
231   case ObjCRuntime::GNUstep:
232   case ObjCRuntime::GCC:
233   case ObjCRuntime::ObjFW:
234     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
235     return;
236 
237   case ObjCRuntime::FragileMacOSX:
238   case ObjCRuntime::MacOSX:
239   case ObjCRuntime::iOS:
240   case ObjCRuntime::WatchOS:
241     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
242     return;
243   }
244   llvm_unreachable("bad runtime kind");
245 }
246 
247 void CodeGenModule::createOpenCLRuntime() {
248   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
249 }
250 
251 void CodeGenModule::createOpenMPRuntime() {
252   // Select a specialized code generation class based on the target, if any.
253   // If it does not exist use the default implementation.
254   switch (getTriple().getArch()) {
255   case llvm::Triple::nvptx:
256   case llvm::Triple::nvptx64:
257   case llvm::Triple::amdgcn:
258     assert(getLangOpts().OpenMPIsDevice &&
259            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
260     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
261     break;
262   default:
263     if (LangOpts.OpenMPSimd)
264       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
265     else
266       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
267     break;
268   }
269 }
270 
271 void CodeGenModule::createCUDARuntime() {
272   CUDARuntime.reset(CreateNVCUDARuntime(*this));
273 }
274 
275 void CodeGenModule::createHLSLRuntime() {
276   HLSLRuntime.reset(new CGHLSLRuntime(*this));
277 }
278 
279 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
280   Replacements[Name] = C;
281 }
282 
283 void CodeGenModule::applyReplacements() {
284   for (auto &I : Replacements) {
285     StringRef MangledName = I.first();
286     llvm::Constant *Replacement = I.second;
287     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
288     if (!Entry)
289       continue;
290     auto *OldF = cast<llvm::Function>(Entry);
291     auto *NewF = dyn_cast<llvm::Function>(Replacement);
292     if (!NewF) {
293       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
294         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
295       } else {
296         auto *CE = cast<llvm::ConstantExpr>(Replacement);
297         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
298                CE->getOpcode() == llvm::Instruction::GetElementPtr);
299         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
300       }
301     }
302 
303     // Replace old with new, but keep the old order.
304     OldF->replaceAllUsesWith(Replacement);
305     if (NewF) {
306       NewF->removeFromParent();
307       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
308                                                        NewF);
309     }
310     OldF->eraseFromParent();
311   }
312 }
313 
314 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
315   GlobalValReplacements.push_back(std::make_pair(GV, C));
316 }
317 
318 void CodeGenModule::applyGlobalValReplacements() {
319   for (auto &I : GlobalValReplacements) {
320     llvm::GlobalValue *GV = I.first;
321     llvm::Constant *C = I.second;
322 
323     GV->replaceAllUsesWith(C);
324     GV->eraseFromParent();
325   }
326 }
327 
328 // This is only used in aliases that we created and we know they have a
329 // linear structure.
330 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
331   const llvm::Constant *C;
332   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
333     C = GA->getAliasee();
334   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
335     C = GI->getResolver();
336   else
337     return GV;
338 
339   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
340   if (!AliaseeGV)
341     return nullptr;
342 
343   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
344   if (FinalGV == GV)
345     return nullptr;
346 
347   return FinalGV;
348 }
349 
350 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
351                                SourceLocation Location, bool IsIFunc,
352                                const llvm::GlobalValue *Alias,
353                                const llvm::GlobalValue *&GV) {
354   GV = getAliasedGlobal(Alias);
355   if (!GV) {
356     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     return false;
358   }
359 
360   if (GV->isDeclaration()) {
361     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
362     return false;
363   }
364 
365   if (IsIFunc) {
366     // Check resolver function type.
367     const auto *F = dyn_cast<llvm::Function>(GV);
368     if (!F) {
369       Diags.Report(Location, diag::err_alias_to_undefined)
370           << IsIFunc << IsIFunc;
371       return false;
372     }
373 
374     llvm::FunctionType *FTy = F->getFunctionType();
375     if (!FTy->getReturnType()->isPointerTy()) {
376       Diags.Report(Location, diag::err_ifunc_resolver_return);
377       return false;
378     }
379   }
380 
381   return true;
382 }
383 
384 void CodeGenModule::checkAliases() {
385   // Check if the constructed aliases are well formed. It is really unfortunate
386   // that we have to do this in CodeGen, but we only construct mangled names
387   // and aliases during codegen.
388   bool Error = false;
389   DiagnosticsEngine &Diags = getDiags();
390   for (const GlobalDecl &GD : Aliases) {
391     const auto *D = cast<ValueDecl>(GD.getDecl());
392     SourceLocation Location;
393     bool IsIFunc = D->hasAttr<IFuncAttr>();
394     if (const Attr *A = D->getDefiningAttr())
395       Location = A->getLocation();
396     else
397       llvm_unreachable("Not an alias or ifunc?");
398 
399     StringRef MangledName = getMangledName(GD);
400     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
401     const llvm::GlobalValue *GV = nullptr;
402     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
403       Error = true;
404       continue;
405     }
406 
407     llvm::Constant *Aliasee =
408         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
409                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
410 
411     llvm::GlobalValue *AliaseeGV;
412     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
413       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
414     else
415       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
416 
417     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
418       StringRef AliasSection = SA->getName();
419       if (AliasSection != AliaseeGV->getSection())
420         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
421             << AliasSection << IsIFunc << IsIFunc;
422     }
423 
424     // We have to handle alias to weak aliases in here. LLVM itself disallows
425     // this since the object semantics would not match the IL one. For
426     // compatibility with gcc we implement it by just pointing the alias
427     // to its aliasee's aliasee. We also warn, since the user is probably
428     // expecting the link to be weak.
429     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
430       if (GA->isInterposable()) {
431         Diags.Report(Location, diag::warn_alias_to_weak_alias)
432             << GV->getName() << GA->getName() << IsIFunc;
433         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
434             GA->getAliasee(), Alias->getType());
435 
436         if (IsIFunc)
437           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
438         else
439           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
440       }
441     }
442   }
443   if (!Error)
444     return;
445 
446   for (const GlobalDecl &GD : Aliases) {
447     StringRef MangledName = getMangledName(GD);
448     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
449     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
450     Alias->eraseFromParent();
451   }
452 }
453 
454 void CodeGenModule::clear() {
455   DeferredDeclsToEmit.clear();
456   EmittedDeferredDecls.clear();
457   if (OpenMPRuntime)
458     OpenMPRuntime->clear();
459 }
460 
461 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
462                                        StringRef MainFile) {
463   if (!hasDiagnostics())
464     return;
465   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
466     if (MainFile.empty())
467       MainFile = "<stdin>";
468     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
469   } else {
470     if (Mismatched > 0)
471       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
472 
473     if (Missing > 0)
474       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
475   }
476 }
477 
478 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
479                                              llvm::Module &M) {
480   if (!LO.VisibilityFromDLLStorageClass)
481     return;
482 
483   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
484       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
485   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
486       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
487   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
488       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
489   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
490       CodeGenModule::GetLLVMVisibility(
491           LO.getExternDeclNoDLLStorageClassVisibility());
492 
493   for (llvm::GlobalValue &GV : M.global_values()) {
494     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
495       continue;
496 
497     // Reset DSO locality before setting the visibility. This removes
498     // any effects that visibility options and annotations may have
499     // had on the DSO locality. Setting the visibility will implicitly set
500     // appropriate globals to DSO Local; however, this will be pessimistic
501     // w.r.t. to the normal compiler IRGen.
502     GV.setDSOLocal(false);
503 
504     if (GV.isDeclarationForLinker()) {
505       GV.setVisibility(GV.getDLLStorageClass() ==
506                                llvm::GlobalValue::DLLImportStorageClass
507                            ? ExternDeclDLLImportVisibility
508                            : ExternDeclNoDLLStorageClassVisibility);
509     } else {
510       GV.setVisibility(GV.getDLLStorageClass() ==
511                                llvm::GlobalValue::DLLExportStorageClass
512                            ? DLLExportVisibility
513                            : NoDLLStorageClassVisibility);
514     }
515 
516     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
517   }
518 }
519 
520 void CodeGenModule::Release() {
521   Module *Primary = getContext().getModuleForCodeGen();
522   if (CXX20ModuleInits && Primary && !Primary->isModuleMapModule())
523     EmitModuleInitializers(Primary);
524   EmitDeferred();
525   DeferredDecls.insert(EmittedDeferredDecls.begin(),
526                        EmittedDeferredDecls.end());
527   EmittedDeferredDecls.clear();
528   EmitVTablesOpportunistically();
529   applyGlobalValReplacements();
530   applyReplacements();
531   emitMultiVersionFunctions();
532   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
533     EmitCXXModuleInitFunc(Primary);
534   else
535     EmitCXXGlobalInitFunc();
536   EmitCXXGlobalCleanUpFunc();
537   registerGlobalDtorsWithAtExit();
538   EmitCXXThreadLocalInitFunc();
539   if (ObjCRuntime)
540     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
541       AddGlobalCtor(ObjCInitFunction);
542   if (Context.getLangOpts().CUDA && CUDARuntime) {
543     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
544       AddGlobalCtor(CudaCtorFunction);
545   }
546   if (OpenMPRuntime) {
547     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
548             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
549       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
550     }
551     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
552     OpenMPRuntime->clear();
553   }
554   if (PGOReader) {
555     getModule().setProfileSummary(
556         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
557         llvm::ProfileSummary::PSK_Instr);
558     if (PGOStats.hasDiagnostics())
559       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
560   }
561   EmitCtorList(GlobalCtors, "llvm.global_ctors");
562   EmitCtorList(GlobalDtors, "llvm.global_dtors");
563   EmitGlobalAnnotations();
564   EmitStaticExternCAliases();
565   checkAliases();
566   EmitDeferredUnusedCoverageMappings();
567   CodeGenPGO(*this).setValueProfilingFlag(getModule());
568   if (CoverageMapping)
569     CoverageMapping->emit();
570   if (CodeGenOpts.SanitizeCfiCrossDso) {
571     CodeGenFunction(*this).EmitCfiCheckFail();
572     CodeGenFunction(*this).EmitCfiCheckStub();
573   }
574   emitAtAvailableLinkGuard();
575   if (Context.getTargetInfo().getTriple().isWasm())
576     EmitMainVoidAlias();
577 
578   if (getTriple().isAMDGPU()) {
579     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
580     // preserve ASAN functions in bitcode libraries.
581     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
582       auto *FT = llvm::FunctionType::get(VoidTy, {});
583       auto *F = llvm::Function::Create(
584           FT, llvm::GlobalValue::ExternalLinkage,
585           "__amdgpu_device_library_preserve_asan_functions", &getModule());
586       auto *Var = new llvm::GlobalVariable(
587           getModule(), FT->getPointerTo(),
588           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
589           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
590           llvm::GlobalVariable::NotThreadLocal);
591       addCompilerUsedGlobal(Var);
592     }
593     // Emit amdgpu_code_object_version module flag, which is code object version
594     // times 100.
595     // ToDo: Enable module flag for all code object version when ROCm device
596     // library is ready.
597     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
598       getModule().addModuleFlag(llvm::Module::Error,
599                                 "amdgpu_code_object_version",
600                                 getTarget().getTargetOpts().CodeObjectVersion);
601     }
602   }
603 
604   // Emit a global array containing all external kernels or device variables
605   // used by host functions and mark it as used for CUDA/HIP. This is necessary
606   // to get kernels or device variables in archives linked in even if these
607   // kernels or device variables are only used in host functions.
608   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
609     SmallVector<llvm::Constant *, 8> UsedArray;
610     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
611       GlobalDecl GD;
612       if (auto *FD = dyn_cast<FunctionDecl>(D))
613         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
614       else
615         GD = GlobalDecl(D);
616       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
617           GetAddrOfGlobal(GD), Int8PtrTy));
618     }
619 
620     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
621 
622     auto *GV = new llvm::GlobalVariable(
623         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
624         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
625     addCompilerUsedGlobal(GV);
626   }
627 
628   emitLLVMUsed();
629   if (SanStats)
630     SanStats->finish();
631 
632   if (CodeGenOpts.Autolink &&
633       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
634     EmitModuleLinkOptions();
635   }
636 
637   // On ELF we pass the dependent library specifiers directly to the linker
638   // without manipulating them. This is in contrast to other platforms where
639   // they are mapped to a specific linker option by the compiler. This
640   // difference is a result of the greater variety of ELF linkers and the fact
641   // that ELF linkers tend to handle libraries in a more complicated fashion
642   // than on other platforms. This forces us to defer handling the dependent
643   // libs to the linker.
644   //
645   // CUDA/HIP device and host libraries are different. Currently there is no
646   // way to differentiate dependent libraries for host or device. Existing
647   // usage of #pragma comment(lib, *) is intended for host libraries on
648   // Windows. Therefore emit llvm.dependent-libraries only for host.
649   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
650     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
651     for (auto *MD : ELFDependentLibraries)
652       NMD->addOperand(MD);
653   }
654 
655   // Record mregparm value now so it is visible through rest of codegen.
656   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
657     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
658                               CodeGenOpts.NumRegisterParameters);
659 
660   if (CodeGenOpts.DwarfVersion) {
661     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
662                               CodeGenOpts.DwarfVersion);
663   }
664 
665   if (CodeGenOpts.Dwarf64)
666     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
667 
668   if (Context.getLangOpts().SemanticInterposition)
669     // Require various optimization to respect semantic interposition.
670     getModule().setSemanticInterposition(true);
671 
672   if (CodeGenOpts.EmitCodeView) {
673     // Indicate that we want CodeView in the metadata.
674     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
675   }
676   if (CodeGenOpts.CodeViewGHash) {
677     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
678   }
679   if (CodeGenOpts.ControlFlowGuard) {
680     // Function ID tables and checks for Control Flow Guard (cfguard=2).
681     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
682   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
683     // Function ID tables for Control Flow Guard (cfguard=1).
684     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
685   }
686   if (CodeGenOpts.EHContGuard) {
687     // Function ID tables for EH Continuation Guard.
688     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
689   }
690   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
691     // We don't support LTO with 2 with different StrictVTablePointers
692     // FIXME: we could support it by stripping all the information introduced
693     // by StrictVTablePointers.
694 
695     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
696 
697     llvm::Metadata *Ops[2] = {
698               llvm::MDString::get(VMContext, "StrictVTablePointers"),
699               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
700                   llvm::Type::getInt32Ty(VMContext), 1))};
701 
702     getModule().addModuleFlag(llvm::Module::Require,
703                               "StrictVTablePointersRequirement",
704                               llvm::MDNode::get(VMContext, Ops));
705   }
706   if (getModuleDebugInfo())
707     // We support a single version in the linked module. The LLVM
708     // parser will drop debug info with a different version number
709     // (and warn about it, too).
710     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
711                               llvm::DEBUG_METADATA_VERSION);
712 
713   // We need to record the widths of enums and wchar_t, so that we can generate
714   // the correct build attributes in the ARM backend. wchar_size is also used by
715   // TargetLibraryInfo.
716   uint64_t WCharWidth =
717       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
718   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
719 
720   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
721   if (   Arch == llvm::Triple::arm
722       || Arch == llvm::Triple::armeb
723       || Arch == llvm::Triple::thumb
724       || Arch == llvm::Triple::thumbeb) {
725     // The minimum width of an enum in bytes
726     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
727     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
728   }
729 
730   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
731     StringRef ABIStr = Target.getABI();
732     llvm::LLVMContext &Ctx = TheModule.getContext();
733     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
734                               llvm::MDString::get(Ctx, ABIStr));
735   }
736 
737   if (CodeGenOpts.SanitizeCfiCrossDso) {
738     // Indicate that we want cross-DSO control flow integrity checks.
739     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
740   }
741 
742   if (CodeGenOpts.WholeProgramVTables) {
743     // Indicate whether VFE was enabled for this module, so that the
744     // vcall_visibility metadata added under whole program vtables is handled
745     // appropriately in the optimizer.
746     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
747                               CodeGenOpts.VirtualFunctionElimination);
748   }
749 
750   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
751     getModule().addModuleFlag(llvm::Module::Override,
752                               "CFI Canonical Jump Tables",
753                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
754   }
755 
756   if (CodeGenOpts.CFProtectionReturn &&
757       Target.checkCFProtectionReturnSupported(getDiags())) {
758     // Indicate that we want to instrument return control flow protection.
759     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
760                               1);
761   }
762 
763   if (CodeGenOpts.CFProtectionBranch &&
764       Target.checkCFProtectionBranchSupported(getDiags())) {
765     // Indicate that we want to instrument branch control flow protection.
766     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
767                               1);
768   }
769 
770   if (CodeGenOpts.IBTSeal)
771     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
772 
773   if (CodeGenOpts.FunctionReturnThunks)
774     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
775 
776   // Add module metadata for return address signing (ignoring
777   // non-leaf/all) and stack tagging. These are actually turned on by function
778   // attributes, but we use module metadata to emit build attributes. This is
779   // needed for LTO, where the function attributes are inside bitcode
780   // serialised into a global variable by the time build attributes are
781   // emitted, so we can't access them. LTO objects could be compiled with
782   // different flags therefore module flags are set to "Min" behavior to achieve
783   // the same end result of the normal build where e.g BTI is off if any object
784   // doesn't support it.
785   if (Context.getTargetInfo().hasFeature("ptrauth") &&
786       LangOpts.getSignReturnAddressScope() !=
787           LangOptions::SignReturnAddressScopeKind::None)
788     getModule().addModuleFlag(llvm::Module::Override,
789                               "sign-return-address-buildattr", 1);
790   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
791     getModule().addModuleFlag(llvm::Module::Override,
792                               "tag-stack-memory-buildattr", 1);
793 
794   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
795       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
796       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
797       Arch == llvm::Triple::aarch64_be) {
798     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
799                               LangOpts.BranchTargetEnforcement);
800 
801     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
802                               LangOpts.hasSignReturnAddress());
803 
804     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
805                               LangOpts.isSignReturnAddressScopeAll());
806 
807     getModule().addModuleFlag(llvm::Module::Min,
808                               "sign-return-address-with-bkey",
809                               !LangOpts.isSignReturnAddressWithAKey());
810   }
811 
812   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
813     llvm::LLVMContext &Ctx = TheModule.getContext();
814     getModule().addModuleFlag(
815         llvm::Module::Error, "MemProfProfileFilename",
816         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
817   }
818 
819   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
820     // Indicate whether __nvvm_reflect should be configured to flush denormal
821     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
822     // property.)
823     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
824                               CodeGenOpts.FP32DenormalMode.Output !=
825                                   llvm::DenormalMode::IEEE);
826   }
827 
828   if (LangOpts.EHAsynch)
829     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
830 
831   // Indicate whether this Module was compiled with -fopenmp
832   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
833     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
834   if (getLangOpts().OpenMPIsDevice)
835     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
836                               LangOpts.OpenMP);
837 
838   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
839   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
840     EmitOpenCLMetadata();
841     // Emit SPIR version.
842     if (getTriple().isSPIR()) {
843       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
844       // opencl.spir.version named metadata.
845       // C++ for OpenCL has a distinct mapping for version compatibility with
846       // OpenCL.
847       auto Version = LangOpts.getOpenCLCompatibleVersion();
848       llvm::Metadata *SPIRVerElts[] = {
849           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
850               Int32Ty, Version / 100)),
851           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
852               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
853       llvm::NamedMDNode *SPIRVerMD =
854           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
855       llvm::LLVMContext &Ctx = TheModule.getContext();
856       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
857     }
858   }
859 
860   // HLSL related end of code gen work items.
861   if (LangOpts.HLSL)
862     getHLSLRuntime().finishCodeGen();
863 
864   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
865     assert(PLevel < 3 && "Invalid PIC Level");
866     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
867     if (Context.getLangOpts().PIE)
868       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
869   }
870 
871   if (getCodeGenOpts().CodeModel.size() > 0) {
872     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
873                   .Case("tiny", llvm::CodeModel::Tiny)
874                   .Case("small", llvm::CodeModel::Small)
875                   .Case("kernel", llvm::CodeModel::Kernel)
876                   .Case("medium", llvm::CodeModel::Medium)
877                   .Case("large", llvm::CodeModel::Large)
878                   .Default(~0u);
879     if (CM != ~0u) {
880       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
881       getModule().setCodeModel(codeModel);
882     }
883   }
884 
885   if (CodeGenOpts.NoPLT)
886     getModule().setRtLibUseGOT();
887   if (CodeGenOpts.UnwindTables)
888     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
889 
890   switch (CodeGenOpts.getFramePointer()) {
891   case CodeGenOptions::FramePointerKind::None:
892     // 0 ("none") is the default.
893     break;
894   case CodeGenOptions::FramePointerKind::NonLeaf:
895     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
896     break;
897   case CodeGenOptions::FramePointerKind::All:
898     getModule().setFramePointer(llvm::FramePointerKind::All);
899     break;
900   }
901 
902   SimplifyPersonality();
903 
904   if (getCodeGenOpts().EmitDeclMetadata)
905     EmitDeclMetadata();
906 
907   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
908     EmitCoverageFile();
909 
910   if (CGDebugInfo *DI = getModuleDebugInfo())
911     DI->finalize();
912 
913   if (getCodeGenOpts().EmitVersionIdentMetadata)
914     EmitVersionIdentMetadata();
915 
916   if (!getCodeGenOpts().RecordCommandLine.empty())
917     EmitCommandLineMetadata();
918 
919   if (!getCodeGenOpts().StackProtectorGuard.empty())
920     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
921   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
922     getModule().setStackProtectorGuardReg(
923         getCodeGenOpts().StackProtectorGuardReg);
924   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
925     getModule().setStackProtectorGuardSymbol(
926         getCodeGenOpts().StackProtectorGuardSymbol);
927   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
928     getModule().setStackProtectorGuardOffset(
929         getCodeGenOpts().StackProtectorGuardOffset);
930   if (getCodeGenOpts().StackAlignment)
931     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
932   if (getCodeGenOpts().SkipRaxSetup)
933     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
934 
935   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
936 
937   EmitBackendOptionsMetadata(getCodeGenOpts());
938 
939   // If there is device offloading code embed it in the host now.
940   EmbedObject(&getModule(), CodeGenOpts, getDiags());
941 
942   // Set visibility from DLL storage class
943   // We do this at the end of LLVM IR generation; after any operation
944   // that might affect the DLL storage class or the visibility, and
945   // before anything that might act on these.
946   setVisibilityFromDLLStorageClass(LangOpts, getModule());
947 }
948 
949 void CodeGenModule::EmitOpenCLMetadata() {
950   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
951   // opencl.ocl.version named metadata node.
952   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
953   auto Version = LangOpts.getOpenCLCompatibleVersion();
954   llvm::Metadata *OCLVerElts[] = {
955       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
956           Int32Ty, Version / 100)),
957       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
958           Int32Ty, (Version % 100) / 10))};
959   llvm::NamedMDNode *OCLVerMD =
960       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
961   llvm::LLVMContext &Ctx = TheModule.getContext();
962   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
963 }
964 
965 void CodeGenModule::EmitBackendOptionsMetadata(
966     const CodeGenOptions CodeGenOpts) {
967   switch (getTriple().getArch()) {
968   default:
969     break;
970   case llvm::Triple::riscv32:
971   case llvm::Triple::riscv64:
972     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
973                               CodeGenOpts.SmallDataLimit);
974     break;
975   }
976 }
977 
978 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
979   // Make sure that this type is translated.
980   Types.UpdateCompletedType(TD);
981 }
982 
983 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
984   // Make sure that this type is translated.
985   Types.RefreshTypeCacheForClass(RD);
986 }
987 
988 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
989   if (!TBAA)
990     return nullptr;
991   return TBAA->getTypeInfo(QTy);
992 }
993 
994 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
995   if (!TBAA)
996     return TBAAAccessInfo();
997   if (getLangOpts().CUDAIsDevice) {
998     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
999     // access info.
1000     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1001       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1002           nullptr)
1003         return TBAAAccessInfo();
1004     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1005       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1006           nullptr)
1007         return TBAAAccessInfo();
1008     }
1009   }
1010   return TBAA->getAccessInfo(AccessType);
1011 }
1012 
1013 TBAAAccessInfo
1014 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1015   if (!TBAA)
1016     return TBAAAccessInfo();
1017   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1018 }
1019 
1020 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1021   if (!TBAA)
1022     return nullptr;
1023   return TBAA->getTBAAStructInfo(QTy);
1024 }
1025 
1026 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1027   if (!TBAA)
1028     return nullptr;
1029   return TBAA->getBaseTypeInfo(QTy);
1030 }
1031 
1032 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1033   if (!TBAA)
1034     return nullptr;
1035   return TBAA->getAccessTagInfo(Info);
1036 }
1037 
1038 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1039                                                    TBAAAccessInfo TargetInfo) {
1040   if (!TBAA)
1041     return TBAAAccessInfo();
1042   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1043 }
1044 
1045 TBAAAccessInfo
1046 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1047                                                    TBAAAccessInfo InfoB) {
1048   if (!TBAA)
1049     return TBAAAccessInfo();
1050   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1051 }
1052 
1053 TBAAAccessInfo
1054 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1055                                               TBAAAccessInfo SrcInfo) {
1056   if (!TBAA)
1057     return TBAAAccessInfo();
1058   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1059 }
1060 
1061 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1062                                                 TBAAAccessInfo TBAAInfo) {
1063   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1064     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1065 }
1066 
1067 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1068     llvm::Instruction *I, const CXXRecordDecl *RD) {
1069   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1070                  llvm::MDNode::get(getLLVMContext(), {}));
1071 }
1072 
1073 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1074   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1075   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1076 }
1077 
1078 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1079 /// specified stmt yet.
1080 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1081   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1082                                                "cannot compile this %0 yet");
1083   std::string Msg = Type;
1084   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1085       << Msg << S->getSourceRange();
1086 }
1087 
1088 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1089 /// specified decl yet.
1090 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1091   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1092                                                "cannot compile this %0 yet");
1093   std::string Msg = Type;
1094   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1095 }
1096 
1097 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1098   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1099 }
1100 
1101 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1102                                         const NamedDecl *D) const {
1103   if (GV->hasDLLImportStorageClass())
1104     return;
1105   // Internal definitions always have default visibility.
1106   if (GV->hasLocalLinkage()) {
1107     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1108     return;
1109   }
1110   if (!D)
1111     return;
1112   // Set visibility for definitions, and for declarations if requested globally
1113   // or set explicitly.
1114   LinkageInfo LV = D->getLinkageAndVisibility();
1115   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1116       !GV->isDeclarationForLinker())
1117     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1118 }
1119 
1120 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1121                                  llvm::GlobalValue *GV) {
1122   if (GV->hasLocalLinkage())
1123     return true;
1124 
1125   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1126     return true;
1127 
1128   // DLLImport explicitly marks the GV as external.
1129   if (GV->hasDLLImportStorageClass())
1130     return false;
1131 
1132   const llvm::Triple &TT = CGM.getTriple();
1133   if (TT.isWindowsGNUEnvironment()) {
1134     // In MinGW, variables without DLLImport can still be automatically
1135     // imported from a DLL by the linker; don't mark variables that
1136     // potentially could come from another DLL as DSO local.
1137 
1138     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1139     // (and this actually happens in the public interface of libstdc++), so
1140     // such variables can't be marked as DSO local. (Native TLS variables
1141     // can't be dllimported at all, though.)
1142     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1143         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1144       return false;
1145   }
1146 
1147   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1148   // remain unresolved in the link, they can be resolved to zero, which is
1149   // outside the current DSO.
1150   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1151     return false;
1152 
1153   // Every other GV is local on COFF.
1154   // Make an exception for windows OS in the triple: Some firmware builds use
1155   // *-win32-macho triples. This (accidentally?) produced windows relocations
1156   // without GOT tables in older clang versions; Keep this behaviour.
1157   // FIXME: even thread local variables?
1158   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1159     return true;
1160 
1161   // Only handle COFF and ELF for now.
1162   if (!TT.isOSBinFormatELF())
1163     return false;
1164 
1165   // If this is not an executable, don't assume anything is local.
1166   const auto &CGOpts = CGM.getCodeGenOpts();
1167   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1168   const auto &LOpts = CGM.getLangOpts();
1169   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1170     // On ELF, if -fno-semantic-interposition is specified and the target
1171     // supports local aliases, there will be neither CC1
1172     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1173     // dso_local on the function if using a local alias is preferable (can avoid
1174     // PLT indirection).
1175     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1176       return false;
1177     return !(CGM.getLangOpts().SemanticInterposition ||
1178              CGM.getLangOpts().HalfNoSemanticInterposition);
1179   }
1180 
1181   // A definition cannot be preempted from an executable.
1182   if (!GV->isDeclarationForLinker())
1183     return true;
1184 
1185   // Most PIC code sequences that assume that a symbol is local cannot produce a
1186   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1187   // depended, it seems worth it to handle it here.
1188   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1189     return false;
1190 
1191   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1192   if (TT.isPPC64())
1193     return false;
1194 
1195   if (CGOpts.DirectAccessExternalData) {
1196     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1197     // for non-thread-local variables. If the symbol is not defined in the
1198     // executable, a copy relocation will be needed at link time. dso_local is
1199     // excluded for thread-local variables because they generally don't support
1200     // copy relocations.
1201     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1202       if (!Var->isThreadLocal())
1203         return true;
1204 
1205     // -fno-pic sets dso_local on a function declaration to allow direct
1206     // accesses when taking its address (similar to a data symbol). If the
1207     // function is not defined in the executable, a canonical PLT entry will be
1208     // needed at link time. -fno-direct-access-external-data can avoid the
1209     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1210     // it could just cause trouble without providing perceptible benefits.
1211     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1212       return true;
1213   }
1214 
1215   // If we can use copy relocations we can assume it is local.
1216 
1217   // Otherwise don't assume it is local.
1218   return false;
1219 }
1220 
1221 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1222   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1223 }
1224 
1225 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1226                                           GlobalDecl GD) const {
1227   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1228   // C++ destructors have a few C++ ABI specific special cases.
1229   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1230     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1231     return;
1232   }
1233   setDLLImportDLLExport(GV, D);
1234 }
1235 
1236 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1237                                           const NamedDecl *D) const {
1238   if (D && D->isExternallyVisible()) {
1239     if (D->hasAttr<DLLImportAttr>())
1240       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1241     else if ((D->hasAttr<DLLExportAttr>() ||
1242               shouldMapVisibilityToDLLExport(D)) &&
1243              !GV->isDeclarationForLinker())
1244       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1245   }
1246 }
1247 
1248 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1249                                     GlobalDecl GD) const {
1250   setDLLImportDLLExport(GV, GD);
1251   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1252 }
1253 
1254 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1255                                     const NamedDecl *D) const {
1256   setDLLImportDLLExport(GV, D);
1257   setGVPropertiesAux(GV, D);
1258 }
1259 
1260 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1261                                        const NamedDecl *D) const {
1262   setGlobalVisibility(GV, D);
1263   setDSOLocal(GV);
1264   GV->setPartition(CodeGenOpts.SymbolPartition);
1265 }
1266 
1267 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1268   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1269       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1270       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1271       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1272       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1273 }
1274 
1275 llvm::GlobalVariable::ThreadLocalMode
1276 CodeGenModule::GetDefaultLLVMTLSModel() const {
1277   switch (CodeGenOpts.getDefaultTLSModel()) {
1278   case CodeGenOptions::GeneralDynamicTLSModel:
1279     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1280   case CodeGenOptions::LocalDynamicTLSModel:
1281     return llvm::GlobalVariable::LocalDynamicTLSModel;
1282   case CodeGenOptions::InitialExecTLSModel:
1283     return llvm::GlobalVariable::InitialExecTLSModel;
1284   case CodeGenOptions::LocalExecTLSModel:
1285     return llvm::GlobalVariable::LocalExecTLSModel;
1286   }
1287   llvm_unreachable("Invalid TLS model!");
1288 }
1289 
1290 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1291   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1292 
1293   llvm::GlobalValue::ThreadLocalMode TLM;
1294   TLM = GetDefaultLLVMTLSModel();
1295 
1296   // Override the TLS model if it is explicitly specified.
1297   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1298     TLM = GetLLVMTLSModel(Attr->getModel());
1299   }
1300 
1301   GV->setThreadLocalMode(TLM);
1302 }
1303 
1304 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1305                                           StringRef Name) {
1306   const TargetInfo &Target = CGM.getTarget();
1307   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1308 }
1309 
1310 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1311                                                  const CPUSpecificAttr *Attr,
1312                                                  unsigned CPUIndex,
1313                                                  raw_ostream &Out) {
1314   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1315   // supported.
1316   if (Attr)
1317     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1318   else if (CGM.getTarget().supportsIFunc())
1319     Out << ".resolver";
1320 }
1321 
1322 static void AppendTargetMangling(const CodeGenModule &CGM,
1323                                  const TargetAttr *Attr, raw_ostream &Out) {
1324   if (Attr->isDefaultVersion())
1325     return;
1326 
1327   Out << '.';
1328   const TargetInfo &Target = CGM.getTarget();
1329   ParsedTargetAttr Info =
1330       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1331         // Multiversioning doesn't allow "no-${feature}", so we can
1332         // only have "+" prefixes here.
1333         assert(LHS.startswith("+") && RHS.startswith("+") &&
1334                "Features should always have a prefix.");
1335         return Target.multiVersionSortPriority(LHS.substr(1)) >
1336                Target.multiVersionSortPriority(RHS.substr(1));
1337       });
1338 
1339   bool IsFirst = true;
1340 
1341   if (!Info.Architecture.empty()) {
1342     IsFirst = false;
1343     Out << "arch_" << Info.Architecture;
1344   }
1345 
1346   for (StringRef Feat : Info.Features) {
1347     if (!IsFirst)
1348       Out << '_';
1349     IsFirst = false;
1350     Out << Feat.substr(1);
1351   }
1352 }
1353 
1354 // Returns true if GD is a function decl with internal linkage and
1355 // needs a unique suffix after the mangled name.
1356 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1357                                         CodeGenModule &CGM) {
1358   const Decl *D = GD.getDecl();
1359   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1360          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1361 }
1362 
1363 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1364                                        const TargetClonesAttr *Attr,
1365                                        unsigned VersionIndex,
1366                                        raw_ostream &Out) {
1367   Out << '.';
1368   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1369   if (FeatureStr.startswith("arch="))
1370     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1371   else
1372     Out << FeatureStr;
1373 
1374   Out << '.' << Attr->getMangledIndex(VersionIndex);
1375 }
1376 
1377 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1378                                       const NamedDecl *ND,
1379                                       bool OmitMultiVersionMangling = false) {
1380   SmallString<256> Buffer;
1381   llvm::raw_svector_ostream Out(Buffer);
1382   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1383   if (!CGM.getModuleNameHash().empty())
1384     MC.needsUniqueInternalLinkageNames();
1385   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1386   if (ShouldMangle)
1387     MC.mangleName(GD.getWithDecl(ND), Out);
1388   else {
1389     IdentifierInfo *II = ND->getIdentifier();
1390     assert(II && "Attempt to mangle unnamed decl.");
1391     const auto *FD = dyn_cast<FunctionDecl>(ND);
1392 
1393     if (FD &&
1394         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1395       Out << "__regcall3__" << II->getName();
1396     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1397                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1398       Out << "__device_stub__" << II->getName();
1399     } else {
1400       Out << II->getName();
1401     }
1402   }
1403 
1404   // Check if the module name hash should be appended for internal linkage
1405   // symbols.   This should come before multi-version target suffixes are
1406   // appended. This is to keep the name and module hash suffix of the
1407   // internal linkage function together.  The unique suffix should only be
1408   // added when name mangling is done to make sure that the final name can
1409   // be properly demangled.  For example, for C functions without prototypes,
1410   // name mangling is not done and the unique suffix should not be appeneded
1411   // then.
1412   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1413     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1414            "Hash computed when not explicitly requested");
1415     Out << CGM.getModuleNameHash();
1416   }
1417 
1418   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1419     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1420       switch (FD->getMultiVersionKind()) {
1421       case MultiVersionKind::CPUDispatch:
1422       case MultiVersionKind::CPUSpecific:
1423         AppendCPUSpecificCPUDispatchMangling(CGM,
1424                                              FD->getAttr<CPUSpecificAttr>(),
1425                                              GD.getMultiVersionIndex(), Out);
1426         break;
1427       case MultiVersionKind::Target:
1428         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1429         break;
1430       case MultiVersionKind::TargetClones:
1431         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1432                                    GD.getMultiVersionIndex(), Out);
1433         break;
1434       case MultiVersionKind::None:
1435         llvm_unreachable("None multiversion type isn't valid here");
1436       }
1437     }
1438 
1439   // Make unique name for device side static file-scope variable for HIP.
1440   if (CGM.getContext().shouldExternalize(ND) &&
1441       CGM.getLangOpts().GPURelocatableDeviceCode &&
1442       CGM.getLangOpts().CUDAIsDevice)
1443     CGM.printPostfixForExternalizedDecl(Out, ND);
1444 
1445   return std::string(Out.str());
1446 }
1447 
1448 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1449                                             const FunctionDecl *FD,
1450                                             StringRef &CurName) {
1451   if (!FD->isMultiVersion())
1452     return;
1453 
1454   // Get the name of what this would be without the 'target' attribute.  This
1455   // allows us to lookup the version that was emitted when this wasn't a
1456   // multiversion function.
1457   std::string NonTargetName =
1458       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1459   GlobalDecl OtherGD;
1460   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1461     assert(OtherGD.getCanonicalDecl()
1462                .getDecl()
1463                ->getAsFunction()
1464                ->isMultiVersion() &&
1465            "Other GD should now be a multiversioned function");
1466     // OtherFD is the version of this function that was mangled BEFORE
1467     // becoming a MultiVersion function.  It potentially needs to be updated.
1468     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1469                                       .getDecl()
1470                                       ->getAsFunction()
1471                                       ->getMostRecentDecl();
1472     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1473     // This is so that if the initial version was already the 'default'
1474     // version, we don't try to update it.
1475     if (OtherName != NonTargetName) {
1476       // Remove instead of erase, since others may have stored the StringRef
1477       // to this.
1478       const auto ExistingRecord = Manglings.find(NonTargetName);
1479       if (ExistingRecord != std::end(Manglings))
1480         Manglings.remove(&(*ExistingRecord));
1481       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1482       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1483           Result.first->first();
1484       // If this is the current decl is being created, make sure we update the name.
1485       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1486         CurName = OtherNameRef;
1487       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1488         Entry->setName(OtherName);
1489     }
1490   }
1491 }
1492 
1493 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1494   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1495 
1496   // Some ABIs don't have constructor variants.  Make sure that base and
1497   // complete constructors get mangled the same.
1498   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1499     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1500       CXXCtorType OrigCtorType = GD.getCtorType();
1501       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1502       if (OrigCtorType == Ctor_Base)
1503         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1504     }
1505   }
1506 
1507   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1508   // static device variable depends on whether the variable is referenced by
1509   // a host or device host function. Therefore the mangled name cannot be
1510   // cached.
1511   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1512     auto FoundName = MangledDeclNames.find(CanonicalGD);
1513     if (FoundName != MangledDeclNames.end())
1514       return FoundName->second;
1515   }
1516 
1517   // Keep the first result in the case of a mangling collision.
1518   const auto *ND = cast<NamedDecl>(GD.getDecl());
1519   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1520 
1521   // Ensure either we have different ABIs between host and device compilations,
1522   // says host compilation following MSVC ABI but device compilation follows
1523   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1524   // mangling should be the same after name stubbing. The later checking is
1525   // very important as the device kernel name being mangled in host-compilation
1526   // is used to resolve the device binaries to be executed. Inconsistent naming
1527   // result in undefined behavior. Even though we cannot check that naming
1528   // directly between host- and device-compilations, the host- and
1529   // device-mangling in host compilation could help catching certain ones.
1530   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1531          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1532          (getContext().getAuxTargetInfo() &&
1533           (getContext().getAuxTargetInfo()->getCXXABI() !=
1534            getContext().getTargetInfo().getCXXABI())) ||
1535          getCUDARuntime().getDeviceSideName(ND) ==
1536              getMangledNameImpl(
1537                  *this,
1538                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1539                  ND));
1540 
1541   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1542   return MangledDeclNames[CanonicalGD] = Result.first->first();
1543 }
1544 
1545 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1546                                              const BlockDecl *BD) {
1547   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1548   const Decl *D = GD.getDecl();
1549 
1550   SmallString<256> Buffer;
1551   llvm::raw_svector_ostream Out(Buffer);
1552   if (!D)
1553     MangleCtx.mangleGlobalBlock(BD,
1554       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1555   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1556     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1557   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1558     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1559   else
1560     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1561 
1562   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1563   return Result.first->first();
1564 }
1565 
1566 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1567   auto it = MangledDeclNames.begin();
1568   while (it != MangledDeclNames.end()) {
1569     if (it->second == Name)
1570       return it->first;
1571     it++;
1572   }
1573   return GlobalDecl();
1574 }
1575 
1576 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1577   return getModule().getNamedValue(Name);
1578 }
1579 
1580 /// AddGlobalCtor - Add a function to the list that will be called before
1581 /// main() runs.
1582 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1583                                   llvm::Constant *AssociatedData) {
1584   // FIXME: Type coercion of void()* types.
1585   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1586 }
1587 
1588 /// AddGlobalDtor - Add a function to the list that will be called
1589 /// when the module is unloaded.
1590 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1591                                   bool IsDtorAttrFunc) {
1592   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1593       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1594     DtorsUsingAtExit[Priority].push_back(Dtor);
1595     return;
1596   }
1597 
1598   // FIXME: Type coercion of void()* types.
1599   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1600 }
1601 
1602 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1603   if (Fns.empty()) return;
1604 
1605   // Ctor function type is void()*.
1606   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1607   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1608       TheModule.getDataLayout().getProgramAddressSpace());
1609 
1610   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1611   llvm::StructType *CtorStructTy = llvm::StructType::get(
1612       Int32Ty, CtorPFTy, VoidPtrTy);
1613 
1614   // Construct the constructor and destructor arrays.
1615   ConstantInitBuilder builder(*this);
1616   auto ctors = builder.beginArray(CtorStructTy);
1617   for (const auto &I : Fns) {
1618     auto ctor = ctors.beginStruct(CtorStructTy);
1619     ctor.addInt(Int32Ty, I.Priority);
1620     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1621     if (I.AssociatedData)
1622       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1623     else
1624       ctor.addNullPointer(VoidPtrTy);
1625     ctor.finishAndAddTo(ctors);
1626   }
1627 
1628   auto list =
1629     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1630                                 /*constant*/ false,
1631                                 llvm::GlobalValue::AppendingLinkage);
1632 
1633   // The LTO linker doesn't seem to like it when we set an alignment
1634   // on appending variables.  Take it off as a workaround.
1635   list->setAlignment(llvm::None);
1636 
1637   Fns.clear();
1638 }
1639 
1640 llvm::GlobalValue::LinkageTypes
1641 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1642   const auto *D = cast<FunctionDecl>(GD.getDecl());
1643 
1644   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1645 
1646   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1647     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1648 
1649   if (isa<CXXConstructorDecl>(D) &&
1650       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1651       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1652     // Our approach to inheriting constructors is fundamentally different from
1653     // that used by the MS ABI, so keep our inheriting constructor thunks
1654     // internal rather than trying to pick an unambiguous mangling for them.
1655     return llvm::GlobalValue::InternalLinkage;
1656   }
1657 
1658   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1659 }
1660 
1661 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1662   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1663   if (!MDS) return nullptr;
1664 
1665   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1666 }
1667 
1668 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1669                                               const CGFunctionInfo &Info,
1670                                               llvm::Function *F, bool IsThunk) {
1671   unsigned CallingConv;
1672   llvm::AttributeList PAL;
1673   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1674                          /*AttrOnCallSite=*/false, IsThunk);
1675   F->setAttributes(PAL);
1676   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1677 }
1678 
1679 static void removeImageAccessQualifier(std::string& TyName) {
1680   std::string ReadOnlyQual("__read_only");
1681   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1682   if (ReadOnlyPos != std::string::npos)
1683     // "+ 1" for the space after access qualifier.
1684     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1685   else {
1686     std::string WriteOnlyQual("__write_only");
1687     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1688     if (WriteOnlyPos != std::string::npos)
1689       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1690     else {
1691       std::string ReadWriteQual("__read_write");
1692       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1693       if (ReadWritePos != std::string::npos)
1694         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1695     }
1696   }
1697 }
1698 
1699 // Returns the address space id that should be produced to the
1700 // kernel_arg_addr_space metadata. This is always fixed to the ids
1701 // as specified in the SPIR 2.0 specification in order to differentiate
1702 // for example in clGetKernelArgInfo() implementation between the address
1703 // spaces with targets without unique mapping to the OpenCL address spaces
1704 // (basically all single AS CPUs).
1705 static unsigned ArgInfoAddressSpace(LangAS AS) {
1706   switch (AS) {
1707   case LangAS::opencl_global:
1708     return 1;
1709   case LangAS::opencl_constant:
1710     return 2;
1711   case LangAS::opencl_local:
1712     return 3;
1713   case LangAS::opencl_generic:
1714     return 4; // Not in SPIR 2.0 specs.
1715   case LangAS::opencl_global_device:
1716     return 5;
1717   case LangAS::opencl_global_host:
1718     return 6;
1719   default:
1720     return 0; // Assume private.
1721   }
1722 }
1723 
1724 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1725                                          const FunctionDecl *FD,
1726                                          CodeGenFunction *CGF) {
1727   assert(((FD && CGF) || (!FD && !CGF)) &&
1728          "Incorrect use - FD and CGF should either be both null or not!");
1729   // Create MDNodes that represent the kernel arg metadata.
1730   // Each MDNode is a list in the form of "key", N number of values which is
1731   // the same number of values as their are kernel arguments.
1732 
1733   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1734 
1735   // MDNode for the kernel argument address space qualifiers.
1736   SmallVector<llvm::Metadata *, 8> addressQuals;
1737 
1738   // MDNode for the kernel argument access qualifiers (images only).
1739   SmallVector<llvm::Metadata *, 8> accessQuals;
1740 
1741   // MDNode for the kernel argument type names.
1742   SmallVector<llvm::Metadata *, 8> argTypeNames;
1743 
1744   // MDNode for the kernel argument base type names.
1745   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1746 
1747   // MDNode for the kernel argument type qualifiers.
1748   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1749 
1750   // MDNode for the kernel argument names.
1751   SmallVector<llvm::Metadata *, 8> argNames;
1752 
1753   if (FD && CGF)
1754     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1755       const ParmVarDecl *parm = FD->getParamDecl(i);
1756       // Get argument name.
1757       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1758 
1759       if (!getLangOpts().OpenCL)
1760         continue;
1761       QualType ty = parm->getType();
1762       std::string typeQuals;
1763 
1764       // Get image and pipe access qualifier:
1765       if (ty->isImageType() || ty->isPipeType()) {
1766         const Decl *PDecl = parm;
1767         if (auto *TD = dyn_cast<TypedefType>(ty))
1768           PDecl = TD->getDecl();
1769         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1770         if (A && A->isWriteOnly())
1771           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1772         else if (A && A->isReadWrite())
1773           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1774         else
1775           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1776       } else
1777         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1778 
1779       auto getTypeSpelling = [&](QualType Ty) {
1780         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1781 
1782         if (Ty.isCanonical()) {
1783           StringRef typeNameRef = typeName;
1784           // Turn "unsigned type" to "utype"
1785           if (typeNameRef.consume_front("unsigned "))
1786             return std::string("u") + typeNameRef.str();
1787           if (typeNameRef.consume_front("signed "))
1788             return typeNameRef.str();
1789         }
1790 
1791         return typeName;
1792       };
1793 
1794       if (ty->isPointerType()) {
1795         QualType pointeeTy = ty->getPointeeType();
1796 
1797         // Get address qualifier.
1798         addressQuals.push_back(
1799             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1800                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1801 
1802         // Get argument type name.
1803         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1804         std::string baseTypeName =
1805             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1806         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1807         argBaseTypeNames.push_back(
1808             llvm::MDString::get(VMContext, baseTypeName));
1809 
1810         // Get argument type qualifiers:
1811         if (ty.isRestrictQualified())
1812           typeQuals = "restrict";
1813         if (pointeeTy.isConstQualified() ||
1814             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1815           typeQuals += typeQuals.empty() ? "const" : " const";
1816         if (pointeeTy.isVolatileQualified())
1817           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1818       } else {
1819         uint32_t AddrSpc = 0;
1820         bool isPipe = ty->isPipeType();
1821         if (ty->isImageType() || isPipe)
1822           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1823 
1824         addressQuals.push_back(
1825             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1826 
1827         // Get argument type name.
1828         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1829         std::string typeName = getTypeSpelling(ty);
1830         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1831 
1832         // Remove access qualifiers on images
1833         // (as they are inseparable from type in clang implementation,
1834         // but OpenCL spec provides a special query to get access qualifier
1835         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1836         if (ty->isImageType()) {
1837           removeImageAccessQualifier(typeName);
1838           removeImageAccessQualifier(baseTypeName);
1839         }
1840 
1841         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1842         argBaseTypeNames.push_back(
1843             llvm::MDString::get(VMContext, baseTypeName));
1844 
1845         if (isPipe)
1846           typeQuals = "pipe";
1847       }
1848       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1849     }
1850 
1851   if (getLangOpts().OpenCL) {
1852     Fn->setMetadata("kernel_arg_addr_space",
1853                     llvm::MDNode::get(VMContext, addressQuals));
1854     Fn->setMetadata("kernel_arg_access_qual",
1855                     llvm::MDNode::get(VMContext, accessQuals));
1856     Fn->setMetadata("kernel_arg_type",
1857                     llvm::MDNode::get(VMContext, argTypeNames));
1858     Fn->setMetadata("kernel_arg_base_type",
1859                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1860     Fn->setMetadata("kernel_arg_type_qual",
1861                     llvm::MDNode::get(VMContext, argTypeQuals));
1862   }
1863   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1864       getCodeGenOpts().HIPSaveKernelArgName)
1865     Fn->setMetadata("kernel_arg_name",
1866                     llvm::MDNode::get(VMContext, argNames));
1867 }
1868 
1869 /// Determines whether the language options require us to model
1870 /// unwind exceptions.  We treat -fexceptions as mandating this
1871 /// except under the fragile ObjC ABI with only ObjC exceptions
1872 /// enabled.  This means, for example, that C with -fexceptions
1873 /// enables this.
1874 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1875   // If exceptions are completely disabled, obviously this is false.
1876   if (!LangOpts.Exceptions) return false;
1877 
1878   // If C++ exceptions are enabled, this is true.
1879   if (LangOpts.CXXExceptions) return true;
1880 
1881   // If ObjC exceptions are enabled, this depends on the ABI.
1882   if (LangOpts.ObjCExceptions) {
1883     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1884   }
1885 
1886   return true;
1887 }
1888 
1889 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1890                                                       const CXXMethodDecl *MD) {
1891   // Check that the type metadata can ever actually be used by a call.
1892   if (!CGM.getCodeGenOpts().LTOUnit ||
1893       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1894     return false;
1895 
1896   // Only functions whose address can be taken with a member function pointer
1897   // need this sort of type metadata.
1898   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1899          !isa<CXXDestructorDecl>(MD);
1900 }
1901 
1902 std::vector<const CXXRecordDecl *>
1903 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1904   llvm::SetVector<const CXXRecordDecl *> MostBases;
1905 
1906   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1907   CollectMostBases = [&](const CXXRecordDecl *RD) {
1908     if (RD->getNumBases() == 0)
1909       MostBases.insert(RD);
1910     for (const CXXBaseSpecifier &B : RD->bases())
1911       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1912   };
1913   CollectMostBases(RD);
1914   return MostBases.takeVector();
1915 }
1916 
1917 llvm::GlobalVariable *
1918 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1919   auto It = RTTIProxyMap.find(Addr);
1920   if (It != RTTIProxyMap.end())
1921     return It->second;
1922 
1923   auto *FTRTTIProxy = new llvm::GlobalVariable(
1924       TheModule, Addr->getType(),
1925       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1926       "__llvm_rtti_proxy");
1927   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1928 
1929   RTTIProxyMap[Addr] = FTRTTIProxy;
1930   return FTRTTIProxy;
1931 }
1932 
1933 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1934                                                            llvm::Function *F) {
1935   llvm::AttrBuilder B(F->getContext());
1936 
1937   if (CodeGenOpts.UnwindTables)
1938     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1939 
1940   if (CodeGenOpts.StackClashProtector)
1941     B.addAttribute("probe-stack", "inline-asm");
1942 
1943   if (!hasUnwindExceptions(LangOpts))
1944     B.addAttribute(llvm::Attribute::NoUnwind);
1945 
1946   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1947     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1948       B.addAttribute(llvm::Attribute::StackProtect);
1949     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1950       B.addAttribute(llvm::Attribute::StackProtectStrong);
1951     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1952       B.addAttribute(llvm::Attribute::StackProtectReq);
1953   }
1954 
1955   if (!D) {
1956     // If we don't have a declaration to control inlining, the function isn't
1957     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1958     // disabled, mark the function as noinline.
1959     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1960         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1961       B.addAttribute(llvm::Attribute::NoInline);
1962 
1963     F->addFnAttrs(B);
1964     return;
1965   }
1966 
1967   // Track whether we need to add the optnone LLVM attribute,
1968   // starting with the default for this optimization level.
1969   bool ShouldAddOptNone =
1970       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1971   // We can't add optnone in the following cases, it won't pass the verifier.
1972   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1973   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1974 
1975   // Add optnone, but do so only if the function isn't always_inline.
1976   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1977       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1978     B.addAttribute(llvm::Attribute::OptimizeNone);
1979 
1980     // OptimizeNone implies noinline; we should not be inlining such functions.
1981     B.addAttribute(llvm::Attribute::NoInline);
1982 
1983     // We still need to handle naked functions even though optnone subsumes
1984     // much of their semantics.
1985     if (D->hasAttr<NakedAttr>())
1986       B.addAttribute(llvm::Attribute::Naked);
1987 
1988     // OptimizeNone wins over OptimizeForSize and MinSize.
1989     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1990     F->removeFnAttr(llvm::Attribute::MinSize);
1991   } else if (D->hasAttr<NakedAttr>()) {
1992     // Naked implies noinline: we should not be inlining such functions.
1993     B.addAttribute(llvm::Attribute::Naked);
1994     B.addAttribute(llvm::Attribute::NoInline);
1995   } else if (D->hasAttr<NoDuplicateAttr>()) {
1996     B.addAttribute(llvm::Attribute::NoDuplicate);
1997   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1998     // Add noinline if the function isn't always_inline.
1999     B.addAttribute(llvm::Attribute::NoInline);
2000   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2001              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2002     // (noinline wins over always_inline, and we can't specify both in IR)
2003     B.addAttribute(llvm::Attribute::AlwaysInline);
2004   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2005     // If we're not inlining, then force everything that isn't always_inline to
2006     // carry an explicit noinline attribute.
2007     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2008       B.addAttribute(llvm::Attribute::NoInline);
2009   } else {
2010     // Otherwise, propagate the inline hint attribute and potentially use its
2011     // absence to mark things as noinline.
2012     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2013       // Search function and template pattern redeclarations for inline.
2014       auto CheckForInline = [](const FunctionDecl *FD) {
2015         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2016           return Redecl->isInlineSpecified();
2017         };
2018         if (any_of(FD->redecls(), CheckRedeclForInline))
2019           return true;
2020         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2021         if (!Pattern)
2022           return false;
2023         return any_of(Pattern->redecls(), CheckRedeclForInline);
2024       };
2025       if (CheckForInline(FD)) {
2026         B.addAttribute(llvm::Attribute::InlineHint);
2027       } else if (CodeGenOpts.getInlining() ==
2028                      CodeGenOptions::OnlyHintInlining &&
2029                  !FD->isInlined() &&
2030                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2031         B.addAttribute(llvm::Attribute::NoInline);
2032       }
2033     }
2034   }
2035 
2036   // Add other optimization related attributes if we are optimizing this
2037   // function.
2038   if (!D->hasAttr<OptimizeNoneAttr>()) {
2039     if (D->hasAttr<ColdAttr>()) {
2040       if (!ShouldAddOptNone)
2041         B.addAttribute(llvm::Attribute::OptimizeForSize);
2042       B.addAttribute(llvm::Attribute::Cold);
2043     }
2044     if (D->hasAttr<HotAttr>())
2045       B.addAttribute(llvm::Attribute::Hot);
2046     if (D->hasAttr<MinSizeAttr>())
2047       B.addAttribute(llvm::Attribute::MinSize);
2048   }
2049 
2050   F->addFnAttrs(B);
2051 
2052   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2053   if (alignment)
2054     F->setAlignment(llvm::Align(alignment));
2055 
2056   if (!D->hasAttr<AlignedAttr>())
2057     if (LangOpts.FunctionAlignment)
2058       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2059 
2060   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2061   // reserve a bit for differentiating between virtual and non-virtual member
2062   // functions. If the current target's C++ ABI requires this and this is a
2063   // member function, set its alignment accordingly.
2064   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2065     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2066       F->setAlignment(llvm::Align(2));
2067   }
2068 
2069   // In the cross-dso CFI mode with canonical jump tables, we want !type
2070   // attributes on definitions only.
2071   if (CodeGenOpts.SanitizeCfiCrossDso &&
2072       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2073     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2074       // Skip available_externally functions. They won't be codegen'ed in the
2075       // current module anyway.
2076       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2077         CreateFunctionTypeMetadataForIcall(FD, F);
2078     }
2079   }
2080 
2081   // Emit type metadata on member functions for member function pointer checks.
2082   // These are only ever necessary on definitions; we're guaranteed that the
2083   // definition will be present in the LTO unit as a result of LTO visibility.
2084   auto *MD = dyn_cast<CXXMethodDecl>(D);
2085   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2086     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2087       llvm::Metadata *Id =
2088           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2089               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2090       F->addTypeMetadata(0, Id);
2091     }
2092   }
2093 }
2094 
2095 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2096                                                   llvm::Function *F) {
2097   if (D->hasAttr<StrictFPAttr>()) {
2098     llvm::AttrBuilder FuncAttrs(F->getContext());
2099     FuncAttrs.addAttribute("strictfp");
2100     F->addFnAttrs(FuncAttrs);
2101   }
2102 }
2103 
2104 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2105   const Decl *D = GD.getDecl();
2106   if (isa_and_nonnull<NamedDecl>(D))
2107     setGVProperties(GV, GD);
2108   else
2109     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2110 
2111   if (D && D->hasAttr<UsedAttr>())
2112     addUsedOrCompilerUsedGlobal(GV);
2113 
2114   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2115     const auto *VD = cast<VarDecl>(D);
2116     if (VD->getType().isConstQualified() &&
2117         VD->getStorageDuration() == SD_Static)
2118       addUsedOrCompilerUsedGlobal(GV);
2119   }
2120 }
2121 
2122 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2123                                                 llvm::AttrBuilder &Attrs) {
2124   // Add target-cpu and target-features attributes to functions. If
2125   // we have a decl for the function and it has a target attribute then
2126   // parse that and add it to the feature set.
2127   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2128   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2129   std::vector<std::string> Features;
2130   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2131   FD = FD ? FD->getMostRecentDecl() : FD;
2132   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2133   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2134   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2135   bool AddedAttr = false;
2136   if (TD || SD || TC) {
2137     llvm::StringMap<bool> FeatureMap;
2138     getContext().getFunctionFeatureMap(FeatureMap, GD);
2139 
2140     // Produce the canonical string for this set of features.
2141     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2142       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2143 
2144     // Now add the target-cpu and target-features to the function.
2145     // While we populated the feature map above, we still need to
2146     // get and parse the target attribute so we can get the cpu for
2147     // the function.
2148     if (TD) {
2149       ParsedTargetAttr ParsedAttr = TD->parse();
2150       if (!ParsedAttr.Architecture.empty() &&
2151           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2152         TargetCPU = ParsedAttr.Architecture;
2153         TuneCPU = ""; // Clear the tune CPU.
2154       }
2155       if (!ParsedAttr.Tune.empty() &&
2156           getTarget().isValidCPUName(ParsedAttr.Tune))
2157         TuneCPU = ParsedAttr.Tune;
2158     }
2159 
2160     if (SD) {
2161       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2162       // favor this processor.
2163       TuneCPU = getTarget().getCPUSpecificTuneName(
2164           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2165     }
2166   } else {
2167     // Otherwise just add the existing target cpu and target features to the
2168     // function.
2169     Features = getTarget().getTargetOpts().Features;
2170   }
2171 
2172   if (!TargetCPU.empty()) {
2173     Attrs.addAttribute("target-cpu", TargetCPU);
2174     AddedAttr = true;
2175   }
2176   if (!TuneCPU.empty()) {
2177     Attrs.addAttribute("tune-cpu", TuneCPU);
2178     AddedAttr = true;
2179   }
2180   if (!Features.empty()) {
2181     llvm::sort(Features);
2182     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2183     AddedAttr = true;
2184   }
2185 
2186   return AddedAttr;
2187 }
2188 
2189 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2190                                           llvm::GlobalObject *GO) {
2191   const Decl *D = GD.getDecl();
2192   SetCommonAttributes(GD, GO);
2193 
2194   if (D) {
2195     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2196       if (D->hasAttr<RetainAttr>())
2197         addUsedGlobal(GV);
2198       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2199         GV->addAttribute("bss-section", SA->getName());
2200       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2201         GV->addAttribute("data-section", SA->getName());
2202       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2203         GV->addAttribute("rodata-section", SA->getName());
2204       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2205         GV->addAttribute("relro-section", SA->getName());
2206     }
2207 
2208     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2209       if (D->hasAttr<RetainAttr>())
2210         addUsedGlobal(F);
2211       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2212         if (!D->getAttr<SectionAttr>())
2213           F->addFnAttr("implicit-section-name", SA->getName());
2214 
2215       llvm::AttrBuilder Attrs(F->getContext());
2216       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2217         // We know that GetCPUAndFeaturesAttributes will always have the
2218         // newest set, since it has the newest possible FunctionDecl, so the
2219         // new ones should replace the old.
2220         llvm::AttributeMask RemoveAttrs;
2221         RemoveAttrs.addAttribute("target-cpu");
2222         RemoveAttrs.addAttribute("target-features");
2223         RemoveAttrs.addAttribute("tune-cpu");
2224         F->removeFnAttrs(RemoveAttrs);
2225         F->addFnAttrs(Attrs);
2226       }
2227     }
2228 
2229     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2230       GO->setSection(CSA->getName());
2231     else if (const auto *SA = D->getAttr<SectionAttr>())
2232       GO->setSection(SA->getName());
2233   }
2234 
2235   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2236 }
2237 
2238 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2239                                                   llvm::Function *F,
2240                                                   const CGFunctionInfo &FI) {
2241   const Decl *D = GD.getDecl();
2242   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2243   SetLLVMFunctionAttributesForDefinition(D, F);
2244 
2245   F->setLinkage(llvm::Function::InternalLinkage);
2246 
2247   setNonAliasAttributes(GD, F);
2248 }
2249 
2250 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2251   // Set linkage and visibility in case we never see a definition.
2252   LinkageInfo LV = ND->getLinkageAndVisibility();
2253   // Don't set internal linkage on declarations.
2254   // "extern_weak" is overloaded in LLVM; we probably should have
2255   // separate linkage types for this.
2256   if (isExternallyVisible(LV.getLinkage()) &&
2257       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2258     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2259 }
2260 
2261 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2262                                                        llvm::Function *F) {
2263   // Only if we are checking indirect calls.
2264   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2265     return;
2266 
2267   // Non-static class methods are handled via vtable or member function pointer
2268   // checks elsewhere.
2269   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2270     return;
2271 
2272   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2273   F->addTypeMetadata(0, MD);
2274   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2275 
2276   // Emit a hash-based bit set entry for cross-DSO calls.
2277   if (CodeGenOpts.SanitizeCfiCrossDso)
2278     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2279       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2280 }
2281 
2282 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2283                                           bool IsIncompleteFunction,
2284                                           bool IsThunk) {
2285 
2286   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2287     // If this is an intrinsic function, set the function's attributes
2288     // to the intrinsic's attributes.
2289     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2290     return;
2291   }
2292 
2293   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2294 
2295   if (!IsIncompleteFunction)
2296     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2297                               IsThunk);
2298 
2299   // Add the Returned attribute for "this", except for iOS 5 and earlier
2300   // where substantial code, including the libstdc++ dylib, was compiled with
2301   // GCC and does not actually return "this".
2302   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2303       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2304     assert(!F->arg_empty() &&
2305            F->arg_begin()->getType()
2306              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2307            "unexpected this return");
2308     F->addParamAttr(0, llvm::Attribute::Returned);
2309   }
2310 
2311   // Only a few attributes are set on declarations; these may later be
2312   // overridden by a definition.
2313 
2314   setLinkageForGV(F, FD);
2315   setGVProperties(F, FD);
2316 
2317   // Setup target-specific attributes.
2318   if (!IsIncompleteFunction && F->isDeclaration())
2319     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2320 
2321   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2322     F->setSection(CSA->getName());
2323   else if (const auto *SA = FD->getAttr<SectionAttr>())
2324      F->setSection(SA->getName());
2325 
2326   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2327     if (EA->isError())
2328       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2329     else if (EA->isWarning())
2330       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2331   }
2332 
2333   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2334   if (FD->isInlineBuiltinDeclaration()) {
2335     const FunctionDecl *FDBody;
2336     bool HasBody = FD->hasBody(FDBody);
2337     (void)HasBody;
2338     assert(HasBody && "Inline builtin declarations should always have an "
2339                       "available body!");
2340     if (shouldEmitFunction(FDBody))
2341       F->addFnAttr(llvm::Attribute::NoBuiltin);
2342   }
2343 
2344   if (FD->isReplaceableGlobalAllocationFunction()) {
2345     // A replaceable global allocation function does not act like a builtin by
2346     // default, only if it is invoked by a new-expression or delete-expression.
2347     F->addFnAttr(llvm::Attribute::NoBuiltin);
2348   }
2349 
2350   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2351     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2352   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2353     if (MD->isVirtual())
2354       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2355 
2356   // Don't emit entries for function declarations in the cross-DSO mode. This
2357   // is handled with better precision by the receiving DSO. But if jump tables
2358   // are non-canonical then we need type metadata in order to produce the local
2359   // jump table.
2360   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2361       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2362     CreateFunctionTypeMetadataForIcall(FD, F);
2363 
2364   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2365     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2366 
2367   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2368     // Annotate the callback behavior as metadata:
2369     //  - The callback callee (as argument number).
2370     //  - The callback payloads (as argument numbers).
2371     llvm::LLVMContext &Ctx = F->getContext();
2372     llvm::MDBuilder MDB(Ctx);
2373 
2374     // The payload indices are all but the first one in the encoding. The first
2375     // identifies the callback callee.
2376     int CalleeIdx = *CB->encoding_begin();
2377     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2378     F->addMetadata(llvm::LLVMContext::MD_callback,
2379                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2380                                                CalleeIdx, PayloadIndices,
2381                                                /* VarArgsArePassed */ false)}));
2382   }
2383 }
2384 
2385 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2386   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2387          "Only globals with definition can force usage.");
2388   LLVMUsed.emplace_back(GV);
2389 }
2390 
2391 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2392   assert(!GV->isDeclaration() &&
2393          "Only globals with definition can force usage.");
2394   LLVMCompilerUsed.emplace_back(GV);
2395 }
2396 
2397 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2398   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2399          "Only globals with definition can force usage.");
2400   if (getTriple().isOSBinFormatELF())
2401     LLVMCompilerUsed.emplace_back(GV);
2402   else
2403     LLVMUsed.emplace_back(GV);
2404 }
2405 
2406 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2407                      std::vector<llvm::WeakTrackingVH> &List) {
2408   // Don't create llvm.used if there is no need.
2409   if (List.empty())
2410     return;
2411 
2412   // Convert List to what ConstantArray needs.
2413   SmallVector<llvm::Constant*, 8> UsedArray;
2414   UsedArray.resize(List.size());
2415   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2416     UsedArray[i] =
2417         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2418             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2419   }
2420 
2421   if (UsedArray.empty())
2422     return;
2423   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2424 
2425   auto *GV = new llvm::GlobalVariable(
2426       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2427       llvm::ConstantArray::get(ATy, UsedArray), Name);
2428 
2429   GV->setSection("llvm.metadata");
2430 }
2431 
2432 void CodeGenModule::emitLLVMUsed() {
2433   emitUsed(*this, "llvm.used", LLVMUsed);
2434   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2435 }
2436 
2437 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2438   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2439   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2440 }
2441 
2442 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2443   llvm::SmallString<32> Opt;
2444   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2445   if (Opt.empty())
2446     return;
2447   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2448   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2449 }
2450 
2451 void CodeGenModule::AddDependentLib(StringRef Lib) {
2452   auto &C = getLLVMContext();
2453   if (getTarget().getTriple().isOSBinFormatELF()) {
2454       ELFDependentLibraries.push_back(
2455         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2456     return;
2457   }
2458 
2459   llvm::SmallString<24> Opt;
2460   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2461   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2462   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2463 }
2464 
2465 /// Add link options implied by the given module, including modules
2466 /// it depends on, using a postorder walk.
2467 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2468                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2469                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2470   // Import this module's parent.
2471   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2472     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2473   }
2474 
2475   // Import this module's dependencies.
2476   for (Module *Import : llvm::reverse(Mod->Imports)) {
2477     if (Visited.insert(Import).second)
2478       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2479   }
2480 
2481   // Add linker options to link against the libraries/frameworks
2482   // described by this module.
2483   llvm::LLVMContext &Context = CGM.getLLVMContext();
2484   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2485 
2486   // For modules that use export_as for linking, use that module
2487   // name instead.
2488   if (Mod->UseExportAsModuleLinkName)
2489     return;
2490 
2491   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2492     // Link against a framework.  Frameworks are currently Darwin only, so we
2493     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2494     if (LL.IsFramework) {
2495       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2496                                  llvm::MDString::get(Context, LL.Library)};
2497 
2498       Metadata.push_back(llvm::MDNode::get(Context, Args));
2499       continue;
2500     }
2501 
2502     // Link against a library.
2503     if (IsELF) {
2504       llvm::Metadata *Args[2] = {
2505           llvm::MDString::get(Context, "lib"),
2506           llvm::MDString::get(Context, LL.Library),
2507       };
2508       Metadata.push_back(llvm::MDNode::get(Context, Args));
2509     } else {
2510       llvm::SmallString<24> Opt;
2511       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2512       auto *OptString = llvm::MDString::get(Context, Opt);
2513       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2514     }
2515   }
2516 }
2517 
2518 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2519   // Emit the initializers in the order that sub-modules appear in the
2520   // source, first Global Module Fragments, if present.
2521   if (auto GMF = Primary->getGlobalModuleFragment()) {
2522     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2523       assert(D->getKind() == Decl::Var && "GMF initializer decl is not a var?");
2524       EmitTopLevelDecl(D);
2525     }
2526   }
2527   // Second any associated with the module, itself.
2528   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2529     // Skip import decls, the inits for those are called explicitly.
2530     if (D->getKind() == Decl::Import)
2531       continue;
2532     EmitTopLevelDecl(D);
2533   }
2534   // Third any associated with the Privat eMOdule Fragment, if present.
2535   if (auto PMF = Primary->getPrivateModuleFragment()) {
2536     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2537       assert(D->getKind() == Decl::Var && "PMF initializer decl is not a var?");
2538       EmitTopLevelDecl(D);
2539     }
2540   }
2541 }
2542 
2543 void CodeGenModule::EmitModuleLinkOptions() {
2544   // Collect the set of all of the modules we want to visit to emit link
2545   // options, which is essentially the imported modules and all of their
2546   // non-explicit child modules.
2547   llvm::SetVector<clang::Module *> LinkModules;
2548   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2549   SmallVector<clang::Module *, 16> Stack;
2550 
2551   // Seed the stack with imported modules.
2552   for (Module *M : ImportedModules) {
2553     // Do not add any link flags when an implementation TU of a module imports
2554     // a header of that same module.
2555     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2556         !getLangOpts().isCompilingModule())
2557       continue;
2558     if (Visited.insert(M).second)
2559       Stack.push_back(M);
2560   }
2561 
2562   // Find all of the modules to import, making a little effort to prune
2563   // non-leaf modules.
2564   while (!Stack.empty()) {
2565     clang::Module *Mod = Stack.pop_back_val();
2566 
2567     bool AnyChildren = false;
2568 
2569     // Visit the submodules of this module.
2570     for (const auto &SM : Mod->submodules()) {
2571       // Skip explicit children; they need to be explicitly imported to be
2572       // linked against.
2573       if (SM->IsExplicit)
2574         continue;
2575 
2576       if (Visited.insert(SM).second) {
2577         Stack.push_back(SM);
2578         AnyChildren = true;
2579       }
2580     }
2581 
2582     // We didn't find any children, so add this module to the list of
2583     // modules to link against.
2584     if (!AnyChildren) {
2585       LinkModules.insert(Mod);
2586     }
2587   }
2588 
2589   // Add link options for all of the imported modules in reverse topological
2590   // order.  We don't do anything to try to order import link flags with respect
2591   // to linker options inserted by things like #pragma comment().
2592   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2593   Visited.clear();
2594   for (Module *M : LinkModules)
2595     if (Visited.insert(M).second)
2596       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2597   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2598   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2599 
2600   // Add the linker options metadata flag.
2601   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2602   for (auto *MD : LinkerOptionsMetadata)
2603     NMD->addOperand(MD);
2604 }
2605 
2606 void CodeGenModule::EmitDeferred() {
2607   // Emit deferred declare target declarations.
2608   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2609     getOpenMPRuntime().emitDeferredTargetDecls();
2610 
2611   // Emit code for any potentially referenced deferred decls.  Since a
2612   // previously unused static decl may become used during the generation of code
2613   // for a static function, iterate until no changes are made.
2614 
2615   if (!DeferredVTables.empty()) {
2616     EmitDeferredVTables();
2617 
2618     // Emitting a vtable doesn't directly cause more vtables to
2619     // become deferred, although it can cause functions to be
2620     // emitted that then need those vtables.
2621     assert(DeferredVTables.empty());
2622   }
2623 
2624   // Emit CUDA/HIP static device variables referenced by host code only.
2625   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2626   // needed for further handling.
2627   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2628     llvm::append_range(DeferredDeclsToEmit,
2629                        getContext().CUDADeviceVarODRUsedByHost);
2630 
2631   // Stop if we're out of both deferred vtables and deferred declarations.
2632   if (DeferredDeclsToEmit.empty())
2633     return;
2634 
2635   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2636   // work, it will not interfere with this.
2637   std::vector<GlobalDecl> CurDeclsToEmit;
2638   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2639 
2640   for (GlobalDecl &D : CurDeclsToEmit) {
2641     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2642     // to get GlobalValue with exactly the type we need, not something that
2643     // might had been created for another decl with the same mangled name but
2644     // different type.
2645     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2646         GetAddrOfGlobal(D, ForDefinition));
2647 
2648     // In case of different address spaces, we may still get a cast, even with
2649     // IsForDefinition equal to true. Query mangled names table to get
2650     // GlobalValue.
2651     if (!GV)
2652       GV = GetGlobalValue(getMangledName(D));
2653 
2654     // Make sure GetGlobalValue returned non-null.
2655     assert(GV);
2656 
2657     // Check to see if we've already emitted this.  This is necessary
2658     // for a couple of reasons: first, decls can end up in the
2659     // deferred-decls queue multiple times, and second, decls can end
2660     // up with definitions in unusual ways (e.g. by an extern inline
2661     // function acquiring a strong function redefinition).  Just
2662     // ignore these cases.
2663     if (!GV->isDeclaration())
2664       continue;
2665 
2666     // If this is OpenMP, check if it is legal to emit this global normally.
2667     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2668       continue;
2669 
2670     // Otherwise, emit the definition and move on to the next one.
2671     EmitGlobalDefinition(D, GV);
2672 
2673     // If we found out that we need to emit more decls, do that recursively.
2674     // This has the advantage that the decls are emitted in a DFS and related
2675     // ones are close together, which is convenient for testing.
2676     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2677       EmitDeferred();
2678       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2679     }
2680   }
2681 }
2682 
2683 void CodeGenModule::EmitVTablesOpportunistically() {
2684   // Try to emit external vtables as available_externally if they have emitted
2685   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2686   // is not allowed to create new references to things that need to be emitted
2687   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2688 
2689   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2690          && "Only emit opportunistic vtables with optimizations");
2691 
2692   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2693     assert(getVTables().isVTableExternal(RD) &&
2694            "This queue should only contain external vtables");
2695     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2696       VTables.GenerateClassData(RD);
2697   }
2698   OpportunisticVTables.clear();
2699 }
2700 
2701 void CodeGenModule::EmitGlobalAnnotations() {
2702   if (Annotations.empty())
2703     return;
2704 
2705   // Create a new global variable for the ConstantStruct in the Module.
2706   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2707     Annotations[0]->getType(), Annotations.size()), Annotations);
2708   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2709                                       llvm::GlobalValue::AppendingLinkage,
2710                                       Array, "llvm.global.annotations");
2711   gv->setSection(AnnotationSection);
2712 }
2713 
2714 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2715   llvm::Constant *&AStr = AnnotationStrings[Str];
2716   if (AStr)
2717     return AStr;
2718 
2719   // Not found yet, create a new global.
2720   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2721   auto *gv =
2722       new llvm::GlobalVariable(getModule(), s->getType(), true,
2723                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2724   gv->setSection(AnnotationSection);
2725   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2726   AStr = gv;
2727   return gv;
2728 }
2729 
2730 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2731   SourceManager &SM = getContext().getSourceManager();
2732   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2733   if (PLoc.isValid())
2734     return EmitAnnotationString(PLoc.getFilename());
2735   return EmitAnnotationString(SM.getBufferName(Loc));
2736 }
2737 
2738 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2739   SourceManager &SM = getContext().getSourceManager();
2740   PresumedLoc PLoc = SM.getPresumedLoc(L);
2741   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2742     SM.getExpansionLineNumber(L);
2743   return llvm::ConstantInt::get(Int32Ty, LineNo);
2744 }
2745 
2746 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2747   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2748   if (Exprs.empty())
2749     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2750 
2751   llvm::FoldingSetNodeID ID;
2752   for (Expr *E : Exprs) {
2753     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2754   }
2755   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2756   if (Lookup)
2757     return Lookup;
2758 
2759   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2760   LLVMArgs.reserve(Exprs.size());
2761   ConstantEmitter ConstEmiter(*this);
2762   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2763     const auto *CE = cast<clang::ConstantExpr>(E);
2764     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2765                                     CE->getType());
2766   });
2767   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2768   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2769                                       llvm::GlobalValue::PrivateLinkage, Struct,
2770                                       ".args");
2771   GV->setSection(AnnotationSection);
2772   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2773   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2774 
2775   Lookup = Bitcasted;
2776   return Bitcasted;
2777 }
2778 
2779 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2780                                                 const AnnotateAttr *AA,
2781                                                 SourceLocation L) {
2782   // Get the globals for file name, annotation, and the line number.
2783   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2784                  *UnitGV = EmitAnnotationUnit(L),
2785                  *LineNoCst = EmitAnnotationLineNo(L),
2786                  *Args = EmitAnnotationArgs(AA);
2787 
2788   llvm::Constant *GVInGlobalsAS = GV;
2789   if (GV->getAddressSpace() !=
2790       getDataLayout().getDefaultGlobalsAddressSpace()) {
2791     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2792         GV, GV->getValueType()->getPointerTo(
2793                 getDataLayout().getDefaultGlobalsAddressSpace()));
2794   }
2795 
2796   // Create the ConstantStruct for the global annotation.
2797   llvm::Constant *Fields[] = {
2798       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2799       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2800       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2801       LineNoCst,
2802       Args,
2803   };
2804   return llvm::ConstantStruct::getAnon(Fields);
2805 }
2806 
2807 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2808                                          llvm::GlobalValue *GV) {
2809   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2810   // Get the struct elements for these annotations.
2811   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2812     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2813 }
2814 
2815 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2816                                        SourceLocation Loc) const {
2817   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2818   // NoSanitize by function name.
2819   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2820     return true;
2821   // NoSanitize by location. Check "mainfile" prefix.
2822   auto &SM = Context.getSourceManager();
2823   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2824   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2825     return true;
2826 
2827   // Check "src" prefix.
2828   if (Loc.isValid())
2829     return NoSanitizeL.containsLocation(Kind, Loc);
2830   // If location is unknown, this may be a compiler-generated function. Assume
2831   // it's located in the main file.
2832   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2833 }
2834 
2835 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2836                                        llvm::GlobalVariable *GV,
2837                                        SourceLocation Loc, QualType Ty,
2838                                        StringRef Category) const {
2839   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2840   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2841     return true;
2842   auto &SM = Context.getSourceManager();
2843   if (NoSanitizeL.containsMainFile(
2844           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2845     return true;
2846   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2847     return true;
2848 
2849   // Check global type.
2850   if (!Ty.isNull()) {
2851     // Drill down the array types: if global variable of a fixed type is
2852     // not sanitized, we also don't instrument arrays of them.
2853     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2854       Ty = AT->getElementType();
2855     Ty = Ty.getCanonicalType().getUnqualifiedType();
2856     // Only record types (classes, structs etc.) are ignored.
2857     if (Ty->isRecordType()) {
2858       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2859       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2860         return true;
2861     }
2862   }
2863   return false;
2864 }
2865 
2866 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2867                                    StringRef Category) const {
2868   const auto &XRayFilter = getContext().getXRayFilter();
2869   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2870   auto Attr = ImbueAttr::NONE;
2871   if (Loc.isValid())
2872     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2873   if (Attr == ImbueAttr::NONE)
2874     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2875   switch (Attr) {
2876   case ImbueAttr::NONE:
2877     return false;
2878   case ImbueAttr::ALWAYS:
2879     Fn->addFnAttr("function-instrument", "xray-always");
2880     break;
2881   case ImbueAttr::ALWAYS_ARG1:
2882     Fn->addFnAttr("function-instrument", "xray-always");
2883     Fn->addFnAttr("xray-log-args", "1");
2884     break;
2885   case ImbueAttr::NEVER:
2886     Fn->addFnAttr("function-instrument", "xray-never");
2887     break;
2888   }
2889   return true;
2890 }
2891 
2892 bool CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2893                                                    SourceLocation Loc) const {
2894   const auto &ProfileList = getContext().getProfileList();
2895   // If the profile list is empty, then instrument everything.
2896   if (ProfileList.isEmpty())
2897     return false;
2898   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2899   // First, check the function name.
2900   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2901   if (V)
2902     return *V;
2903   // Next, check the source location.
2904   if (Loc.isValid()) {
2905     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2906     if (V)
2907       return *V;
2908   }
2909   // If location is unknown, this may be a compiler-generated function. Assume
2910   // it's located in the main file.
2911   auto &SM = Context.getSourceManager();
2912   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2913     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2914     if (V)
2915       return *V;
2916   }
2917   return ProfileList.getDefault();
2918 }
2919 
2920 bool CodeGenModule::isFunctionBlockedFromProfileInstr(
2921     llvm::Function *Fn, SourceLocation Loc) const {
2922   if (isFunctionBlockedByProfileList(Fn, Loc))
2923     return true;
2924 
2925   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
2926   if (NumGroups > 1) {
2927     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
2928     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
2929       return true;
2930   }
2931   return false;
2932 }
2933 
2934 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2935   // Never defer when EmitAllDecls is specified.
2936   if (LangOpts.EmitAllDecls)
2937     return true;
2938 
2939   if (CodeGenOpts.KeepStaticConsts) {
2940     const auto *VD = dyn_cast<VarDecl>(Global);
2941     if (VD && VD->getType().isConstQualified() &&
2942         VD->getStorageDuration() == SD_Static)
2943       return true;
2944   }
2945 
2946   return getContext().DeclMustBeEmitted(Global);
2947 }
2948 
2949 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2950   // In OpenMP 5.0 variables and function may be marked as
2951   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2952   // that they must be emitted on the host/device. To be sure we need to have
2953   // seen a declare target with an explicit mentioning of the function, we know
2954   // we have if the level of the declare target attribute is -1. Note that we
2955   // check somewhere else if we should emit this at all.
2956   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2957     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2958         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2959     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2960       return false;
2961   }
2962 
2963   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2964     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2965       // Implicit template instantiations may change linkage if they are later
2966       // explicitly instantiated, so they should not be emitted eagerly.
2967       return false;
2968   }
2969   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
2970     if (Context.getInlineVariableDefinitionKind(VD) ==
2971         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2972       // A definition of an inline constexpr static data member may change
2973       // linkage later if it's redeclared outside the class.
2974       return false;
2975     if (CXX20ModuleInits && VD->getOwningModule() &&
2976         !VD->getOwningModule()->isModuleMapModule()) {
2977       // For CXX20, module-owned initializers need to be deferred, since it is
2978       // not known at this point if they will be run for the current module or
2979       // as part of the initializer for an imported one.
2980       return false;
2981     }
2982   }
2983   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2984   // codegen for global variables, because they may be marked as threadprivate.
2985   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2986       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2987       !isTypeConstant(Global->getType(), false) &&
2988       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2989     return false;
2990 
2991   return true;
2992 }
2993 
2994 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2995   StringRef Name = getMangledName(GD);
2996 
2997   // The UUID descriptor should be pointer aligned.
2998   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2999 
3000   // Look for an existing global.
3001   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3002     return ConstantAddress(GV, GV->getValueType(), Alignment);
3003 
3004   ConstantEmitter Emitter(*this);
3005   llvm::Constant *Init;
3006 
3007   APValue &V = GD->getAsAPValue();
3008   if (!V.isAbsent()) {
3009     // If possible, emit the APValue version of the initializer. In particular,
3010     // this gets the type of the constant right.
3011     Init = Emitter.emitForInitializer(
3012         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3013   } else {
3014     // As a fallback, directly construct the constant.
3015     // FIXME: This may get padding wrong under esoteric struct layout rules.
3016     // MSVC appears to create a complete type 'struct __s_GUID' that it
3017     // presumably uses to represent these constants.
3018     MSGuidDecl::Parts Parts = GD->getParts();
3019     llvm::Constant *Fields[4] = {
3020         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3021         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3022         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3023         llvm::ConstantDataArray::getRaw(
3024             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3025             Int8Ty)};
3026     Init = llvm::ConstantStruct::getAnon(Fields);
3027   }
3028 
3029   auto *GV = new llvm::GlobalVariable(
3030       getModule(), Init->getType(),
3031       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3032   if (supportsCOMDAT())
3033     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3034   setDSOLocal(GV);
3035 
3036   if (!V.isAbsent()) {
3037     Emitter.finalize(GV);
3038     return ConstantAddress(GV, GV->getValueType(), Alignment);
3039   }
3040 
3041   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3042   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3043       GV, Ty->getPointerTo(GV->getAddressSpace()));
3044   return ConstantAddress(Addr, Ty, Alignment);
3045 }
3046 
3047 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3048     const UnnamedGlobalConstantDecl *GCD) {
3049   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3050 
3051   llvm::GlobalVariable **Entry = nullptr;
3052   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3053   if (*Entry)
3054     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3055 
3056   ConstantEmitter Emitter(*this);
3057   llvm::Constant *Init;
3058 
3059   const APValue &V = GCD->getValue();
3060 
3061   assert(!V.isAbsent());
3062   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3063                                     GCD->getType());
3064 
3065   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3066                                       /*isConstant=*/true,
3067                                       llvm::GlobalValue::PrivateLinkage, Init,
3068                                       ".constant");
3069   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3070   GV->setAlignment(Alignment.getAsAlign());
3071 
3072   Emitter.finalize(GV);
3073 
3074   *Entry = GV;
3075   return ConstantAddress(GV, GV->getValueType(), Alignment);
3076 }
3077 
3078 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3079     const TemplateParamObjectDecl *TPO) {
3080   StringRef Name = getMangledName(TPO);
3081   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3082 
3083   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3084     return ConstantAddress(GV, GV->getValueType(), Alignment);
3085 
3086   ConstantEmitter Emitter(*this);
3087   llvm::Constant *Init = Emitter.emitForInitializer(
3088         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3089 
3090   if (!Init) {
3091     ErrorUnsupported(TPO, "template parameter object");
3092     return ConstantAddress::invalid();
3093   }
3094 
3095   auto *GV = new llvm::GlobalVariable(
3096       getModule(), Init->getType(),
3097       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3098   if (supportsCOMDAT())
3099     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3100   Emitter.finalize(GV);
3101 
3102   return ConstantAddress(GV, GV->getValueType(), Alignment);
3103 }
3104 
3105 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3106   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3107   assert(AA && "No alias?");
3108 
3109   CharUnits Alignment = getContext().getDeclAlign(VD);
3110   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3111 
3112   // See if there is already something with the target's name in the module.
3113   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3114   if (Entry) {
3115     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3116     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3117     return ConstantAddress(Ptr, DeclTy, Alignment);
3118   }
3119 
3120   llvm::Constant *Aliasee;
3121   if (isa<llvm::FunctionType>(DeclTy))
3122     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3123                                       GlobalDecl(cast<FunctionDecl>(VD)),
3124                                       /*ForVTable=*/false);
3125   else
3126     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3127                                     nullptr);
3128 
3129   auto *F = cast<llvm::GlobalValue>(Aliasee);
3130   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3131   WeakRefReferences.insert(F);
3132 
3133   return ConstantAddress(Aliasee, DeclTy, Alignment);
3134 }
3135 
3136 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3137   const auto *Global = cast<ValueDecl>(GD.getDecl());
3138 
3139   // Weak references don't produce any output by themselves.
3140   if (Global->hasAttr<WeakRefAttr>())
3141     return;
3142 
3143   // If this is an alias definition (which otherwise looks like a declaration)
3144   // emit it now.
3145   if (Global->hasAttr<AliasAttr>())
3146     return EmitAliasDefinition(GD);
3147 
3148   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3149   if (Global->hasAttr<IFuncAttr>())
3150     return emitIFuncDefinition(GD);
3151 
3152   // If this is a cpu_dispatch multiversion function, emit the resolver.
3153   if (Global->hasAttr<CPUDispatchAttr>())
3154     return emitCPUDispatchDefinition(GD);
3155 
3156   // If this is CUDA, be selective about which declarations we emit.
3157   if (LangOpts.CUDA) {
3158     if (LangOpts.CUDAIsDevice) {
3159       if (!Global->hasAttr<CUDADeviceAttr>() &&
3160           !Global->hasAttr<CUDAGlobalAttr>() &&
3161           !Global->hasAttr<CUDAConstantAttr>() &&
3162           !Global->hasAttr<CUDASharedAttr>() &&
3163           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3164           !Global->getType()->isCUDADeviceBuiltinTextureType())
3165         return;
3166     } else {
3167       // We need to emit host-side 'shadows' for all global
3168       // device-side variables because the CUDA runtime needs their
3169       // size and host-side address in order to provide access to
3170       // their device-side incarnations.
3171 
3172       // So device-only functions are the only things we skip.
3173       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3174           Global->hasAttr<CUDADeviceAttr>())
3175         return;
3176 
3177       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3178              "Expected Variable or Function");
3179     }
3180   }
3181 
3182   if (LangOpts.OpenMP) {
3183     // If this is OpenMP, check if it is legal to emit this global normally.
3184     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3185       return;
3186     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3187       if (MustBeEmitted(Global))
3188         EmitOMPDeclareReduction(DRD);
3189       return;
3190     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3191       if (MustBeEmitted(Global))
3192         EmitOMPDeclareMapper(DMD);
3193       return;
3194     }
3195   }
3196 
3197   // Ignore declarations, they will be emitted on their first use.
3198   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3199     // Forward declarations are emitted lazily on first use.
3200     if (!FD->doesThisDeclarationHaveABody()) {
3201       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3202         return;
3203 
3204       StringRef MangledName = getMangledName(GD);
3205 
3206       // Compute the function info and LLVM type.
3207       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3208       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3209 
3210       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3211                               /*DontDefer=*/false);
3212       return;
3213     }
3214   } else {
3215     const auto *VD = cast<VarDecl>(Global);
3216     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3217     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3218         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3219       if (LangOpts.OpenMP) {
3220         // Emit declaration of the must-be-emitted declare target variable.
3221         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3222                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3223           bool UnifiedMemoryEnabled =
3224               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3225           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3226               !UnifiedMemoryEnabled) {
3227             (void)GetAddrOfGlobalVar(VD);
3228           } else {
3229             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3230                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3231                      UnifiedMemoryEnabled)) &&
3232                    "Link clause or to clause with unified memory expected.");
3233             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3234           }
3235 
3236           return;
3237         }
3238       }
3239       // If this declaration may have caused an inline variable definition to
3240       // change linkage, make sure that it's emitted.
3241       if (Context.getInlineVariableDefinitionKind(VD) ==
3242           ASTContext::InlineVariableDefinitionKind::Strong)
3243         GetAddrOfGlobalVar(VD);
3244       return;
3245     }
3246   }
3247 
3248   // Defer code generation to first use when possible, e.g. if this is an inline
3249   // function. If the global must always be emitted, do it eagerly if possible
3250   // to benefit from cache locality.
3251   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3252     // Emit the definition if it can't be deferred.
3253     EmitGlobalDefinition(GD);
3254     return;
3255   }
3256 
3257   // If we're deferring emission of a C++ variable with an
3258   // initializer, remember the order in which it appeared in the file.
3259   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3260       cast<VarDecl>(Global)->hasInit()) {
3261     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3262     CXXGlobalInits.push_back(nullptr);
3263   }
3264 
3265   StringRef MangledName = getMangledName(GD);
3266   if (GetGlobalValue(MangledName) != nullptr) {
3267     // The value has already been used and should therefore be emitted.
3268     addDeferredDeclToEmit(GD);
3269   } else if (MustBeEmitted(Global)) {
3270     // The value must be emitted, but cannot be emitted eagerly.
3271     assert(!MayBeEmittedEagerly(Global));
3272     addDeferredDeclToEmit(GD);
3273   } else {
3274     // Otherwise, remember that we saw a deferred decl with this name.  The
3275     // first use of the mangled name will cause it to move into
3276     // DeferredDeclsToEmit.
3277     DeferredDecls[MangledName] = GD;
3278   }
3279 }
3280 
3281 // Check if T is a class type with a destructor that's not dllimport.
3282 static bool HasNonDllImportDtor(QualType T) {
3283   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3284     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3285       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3286         return true;
3287 
3288   return false;
3289 }
3290 
3291 namespace {
3292   struct FunctionIsDirectlyRecursive
3293       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3294     const StringRef Name;
3295     const Builtin::Context &BI;
3296     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3297         : Name(N), BI(C) {}
3298 
3299     bool VisitCallExpr(const CallExpr *E) {
3300       const FunctionDecl *FD = E->getDirectCallee();
3301       if (!FD)
3302         return false;
3303       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3304       if (Attr && Name == Attr->getLabel())
3305         return true;
3306       unsigned BuiltinID = FD->getBuiltinID();
3307       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3308         return false;
3309       StringRef BuiltinName = BI.getName(BuiltinID);
3310       if (BuiltinName.startswith("__builtin_") &&
3311           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3312         return true;
3313       }
3314       return false;
3315     }
3316 
3317     bool VisitStmt(const Stmt *S) {
3318       for (const Stmt *Child : S->children())
3319         if (Child && this->Visit(Child))
3320           return true;
3321       return false;
3322     }
3323   };
3324 
3325   // Make sure we're not referencing non-imported vars or functions.
3326   struct DLLImportFunctionVisitor
3327       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3328     bool SafeToInline = true;
3329 
3330     bool shouldVisitImplicitCode() const { return true; }
3331 
3332     bool VisitVarDecl(VarDecl *VD) {
3333       if (VD->getTLSKind()) {
3334         // A thread-local variable cannot be imported.
3335         SafeToInline = false;
3336         return SafeToInline;
3337       }
3338 
3339       // A variable definition might imply a destructor call.
3340       if (VD->isThisDeclarationADefinition())
3341         SafeToInline = !HasNonDllImportDtor(VD->getType());
3342 
3343       return SafeToInline;
3344     }
3345 
3346     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3347       if (const auto *D = E->getTemporary()->getDestructor())
3348         SafeToInline = D->hasAttr<DLLImportAttr>();
3349       return SafeToInline;
3350     }
3351 
3352     bool VisitDeclRefExpr(DeclRefExpr *E) {
3353       ValueDecl *VD = E->getDecl();
3354       if (isa<FunctionDecl>(VD))
3355         SafeToInline = VD->hasAttr<DLLImportAttr>();
3356       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3357         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3358       return SafeToInline;
3359     }
3360 
3361     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3362       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3363       return SafeToInline;
3364     }
3365 
3366     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3367       CXXMethodDecl *M = E->getMethodDecl();
3368       if (!M) {
3369         // Call through a pointer to member function. This is safe to inline.
3370         SafeToInline = true;
3371       } else {
3372         SafeToInline = M->hasAttr<DLLImportAttr>();
3373       }
3374       return SafeToInline;
3375     }
3376 
3377     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3378       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3379       return SafeToInline;
3380     }
3381 
3382     bool VisitCXXNewExpr(CXXNewExpr *E) {
3383       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3384       return SafeToInline;
3385     }
3386   };
3387 }
3388 
3389 // isTriviallyRecursive - Check if this function calls another
3390 // decl that, because of the asm attribute or the other decl being a builtin,
3391 // ends up pointing to itself.
3392 bool
3393 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3394   StringRef Name;
3395   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3396     // asm labels are a special kind of mangling we have to support.
3397     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3398     if (!Attr)
3399       return false;
3400     Name = Attr->getLabel();
3401   } else {
3402     Name = FD->getName();
3403   }
3404 
3405   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3406   const Stmt *Body = FD->getBody();
3407   return Body ? Walker.Visit(Body) : false;
3408 }
3409 
3410 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3411   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3412     return true;
3413   const auto *F = cast<FunctionDecl>(GD.getDecl());
3414   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3415     return false;
3416 
3417   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3418     // Check whether it would be safe to inline this dllimport function.
3419     DLLImportFunctionVisitor Visitor;
3420     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3421     if (!Visitor.SafeToInline)
3422       return false;
3423 
3424     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3425       // Implicit destructor invocations aren't captured in the AST, so the
3426       // check above can't see them. Check for them manually here.
3427       for (const Decl *Member : Dtor->getParent()->decls())
3428         if (isa<FieldDecl>(Member))
3429           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3430             return false;
3431       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3432         if (HasNonDllImportDtor(B.getType()))
3433           return false;
3434     }
3435   }
3436 
3437   // Inline builtins declaration must be emitted. They often are fortified
3438   // functions.
3439   if (F->isInlineBuiltinDeclaration())
3440     return true;
3441 
3442   // PR9614. Avoid cases where the source code is lying to us. An available
3443   // externally function should have an equivalent function somewhere else,
3444   // but a function that calls itself through asm label/`__builtin_` trickery is
3445   // clearly not equivalent to the real implementation.
3446   // This happens in glibc's btowc and in some configure checks.
3447   return !isTriviallyRecursive(F);
3448 }
3449 
3450 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3451   return CodeGenOpts.OptimizationLevel > 0;
3452 }
3453 
3454 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3455                                                        llvm::GlobalValue *GV) {
3456   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3457 
3458   if (FD->isCPUSpecificMultiVersion()) {
3459     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3460     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3461       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3462   } else if (FD->isTargetClonesMultiVersion()) {
3463     auto *Clone = FD->getAttr<TargetClonesAttr>();
3464     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3465       if (Clone->isFirstOfVersion(I))
3466         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3467     // Ensure that the resolver function is also emitted.
3468     GetOrCreateMultiVersionResolver(GD);
3469   } else
3470     EmitGlobalFunctionDefinition(GD, GV);
3471 }
3472 
3473 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3474   const auto *D = cast<ValueDecl>(GD.getDecl());
3475 
3476   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3477                                  Context.getSourceManager(),
3478                                  "Generating code for declaration");
3479 
3480   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3481     // At -O0, don't generate IR for functions with available_externally
3482     // linkage.
3483     if (!shouldEmitFunction(GD))
3484       return;
3485 
3486     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3487       std::string Name;
3488       llvm::raw_string_ostream OS(Name);
3489       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3490                                /*Qualified=*/true);
3491       return Name;
3492     });
3493 
3494     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3495       // Make sure to emit the definition(s) before we emit the thunks.
3496       // This is necessary for the generation of certain thunks.
3497       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3498         ABI->emitCXXStructor(GD);
3499       else if (FD->isMultiVersion())
3500         EmitMultiVersionFunctionDefinition(GD, GV);
3501       else
3502         EmitGlobalFunctionDefinition(GD, GV);
3503 
3504       if (Method->isVirtual())
3505         getVTables().EmitThunks(GD);
3506 
3507       return;
3508     }
3509 
3510     if (FD->isMultiVersion())
3511       return EmitMultiVersionFunctionDefinition(GD, GV);
3512     return EmitGlobalFunctionDefinition(GD, GV);
3513   }
3514 
3515   if (const auto *VD = dyn_cast<VarDecl>(D))
3516     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3517 
3518   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3519 }
3520 
3521 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3522                                                       llvm::Function *NewFn);
3523 
3524 static unsigned
3525 TargetMVPriority(const TargetInfo &TI,
3526                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3527   unsigned Priority = 0;
3528   for (StringRef Feat : RO.Conditions.Features)
3529     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3530 
3531   if (!RO.Conditions.Architecture.empty())
3532     Priority = std::max(
3533         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3534   return Priority;
3535 }
3536 
3537 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3538 // TU can forward declare the function without causing problems.  Particularly
3539 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3540 // work with internal linkage functions, so that the same function name can be
3541 // used with internal linkage in multiple TUs.
3542 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3543                                                        GlobalDecl GD) {
3544   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3545   if (FD->getFormalLinkage() == InternalLinkage)
3546     return llvm::GlobalValue::InternalLinkage;
3547   return llvm::GlobalValue::WeakODRLinkage;
3548 }
3549 
3550 void CodeGenModule::emitMultiVersionFunctions() {
3551   std::vector<GlobalDecl> MVFuncsToEmit;
3552   MultiVersionFuncs.swap(MVFuncsToEmit);
3553   for (GlobalDecl GD : MVFuncsToEmit) {
3554     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3555     assert(FD && "Expected a FunctionDecl");
3556 
3557     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3558     if (FD->isTargetMultiVersion()) {
3559       getContext().forEachMultiversionedFunctionVersion(
3560           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3561             GlobalDecl CurGD{
3562                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3563             StringRef MangledName = getMangledName(CurGD);
3564             llvm::Constant *Func = GetGlobalValue(MangledName);
3565             if (!Func) {
3566               if (CurFD->isDefined()) {
3567                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3568                 Func = GetGlobalValue(MangledName);
3569               } else {
3570                 const CGFunctionInfo &FI =
3571                     getTypes().arrangeGlobalDeclaration(GD);
3572                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3573                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3574                                          /*DontDefer=*/false, ForDefinition);
3575               }
3576               assert(Func && "This should have just been created");
3577             }
3578 
3579             const auto *TA = CurFD->getAttr<TargetAttr>();
3580             llvm::SmallVector<StringRef, 8> Feats;
3581             TA->getAddedFeatures(Feats);
3582 
3583             Options.emplace_back(cast<llvm::Function>(Func),
3584                                  TA->getArchitecture(), Feats);
3585           });
3586     } else if (FD->isTargetClonesMultiVersion()) {
3587       const auto *TC = FD->getAttr<TargetClonesAttr>();
3588       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3589            ++VersionIndex) {
3590         if (!TC->isFirstOfVersion(VersionIndex))
3591           continue;
3592         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3593                          VersionIndex};
3594         StringRef Version = TC->getFeatureStr(VersionIndex);
3595         StringRef MangledName = getMangledName(CurGD);
3596         llvm::Constant *Func = GetGlobalValue(MangledName);
3597         if (!Func) {
3598           if (FD->isDefined()) {
3599             EmitGlobalFunctionDefinition(CurGD, nullptr);
3600             Func = GetGlobalValue(MangledName);
3601           } else {
3602             const CGFunctionInfo &FI =
3603                 getTypes().arrangeGlobalDeclaration(CurGD);
3604             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3605             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3606                                      /*DontDefer=*/false, ForDefinition);
3607           }
3608           assert(Func && "This should have just been created");
3609         }
3610 
3611         StringRef Architecture;
3612         llvm::SmallVector<StringRef, 1> Feature;
3613 
3614         if (Version.startswith("arch="))
3615           Architecture = Version.drop_front(sizeof("arch=") - 1);
3616         else if (Version != "default")
3617           Feature.push_back(Version);
3618 
3619         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3620       }
3621     } else {
3622       assert(0 && "Expected a target or target_clones multiversion function");
3623       continue;
3624     }
3625 
3626     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3627     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3628       ResolverConstant = IFunc->getResolver();
3629     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3630 
3631     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3632 
3633     if (supportsCOMDAT())
3634       ResolverFunc->setComdat(
3635           getModule().getOrInsertComdat(ResolverFunc->getName()));
3636 
3637     const TargetInfo &TI = getTarget();
3638     llvm::stable_sort(
3639         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3640                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3641           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3642         });
3643     CodeGenFunction CGF(*this);
3644     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3645   }
3646 
3647   // Ensure that any additions to the deferred decls list caused by emitting a
3648   // variant are emitted.  This can happen when the variant itself is inline and
3649   // calls a function without linkage.
3650   if (!MVFuncsToEmit.empty())
3651     EmitDeferred();
3652 
3653   // Ensure that any additions to the multiversion funcs list from either the
3654   // deferred decls or the multiversion functions themselves are emitted.
3655   if (!MultiVersionFuncs.empty())
3656     emitMultiVersionFunctions();
3657 }
3658 
3659 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3660   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3661   assert(FD && "Not a FunctionDecl?");
3662   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3663   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3664   assert(DD && "Not a cpu_dispatch Function?");
3665 
3666   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3667   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3668 
3669   StringRef ResolverName = getMangledName(GD);
3670   UpdateMultiVersionNames(GD, FD, ResolverName);
3671 
3672   llvm::Type *ResolverType;
3673   GlobalDecl ResolverGD;
3674   if (getTarget().supportsIFunc()) {
3675     ResolverType = llvm::FunctionType::get(
3676         llvm::PointerType::get(DeclTy,
3677                                Context.getTargetAddressSpace(FD->getType())),
3678         false);
3679   }
3680   else {
3681     ResolverType = DeclTy;
3682     ResolverGD = GD;
3683   }
3684 
3685   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3686       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3687   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3688   if (supportsCOMDAT())
3689     ResolverFunc->setComdat(
3690         getModule().getOrInsertComdat(ResolverFunc->getName()));
3691 
3692   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3693   const TargetInfo &Target = getTarget();
3694   unsigned Index = 0;
3695   for (const IdentifierInfo *II : DD->cpus()) {
3696     // Get the name of the target function so we can look it up/create it.
3697     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3698                               getCPUSpecificMangling(*this, II->getName());
3699 
3700     llvm::Constant *Func = GetGlobalValue(MangledName);
3701 
3702     if (!Func) {
3703       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3704       if (ExistingDecl.getDecl() &&
3705           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3706         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3707         Func = GetGlobalValue(MangledName);
3708       } else {
3709         if (!ExistingDecl.getDecl())
3710           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3711 
3712       Func = GetOrCreateLLVMFunction(
3713           MangledName, DeclTy, ExistingDecl,
3714           /*ForVTable=*/false, /*DontDefer=*/true,
3715           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3716       }
3717     }
3718 
3719     llvm::SmallVector<StringRef, 32> Features;
3720     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3721     llvm::transform(Features, Features.begin(),
3722                     [](StringRef Str) { return Str.substr(1); });
3723     llvm::erase_if(Features, [&Target](StringRef Feat) {
3724       return !Target.validateCpuSupports(Feat);
3725     });
3726     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3727     ++Index;
3728   }
3729 
3730   llvm::stable_sort(
3731       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3732                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3733         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3734                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3735       });
3736 
3737   // If the list contains multiple 'default' versions, such as when it contains
3738   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3739   // always run on at least a 'pentium'). We do this by deleting the 'least
3740   // advanced' (read, lowest mangling letter).
3741   while (Options.size() > 1 &&
3742          llvm::X86::getCpuSupportsMask(
3743              (Options.end() - 2)->Conditions.Features) == 0) {
3744     StringRef LHSName = (Options.end() - 2)->Function->getName();
3745     StringRef RHSName = (Options.end() - 1)->Function->getName();
3746     if (LHSName.compare(RHSName) < 0)
3747       Options.erase(Options.end() - 2);
3748     else
3749       Options.erase(Options.end() - 1);
3750   }
3751 
3752   CodeGenFunction CGF(*this);
3753   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3754 
3755   if (getTarget().supportsIFunc()) {
3756     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3757     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3758 
3759     // Fix up function declarations that were created for cpu_specific before
3760     // cpu_dispatch was known
3761     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3762       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3763       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3764                                            &getModule());
3765       GI->takeName(IFunc);
3766       IFunc->replaceAllUsesWith(GI);
3767       IFunc->eraseFromParent();
3768       IFunc = GI;
3769     }
3770 
3771     std::string AliasName = getMangledNameImpl(
3772         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3773     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3774     if (!AliasFunc) {
3775       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3776                                            &getModule());
3777       SetCommonAttributes(GD, GA);
3778     }
3779   }
3780 }
3781 
3782 /// If a dispatcher for the specified mangled name is not in the module, create
3783 /// and return an llvm Function with the specified type.
3784 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3785   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3786   assert(FD && "Not a FunctionDecl?");
3787 
3788   std::string MangledName =
3789       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3790 
3791   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3792   // a separate resolver).
3793   std::string ResolverName = MangledName;
3794   if (getTarget().supportsIFunc())
3795     ResolverName += ".ifunc";
3796   else if (FD->isTargetMultiVersion())
3797     ResolverName += ".resolver";
3798 
3799   // If the resolver has already been created, just return it.
3800   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3801     return ResolverGV;
3802 
3803   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3804   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3805 
3806   // The resolver needs to be created. For target and target_clones, defer
3807   // creation until the end of the TU.
3808   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3809     MultiVersionFuncs.push_back(GD);
3810 
3811   // For cpu_specific, don't create an ifunc yet because we don't know if the
3812   // cpu_dispatch will be emitted in this translation unit.
3813   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3814     llvm::Type *ResolverType = llvm::FunctionType::get(
3815         llvm::PointerType::get(
3816             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3817         false);
3818     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3819         MangledName + ".resolver", ResolverType, GlobalDecl{},
3820         /*ForVTable=*/false);
3821     llvm::GlobalIFunc *GIF =
3822         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3823                                   "", Resolver, &getModule());
3824     GIF->setName(ResolverName);
3825     SetCommonAttributes(FD, GIF);
3826 
3827     return GIF;
3828   }
3829 
3830   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3831       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3832   assert(isa<llvm::GlobalValue>(Resolver) &&
3833          "Resolver should be created for the first time");
3834   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3835   return Resolver;
3836 }
3837 
3838 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3839 /// module, create and return an llvm Function with the specified type. If there
3840 /// is something in the module with the specified name, return it potentially
3841 /// bitcasted to the right type.
3842 ///
3843 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3844 /// to set the attributes on the function when it is first created.
3845 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3846     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3847     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3848     ForDefinition_t IsForDefinition) {
3849   const Decl *D = GD.getDecl();
3850 
3851   // Any attempts to use a MultiVersion function should result in retrieving
3852   // the iFunc instead. Name Mangling will handle the rest of the changes.
3853   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3854     // For the device mark the function as one that should be emitted.
3855     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3856         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3857         !DontDefer && !IsForDefinition) {
3858       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3859         GlobalDecl GDDef;
3860         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3861           GDDef = GlobalDecl(CD, GD.getCtorType());
3862         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3863           GDDef = GlobalDecl(DD, GD.getDtorType());
3864         else
3865           GDDef = GlobalDecl(FDDef);
3866         EmitGlobal(GDDef);
3867       }
3868     }
3869 
3870     if (FD->isMultiVersion()) {
3871       UpdateMultiVersionNames(GD, FD, MangledName);
3872       if (!IsForDefinition)
3873         return GetOrCreateMultiVersionResolver(GD);
3874     }
3875   }
3876 
3877   // Lookup the entry, lazily creating it if necessary.
3878   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3879   if (Entry) {
3880     if (WeakRefReferences.erase(Entry)) {
3881       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3882       if (FD && !FD->hasAttr<WeakAttr>())
3883         Entry->setLinkage(llvm::Function::ExternalLinkage);
3884     }
3885 
3886     // Handle dropped DLL attributes.
3887     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3888         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3889       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3890       setDSOLocal(Entry);
3891     }
3892 
3893     // If there are two attempts to define the same mangled name, issue an
3894     // error.
3895     if (IsForDefinition && !Entry->isDeclaration()) {
3896       GlobalDecl OtherGD;
3897       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3898       // to make sure that we issue an error only once.
3899       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3900           (GD.getCanonicalDecl().getDecl() !=
3901            OtherGD.getCanonicalDecl().getDecl()) &&
3902           DiagnosedConflictingDefinitions.insert(GD).second) {
3903         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3904             << MangledName;
3905         getDiags().Report(OtherGD.getDecl()->getLocation(),
3906                           diag::note_previous_definition);
3907       }
3908     }
3909 
3910     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3911         (Entry->getValueType() == Ty)) {
3912       return Entry;
3913     }
3914 
3915     // Make sure the result is of the correct type.
3916     // (If function is requested for a definition, we always need to create a new
3917     // function, not just return a bitcast.)
3918     if (!IsForDefinition)
3919       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3920   }
3921 
3922   // This function doesn't have a complete type (for example, the return
3923   // type is an incomplete struct). Use a fake type instead, and make
3924   // sure not to try to set attributes.
3925   bool IsIncompleteFunction = false;
3926 
3927   llvm::FunctionType *FTy;
3928   if (isa<llvm::FunctionType>(Ty)) {
3929     FTy = cast<llvm::FunctionType>(Ty);
3930   } else {
3931     FTy = llvm::FunctionType::get(VoidTy, false);
3932     IsIncompleteFunction = true;
3933   }
3934 
3935   llvm::Function *F =
3936       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3937                              Entry ? StringRef() : MangledName, &getModule());
3938 
3939   // If we already created a function with the same mangled name (but different
3940   // type) before, take its name and add it to the list of functions to be
3941   // replaced with F at the end of CodeGen.
3942   //
3943   // This happens if there is a prototype for a function (e.g. "int f()") and
3944   // then a definition of a different type (e.g. "int f(int x)").
3945   if (Entry) {
3946     F->takeName(Entry);
3947 
3948     // This might be an implementation of a function without a prototype, in
3949     // which case, try to do special replacement of calls which match the new
3950     // prototype.  The really key thing here is that we also potentially drop
3951     // arguments from the call site so as to make a direct call, which makes the
3952     // inliner happier and suppresses a number of optimizer warnings (!) about
3953     // dropping arguments.
3954     if (!Entry->use_empty()) {
3955       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3956       Entry->removeDeadConstantUsers();
3957     }
3958 
3959     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3960         F, Entry->getValueType()->getPointerTo());
3961     addGlobalValReplacement(Entry, BC);
3962   }
3963 
3964   assert(F->getName() == MangledName && "name was uniqued!");
3965   if (D)
3966     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3967   if (ExtraAttrs.hasFnAttrs()) {
3968     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3969     F->addFnAttrs(B);
3970   }
3971 
3972   if (!DontDefer) {
3973     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3974     // each other bottoming out with the base dtor.  Therefore we emit non-base
3975     // dtors on usage, even if there is no dtor definition in the TU.
3976     if (D && isa<CXXDestructorDecl>(D) &&
3977         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3978                                            GD.getDtorType()))
3979       addDeferredDeclToEmit(GD);
3980 
3981     // This is the first use or definition of a mangled name.  If there is a
3982     // deferred decl with this name, remember that we need to emit it at the end
3983     // of the file.
3984     auto DDI = DeferredDecls.find(MangledName);
3985     if (DDI != DeferredDecls.end()) {
3986       // Move the potentially referenced deferred decl to the
3987       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3988       // don't need it anymore).
3989       addDeferredDeclToEmit(DDI->second);
3990       DeferredDecls.erase(DDI);
3991 
3992       // Otherwise, there are cases we have to worry about where we're
3993       // using a declaration for which we must emit a definition but where
3994       // we might not find a top-level definition:
3995       //   - member functions defined inline in their classes
3996       //   - friend functions defined inline in some class
3997       //   - special member functions with implicit definitions
3998       // If we ever change our AST traversal to walk into class methods,
3999       // this will be unnecessary.
4000       //
4001       // We also don't emit a definition for a function if it's going to be an
4002       // entry in a vtable, unless it's already marked as used.
4003     } else if (getLangOpts().CPlusPlus && D) {
4004       // Look for a declaration that's lexically in a record.
4005       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4006            FD = FD->getPreviousDecl()) {
4007         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4008           if (FD->doesThisDeclarationHaveABody()) {
4009             addDeferredDeclToEmit(GD.getWithDecl(FD));
4010             break;
4011           }
4012         }
4013       }
4014     }
4015   }
4016 
4017   // Make sure the result is of the requested type.
4018   if (!IsIncompleteFunction) {
4019     assert(F->getFunctionType() == Ty);
4020     return F;
4021   }
4022 
4023   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4024   return llvm::ConstantExpr::getBitCast(F, PTy);
4025 }
4026 
4027 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4028 /// non-null, then this function will use the specified type if it has to
4029 /// create it (this occurs when we see a definition of the function).
4030 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4031                                                  llvm::Type *Ty,
4032                                                  bool ForVTable,
4033                                                  bool DontDefer,
4034                                               ForDefinition_t IsForDefinition) {
4035   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4036          "consteval function should never be emitted");
4037   // If there was no specific requested type, just convert it now.
4038   if (!Ty) {
4039     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4040     Ty = getTypes().ConvertType(FD->getType());
4041   }
4042 
4043   // Devirtualized destructor calls may come through here instead of via
4044   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4045   // of the complete destructor when necessary.
4046   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4047     if (getTarget().getCXXABI().isMicrosoft() &&
4048         GD.getDtorType() == Dtor_Complete &&
4049         DD->getParent()->getNumVBases() == 0)
4050       GD = GlobalDecl(DD, Dtor_Base);
4051   }
4052 
4053   StringRef MangledName = getMangledName(GD);
4054   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4055                                     /*IsThunk=*/false, llvm::AttributeList(),
4056                                     IsForDefinition);
4057   // Returns kernel handle for HIP kernel stub function.
4058   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4059       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4060     auto *Handle = getCUDARuntime().getKernelHandle(
4061         cast<llvm::Function>(F->stripPointerCasts()), GD);
4062     if (IsForDefinition)
4063       return F;
4064     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4065   }
4066   return F;
4067 }
4068 
4069 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4070   llvm::GlobalValue *F =
4071       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4072 
4073   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4074                                         llvm::Type::getInt8PtrTy(VMContext));
4075 }
4076 
4077 static const FunctionDecl *
4078 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4079   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4080   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4081 
4082   IdentifierInfo &CII = C.Idents.get(Name);
4083   for (const auto *Result : DC->lookup(&CII))
4084     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4085       return FD;
4086 
4087   if (!C.getLangOpts().CPlusPlus)
4088     return nullptr;
4089 
4090   // Demangle the premangled name from getTerminateFn()
4091   IdentifierInfo &CXXII =
4092       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4093           ? C.Idents.get("terminate")
4094           : C.Idents.get(Name);
4095 
4096   for (const auto &N : {"__cxxabiv1", "std"}) {
4097     IdentifierInfo &NS = C.Idents.get(N);
4098     for (const auto *Result : DC->lookup(&NS)) {
4099       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4100       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4101         for (const auto *Result : LSD->lookup(&NS))
4102           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4103             break;
4104 
4105       if (ND)
4106         for (const auto *Result : ND->lookup(&CXXII))
4107           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4108             return FD;
4109     }
4110   }
4111 
4112   return nullptr;
4113 }
4114 
4115 /// CreateRuntimeFunction - Create a new runtime function with the specified
4116 /// type and name.
4117 llvm::FunctionCallee
4118 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4119                                      llvm::AttributeList ExtraAttrs, bool Local,
4120                                      bool AssumeConvergent) {
4121   if (AssumeConvergent) {
4122     ExtraAttrs =
4123         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4124   }
4125 
4126   llvm::Constant *C =
4127       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4128                               /*DontDefer=*/false, /*IsThunk=*/false,
4129                               ExtraAttrs);
4130 
4131   if (auto *F = dyn_cast<llvm::Function>(C)) {
4132     if (F->empty()) {
4133       F->setCallingConv(getRuntimeCC());
4134 
4135       // In Windows Itanium environments, try to mark runtime functions
4136       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4137       // will link their standard library statically or dynamically. Marking
4138       // functions imported when they are not imported can cause linker errors
4139       // and warnings.
4140       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4141           !getCodeGenOpts().LTOVisibilityPublicStd) {
4142         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4143         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4144           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4145           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4146         }
4147       }
4148       setDSOLocal(F);
4149     }
4150   }
4151 
4152   return {FTy, C};
4153 }
4154 
4155 /// isTypeConstant - Determine whether an object of this type can be emitted
4156 /// as a constant.
4157 ///
4158 /// If ExcludeCtor is true, the duration when the object's constructor runs
4159 /// will not be considered. The caller will need to verify that the object is
4160 /// not written to during its construction.
4161 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4162   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4163     return false;
4164 
4165   if (Context.getLangOpts().CPlusPlus) {
4166     if (const CXXRecordDecl *Record
4167           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4168       return ExcludeCtor && !Record->hasMutableFields() &&
4169              Record->hasTrivialDestructor();
4170   }
4171 
4172   return true;
4173 }
4174 
4175 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4176 /// create and return an llvm GlobalVariable with the specified type and address
4177 /// space. If there is something in the module with the specified name, return
4178 /// it potentially bitcasted to the right type.
4179 ///
4180 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4181 /// to set the attributes on the global when it is first created.
4182 ///
4183 /// If IsForDefinition is true, it is guaranteed that an actual global with
4184 /// type Ty will be returned, not conversion of a variable with the same
4185 /// mangled name but some other type.
4186 llvm::Constant *
4187 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4188                                      LangAS AddrSpace, const VarDecl *D,
4189                                      ForDefinition_t IsForDefinition) {
4190   // Lookup the entry, lazily creating it if necessary.
4191   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4192   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4193   if (Entry) {
4194     if (WeakRefReferences.erase(Entry)) {
4195       if (D && !D->hasAttr<WeakAttr>())
4196         Entry->setLinkage(llvm::Function::ExternalLinkage);
4197     }
4198 
4199     // Handle dropped DLL attributes.
4200     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4201         !shouldMapVisibilityToDLLExport(D))
4202       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4203 
4204     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4205       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4206 
4207     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4208       return Entry;
4209 
4210     // If there are two attempts to define the same mangled name, issue an
4211     // error.
4212     if (IsForDefinition && !Entry->isDeclaration()) {
4213       GlobalDecl OtherGD;
4214       const VarDecl *OtherD;
4215 
4216       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4217       // to make sure that we issue an error only once.
4218       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4219           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4220           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4221           OtherD->hasInit() &&
4222           DiagnosedConflictingDefinitions.insert(D).second) {
4223         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4224             << MangledName;
4225         getDiags().Report(OtherGD.getDecl()->getLocation(),
4226                           diag::note_previous_definition);
4227       }
4228     }
4229 
4230     // Make sure the result is of the correct type.
4231     if (Entry->getType()->getAddressSpace() != TargetAS) {
4232       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4233                                                   Ty->getPointerTo(TargetAS));
4234     }
4235 
4236     // (If global is requested for a definition, we always need to create a new
4237     // global, not just return a bitcast.)
4238     if (!IsForDefinition)
4239       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4240   }
4241 
4242   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4243 
4244   auto *GV = new llvm::GlobalVariable(
4245       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4246       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4247       getContext().getTargetAddressSpace(DAddrSpace));
4248 
4249   // If we already created a global with the same mangled name (but different
4250   // type) before, take its name and remove it from its parent.
4251   if (Entry) {
4252     GV->takeName(Entry);
4253 
4254     if (!Entry->use_empty()) {
4255       llvm::Constant *NewPtrForOldDecl =
4256           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4257       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4258     }
4259 
4260     Entry->eraseFromParent();
4261   }
4262 
4263   // This is the first use or definition of a mangled name.  If there is a
4264   // deferred decl with this name, remember that we need to emit it at the end
4265   // of the file.
4266   auto DDI = DeferredDecls.find(MangledName);
4267   if (DDI != DeferredDecls.end()) {
4268     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4269     // list, and remove it from DeferredDecls (since we don't need it anymore).
4270     addDeferredDeclToEmit(DDI->second);
4271     DeferredDecls.erase(DDI);
4272   }
4273 
4274   // Handle things which are present even on external declarations.
4275   if (D) {
4276     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4277       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4278 
4279     // FIXME: This code is overly simple and should be merged with other global
4280     // handling.
4281     GV->setConstant(isTypeConstant(D->getType(), false));
4282 
4283     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4284 
4285     setLinkageForGV(GV, D);
4286 
4287     if (D->getTLSKind()) {
4288       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4289         CXXThreadLocals.push_back(D);
4290       setTLSMode(GV, *D);
4291     }
4292 
4293     setGVProperties(GV, D);
4294 
4295     // If required by the ABI, treat declarations of static data members with
4296     // inline initializers as definitions.
4297     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4298       EmitGlobalVarDefinition(D);
4299     }
4300 
4301     // Emit section information for extern variables.
4302     if (D->hasExternalStorage()) {
4303       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4304         GV->setSection(SA->getName());
4305     }
4306 
4307     // Handle XCore specific ABI requirements.
4308     if (getTriple().getArch() == llvm::Triple::xcore &&
4309         D->getLanguageLinkage() == CLanguageLinkage &&
4310         D->getType().isConstant(Context) &&
4311         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4312       GV->setSection(".cp.rodata");
4313 
4314     // Check if we a have a const declaration with an initializer, we may be
4315     // able to emit it as available_externally to expose it's value to the
4316     // optimizer.
4317     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4318         D->getType().isConstQualified() && !GV->hasInitializer() &&
4319         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4320       const auto *Record =
4321           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4322       bool HasMutableFields = Record && Record->hasMutableFields();
4323       if (!HasMutableFields) {
4324         const VarDecl *InitDecl;
4325         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4326         if (InitExpr) {
4327           ConstantEmitter emitter(*this);
4328           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4329           if (Init) {
4330             auto *InitType = Init->getType();
4331             if (GV->getValueType() != InitType) {
4332               // The type of the initializer does not match the definition.
4333               // This happens when an initializer has a different type from
4334               // the type of the global (because of padding at the end of a
4335               // structure for instance).
4336               GV->setName(StringRef());
4337               // Make a new global with the correct type, this is now guaranteed
4338               // to work.
4339               auto *NewGV = cast<llvm::GlobalVariable>(
4340                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4341                       ->stripPointerCasts());
4342 
4343               // Erase the old global, since it is no longer used.
4344               GV->eraseFromParent();
4345               GV = NewGV;
4346             } else {
4347               GV->setInitializer(Init);
4348               GV->setConstant(true);
4349               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4350             }
4351             emitter.finalize(GV);
4352           }
4353         }
4354       }
4355     }
4356   }
4357 
4358   if (GV->isDeclaration()) {
4359     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4360     // External HIP managed variables needed to be recorded for transformation
4361     // in both device and host compilations.
4362     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4363         D->hasExternalStorage())
4364       getCUDARuntime().handleVarRegistration(D, *GV);
4365   }
4366 
4367   if (D)
4368     SanitizerMD->reportGlobal(GV, *D);
4369 
4370   LangAS ExpectedAS =
4371       D ? D->getType().getAddressSpace()
4372         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4373   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4374   if (DAddrSpace != ExpectedAS) {
4375     return getTargetCodeGenInfo().performAddrSpaceCast(
4376         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4377   }
4378 
4379   return GV;
4380 }
4381 
4382 llvm::Constant *
4383 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4384   const Decl *D = GD.getDecl();
4385 
4386   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4387     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4388                                 /*DontDefer=*/false, IsForDefinition);
4389 
4390   if (isa<CXXMethodDecl>(D)) {
4391     auto FInfo =
4392         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4393     auto Ty = getTypes().GetFunctionType(*FInfo);
4394     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4395                              IsForDefinition);
4396   }
4397 
4398   if (isa<FunctionDecl>(D)) {
4399     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4400     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4401     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4402                              IsForDefinition);
4403   }
4404 
4405   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4406 }
4407 
4408 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4409     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4410     unsigned Alignment) {
4411   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4412   llvm::GlobalVariable *OldGV = nullptr;
4413 
4414   if (GV) {
4415     // Check if the variable has the right type.
4416     if (GV->getValueType() == Ty)
4417       return GV;
4418 
4419     // Because C++ name mangling, the only way we can end up with an already
4420     // existing global with the same name is if it has been declared extern "C".
4421     assert(GV->isDeclaration() && "Declaration has wrong type!");
4422     OldGV = GV;
4423   }
4424 
4425   // Create a new variable.
4426   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4427                                 Linkage, nullptr, Name);
4428 
4429   if (OldGV) {
4430     // Replace occurrences of the old variable if needed.
4431     GV->takeName(OldGV);
4432 
4433     if (!OldGV->use_empty()) {
4434       llvm::Constant *NewPtrForOldDecl =
4435       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4436       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4437     }
4438 
4439     OldGV->eraseFromParent();
4440   }
4441 
4442   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4443       !GV->hasAvailableExternallyLinkage())
4444     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4445 
4446   GV->setAlignment(llvm::MaybeAlign(Alignment));
4447 
4448   return GV;
4449 }
4450 
4451 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4452 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4453 /// then it will be created with the specified type instead of whatever the
4454 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4455 /// that an actual global with type Ty will be returned, not conversion of a
4456 /// variable with the same mangled name but some other type.
4457 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4458                                                   llvm::Type *Ty,
4459                                            ForDefinition_t IsForDefinition) {
4460   assert(D->hasGlobalStorage() && "Not a global variable");
4461   QualType ASTTy = D->getType();
4462   if (!Ty)
4463     Ty = getTypes().ConvertTypeForMem(ASTTy);
4464 
4465   StringRef MangledName = getMangledName(D);
4466   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4467                                IsForDefinition);
4468 }
4469 
4470 /// CreateRuntimeVariable - Create a new runtime global variable with the
4471 /// specified type and name.
4472 llvm::Constant *
4473 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4474                                      StringRef Name) {
4475   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4476                                                        : LangAS::Default;
4477   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4478   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4479   return Ret;
4480 }
4481 
4482 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4483   assert(!D->getInit() && "Cannot emit definite definitions here!");
4484 
4485   StringRef MangledName = getMangledName(D);
4486   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4487 
4488   // We already have a definition, not declaration, with the same mangled name.
4489   // Emitting of declaration is not required (and actually overwrites emitted
4490   // definition).
4491   if (GV && !GV->isDeclaration())
4492     return;
4493 
4494   // If we have not seen a reference to this variable yet, place it into the
4495   // deferred declarations table to be emitted if needed later.
4496   if (!MustBeEmitted(D) && !GV) {
4497       DeferredDecls[MangledName] = D;
4498       return;
4499   }
4500 
4501   // The tentative definition is the only definition.
4502   EmitGlobalVarDefinition(D);
4503 }
4504 
4505 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4506   EmitExternalVarDeclaration(D);
4507 }
4508 
4509 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4510   return Context.toCharUnitsFromBits(
4511       getDataLayout().getTypeStoreSizeInBits(Ty));
4512 }
4513 
4514 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4515   if (LangOpts.OpenCL) {
4516     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4517     assert(AS == LangAS::opencl_global ||
4518            AS == LangAS::opencl_global_device ||
4519            AS == LangAS::opencl_global_host ||
4520            AS == LangAS::opencl_constant ||
4521            AS == LangAS::opencl_local ||
4522            AS >= LangAS::FirstTargetAddressSpace);
4523     return AS;
4524   }
4525 
4526   if (LangOpts.SYCLIsDevice &&
4527       (!D || D->getType().getAddressSpace() == LangAS::Default))
4528     return LangAS::sycl_global;
4529 
4530   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4531     if (D && D->hasAttr<CUDAConstantAttr>())
4532       return LangAS::cuda_constant;
4533     else if (D && D->hasAttr<CUDASharedAttr>())
4534       return LangAS::cuda_shared;
4535     else if (D && D->hasAttr<CUDADeviceAttr>())
4536       return LangAS::cuda_device;
4537     else if (D && D->getType().isConstQualified())
4538       return LangAS::cuda_constant;
4539     else
4540       return LangAS::cuda_device;
4541   }
4542 
4543   if (LangOpts.OpenMP) {
4544     LangAS AS;
4545     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4546       return AS;
4547   }
4548   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4549 }
4550 
4551 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4552   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4553   if (LangOpts.OpenCL)
4554     return LangAS::opencl_constant;
4555   if (LangOpts.SYCLIsDevice)
4556     return LangAS::sycl_global;
4557   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4558     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4559     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4560     // with OpVariable instructions with Generic storage class which is not
4561     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4562     // UniformConstant storage class is not viable as pointers to it may not be
4563     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4564     return LangAS::cuda_device;
4565   if (auto AS = getTarget().getConstantAddressSpace())
4566     return *AS;
4567   return LangAS::Default;
4568 }
4569 
4570 // In address space agnostic languages, string literals are in default address
4571 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4572 // emitted in constant address space in LLVM IR. To be consistent with other
4573 // parts of AST, string literal global variables in constant address space
4574 // need to be casted to default address space before being put into address
4575 // map and referenced by other part of CodeGen.
4576 // In OpenCL, string literals are in constant address space in AST, therefore
4577 // they should not be casted to default address space.
4578 static llvm::Constant *
4579 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4580                                        llvm::GlobalVariable *GV) {
4581   llvm::Constant *Cast = GV;
4582   if (!CGM.getLangOpts().OpenCL) {
4583     auto AS = CGM.GetGlobalConstantAddressSpace();
4584     if (AS != LangAS::Default)
4585       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4586           CGM, GV, AS, LangAS::Default,
4587           GV->getValueType()->getPointerTo(
4588               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4589   }
4590   return Cast;
4591 }
4592 
4593 template<typename SomeDecl>
4594 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4595                                                llvm::GlobalValue *GV) {
4596   if (!getLangOpts().CPlusPlus)
4597     return;
4598 
4599   // Must have 'used' attribute, or else inline assembly can't rely on
4600   // the name existing.
4601   if (!D->template hasAttr<UsedAttr>())
4602     return;
4603 
4604   // Must have internal linkage and an ordinary name.
4605   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4606     return;
4607 
4608   // Must be in an extern "C" context. Entities declared directly within
4609   // a record are not extern "C" even if the record is in such a context.
4610   const SomeDecl *First = D->getFirstDecl();
4611   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4612     return;
4613 
4614   // OK, this is an internal linkage entity inside an extern "C" linkage
4615   // specification. Make a note of that so we can give it the "expected"
4616   // mangled name if nothing else is using that name.
4617   std::pair<StaticExternCMap::iterator, bool> R =
4618       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4619 
4620   // If we have multiple internal linkage entities with the same name
4621   // in extern "C" regions, none of them gets that name.
4622   if (!R.second)
4623     R.first->second = nullptr;
4624 }
4625 
4626 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4627   if (!CGM.supportsCOMDAT())
4628     return false;
4629 
4630   if (D.hasAttr<SelectAnyAttr>())
4631     return true;
4632 
4633   GVALinkage Linkage;
4634   if (auto *VD = dyn_cast<VarDecl>(&D))
4635     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4636   else
4637     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4638 
4639   switch (Linkage) {
4640   case GVA_Internal:
4641   case GVA_AvailableExternally:
4642   case GVA_StrongExternal:
4643     return false;
4644   case GVA_DiscardableODR:
4645   case GVA_StrongODR:
4646     return true;
4647   }
4648   llvm_unreachable("No such linkage");
4649 }
4650 
4651 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4652                                           llvm::GlobalObject &GO) {
4653   if (!shouldBeInCOMDAT(*this, D))
4654     return;
4655   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4656 }
4657 
4658 /// Pass IsTentative as true if you want to create a tentative definition.
4659 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4660                                             bool IsTentative) {
4661   // OpenCL global variables of sampler type are translated to function calls,
4662   // therefore no need to be translated.
4663   QualType ASTTy = D->getType();
4664   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4665     return;
4666 
4667   // If this is OpenMP device, check if it is legal to emit this global
4668   // normally.
4669   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4670       OpenMPRuntime->emitTargetGlobalVariable(D))
4671     return;
4672 
4673   llvm::TrackingVH<llvm::Constant> Init;
4674   bool NeedsGlobalCtor = false;
4675   bool NeedsGlobalDtor =
4676       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4677 
4678   const VarDecl *InitDecl;
4679   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4680 
4681   Optional<ConstantEmitter> emitter;
4682 
4683   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4684   // as part of their declaration."  Sema has already checked for
4685   // error cases, so we just need to set Init to UndefValue.
4686   bool IsCUDASharedVar =
4687       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4688   // Shadows of initialized device-side global variables are also left
4689   // undefined.
4690   // Managed Variables should be initialized on both host side and device side.
4691   bool IsCUDAShadowVar =
4692       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4693       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4694        D->hasAttr<CUDASharedAttr>());
4695   bool IsCUDADeviceShadowVar =
4696       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4697       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4698        D->getType()->isCUDADeviceBuiltinTextureType());
4699   if (getLangOpts().CUDA &&
4700       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4701     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4702   else if (D->hasAttr<LoaderUninitializedAttr>())
4703     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4704   else if (!InitExpr) {
4705     // This is a tentative definition; tentative definitions are
4706     // implicitly initialized with { 0 }.
4707     //
4708     // Note that tentative definitions are only emitted at the end of
4709     // a translation unit, so they should never have incomplete
4710     // type. In addition, EmitTentativeDefinition makes sure that we
4711     // never attempt to emit a tentative definition if a real one
4712     // exists. A use may still exists, however, so we still may need
4713     // to do a RAUW.
4714     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4715     Init = EmitNullConstant(D->getType());
4716   } else {
4717     initializedGlobalDecl = GlobalDecl(D);
4718     emitter.emplace(*this);
4719     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4720     if (!Initializer) {
4721       QualType T = InitExpr->getType();
4722       if (D->getType()->isReferenceType())
4723         T = D->getType();
4724 
4725       if (getLangOpts().CPlusPlus) {
4726         if (InitDecl->hasFlexibleArrayInit(getContext()))
4727           ErrorUnsupported(D, "flexible array initializer");
4728         Init = EmitNullConstant(T);
4729         NeedsGlobalCtor = true;
4730       } else {
4731         ErrorUnsupported(D, "static initializer");
4732         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4733       }
4734     } else {
4735       Init = Initializer;
4736       // We don't need an initializer, so remove the entry for the delayed
4737       // initializer position (just in case this entry was delayed) if we
4738       // also don't need to register a destructor.
4739       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4740         DelayedCXXInitPosition.erase(D);
4741 
4742 #ifndef NDEBUG
4743       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4744                           InitDecl->getFlexibleArrayInitChars(getContext());
4745       CharUnits CstSize = CharUnits::fromQuantity(
4746           getDataLayout().getTypeAllocSize(Init->getType()));
4747       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4748 #endif
4749     }
4750   }
4751 
4752   llvm::Type* InitType = Init->getType();
4753   llvm::Constant *Entry =
4754       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4755 
4756   // Strip off pointer casts if we got them.
4757   Entry = Entry->stripPointerCasts();
4758 
4759   // Entry is now either a Function or GlobalVariable.
4760   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4761 
4762   // We have a definition after a declaration with the wrong type.
4763   // We must make a new GlobalVariable* and update everything that used OldGV
4764   // (a declaration or tentative definition) with the new GlobalVariable*
4765   // (which will be a definition).
4766   //
4767   // This happens if there is a prototype for a global (e.g.
4768   // "extern int x[];") and then a definition of a different type (e.g.
4769   // "int x[10];"). This also happens when an initializer has a different type
4770   // from the type of the global (this happens with unions).
4771   if (!GV || GV->getValueType() != InitType ||
4772       GV->getType()->getAddressSpace() !=
4773           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4774 
4775     // Move the old entry aside so that we'll create a new one.
4776     Entry->setName(StringRef());
4777 
4778     // Make a new global with the correct type, this is now guaranteed to work.
4779     GV = cast<llvm::GlobalVariable>(
4780         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4781             ->stripPointerCasts());
4782 
4783     // Replace all uses of the old global with the new global
4784     llvm::Constant *NewPtrForOldDecl =
4785         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4786                                                              Entry->getType());
4787     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4788 
4789     // Erase the old global, since it is no longer used.
4790     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4791   }
4792 
4793   MaybeHandleStaticInExternC(D, GV);
4794 
4795   if (D->hasAttr<AnnotateAttr>())
4796     AddGlobalAnnotations(D, GV);
4797 
4798   // Set the llvm linkage type as appropriate.
4799   llvm::GlobalValue::LinkageTypes Linkage =
4800       getLLVMLinkageVarDefinition(D, GV->isConstant());
4801 
4802   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4803   // the device. [...]"
4804   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4805   // __device__, declares a variable that: [...]
4806   // Is accessible from all the threads within the grid and from the host
4807   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4808   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4809   if (GV && LangOpts.CUDA) {
4810     if (LangOpts.CUDAIsDevice) {
4811       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4812           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4813            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4814            D->getType()->isCUDADeviceBuiltinTextureType()))
4815         GV->setExternallyInitialized(true);
4816     } else {
4817       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4818     }
4819     getCUDARuntime().handleVarRegistration(D, *GV);
4820   }
4821 
4822   GV->setInitializer(Init);
4823   if (emitter)
4824     emitter->finalize(GV);
4825 
4826   // If it is safe to mark the global 'constant', do so now.
4827   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4828                   isTypeConstant(D->getType(), true));
4829 
4830   // If it is in a read-only section, mark it 'constant'.
4831   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4832     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4833     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4834       GV->setConstant(true);
4835   }
4836 
4837   CharUnits AlignVal = getContext().getDeclAlign(D);
4838   // Check for alignment specifed in an 'omp allocate' directive.
4839   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4840           getOMPAllocateAlignment(D))
4841     AlignVal = *AlignValFromAllocate;
4842   GV->setAlignment(AlignVal.getAsAlign());
4843 
4844   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4845   // function is only defined alongside the variable, not also alongside
4846   // callers. Normally, all accesses to a thread_local go through the
4847   // thread-wrapper in order to ensure initialization has occurred, underlying
4848   // variable will never be used other than the thread-wrapper, so it can be
4849   // converted to internal linkage.
4850   //
4851   // However, if the variable has the 'constinit' attribute, it _can_ be
4852   // referenced directly, without calling the thread-wrapper, so the linkage
4853   // must not be changed.
4854   //
4855   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4856   // weak or linkonce, the de-duplication semantics are important to preserve,
4857   // so we don't change the linkage.
4858   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4859       Linkage == llvm::GlobalValue::ExternalLinkage &&
4860       Context.getTargetInfo().getTriple().isOSDarwin() &&
4861       !D->hasAttr<ConstInitAttr>())
4862     Linkage = llvm::GlobalValue::InternalLinkage;
4863 
4864   GV->setLinkage(Linkage);
4865   if (D->hasAttr<DLLImportAttr>())
4866     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4867   else if (D->hasAttr<DLLExportAttr>())
4868     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4869   else
4870     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4871 
4872   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4873     // common vars aren't constant even if declared const.
4874     GV->setConstant(false);
4875     // Tentative definition of global variables may be initialized with
4876     // non-zero null pointers. In this case they should have weak linkage
4877     // since common linkage must have zero initializer and must not have
4878     // explicit section therefore cannot have non-zero initial value.
4879     if (!GV->getInitializer()->isNullValue())
4880       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4881   }
4882 
4883   setNonAliasAttributes(D, GV);
4884 
4885   if (D->getTLSKind() && !GV->isThreadLocal()) {
4886     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4887       CXXThreadLocals.push_back(D);
4888     setTLSMode(GV, *D);
4889   }
4890 
4891   maybeSetTrivialComdat(*D, *GV);
4892 
4893   // Emit the initializer function if necessary.
4894   if (NeedsGlobalCtor || NeedsGlobalDtor)
4895     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4896 
4897   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4898 
4899   // Emit global variable debug information.
4900   if (CGDebugInfo *DI = getModuleDebugInfo())
4901     if (getCodeGenOpts().hasReducedDebugInfo())
4902       DI->EmitGlobalVariable(GV, D);
4903 }
4904 
4905 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4906   if (CGDebugInfo *DI = getModuleDebugInfo())
4907     if (getCodeGenOpts().hasReducedDebugInfo()) {
4908       QualType ASTTy = D->getType();
4909       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4910       llvm::Constant *GV =
4911           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4912       DI->EmitExternalVariable(
4913           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4914     }
4915 }
4916 
4917 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4918                                       CodeGenModule &CGM, const VarDecl *D,
4919                                       bool NoCommon) {
4920   // Don't give variables common linkage if -fno-common was specified unless it
4921   // was overridden by a NoCommon attribute.
4922   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4923     return true;
4924 
4925   // C11 6.9.2/2:
4926   //   A declaration of an identifier for an object that has file scope without
4927   //   an initializer, and without a storage-class specifier or with the
4928   //   storage-class specifier static, constitutes a tentative definition.
4929   if (D->getInit() || D->hasExternalStorage())
4930     return true;
4931 
4932   // A variable cannot be both common and exist in a section.
4933   if (D->hasAttr<SectionAttr>())
4934     return true;
4935 
4936   // A variable cannot be both common and exist in a section.
4937   // We don't try to determine which is the right section in the front-end.
4938   // If no specialized section name is applicable, it will resort to default.
4939   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4940       D->hasAttr<PragmaClangDataSectionAttr>() ||
4941       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4942       D->hasAttr<PragmaClangRodataSectionAttr>())
4943     return true;
4944 
4945   // Thread local vars aren't considered common linkage.
4946   if (D->getTLSKind())
4947     return true;
4948 
4949   // Tentative definitions marked with WeakImportAttr are true definitions.
4950   if (D->hasAttr<WeakImportAttr>())
4951     return true;
4952 
4953   // A variable cannot be both common and exist in a comdat.
4954   if (shouldBeInCOMDAT(CGM, *D))
4955     return true;
4956 
4957   // Declarations with a required alignment do not have common linkage in MSVC
4958   // mode.
4959   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4960     if (D->hasAttr<AlignedAttr>())
4961       return true;
4962     QualType VarType = D->getType();
4963     if (Context.isAlignmentRequired(VarType))
4964       return true;
4965 
4966     if (const auto *RT = VarType->getAs<RecordType>()) {
4967       const RecordDecl *RD = RT->getDecl();
4968       for (const FieldDecl *FD : RD->fields()) {
4969         if (FD->isBitField())
4970           continue;
4971         if (FD->hasAttr<AlignedAttr>())
4972           return true;
4973         if (Context.isAlignmentRequired(FD->getType()))
4974           return true;
4975       }
4976     }
4977   }
4978 
4979   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4980   // common symbols, so symbols with greater alignment requirements cannot be
4981   // common.
4982   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4983   // alignments for common symbols via the aligncomm directive, so this
4984   // restriction only applies to MSVC environments.
4985   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4986       Context.getTypeAlignIfKnown(D->getType()) >
4987           Context.toBits(CharUnits::fromQuantity(32)))
4988     return true;
4989 
4990   return false;
4991 }
4992 
4993 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4994     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4995   if (Linkage == GVA_Internal)
4996     return llvm::Function::InternalLinkage;
4997 
4998   if (D->hasAttr<WeakAttr>())
4999     return llvm::GlobalVariable::WeakAnyLinkage;
5000 
5001   if (const auto *FD = D->getAsFunction())
5002     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5003       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5004 
5005   // We are guaranteed to have a strong definition somewhere else,
5006   // so we can use available_externally linkage.
5007   if (Linkage == GVA_AvailableExternally)
5008     return llvm::GlobalValue::AvailableExternallyLinkage;
5009 
5010   // Note that Apple's kernel linker doesn't support symbol
5011   // coalescing, so we need to avoid linkonce and weak linkages there.
5012   // Normally, this means we just map to internal, but for explicit
5013   // instantiations we'll map to external.
5014 
5015   // In C++, the compiler has to emit a definition in every translation unit
5016   // that references the function.  We should use linkonce_odr because
5017   // a) if all references in this translation unit are optimized away, we
5018   // don't need to codegen it.  b) if the function persists, it needs to be
5019   // merged with other definitions. c) C++ has the ODR, so we know the
5020   // definition is dependable.
5021   if (Linkage == GVA_DiscardableODR)
5022     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5023                                             : llvm::Function::InternalLinkage;
5024 
5025   // An explicit instantiation of a template has weak linkage, since
5026   // explicit instantiations can occur in multiple translation units
5027   // and must all be equivalent. However, we are not allowed to
5028   // throw away these explicit instantiations.
5029   //
5030   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5031   // so say that CUDA templates are either external (for kernels) or internal.
5032   // This lets llvm perform aggressive inter-procedural optimizations. For
5033   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5034   // therefore we need to follow the normal linkage paradigm.
5035   if (Linkage == GVA_StrongODR) {
5036     if (getLangOpts().AppleKext)
5037       return llvm::Function::ExternalLinkage;
5038     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5039         !getLangOpts().GPURelocatableDeviceCode)
5040       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5041                                           : llvm::Function::InternalLinkage;
5042     return llvm::Function::WeakODRLinkage;
5043   }
5044 
5045   // C++ doesn't have tentative definitions and thus cannot have common
5046   // linkage.
5047   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5048       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5049                                  CodeGenOpts.NoCommon))
5050     return llvm::GlobalVariable::CommonLinkage;
5051 
5052   // selectany symbols are externally visible, so use weak instead of
5053   // linkonce.  MSVC optimizes away references to const selectany globals, so
5054   // all definitions should be the same and ODR linkage should be used.
5055   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5056   if (D->hasAttr<SelectAnyAttr>())
5057     return llvm::GlobalVariable::WeakODRLinkage;
5058 
5059   // Otherwise, we have strong external linkage.
5060   assert(Linkage == GVA_StrongExternal);
5061   return llvm::GlobalVariable::ExternalLinkage;
5062 }
5063 
5064 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5065     const VarDecl *VD, bool IsConstant) {
5066   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5067   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5068 }
5069 
5070 /// Replace the uses of a function that was declared with a non-proto type.
5071 /// We want to silently drop extra arguments from call sites
5072 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5073                                           llvm::Function *newFn) {
5074   // Fast path.
5075   if (old->use_empty()) return;
5076 
5077   llvm::Type *newRetTy = newFn->getReturnType();
5078   SmallVector<llvm::Value*, 4> newArgs;
5079 
5080   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5081          ui != ue; ) {
5082     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5083     llvm::User *user = use->getUser();
5084 
5085     // Recognize and replace uses of bitcasts.  Most calls to
5086     // unprototyped functions will use bitcasts.
5087     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5088       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5089         replaceUsesOfNonProtoConstant(bitcast, newFn);
5090       continue;
5091     }
5092 
5093     // Recognize calls to the function.
5094     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5095     if (!callSite) continue;
5096     if (!callSite->isCallee(&*use))
5097       continue;
5098 
5099     // If the return types don't match exactly, then we can't
5100     // transform this call unless it's dead.
5101     if (callSite->getType() != newRetTy && !callSite->use_empty())
5102       continue;
5103 
5104     // Get the call site's attribute list.
5105     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5106     llvm::AttributeList oldAttrs = callSite->getAttributes();
5107 
5108     // If the function was passed too few arguments, don't transform.
5109     unsigned newNumArgs = newFn->arg_size();
5110     if (callSite->arg_size() < newNumArgs)
5111       continue;
5112 
5113     // If extra arguments were passed, we silently drop them.
5114     // If any of the types mismatch, we don't transform.
5115     unsigned argNo = 0;
5116     bool dontTransform = false;
5117     for (llvm::Argument &A : newFn->args()) {
5118       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5119         dontTransform = true;
5120         break;
5121       }
5122 
5123       // Add any parameter attributes.
5124       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5125       argNo++;
5126     }
5127     if (dontTransform)
5128       continue;
5129 
5130     // Okay, we can transform this.  Create the new call instruction and copy
5131     // over the required information.
5132     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5133 
5134     // Copy over any operand bundles.
5135     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5136     callSite->getOperandBundlesAsDefs(newBundles);
5137 
5138     llvm::CallBase *newCall;
5139     if (isa<llvm::CallInst>(callSite)) {
5140       newCall =
5141           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5142     } else {
5143       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5144       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5145                                          oldInvoke->getUnwindDest(), newArgs,
5146                                          newBundles, "", callSite);
5147     }
5148     newArgs.clear(); // for the next iteration
5149 
5150     if (!newCall->getType()->isVoidTy())
5151       newCall->takeName(callSite);
5152     newCall->setAttributes(
5153         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5154                                  oldAttrs.getRetAttrs(), newArgAttrs));
5155     newCall->setCallingConv(callSite->getCallingConv());
5156 
5157     // Finally, remove the old call, replacing any uses with the new one.
5158     if (!callSite->use_empty())
5159       callSite->replaceAllUsesWith(newCall);
5160 
5161     // Copy debug location attached to CI.
5162     if (callSite->getDebugLoc())
5163       newCall->setDebugLoc(callSite->getDebugLoc());
5164 
5165     callSite->eraseFromParent();
5166   }
5167 }
5168 
5169 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5170 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5171 /// existing call uses of the old function in the module, this adjusts them to
5172 /// call the new function directly.
5173 ///
5174 /// This is not just a cleanup: the always_inline pass requires direct calls to
5175 /// functions to be able to inline them.  If there is a bitcast in the way, it
5176 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5177 /// run at -O0.
5178 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5179                                                       llvm::Function *NewFn) {
5180   // If we're redefining a global as a function, don't transform it.
5181   if (!isa<llvm::Function>(Old)) return;
5182 
5183   replaceUsesOfNonProtoConstant(Old, NewFn);
5184 }
5185 
5186 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5187   auto DK = VD->isThisDeclarationADefinition();
5188   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5189     return;
5190 
5191   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5192   // If we have a definition, this might be a deferred decl. If the
5193   // instantiation is explicit, make sure we emit it at the end.
5194   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5195     GetAddrOfGlobalVar(VD);
5196 
5197   EmitTopLevelDecl(VD);
5198 }
5199 
5200 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5201                                                  llvm::GlobalValue *GV) {
5202   const auto *D = cast<FunctionDecl>(GD.getDecl());
5203 
5204   // Compute the function info and LLVM type.
5205   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5206   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5207 
5208   // Get or create the prototype for the function.
5209   if (!GV || (GV->getValueType() != Ty))
5210     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5211                                                    /*DontDefer=*/true,
5212                                                    ForDefinition));
5213 
5214   // Already emitted.
5215   if (!GV->isDeclaration())
5216     return;
5217 
5218   // We need to set linkage and visibility on the function before
5219   // generating code for it because various parts of IR generation
5220   // want to propagate this information down (e.g. to local static
5221   // declarations).
5222   auto *Fn = cast<llvm::Function>(GV);
5223   setFunctionLinkage(GD, Fn);
5224 
5225   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5226   setGVProperties(Fn, GD);
5227 
5228   MaybeHandleStaticInExternC(D, Fn);
5229 
5230   maybeSetTrivialComdat(*D, *Fn);
5231 
5232   // Set CodeGen attributes that represent floating point environment.
5233   setLLVMFunctionFEnvAttributes(D, Fn);
5234 
5235   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5236 
5237   setNonAliasAttributes(GD, Fn);
5238   SetLLVMFunctionAttributesForDefinition(D, Fn);
5239 
5240   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5241     AddGlobalCtor(Fn, CA->getPriority());
5242   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5243     AddGlobalDtor(Fn, DA->getPriority(), true);
5244   if (D->hasAttr<AnnotateAttr>())
5245     AddGlobalAnnotations(D, Fn);
5246 }
5247 
5248 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5249   const auto *D = cast<ValueDecl>(GD.getDecl());
5250   const AliasAttr *AA = D->getAttr<AliasAttr>();
5251   assert(AA && "Not an alias?");
5252 
5253   StringRef MangledName = getMangledName(GD);
5254 
5255   if (AA->getAliasee() == MangledName) {
5256     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5257     return;
5258   }
5259 
5260   // If there is a definition in the module, then it wins over the alias.
5261   // This is dubious, but allow it to be safe.  Just ignore the alias.
5262   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5263   if (Entry && !Entry->isDeclaration())
5264     return;
5265 
5266   Aliases.push_back(GD);
5267 
5268   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5269 
5270   // Create a reference to the named value.  This ensures that it is emitted
5271   // if a deferred decl.
5272   llvm::Constant *Aliasee;
5273   llvm::GlobalValue::LinkageTypes LT;
5274   if (isa<llvm::FunctionType>(DeclTy)) {
5275     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5276                                       /*ForVTable=*/false);
5277     LT = getFunctionLinkage(GD);
5278   } else {
5279     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5280                                     /*D=*/nullptr);
5281     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5282       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5283     else
5284       LT = getFunctionLinkage(GD);
5285   }
5286 
5287   // Create the new alias itself, but don't set a name yet.
5288   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5289   auto *GA =
5290       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5291 
5292   if (Entry) {
5293     if (GA->getAliasee() == Entry) {
5294       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5295       return;
5296     }
5297 
5298     assert(Entry->isDeclaration());
5299 
5300     // If there is a declaration in the module, then we had an extern followed
5301     // by the alias, as in:
5302     //   extern int test6();
5303     //   ...
5304     //   int test6() __attribute__((alias("test7")));
5305     //
5306     // Remove it and replace uses of it with the alias.
5307     GA->takeName(Entry);
5308 
5309     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5310                                                           Entry->getType()));
5311     Entry->eraseFromParent();
5312   } else {
5313     GA->setName(MangledName);
5314   }
5315 
5316   // Set attributes which are particular to an alias; this is a
5317   // specialization of the attributes which may be set on a global
5318   // variable/function.
5319   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5320       D->isWeakImported()) {
5321     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5322   }
5323 
5324   if (const auto *VD = dyn_cast<VarDecl>(D))
5325     if (VD->getTLSKind())
5326       setTLSMode(GA, *VD);
5327 
5328   SetCommonAttributes(GD, GA);
5329 
5330   // Emit global alias debug information.
5331   if (isa<VarDecl>(D))
5332     if (CGDebugInfo *DI = getModuleDebugInfo())
5333       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5334 }
5335 
5336 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5337   const auto *D = cast<ValueDecl>(GD.getDecl());
5338   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5339   assert(IFA && "Not an ifunc?");
5340 
5341   StringRef MangledName = getMangledName(GD);
5342 
5343   if (IFA->getResolver() == MangledName) {
5344     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5345     return;
5346   }
5347 
5348   // Report an error if some definition overrides ifunc.
5349   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5350   if (Entry && !Entry->isDeclaration()) {
5351     GlobalDecl OtherGD;
5352     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5353         DiagnosedConflictingDefinitions.insert(GD).second) {
5354       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5355           << MangledName;
5356       Diags.Report(OtherGD.getDecl()->getLocation(),
5357                    diag::note_previous_definition);
5358     }
5359     return;
5360   }
5361 
5362   Aliases.push_back(GD);
5363 
5364   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5365   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5366   llvm::Constant *Resolver =
5367       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5368                               /*ForVTable=*/false);
5369   llvm::GlobalIFunc *GIF =
5370       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5371                                 "", Resolver, &getModule());
5372   if (Entry) {
5373     if (GIF->getResolver() == Entry) {
5374       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5375       return;
5376     }
5377     assert(Entry->isDeclaration());
5378 
5379     // If there is a declaration in the module, then we had an extern followed
5380     // by the ifunc, as in:
5381     //   extern int test();
5382     //   ...
5383     //   int test() __attribute__((ifunc("resolver")));
5384     //
5385     // Remove it and replace uses of it with the ifunc.
5386     GIF->takeName(Entry);
5387 
5388     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5389                                                           Entry->getType()));
5390     Entry->eraseFromParent();
5391   } else
5392     GIF->setName(MangledName);
5393 
5394   SetCommonAttributes(GD, GIF);
5395 }
5396 
5397 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5398                                             ArrayRef<llvm::Type*> Tys) {
5399   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5400                                          Tys);
5401 }
5402 
5403 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5404 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5405                          const StringLiteral *Literal, bool TargetIsLSB,
5406                          bool &IsUTF16, unsigned &StringLength) {
5407   StringRef String = Literal->getString();
5408   unsigned NumBytes = String.size();
5409 
5410   // Check for simple case.
5411   if (!Literal->containsNonAsciiOrNull()) {
5412     StringLength = NumBytes;
5413     return *Map.insert(std::make_pair(String, nullptr)).first;
5414   }
5415 
5416   // Otherwise, convert the UTF8 literals into a string of shorts.
5417   IsUTF16 = true;
5418 
5419   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5420   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5421   llvm::UTF16 *ToPtr = &ToBuf[0];
5422 
5423   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5424                                  ToPtr + NumBytes, llvm::strictConversion);
5425 
5426   // ConvertUTF8toUTF16 returns the length in ToPtr.
5427   StringLength = ToPtr - &ToBuf[0];
5428 
5429   // Add an explicit null.
5430   *ToPtr = 0;
5431   return *Map.insert(std::make_pair(
5432                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5433                                    (StringLength + 1) * 2),
5434                          nullptr)).first;
5435 }
5436 
5437 ConstantAddress
5438 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5439   unsigned StringLength = 0;
5440   bool isUTF16 = false;
5441   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5442       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5443                                getDataLayout().isLittleEndian(), isUTF16,
5444                                StringLength);
5445 
5446   if (auto *C = Entry.second)
5447     return ConstantAddress(
5448         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5449 
5450   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5451   llvm::Constant *Zeros[] = { Zero, Zero };
5452 
5453   const ASTContext &Context = getContext();
5454   const llvm::Triple &Triple = getTriple();
5455 
5456   const auto CFRuntime = getLangOpts().CFRuntime;
5457   const bool IsSwiftABI =
5458       static_cast<unsigned>(CFRuntime) >=
5459       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5460   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5461 
5462   // If we don't already have it, get __CFConstantStringClassReference.
5463   if (!CFConstantStringClassRef) {
5464     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5465     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5466     Ty = llvm::ArrayType::get(Ty, 0);
5467 
5468     switch (CFRuntime) {
5469     default: break;
5470     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5471     case LangOptions::CoreFoundationABI::Swift5_0:
5472       CFConstantStringClassName =
5473           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5474                               : "$s10Foundation19_NSCFConstantStringCN";
5475       Ty = IntPtrTy;
5476       break;
5477     case LangOptions::CoreFoundationABI::Swift4_2:
5478       CFConstantStringClassName =
5479           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5480                               : "$S10Foundation19_NSCFConstantStringCN";
5481       Ty = IntPtrTy;
5482       break;
5483     case LangOptions::CoreFoundationABI::Swift4_1:
5484       CFConstantStringClassName =
5485           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5486                               : "__T010Foundation19_NSCFConstantStringCN";
5487       Ty = IntPtrTy;
5488       break;
5489     }
5490 
5491     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5492 
5493     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5494       llvm::GlobalValue *GV = nullptr;
5495 
5496       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5497         IdentifierInfo &II = Context.Idents.get(GV->getName());
5498         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5499         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5500 
5501         const VarDecl *VD = nullptr;
5502         for (const auto *Result : DC->lookup(&II))
5503           if ((VD = dyn_cast<VarDecl>(Result)))
5504             break;
5505 
5506         if (Triple.isOSBinFormatELF()) {
5507           if (!VD)
5508             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5509         } else {
5510           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5511           if (!VD || !VD->hasAttr<DLLExportAttr>())
5512             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5513           else
5514             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5515         }
5516 
5517         setDSOLocal(GV);
5518       }
5519     }
5520 
5521     // Decay array -> ptr
5522     CFConstantStringClassRef =
5523         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5524                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5525   }
5526 
5527   QualType CFTy = Context.getCFConstantStringType();
5528 
5529   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5530 
5531   ConstantInitBuilder Builder(*this);
5532   auto Fields = Builder.beginStruct(STy);
5533 
5534   // Class pointer.
5535   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5536 
5537   // Flags.
5538   if (IsSwiftABI) {
5539     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5540     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5541   } else {
5542     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5543   }
5544 
5545   // String pointer.
5546   llvm::Constant *C = nullptr;
5547   if (isUTF16) {
5548     auto Arr = llvm::makeArrayRef(
5549         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5550         Entry.first().size() / 2);
5551     C = llvm::ConstantDataArray::get(VMContext, Arr);
5552   } else {
5553     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5554   }
5555 
5556   // Note: -fwritable-strings doesn't make the backing store strings of
5557   // CFStrings writable. (See <rdar://problem/10657500>)
5558   auto *GV =
5559       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5560                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5561   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5562   // Don't enforce the target's minimum global alignment, since the only use
5563   // of the string is via this class initializer.
5564   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5565                             : Context.getTypeAlignInChars(Context.CharTy);
5566   GV->setAlignment(Align.getAsAlign());
5567 
5568   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5569   // Without it LLVM can merge the string with a non unnamed_addr one during
5570   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5571   if (Triple.isOSBinFormatMachO())
5572     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5573                            : "__TEXT,__cstring,cstring_literals");
5574   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5575   // the static linker to adjust permissions to read-only later on.
5576   else if (Triple.isOSBinFormatELF())
5577     GV->setSection(".rodata");
5578 
5579   // String.
5580   llvm::Constant *Str =
5581       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5582 
5583   if (isUTF16)
5584     // Cast the UTF16 string to the correct type.
5585     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5586   Fields.add(Str);
5587 
5588   // String length.
5589   llvm::IntegerType *LengthTy =
5590       llvm::IntegerType::get(getModule().getContext(),
5591                              Context.getTargetInfo().getLongWidth());
5592   if (IsSwiftABI) {
5593     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5594         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5595       LengthTy = Int32Ty;
5596     else
5597       LengthTy = IntPtrTy;
5598   }
5599   Fields.addInt(LengthTy, StringLength);
5600 
5601   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5602   // properly aligned on 32-bit platforms.
5603   CharUnits Alignment =
5604       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5605 
5606   // The struct.
5607   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5608                                     /*isConstant=*/false,
5609                                     llvm::GlobalVariable::PrivateLinkage);
5610   GV->addAttribute("objc_arc_inert");
5611   switch (Triple.getObjectFormat()) {
5612   case llvm::Triple::UnknownObjectFormat:
5613     llvm_unreachable("unknown file format");
5614   case llvm::Triple::DXContainer:
5615   case llvm::Triple::GOFF:
5616   case llvm::Triple::SPIRV:
5617   case llvm::Triple::XCOFF:
5618     llvm_unreachable("unimplemented");
5619   case llvm::Triple::COFF:
5620   case llvm::Triple::ELF:
5621   case llvm::Triple::Wasm:
5622     GV->setSection("cfstring");
5623     break;
5624   case llvm::Triple::MachO:
5625     GV->setSection("__DATA,__cfstring");
5626     break;
5627   }
5628   Entry.second = GV;
5629 
5630   return ConstantAddress(GV, GV->getValueType(), Alignment);
5631 }
5632 
5633 bool CodeGenModule::getExpressionLocationsEnabled() const {
5634   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5635 }
5636 
5637 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5638   if (ObjCFastEnumerationStateType.isNull()) {
5639     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5640     D->startDefinition();
5641 
5642     QualType FieldTypes[] = {
5643       Context.UnsignedLongTy,
5644       Context.getPointerType(Context.getObjCIdType()),
5645       Context.getPointerType(Context.UnsignedLongTy),
5646       Context.getConstantArrayType(Context.UnsignedLongTy,
5647                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5648     };
5649 
5650     for (size_t i = 0; i < 4; ++i) {
5651       FieldDecl *Field = FieldDecl::Create(Context,
5652                                            D,
5653                                            SourceLocation(),
5654                                            SourceLocation(), nullptr,
5655                                            FieldTypes[i], /*TInfo=*/nullptr,
5656                                            /*BitWidth=*/nullptr,
5657                                            /*Mutable=*/false,
5658                                            ICIS_NoInit);
5659       Field->setAccess(AS_public);
5660       D->addDecl(Field);
5661     }
5662 
5663     D->completeDefinition();
5664     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5665   }
5666 
5667   return ObjCFastEnumerationStateType;
5668 }
5669 
5670 llvm::Constant *
5671 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5672   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5673 
5674   // Don't emit it as the address of the string, emit the string data itself
5675   // as an inline array.
5676   if (E->getCharByteWidth() == 1) {
5677     SmallString<64> Str(E->getString());
5678 
5679     // Resize the string to the right size, which is indicated by its type.
5680     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5681     Str.resize(CAT->getSize().getZExtValue());
5682     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5683   }
5684 
5685   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5686   llvm::Type *ElemTy = AType->getElementType();
5687   unsigned NumElements = AType->getNumElements();
5688 
5689   // Wide strings have either 2-byte or 4-byte elements.
5690   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5691     SmallVector<uint16_t, 32> Elements;
5692     Elements.reserve(NumElements);
5693 
5694     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5695       Elements.push_back(E->getCodeUnit(i));
5696     Elements.resize(NumElements);
5697     return llvm::ConstantDataArray::get(VMContext, Elements);
5698   }
5699 
5700   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5701   SmallVector<uint32_t, 32> Elements;
5702   Elements.reserve(NumElements);
5703 
5704   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5705     Elements.push_back(E->getCodeUnit(i));
5706   Elements.resize(NumElements);
5707   return llvm::ConstantDataArray::get(VMContext, Elements);
5708 }
5709 
5710 static llvm::GlobalVariable *
5711 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5712                       CodeGenModule &CGM, StringRef GlobalName,
5713                       CharUnits Alignment) {
5714   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5715       CGM.GetGlobalConstantAddressSpace());
5716 
5717   llvm::Module &M = CGM.getModule();
5718   // Create a global variable for this string
5719   auto *GV = new llvm::GlobalVariable(
5720       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5721       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5722   GV->setAlignment(Alignment.getAsAlign());
5723   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5724   if (GV->isWeakForLinker()) {
5725     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5726     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5727   }
5728   CGM.setDSOLocal(GV);
5729 
5730   return GV;
5731 }
5732 
5733 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5734 /// constant array for the given string literal.
5735 ConstantAddress
5736 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5737                                                   StringRef Name) {
5738   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5739 
5740   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5741   llvm::GlobalVariable **Entry = nullptr;
5742   if (!LangOpts.WritableStrings) {
5743     Entry = &ConstantStringMap[C];
5744     if (auto GV = *Entry) {
5745       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5746         GV->setAlignment(Alignment.getAsAlign());
5747       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5748                              GV->getValueType(), Alignment);
5749     }
5750   }
5751 
5752   SmallString<256> MangledNameBuffer;
5753   StringRef GlobalVariableName;
5754   llvm::GlobalValue::LinkageTypes LT;
5755 
5756   // Mangle the string literal if that's how the ABI merges duplicate strings.
5757   // Don't do it if they are writable, since we don't want writes in one TU to
5758   // affect strings in another.
5759   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5760       !LangOpts.WritableStrings) {
5761     llvm::raw_svector_ostream Out(MangledNameBuffer);
5762     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5763     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5764     GlobalVariableName = MangledNameBuffer;
5765   } else {
5766     LT = llvm::GlobalValue::PrivateLinkage;
5767     GlobalVariableName = Name;
5768   }
5769 
5770   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5771 
5772   CGDebugInfo *DI = getModuleDebugInfo();
5773   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5774     DI->AddStringLiteralDebugInfo(GV, S);
5775 
5776   if (Entry)
5777     *Entry = GV;
5778 
5779   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5780 
5781   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5782                          GV->getValueType(), Alignment);
5783 }
5784 
5785 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5786 /// array for the given ObjCEncodeExpr node.
5787 ConstantAddress
5788 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5789   std::string Str;
5790   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5791 
5792   return GetAddrOfConstantCString(Str);
5793 }
5794 
5795 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5796 /// the literal and a terminating '\0' character.
5797 /// The result has pointer to array type.
5798 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5799     const std::string &Str, const char *GlobalName) {
5800   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5801   CharUnits Alignment =
5802     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5803 
5804   llvm::Constant *C =
5805       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5806 
5807   // Don't share any string literals if strings aren't constant.
5808   llvm::GlobalVariable **Entry = nullptr;
5809   if (!LangOpts.WritableStrings) {
5810     Entry = &ConstantStringMap[C];
5811     if (auto GV = *Entry) {
5812       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5813         GV->setAlignment(Alignment.getAsAlign());
5814       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5815                              GV->getValueType(), Alignment);
5816     }
5817   }
5818 
5819   // Get the default prefix if a name wasn't specified.
5820   if (!GlobalName)
5821     GlobalName = ".str";
5822   // Create a global variable for this.
5823   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5824                                   GlobalName, Alignment);
5825   if (Entry)
5826     *Entry = GV;
5827 
5828   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5829                          GV->getValueType(), Alignment);
5830 }
5831 
5832 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5833     const MaterializeTemporaryExpr *E, const Expr *Init) {
5834   assert((E->getStorageDuration() == SD_Static ||
5835           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5836   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5837 
5838   // If we're not materializing a subobject of the temporary, keep the
5839   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5840   QualType MaterializedType = Init->getType();
5841   if (Init == E->getSubExpr())
5842     MaterializedType = E->getType();
5843 
5844   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5845 
5846   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5847   if (!InsertResult.second) {
5848     // We've seen this before: either we already created it or we're in the
5849     // process of doing so.
5850     if (!InsertResult.first->second) {
5851       // We recursively re-entered this function, probably during emission of
5852       // the initializer. Create a placeholder. We'll clean this up in the
5853       // outer call, at the end of this function.
5854       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5855       InsertResult.first->second = new llvm::GlobalVariable(
5856           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5857           nullptr);
5858     }
5859     return ConstantAddress(InsertResult.first->second,
5860                            llvm::cast<llvm::GlobalVariable>(
5861                                InsertResult.first->second->stripPointerCasts())
5862                                ->getValueType(),
5863                            Align);
5864   }
5865 
5866   // FIXME: If an externally-visible declaration extends multiple temporaries,
5867   // we need to give each temporary the same name in every translation unit (and
5868   // we also need to make the temporaries externally-visible).
5869   SmallString<256> Name;
5870   llvm::raw_svector_ostream Out(Name);
5871   getCXXABI().getMangleContext().mangleReferenceTemporary(
5872       VD, E->getManglingNumber(), Out);
5873 
5874   APValue *Value = nullptr;
5875   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5876     // If the initializer of the extending declaration is a constant
5877     // initializer, we should have a cached constant initializer for this
5878     // temporary. Note that this might have a different value from the value
5879     // computed by evaluating the initializer if the surrounding constant
5880     // expression modifies the temporary.
5881     Value = E->getOrCreateValue(false);
5882   }
5883 
5884   // Try evaluating it now, it might have a constant initializer.
5885   Expr::EvalResult EvalResult;
5886   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5887       !EvalResult.hasSideEffects())
5888     Value = &EvalResult.Val;
5889 
5890   LangAS AddrSpace =
5891       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5892 
5893   Optional<ConstantEmitter> emitter;
5894   llvm::Constant *InitialValue = nullptr;
5895   bool Constant = false;
5896   llvm::Type *Type;
5897   if (Value) {
5898     // The temporary has a constant initializer, use it.
5899     emitter.emplace(*this);
5900     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5901                                                MaterializedType);
5902     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5903     Type = InitialValue->getType();
5904   } else {
5905     // No initializer, the initialization will be provided when we
5906     // initialize the declaration which performed lifetime extension.
5907     Type = getTypes().ConvertTypeForMem(MaterializedType);
5908   }
5909 
5910   // Create a global variable for this lifetime-extended temporary.
5911   llvm::GlobalValue::LinkageTypes Linkage =
5912       getLLVMLinkageVarDefinition(VD, Constant);
5913   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5914     const VarDecl *InitVD;
5915     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5916         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5917       // Temporaries defined inside a class get linkonce_odr linkage because the
5918       // class can be defined in multiple translation units.
5919       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5920     } else {
5921       // There is no need for this temporary to have external linkage if the
5922       // VarDecl has external linkage.
5923       Linkage = llvm::GlobalVariable::InternalLinkage;
5924     }
5925   }
5926   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5927   auto *GV = new llvm::GlobalVariable(
5928       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5929       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5930   if (emitter) emitter->finalize(GV);
5931   setGVProperties(GV, VD);
5932   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5933     // The reference temporary should never be dllexport.
5934     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5935   GV->setAlignment(Align.getAsAlign());
5936   if (supportsCOMDAT() && GV->isWeakForLinker())
5937     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5938   if (VD->getTLSKind())
5939     setTLSMode(GV, *VD);
5940   llvm::Constant *CV = GV;
5941   if (AddrSpace != LangAS::Default)
5942     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5943         *this, GV, AddrSpace, LangAS::Default,
5944         Type->getPointerTo(
5945             getContext().getTargetAddressSpace(LangAS::Default)));
5946 
5947   // Update the map with the new temporary. If we created a placeholder above,
5948   // replace it with the new global now.
5949   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5950   if (Entry) {
5951     Entry->replaceAllUsesWith(
5952         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5953     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5954   }
5955   Entry = CV;
5956 
5957   return ConstantAddress(CV, Type, Align);
5958 }
5959 
5960 /// EmitObjCPropertyImplementations - Emit information for synthesized
5961 /// properties for an implementation.
5962 void CodeGenModule::EmitObjCPropertyImplementations(const
5963                                                     ObjCImplementationDecl *D) {
5964   for (const auto *PID : D->property_impls()) {
5965     // Dynamic is just for type-checking.
5966     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5967       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5968 
5969       // Determine which methods need to be implemented, some may have
5970       // been overridden. Note that ::isPropertyAccessor is not the method
5971       // we want, that just indicates if the decl came from a
5972       // property. What we want to know is if the method is defined in
5973       // this implementation.
5974       auto *Getter = PID->getGetterMethodDecl();
5975       if (!Getter || Getter->isSynthesizedAccessorStub())
5976         CodeGenFunction(*this).GenerateObjCGetter(
5977             const_cast<ObjCImplementationDecl *>(D), PID);
5978       auto *Setter = PID->getSetterMethodDecl();
5979       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5980         CodeGenFunction(*this).GenerateObjCSetter(
5981                                  const_cast<ObjCImplementationDecl *>(D), PID);
5982     }
5983   }
5984 }
5985 
5986 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5987   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5988   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5989        ivar; ivar = ivar->getNextIvar())
5990     if (ivar->getType().isDestructedType())
5991       return true;
5992 
5993   return false;
5994 }
5995 
5996 static bool AllTrivialInitializers(CodeGenModule &CGM,
5997                                    ObjCImplementationDecl *D) {
5998   CodeGenFunction CGF(CGM);
5999   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6000        E = D->init_end(); B != E; ++B) {
6001     CXXCtorInitializer *CtorInitExp = *B;
6002     Expr *Init = CtorInitExp->getInit();
6003     if (!CGF.isTrivialInitializer(Init))
6004       return false;
6005   }
6006   return true;
6007 }
6008 
6009 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6010 /// for an implementation.
6011 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6012   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6013   if (needsDestructMethod(D)) {
6014     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6015     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6016     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6017         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6018         getContext().VoidTy, nullptr, D,
6019         /*isInstance=*/true, /*isVariadic=*/false,
6020         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6021         /*isImplicitlyDeclared=*/true,
6022         /*isDefined=*/false, ObjCMethodDecl::Required);
6023     D->addInstanceMethod(DTORMethod);
6024     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6025     D->setHasDestructors(true);
6026   }
6027 
6028   // If the implementation doesn't have any ivar initializers, we don't need
6029   // a .cxx_construct.
6030   if (D->getNumIvarInitializers() == 0 ||
6031       AllTrivialInitializers(*this, D))
6032     return;
6033 
6034   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6035   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6036   // The constructor returns 'self'.
6037   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6038       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6039       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6040       /*isVariadic=*/false,
6041       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6042       /*isImplicitlyDeclared=*/true,
6043       /*isDefined=*/false, ObjCMethodDecl::Required);
6044   D->addInstanceMethod(CTORMethod);
6045   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6046   D->setHasNonZeroConstructors(true);
6047 }
6048 
6049 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6050 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6051   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6052       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6053     ErrorUnsupported(LSD, "linkage spec");
6054     return;
6055   }
6056 
6057   EmitDeclContext(LSD);
6058 }
6059 
6060 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6061   for (auto *I : DC->decls()) {
6062     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6063     // are themselves considered "top-level", so EmitTopLevelDecl on an
6064     // ObjCImplDecl does not recursively visit them. We need to do that in
6065     // case they're nested inside another construct (LinkageSpecDecl /
6066     // ExportDecl) that does stop them from being considered "top-level".
6067     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6068       for (auto *M : OID->methods())
6069         EmitTopLevelDecl(M);
6070     }
6071 
6072     EmitTopLevelDecl(I);
6073   }
6074 }
6075 
6076 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6077 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6078   // Ignore dependent declarations.
6079   if (D->isTemplated())
6080     return;
6081 
6082   // Consteval function shouldn't be emitted.
6083   if (auto *FD = dyn_cast<FunctionDecl>(D))
6084     if (FD->isConsteval())
6085       return;
6086 
6087   switch (D->getKind()) {
6088   case Decl::CXXConversion:
6089   case Decl::CXXMethod:
6090   case Decl::Function:
6091     EmitGlobal(cast<FunctionDecl>(D));
6092     // Always provide some coverage mapping
6093     // even for the functions that aren't emitted.
6094     AddDeferredUnusedCoverageMapping(D);
6095     break;
6096 
6097   case Decl::CXXDeductionGuide:
6098     // Function-like, but does not result in code emission.
6099     break;
6100 
6101   case Decl::Var:
6102   case Decl::Decomposition:
6103   case Decl::VarTemplateSpecialization:
6104     EmitGlobal(cast<VarDecl>(D));
6105     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6106       for (auto *B : DD->bindings())
6107         if (auto *HD = B->getHoldingVar())
6108           EmitGlobal(HD);
6109     break;
6110 
6111   // Indirect fields from global anonymous structs and unions can be
6112   // ignored; only the actual variable requires IR gen support.
6113   case Decl::IndirectField:
6114     break;
6115 
6116   // C++ Decls
6117   case Decl::Namespace:
6118     EmitDeclContext(cast<NamespaceDecl>(D));
6119     break;
6120   case Decl::ClassTemplateSpecialization: {
6121     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6122     if (CGDebugInfo *DI = getModuleDebugInfo())
6123       if (Spec->getSpecializationKind() ==
6124               TSK_ExplicitInstantiationDefinition &&
6125           Spec->hasDefinition())
6126         DI->completeTemplateDefinition(*Spec);
6127   } LLVM_FALLTHROUGH;
6128   case Decl::CXXRecord: {
6129     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6130     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6131       if (CRD->hasDefinition())
6132         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6133       if (auto *ES = D->getASTContext().getExternalSource())
6134         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6135           DI->completeUnusedClass(*CRD);
6136     }
6137     // Emit any static data members, they may be definitions.
6138     for (auto *I : CRD->decls())
6139       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6140         EmitTopLevelDecl(I);
6141     break;
6142   }
6143     // No code generation needed.
6144   case Decl::UsingShadow:
6145   case Decl::ClassTemplate:
6146   case Decl::VarTemplate:
6147   case Decl::Concept:
6148   case Decl::VarTemplatePartialSpecialization:
6149   case Decl::FunctionTemplate:
6150   case Decl::TypeAliasTemplate:
6151   case Decl::Block:
6152   case Decl::Empty:
6153   case Decl::Binding:
6154     break;
6155   case Decl::Using:          // using X; [C++]
6156     if (CGDebugInfo *DI = getModuleDebugInfo())
6157         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6158     break;
6159   case Decl::UsingEnum: // using enum X; [C++]
6160     if (CGDebugInfo *DI = getModuleDebugInfo())
6161       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6162     break;
6163   case Decl::NamespaceAlias:
6164     if (CGDebugInfo *DI = getModuleDebugInfo())
6165         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6166     break;
6167   case Decl::UsingDirective: // using namespace X; [C++]
6168     if (CGDebugInfo *DI = getModuleDebugInfo())
6169       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6170     break;
6171   case Decl::CXXConstructor:
6172     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6173     break;
6174   case Decl::CXXDestructor:
6175     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6176     break;
6177 
6178   case Decl::StaticAssert:
6179     // Nothing to do.
6180     break;
6181 
6182   // Objective-C Decls
6183 
6184   // Forward declarations, no (immediate) code generation.
6185   case Decl::ObjCInterface:
6186   case Decl::ObjCCategory:
6187     break;
6188 
6189   case Decl::ObjCProtocol: {
6190     auto *Proto = cast<ObjCProtocolDecl>(D);
6191     if (Proto->isThisDeclarationADefinition())
6192       ObjCRuntime->GenerateProtocol(Proto);
6193     break;
6194   }
6195 
6196   case Decl::ObjCCategoryImpl:
6197     // Categories have properties but don't support synthesize so we
6198     // can ignore them here.
6199     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6200     break;
6201 
6202   case Decl::ObjCImplementation: {
6203     auto *OMD = cast<ObjCImplementationDecl>(D);
6204     EmitObjCPropertyImplementations(OMD);
6205     EmitObjCIvarInitializations(OMD);
6206     ObjCRuntime->GenerateClass(OMD);
6207     // Emit global variable debug information.
6208     if (CGDebugInfo *DI = getModuleDebugInfo())
6209       if (getCodeGenOpts().hasReducedDebugInfo())
6210         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6211             OMD->getClassInterface()), OMD->getLocation());
6212     break;
6213   }
6214   case Decl::ObjCMethod: {
6215     auto *OMD = cast<ObjCMethodDecl>(D);
6216     // If this is not a prototype, emit the body.
6217     if (OMD->getBody())
6218       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6219     break;
6220   }
6221   case Decl::ObjCCompatibleAlias:
6222     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6223     break;
6224 
6225   case Decl::PragmaComment: {
6226     const auto *PCD = cast<PragmaCommentDecl>(D);
6227     switch (PCD->getCommentKind()) {
6228     case PCK_Unknown:
6229       llvm_unreachable("unexpected pragma comment kind");
6230     case PCK_Linker:
6231       AppendLinkerOptions(PCD->getArg());
6232       break;
6233     case PCK_Lib:
6234         AddDependentLib(PCD->getArg());
6235       break;
6236     case PCK_Compiler:
6237     case PCK_ExeStr:
6238     case PCK_User:
6239       break; // We ignore all of these.
6240     }
6241     break;
6242   }
6243 
6244   case Decl::PragmaDetectMismatch: {
6245     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6246     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6247     break;
6248   }
6249 
6250   case Decl::LinkageSpec:
6251     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6252     break;
6253 
6254   case Decl::FileScopeAsm: {
6255     // File-scope asm is ignored during device-side CUDA compilation.
6256     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6257       break;
6258     // File-scope asm is ignored during device-side OpenMP compilation.
6259     if (LangOpts.OpenMPIsDevice)
6260       break;
6261     // File-scope asm is ignored during device-side SYCL compilation.
6262     if (LangOpts.SYCLIsDevice)
6263       break;
6264     auto *AD = cast<FileScopeAsmDecl>(D);
6265     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6266     break;
6267   }
6268 
6269   case Decl::Import: {
6270     auto *Import = cast<ImportDecl>(D);
6271 
6272     // If we've already imported this module, we're done.
6273     if (!ImportedModules.insert(Import->getImportedModule()))
6274       break;
6275 
6276     // Emit debug information for direct imports.
6277     if (!Import->getImportedOwningModule()) {
6278       if (CGDebugInfo *DI = getModuleDebugInfo())
6279         DI->EmitImportDecl(*Import);
6280     }
6281 
6282     // For C++ standard modules we are done - we will call the module
6283     // initializer for imported modules, and that will likewise call those for
6284     // any imports it has.
6285     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6286         !Import->getImportedOwningModule()->isModuleMapModule())
6287       break;
6288 
6289     // For clang C++ module map modules the initializers for sub-modules are
6290     // emitted here.
6291 
6292     // Find all of the submodules and emit the module initializers.
6293     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6294     SmallVector<clang::Module *, 16> Stack;
6295     Visited.insert(Import->getImportedModule());
6296     Stack.push_back(Import->getImportedModule());
6297 
6298     while (!Stack.empty()) {
6299       clang::Module *Mod = Stack.pop_back_val();
6300       if (!EmittedModuleInitializers.insert(Mod).second)
6301         continue;
6302 
6303       for (auto *D : Context.getModuleInitializers(Mod))
6304         EmitTopLevelDecl(D);
6305 
6306       // Visit the submodules of this module.
6307       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6308                                              SubEnd = Mod->submodule_end();
6309            Sub != SubEnd; ++Sub) {
6310         // Skip explicit children; they need to be explicitly imported to emit
6311         // the initializers.
6312         if ((*Sub)->IsExplicit)
6313           continue;
6314 
6315         if (Visited.insert(*Sub).second)
6316           Stack.push_back(*Sub);
6317       }
6318     }
6319     break;
6320   }
6321 
6322   case Decl::Export:
6323     EmitDeclContext(cast<ExportDecl>(D));
6324     break;
6325 
6326   case Decl::OMPThreadPrivate:
6327     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6328     break;
6329 
6330   case Decl::OMPAllocate:
6331     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6332     break;
6333 
6334   case Decl::OMPDeclareReduction:
6335     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6336     break;
6337 
6338   case Decl::OMPDeclareMapper:
6339     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6340     break;
6341 
6342   case Decl::OMPRequires:
6343     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6344     break;
6345 
6346   case Decl::Typedef:
6347   case Decl::TypeAlias: // using foo = bar; [C++11]
6348     if (CGDebugInfo *DI = getModuleDebugInfo())
6349       DI->EmitAndRetainType(
6350           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6351     break;
6352 
6353   case Decl::Record:
6354     if (CGDebugInfo *DI = getModuleDebugInfo())
6355       if (cast<RecordDecl>(D)->getDefinition())
6356         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6357     break;
6358 
6359   case Decl::Enum:
6360     if (CGDebugInfo *DI = getModuleDebugInfo())
6361       if (cast<EnumDecl>(D)->getDefinition())
6362         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6363     break;
6364 
6365   default:
6366     // Make sure we handled everything we should, every other kind is a
6367     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6368     // function. Need to recode Decl::Kind to do that easily.
6369     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6370     break;
6371   }
6372 }
6373 
6374 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6375   // Do we need to generate coverage mapping?
6376   if (!CodeGenOpts.CoverageMapping)
6377     return;
6378   switch (D->getKind()) {
6379   case Decl::CXXConversion:
6380   case Decl::CXXMethod:
6381   case Decl::Function:
6382   case Decl::ObjCMethod:
6383   case Decl::CXXConstructor:
6384   case Decl::CXXDestructor: {
6385     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6386       break;
6387     SourceManager &SM = getContext().getSourceManager();
6388     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6389       break;
6390     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6391     if (I == DeferredEmptyCoverageMappingDecls.end())
6392       DeferredEmptyCoverageMappingDecls[D] = true;
6393     break;
6394   }
6395   default:
6396     break;
6397   };
6398 }
6399 
6400 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6401   // Do we need to generate coverage mapping?
6402   if (!CodeGenOpts.CoverageMapping)
6403     return;
6404   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6405     if (Fn->isTemplateInstantiation())
6406       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6407   }
6408   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6409   if (I == DeferredEmptyCoverageMappingDecls.end())
6410     DeferredEmptyCoverageMappingDecls[D] = false;
6411   else
6412     I->second = false;
6413 }
6414 
6415 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6416   // We call takeVector() here to avoid use-after-free.
6417   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6418   // we deserialize function bodies to emit coverage info for them, and that
6419   // deserializes more declarations. How should we handle that case?
6420   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6421     if (!Entry.second)
6422       continue;
6423     const Decl *D = Entry.first;
6424     switch (D->getKind()) {
6425     case Decl::CXXConversion:
6426     case Decl::CXXMethod:
6427     case Decl::Function:
6428     case Decl::ObjCMethod: {
6429       CodeGenPGO PGO(*this);
6430       GlobalDecl GD(cast<FunctionDecl>(D));
6431       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6432                                   getFunctionLinkage(GD));
6433       break;
6434     }
6435     case Decl::CXXConstructor: {
6436       CodeGenPGO PGO(*this);
6437       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6438       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6439                                   getFunctionLinkage(GD));
6440       break;
6441     }
6442     case Decl::CXXDestructor: {
6443       CodeGenPGO PGO(*this);
6444       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6445       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6446                                   getFunctionLinkage(GD));
6447       break;
6448     }
6449     default:
6450       break;
6451     };
6452   }
6453 }
6454 
6455 void CodeGenModule::EmitMainVoidAlias() {
6456   // In order to transition away from "__original_main" gracefully, emit an
6457   // alias for "main" in the no-argument case so that libc can detect when
6458   // new-style no-argument main is in used.
6459   if (llvm::Function *F = getModule().getFunction("main")) {
6460     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6461         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6462       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6463       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6464     }
6465   }
6466 }
6467 
6468 /// Turns the given pointer into a constant.
6469 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6470                                           const void *Ptr) {
6471   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6472   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6473   return llvm::ConstantInt::get(i64, PtrInt);
6474 }
6475 
6476 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6477                                    llvm::NamedMDNode *&GlobalMetadata,
6478                                    GlobalDecl D,
6479                                    llvm::GlobalValue *Addr) {
6480   if (!GlobalMetadata)
6481     GlobalMetadata =
6482       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6483 
6484   // TODO: should we report variant information for ctors/dtors?
6485   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6486                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6487                                CGM.getLLVMContext(), D.getDecl()))};
6488   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6489 }
6490 
6491 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6492                                                  llvm::GlobalValue *CppFunc) {
6493   // Store the list of ifuncs we need to replace uses in.
6494   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6495   // List of ConstantExprs that we should be able to delete when we're done
6496   // here.
6497   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6498 
6499   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6500   if (Elem == CppFunc)
6501     return false;
6502 
6503   // First make sure that all users of this are ifuncs (or ifuncs via a
6504   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6505   // later.
6506   for (llvm::User *User : Elem->users()) {
6507     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6508     // ifunc directly. In any other case, just give up, as we don't know what we
6509     // could break by changing those.
6510     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6511       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6512         return false;
6513 
6514       for (llvm::User *CEUser : ConstExpr->users()) {
6515         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6516           IFuncs.push_back(IFunc);
6517         } else {
6518           return false;
6519         }
6520       }
6521       CEs.push_back(ConstExpr);
6522     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6523       IFuncs.push_back(IFunc);
6524     } else {
6525       // This user is one we don't know how to handle, so fail redirection. This
6526       // will result in an ifunc retaining a resolver name that will ultimately
6527       // fail to be resolved to a defined function.
6528       return false;
6529     }
6530   }
6531 
6532   // Now we know this is a valid case where we can do this alias replacement, we
6533   // need to remove all of the references to Elem (and the bitcasts!) so we can
6534   // delete it.
6535   for (llvm::GlobalIFunc *IFunc : IFuncs)
6536     IFunc->setResolver(nullptr);
6537   for (llvm::ConstantExpr *ConstExpr : CEs)
6538     ConstExpr->destroyConstant();
6539 
6540   // We should now be out of uses for the 'old' version of this function, so we
6541   // can erase it as well.
6542   Elem->eraseFromParent();
6543 
6544   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6545     // The type of the resolver is always just a function-type that returns the
6546     // type of the IFunc, so create that here. If the type of the actual
6547     // resolver doesn't match, it just gets bitcast to the right thing.
6548     auto *ResolverTy =
6549         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6550     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6551         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6552     IFunc->setResolver(Resolver);
6553   }
6554   return true;
6555 }
6556 
6557 /// For each function which is declared within an extern "C" region and marked
6558 /// as 'used', but has internal linkage, create an alias from the unmangled
6559 /// name to the mangled name if possible. People expect to be able to refer
6560 /// to such functions with an unmangled name from inline assembly within the
6561 /// same translation unit.
6562 void CodeGenModule::EmitStaticExternCAliases() {
6563   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6564     return;
6565   for (auto &I : StaticExternCValues) {
6566     IdentifierInfo *Name = I.first;
6567     llvm::GlobalValue *Val = I.second;
6568 
6569     // If Val is null, that implies there were multiple declarations that each
6570     // had a claim to the unmangled name. In this case, generation of the alias
6571     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6572     if (!Val)
6573       break;
6574 
6575     llvm::GlobalValue *ExistingElem =
6576         getModule().getNamedValue(Name->getName());
6577 
6578     // If there is either not something already by this name, or we were able to
6579     // replace all uses from IFuncs, create the alias.
6580     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6581       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6582   }
6583 }
6584 
6585 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6586                                              GlobalDecl &Result) const {
6587   auto Res = Manglings.find(MangledName);
6588   if (Res == Manglings.end())
6589     return false;
6590   Result = Res->getValue();
6591   return true;
6592 }
6593 
6594 /// Emits metadata nodes associating all the global values in the
6595 /// current module with the Decls they came from.  This is useful for
6596 /// projects using IR gen as a subroutine.
6597 ///
6598 /// Since there's currently no way to associate an MDNode directly
6599 /// with an llvm::GlobalValue, we create a global named metadata
6600 /// with the name 'clang.global.decl.ptrs'.
6601 void CodeGenModule::EmitDeclMetadata() {
6602   llvm::NamedMDNode *GlobalMetadata = nullptr;
6603 
6604   for (auto &I : MangledDeclNames) {
6605     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6606     // Some mangled names don't necessarily have an associated GlobalValue
6607     // in this module, e.g. if we mangled it for DebugInfo.
6608     if (Addr)
6609       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6610   }
6611 }
6612 
6613 /// Emits metadata nodes for all the local variables in the current
6614 /// function.
6615 void CodeGenFunction::EmitDeclMetadata() {
6616   if (LocalDeclMap.empty()) return;
6617 
6618   llvm::LLVMContext &Context = getLLVMContext();
6619 
6620   // Find the unique metadata ID for this name.
6621   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6622 
6623   llvm::NamedMDNode *GlobalMetadata = nullptr;
6624 
6625   for (auto &I : LocalDeclMap) {
6626     const Decl *D = I.first;
6627     llvm::Value *Addr = I.second.getPointer();
6628     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6629       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6630       Alloca->setMetadata(
6631           DeclPtrKind, llvm::MDNode::get(
6632                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6633     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6634       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6635       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6636     }
6637   }
6638 }
6639 
6640 void CodeGenModule::EmitVersionIdentMetadata() {
6641   llvm::NamedMDNode *IdentMetadata =
6642     TheModule.getOrInsertNamedMetadata("llvm.ident");
6643   std::string Version = getClangFullVersion();
6644   llvm::LLVMContext &Ctx = TheModule.getContext();
6645 
6646   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6647   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6648 }
6649 
6650 void CodeGenModule::EmitCommandLineMetadata() {
6651   llvm::NamedMDNode *CommandLineMetadata =
6652     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6653   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6654   llvm::LLVMContext &Ctx = TheModule.getContext();
6655 
6656   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6657   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6658 }
6659 
6660 void CodeGenModule::EmitCoverageFile() {
6661   if (getCodeGenOpts().CoverageDataFile.empty() &&
6662       getCodeGenOpts().CoverageNotesFile.empty())
6663     return;
6664 
6665   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6666   if (!CUNode)
6667     return;
6668 
6669   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6670   llvm::LLVMContext &Ctx = TheModule.getContext();
6671   auto *CoverageDataFile =
6672       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6673   auto *CoverageNotesFile =
6674       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6675   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6676     llvm::MDNode *CU = CUNode->getOperand(i);
6677     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6678     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6679   }
6680 }
6681 
6682 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6683                                                        bool ForEH) {
6684   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6685   // FIXME: should we even be calling this method if RTTI is disabled
6686   // and it's not for EH?
6687   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6688       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6689        getTriple().isNVPTX()))
6690     return llvm::Constant::getNullValue(Int8PtrTy);
6691 
6692   if (ForEH && Ty->isObjCObjectPointerType() &&
6693       LangOpts.ObjCRuntime.isGNUFamily())
6694     return ObjCRuntime->GetEHType(Ty);
6695 
6696   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6697 }
6698 
6699 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6700   // Do not emit threadprivates in simd-only mode.
6701   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6702     return;
6703   for (auto RefExpr : D->varlists()) {
6704     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6705     bool PerformInit =
6706         VD->getAnyInitializer() &&
6707         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6708                                                         /*ForRef=*/false);
6709 
6710     Address Addr(GetAddrOfGlobalVar(VD),
6711                  getTypes().ConvertTypeForMem(VD->getType()),
6712                  getContext().getDeclAlign(VD));
6713     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6714             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6715       CXXGlobalInits.push_back(InitFunction);
6716   }
6717 }
6718 
6719 llvm::Metadata *
6720 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6721                                             StringRef Suffix) {
6722   if (auto *FnType = T->getAs<FunctionProtoType>())
6723     T = getContext().getFunctionType(
6724         FnType->getReturnType(), FnType->getParamTypes(),
6725         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6726 
6727   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6728   if (InternalId)
6729     return InternalId;
6730 
6731   if (isExternallyVisible(T->getLinkage())) {
6732     std::string OutName;
6733     llvm::raw_string_ostream Out(OutName);
6734     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6735     Out << Suffix;
6736 
6737     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6738   } else {
6739     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6740                                            llvm::ArrayRef<llvm::Metadata *>());
6741   }
6742 
6743   return InternalId;
6744 }
6745 
6746 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6747   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6748 }
6749 
6750 llvm::Metadata *
6751 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6752   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6753 }
6754 
6755 // Generalize pointer types to a void pointer with the qualifiers of the
6756 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6757 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6758 // 'void *'.
6759 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6760   if (!Ty->isPointerType())
6761     return Ty;
6762 
6763   return Ctx.getPointerType(
6764       QualType(Ctx.VoidTy).withCVRQualifiers(
6765           Ty->getPointeeType().getCVRQualifiers()));
6766 }
6767 
6768 // Apply type generalization to a FunctionType's return and argument types
6769 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6770   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6771     SmallVector<QualType, 8> GeneralizedParams;
6772     for (auto &Param : FnType->param_types())
6773       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6774 
6775     return Ctx.getFunctionType(
6776         GeneralizeType(Ctx, FnType->getReturnType()),
6777         GeneralizedParams, FnType->getExtProtoInfo());
6778   }
6779 
6780   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6781     return Ctx.getFunctionNoProtoType(
6782         GeneralizeType(Ctx, FnType->getReturnType()));
6783 
6784   llvm_unreachable("Encountered unknown FunctionType");
6785 }
6786 
6787 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6788   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6789                                       GeneralizedMetadataIdMap, ".generalized");
6790 }
6791 
6792 /// Returns whether this module needs the "all-vtables" type identifier.
6793 bool CodeGenModule::NeedAllVtablesTypeId() const {
6794   // Returns true if at least one of vtable-based CFI checkers is enabled and
6795   // is not in the trapping mode.
6796   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6797            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6798           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6799            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6800           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6801            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6802           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6803            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6804 }
6805 
6806 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6807                                           CharUnits Offset,
6808                                           const CXXRecordDecl *RD) {
6809   llvm::Metadata *MD =
6810       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6811   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6812 
6813   if (CodeGenOpts.SanitizeCfiCrossDso)
6814     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6815       VTable->addTypeMetadata(Offset.getQuantity(),
6816                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6817 
6818   if (NeedAllVtablesTypeId()) {
6819     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6820     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6821   }
6822 }
6823 
6824 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6825   if (!SanStats)
6826     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6827 
6828   return *SanStats;
6829 }
6830 
6831 llvm::Value *
6832 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6833                                                   CodeGenFunction &CGF) {
6834   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6835   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6836   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6837   auto *Call = CGF.EmitRuntimeCall(
6838       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6839   return Call;
6840 }
6841 
6842 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6843     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6844   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6845                                  /* forPointeeType= */ true);
6846 }
6847 
6848 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6849                                                  LValueBaseInfo *BaseInfo,
6850                                                  TBAAAccessInfo *TBAAInfo,
6851                                                  bool forPointeeType) {
6852   if (TBAAInfo)
6853     *TBAAInfo = getTBAAAccessInfo(T);
6854 
6855   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6856   // that doesn't return the information we need to compute BaseInfo.
6857 
6858   // Honor alignment typedef attributes even on incomplete types.
6859   // We also honor them straight for C++ class types, even as pointees;
6860   // there's an expressivity gap here.
6861   if (auto TT = T->getAs<TypedefType>()) {
6862     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6863       if (BaseInfo)
6864         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6865       return getContext().toCharUnitsFromBits(Align);
6866     }
6867   }
6868 
6869   bool AlignForArray = T->isArrayType();
6870 
6871   // Analyze the base element type, so we don't get confused by incomplete
6872   // array types.
6873   T = getContext().getBaseElementType(T);
6874 
6875   if (T->isIncompleteType()) {
6876     // We could try to replicate the logic from
6877     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6878     // type is incomplete, so it's impossible to test. We could try to reuse
6879     // getTypeAlignIfKnown, but that doesn't return the information we need
6880     // to set BaseInfo.  So just ignore the possibility that the alignment is
6881     // greater than one.
6882     if (BaseInfo)
6883       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6884     return CharUnits::One();
6885   }
6886 
6887   if (BaseInfo)
6888     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6889 
6890   CharUnits Alignment;
6891   const CXXRecordDecl *RD;
6892   if (T.getQualifiers().hasUnaligned()) {
6893     Alignment = CharUnits::One();
6894   } else if (forPointeeType && !AlignForArray &&
6895              (RD = T->getAsCXXRecordDecl())) {
6896     // For C++ class pointees, we don't know whether we're pointing at a
6897     // base or a complete object, so we generally need to use the
6898     // non-virtual alignment.
6899     Alignment = getClassPointerAlignment(RD);
6900   } else {
6901     Alignment = getContext().getTypeAlignInChars(T);
6902   }
6903 
6904   // Cap to the global maximum type alignment unless the alignment
6905   // was somehow explicit on the type.
6906   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6907     if (Alignment.getQuantity() > MaxAlign &&
6908         !getContext().isAlignmentRequired(T))
6909       Alignment = CharUnits::fromQuantity(MaxAlign);
6910   }
6911   return Alignment;
6912 }
6913 
6914 bool CodeGenModule::stopAutoInit() {
6915   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6916   if (StopAfter) {
6917     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6918     // used
6919     if (NumAutoVarInit >= StopAfter) {
6920       return true;
6921     }
6922     if (!NumAutoVarInit) {
6923       unsigned DiagID = getDiags().getCustomDiagID(
6924           DiagnosticsEngine::Warning,
6925           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6926           "number of times ftrivial-auto-var-init=%1 gets applied.");
6927       getDiags().Report(DiagID)
6928           << StopAfter
6929           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6930                       LangOptions::TrivialAutoVarInitKind::Zero
6931                   ? "zero"
6932                   : "pattern");
6933     }
6934     ++NumAutoVarInit;
6935   }
6936   return false;
6937 }
6938 
6939 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6940                                                     const Decl *D) const {
6941   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6942   // postfix beginning with '.' since the symbol name can be demangled.
6943   if (LangOpts.HIP)
6944     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6945   else
6946     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6947 
6948   // If the CUID is not specified we try to generate a unique postfix.
6949   if (getLangOpts().CUID.empty()) {
6950     SourceManager &SM = getContext().getSourceManager();
6951     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6952     assert(PLoc.isValid() && "Source location is expected to be valid.");
6953 
6954     // Get the hash of the user defined macros.
6955     llvm::MD5 Hash;
6956     llvm::MD5::MD5Result Result;
6957     for (const auto &Arg : PreprocessorOpts.Macros)
6958       Hash.update(Arg.first);
6959     Hash.final(Result);
6960 
6961     // Get the UniqueID for the file containing the decl.
6962     llvm::sys::fs::UniqueID ID;
6963     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6964       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6965       assert(PLoc.isValid() && "Source location is expected to be valid.");
6966       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6967         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6968             << PLoc.getFilename() << EC.message();
6969     }
6970     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6971        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6972   } else {
6973     OS << getContext().getCUIDHash();
6974   }
6975 }
6976 
6977 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
6978   assert(DeferredDeclsToEmit.empty() &&
6979          "Should have emitted all decls deferred to emit.");
6980   assert(NewBuilder->DeferredDecls.empty() &&
6981          "Newly created module should not have deferred decls");
6982   NewBuilder->DeferredDecls = std::move(DeferredDecls);
6983 
6984   assert(NewBuilder->DeferredVTables.empty() &&
6985          "Newly created module should not have deferred vtables");
6986   NewBuilder->DeferredVTables = std::move(DeferredVTables);
6987 
6988   assert(NewBuilder->MangledDeclNames.empty() &&
6989          "Newly created module should not have mangled decl names");
6990   assert(NewBuilder->Manglings.empty() &&
6991          "Newly created module should not have manglings");
6992   NewBuilder->Manglings = std::move(Manglings);
6993 
6994   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
6995   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
6996 
6997   NewBuilder->TBAA = std::move(TBAA);
6998 
6999   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7000          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7001 
7002   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7003 }
7004