1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 184 // Generate the module name hash here if needed. 185 if (CodeGenOpts.UniqueInternalLinkageNames && 186 !getModule().getSourceFileName().empty()) { 187 std::string Path = getModule().getSourceFileName(); 188 // Check if a path substitution is needed from the MacroPrefixMap. 189 for (const auto &Entry : LangOpts.MacroPrefixMap) 190 if (Path.rfind(Entry.first, 0) != std::string::npos) { 191 Path = Entry.second + Path.substr(Entry.first.size()); 192 break; 193 } 194 llvm::MD5 Md5; 195 Md5.update(Path); 196 llvm::MD5::MD5Result R; 197 Md5.final(R); 198 SmallString<32> Str; 199 llvm::MD5::stringifyResult(R, Str); 200 // Convert MD5hash to Decimal. Demangler suffixes can either contain 201 // numbers or characters but not both. 202 llvm::APInt IntHash(128, Str.str(), 16); 203 // Prepend "__uniq" before the hash for tools like profilers to understand 204 // that this symbol is of internal linkage type. The "__uniq" is the 205 // pre-determined prefix that is used to tell tools that this symbol was 206 // created with -funique-internal-linakge-symbols and the tools can strip or 207 // keep the prefix as needed. 208 ModuleNameHash = (Twine(".__uniq.") + 209 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 210 } 211 } 212 213 CodeGenModule::~CodeGenModule() {} 214 215 void CodeGenModule::createObjCRuntime() { 216 // This is just isGNUFamily(), but we want to force implementors of 217 // new ABIs to decide how best to do this. 218 switch (LangOpts.ObjCRuntime.getKind()) { 219 case ObjCRuntime::GNUstep: 220 case ObjCRuntime::GCC: 221 case ObjCRuntime::ObjFW: 222 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 223 return; 224 225 case ObjCRuntime::FragileMacOSX: 226 case ObjCRuntime::MacOSX: 227 case ObjCRuntime::iOS: 228 case ObjCRuntime::WatchOS: 229 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 230 return; 231 } 232 llvm_unreachable("bad runtime kind"); 233 } 234 235 void CodeGenModule::createOpenCLRuntime() { 236 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 237 } 238 239 void CodeGenModule::createOpenMPRuntime() { 240 // Select a specialized code generation class based on the target, if any. 241 // If it does not exist use the default implementation. 242 switch (getTriple().getArch()) { 243 case llvm::Triple::nvptx: 244 case llvm::Triple::nvptx64: 245 assert(getLangOpts().OpenMPIsDevice && 246 "OpenMP NVPTX is only prepared to deal with device code."); 247 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 248 break; 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGCN is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 268 Replacements[Name] = C; 269 } 270 271 void CodeGenModule::applyReplacements() { 272 for (auto &I : Replacements) { 273 StringRef MangledName = I.first(); 274 llvm::Constant *Replacement = I.second; 275 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 276 if (!Entry) 277 continue; 278 auto *OldF = cast<llvm::Function>(Entry); 279 auto *NewF = dyn_cast<llvm::Function>(Replacement); 280 if (!NewF) { 281 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 282 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 283 } else { 284 auto *CE = cast<llvm::ConstantExpr>(Replacement); 285 assert(CE->getOpcode() == llvm::Instruction::BitCast || 286 CE->getOpcode() == llvm::Instruction::GetElementPtr); 287 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 288 } 289 } 290 291 // Replace old with new, but keep the old order. 292 OldF->replaceAllUsesWith(Replacement); 293 if (NewF) { 294 NewF->removeFromParent(); 295 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 296 NewF); 297 } 298 OldF->eraseFromParent(); 299 } 300 } 301 302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 303 GlobalValReplacements.push_back(std::make_pair(GV, C)); 304 } 305 306 void CodeGenModule::applyGlobalValReplacements() { 307 for (auto &I : GlobalValReplacements) { 308 llvm::GlobalValue *GV = I.first; 309 llvm::Constant *C = I.second; 310 311 GV->replaceAllUsesWith(C); 312 GV->eraseFromParent(); 313 } 314 } 315 316 // This is only used in aliases that we created and we know they have a 317 // linear structure. 318 static const llvm::GlobalObject *getAliasedGlobal( 319 const llvm::GlobalIndirectSymbol &GIS) { 320 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 321 const llvm::Constant *C = &GIS; 322 for (;;) { 323 C = C->stripPointerCasts(); 324 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 325 return GO; 326 // stripPointerCasts will not walk over weak aliases. 327 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 328 if (!GIS2) 329 return nullptr; 330 if (!Visited.insert(GIS2).second) 331 return nullptr; 332 C = GIS2->getIndirectSymbol(); 333 } 334 } 335 336 void CodeGenModule::checkAliases() { 337 // Check if the constructed aliases are well formed. It is really unfortunate 338 // that we have to do this in CodeGen, but we only construct mangled names 339 // and aliases during codegen. 340 bool Error = false; 341 DiagnosticsEngine &Diags = getDiags(); 342 for (const GlobalDecl &GD : Aliases) { 343 const auto *D = cast<ValueDecl>(GD.getDecl()); 344 SourceLocation Location; 345 bool IsIFunc = D->hasAttr<IFuncAttr>(); 346 if (const Attr *A = D->getDefiningAttr()) 347 Location = A->getLocation(); 348 else 349 llvm_unreachable("Not an alias or ifunc?"); 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 353 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 354 if (!GV) { 355 Error = true; 356 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 357 } else if (GV->isDeclaration()) { 358 Error = true; 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 } else if (IsIFunc) { 362 // Check resolver function type. 363 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 364 GV->getType()->getPointerElementType()); 365 assert(FTy); 366 if (!FTy->getReturnType()->isPointerTy()) 367 Diags.Report(Location, diag::err_ifunc_resolver_return); 368 } 369 370 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 371 llvm::GlobalValue *AliaseeGV; 372 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 373 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 374 else 375 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 376 377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 378 StringRef AliasSection = SA->getName(); 379 if (AliasSection != AliaseeGV->getSection()) 380 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 381 << AliasSection << IsIFunc << IsIFunc; 382 } 383 384 // We have to handle alias to weak aliases in here. LLVM itself disallows 385 // this since the object semantics would not match the IL one. For 386 // compatibility with gcc we implement it by just pointing the alias 387 // to its aliasee's aliasee. We also warn, since the user is probably 388 // expecting the link to be weak. 389 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 390 if (GA->isInterposable()) { 391 Diags.Report(Location, diag::warn_alias_to_weak_alias) 392 << GV->getName() << GA->getName() << IsIFunc; 393 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 394 GA->getIndirectSymbol(), Alias->getType()); 395 Alias->setIndirectSymbol(Aliasee); 396 } 397 } 398 } 399 if (!Error) 400 return; 401 402 for (const GlobalDecl &GD : Aliases) { 403 StringRef MangledName = getMangledName(GD); 404 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 405 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 406 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 407 Alias->eraseFromParent(); 408 } 409 } 410 411 void CodeGenModule::clear() { 412 DeferredDeclsToEmit.clear(); 413 if (OpenMPRuntime) 414 OpenMPRuntime->clear(); 415 } 416 417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 418 StringRef MainFile) { 419 if (!hasDiagnostics()) 420 return; 421 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 422 if (MainFile.empty()) 423 MainFile = "<stdin>"; 424 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 425 } else { 426 if (Mismatched > 0) 427 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 428 429 if (Missing > 0) 430 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 431 } 432 } 433 434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 435 llvm::Module &M) { 436 if (!LO.VisibilityFromDLLStorageClass) 437 return; 438 439 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 440 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 441 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 442 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 443 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 444 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 445 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 446 CodeGenModule::GetLLVMVisibility( 447 LO.getExternDeclNoDLLStorageClassVisibility()); 448 449 for (llvm::GlobalValue &GV : M.global_values()) { 450 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 451 continue; 452 453 // Reset DSO locality before setting the visibility. This removes 454 // any effects that visibility options and annotations may have 455 // had on the DSO locality. Setting the visibility will implicitly set 456 // appropriate globals to DSO Local; however, this will be pessimistic 457 // w.r.t. to the normal compiler IRGen. 458 GV.setDSOLocal(false); 459 460 if (GV.isDeclarationForLinker()) { 461 GV.setVisibility(GV.getDLLStorageClass() == 462 llvm::GlobalValue::DLLImportStorageClass 463 ? ExternDeclDLLImportVisibility 464 : ExternDeclNoDLLStorageClassVisibility); 465 } else { 466 GV.setVisibility(GV.getDLLStorageClass() == 467 llvm::GlobalValue::DLLExportStorageClass 468 ? DLLExportVisibility 469 : NoDLLStorageClassVisibility); 470 } 471 472 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 473 } 474 } 475 476 void CodeGenModule::Release() { 477 EmitDeferred(); 478 EmitVTablesOpportunistically(); 479 applyGlobalValReplacements(); 480 applyReplacements(); 481 checkAliases(); 482 emitMultiVersionFunctions(); 483 EmitCXXGlobalInitFunc(); 484 EmitCXXGlobalCleanUpFunc(); 485 registerGlobalDtorsWithAtExit(); 486 EmitCXXThreadLocalInitFunc(); 487 if (ObjCRuntime) 488 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 489 AddGlobalCtor(ObjCInitFunction); 490 if (Context.getLangOpts().CUDA && CUDARuntime) { 491 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 492 AddGlobalCtor(CudaCtorFunction); 493 } 494 if (OpenMPRuntime) { 495 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 496 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 497 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 498 } 499 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 500 OpenMPRuntime->clear(); 501 } 502 if (PGOReader) { 503 getModule().setProfileSummary( 504 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 505 llvm::ProfileSummary::PSK_Instr); 506 if (PGOStats.hasDiagnostics()) 507 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 508 } 509 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 510 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 511 EmitGlobalAnnotations(); 512 EmitStaticExternCAliases(); 513 EmitDeferredUnusedCoverageMappings(); 514 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 515 if (CoverageMapping) 516 CoverageMapping->emit(); 517 if (CodeGenOpts.SanitizeCfiCrossDso) { 518 CodeGenFunction(*this).EmitCfiCheckFail(); 519 CodeGenFunction(*this).EmitCfiCheckStub(); 520 } 521 emitAtAvailableLinkGuard(); 522 if (Context.getTargetInfo().getTriple().isWasm() && 523 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 524 EmitMainVoidAlias(); 525 } 526 527 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 528 // preserve ASAN functions in bitcode libraries. 529 if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) { 530 auto *FT = llvm::FunctionType::get(VoidTy, {}); 531 auto *F = llvm::Function::Create( 532 FT, llvm::GlobalValue::ExternalLinkage, 533 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 534 auto *Var = new llvm::GlobalVariable( 535 getModule(), FT->getPointerTo(), 536 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 537 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 538 llvm::GlobalVariable::NotThreadLocal); 539 addCompilerUsedGlobal(Var); 540 } 541 542 emitLLVMUsed(); 543 if (SanStats) 544 SanStats->finish(); 545 546 if (CodeGenOpts.Autolink && 547 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 548 EmitModuleLinkOptions(); 549 } 550 551 // On ELF we pass the dependent library specifiers directly to the linker 552 // without manipulating them. This is in contrast to other platforms where 553 // they are mapped to a specific linker option by the compiler. This 554 // difference is a result of the greater variety of ELF linkers and the fact 555 // that ELF linkers tend to handle libraries in a more complicated fashion 556 // than on other platforms. This forces us to defer handling the dependent 557 // libs to the linker. 558 // 559 // CUDA/HIP device and host libraries are different. Currently there is no 560 // way to differentiate dependent libraries for host or device. Existing 561 // usage of #pragma comment(lib, *) is intended for host libraries on 562 // Windows. Therefore emit llvm.dependent-libraries only for host. 563 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 564 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 565 for (auto *MD : ELFDependentLibraries) 566 NMD->addOperand(MD); 567 } 568 569 // Record mregparm value now so it is visible through rest of codegen. 570 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 571 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 572 CodeGenOpts.NumRegisterParameters); 573 574 if (CodeGenOpts.DwarfVersion) { 575 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 576 CodeGenOpts.DwarfVersion); 577 } 578 579 if (CodeGenOpts.Dwarf64) 580 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 581 582 if (Context.getLangOpts().SemanticInterposition) 583 // Require various optimization to respect semantic interposition. 584 getModule().setSemanticInterposition(1); 585 586 if (CodeGenOpts.EmitCodeView) { 587 // Indicate that we want CodeView in the metadata. 588 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 589 } 590 if (CodeGenOpts.CodeViewGHash) { 591 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 592 } 593 if (CodeGenOpts.ControlFlowGuard) { 594 // Function ID tables and checks for Control Flow Guard (cfguard=2). 595 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 596 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 597 // Function ID tables for Control Flow Guard (cfguard=1). 598 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 599 } 600 if (CodeGenOpts.EHContGuard) { 601 // Function ID tables for EH Continuation Guard. 602 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 603 } 604 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 605 // We don't support LTO with 2 with different StrictVTablePointers 606 // FIXME: we could support it by stripping all the information introduced 607 // by StrictVTablePointers. 608 609 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 610 611 llvm::Metadata *Ops[2] = { 612 llvm::MDString::get(VMContext, "StrictVTablePointers"), 613 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 614 llvm::Type::getInt32Ty(VMContext), 1))}; 615 616 getModule().addModuleFlag(llvm::Module::Require, 617 "StrictVTablePointersRequirement", 618 llvm::MDNode::get(VMContext, Ops)); 619 } 620 if (getModuleDebugInfo()) 621 // We support a single version in the linked module. The LLVM 622 // parser will drop debug info with a different version number 623 // (and warn about it, too). 624 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 625 llvm::DEBUG_METADATA_VERSION); 626 627 // We need to record the widths of enums and wchar_t, so that we can generate 628 // the correct build attributes in the ARM backend. wchar_size is also used by 629 // TargetLibraryInfo. 630 uint64_t WCharWidth = 631 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 632 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 633 634 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 635 if ( Arch == llvm::Triple::arm 636 || Arch == llvm::Triple::armeb 637 || Arch == llvm::Triple::thumb 638 || Arch == llvm::Triple::thumbeb) { 639 // The minimum width of an enum in bytes 640 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 641 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 642 } 643 644 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 645 StringRef ABIStr = Target.getABI(); 646 llvm::LLVMContext &Ctx = TheModule.getContext(); 647 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 648 llvm::MDString::get(Ctx, ABIStr)); 649 } 650 651 if (CodeGenOpts.SanitizeCfiCrossDso) { 652 // Indicate that we want cross-DSO control flow integrity checks. 653 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 654 } 655 656 if (CodeGenOpts.WholeProgramVTables) { 657 // Indicate whether VFE was enabled for this module, so that the 658 // vcall_visibility metadata added under whole program vtables is handled 659 // appropriately in the optimizer. 660 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 661 CodeGenOpts.VirtualFunctionElimination); 662 } 663 664 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 665 getModule().addModuleFlag(llvm::Module::Override, 666 "CFI Canonical Jump Tables", 667 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 668 } 669 670 if (CodeGenOpts.CFProtectionReturn && 671 Target.checkCFProtectionReturnSupported(getDiags())) { 672 // Indicate that we want to instrument return control flow protection. 673 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 674 1); 675 } 676 677 if (CodeGenOpts.CFProtectionBranch && 678 Target.checkCFProtectionBranchSupported(getDiags())) { 679 // Indicate that we want to instrument branch control flow protection. 680 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 681 1); 682 } 683 684 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 685 Arch == llvm::Triple::aarch64_be) { 686 getModule().addModuleFlag(llvm::Module::Error, 687 "branch-target-enforcement", 688 LangOpts.BranchTargetEnforcement); 689 690 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 691 LangOpts.hasSignReturnAddress()); 692 693 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 694 LangOpts.isSignReturnAddressScopeAll()); 695 696 getModule().addModuleFlag(llvm::Module::Error, 697 "sign-return-address-with-bkey", 698 !LangOpts.isSignReturnAddressWithAKey()); 699 } 700 701 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 702 llvm::LLVMContext &Ctx = TheModule.getContext(); 703 getModule().addModuleFlag( 704 llvm::Module::Error, "MemProfProfileFilename", 705 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 706 } 707 708 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 709 // Indicate whether __nvvm_reflect should be configured to flush denormal 710 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 711 // property.) 712 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 713 CodeGenOpts.FP32DenormalMode.Output != 714 llvm::DenormalMode::IEEE); 715 } 716 717 if (LangOpts.EHAsynch) 718 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 719 720 // Indicate whether this Module was compiled with -fopenmp 721 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 722 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 723 if (getLangOpts().OpenMPIsDevice) 724 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 725 LangOpts.OpenMP); 726 727 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 728 if (LangOpts.OpenCL) { 729 EmitOpenCLMetadata(); 730 // Emit SPIR version. 731 if (getTriple().isSPIR()) { 732 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 733 // opencl.spir.version named metadata. 734 // C++ is backwards compatible with OpenCL v2.0. 735 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 736 llvm::Metadata *SPIRVerElts[] = { 737 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 738 Int32Ty, Version / 100)), 739 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 740 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 741 llvm::NamedMDNode *SPIRVerMD = 742 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 743 llvm::LLVMContext &Ctx = TheModule.getContext(); 744 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 745 } 746 } 747 748 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 749 assert(PLevel < 3 && "Invalid PIC Level"); 750 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 751 if (Context.getLangOpts().PIE) 752 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 753 } 754 755 if (getCodeGenOpts().CodeModel.size() > 0) { 756 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 757 .Case("tiny", llvm::CodeModel::Tiny) 758 .Case("small", llvm::CodeModel::Small) 759 .Case("kernel", llvm::CodeModel::Kernel) 760 .Case("medium", llvm::CodeModel::Medium) 761 .Case("large", llvm::CodeModel::Large) 762 .Default(~0u); 763 if (CM != ~0u) { 764 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 765 getModule().setCodeModel(codeModel); 766 } 767 } 768 769 if (CodeGenOpts.NoPLT) 770 getModule().setRtLibUseGOT(); 771 if (CodeGenOpts.UnwindTables) 772 getModule().setUwtable(); 773 774 switch (CodeGenOpts.getFramePointer()) { 775 case CodeGenOptions::FramePointerKind::None: 776 // 0 ("none") is the default. 777 break; 778 case CodeGenOptions::FramePointerKind::NonLeaf: 779 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 780 break; 781 case CodeGenOptions::FramePointerKind::All: 782 getModule().setFramePointer(llvm::FramePointerKind::All); 783 break; 784 } 785 786 SimplifyPersonality(); 787 788 if (getCodeGenOpts().EmitDeclMetadata) 789 EmitDeclMetadata(); 790 791 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 792 EmitCoverageFile(); 793 794 if (CGDebugInfo *DI = getModuleDebugInfo()) 795 DI->finalize(); 796 797 if (getCodeGenOpts().EmitVersionIdentMetadata) 798 EmitVersionIdentMetadata(); 799 800 if (!getCodeGenOpts().RecordCommandLine.empty()) 801 EmitCommandLineMetadata(); 802 803 if (!getCodeGenOpts().StackProtectorGuard.empty()) 804 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 805 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 806 getModule().setStackProtectorGuardReg( 807 getCodeGenOpts().StackProtectorGuardReg); 808 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 809 getModule().setStackProtectorGuardOffset( 810 getCodeGenOpts().StackProtectorGuardOffset); 811 if (getCodeGenOpts().StackAlignment) 812 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 813 814 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 815 816 EmitBackendOptionsMetadata(getCodeGenOpts()); 817 818 // Set visibility from DLL storage class 819 // We do this at the end of LLVM IR generation; after any operation 820 // that might affect the DLL storage class or the visibility, and 821 // before anything that might act on these. 822 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 823 } 824 825 void CodeGenModule::EmitOpenCLMetadata() { 826 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 827 // opencl.ocl.version named metadata node. 828 // C++ is backwards compatible with OpenCL v2.0. 829 // FIXME: We might need to add CXX version at some point too? 830 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 831 llvm::Metadata *OCLVerElts[] = { 832 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 833 Int32Ty, Version / 100)), 834 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 835 Int32Ty, (Version % 100) / 10))}; 836 llvm::NamedMDNode *OCLVerMD = 837 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 838 llvm::LLVMContext &Ctx = TheModule.getContext(); 839 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 840 } 841 842 void CodeGenModule::EmitBackendOptionsMetadata( 843 const CodeGenOptions CodeGenOpts) { 844 switch (getTriple().getArch()) { 845 default: 846 break; 847 case llvm::Triple::riscv32: 848 case llvm::Triple::riscv64: 849 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 850 CodeGenOpts.SmallDataLimit); 851 break; 852 } 853 } 854 855 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 856 // Make sure that this type is translated. 857 Types.UpdateCompletedType(TD); 858 } 859 860 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 861 // Make sure that this type is translated. 862 Types.RefreshTypeCacheForClass(RD); 863 } 864 865 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 866 if (!TBAA) 867 return nullptr; 868 return TBAA->getTypeInfo(QTy); 869 } 870 871 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 872 if (!TBAA) 873 return TBAAAccessInfo(); 874 if (getLangOpts().CUDAIsDevice) { 875 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 876 // access info. 877 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 878 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 879 nullptr) 880 return TBAAAccessInfo(); 881 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 882 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 883 nullptr) 884 return TBAAAccessInfo(); 885 } 886 } 887 return TBAA->getAccessInfo(AccessType); 888 } 889 890 TBAAAccessInfo 891 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 892 if (!TBAA) 893 return TBAAAccessInfo(); 894 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 895 } 896 897 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 898 if (!TBAA) 899 return nullptr; 900 return TBAA->getTBAAStructInfo(QTy); 901 } 902 903 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 904 if (!TBAA) 905 return nullptr; 906 return TBAA->getBaseTypeInfo(QTy); 907 } 908 909 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 910 if (!TBAA) 911 return nullptr; 912 return TBAA->getAccessTagInfo(Info); 913 } 914 915 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 916 TBAAAccessInfo TargetInfo) { 917 if (!TBAA) 918 return TBAAAccessInfo(); 919 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 920 } 921 922 TBAAAccessInfo 923 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 924 TBAAAccessInfo InfoB) { 925 if (!TBAA) 926 return TBAAAccessInfo(); 927 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 928 } 929 930 TBAAAccessInfo 931 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 932 TBAAAccessInfo SrcInfo) { 933 if (!TBAA) 934 return TBAAAccessInfo(); 935 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 936 } 937 938 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 939 TBAAAccessInfo TBAAInfo) { 940 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 941 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 942 } 943 944 void CodeGenModule::DecorateInstructionWithInvariantGroup( 945 llvm::Instruction *I, const CXXRecordDecl *RD) { 946 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 947 llvm::MDNode::get(getLLVMContext(), {})); 948 } 949 950 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 951 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 952 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 953 } 954 955 /// ErrorUnsupported - Print out an error that codegen doesn't support the 956 /// specified stmt yet. 957 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 958 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 959 "cannot compile this %0 yet"); 960 std::string Msg = Type; 961 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 962 << Msg << S->getSourceRange(); 963 } 964 965 /// ErrorUnsupported - Print out an error that codegen doesn't support the 966 /// specified decl yet. 967 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 968 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 969 "cannot compile this %0 yet"); 970 std::string Msg = Type; 971 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 972 } 973 974 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 975 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 976 } 977 978 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 979 const NamedDecl *D) const { 980 if (GV->hasDLLImportStorageClass()) 981 return; 982 // Internal definitions always have default visibility. 983 if (GV->hasLocalLinkage()) { 984 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 985 return; 986 } 987 if (!D) 988 return; 989 // Set visibility for definitions, and for declarations if requested globally 990 // or set explicitly. 991 LinkageInfo LV = D->getLinkageAndVisibility(); 992 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 993 !GV->isDeclarationForLinker()) 994 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 995 } 996 997 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 998 llvm::GlobalValue *GV) { 999 if (GV->hasLocalLinkage()) 1000 return true; 1001 1002 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1003 return true; 1004 1005 // DLLImport explicitly marks the GV as external. 1006 if (GV->hasDLLImportStorageClass()) 1007 return false; 1008 1009 const llvm::Triple &TT = CGM.getTriple(); 1010 if (TT.isWindowsGNUEnvironment()) { 1011 // In MinGW, variables without DLLImport can still be automatically 1012 // imported from a DLL by the linker; don't mark variables that 1013 // potentially could come from another DLL as DSO local. 1014 1015 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1016 // (and this actually happens in the public interface of libstdc++), so 1017 // such variables can't be marked as DSO local. (Native TLS variables 1018 // can't be dllimported at all, though.) 1019 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1020 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1021 return false; 1022 } 1023 1024 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1025 // remain unresolved in the link, they can be resolved to zero, which is 1026 // outside the current DSO. 1027 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1028 return false; 1029 1030 // Every other GV is local on COFF. 1031 // Make an exception for windows OS in the triple: Some firmware builds use 1032 // *-win32-macho triples. This (accidentally?) produced windows relocations 1033 // without GOT tables in older clang versions; Keep this behaviour. 1034 // FIXME: even thread local variables? 1035 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1036 return true; 1037 1038 // Only handle COFF and ELF for now. 1039 if (!TT.isOSBinFormatELF()) 1040 return false; 1041 1042 // If this is not an executable, don't assume anything is local. 1043 const auto &CGOpts = CGM.getCodeGenOpts(); 1044 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1045 const auto &LOpts = CGM.getLangOpts(); 1046 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1047 // On ELF, if -fno-semantic-interposition is specified and the target 1048 // supports local aliases, there will be neither CC1 1049 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1050 // dso_local on the function if using a local alias is preferable (can avoid 1051 // PLT indirection). 1052 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1053 return false; 1054 return !(CGM.getLangOpts().SemanticInterposition || 1055 CGM.getLangOpts().HalfNoSemanticInterposition); 1056 } 1057 1058 // A definition cannot be preempted from an executable. 1059 if (!GV->isDeclarationForLinker()) 1060 return true; 1061 1062 // Most PIC code sequences that assume that a symbol is local cannot produce a 1063 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1064 // depended, it seems worth it to handle it here. 1065 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1066 return false; 1067 1068 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1069 if (TT.isPPC64()) 1070 return false; 1071 1072 if (CGOpts.DirectAccessExternalData) { 1073 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1074 // for non-thread-local variables. If the symbol is not defined in the 1075 // executable, a copy relocation will be needed at link time. dso_local is 1076 // excluded for thread-local variables because they generally don't support 1077 // copy relocations. 1078 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1079 if (!Var->isThreadLocal()) 1080 return true; 1081 1082 // -fno-pic sets dso_local on a function declaration to allow direct 1083 // accesses when taking its address (similar to a data symbol). If the 1084 // function is not defined in the executable, a canonical PLT entry will be 1085 // needed at link time. -fno-direct-access-external-data can avoid the 1086 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1087 // it could just cause trouble without providing perceptible benefits. 1088 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1089 return true; 1090 } 1091 1092 // If we can use copy relocations we can assume it is local. 1093 1094 // Otherwise don't assume it is local. 1095 return false; 1096 } 1097 1098 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1099 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1100 } 1101 1102 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1103 GlobalDecl GD) const { 1104 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1105 // C++ destructors have a few C++ ABI specific special cases. 1106 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1107 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1108 return; 1109 } 1110 setDLLImportDLLExport(GV, D); 1111 } 1112 1113 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1114 const NamedDecl *D) const { 1115 if (D && D->isExternallyVisible()) { 1116 if (D->hasAttr<DLLImportAttr>()) 1117 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1118 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1119 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1120 } 1121 } 1122 1123 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1124 GlobalDecl GD) const { 1125 setDLLImportDLLExport(GV, GD); 1126 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1127 } 1128 1129 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1130 const NamedDecl *D) const { 1131 setDLLImportDLLExport(GV, D); 1132 setGVPropertiesAux(GV, D); 1133 } 1134 1135 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1136 const NamedDecl *D) const { 1137 setGlobalVisibility(GV, D); 1138 setDSOLocal(GV); 1139 GV->setPartition(CodeGenOpts.SymbolPartition); 1140 } 1141 1142 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1143 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1144 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1145 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1146 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1147 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1148 } 1149 1150 llvm::GlobalVariable::ThreadLocalMode 1151 CodeGenModule::GetDefaultLLVMTLSModel() const { 1152 switch (CodeGenOpts.getDefaultTLSModel()) { 1153 case CodeGenOptions::GeneralDynamicTLSModel: 1154 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1155 case CodeGenOptions::LocalDynamicTLSModel: 1156 return llvm::GlobalVariable::LocalDynamicTLSModel; 1157 case CodeGenOptions::InitialExecTLSModel: 1158 return llvm::GlobalVariable::InitialExecTLSModel; 1159 case CodeGenOptions::LocalExecTLSModel: 1160 return llvm::GlobalVariable::LocalExecTLSModel; 1161 } 1162 llvm_unreachable("Invalid TLS model!"); 1163 } 1164 1165 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1166 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1167 1168 llvm::GlobalValue::ThreadLocalMode TLM; 1169 TLM = GetDefaultLLVMTLSModel(); 1170 1171 // Override the TLS model if it is explicitly specified. 1172 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1173 TLM = GetLLVMTLSModel(Attr->getModel()); 1174 } 1175 1176 GV->setThreadLocalMode(TLM); 1177 } 1178 1179 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1180 StringRef Name) { 1181 const TargetInfo &Target = CGM.getTarget(); 1182 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1183 } 1184 1185 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1186 const CPUSpecificAttr *Attr, 1187 unsigned CPUIndex, 1188 raw_ostream &Out) { 1189 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1190 // supported. 1191 if (Attr) 1192 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1193 else if (CGM.getTarget().supportsIFunc()) 1194 Out << ".resolver"; 1195 } 1196 1197 static void AppendTargetMangling(const CodeGenModule &CGM, 1198 const TargetAttr *Attr, raw_ostream &Out) { 1199 if (Attr->isDefaultVersion()) 1200 return; 1201 1202 Out << '.'; 1203 const TargetInfo &Target = CGM.getTarget(); 1204 ParsedTargetAttr Info = 1205 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1206 // Multiversioning doesn't allow "no-${feature}", so we can 1207 // only have "+" prefixes here. 1208 assert(LHS.startswith("+") && RHS.startswith("+") && 1209 "Features should always have a prefix."); 1210 return Target.multiVersionSortPriority(LHS.substr(1)) > 1211 Target.multiVersionSortPriority(RHS.substr(1)); 1212 }); 1213 1214 bool IsFirst = true; 1215 1216 if (!Info.Architecture.empty()) { 1217 IsFirst = false; 1218 Out << "arch_" << Info.Architecture; 1219 } 1220 1221 for (StringRef Feat : Info.Features) { 1222 if (!IsFirst) 1223 Out << '_'; 1224 IsFirst = false; 1225 Out << Feat.substr(1); 1226 } 1227 } 1228 1229 // Returns true if GD is a function decl with internal linkage and 1230 // needs a unique suffix after the mangled name. 1231 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1232 CodeGenModule &CGM) { 1233 const Decl *D = GD.getDecl(); 1234 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1235 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1236 } 1237 1238 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1239 const NamedDecl *ND, 1240 bool OmitMultiVersionMangling = false) { 1241 SmallString<256> Buffer; 1242 llvm::raw_svector_ostream Out(Buffer); 1243 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1244 if (!CGM.getModuleNameHash().empty()) 1245 MC.needsUniqueInternalLinkageNames(); 1246 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1247 if (ShouldMangle) 1248 MC.mangleName(GD.getWithDecl(ND), Out); 1249 else { 1250 IdentifierInfo *II = ND->getIdentifier(); 1251 assert(II && "Attempt to mangle unnamed decl."); 1252 const auto *FD = dyn_cast<FunctionDecl>(ND); 1253 1254 if (FD && 1255 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1256 Out << "__regcall3__" << II->getName(); 1257 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1258 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1259 Out << "__device_stub__" << II->getName(); 1260 } else { 1261 Out << II->getName(); 1262 } 1263 } 1264 1265 // Check if the module name hash should be appended for internal linkage 1266 // symbols. This should come before multi-version target suffixes are 1267 // appended. This is to keep the name and module hash suffix of the 1268 // internal linkage function together. The unique suffix should only be 1269 // added when name mangling is done to make sure that the final name can 1270 // be properly demangled. For example, for C functions without prototypes, 1271 // name mangling is not done and the unique suffix should not be appeneded 1272 // then. 1273 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1274 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1275 "Hash computed when not explicitly requested"); 1276 Out << CGM.getModuleNameHash(); 1277 } 1278 1279 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1280 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1281 switch (FD->getMultiVersionKind()) { 1282 case MultiVersionKind::CPUDispatch: 1283 case MultiVersionKind::CPUSpecific: 1284 AppendCPUSpecificCPUDispatchMangling(CGM, 1285 FD->getAttr<CPUSpecificAttr>(), 1286 GD.getMultiVersionIndex(), Out); 1287 break; 1288 case MultiVersionKind::Target: 1289 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1290 break; 1291 case MultiVersionKind::None: 1292 llvm_unreachable("None multiversion type isn't valid here"); 1293 } 1294 } 1295 1296 // Make unique name for device side static file-scope variable for HIP. 1297 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1298 CGM.getLangOpts().GPURelocatableDeviceCode && 1299 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1300 CGM.printPostfixForExternalizedStaticVar(Out); 1301 return std::string(Out.str()); 1302 } 1303 1304 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1305 const FunctionDecl *FD) { 1306 if (!FD->isMultiVersion()) 1307 return; 1308 1309 // Get the name of what this would be without the 'target' attribute. This 1310 // allows us to lookup the version that was emitted when this wasn't a 1311 // multiversion function. 1312 std::string NonTargetName = 1313 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1314 GlobalDecl OtherGD; 1315 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1316 assert(OtherGD.getCanonicalDecl() 1317 .getDecl() 1318 ->getAsFunction() 1319 ->isMultiVersion() && 1320 "Other GD should now be a multiversioned function"); 1321 // OtherFD is the version of this function that was mangled BEFORE 1322 // becoming a MultiVersion function. It potentially needs to be updated. 1323 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1324 .getDecl() 1325 ->getAsFunction() 1326 ->getMostRecentDecl(); 1327 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1328 // This is so that if the initial version was already the 'default' 1329 // version, we don't try to update it. 1330 if (OtherName != NonTargetName) { 1331 // Remove instead of erase, since others may have stored the StringRef 1332 // to this. 1333 const auto ExistingRecord = Manglings.find(NonTargetName); 1334 if (ExistingRecord != std::end(Manglings)) 1335 Manglings.remove(&(*ExistingRecord)); 1336 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1337 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1338 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1339 Entry->setName(OtherName); 1340 } 1341 } 1342 } 1343 1344 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1345 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1346 1347 // Some ABIs don't have constructor variants. Make sure that base and 1348 // complete constructors get mangled the same. 1349 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1350 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1351 CXXCtorType OrigCtorType = GD.getCtorType(); 1352 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1353 if (OrigCtorType == Ctor_Base) 1354 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1355 } 1356 } 1357 1358 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1359 // static device variable depends on whether the variable is referenced by 1360 // a host or device host function. Therefore the mangled name cannot be 1361 // cached. 1362 if (!LangOpts.CUDAIsDevice || 1363 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1364 auto FoundName = MangledDeclNames.find(CanonicalGD); 1365 if (FoundName != MangledDeclNames.end()) 1366 return FoundName->second; 1367 } 1368 1369 // Keep the first result in the case of a mangling collision. 1370 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1371 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1372 1373 // Ensure either we have different ABIs between host and device compilations, 1374 // says host compilation following MSVC ABI but device compilation follows 1375 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1376 // mangling should be the same after name stubbing. The later checking is 1377 // very important as the device kernel name being mangled in host-compilation 1378 // is used to resolve the device binaries to be executed. Inconsistent naming 1379 // result in undefined behavior. Even though we cannot check that naming 1380 // directly between host- and device-compilations, the host- and 1381 // device-mangling in host compilation could help catching certain ones. 1382 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1383 getLangOpts().CUDAIsDevice || 1384 (getContext().getAuxTargetInfo() && 1385 (getContext().getAuxTargetInfo()->getCXXABI() != 1386 getContext().getTargetInfo().getCXXABI())) || 1387 getCUDARuntime().getDeviceSideName(ND) == 1388 getMangledNameImpl( 1389 *this, 1390 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1391 ND)); 1392 1393 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1394 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1395 } 1396 1397 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1398 const BlockDecl *BD) { 1399 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1400 const Decl *D = GD.getDecl(); 1401 1402 SmallString<256> Buffer; 1403 llvm::raw_svector_ostream Out(Buffer); 1404 if (!D) 1405 MangleCtx.mangleGlobalBlock(BD, 1406 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1407 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1408 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1409 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1410 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1411 else 1412 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1413 1414 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1415 return Result.first->first(); 1416 } 1417 1418 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1419 return getModule().getNamedValue(Name); 1420 } 1421 1422 /// AddGlobalCtor - Add a function to the list that will be called before 1423 /// main() runs. 1424 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1425 llvm::Constant *AssociatedData) { 1426 // FIXME: Type coercion of void()* types. 1427 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1428 } 1429 1430 /// AddGlobalDtor - Add a function to the list that will be called 1431 /// when the module is unloaded. 1432 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1433 bool IsDtorAttrFunc) { 1434 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1435 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1436 DtorsUsingAtExit[Priority].push_back(Dtor); 1437 return; 1438 } 1439 1440 // FIXME: Type coercion of void()* types. 1441 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1442 } 1443 1444 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1445 if (Fns.empty()) return; 1446 1447 // Ctor function type is void()*. 1448 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1449 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1450 TheModule.getDataLayout().getProgramAddressSpace()); 1451 1452 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1453 llvm::StructType *CtorStructTy = llvm::StructType::get( 1454 Int32Ty, CtorPFTy, VoidPtrTy); 1455 1456 // Construct the constructor and destructor arrays. 1457 ConstantInitBuilder builder(*this); 1458 auto ctors = builder.beginArray(CtorStructTy); 1459 for (const auto &I : Fns) { 1460 auto ctor = ctors.beginStruct(CtorStructTy); 1461 ctor.addInt(Int32Ty, I.Priority); 1462 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1463 if (I.AssociatedData) 1464 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1465 else 1466 ctor.addNullPointer(VoidPtrTy); 1467 ctor.finishAndAddTo(ctors); 1468 } 1469 1470 auto list = 1471 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1472 /*constant*/ false, 1473 llvm::GlobalValue::AppendingLinkage); 1474 1475 // The LTO linker doesn't seem to like it when we set an alignment 1476 // on appending variables. Take it off as a workaround. 1477 list->setAlignment(llvm::None); 1478 1479 Fns.clear(); 1480 } 1481 1482 llvm::GlobalValue::LinkageTypes 1483 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1484 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1485 1486 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1487 1488 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1489 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1490 1491 if (isa<CXXConstructorDecl>(D) && 1492 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1493 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1494 // Our approach to inheriting constructors is fundamentally different from 1495 // that used by the MS ABI, so keep our inheriting constructor thunks 1496 // internal rather than trying to pick an unambiguous mangling for them. 1497 return llvm::GlobalValue::InternalLinkage; 1498 } 1499 1500 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1501 } 1502 1503 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1504 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1505 if (!MDS) return nullptr; 1506 1507 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1508 } 1509 1510 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1511 const CGFunctionInfo &Info, 1512 llvm::Function *F, bool IsThunk) { 1513 unsigned CallingConv; 1514 llvm::AttributeList PAL; 1515 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1516 /*AttrOnCallSite=*/false, IsThunk); 1517 F->setAttributes(PAL); 1518 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1519 } 1520 1521 static void removeImageAccessQualifier(std::string& TyName) { 1522 std::string ReadOnlyQual("__read_only"); 1523 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1524 if (ReadOnlyPos != std::string::npos) 1525 // "+ 1" for the space after access qualifier. 1526 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1527 else { 1528 std::string WriteOnlyQual("__write_only"); 1529 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1530 if (WriteOnlyPos != std::string::npos) 1531 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1532 else { 1533 std::string ReadWriteQual("__read_write"); 1534 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1535 if (ReadWritePos != std::string::npos) 1536 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1537 } 1538 } 1539 } 1540 1541 // Returns the address space id that should be produced to the 1542 // kernel_arg_addr_space metadata. This is always fixed to the ids 1543 // as specified in the SPIR 2.0 specification in order to differentiate 1544 // for example in clGetKernelArgInfo() implementation between the address 1545 // spaces with targets without unique mapping to the OpenCL address spaces 1546 // (basically all single AS CPUs). 1547 static unsigned ArgInfoAddressSpace(LangAS AS) { 1548 switch (AS) { 1549 case LangAS::opencl_global: 1550 return 1; 1551 case LangAS::opencl_constant: 1552 return 2; 1553 case LangAS::opencl_local: 1554 return 3; 1555 case LangAS::opencl_generic: 1556 return 4; // Not in SPIR 2.0 specs. 1557 case LangAS::opencl_global_device: 1558 return 5; 1559 case LangAS::opencl_global_host: 1560 return 6; 1561 default: 1562 return 0; // Assume private. 1563 } 1564 } 1565 1566 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1567 const FunctionDecl *FD, 1568 CodeGenFunction *CGF) { 1569 assert(((FD && CGF) || (!FD && !CGF)) && 1570 "Incorrect use - FD and CGF should either be both null or not!"); 1571 // Create MDNodes that represent the kernel arg metadata. 1572 // Each MDNode is a list in the form of "key", N number of values which is 1573 // the same number of values as their are kernel arguments. 1574 1575 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1576 1577 // MDNode for the kernel argument address space qualifiers. 1578 SmallVector<llvm::Metadata *, 8> addressQuals; 1579 1580 // MDNode for the kernel argument access qualifiers (images only). 1581 SmallVector<llvm::Metadata *, 8> accessQuals; 1582 1583 // MDNode for the kernel argument type names. 1584 SmallVector<llvm::Metadata *, 8> argTypeNames; 1585 1586 // MDNode for the kernel argument base type names. 1587 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1588 1589 // MDNode for the kernel argument type qualifiers. 1590 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1591 1592 // MDNode for the kernel argument names. 1593 SmallVector<llvm::Metadata *, 8> argNames; 1594 1595 if (FD && CGF) 1596 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1597 const ParmVarDecl *parm = FD->getParamDecl(i); 1598 QualType ty = parm->getType(); 1599 std::string typeQuals; 1600 1601 // Get image and pipe access qualifier: 1602 if (ty->isImageType() || ty->isPipeType()) { 1603 const Decl *PDecl = parm; 1604 if (auto *TD = dyn_cast<TypedefType>(ty)) 1605 PDecl = TD->getDecl(); 1606 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1607 if (A && A->isWriteOnly()) 1608 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1609 else if (A && A->isReadWrite()) 1610 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1611 else 1612 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1613 } else 1614 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1615 1616 // Get argument name. 1617 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1618 1619 auto getTypeSpelling = [&](QualType Ty) { 1620 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1621 1622 if (Ty.isCanonical()) { 1623 StringRef typeNameRef = typeName; 1624 // Turn "unsigned type" to "utype" 1625 if (typeNameRef.consume_front("unsigned ")) 1626 return std::string("u") + typeNameRef.str(); 1627 if (typeNameRef.consume_front("signed ")) 1628 return typeNameRef.str(); 1629 } 1630 1631 return typeName; 1632 }; 1633 1634 if (ty->isPointerType()) { 1635 QualType pointeeTy = ty->getPointeeType(); 1636 1637 // Get address qualifier. 1638 addressQuals.push_back( 1639 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1640 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1641 1642 // Get argument type name. 1643 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1644 std::string baseTypeName = 1645 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1646 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1647 argBaseTypeNames.push_back( 1648 llvm::MDString::get(VMContext, baseTypeName)); 1649 1650 // Get argument type qualifiers: 1651 if (ty.isRestrictQualified()) 1652 typeQuals = "restrict"; 1653 if (pointeeTy.isConstQualified() || 1654 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1655 typeQuals += typeQuals.empty() ? "const" : " const"; 1656 if (pointeeTy.isVolatileQualified()) 1657 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1658 } else { 1659 uint32_t AddrSpc = 0; 1660 bool isPipe = ty->isPipeType(); 1661 if (ty->isImageType() || isPipe) 1662 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1663 1664 addressQuals.push_back( 1665 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1666 1667 // Get argument type name. 1668 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1669 std::string typeName = getTypeSpelling(ty); 1670 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1671 1672 // Remove access qualifiers on images 1673 // (as they are inseparable from type in clang implementation, 1674 // but OpenCL spec provides a special query to get access qualifier 1675 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1676 if (ty->isImageType()) { 1677 removeImageAccessQualifier(typeName); 1678 removeImageAccessQualifier(baseTypeName); 1679 } 1680 1681 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1682 argBaseTypeNames.push_back( 1683 llvm::MDString::get(VMContext, baseTypeName)); 1684 1685 if (isPipe) 1686 typeQuals = "pipe"; 1687 } 1688 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1689 } 1690 1691 Fn->setMetadata("kernel_arg_addr_space", 1692 llvm::MDNode::get(VMContext, addressQuals)); 1693 Fn->setMetadata("kernel_arg_access_qual", 1694 llvm::MDNode::get(VMContext, accessQuals)); 1695 Fn->setMetadata("kernel_arg_type", 1696 llvm::MDNode::get(VMContext, argTypeNames)); 1697 Fn->setMetadata("kernel_arg_base_type", 1698 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1699 Fn->setMetadata("kernel_arg_type_qual", 1700 llvm::MDNode::get(VMContext, argTypeQuals)); 1701 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1702 Fn->setMetadata("kernel_arg_name", 1703 llvm::MDNode::get(VMContext, argNames)); 1704 } 1705 1706 /// Determines whether the language options require us to model 1707 /// unwind exceptions. We treat -fexceptions as mandating this 1708 /// except under the fragile ObjC ABI with only ObjC exceptions 1709 /// enabled. This means, for example, that C with -fexceptions 1710 /// enables this. 1711 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1712 // If exceptions are completely disabled, obviously this is false. 1713 if (!LangOpts.Exceptions) return false; 1714 1715 // If C++ exceptions are enabled, this is true. 1716 if (LangOpts.CXXExceptions) return true; 1717 1718 // If ObjC exceptions are enabled, this depends on the ABI. 1719 if (LangOpts.ObjCExceptions) { 1720 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1721 } 1722 1723 return true; 1724 } 1725 1726 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1727 const CXXMethodDecl *MD) { 1728 // Check that the type metadata can ever actually be used by a call. 1729 if (!CGM.getCodeGenOpts().LTOUnit || 1730 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1731 return false; 1732 1733 // Only functions whose address can be taken with a member function pointer 1734 // need this sort of type metadata. 1735 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1736 !isa<CXXDestructorDecl>(MD); 1737 } 1738 1739 std::vector<const CXXRecordDecl *> 1740 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1741 llvm::SetVector<const CXXRecordDecl *> MostBases; 1742 1743 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1744 CollectMostBases = [&](const CXXRecordDecl *RD) { 1745 if (RD->getNumBases() == 0) 1746 MostBases.insert(RD); 1747 for (const CXXBaseSpecifier &B : RD->bases()) 1748 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1749 }; 1750 CollectMostBases(RD); 1751 return MostBases.takeVector(); 1752 } 1753 1754 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1755 llvm::Function *F) { 1756 llvm::AttrBuilder B; 1757 1758 if (CodeGenOpts.UnwindTables) 1759 B.addAttribute(llvm::Attribute::UWTable); 1760 1761 if (CodeGenOpts.StackClashProtector) 1762 B.addAttribute("probe-stack", "inline-asm"); 1763 1764 if (!hasUnwindExceptions(LangOpts)) 1765 B.addAttribute(llvm::Attribute::NoUnwind); 1766 1767 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1768 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1769 B.addAttribute(llvm::Attribute::StackProtect); 1770 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1771 B.addAttribute(llvm::Attribute::StackProtectStrong); 1772 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1773 B.addAttribute(llvm::Attribute::StackProtectReq); 1774 } 1775 1776 if (!D) { 1777 // If we don't have a declaration to control inlining, the function isn't 1778 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1779 // disabled, mark the function as noinline. 1780 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1781 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1782 B.addAttribute(llvm::Attribute::NoInline); 1783 1784 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1785 return; 1786 } 1787 1788 // Track whether we need to add the optnone LLVM attribute, 1789 // starting with the default for this optimization level. 1790 bool ShouldAddOptNone = 1791 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1792 // We can't add optnone in the following cases, it won't pass the verifier. 1793 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1794 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1795 1796 // Add optnone, but do so only if the function isn't always_inline. 1797 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1798 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1799 B.addAttribute(llvm::Attribute::OptimizeNone); 1800 1801 // OptimizeNone implies noinline; we should not be inlining such functions. 1802 B.addAttribute(llvm::Attribute::NoInline); 1803 1804 // We still need to handle naked functions even though optnone subsumes 1805 // much of their semantics. 1806 if (D->hasAttr<NakedAttr>()) 1807 B.addAttribute(llvm::Attribute::Naked); 1808 1809 // OptimizeNone wins over OptimizeForSize and MinSize. 1810 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1811 F->removeFnAttr(llvm::Attribute::MinSize); 1812 } else if (D->hasAttr<NakedAttr>()) { 1813 // Naked implies noinline: we should not be inlining such functions. 1814 B.addAttribute(llvm::Attribute::Naked); 1815 B.addAttribute(llvm::Attribute::NoInline); 1816 } else if (D->hasAttr<NoDuplicateAttr>()) { 1817 B.addAttribute(llvm::Attribute::NoDuplicate); 1818 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1819 // Add noinline if the function isn't always_inline. 1820 B.addAttribute(llvm::Attribute::NoInline); 1821 } else if (D->hasAttr<AlwaysInlineAttr>() && 1822 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1823 // (noinline wins over always_inline, and we can't specify both in IR) 1824 B.addAttribute(llvm::Attribute::AlwaysInline); 1825 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1826 // If we're not inlining, then force everything that isn't always_inline to 1827 // carry an explicit noinline attribute. 1828 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1829 B.addAttribute(llvm::Attribute::NoInline); 1830 } else { 1831 // Otherwise, propagate the inline hint attribute and potentially use its 1832 // absence to mark things as noinline. 1833 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1834 // Search function and template pattern redeclarations for inline. 1835 auto CheckForInline = [](const FunctionDecl *FD) { 1836 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1837 return Redecl->isInlineSpecified(); 1838 }; 1839 if (any_of(FD->redecls(), CheckRedeclForInline)) 1840 return true; 1841 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1842 if (!Pattern) 1843 return false; 1844 return any_of(Pattern->redecls(), CheckRedeclForInline); 1845 }; 1846 if (CheckForInline(FD)) { 1847 B.addAttribute(llvm::Attribute::InlineHint); 1848 } else if (CodeGenOpts.getInlining() == 1849 CodeGenOptions::OnlyHintInlining && 1850 !FD->isInlined() && 1851 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1852 B.addAttribute(llvm::Attribute::NoInline); 1853 } 1854 } 1855 } 1856 1857 // Add other optimization related attributes if we are optimizing this 1858 // function. 1859 if (!D->hasAttr<OptimizeNoneAttr>()) { 1860 if (D->hasAttr<ColdAttr>()) { 1861 if (!ShouldAddOptNone) 1862 B.addAttribute(llvm::Attribute::OptimizeForSize); 1863 B.addAttribute(llvm::Attribute::Cold); 1864 } 1865 if (D->hasAttr<HotAttr>()) 1866 B.addAttribute(llvm::Attribute::Hot); 1867 if (D->hasAttr<MinSizeAttr>()) 1868 B.addAttribute(llvm::Attribute::MinSize); 1869 } 1870 1871 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1872 1873 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1874 if (alignment) 1875 F->setAlignment(llvm::Align(alignment)); 1876 1877 if (!D->hasAttr<AlignedAttr>()) 1878 if (LangOpts.FunctionAlignment) 1879 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1880 1881 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1882 // reserve a bit for differentiating between virtual and non-virtual member 1883 // functions. If the current target's C++ ABI requires this and this is a 1884 // member function, set its alignment accordingly. 1885 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1886 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1887 F->setAlignment(llvm::Align(2)); 1888 } 1889 1890 // In the cross-dso CFI mode with canonical jump tables, we want !type 1891 // attributes on definitions only. 1892 if (CodeGenOpts.SanitizeCfiCrossDso && 1893 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1894 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1895 // Skip available_externally functions. They won't be codegen'ed in the 1896 // current module anyway. 1897 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1898 CreateFunctionTypeMetadataForIcall(FD, F); 1899 } 1900 } 1901 1902 // Emit type metadata on member functions for member function pointer checks. 1903 // These are only ever necessary on definitions; we're guaranteed that the 1904 // definition will be present in the LTO unit as a result of LTO visibility. 1905 auto *MD = dyn_cast<CXXMethodDecl>(D); 1906 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1907 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1908 llvm::Metadata *Id = 1909 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1910 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1911 F->addTypeMetadata(0, Id); 1912 } 1913 } 1914 } 1915 1916 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1917 llvm::Function *F) { 1918 if (D->hasAttr<StrictFPAttr>()) { 1919 llvm::AttrBuilder FuncAttrs; 1920 FuncAttrs.addAttribute("strictfp"); 1921 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1922 } 1923 } 1924 1925 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1926 const Decl *D = GD.getDecl(); 1927 if (dyn_cast_or_null<NamedDecl>(D)) 1928 setGVProperties(GV, GD); 1929 else 1930 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1931 1932 if (D && D->hasAttr<UsedAttr>()) 1933 addUsedOrCompilerUsedGlobal(GV); 1934 1935 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1936 const auto *VD = cast<VarDecl>(D); 1937 if (VD->getType().isConstQualified() && 1938 VD->getStorageDuration() == SD_Static) 1939 addUsedOrCompilerUsedGlobal(GV); 1940 } 1941 } 1942 1943 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1944 llvm::AttrBuilder &Attrs) { 1945 // Add target-cpu and target-features attributes to functions. If 1946 // we have a decl for the function and it has a target attribute then 1947 // parse that and add it to the feature set. 1948 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1949 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1950 std::vector<std::string> Features; 1951 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1952 FD = FD ? FD->getMostRecentDecl() : FD; 1953 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1954 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1955 bool AddedAttr = false; 1956 if (TD || SD) { 1957 llvm::StringMap<bool> FeatureMap; 1958 getContext().getFunctionFeatureMap(FeatureMap, GD); 1959 1960 // Produce the canonical string for this set of features. 1961 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1962 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1963 1964 // Now add the target-cpu and target-features to the function. 1965 // While we populated the feature map above, we still need to 1966 // get and parse the target attribute so we can get the cpu for 1967 // the function. 1968 if (TD) { 1969 ParsedTargetAttr ParsedAttr = TD->parse(); 1970 if (!ParsedAttr.Architecture.empty() && 1971 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1972 TargetCPU = ParsedAttr.Architecture; 1973 TuneCPU = ""; // Clear the tune CPU. 1974 } 1975 if (!ParsedAttr.Tune.empty() && 1976 getTarget().isValidCPUName(ParsedAttr.Tune)) 1977 TuneCPU = ParsedAttr.Tune; 1978 } 1979 } else { 1980 // Otherwise just add the existing target cpu and target features to the 1981 // function. 1982 Features = getTarget().getTargetOpts().Features; 1983 } 1984 1985 if (!TargetCPU.empty()) { 1986 Attrs.addAttribute("target-cpu", TargetCPU); 1987 AddedAttr = true; 1988 } 1989 if (!TuneCPU.empty()) { 1990 Attrs.addAttribute("tune-cpu", TuneCPU); 1991 AddedAttr = true; 1992 } 1993 if (!Features.empty()) { 1994 llvm::sort(Features); 1995 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1996 AddedAttr = true; 1997 } 1998 1999 return AddedAttr; 2000 } 2001 2002 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2003 llvm::GlobalObject *GO) { 2004 const Decl *D = GD.getDecl(); 2005 SetCommonAttributes(GD, GO); 2006 2007 if (D) { 2008 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2009 if (D->hasAttr<RetainAttr>()) 2010 addUsedGlobal(GV); 2011 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2012 GV->addAttribute("bss-section", SA->getName()); 2013 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2014 GV->addAttribute("data-section", SA->getName()); 2015 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2016 GV->addAttribute("rodata-section", SA->getName()); 2017 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2018 GV->addAttribute("relro-section", SA->getName()); 2019 } 2020 2021 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2022 if (D->hasAttr<RetainAttr>()) 2023 addUsedGlobal(F); 2024 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2025 if (!D->getAttr<SectionAttr>()) 2026 F->addFnAttr("implicit-section-name", SA->getName()); 2027 2028 llvm::AttrBuilder Attrs; 2029 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2030 // We know that GetCPUAndFeaturesAttributes will always have the 2031 // newest set, since it has the newest possible FunctionDecl, so the 2032 // new ones should replace the old. 2033 llvm::AttrBuilder RemoveAttrs; 2034 RemoveAttrs.addAttribute("target-cpu"); 2035 RemoveAttrs.addAttribute("target-features"); 2036 RemoveAttrs.addAttribute("tune-cpu"); 2037 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 2038 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 2039 } 2040 } 2041 2042 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2043 GO->setSection(CSA->getName()); 2044 else if (const auto *SA = D->getAttr<SectionAttr>()) 2045 GO->setSection(SA->getName()); 2046 } 2047 2048 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2049 } 2050 2051 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2052 llvm::Function *F, 2053 const CGFunctionInfo &FI) { 2054 const Decl *D = GD.getDecl(); 2055 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2056 SetLLVMFunctionAttributesForDefinition(D, F); 2057 2058 F->setLinkage(llvm::Function::InternalLinkage); 2059 2060 setNonAliasAttributes(GD, F); 2061 } 2062 2063 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2064 // Set linkage and visibility in case we never see a definition. 2065 LinkageInfo LV = ND->getLinkageAndVisibility(); 2066 // Don't set internal linkage on declarations. 2067 // "extern_weak" is overloaded in LLVM; we probably should have 2068 // separate linkage types for this. 2069 if (isExternallyVisible(LV.getLinkage()) && 2070 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2071 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2072 } 2073 2074 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2075 llvm::Function *F) { 2076 // Only if we are checking indirect calls. 2077 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2078 return; 2079 2080 // Non-static class methods are handled via vtable or member function pointer 2081 // checks elsewhere. 2082 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2083 return; 2084 2085 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2086 F->addTypeMetadata(0, MD); 2087 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2088 2089 // Emit a hash-based bit set entry for cross-DSO calls. 2090 if (CodeGenOpts.SanitizeCfiCrossDso) 2091 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2092 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2093 } 2094 2095 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2096 bool IsIncompleteFunction, 2097 bool IsThunk) { 2098 2099 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2100 // If this is an intrinsic function, set the function's attributes 2101 // to the intrinsic's attributes. 2102 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2103 return; 2104 } 2105 2106 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2107 2108 if (!IsIncompleteFunction) 2109 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2110 IsThunk); 2111 2112 // Add the Returned attribute for "this", except for iOS 5 and earlier 2113 // where substantial code, including the libstdc++ dylib, was compiled with 2114 // GCC and does not actually return "this". 2115 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2116 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2117 assert(!F->arg_empty() && 2118 F->arg_begin()->getType() 2119 ->canLosslesslyBitCastTo(F->getReturnType()) && 2120 "unexpected this return"); 2121 F->addAttribute(1, llvm::Attribute::Returned); 2122 } 2123 2124 // Only a few attributes are set on declarations; these may later be 2125 // overridden by a definition. 2126 2127 setLinkageForGV(F, FD); 2128 setGVProperties(F, FD); 2129 2130 // Setup target-specific attributes. 2131 if (!IsIncompleteFunction && F->isDeclaration()) 2132 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2133 2134 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2135 F->setSection(CSA->getName()); 2136 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2137 F->setSection(SA->getName()); 2138 2139 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2140 if (FD->isInlineBuiltinDeclaration()) { 2141 const FunctionDecl *FDBody; 2142 bool HasBody = FD->hasBody(FDBody); 2143 (void)HasBody; 2144 assert(HasBody && "Inline builtin declarations should always have an " 2145 "available body!"); 2146 if (shouldEmitFunction(FDBody)) 2147 F->addAttribute(llvm::AttributeList::FunctionIndex, 2148 llvm::Attribute::NoBuiltin); 2149 } 2150 2151 if (FD->isReplaceableGlobalAllocationFunction()) { 2152 // A replaceable global allocation function does not act like a builtin by 2153 // default, only if it is invoked by a new-expression or delete-expression. 2154 F->addAttribute(llvm::AttributeList::FunctionIndex, 2155 llvm::Attribute::NoBuiltin); 2156 } 2157 2158 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2159 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2160 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2161 if (MD->isVirtual()) 2162 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2163 2164 // Don't emit entries for function declarations in the cross-DSO mode. This 2165 // is handled with better precision by the receiving DSO. But if jump tables 2166 // are non-canonical then we need type metadata in order to produce the local 2167 // jump table. 2168 if (!CodeGenOpts.SanitizeCfiCrossDso || 2169 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2170 CreateFunctionTypeMetadataForIcall(FD, F); 2171 2172 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2173 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2174 2175 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2176 // Annotate the callback behavior as metadata: 2177 // - The callback callee (as argument number). 2178 // - The callback payloads (as argument numbers). 2179 llvm::LLVMContext &Ctx = F->getContext(); 2180 llvm::MDBuilder MDB(Ctx); 2181 2182 // The payload indices are all but the first one in the encoding. The first 2183 // identifies the callback callee. 2184 int CalleeIdx = *CB->encoding_begin(); 2185 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2186 F->addMetadata(llvm::LLVMContext::MD_callback, 2187 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2188 CalleeIdx, PayloadIndices, 2189 /* VarArgsArePassed */ false)})); 2190 } 2191 } 2192 2193 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2194 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2195 "Only globals with definition can force usage."); 2196 LLVMUsed.emplace_back(GV); 2197 } 2198 2199 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2200 assert(!GV->isDeclaration() && 2201 "Only globals with definition can force usage."); 2202 LLVMCompilerUsed.emplace_back(GV); 2203 } 2204 2205 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2206 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2207 "Only globals with definition can force usage."); 2208 if (getTriple().isOSBinFormatELF()) 2209 LLVMCompilerUsed.emplace_back(GV); 2210 else 2211 LLVMUsed.emplace_back(GV); 2212 } 2213 2214 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2215 std::vector<llvm::WeakTrackingVH> &List) { 2216 // Don't create llvm.used if there is no need. 2217 if (List.empty()) 2218 return; 2219 2220 // Convert List to what ConstantArray needs. 2221 SmallVector<llvm::Constant*, 8> UsedArray; 2222 UsedArray.resize(List.size()); 2223 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2224 UsedArray[i] = 2225 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2226 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2227 } 2228 2229 if (UsedArray.empty()) 2230 return; 2231 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2232 2233 auto *GV = new llvm::GlobalVariable( 2234 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2235 llvm::ConstantArray::get(ATy, UsedArray), Name); 2236 2237 GV->setSection("llvm.metadata"); 2238 } 2239 2240 void CodeGenModule::emitLLVMUsed() { 2241 emitUsed(*this, "llvm.used", LLVMUsed); 2242 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2243 } 2244 2245 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2246 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2247 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2248 } 2249 2250 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2251 llvm::SmallString<32> Opt; 2252 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2253 if (Opt.empty()) 2254 return; 2255 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2256 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2257 } 2258 2259 void CodeGenModule::AddDependentLib(StringRef Lib) { 2260 auto &C = getLLVMContext(); 2261 if (getTarget().getTriple().isOSBinFormatELF()) { 2262 ELFDependentLibraries.push_back( 2263 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2264 return; 2265 } 2266 2267 llvm::SmallString<24> Opt; 2268 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2269 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2270 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2271 } 2272 2273 /// Add link options implied by the given module, including modules 2274 /// it depends on, using a postorder walk. 2275 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2276 SmallVectorImpl<llvm::MDNode *> &Metadata, 2277 llvm::SmallPtrSet<Module *, 16> &Visited) { 2278 // Import this module's parent. 2279 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2280 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2281 } 2282 2283 // Import this module's dependencies. 2284 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2285 if (Visited.insert(Mod->Imports[I - 1]).second) 2286 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2287 } 2288 2289 // Add linker options to link against the libraries/frameworks 2290 // described by this module. 2291 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2292 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2293 2294 // For modules that use export_as for linking, use that module 2295 // name instead. 2296 if (Mod->UseExportAsModuleLinkName) 2297 return; 2298 2299 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2300 // Link against a framework. Frameworks are currently Darwin only, so we 2301 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2302 if (Mod->LinkLibraries[I-1].IsFramework) { 2303 llvm::Metadata *Args[2] = { 2304 llvm::MDString::get(Context, "-framework"), 2305 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2306 2307 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2308 continue; 2309 } 2310 2311 // Link against a library. 2312 if (IsELF) { 2313 llvm::Metadata *Args[2] = { 2314 llvm::MDString::get(Context, "lib"), 2315 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2316 }; 2317 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2318 } else { 2319 llvm::SmallString<24> Opt; 2320 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2321 Mod->LinkLibraries[I - 1].Library, Opt); 2322 auto *OptString = llvm::MDString::get(Context, Opt); 2323 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2324 } 2325 } 2326 } 2327 2328 void CodeGenModule::EmitModuleLinkOptions() { 2329 // Collect the set of all of the modules we want to visit to emit link 2330 // options, which is essentially the imported modules and all of their 2331 // non-explicit child modules. 2332 llvm::SetVector<clang::Module *> LinkModules; 2333 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2334 SmallVector<clang::Module *, 16> Stack; 2335 2336 // Seed the stack with imported modules. 2337 for (Module *M : ImportedModules) { 2338 // Do not add any link flags when an implementation TU of a module imports 2339 // a header of that same module. 2340 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2341 !getLangOpts().isCompilingModule()) 2342 continue; 2343 if (Visited.insert(M).second) 2344 Stack.push_back(M); 2345 } 2346 2347 // Find all of the modules to import, making a little effort to prune 2348 // non-leaf modules. 2349 while (!Stack.empty()) { 2350 clang::Module *Mod = Stack.pop_back_val(); 2351 2352 bool AnyChildren = false; 2353 2354 // Visit the submodules of this module. 2355 for (const auto &SM : Mod->submodules()) { 2356 // Skip explicit children; they need to be explicitly imported to be 2357 // linked against. 2358 if (SM->IsExplicit) 2359 continue; 2360 2361 if (Visited.insert(SM).second) { 2362 Stack.push_back(SM); 2363 AnyChildren = true; 2364 } 2365 } 2366 2367 // We didn't find any children, so add this module to the list of 2368 // modules to link against. 2369 if (!AnyChildren) { 2370 LinkModules.insert(Mod); 2371 } 2372 } 2373 2374 // Add link options for all of the imported modules in reverse topological 2375 // order. We don't do anything to try to order import link flags with respect 2376 // to linker options inserted by things like #pragma comment(). 2377 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2378 Visited.clear(); 2379 for (Module *M : LinkModules) 2380 if (Visited.insert(M).second) 2381 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2382 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2383 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2384 2385 // Add the linker options metadata flag. 2386 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2387 for (auto *MD : LinkerOptionsMetadata) 2388 NMD->addOperand(MD); 2389 } 2390 2391 void CodeGenModule::EmitDeferred() { 2392 // Emit deferred declare target declarations. 2393 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2394 getOpenMPRuntime().emitDeferredTargetDecls(); 2395 2396 // Emit code for any potentially referenced deferred decls. Since a 2397 // previously unused static decl may become used during the generation of code 2398 // for a static function, iterate until no changes are made. 2399 2400 if (!DeferredVTables.empty()) { 2401 EmitDeferredVTables(); 2402 2403 // Emitting a vtable doesn't directly cause more vtables to 2404 // become deferred, although it can cause functions to be 2405 // emitted that then need those vtables. 2406 assert(DeferredVTables.empty()); 2407 } 2408 2409 // Emit CUDA/HIP static device variables referenced by host code only. 2410 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2411 // needed for further handling. 2412 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2413 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2414 DeferredDeclsToEmit.push_back(V); 2415 2416 // Stop if we're out of both deferred vtables and deferred declarations. 2417 if (DeferredDeclsToEmit.empty()) 2418 return; 2419 2420 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2421 // work, it will not interfere with this. 2422 std::vector<GlobalDecl> CurDeclsToEmit; 2423 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2424 2425 for (GlobalDecl &D : CurDeclsToEmit) { 2426 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2427 // to get GlobalValue with exactly the type we need, not something that 2428 // might had been created for another decl with the same mangled name but 2429 // different type. 2430 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2431 GetAddrOfGlobal(D, ForDefinition)); 2432 2433 // In case of different address spaces, we may still get a cast, even with 2434 // IsForDefinition equal to true. Query mangled names table to get 2435 // GlobalValue. 2436 if (!GV) 2437 GV = GetGlobalValue(getMangledName(D)); 2438 2439 // Make sure GetGlobalValue returned non-null. 2440 assert(GV); 2441 2442 // Check to see if we've already emitted this. This is necessary 2443 // for a couple of reasons: first, decls can end up in the 2444 // deferred-decls queue multiple times, and second, decls can end 2445 // up with definitions in unusual ways (e.g. by an extern inline 2446 // function acquiring a strong function redefinition). Just 2447 // ignore these cases. 2448 if (!GV->isDeclaration()) 2449 continue; 2450 2451 // If this is OpenMP, check if it is legal to emit this global normally. 2452 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2453 continue; 2454 2455 // Otherwise, emit the definition and move on to the next one. 2456 EmitGlobalDefinition(D, GV); 2457 2458 // If we found out that we need to emit more decls, do that recursively. 2459 // This has the advantage that the decls are emitted in a DFS and related 2460 // ones are close together, which is convenient for testing. 2461 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2462 EmitDeferred(); 2463 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2464 } 2465 } 2466 } 2467 2468 void CodeGenModule::EmitVTablesOpportunistically() { 2469 // Try to emit external vtables as available_externally if they have emitted 2470 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2471 // is not allowed to create new references to things that need to be emitted 2472 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2473 2474 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2475 && "Only emit opportunistic vtables with optimizations"); 2476 2477 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2478 assert(getVTables().isVTableExternal(RD) && 2479 "This queue should only contain external vtables"); 2480 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2481 VTables.GenerateClassData(RD); 2482 } 2483 OpportunisticVTables.clear(); 2484 } 2485 2486 void CodeGenModule::EmitGlobalAnnotations() { 2487 if (Annotations.empty()) 2488 return; 2489 2490 // Create a new global variable for the ConstantStruct in the Module. 2491 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2492 Annotations[0]->getType(), Annotations.size()), Annotations); 2493 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2494 llvm::GlobalValue::AppendingLinkage, 2495 Array, "llvm.global.annotations"); 2496 gv->setSection(AnnotationSection); 2497 } 2498 2499 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2500 llvm::Constant *&AStr = AnnotationStrings[Str]; 2501 if (AStr) 2502 return AStr; 2503 2504 // Not found yet, create a new global. 2505 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2506 auto *gv = 2507 new llvm::GlobalVariable(getModule(), s->getType(), true, 2508 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2509 gv->setSection(AnnotationSection); 2510 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2511 AStr = gv; 2512 return gv; 2513 } 2514 2515 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2516 SourceManager &SM = getContext().getSourceManager(); 2517 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2518 if (PLoc.isValid()) 2519 return EmitAnnotationString(PLoc.getFilename()); 2520 return EmitAnnotationString(SM.getBufferName(Loc)); 2521 } 2522 2523 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2524 SourceManager &SM = getContext().getSourceManager(); 2525 PresumedLoc PLoc = SM.getPresumedLoc(L); 2526 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2527 SM.getExpansionLineNumber(L); 2528 return llvm::ConstantInt::get(Int32Ty, LineNo); 2529 } 2530 2531 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2532 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2533 if (Exprs.empty()) 2534 return llvm::ConstantPointerNull::get(Int8PtrTy); 2535 2536 llvm::FoldingSetNodeID ID; 2537 for (Expr *E : Exprs) { 2538 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2539 } 2540 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2541 if (Lookup) 2542 return Lookup; 2543 2544 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2545 LLVMArgs.reserve(Exprs.size()); 2546 ConstantEmitter ConstEmiter(*this); 2547 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2548 const auto *CE = cast<clang::ConstantExpr>(E); 2549 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2550 CE->getType()); 2551 }); 2552 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2553 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2554 llvm::GlobalValue::PrivateLinkage, Struct, 2555 ".args"); 2556 GV->setSection(AnnotationSection); 2557 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2558 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2559 2560 Lookup = Bitcasted; 2561 return Bitcasted; 2562 } 2563 2564 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2565 const AnnotateAttr *AA, 2566 SourceLocation L) { 2567 // Get the globals for file name, annotation, and the line number. 2568 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2569 *UnitGV = EmitAnnotationUnit(L), 2570 *LineNoCst = EmitAnnotationLineNo(L), 2571 *Args = EmitAnnotationArgs(AA); 2572 2573 llvm::Constant *ASZeroGV = GV; 2574 if (GV->getAddressSpace() != 0) { 2575 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2576 GV, GV->getValueType()->getPointerTo(0)); 2577 } 2578 2579 // Create the ConstantStruct for the global annotation. 2580 llvm::Constant *Fields[] = { 2581 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2582 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2583 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2584 LineNoCst, 2585 Args, 2586 }; 2587 return llvm::ConstantStruct::getAnon(Fields); 2588 } 2589 2590 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2591 llvm::GlobalValue *GV) { 2592 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2593 // Get the struct elements for these annotations. 2594 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2595 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2596 } 2597 2598 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2599 SourceLocation Loc) const { 2600 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2601 // NoSanitize by function name. 2602 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2603 return true; 2604 // NoSanitize by location. 2605 if (Loc.isValid()) 2606 return NoSanitizeL.containsLocation(Kind, Loc); 2607 // If location is unknown, this may be a compiler-generated function. Assume 2608 // it's located in the main file. 2609 auto &SM = Context.getSourceManager(); 2610 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2611 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2612 } 2613 return false; 2614 } 2615 2616 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2617 SourceLocation Loc, QualType Ty, 2618 StringRef Category) const { 2619 // For now globals can be ignored only in ASan and KASan. 2620 const SanitizerMask EnabledAsanMask = 2621 LangOpts.Sanitize.Mask & 2622 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2623 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2624 SanitizerKind::MemTag); 2625 if (!EnabledAsanMask) 2626 return false; 2627 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2628 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2629 return true; 2630 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2631 return true; 2632 // Check global type. 2633 if (!Ty.isNull()) { 2634 // Drill down the array types: if global variable of a fixed type is 2635 // not sanitized, we also don't instrument arrays of them. 2636 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2637 Ty = AT->getElementType(); 2638 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2639 // Only record types (classes, structs etc.) are ignored. 2640 if (Ty->isRecordType()) { 2641 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2642 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2643 return true; 2644 } 2645 } 2646 return false; 2647 } 2648 2649 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2650 StringRef Category) const { 2651 const auto &XRayFilter = getContext().getXRayFilter(); 2652 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2653 auto Attr = ImbueAttr::NONE; 2654 if (Loc.isValid()) 2655 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2656 if (Attr == ImbueAttr::NONE) 2657 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2658 switch (Attr) { 2659 case ImbueAttr::NONE: 2660 return false; 2661 case ImbueAttr::ALWAYS: 2662 Fn->addFnAttr("function-instrument", "xray-always"); 2663 break; 2664 case ImbueAttr::ALWAYS_ARG1: 2665 Fn->addFnAttr("function-instrument", "xray-always"); 2666 Fn->addFnAttr("xray-log-args", "1"); 2667 break; 2668 case ImbueAttr::NEVER: 2669 Fn->addFnAttr("function-instrument", "xray-never"); 2670 break; 2671 } 2672 return true; 2673 } 2674 2675 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2676 SourceLocation Loc) const { 2677 const auto &ProfileList = getContext().getProfileList(); 2678 // If the profile list is empty, then instrument everything. 2679 if (ProfileList.isEmpty()) 2680 return false; 2681 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2682 // First, check the function name. 2683 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2684 if (V.hasValue()) 2685 return *V; 2686 // Next, check the source location. 2687 if (Loc.isValid()) { 2688 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2689 if (V.hasValue()) 2690 return *V; 2691 } 2692 // If location is unknown, this may be a compiler-generated function. Assume 2693 // it's located in the main file. 2694 auto &SM = Context.getSourceManager(); 2695 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2696 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2697 if (V.hasValue()) 2698 return *V; 2699 } 2700 return ProfileList.getDefault(); 2701 } 2702 2703 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2704 // Never defer when EmitAllDecls is specified. 2705 if (LangOpts.EmitAllDecls) 2706 return true; 2707 2708 if (CodeGenOpts.KeepStaticConsts) { 2709 const auto *VD = dyn_cast<VarDecl>(Global); 2710 if (VD && VD->getType().isConstQualified() && 2711 VD->getStorageDuration() == SD_Static) 2712 return true; 2713 } 2714 2715 return getContext().DeclMustBeEmitted(Global); 2716 } 2717 2718 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2719 // In OpenMP 5.0 variables and function may be marked as 2720 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2721 // that they must be emitted on the host/device. To be sure we need to have 2722 // seen a declare target with an explicit mentioning of the function, we know 2723 // we have if the level of the declare target attribute is -1. Note that we 2724 // check somewhere else if we should emit this at all. 2725 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2726 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2727 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2728 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2729 return false; 2730 } 2731 2732 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2733 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2734 // Implicit template instantiations may change linkage if they are later 2735 // explicitly instantiated, so they should not be emitted eagerly. 2736 return false; 2737 } 2738 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2739 if (Context.getInlineVariableDefinitionKind(VD) == 2740 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2741 // A definition of an inline constexpr static data member may change 2742 // linkage later if it's redeclared outside the class. 2743 return false; 2744 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2745 // codegen for global variables, because they may be marked as threadprivate. 2746 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2747 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2748 !isTypeConstant(Global->getType(), false) && 2749 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2750 return false; 2751 2752 return true; 2753 } 2754 2755 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2756 StringRef Name = getMangledName(GD); 2757 2758 // The UUID descriptor should be pointer aligned. 2759 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2760 2761 // Look for an existing global. 2762 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2763 return ConstantAddress(GV, Alignment); 2764 2765 ConstantEmitter Emitter(*this); 2766 llvm::Constant *Init; 2767 2768 APValue &V = GD->getAsAPValue(); 2769 if (!V.isAbsent()) { 2770 // If possible, emit the APValue version of the initializer. In particular, 2771 // this gets the type of the constant right. 2772 Init = Emitter.emitForInitializer( 2773 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2774 } else { 2775 // As a fallback, directly construct the constant. 2776 // FIXME: This may get padding wrong under esoteric struct layout rules. 2777 // MSVC appears to create a complete type 'struct __s_GUID' that it 2778 // presumably uses to represent these constants. 2779 MSGuidDecl::Parts Parts = GD->getParts(); 2780 llvm::Constant *Fields[4] = { 2781 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2782 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2783 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2784 llvm::ConstantDataArray::getRaw( 2785 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2786 Int8Ty)}; 2787 Init = llvm::ConstantStruct::getAnon(Fields); 2788 } 2789 2790 auto *GV = new llvm::GlobalVariable( 2791 getModule(), Init->getType(), 2792 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2793 if (supportsCOMDAT()) 2794 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2795 setDSOLocal(GV); 2796 2797 llvm::Constant *Addr = GV; 2798 if (!V.isAbsent()) { 2799 Emitter.finalize(GV); 2800 } else { 2801 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2802 Addr = llvm::ConstantExpr::getBitCast( 2803 GV, Ty->getPointerTo(GV->getAddressSpace())); 2804 } 2805 return ConstantAddress(Addr, Alignment); 2806 } 2807 2808 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2809 const TemplateParamObjectDecl *TPO) { 2810 StringRef Name = getMangledName(TPO); 2811 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2812 2813 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2814 return ConstantAddress(GV, Alignment); 2815 2816 ConstantEmitter Emitter(*this); 2817 llvm::Constant *Init = Emitter.emitForInitializer( 2818 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2819 2820 if (!Init) { 2821 ErrorUnsupported(TPO, "template parameter object"); 2822 return ConstantAddress::invalid(); 2823 } 2824 2825 auto *GV = new llvm::GlobalVariable( 2826 getModule(), Init->getType(), 2827 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2828 if (supportsCOMDAT()) 2829 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2830 Emitter.finalize(GV); 2831 2832 return ConstantAddress(GV, Alignment); 2833 } 2834 2835 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2836 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2837 assert(AA && "No alias?"); 2838 2839 CharUnits Alignment = getContext().getDeclAlign(VD); 2840 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2841 2842 // See if there is already something with the target's name in the module. 2843 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2844 if (Entry) { 2845 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2846 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2847 return ConstantAddress(Ptr, Alignment); 2848 } 2849 2850 llvm::Constant *Aliasee; 2851 if (isa<llvm::FunctionType>(DeclTy)) 2852 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2853 GlobalDecl(cast<FunctionDecl>(VD)), 2854 /*ForVTable=*/false); 2855 else 2856 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr); 2857 2858 auto *F = cast<llvm::GlobalValue>(Aliasee); 2859 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2860 WeakRefReferences.insert(F); 2861 2862 return ConstantAddress(Aliasee, Alignment); 2863 } 2864 2865 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2866 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2867 2868 // Weak references don't produce any output by themselves. 2869 if (Global->hasAttr<WeakRefAttr>()) 2870 return; 2871 2872 // If this is an alias definition (which otherwise looks like a declaration) 2873 // emit it now. 2874 if (Global->hasAttr<AliasAttr>()) 2875 return EmitAliasDefinition(GD); 2876 2877 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2878 if (Global->hasAttr<IFuncAttr>()) 2879 return emitIFuncDefinition(GD); 2880 2881 // If this is a cpu_dispatch multiversion function, emit the resolver. 2882 if (Global->hasAttr<CPUDispatchAttr>()) 2883 return emitCPUDispatchDefinition(GD); 2884 2885 // If this is CUDA, be selective about which declarations we emit. 2886 if (LangOpts.CUDA) { 2887 if (LangOpts.CUDAIsDevice) { 2888 if (!Global->hasAttr<CUDADeviceAttr>() && 2889 !Global->hasAttr<CUDAGlobalAttr>() && 2890 !Global->hasAttr<CUDAConstantAttr>() && 2891 !Global->hasAttr<CUDASharedAttr>() && 2892 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2893 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2894 return; 2895 } else { 2896 // We need to emit host-side 'shadows' for all global 2897 // device-side variables because the CUDA runtime needs their 2898 // size and host-side address in order to provide access to 2899 // their device-side incarnations. 2900 2901 // So device-only functions are the only things we skip. 2902 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2903 Global->hasAttr<CUDADeviceAttr>()) 2904 return; 2905 2906 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2907 "Expected Variable or Function"); 2908 } 2909 } 2910 2911 if (LangOpts.OpenMP) { 2912 // If this is OpenMP, check if it is legal to emit this global normally. 2913 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2914 return; 2915 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2916 if (MustBeEmitted(Global)) 2917 EmitOMPDeclareReduction(DRD); 2918 return; 2919 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2920 if (MustBeEmitted(Global)) 2921 EmitOMPDeclareMapper(DMD); 2922 return; 2923 } 2924 } 2925 2926 // Ignore declarations, they will be emitted on their first use. 2927 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2928 // Forward declarations are emitted lazily on first use. 2929 if (!FD->doesThisDeclarationHaveABody()) { 2930 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2931 return; 2932 2933 StringRef MangledName = getMangledName(GD); 2934 2935 // Compute the function info and LLVM type. 2936 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2937 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2938 2939 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2940 /*DontDefer=*/false); 2941 return; 2942 } 2943 } else { 2944 const auto *VD = cast<VarDecl>(Global); 2945 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2946 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2947 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2948 if (LangOpts.OpenMP) { 2949 // Emit declaration of the must-be-emitted declare target variable. 2950 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2951 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2952 bool UnifiedMemoryEnabled = 2953 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2954 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2955 !UnifiedMemoryEnabled) { 2956 (void)GetAddrOfGlobalVar(VD); 2957 } else { 2958 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2959 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2960 UnifiedMemoryEnabled)) && 2961 "Link clause or to clause with unified memory expected."); 2962 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2963 } 2964 2965 return; 2966 } 2967 } 2968 // If this declaration may have caused an inline variable definition to 2969 // change linkage, make sure that it's emitted. 2970 if (Context.getInlineVariableDefinitionKind(VD) == 2971 ASTContext::InlineVariableDefinitionKind::Strong) 2972 GetAddrOfGlobalVar(VD); 2973 return; 2974 } 2975 } 2976 2977 // Defer code generation to first use when possible, e.g. if this is an inline 2978 // function. If the global must always be emitted, do it eagerly if possible 2979 // to benefit from cache locality. 2980 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2981 // Emit the definition if it can't be deferred. 2982 EmitGlobalDefinition(GD); 2983 return; 2984 } 2985 2986 // If we're deferring emission of a C++ variable with an 2987 // initializer, remember the order in which it appeared in the file. 2988 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2989 cast<VarDecl>(Global)->hasInit()) { 2990 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2991 CXXGlobalInits.push_back(nullptr); 2992 } 2993 2994 StringRef MangledName = getMangledName(GD); 2995 if (GetGlobalValue(MangledName) != nullptr) { 2996 // The value has already been used and should therefore be emitted. 2997 addDeferredDeclToEmit(GD); 2998 } else if (MustBeEmitted(Global)) { 2999 // The value must be emitted, but cannot be emitted eagerly. 3000 assert(!MayBeEmittedEagerly(Global)); 3001 addDeferredDeclToEmit(GD); 3002 } else { 3003 // Otherwise, remember that we saw a deferred decl with this name. The 3004 // first use of the mangled name will cause it to move into 3005 // DeferredDeclsToEmit. 3006 DeferredDecls[MangledName] = GD; 3007 } 3008 } 3009 3010 // Check if T is a class type with a destructor that's not dllimport. 3011 static bool HasNonDllImportDtor(QualType T) { 3012 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3013 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3014 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3015 return true; 3016 3017 return false; 3018 } 3019 3020 namespace { 3021 struct FunctionIsDirectlyRecursive 3022 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3023 const StringRef Name; 3024 const Builtin::Context &BI; 3025 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3026 : Name(N), BI(C) {} 3027 3028 bool VisitCallExpr(const CallExpr *E) { 3029 const FunctionDecl *FD = E->getDirectCallee(); 3030 if (!FD) 3031 return false; 3032 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3033 if (Attr && Name == Attr->getLabel()) 3034 return true; 3035 unsigned BuiltinID = FD->getBuiltinID(); 3036 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3037 return false; 3038 StringRef BuiltinName = BI.getName(BuiltinID); 3039 if (BuiltinName.startswith("__builtin_") && 3040 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3041 return true; 3042 } 3043 return false; 3044 } 3045 3046 bool VisitStmt(const Stmt *S) { 3047 for (const Stmt *Child : S->children()) 3048 if (Child && this->Visit(Child)) 3049 return true; 3050 return false; 3051 } 3052 }; 3053 3054 // Make sure we're not referencing non-imported vars or functions. 3055 struct DLLImportFunctionVisitor 3056 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3057 bool SafeToInline = true; 3058 3059 bool shouldVisitImplicitCode() const { return true; } 3060 3061 bool VisitVarDecl(VarDecl *VD) { 3062 if (VD->getTLSKind()) { 3063 // A thread-local variable cannot be imported. 3064 SafeToInline = false; 3065 return SafeToInline; 3066 } 3067 3068 // A variable definition might imply a destructor call. 3069 if (VD->isThisDeclarationADefinition()) 3070 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3071 3072 return SafeToInline; 3073 } 3074 3075 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3076 if (const auto *D = E->getTemporary()->getDestructor()) 3077 SafeToInline = D->hasAttr<DLLImportAttr>(); 3078 return SafeToInline; 3079 } 3080 3081 bool VisitDeclRefExpr(DeclRefExpr *E) { 3082 ValueDecl *VD = E->getDecl(); 3083 if (isa<FunctionDecl>(VD)) 3084 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3085 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3086 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3087 return SafeToInline; 3088 } 3089 3090 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3091 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3092 return SafeToInline; 3093 } 3094 3095 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3096 CXXMethodDecl *M = E->getMethodDecl(); 3097 if (!M) { 3098 // Call through a pointer to member function. This is safe to inline. 3099 SafeToInline = true; 3100 } else { 3101 SafeToInline = M->hasAttr<DLLImportAttr>(); 3102 } 3103 return SafeToInline; 3104 } 3105 3106 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3107 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3108 return SafeToInline; 3109 } 3110 3111 bool VisitCXXNewExpr(CXXNewExpr *E) { 3112 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3113 return SafeToInline; 3114 } 3115 }; 3116 } 3117 3118 // isTriviallyRecursive - Check if this function calls another 3119 // decl that, because of the asm attribute or the other decl being a builtin, 3120 // ends up pointing to itself. 3121 bool 3122 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3123 StringRef Name; 3124 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3125 // asm labels are a special kind of mangling we have to support. 3126 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3127 if (!Attr) 3128 return false; 3129 Name = Attr->getLabel(); 3130 } else { 3131 Name = FD->getName(); 3132 } 3133 3134 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3135 const Stmt *Body = FD->getBody(); 3136 return Body ? Walker.Visit(Body) : false; 3137 } 3138 3139 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3140 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3141 return true; 3142 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3143 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3144 return false; 3145 3146 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3147 // Check whether it would be safe to inline this dllimport function. 3148 DLLImportFunctionVisitor Visitor; 3149 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3150 if (!Visitor.SafeToInline) 3151 return false; 3152 3153 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3154 // Implicit destructor invocations aren't captured in the AST, so the 3155 // check above can't see them. Check for them manually here. 3156 for (const Decl *Member : Dtor->getParent()->decls()) 3157 if (isa<FieldDecl>(Member)) 3158 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3159 return false; 3160 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3161 if (HasNonDllImportDtor(B.getType())) 3162 return false; 3163 } 3164 } 3165 3166 // PR9614. Avoid cases where the source code is lying to us. An available 3167 // externally function should have an equivalent function somewhere else, 3168 // but a function that calls itself through asm label/`__builtin_` trickery is 3169 // clearly not equivalent to the real implementation. 3170 // This happens in glibc's btowc and in some configure checks. 3171 return !isTriviallyRecursive(F); 3172 } 3173 3174 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3175 return CodeGenOpts.OptimizationLevel > 0; 3176 } 3177 3178 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3179 llvm::GlobalValue *GV) { 3180 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3181 3182 if (FD->isCPUSpecificMultiVersion()) { 3183 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3184 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3185 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3186 // Requires multiple emits. 3187 } else 3188 EmitGlobalFunctionDefinition(GD, GV); 3189 } 3190 3191 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3192 const auto *D = cast<ValueDecl>(GD.getDecl()); 3193 3194 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3195 Context.getSourceManager(), 3196 "Generating code for declaration"); 3197 3198 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3199 // At -O0, don't generate IR for functions with available_externally 3200 // linkage. 3201 if (!shouldEmitFunction(GD)) 3202 return; 3203 3204 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3205 std::string Name; 3206 llvm::raw_string_ostream OS(Name); 3207 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3208 /*Qualified=*/true); 3209 return Name; 3210 }); 3211 3212 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3213 // Make sure to emit the definition(s) before we emit the thunks. 3214 // This is necessary for the generation of certain thunks. 3215 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3216 ABI->emitCXXStructor(GD); 3217 else if (FD->isMultiVersion()) 3218 EmitMultiVersionFunctionDefinition(GD, GV); 3219 else 3220 EmitGlobalFunctionDefinition(GD, GV); 3221 3222 if (Method->isVirtual()) 3223 getVTables().EmitThunks(GD); 3224 3225 return; 3226 } 3227 3228 if (FD->isMultiVersion()) 3229 return EmitMultiVersionFunctionDefinition(GD, GV); 3230 return EmitGlobalFunctionDefinition(GD, GV); 3231 } 3232 3233 if (const auto *VD = dyn_cast<VarDecl>(D)) 3234 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3235 3236 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3237 } 3238 3239 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3240 llvm::Function *NewFn); 3241 3242 static unsigned 3243 TargetMVPriority(const TargetInfo &TI, 3244 const CodeGenFunction::MultiVersionResolverOption &RO) { 3245 unsigned Priority = 0; 3246 for (StringRef Feat : RO.Conditions.Features) 3247 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3248 3249 if (!RO.Conditions.Architecture.empty()) 3250 Priority = std::max( 3251 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3252 return Priority; 3253 } 3254 3255 void CodeGenModule::emitMultiVersionFunctions() { 3256 std::vector<GlobalDecl> MVFuncsToEmit; 3257 MultiVersionFuncs.swap(MVFuncsToEmit); 3258 for (GlobalDecl GD : MVFuncsToEmit) { 3259 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3260 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3261 getContext().forEachMultiversionedFunctionVersion( 3262 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3263 GlobalDecl CurGD{ 3264 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3265 StringRef MangledName = getMangledName(CurGD); 3266 llvm::Constant *Func = GetGlobalValue(MangledName); 3267 if (!Func) { 3268 if (CurFD->isDefined()) { 3269 EmitGlobalFunctionDefinition(CurGD, nullptr); 3270 Func = GetGlobalValue(MangledName); 3271 } else { 3272 const CGFunctionInfo &FI = 3273 getTypes().arrangeGlobalDeclaration(GD); 3274 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3275 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3276 /*DontDefer=*/false, ForDefinition); 3277 } 3278 assert(Func && "This should have just been created"); 3279 } 3280 3281 const auto *TA = CurFD->getAttr<TargetAttr>(); 3282 llvm::SmallVector<StringRef, 8> Feats; 3283 TA->getAddedFeatures(Feats); 3284 3285 Options.emplace_back(cast<llvm::Function>(Func), 3286 TA->getArchitecture(), Feats); 3287 }); 3288 3289 llvm::Function *ResolverFunc; 3290 const TargetInfo &TI = getTarget(); 3291 3292 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3293 ResolverFunc = cast<llvm::Function>( 3294 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3295 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3296 } else { 3297 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3298 } 3299 3300 if (supportsCOMDAT()) 3301 ResolverFunc->setComdat( 3302 getModule().getOrInsertComdat(ResolverFunc->getName())); 3303 3304 llvm::stable_sort( 3305 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3306 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3307 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3308 }); 3309 CodeGenFunction CGF(*this); 3310 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3311 } 3312 3313 // Ensure that any additions to the deferred decls list caused by emitting a 3314 // variant are emitted. This can happen when the variant itself is inline and 3315 // calls a function without linkage. 3316 if (!MVFuncsToEmit.empty()) 3317 EmitDeferred(); 3318 3319 // Ensure that any additions to the multiversion funcs list from either the 3320 // deferred decls or the multiversion functions themselves are emitted. 3321 if (!MultiVersionFuncs.empty()) 3322 emitMultiVersionFunctions(); 3323 } 3324 3325 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3326 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3327 assert(FD && "Not a FunctionDecl?"); 3328 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3329 assert(DD && "Not a cpu_dispatch Function?"); 3330 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3331 3332 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3333 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3334 DeclTy = getTypes().GetFunctionType(FInfo); 3335 } 3336 3337 StringRef ResolverName = getMangledName(GD); 3338 3339 llvm::Type *ResolverType; 3340 GlobalDecl ResolverGD; 3341 if (getTarget().supportsIFunc()) 3342 ResolverType = llvm::FunctionType::get( 3343 llvm::PointerType::get(DeclTy, 3344 Context.getTargetAddressSpace(FD->getType())), 3345 false); 3346 else { 3347 ResolverType = DeclTy; 3348 ResolverGD = GD; 3349 } 3350 3351 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3352 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3353 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3354 if (supportsCOMDAT()) 3355 ResolverFunc->setComdat( 3356 getModule().getOrInsertComdat(ResolverFunc->getName())); 3357 3358 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3359 const TargetInfo &Target = getTarget(); 3360 unsigned Index = 0; 3361 for (const IdentifierInfo *II : DD->cpus()) { 3362 // Get the name of the target function so we can look it up/create it. 3363 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3364 getCPUSpecificMangling(*this, II->getName()); 3365 3366 llvm::Constant *Func = GetGlobalValue(MangledName); 3367 3368 if (!Func) { 3369 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3370 if (ExistingDecl.getDecl() && 3371 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3372 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3373 Func = GetGlobalValue(MangledName); 3374 } else { 3375 if (!ExistingDecl.getDecl()) 3376 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3377 3378 Func = GetOrCreateLLVMFunction( 3379 MangledName, DeclTy, ExistingDecl, 3380 /*ForVTable=*/false, /*DontDefer=*/true, 3381 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3382 } 3383 } 3384 3385 llvm::SmallVector<StringRef, 32> Features; 3386 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3387 llvm::transform(Features, Features.begin(), 3388 [](StringRef Str) { return Str.substr(1); }); 3389 Features.erase(std::remove_if( 3390 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3391 return !Target.validateCpuSupports(Feat); 3392 }), Features.end()); 3393 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3394 ++Index; 3395 } 3396 3397 llvm::stable_sort( 3398 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3399 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3400 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3401 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3402 }); 3403 3404 // If the list contains multiple 'default' versions, such as when it contains 3405 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3406 // always run on at least a 'pentium'). We do this by deleting the 'least 3407 // advanced' (read, lowest mangling letter). 3408 while (Options.size() > 1 && 3409 CodeGenFunction::GetX86CpuSupportsMask( 3410 (Options.end() - 2)->Conditions.Features) == 0) { 3411 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3412 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3413 if (LHSName.compare(RHSName) < 0) 3414 Options.erase(Options.end() - 2); 3415 else 3416 Options.erase(Options.end() - 1); 3417 } 3418 3419 CodeGenFunction CGF(*this); 3420 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3421 3422 if (getTarget().supportsIFunc()) { 3423 std::string AliasName = getMangledNameImpl( 3424 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3425 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3426 if (!AliasFunc) { 3427 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3428 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3429 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3430 auto *GA = llvm::GlobalAlias::create( 3431 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3432 GA->setLinkage(llvm::Function::WeakODRLinkage); 3433 SetCommonAttributes(GD, GA); 3434 } 3435 } 3436 } 3437 3438 /// If a dispatcher for the specified mangled name is not in the module, create 3439 /// and return an llvm Function with the specified type. 3440 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3441 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3442 std::string MangledName = 3443 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3444 3445 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3446 // a separate resolver). 3447 std::string ResolverName = MangledName; 3448 if (getTarget().supportsIFunc()) 3449 ResolverName += ".ifunc"; 3450 else if (FD->isTargetMultiVersion()) 3451 ResolverName += ".resolver"; 3452 3453 // If this already exists, just return that one. 3454 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3455 return ResolverGV; 3456 3457 // Since this is the first time we've created this IFunc, make sure 3458 // that we put this multiversioned function into the list to be 3459 // replaced later if necessary (target multiversioning only). 3460 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3461 MultiVersionFuncs.push_back(GD); 3462 3463 if (getTarget().supportsIFunc()) { 3464 llvm::Type *ResolverType = llvm::FunctionType::get( 3465 llvm::PointerType::get( 3466 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3467 false); 3468 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3469 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3470 /*ForVTable=*/false); 3471 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3472 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3473 GIF->setName(ResolverName); 3474 SetCommonAttributes(FD, GIF); 3475 3476 return GIF; 3477 } 3478 3479 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3480 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3481 assert(isa<llvm::GlobalValue>(Resolver) && 3482 "Resolver should be created for the first time"); 3483 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3484 return Resolver; 3485 } 3486 3487 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3488 /// module, create and return an llvm Function with the specified type. If there 3489 /// is something in the module with the specified name, return it potentially 3490 /// bitcasted to the right type. 3491 /// 3492 /// If D is non-null, it specifies a decl that correspond to this. This is used 3493 /// to set the attributes on the function when it is first created. 3494 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3495 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3496 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3497 ForDefinition_t IsForDefinition) { 3498 const Decl *D = GD.getDecl(); 3499 3500 // Any attempts to use a MultiVersion function should result in retrieving 3501 // the iFunc instead. Name Mangling will handle the rest of the changes. 3502 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3503 // For the device mark the function as one that should be emitted. 3504 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3505 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3506 !DontDefer && !IsForDefinition) { 3507 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3508 GlobalDecl GDDef; 3509 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3510 GDDef = GlobalDecl(CD, GD.getCtorType()); 3511 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3512 GDDef = GlobalDecl(DD, GD.getDtorType()); 3513 else 3514 GDDef = GlobalDecl(FDDef); 3515 EmitGlobal(GDDef); 3516 } 3517 } 3518 3519 if (FD->isMultiVersion()) { 3520 if (FD->hasAttr<TargetAttr>()) 3521 UpdateMultiVersionNames(GD, FD); 3522 if (!IsForDefinition) 3523 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3524 } 3525 } 3526 3527 // Lookup the entry, lazily creating it if necessary. 3528 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3529 if (Entry) { 3530 if (WeakRefReferences.erase(Entry)) { 3531 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3532 if (FD && !FD->hasAttr<WeakAttr>()) 3533 Entry->setLinkage(llvm::Function::ExternalLinkage); 3534 } 3535 3536 // Handle dropped DLL attributes. 3537 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3538 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3539 setDSOLocal(Entry); 3540 } 3541 3542 // If there are two attempts to define the same mangled name, issue an 3543 // error. 3544 if (IsForDefinition && !Entry->isDeclaration()) { 3545 GlobalDecl OtherGD; 3546 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3547 // to make sure that we issue an error only once. 3548 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3549 (GD.getCanonicalDecl().getDecl() != 3550 OtherGD.getCanonicalDecl().getDecl()) && 3551 DiagnosedConflictingDefinitions.insert(GD).second) { 3552 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3553 << MangledName; 3554 getDiags().Report(OtherGD.getDecl()->getLocation(), 3555 diag::note_previous_definition); 3556 } 3557 } 3558 3559 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3560 (Entry->getValueType() == Ty)) { 3561 return Entry; 3562 } 3563 3564 // Make sure the result is of the correct type. 3565 // (If function is requested for a definition, we always need to create a new 3566 // function, not just return a bitcast.) 3567 if (!IsForDefinition) 3568 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3569 } 3570 3571 // This function doesn't have a complete type (for example, the return 3572 // type is an incomplete struct). Use a fake type instead, and make 3573 // sure not to try to set attributes. 3574 bool IsIncompleteFunction = false; 3575 3576 llvm::FunctionType *FTy; 3577 if (isa<llvm::FunctionType>(Ty)) { 3578 FTy = cast<llvm::FunctionType>(Ty); 3579 } else { 3580 FTy = llvm::FunctionType::get(VoidTy, false); 3581 IsIncompleteFunction = true; 3582 } 3583 3584 llvm::Function *F = 3585 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3586 Entry ? StringRef() : MangledName, &getModule()); 3587 3588 // If we already created a function with the same mangled name (but different 3589 // type) before, take its name and add it to the list of functions to be 3590 // replaced with F at the end of CodeGen. 3591 // 3592 // This happens if there is a prototype for a function (e.g. "int f()") and 3593 // then a definition of a different type (e.g. "int f(int x)"). 3594 if (Entry) { 3595 F->takeName(Entry); 3596 3597 // This might be an implementation of a function without a prototype, in 3598 // which case, try to do special replacement of calls which match the new 3599 // prototype. The really key thing here is that we also potentially drop 3600 // arguments from the call site so as to make a direct call, which makes the 3601 // inliner happier and suppresses a number of optimizer warnings (!) about 3602 // dropping arguments. 3603 if (!Entry->use_empty()) { 3604 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3605 Entry->removeDeadConstantUsers(); 3606 } 3607 3608 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3609 F, Entry->getValueType()->getPointerTo()); 3610 addGlobalValReplacement(Entry, BC); 3611 } 3612 3613 assert(F->getName() == MangledName && "name was uniqued!"); 3614 if (D) 3615 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3616 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3617 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3618 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3619 } 3620 3621 if (!DontDefer) { 3622 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3623 // each other bottoming out with the base dtor. Therefore we emit non-base 3624 // dtors on usage, even if there is no dtor definition in the TU. 3625 if (D && isa<CXXDestructorDecl>(D) && 3626 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3627 GD.getDtorType())) 3628 addDeferredDeclToEmit(GD); 3629 3630 // This is the first use or definition of a mangled name. If there is a 3631 // deferred decl with this name, remember that we need to emit it at the end 3632 // of the file. 3633 auto DDI = DeferredDecls.find(MangledName); 3634 if (DDI != DeferredDecls.end()) { 3635 // Move the potentially referenced deferred decl to the 3636 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3637 // don't need it anymore). 3638 addDeferredDeclToEmit(DDI->second); 3639 DeferredDecls.erase(DDI); 3640 3641 // Otherwise, there are cases we have to worry about where we're 3642 // using a declaration for which we must emit a definition but where 3643 // we might not find a top-level definition: 3644 // - member functions defined inline in their classes 3645 // - friend functions defined inline in some class 3646 // - special member functions with implicit definitions 3647 // If we ever change our AST traversal to walk into class methods, 3648 // this will be unnecessary. 3649 // 3650 // We also don't emit a definition for a function if it's going to be an 3651 // entry in a vtable, unless it's already marked as used. 3652 } else if (getLangOpts().CPlusPlus && D) { 3653 // Look for a declaration that's lexically in a record. 3654 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3655 FD = FD->getPreviousDecl()) { 3656 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3657 if (FD->doesThisDeclarationHaveABody()) { 3658 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3659 break; 3660 } 3661 } 3662 } 3663 } 3664 } 3665 3666 // Make sure the result is of the requested type. 3667 if (!IsIncompleteFunction) { 3668 assert(F->getFunctionType() == Ty); 3669 return F; 3670 } 3671 3672 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3673 return llvm::ConstantExpr::getBitCast(F, PTy); 3674 } 3675 3676 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3677 /// non-null, then this function will use the specified type if it has to 3678 /// create it (this occurs when we see a definition of the function). 3679 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3680 llvm::Type *Ty, 3681 bool ForVTable, 3682 bool DontDefer, 3683 ForDefinition_t IsForDefinition) { 3684 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3685 "consteval function should never be emitted"); 3686 // If there was no specific requested type, just convert it now. 3687 if (!Ty) { 3688 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3689 Ty = getTypes().ConvertType(FD->getType()); 3690 } 3691 3692 // Devirtualized destructor calls may come through here instead of via 3693 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3694 // of the complete destructor when necessary. 3695 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3696 if (getTarget().getCXXABI().isMicrosoft() && 3697 GD.getDtorType() == Dtor_Complete && 3698 DD->getParent()->getNumVBases() == 0) 3699 GD = GlobalDecl(DD, Dtor_Base); 3700 } 3701 3702 StringRef MangledName = getMangledName(GD); 3703 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3704 /*IsThunk=*/false, llvm::AttributeList(), 3705 IsForDefinition); 3706 // Returns kernel handle for HIP kernel stub function. 3707 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3708 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3709 auto *Handle = getCUDARuntime().getKernelHandle( 3710 cast<llvm::Function>(F->stripPointerCasts()), GD); 3711 if (IsForDefinition) 3712 return F; 3713 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3714 } 3715 return F; 3716 } 3717 3718 static const FunctionDecl * 3719 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3720 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3721 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3722 3723 IdentifierInfo &CII = C.Idents.get(Name); 3724 for (const auto *Result : DC->lookup(&CII)) 3725 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3726 return FD; 3727 3728 if (!C.getLangOpts().CPlusPlus) 3729 return nullptr; 3730 3731 // Demangle the premangled name from getTerminateFn() 3732 IdentifierInfo &CXXII = 3733 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3734 ? C.Idents.get("terminate") 3735 : C.Idents.get(Name); 3736 3737 for (const auto &N : {"__cxxabiv1", "std"}) { 3738 IdentifierInfo &NS = C.Idents.get(N); 3739 for (const auto *Result : DC->lookup(&NS)) { 3740 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3741 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3742 for (const auto *Result : LSD->lookup(&NS)) 3743 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3744 break; 3745 3746 if (ND) 3747 for (const auto *Result : ND->lookup(&CXXII)) 3748 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3749 return FD; 3750 } 3751 } 3752 3753 return nullptr; 3754 } 3755 3756 /// CreateRuntimeFunction - Create a new runtime function with the specified 3757 /// type and name. 3758 llvm::FunctionCallee 3759 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3760 llvm::AttributeList ExtraAttrs, bool Local, 3761 bool AssumeConvergent) { 3762 if (AssumeConvergent) { 3763 ExtraAttrs = 3764 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3765 llvm::Attribute::Convergent); 3766 } 3767 3768 llvm::Constant *C = 3769 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3770 /*DontDefer=*/false, /*IsThunk=*/false, 3771 ExtraAttrs); 3772 3773 if (auto *F = dyn_cast<llvm::Function>(C)) { 3774 if (F->empty()) { 3775 F->setCallingConv(getRuntimeCC()); 3776 3777 // In Windows Itanium environments, try to mark runtime functions 3778 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3779 // will link their standard library statically or dynamically. Marking 3780 // functions imported when they are not imported can cause linker errors 3781 // and warnings. 3782 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3783 !getCodeGenOpts().LTOVisibilityPublicStd) { 3784 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3785 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3786 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3787 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3788 } 3789 } 3790 setDSOLocal(F); 3791 } 3792 } 3793 3794 return {FTy, C}; 3795 } 3796 3797 /// isTypeConstant - Determine whether an object of this type can be emitted 3798 /// as a constant. 3799 /// 3800 /// If ExcludeCtor is true, the duration when the object's constructor runs 3801 /// will not be considered. The caller will need to verify that the object is 3802 /// not written to during its construction. 3803 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3804 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3805 return false; 3806 3807 if (Context.getLangOpts().CPlusPlus) { 3808 if (const CXXRecordDecl *Record 3809 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3810 return ExcludeCtor && !Record->hasMutableFields() && 3811 Record->hasTrivialDestructor(); 3812 } 3813 3814 return true; 3815 } 3816 3817 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3818 /// create and return an llvm GlobalVariable with the specified type and address 3819 /// space. If there is something in the module with the specified name, return 3820 /// it potentially bitcasted to the right type. 3821 /// 3822 /// If D is non-null, it specifies a decl that correspond to this. This is used 3823 /// to set the attributes on the global when it is first created. 3824 /// 3825 /// If IsForDefinition is true, it is guaranteed that an actual global with 3826 /// type Ty will be returned, not conversion of a variable with the same 3827 /// mangled name but some other type. 3828 llvm::Constant * 3829 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 3830 unsigned AddrSpace, const VarDecl *D, 3831 ForDefinition_t IsForDefinition) { 3832 // Lookup the entry, lazily creating it if necessary. 3833 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3834 if (Entry) { 3835 if (WeakRefReferences.erase(Entry)) { 3836 if (D && !D->hasAttr<WeakAttr>()) 3837 Entry->setLinkage(llvm::Function::ExternalLinkage); 3838 } 3839 3840 // Handle dropped DLL attributes. 3841 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3842 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3843 3844 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3845 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3846 3847 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace) 3848 return Entry; 3849 3850 // If there are two attempts to define the same mangled name, issue an 3851 // error. 3852 if (IsForDefinition && !Entry->isDeclaration()) { 3853 GlobalDecl OtherGD; 3854 const VarDecl *OtherD; 3855 3856 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3857 // to make sure that we issue an error only once. 3858 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3859 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3860 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3861 OtherD->hasInit() && 3862 DiagnosedConflictingDefinitions.insert(D).second) { 3863 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3864 << MangledName; 3865 getDiags().Report(OtherGD.getDecl()->getLocation(), 3866 diag::note_previous_definition); 3867 } 3868 } 3869 3870 // Make sure the result is of the correct type. 3871 if (Entry->getType()->getAddressSpace() != AddrSpace) { 3872 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 3873 Ty->getPointerTo(AddrSpace)); 3874 } 3875 3876 // (If global is requested for a definition, we always need to create a new 3877 // global, not just return a bitcast.) 3878 if (!IsForDefinition) 3879 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace)); 3880 } 3881 3882 auto DAddrSpace = GetGlobalVarAddressSpace(D); 3883 auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace); 3884 3885 auto *GV = new llvm::GlobalVariable( 3886 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 3887 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 3888 TargetAddrSpace); 3889 3890 // If we already created a global with the same mangled name (but different 3891 // type) before, take its name and remove it from its parent. 3892 if (Entry) { 3893 GV->takeName(Entry); 3894 3895 if (!Entry->use_empty()) { 3896 llvm::Constant *NewPtrForOldDecl = 3897 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3898 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3899 } 3900 3901 Entry->eraseFromParent(); 3902 } 3903 3904 // This is the first use or definition of a mangled name. If there is a 3905 // deferred decl with this name, remember that we need to emit it at the end 3906 // of the file. 3907 auto DDI = DeferredDecls.find(MangledName); 3908 if (DDI != DeferredDecls.end()) { 3909 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3910 // list, and remove it from DeferredDecls (since we don't need it anymore). 3911 addDeferredDeclToEmit(DDI->second); 3912 DeferredDecls.erase(DDI); 3913 } 3914 3915 // Handle things which are present even on external declarations. 3916 if (D) { 3917 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3918 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3919 3920 // FIXME: This code is overly simple and should be merged with other global 3921 // handling. 3922 GV->setConstant(isTypeConstant(D->getType(), false)); 3923 3924 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3925 3926 setLinkageForGV(GV, D); 3927 3928 if (D->getTLSKind()) { 3929 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3930 CXXThreadLocals.push_back(D); 3931 setTLSMode(GV, *D); 3932 } 3933 3934 setGVProperties(GV, D); 3935 3936 // If required by the ABI, treat declarations of static data members with 3937 // inline initializers as definitions. 3938 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3939 EmitGlobalVarDefinition(D); 3940 } 3941 3942 // Emit section information for extern variables. 3943 if (D->hasExternalStorage()) { 3944 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3945 GV->setSection(SA->getName()); 3946 } 3947 3948 // Handle XCore specific ABI requirements. 3949 if (getTriple().getArch() == llvm::Triple::xcore && 3950 D->getLanguageLinkage() == CLanguageLinkage && 3951 D->getType().isConstant(Context) && 3952 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3953 GV->setSection(".cp.rodata"); 3954 3955 // Check if we a have a const declaration with an initializer, we may be 3956 // able to emit it as available_externally to expose it's value to the 3957 // optimizer. 3958 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3959 D->getType().isConstQualified() && !GV->hasInitializer() && 3960 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3961 const auto *Record = 3962 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3963 bool HasMutableFields = Record && Record->hasMutableFields(); 3964 if (!HasMutableFields) { 3965 const VarDecl *InitDecl; 3966 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3967 if (InitExpr) { 3968 ConstantEmitter emitter(*this); 3969 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3970 if (Init) { 3971 auto *InitType = Init->getType(); 3972 if (GV->getValueType() != InitType) { 3973 // The type of the initializer does not match the definition. 3974 // This happens when an initializer has a different type from 3975 // the type of the global (because of padding at the end of a 3976 // structure for instance). 3977 GV->setName(StringRef()); 3978 // Make a new global with the correct type, this is now guaranteed 3979 // to work. 3980 auto *NewGV = cast<llvm::GlobalVariable>( 3981 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3982 ->stripPointerCasts()); 3983 3984 // Erase the old global, since it is no longer used. 3985 GV->eraseFromParent(); 3986 GV = NewGV; 3987 } else { 3988 GV->setInitializer(Init); 3989 GV->setConstant(true); 3990 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3991 } 3992 emitter.finalize(GV); 3993 } 3994 } 3995 } 3996 } 3997 } 3998 3999 if (GV->isDeclaration()) { 4000 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4001 // External HIP managed variables needed to be recorded for transformation 4002 // in both device and host compilations. 4003 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4004 D->hasExternalStorage()) 4005 getCUDARuntime().handleVarRegistration(D, *GV); 4006 } 4007 4008 LangAS ExpectedAS = 4009 D ? D->getType().getAddressSpace() 4010 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4011 assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace); 4012 if (DAddrSpace != ExpectedAS) { 4013 return getTargetCodeGenInfo().performAddrSpaceCast( 4014 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace)); 4015 } 4016 4017 return GV; 4018 } 4019 4020 llvm::Constant * 4021 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4022 const Decl *D = GD.getDecl(); 4023 4024 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4025 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4026 /*DontDefer=*/false, IsForDefinition); 4027 4028 if (isa<CXXMethodDecl>(D)) { 4029 auto FInfo = 4030 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4031 auto Ty = getTypes().GetFunctionType(*FInfo); 4032 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4033 IsForDefinition); 4034 } 4035 4036 if (isa<FunctionDecl>(D)) { 4037 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4038 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4039 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4040 IsForDefinition); 4041 } 4042 4043 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4044 } 4045 4046 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4047 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4048 unsigned Alignment) { 4049 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4050 llvm::GlobalVariable *OldGV = nullptr; 4051 4052 if (GV) { 4053 // Check if the variable has the right type. 4054 if (GV->getValueType() == Ty) 4055 return GV; 4056 4057 // Because C++ name mangling, the only way we can end up with an already 4058 // existing global with the same name is if it has been declared extern "C". 4059 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4060 OldGV = GV; 4061 } 4062 4063 // Create a new variable. 4064 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4065 Linkage, nullptr, Name); 4066 4067 if (OldGV) { 4068 // Replace occurrences of the old variable if needed. 4069 GV->takeName(OldGV); 4070 4071 if (!OldGV->use_empty()) { 4072 llvm::Constant *NewPtrForOldDecl = 4073 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4074 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4075 } 4076 4077 OldGV->eraseFromParent(); 4078 } 4079 4080 if (supportsCOMDAT() && GV->isWeakForLinker() && 4081 !GV->hasAvailableExternallyLinkage()) 4082 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4083 4084 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4085 4086 return GV; 4087 } 4088 4089 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4090 /// given global variable. If Ty is non-null and if the global doesn't exist, 4091 /// then it will be created with the specified type instead of whatever the 4092 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4093 /// that an actual global with type Ty will be returned, not conversion of a 4094 /// variable with the same mangled name but some other type. 4095 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4096 llvm::Type *Ty, 4097 ForDefinition_t IsForDefinition) { 4098 assert(D->hasGlobalStorage() && "Not a global variable"); 4099 QualType ASTTy = D->getType(); 4100 if (!Ty) 4101 Ty = getTypes().ConvertTypeForMem(ASTTy); 4102 4103 StringRef MangledName = getMangledName(D); 4104 return GetOrCreateLLVMGlobal(MangledName, Ty, 4105 getContext().getTargetAddressSpace(ASTTy), D, 4106 IsForDefinition); 4107 } 4108 4109 /// CreateRuntimeVariable - Create a new runtime global variable with the 4110 /// specified type and name. 4111 llvm::Constant * 4112 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4113 StringRef Name) { 4114 auto AddrSpace = 4115 getContext().getLangOpts().OpenCL 4116 ? getContext().getTargetAddressSpace(LangAS::opencl_global) 4117 : 0; 4118 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4119 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4120 return Ret; 4121 } 4122 4123 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4124 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4125 4126 StringRef MangledName = getMangledName(D); 4127 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4128 4129 // We already have a definition, not declaration, with the same mangled name. 4130 // Emitting of declaration is not required (and actually overwrites emitted 4131 // definition). 4132 if (GV && !GV->isDeclaration()) 4133 return; 4134 4135 // If we have not seen a reference to this variable yet, place it into the 4136 // deferred declarations table to be emitted if needed later. 4137 if (!MustBeEmitted(D) && !GV) { 4138 DeferredDecls[MangledName] = D; 4139 return; 4140 } 4141 4142 // The tentative definition is the only definition. 4143 EmitGlobalVarDefinition(D); 4144 } 4145 4146 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4147 EmitExternalVarDeclaration(D); 4148 } 4149 4150 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4151 return Context.toCharUnitsFromBits( 4152 getDataLayout().getTypeStoreSizeInBits(Ty)); 4153 } 4154 4155 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4156 LangAS AddrSpace = LangAS::Default; 4157 if (LangOpts.OpenCL) { 4158 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4159 assert(AddrSpace == LangAS::opencl_global || 4160 AddrSpace == LangAS::opencl_global_device || 4161 AddrSpace == LangAS::opencl_global_host || 4162 AddrSpace == LangAS::opencl_constant || 4163 AddrSpace == LangAS::opencl_local || 4164 AddrSpace >= LangAS::FirstTargetAddressSpace); 4165 return AddrSpace; 4166 } 4167 4168 if (LangOpts.SYCLIsDevice && 4169 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4170 return LangAS::sycl_global; 4171 4172 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4173 if (D && D->hasAttr<CUDAConstantAttr>()) 4174 return LangAS::cuda_constant; 4175 else if (D && D->hasAttr<CUDASharedAttr>()) 4176 return LangAS::cuda_shared; 4177 else if (D && D->hasAttr<CUDADeviceAttr>()) 4178 return LangAS::cuda_device; 4179 else if (D && D->getType().isConstQualified()) 4180 return LangAS::cuda_constant; 4181 else 4182 return LangAS::cuda_device; 4183 } 4184 4185 if (LangOpts.OpenMP) { 4186 LangAS AS; 4187 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4188 return AS; 4189 } 4190 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4191 } 4192 4193 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4194 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4195 if (LangOpts.OpenCL) 4196 return LangAS::opencl_constant; 4197 if (LangOpts.SYCLIsDevice) 4198 return LangAS::sycl_global; 4199 if (auto AS = getTarget().getConstantAddressSpace()) 4200 return AS.getValue(); 4201 return LangAS::Default; 4202 } 4203 4204 // In address space agnostic languages, string literals are in default address 4205 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4206 // emitted in constant address space in LLVM IR. To be consistent with other 4207 // parts of AST, string literal global variables in constant address space 4208 // need to be casted to default address space before being put into address 4209 // map and referenced by other part of CodeGen. 4210 // In OpenCL, string literals are in constant address space in AST, therefore 4211 // they should not be casted to default address space. 4212 static llvm::Constant * 4213 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4214 llvm::GlobalVariable *GV) { 4215 llvm::Constant *Cast = GV; 4216 if (!CGM.getLangOpts().OpenCL) { 4217 auto AS = CGM.GetGlobalConstantAddressSpace(); 4218 if (AS != LangAS::Default) 4219 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4220 CGM, GV, AS, LangAS::Default, 4221 GV->getValueType()->getPointerTo( 4222 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4223 } 4224 return Cast; 4225 } 4226 4227 template<typename SomeDecl> 4228 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4229 llvm::GlobalValue *GV) { 4230 if (!getLangOpts().CPlusPlus) 4231 return; 4232 4233 // Must have 'used' attribute, or else inline assembly can't rely on 4234 // the name existing. 4235 if (!D->template hasAttr<UsedAttr>()) 4236 return; 4237 4238 // Must have internal linkage and an ordinary name. 4239 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4240 return; 4241 4242 // Must be in an extern "C" context. Entities declared directly within 4243 // a record are not extern "C" even if the record is in such a context. 4244 const SomeDecl *First = D->getFirstDecl(); 4245 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4246 return; 4247 4248 // OK, this is an internal linkage entity inside an extern "C" linkage 4249 // specification. Make a note of that so we can give it the "expected" 4250 // mangled name if nothing else is using that name. 4251 std::pair<StaticExternCMap::iterator, bool> R = 4252 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4253 4254 // If we have multiple internal linkage entities with the same name 4255 // in extern "C" regions, none of them gets that name. 4256 if (!R.second) 4257 R.first->second = nullptr; 4258 } 4259 4260 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4261 if (!CGM.supportsCOMDAT()) 4262 return false; 4263 4264 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4265 // them being "merged" by the COMDAT Folding linker optimization. 4266 if (D.hasAttr<CUDAGlobalAttr>()) 4267 return false; 4268 4269 if (D.hasAttr<SelectAnyAttr>()) 4270 return true; 4271 4272 GVALinkage Linkage; 4273 if (auto *VD = dyn_cast<VarDecl>(&D)) 4274 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4275 else 4276 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4277 4278 switch (Linkage) { 4279 case GVA_Internal: 4280 case GVA_AvailableExternally: 4281 case GVA_StrongExternal: 4282 return false; 4283 case GVA_DiscardableODR: 4284 case GVA_StrongODR: 4285 return true; 4286 } 4287 llvm_unreachable("No such linkage"); 4288 } 4289 4290 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4291 llvm::GlobalObject &GO) { 4292 if (!shouldBeInCOMDAT(*this, D)) 4293 return; 4294 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4295 } 4296 4297 /// Pass IsTentative as true if you want to create a tentative definition. 4298 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4299 bool IsTentative) { 4300 // OpenCL global variables of sampler type are translated to function calls, 4301 // therefore no need to be translated. 4302 QualType ASTTy = D->getType(); 4303 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4304 return; 4305 4306 // If this is OpenMP device, check if it is legal to emit this global 4307 // normally. 4308 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4309 OpenMPRuntime->emitTargetGlobalVariable(D)) 4310 return; 4311 4312 llvm::TrackingVH<llvm::Constant> Init; 4313 bool NeedsGlobalCtor = false; 4314 bool NeedsGlobalDtor = 4315 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4316 4317 const VarDecl *InitDecl; 4318 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4319 4320 Optional<ConstantEmitter> emitter; 4321 4322 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4323 // as part of their declaration." Sema has already checked for 4324 // error cases, so we just need to set Init to UndefValue. 4325 bool IsCUDASharedVar = 4326 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4327 // Shadows of initialized device-side global variables are also left 4328 // undefined. 4329 // Managed Variables should be initialized on both host side and device side. 4330 bool IsCUDAShadowVar = 4331 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4332 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4333 D->hasAttr<CUDASharedAttr>()); 4334 bool IsCUDADeviceShadowVar = 4335 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4336 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4337 D->getType()->isCUDADeviceBuiltinTextureType()); 4338 if (getLangOpts().CUDA && 4339 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4340 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4341 else if (D->hasAttr<LoaderUninitializedAttr>()) 4342 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4343 else if (!InitExpr) { 4344 // This is a tentative definition; tentative definitions are 4345 // implicitly initialized with { 0 }. 4346 // 4347 // Note that tentative definitions are only emitted at the end of 4348 // a translation unit, so they should never have incomplete 4349 // type. In addition, EmitTentativeDefinition makes sure that we 4350 // never attempt to emit a tentative definition if a real one 4351 // exists. A use may still exists, however, so we still may need 4352 // to do a RAUW. 4353 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4354 Init = EmitNullConstant(D->getType()); 4355 } else { 4356 initializedGlobalDecl = GlobalDecl(D); 4357 emitter.emplace(*this); 4358 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4359 if (!Initializer) { 4360 QualType T = InitExpr->getType(); 4361 if (D->getType()->isReferenceType()) 4362 T = D->getType(); 4363 4364 if (getLangOpts().CPlusPlus) { 4365 Init = EmitNullConstant(T); 4366 NeedsGlobalCtor = true; 4367 } else { 4368 ErrorUnsupported(D, "static initializer"); 4369 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4370 } 4371 } else { 4372 Init = Initializer; 4373 // We don't need an initializer, so remove the entry for the delayed 4374 // initializer position (just in case this entry was delayed) if we 4375 // also don't need to register a destructor. 4376 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4377 DelayedCXXInitPosition.erase(D); 4378 } 4379 } 4380 4381 llvm::Type* InitType = Init->getType(); 4382 llvm::Constant *Entry = 4383 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4384 4385 // Strip off pointer casts if we got them. 4386 Entry = Entry->stripPointerCasts(); 4387 4388 // Entry is now either a Function or GlobalVariable. 4389 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4390 4391 // We have a definition after a declaration with the wrong type. 4392 // We must make a new GlobalVariable* and update everything that used OldGV 4393 // (a declaration or tentative definition) with the new GlobalVariable* 4394 // (which will be a definition). 4395 // 4396 // This happens if there is a prototype for a global (e.g. 4397 // "extern int x[];") and then a definition of a different type (e.g. 4398 // "int x[10];"). This also happens when an initializer has a different type 4399 // from the type of the global (this happens with unions). 4400 if (!GV || GV->getValueType() != InitType || 4401 GV->getType()->getAddressSpace() != 4402 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4403 4404 // Move the old entry aside so that we'll create a new one. 4405 Entry->setName(StringRef()); 4406 4407 // Make a new global with the correct type, this is now guaranteed to work. 4408 GV = cast<llvm::GlobalVariable>( 4409 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4410 ->stripPointerCasts()); 4411 4412 // Replace all uses of the old global with the new global 4413 llvm::Constant *NewPtrForOldDecl = 4414 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4415 Entry->getType()); 4416 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4417 4418 // Erase the old global, since it is no longer used. 4419 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4420 } 4421 4422 MaybeHandleStaticInExternC(D, GV); 4423 4424 if (D->hasAttr<AnnotateAttr>()) 4425 AddGlobalAnnotations(D, GV); 4426 4427 // Set the llvm linkage type as appropriate. 4428 llvm::GlobalValue::LinkageTypes Linkage = 4429 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4430 4431 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4432 // the device. [...]" 4433 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4434 // __device__, declares a variable that: [...] 4435 // Is accessible from all the threads within the grid and from the host 4436 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4437 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4438 if (GV && LangOpts.CUDA) { 4439 if (LangOpts.CUDAIsDevice) { 4440 if (Linkage != llvm::GlobalValue::InternalLinkage && 4441 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4442 GV->setExternallyInitialized(true); 4443 } else { 4444 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4445 } 4446 getCUDARuntime().handleVarRegistration(D, *GV); 4447 } 4448 4449 GV->setInitializer(Init); 4450 if (emitter) 4451 emitter->finalize(GV); 4452 4453 // If it is safe to mark the global 'constant', do so now. 4454 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4455 isTypeConstant(D->getType(), true)); 4456 4457 // If it is in a read-only section, mark it 'constant'. 4458 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4459 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4460 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4461 GV->setConstant(true); 4462 } 4463 4464 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4465 4466 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4467 // function is only defined alongside the variable, not also alongside 4468 // callers. Normally, all accesses to a thread_local go through the 4469 // thread-wrapper in order to ensure initialization has occurred, underlying 4470 // variable will never be used other than the thread-wrapper, so it can be 4471 // converted to internal linkage. 4472 // 4473 // However, if the variable has the 'constinit' attribute, it _can_ be 4474 // referenced directly, without calling the thread-wrapper, so the linkage 4475 // must not be changed. 4476 // 4477 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4478 // weak or linkonce, the de-duplication semantics are important to preserve, 4479 // so we don't change the linkage. 4480 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4481 Linkage == llvm::GlobalValue::ExternalLinkage && 4482 Context.getTargetInfo().getTriple().isOSDarwin() && 4483 !D->hasAttr<ConstInitAttr>()) 4484 Linkage = llvm::GlobalValue::InternalLinkage; 4485 4486 GV->setLinkage(Linkage); 4487 if (D->hasAttr<DLLImportAttr>()) 4488 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4489 else if (D->hasAttr<DLLExportAttr>()) 4490 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4491 else 4492 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4493 4494 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4495 // common vars aren't constant even if declared const. 4496 GV->setConstant(false); 4497 // Tentative definition of global variables may be initialized with 4498 // non-zero null pointers. In this case they should have weak linkage 4499 // since common linkage must have zero initializer and must not have 4500 // explicit section therefore cannot have non-zero initial value. 4501 if (!GV->getInitializer()->isNullValue()) 4502 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4503 } 4504 4505 setNonAliasAttributes(D, GV); 4506 4507 if (D->getTLSKind() && !GV->isThreadLocal()) { 4508 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4509 CXXThreadLocals.push_back(D); 4510 setTLSMode(GV, *D); 4511 } 4512 4513 maybeSetTrivialComdat(*D, *GV); 4514 4515 // Emit the initializer function if necessary. 4516 if (NeedsGlobalCtor || NeedsGlobalDtor) 4517 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4518 4519 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4520 4521 // Emit global variable debug information. 4522 if (CGDebugInfo *DI = getModuleDebugInfo()) 4523 if (getCodeGenOpts().hasReducedDebugInfo()) 4524 DI->EmitGlobalVariable(GV, D); 4525 } 4526 4527 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4528 if (CGDebugInfo *DI = getModuleDebugInfo()) 4529 if (getCodeGenOpts().hasReducedDebugInfo()) { 4530 QualType ASTTy = D->getType(); 4531 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4532 llvm::Constant *GV = GetOrCreateLLVMGlobal( 4533 D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D); 4534 DI->EmitExternalVariable( 4535 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4536 } 4537 } 4538 4539 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4540 CodeGenModule &CGM, const VarDecl *D, 4541 bool NoCommon) { 4542 // Don't give variables common linkage if -fno-common was specified unless it 4543 // was overridden by a NoCommon attribute. 4544 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4545 return true; 4546 4547 // C11 6.9.2/2: 4548 // A declaration of an identifier for an object that has file scope without 4549 // an initializer, and without a storage-class specifier or with the 4550 // storage-class specifier static, constitutes a tentative definition. 4551 if (D->getInit() || D->hasExternalStorage()) 4552 return true; 4553 4554 // A variable cannot be both common and exist in a section. 4555 if (D->hasAttr<SectionAttr>()) 4556 return true; 4557 4558 // A variable cannot be both common and exist in a section. 4559 // We don't try to determine which is the right section in the front-end. 4560 // If no specialized section name is applicable, it will resort to default. 4561 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4562 D->hasAttr<PragmaClangDataSectionAttr>() || 4563 D->hasAttr<PragmaClangRelroSectionAttr>() || 4564 D->hasAttr<PragmaClangRodataSectionAttr>()) 4565 return true; 4566 4567 // Thread local vars aren't considered common linkage. 4568 if (D->getTLSKind()) 4569 return true; 4570 4571 // Tentative definitions marked with WeakImportAttr are true definitions. 4572 if (D->hasAttr<WeakImportAttr>()) 4573 return true; 4574 4575 // A variable cannot be both common and exist in a comdat. 4576 if (shouldBeInCOMDAT(CGM, *D)) 4577 return true; 4578 4579 // Declarations with a required alignment do not have common linkage in MSVC 4580 // mode. 4581 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4582 if (D->hasAttr<AlignedAttr>()) 4583 return true; 4584 QualType VarType = D->getType(); 4585 if (Context.isAlignmentRequired(VarType)) 4586 return true; 4587 4588 if (const auto *RT = VarType->getAs<RecordType>()) { 4589 const RecordDecl *RD = RT->getDecl(); 4590 for (const FieldDecl *FD : RD->fields()) { 4591 if (FD->isBitField()) 4592 continue; 4593 if (FD->hasAttr<AlignedAttr>()) 4594 return true; 4595 if (Context.isAlignmentRequired(FD->getType())) 4596 return true; 4597 } 4598 } 4599 } 4600 4601 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4602 // common symbols, so symbols with greater alignment requirements cannot be 4603 // common. 4604 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4605 // alignments for common symbols via the aligncomm directive, so this 4606 // restriction only applies to MSVC environments. 4607 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4608 Context.getTypeAlignIfKnown(D->getType()) > 4609 Context.toBits(CharUnits::fromQuantity(32))) 4610 return true; 4611 4612 return false; 4613 } 4614 4615 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4616 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4617 if (Linkage == GVA_Internal) 4618 return llvm::Function::InternalLinkage; 4619 4620 if (D->hasAttr<WeakAttr>()) { 4621 if (IsConstantVariable) 4622 return llvm::GlobalVariable::WeakODRLinkage; 4623 else 4624 return llvm::GlobalVariable::WeakAnyLinkage; 4625 } 4626 4627 if (const auto *FD = D->getAsFunction()) 4628 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4629 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4630 4631 // We are guaranteed to have a strong definition somewhere else, 4632 // so we can use available_externally linkage. 4633 if (Linkage == GVA_AvailableExternally) 4634 return llvm::GlobalValue::AvailableExternallyLinkage; 4635 4636 // Note that Apple's kernel linker doesn't support symbol 4637 // coalescing, so we need to avoid linkonce and weak linkages there. 4638 // Normally, this means we just map to internal, but for explicit 4639 // instantiations we'll map to external. 4640 4641 // In C++, the compiler has to emit a definition in every translation unit 4642 // that references the function. We should use linkonce_odr because 4643 // a) if all references in this translation unit are optimized away, we 4644 // don't need to codegen it. b) if the function persists, it needs to be 4645 // merged with other definitions. c) C++ has the ODR, so we know the 4646 // definition is dependable. 4647 if (Linkage == GVA_DiscardableODR) 4648 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4649 : llvm::Function::InternalLinkage; 4650 4651 // An explicit instantiation of a template has weak linkage, since 4652 // explicit instantiations can occur in multiple translation units 4653 // and must all be equivalent. However, we are not allowed to 4654 // throw away these explicit instantiations. 4655 // 4656 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4657 // so say that CUDA templates are either external (for kernels) or internal. 4658 // This lets llvm perform aggressive inter-procedural optimizations. For 4659 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4660 // therefore we need to follow the normal linkage paradigm. 4661 if (Linkage == GVA_StrongODR) { 4662 if (getLangOpts().AppleKext) 4663 return llvm::Function::ExternalLinkage; 4664 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4665 !getLangOpts().GPURelocatableDeviceCode) 4666 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4667 : llvm::Function::InternalLinkage; 4668 return llvm::Function::WeakODRLinkage; 4669 } 4670 4671 // C++ doesn't have tentative definitions and thus cannot have common 4672 // linkage. 4673 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4674 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4675 CodeGenOpts.NoCommon)) 4676 return llvm::GlobalVariable::CommonLinkage; 4677 4678 // selectany symbols are externally visible, so use weak instead of 4679 // linkonce. MSVC optimizes away references to const selectany globals, so 4680 // all definitions should be the same and ODR linkage should be used. 4681 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4682 if (D->hasAttr<SelectAnyAttr>()) 4683 return llvm::GlobalVariable::WeakODRLinkage; 4684 4685 // Otherwise, we have strong external linkage. 4686 assert(Linkage == GVA_StrongExternal); 4687 return llvm::GlobalVariable::ExternalLinkage; 4688 } 4689 4690 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4691 const VarDecl *VD, bool IsConstant) { 4692 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4693 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4694 } 4695 4696 /// Replace the uses of a function that was declared with a non-proto type. 4697 /// We want to silently drop extra arguments from call sites 4698 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4699 llvm::Function *newFn) { 4700 // Fast path. 4701 if (old->use_empty()) return; 4702 4703 llvm::Type *newRetTy = newFn->getReturnType(); 4704 SmallVector<llvm::Value*, 4> newArgs; 4705 4706 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4707 ui != ue; ) { 4708 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4709 llvm::User *user = use->getUser(); 4710 4711 // Recognize and replace uses of bitcasts. Most calls to 4712 // unprototyped functions will use bitcasts. 4713 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4714 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4715 replaceUsesOfNonProtoConstant(bitcast, newFn); 4716 continue; 4717 } 4718 4719 // Recognize calls to the function. 4720 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4721 if (!callSite) continue; 4722 if (!callSite->isCallee(&*use)) 4723 continue; 4724 4725 // If the return types don't match exactly, then we can't 4726 // transform this call unless it's dead. 4727 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4728 continue; 4729 4730 // Get the call site's attribute list. 4731 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4732 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4733 4734 // If the function was passed too few arguments, don't transform. 4735 unsigned newNumArgs = newFn->arg_size(); 4736 if (callSite->arg_size() < newNumArgs) 4737 continue; 4738 4739 // If extra arguments were passed, we silently drop them. 4740 // If any of the types mismatch, we don't transform. 4741 unsigned argNo = 0; 4742 bool dontTransform = false; 4743 for (llvm::Argument &A : newFn->args()) { 4744 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4745 dontTransform = true; 4746 break; 4747 } 4748 4749 // Add any parameter attributes. 4750 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4751 argNo++; 4752 } 4753 if (dontTransform) 4754 continue; 4755 4756 // Okay, we can transform this. Create the new call instruction and copy 4757 // over the required information. 4758 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4759 4760 // Copy over any operand bundles. 4761 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4762 callSite->getOperandBundlesAsDefs(newBundles); 4763 4764 llvm::CallBase *newCall; 4765 if (dyn_cast<llvm::CallInst>(callSite)) { 4766 newCall = 4767 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4768 } else { 4769 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4770 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4771 oldInvoke->getUnwindDest(), newArgs, 4772 newBundles, "", callSite); 4773 } 4774 newArgs.clear(); // for the next iteration 4775 4776 if (!newCall->getType()->isVoidTy()) 4777 newCall->takeName(callSite); 4778 newCall->setAttributes(llvm::AttributeList::get( 4779 newFn->getContext(), oldAttrs.getFnAttributes(), 4780 oldAttrs.getRetAttributes(), newArgAttrs)); 4781 newCall->setCallingConv(callSite->getCallingConv()); 4782 4783 // Finally, remove the old call, replacing any uses with the new one. 4784 if (!callSite->use_empty()) 4785 callSite->replaceAllUsesWith(newCall); 4786 4787 // Copy debug location attached to CI. 4788 if (callSite->getDebugLoc()) 4789 newCall->setDebugLoc(callSite->getDebugLoc()); 4790 4791 callSite->eraseFromParent(); 4792 } 4793 } 4794 4795 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4796 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4797 /// existing call uses of the old function in the module, this adjusts them to 4798 /// call the new function directly. 4799 /// 4800 /// This is not just a cleanup: the always_inline pass requires direct calls to 4801 /// functions to be able to inline them. If there is a bitcast in the way, it 4802 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4803 /// run at -O0. 4804 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4805 llvm::Function *NewFn) { 4806 // If we're redefining a global as a function, don't transform it. 4807 if (!isa<llvm::Function>(Old)) return; 4808 4809 replaceUsesOfNonProtoConstant(Old, NewFn); 4810 } 4811 4812 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4813 auto DK = VD->isThisDeclarationADefinition(); 4814 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4815 return; 4816 4817 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4818 // If we have a definition, this might be a deferred decl. If the 4819 // instantiation is explicit, make sure we emit it at the end. 4820 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4821 GetAddrOfGlobalVar(VD); 4822 4823 EmitTopLevelDecl(VD); 4824 } 4825 4826 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4827 llvm::GlobalValue *GV) { 4828 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4829 4830 // Compute the function info and LLVM type. 4831 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4832 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4833 4834 // Get or create the prototype for the function. 4835 if (!GV || (GV->getValueType() != Ty)) 4836 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4837 /*DontDefer=*/true, 4838 ForDefinition)); 4839 4840 // Already emitted. 4841 if (!GV->isDeclaration()) 4842 return; 4843 4844 // We need to set linkage and visibility on the function before 4845 // generating code for it because various parts of IR generation 4846 // want to propagate this information down (e.g. to local static 4847 // declarations). 4848 auto *Fn = cast<llvm::Function>(GV); 4849 setFunctionLinkage(GD, Fn); 4850 4851 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4852 setGVProperties(Fn, GD); 4853 4854 MaybeHandleStaticInExternC(D, Fn); 4855 4856 maybeSetTrivialComdat(*D, *Fn); 4857 4858 // Set CodeGen attributes that represent floating point environment. 4859 setLLVMFunctionFEnvAttributes(D, Fn); 4860 4861 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4862 4863 setNonAliasAttributes(GD, Fn); 4864 SetLLVMFunctionAttributesForDefinition(D, Fn); 4865 4866 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4867 AddGlobalCtor(Fn, CA->getPriority()); 4868 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4869 AddGlobalDtor(Fn, DA->getPriority(), true); 4870 if (D->hasAttr<AnnotateAttr>()) 4871 AddGlobalAnnotations(D, Fn); 4872 } 4873 4874 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4875 const auto *D = cast<ValueDecl>(GD.getDecl()); 4876 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4877 assert(AA && "Not an alias?"); 4878 4879 StringRef MangledName = getMangledName(GD); 4880 4881 if (AA->getAliasee() == MangledName) { 4882 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4883 return; 4884 } 4885 4886 // If there is a definition in the module, then it wins over the alias. 4887 // This is dubious, but allow it to be safe. Just ignore the alias. 4888 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4889 if (Entry && !Entry->isDeclaration()) 4890 return; 4891 4892 Aliases.push_back(GD); 4893 4894 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4895 4896 // Create a reference to the named value. This ensures that it is emitted 4897 // if a deferred decl. 4898 llvm::Constant *Aliasee; 4899 llvm::GlobalValue::LinkageTypes LT; 4900 if (isa<llvm::FunctionType>(DeclTy)) { 4901 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4902 /*ForVTable=*/false); 4903 LT = getFunctionLinkage(GD); 4904 } else { 4905 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, 4906 /*D=*/nullptr); 4907 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4908 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4909 else 4910 LT = getFunctionLinkage(GD); 4911 } 4912 4913 // Create the new alias itself, but don't set a name yet. 4914 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4915 auto *GA = 4916 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4917 4918 if (Entry) { 4919 if (GA->getAliasee() == Entry) { 4920 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4921 return; 4922 } 4923 4924 assert(Entry->isDeclaration()); 4925 4926 // If there is a declaration in the module, then we had an extern followed 4927 // by the alias, as in: 4928 // extern int test6(); 4929 // ... 4930 // int test6() __attribute__((alias("test7"))); 4931 // 4932 // Remove it and replace uses of it with the alias. 4933 GA->takeName(Entry); 4934 4935 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4936 Entry->getType())); 4937 Entry->eraseFromParent(); 4938 } else { 4939 GA->setName(MangledName); 4940 } 4941 4942 // Set attributes which are particular to an alias; this is a 4943 // specialization of the attributes which may be set on a global 4944 // variable/function. 4945 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4946 D->isWeakImported()) { 4947 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4948 } 4949 4950 if (const auto *VD = dyn_cast<VarDecl>(D)) 4951 if (VD->getTLSKind()) 4952 setTLSMode(GA, *VD); 4953 4954 SetCommonAttributes(GD, GA); 4955 } 4956 4957 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4958 const auto *D = cast<ValueDecl>(GD.getDecl()); 4959 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4960 assert(IFA && "Not an ifunc?"); 4961 4962 StringRef MangledName = getMangledName(GD); 4963 4964 if (IFA->getResolver() == MangledName) { 4965 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4966 return; 4967 } 4968 4969 // Report an error if some definition overrides ifunc. 4970 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4971 if (Entry && !Entry->isDeclaration()) { 4972 GlobalDecl OtherGD; 4973 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4974 DiagnosedConflictingDefinitions.insert(GD).second) { 4975 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4976 << MangledName; 4977 Diags.Report(OtherGD.getDecl()->getLocation(), 4978 diag::note_previous_definition); 4979 } 4980 return; 4981 } 4982 4983 Aliases.push_back(GD); 4984 4985 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4986 llvm::Constant *Resolver = 4987 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4988 /*ForVTable=*/false); 4989 llvm::GlobalIFunc *GIF = 4990 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4991 "", Resolver, &getModule()); 4992 if (Entry) { 4993 if (GIF->getResolver() == Entry) { 4994 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4995 return; 4996 } 4997 assert(Entry->isDeclaration()); 4998 4999 // If there is a declaration in the module, then we had an extern followed 5000 // by the ifunc, as in: 5001 // extern int test(); 5002 // ... 5003 // int test() __attribute__((ifunc("resolver"))); 5004 // 5005 // Remove it and replace uses of it with the ifunc. 5006 GIF->takeName(Entry); 5007 5008 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5009 Entry->getType())); 5010 Entry->eraseFromParent(); 5011 } else 5012 GIF->setName(MangledName); 5013 5014 SetCommonAttributes(GD, GIF); 5015 } 5016 5017 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5018 ArrayRef<llvm::Type*> Tys) { 5019 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5020 Tys); 5021 } 5022 5023 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5024 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5025 const StringLiteral *Literal, bool TargetIsLSB, 5026 bool &IsUTF16, unsigned &StringLength) { 5027 StringRef String = Literal->getString(); 5028 unsigned NumBytes = String.size(); 5029 5030 // Check for simple case. 5031 if (!Literal->containsNonAsciiOrNull()) { 5032 StringLength = NumBytes; 5033 return *Map.insert(std::make_pair(String, nullptr)).first; 5034 } 5035 5036 // Otherwise, convert the UTF8 literals into a string of shorts. 5037 IsUTF16 = true; 5038 5039 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5040 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5041 llvm::UTF16 *ToPtr = &ToBuf[0]; 5042 5043 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5044 ToPtr + NumBytes, llvm::strictConversion); 5045 5046 // ConvertUTF8toUTF16 returns the length in ToPtr. 5047 StringLength = ToPtr - &ToBuf[0]; 5048 5049 // Add an explicit null. 5050 *ToPtr = 0; 5051 return *Map.insert(std::make_pair( 5052 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5053 (StringLength + 1) * 2), 5054 nullptr)).first; 5055 } 5056 5057 ConstantAddress 5058 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5059 unsigned StringLength = 0; 5060 bool isUTF16 = false; 5061 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5062 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5063 getDataLayout().isLittleEndian(), isUTF16, 5064 StringLength); 5065 5066 if (auto *C = Entry.second) 5067 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 5068 5069 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5070 llvm::Constant *Zeros[] = { Zero, Zero }; 5071 5072 const ASTContext &Context = getContext(); 5073 const llvm::Triple &Triple = getTriple(); 5074 5075 const auto CFRuntime = getLangOpts().CFRuntime; 5076 const bool IsSwiftABI = 5077 static_cast<unsigned>(CFRuntime) >= 5078 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5079 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5080 5081 // If we don't already have it, get __CFConstantStringClassReference. 5082 if (!CFConstantStringClassRef) { 5083 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5084 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5085 Ty = llvm::ArrayType::get(Ty, 0); 5086 5087 switch (CFRuntime) { 5088 default: break; 5089 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5090 case LangOptions::CoreFoundationABI::Swift5_0: 5091 CFConstantStringClassName = 5092 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5093 : "$s10Foundation19_NSCFConstantStringCN"; 5094 Ty = IntPtrTy; 5095 break; 5096 case LangOptions::CoreFoundationABI::Swift4_2: 5097 CFConstantStringClassName = 5098 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5099 : "$S10Foundation19_NSCFConstantStringCN"; 5100 Ty = IntPtrTy; 5101 break; 5102 case LangOptions::CoreFoundationABI::Swift4_1: 5103 CFConstantStringClassName = 5104 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5105 : "__T010Foundation19_NSCFConstantStringCN"; 5106 Ty = IntPtrTy; 5107 break; 5108 } 5109 5110 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5111 5112 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5113 llvm::GlobalValue *GV = nullptr; 5114 5115 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5116 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5117 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5118 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5119 5120 const VarDecl *VD = nullptr; 5121 for (const auto *Result : DC->lookup(&II)) 5122 if ((VD = dyn_cast<VarDecl>(Result))) 5123 break; 5124 5125 if (Triple.isOSBinFormatELF()) { 5126 if (!VD) 5127 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5128 } else { 5129 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5130 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5131 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5132 else 5133 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5134 } 5135 5136 setDSOLocal(GV); 5137 } 5138 } 5139 5140 // Decay array -> ptr 5141 CFConstantStringClassRef = 5142 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5143 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5144 } 5145 5146 QualType CFTy = Context.getCFConstantStringType(); 5147 5148 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5149 5150 ConstantInitBuilder Builder(*this); 5151 auto Fields = Builder.beginStruct(STy); 5152 5153 // Class pointer. 5154 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5155 5156 // Flags. 5157 if (IsSwiftABI) { 5158 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5159 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5160 } else { 5161 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5162 } 5163 5164 // String pointer. 5165 llvm::Constant *C = nullptr; 5166 if (isUTF16) { 5167 auto Arr = llvm::makeArrayRef( 5168 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5169 Entry.first().size() / 2); 5170 C = llvm::ConstantDataArray::get(VMContext, Arr); 5171 } else { 5172 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5173 } 5174 5175 // Note: -fwritable-strings doesn't make the backing store strings of 5176 // CFStrings writable. (See <rdar://problem/10657500>) 5177 auto *GV = 5178 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5179 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5180 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5181 // Don't enforce the target's minimum global alignment, since the only use 5182 // of the string is via this class initializer. 5183 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5184 : Context.getTypeAlignInChars(Context.CharTy); 5185 GV->setAlignment(Align.getAsAlign()); 5186 5187 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5188 // Without it LLVM can merge the string with a non unnamed_addr one during 5189 // LTO. Doing that changes the section it ends in, which surprises ld64. 5190 if (Triple.isOSBinFormatMachO()) 5191 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5192 : "__TEXT,__cstring,cstring_literals"); 5193 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5194 // the static linker to adjust permissions to read-only later on. 5195 else if (Triple.isOSBinFormatELF()) 5196 GV->setSection(".rodata"); 5197 5198 // String. 5199 llvm::Constant *Str = 5200 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5201 5202 if (isUTF16) 5203 // Cast the UTF16 string to the correct type. 5204 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5205 Fields.add(Str); 5206 5207 // String length. 5208 llvm::IntegerType *LengthTy = 5209 llvm::IntegerType::get(getModule().getContext(), 5210 Context.getTargetInfo().getLongWidth()); 5211 if (IsSwiftABI) { 5212 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5213 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5214 LengthTy = Int32Ty; 5215 else 5216 LengthTy = IntPtrTy; 5217 } 5218 Fields.addInt(LengthTy, StringLength); 5219 5220 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5221 // properly aligned on 32-bit platforms. 5222 CharUnits Alignment = 5223 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5224 5225 // The struct. 5226 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5227 /*isConstant=*/false, 5228 llvm::GlobalVariable::PrivateLinkage); 5229 GV->addAttribute("objc_arc_inert"); 5230 switch (Triple.getObjectFormat()) { 5231 case llvm::Triple::UnknownObjectFormat: 5232 llvm_unreachable("unknown file format"); 5233 case llvm::Triple::GOFF: 5234 llvm_unreachable("GOFF is not yet implemented"); 5235 case llvm::Triple::XCOFF: 5236 llvm_unreachable("XCOFF is not yet implemented"); 5237 case llvm::Triple::COFF: 5238 case llvm::Triple::ELF: 5239 case llvm::Triple::Wasm: 5240 GV->setSection("cfstring"); 5241 break; 5242 case llvm::Triple::MachO: 5243 GV->setSection("__DATA,__cfstring"); 5244 break; 5245 } 5246 Entry.second = GV; 5247 5248 return ConstantAddress(GV, Alignment); 5249 } 5250 5251 bool CodeGenModule::getExpressionLocationsEnabled() const { 5252 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5253 } 5254 5255 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5256 if (ObjCFastEnumerationStateType.isNull()) { 5257 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5258 D->startDefinition(); 5259 5260 QualType FieldTypes[] = { 5261 Context.UnsignedLongTy, 5262 Context.getPointerType(Context.getObjCIdType()), 5263 Context.getPointerType(Context.UnsignedLongTy), 5264 Context.getConstantArrayType(Context.UnsignedLongTy, 5265 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5266 }; 5267 5268 for (size_t i = 0; i < 4; ++i) { 5269 FieldDecl *Field = FieldDecl::Create(Context, 5270 D, 5271 SourceLocation(), 5272 SourceLocation(), nullptr, 5273 FieldTypes[i], /*TInfo=*/nullptr, 5274 /*BitWidth=*/nullptr, 5275 /*Mutable=*/false, 5276 ICIS_NoInit); 5277 Field->setAccess(AS_public); 5278 D->addDecl(Field); 5279 } 5280 5281 D->completeDefinition(); 5282 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5283 } 5284 5285 return ObjCFastEnumerationStateType; 5286 } 5287 5288 llvm::Constant * 5289 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5290 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5291 5292 // Don't emit it as the address of the string, emit the string data itself 5293 // as an inline array. 5294 if (E->getCharByteWidth() == 1) { 5295 SmallString<64> Str(E->getString()); 5296 5297 // Resize the string to the right size, which is indicated by its type. 5298 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5299 Str.resize(CAT->getSize().getZExtValue()); 5300 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5301 } 5302 5303 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5304 llvm::Type *ElemTy = AType->getElementType(); 5305 unsigned NumElements = AType->getNumElements(); 5306 5307 // Wide strings have either 2-byte or 4-byte elements. 5308 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5309 SmallVector<uint16_t, 32> Elements; 5310 Elements.reserve(NumElements); 5311 5312 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5313 Elements.push_back(E->getCodeUnit(i)); 5314 Elements.resize(NumElements); 5315 return llvm::ConstantDataArray::get(VMContext, Elements); 5316 } 5317 5318 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5319 SmallVector<uint32_t, 32> Elements; 5320 Elements.reserve(NumElements); 5321 5322 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5323 Elements.push_back(E->getCodeUnit(i)); 5324 Elements.resize(NumElements); 5325 return llvm::ConstantDataArray::get(VMContext, Elements); 5326 } 5327 5328 static llvm::GlobalVariable * 5329 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5330 CodeGenModule &CGM, StringRef GlobalName, 5331 CharUnits Alignment) { 5332 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5333 CGM.GetGlobalConstantAddressSpace()); 5334 5335 llvm::Module &M = CGM.getModule(); 5336 // Create a global variable for this string 5337 auto *GV = new llvm::GlobalVariable( 5338 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5339 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5340 GV->setAlignment(Alignment.getAsAlign()); 5341 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5342 if (GV->isWeakForLinker()) { 5343 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5344 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5345 } 5346 CGM.setDSOLocal(GV); 5347 5348 return GV; 5349 } 5350 5351 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5352 /// constant array for the given string literal. 5353 ConstantAddress 5354 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5355 StringRef Name) { 5356 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5357 5358 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5359 llvm::GlobalVariable **Entry = nullptr; 5360 if (!LangOpts.WritableStrings) { 5361 Entry = &ConstantStringMap[C]; 5362 if (auto GV = *Entry) { 5363 if (Alignment.getQuantity() > GV->getAlignment()) 5364 GV->setAlignment(Alignment.getAsAlign()); 5365 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5366 Alignment); 5367 } 5368 } 5369 5370 SmallString<256> MangledNameBuffer; 5371 StringRef GlobalVariableName; 5372 llvm::GlobalValue::LinkageTypes LT; 5373 5374 // Mangle the string literal if that's how the ABI merges duplicate strings. 5375 // Don't do it if they are writable, since we don't want writes in one TU to 5376 // affect strings in another. 5377 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5378 !LangOpts.WritableStrings) { 5379 llvm::raw_svector_ostream Out(MangledNameBuffer); 5380 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5381 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5382 GlobalVariableName = MangledNameBuffer; 5383 } else { 5384 LT = llvm::GlobalValue::PrivateLinkage; 5385 GlobalVariableName = Name; 5386 } 5387 5388 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5389 if (Entry) 5390 *Entry = GV; 5391 5392 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5393 QualType()); 5394 5395 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5396 Alignment); 5397 } 5398 5399 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5400 /// array for the given ObjCEncodeExpr node. 5401 ConstantAddress 5402 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5403 std::string Str; 5404 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5405 5406 return GetAddrOfConstantCString(Str); 5407 } 5408 5409 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5410 /// the literal and a terminating '\0' character. 5411 /// The result has pointer to array type. 5412 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5413 const std::string &Str, const char *GlobalName) { 5414 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5415 CharUnits Alignment = 5416 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5417 5418 llvm::Constant *C = 5419 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5420 5421 // Don't share any string literals if strings aren't constant. 5422 llvm::GlobalVariable **Entry = nullptr; 5423 if (!LangOpts.WritableStrings) { 5424 Entry = &ConstantStringMap[C]; 5425 if (auto GV = *Entry) { 5426 if (Alignment.getQuantity() > GV->getAlignment()) 5427 GV->setAlignment(Alignment.getAsAlign()); 5428 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5429 Alignment); 5430 } 5431 } 5432 5433 // Get the default prefix if a name wasn't specified. 5434 if (!GlobalName) 5435 GlobalName = ".str"; 5436 // Create a global variable for this. 5437 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5438 GlobalName, Alignment); 5439 if (Entry) 5440 *Entry = GV; 5441 5442 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5443 Alignment); 5444 } 5445 5446 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5447 const MaterializeTemporaryExpr *E, const Expr *Init) { 5448 assert((E->getStorageDuration() == SD_Static || 5449 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5450 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5451 5452 // If we're not materializing a subobject of the temporary, keep the 5453 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5454 QualType MaterializedType = Init->getType(); 5455 if (Init == E->getSubExpr()) 5456 MaterializedType = E->getType(); 5457 5458 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5459 5460 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5461 if (!InsertResult.second) { 5462 // We've seen this before: either we already created it or we're in the 5463 // process of doing so. 5464 if (!InsertResult.first->second) { 5465 // We recursively re-entered this function, probably during emission of 5466 // the initializer. Create a placeholder. We'll clean this up in the 5467 // outer call, at the end of this function. 5468 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5469 InsertResult.first->second = new llvm::GlobalVariable( 5470 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5471 nullptr); 5472 } 5473 return ConstantAddress(InsertResult.first->second, Align); 5474 } 5475 5476 // FIXME: If an externally-visible declaration extends multiple temporaries, 5477 // we need to give each temporary the same name in every translation unit (and 5478 // we also need to make the temporaries externally-visible). 5479 SmallString<256> Name; 5480 llvm::raw_svector_ostream Out(Name); 5481 getCXXABI().getMangleContext().mangleReferenceTemporary( 5482 VD, E->getManglingNumber(), Out); 5483 5484 APValue *Value = nullptr; 5485 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5486 // If the initializer of the extending declaration is a constant 5487 // initializer, we should have a cached constant initializer for this 5488 // temporary. Note that this might have a different value from the value 5489 // computed by evaluating the initializer if the surrounding constant 5490 // expression modifies the temporary. 5491 Value = E->getOrCreateValue(false); 5492 } 5493 5494 // Try evaluating it now, it might have a constant initializer. 5495 Expr::EvalResult EvalResult; 5496 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5497 !EvalResult.hasSideEffects()) 5498 Value = &EvalResult.Val; 5499 5500 LangAS AddrSpace = 5501 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5502 5503 Optional<ConstantEmitter> emitter; 5504 llvm::Constant *InitialValue = nullptr; 5505 bool Constant = false; 5506 llvm::Type *Type; 5507 if (Value) { 5508 // The temporary has a constant initializer, use it. 5509 emitter.emplace(*this); 5510 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5511 MaterializedType); 5512 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5513 Type = InitialValue->getType(); 5514 } else { 5515 // No initializer, the initialization will be provided when we 5516 // initialize the declaration which performed lifetime extension. 5517 Type = getTypes().ConvertTypeForMem(MaterializedType); 5518 } 5519 5520 // Create a global variable for this lifetime-extended temporary. 5521 llvm::GlobalValue::LinkageTypes Linkage = 5522 getLLVMLinkageVarDefinition(VD, Constant); 5523 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5524 const VarDecl *InitVD; 5525 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5526 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5527 // Temporaries defined inside a class get linkonce_odr linkage because the 5528 // class can be defined in multiple translation units. 5529 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5530 } else { 5531 // There is no need for this temporary to have external linkage if the 5532 // VarDecl has external linkage. 5533 Linkage = llvm::GlobalVariable::InternalLinkage; 5534 } 5535 } 5536 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5537 auto *GV = new llvm::GlobalVariable( 5538 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5539 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5540 if (emitter) emitter->finalize(GV); 5541 setGVProperties(GV, VD); 5542 GV->setAlignment(Align.getAsAlign()); 5543 if (supportsCOMDAT() && GV->isWeakForLinker()) 5544 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5545 if (VD->getTLSKind()) 5546 setTLSMode(GV, *VD); 5547 llvm::Constant *CV = GV; 5548 if (AddrSpace != LangAS::Default) 5549 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5550 *this, GV, AddrSpace, LangAS::Default, 5551 Type->getPointerTo( 5552 getContext().getTargetAddressSpace(LangAS::Default))); 5553 5554 // Update the map with the new temporary. If we created a placeholder above, 5555 // replace it with the new global now. 5556 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5557 if (Entry) { 5558 Entry->replaceAllUsesWith( 5559 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5560 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5561 } 5562 Entry = CV; 5563 5564 return ConstantAddress(CV, Align); 5565 } 5566 5567 /// EmitObjCPropertyImplementations - Emit information for synthesized 5568 /// properties for an implementation. 5569 void CodeGenModule::EmitObjCPropertyImplementations(const 5570 ObjCImplementationDecl *D) { 5571 for (const auto *PID : D->property_impls()) { 5572 // Dynamic is just for type-checking. 5573 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5574 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5575 5576 // Determine which methods need to be implemented, some may have 5577 // been overridden. Note that ::isPropertyAccessor is not the method 5578 // we want, that just indicates if the decl came from a 5579 // property. What we want to know is if the method is defined in 5580 // this implementation. 5581 auto *Getter = PID->getGetterMethodDecl(); 5582 if (!Getter || Getter->isSynthesizedAccessorStub()) 5583 CodeGenFunction(*this).GenerateObjCGetter( 5584 const_cast<ObjCImplementationDecl *>(D), PID); 5585 auto *Setter = PID->getSetterMethodDecl(); 5586 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5587 CodeGenFunction(*this).GenerateObjCSetter( 5588 const_cast<ObjCImplementationDecl *>(D), PID); 5589 } 5590 } 5591 } 5592 5593 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5594 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5595 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5596 ivar; ivar = ivar->getNextIvar()) 5597 if (ivar->getType().isDestructedType()) 5598 return true; 5599 5600 return false; 5601 } 5602 5603 static bool AllTrivialInitializers(CodeGenModule &CGM, 5604 ObjCImplementationDecl *D) { 5605 CodeGenFunction CGF(CGM); 5606 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5607 E = D->init_end(); B != E; ++B) { 5608 CXXCtorInitializer *CtorInitExp = *B; 5609 Expr *Init = CtorInitExp->getInit(); 5610 if (!CGF.isTrivialInitializer(Init)) 5611 return false; 5612 } 5613 return true; 5614 } 5615 5616 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5617 /// for an implementation. 5618 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5619 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5620 if (needsDestructMethod(D)) { 5621 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5622 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5623 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5624 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5625 getContext().VoidTy, nullptr, D, 5626 /*isInstance=*/true, /*isVariadic=*/false, 5627 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5628 /*isImplicitlyDeclared=*/true, 5629 /*isDefined=*/false, ObjCMethodDecl::Required); 5630 D->addInstanceMethod(DTORMethod); 5631 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5632 D->setHasDestructors(true); 5633 } 5634 5635 // If the implementation doesn't have any ivar initializers, we don't need 5636 // a .cxx_construct. 5637 if (D->getNumIvarInitializers() == 0 || 5638 AllTrivialInitializers(*this, D)) 5639 return; 5640 5641 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5642 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5643 // The constructor returns 'self'. 5644 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5645 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5646 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5647 /*isVariadic=*/false, 5648 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5649 /*isImplicitlyDeclared=*/true, 5650 /*isDefined=*/false, ObjCMethodDecl::Required); 5651 D->addInstanceMethod(CTORMethod); 5652 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5653 D->setHasNonZeroConstructors(true); 5654 } 5655 5656 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5657 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5658 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5659 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5660 ErrorUnsupported(LSD, "linkage spec"); 5661 return; 5662 } 5663 5664 EmitDeclContext(LSD); 5665 } 5666 5667 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5668 for (auto *I : DC->decls()) { 5669 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5670 // are themselves considered "top-level", so EmitTopLevelDecl on an 5671 // ObjCImplDecl does not recursively visit them. We need to do that in 5672 // case they're nested inside another construct (LinkageSpecDecl / 5673 // ExportDecl) that does stop them from being considered "top-level". 5674 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5675 for (auto *M : OID->methods()) 5676 EmitTopLevelDecl(M); 5677 } 5678 5679 EmitTopLevelDecl(I); 5680 } 5681 } 5682 5683 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5684 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5685 // Ignore dependent declarations. 5686 if (D->isTemplated()) 5687 return; 5688 5689 // Consteval function shouldn't be emitted. 5690 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5691 if (FD->isConsteval()) 5692 return; 5693 5694 switch (D->getKind()) { 5695 case Decl::CXXConversion: 5696 case Decl::CXXMethod: 5697 case Decl::Function: 5698 EmitGlobal(cast<FunctionDecl>(D)); 5699 // Always provide some coverage mapping 5700 // even for the functions that aren't emitted. 5701 AddDeferredUnusedCoverageMapping(D); 5702 break; 5703 5704 case Decl::CXXDeductionGuide: 5705 // Function-like, but does not result in code emission. 5706 break; 5707 5708 case Decl::Var: 5709 case Decl::Decomposition: 5710 case Decl::VarTemplateSpecialization: 5711 EmitGlobal(cast<VarDecl>(D)); 5712 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5713 for (auto *B : DD->bindings()) 5714 if (auto *HD = B->getHoldingVar()) 5715 EmitGlobal(HD); 5716 break; 5717 5718 // Indirect fields from global anonymous structs and unions can be 5719 // ignored; only the actual variable requires IR gen support. 5720 case Decl::IndirectField: 5721 break; 5722 5723 // C++ Decls 5724 case Decl::Namespace: 5725 EmitDeclContext(cast<NamespaceDecl>(D)); 5726 break; 5727 case Decl::ClassTemplateSpecialization: { 5728 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5729 if (CGDebugInfo *DI = getModuleDebugInfo()) 5730 if (Spec->getSpecializationKind() == 5731 TSK_ExplicitInstantiationDefinition && 5732 Spec->hasDefinition()) 5733 DI->completeTemplateDefinition(*Spec); 5734 } LLVM_FALLTHROUGH; 5735 case Decl::CXXRecord: { 5736 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5737 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5738 if (CRD->hasDefinition()) 5739 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5740 if (auto *ES = D->getASTContext().getExternalSource()) 5741 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5742 DI->completeUnusedClass(*CRD); 5743 } 5744 // Emit any static data members, they may be definitions. 5745 for (auto *I : CRD->decls()) 5746 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5747 EmitTopLevelDecl(I); 5748 break; 5749 } 5750 // No code generation needed. 5751 case Decl::UsingShadow: 5752 case Decl::ClassTemplate: 5753 case Decl::VarTemplate: 5754 case Decl::Concept: 5755 case Decl::VarTemplatePartialSpecialization: 5756 case Decl::FunctionTemplate: 5757 case Decl::TypeAliasTemplate: 5758 case Decl::Block: 5759 case Decl::Empty: 5760 case Decl::Binding: 5761 break; 5762 case Decl::Using: // using X; [C++] 5763 if (CGDebugInfo *DI = getModuleDebugInfo()) 5764 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5765 break; 5766 case Decl::UsingEnum: // using enum X; [C++] 5767 if (CGDebugInfo *DI = getModuleDebugInfo()) 5768 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5769 break; 5770 case Decl::NamespaceAlias: 5771 if (CGDebugInfo *DI = getModuleDebugInfo()) 5772 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5773 break; 5774 case Decl::UsingDirective: // using namespace X; [C++] 5775 if (CGDebugInfo *DI = getModuleDebugInfo()) 5776 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5777 break; 5778 case Decl::CXXConstructor: 5779 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5780 break; 5781 case Decl::CXXDestructor: 5782 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5783 break; 5784 5785 case Decl::StaticAssert: 5786 // Nothing to do. 5787 break; 5788 5789 // Objective-C Decls 5790 5791 // Forward declarations, no (immediate) code generation. 5792 case Decl::ObjCInterface: 5793 case Decl::ObjCCategory: 5794 break; 5795 5796 case Decl::ObjCProtocol: { 5797 auto *Proto = cast<ObjCProtocolDecl>(D); 5798 if (Proto->isThisDeclarationADefinition()) 5799 ObjCRuntime->GenerateProtocol(Proto); 5800 break; 5801 } 5802 5803 case Decl::ObjCCategoryImpl: 5804 // Categories have properties but don't support synthesize so we 5805 // can ignore them here. 5806 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5807 break; 5808 5809 case Decl::ObjCImplementation: { 5810 auto *OMD = cast<ObjCImplementationDecl>(D); 5811 EmitObjCPropertyImplementations(OMD); 5812 EmitObjCIvarInitializations(OMD); 5813 ObjCRuntime->GenerateClass(OMD); 5814 // Emit global variable debug information. 5815 if (CGDebugInfo *DI = getModuleDebugInfo()) 5816 if (getCodeGenOpts().hasReducedDebugInfo()) 5817 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5818 OMD->getClassInterface()), OMD->getLocation()); 5819 break; 5820 } 5821 case Decl::ObjCMethod: { 5822 auto *OMD = cast<ObjCMethodDecl>(D); 5823 // If this is not a prototype, emit the body. 5824 if (OMD->getBody()) 5825 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5826 break; 5827 } 5828 case Decl::ObjCCompatibleAlias: 5829 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5830 break; 5831 5832 case Decl::PragmaComment: { 5833 const auto *PCD = cast<PragmaCommentDecl>(D); 5834 switch (PCD->getCommentKind()) { 5835 case PCK_Unknown: 5836 llvm_unreachable("unexpected pragma comment kind"); 5837 case PCK_Linker: 5838 AppendLinkerOptions(PCD->getArg()); 5839 break; 5840 case PCK_Lib: 5841 AddDependentLib(PCD->getArg()); 5842 break; 5843 case PCK_Compiler: 5844 case PCK_ExeStr: 5845 case PCK_User: 5846 break; // We ignore all of these. 5847 } 5848 break; 5849 } 5850 5851 case Decl::PragmaDetectMismatch: { 5852 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5853 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5854 break; 5855 } 5856 5857 case Decl::LinkageSpec: 5858 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5859 break; 5860 5861 case Decl::FileScopeAsm: { 5862 // File-scope asm is ignored during device-side CUDA compilation. 5863 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5864 break; 5865 // File-scope asm is ignored during device-side OpenMP compilation. 5866 if (LangOpts.OpenMPIsDevice) 5867 break; 5868 // File-scope asm is ignored during device-side SYCL compilation. 5869 if (LangOpts.SYCLIsDevice) 5870 break; 5871 auto *AD = cast<FileScopeAsmDecl>(D); 5872 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5873 break; 5874 } 5875 5876 case Decl::Import: { 5877 auto *Import = cast<ImportDecl>(D); 5878 5879 // If we've already imported this module, we're done. 5880 if (!ImportedModules.insert(Import->getImportedModule())) 5881 break; 5882 5883 // Emit debug information for direct imports. 5884 if (!Import->getImportedOwningModule()) { 5885 if (CGDebugInfo *DI = getModuleDebugInfo()) 5886 DI->EmitImportDecl(*Import); 5887 } 5888 5889 // Find all of the submodules and emit the module initializers. 5890 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5891 SmallVector<clang::Module *, 16> Stack; 5892 Visited.insert(Import->getImportedModule()); 5893 Stack.push_back(Import->getImportedModule()); 5894 5895 while (!Stack.empty()) { 5896 clang::Module *Mod = Stack.pop_back_val(); 5897 if (!EmittedModuleInitializers.insert(Mod).second) 5898 continue; 5899 5900 for (auto *D : Context.getModuleInitializers(Mod)) 5901 EmitTopLevelDecl(D); 5902 5903 // Visit the submodules of this module. 5904 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5905 SubEnd = Mod->submodule_end(); 5906 Sub != SubEnd; ++Sub) { 5907 // Skip explicit children; they need to be explicitly imported to emit 5908 // the initializers. 5909 if ((*Sub)->IsExplicit) 5910 continue; 5911 5912 if (Visited.insert(*Sub).second) 5913 Stack.push_back(*Sub); 5914 } 5915 } 5916 break; 5917 } 5918 5919 case Decl::Export: 5920 EmitDeclContext(cast<ExportDecl>(D)); 5921 break; 5922 5923 case Decl::OMPThreadPrivate: 5924 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5925 break; 5926 5927 case Decl::OMPAllocate: 5928 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 5929 break; 5930 5931 case Decl::OMPDeclareReduction: 5932 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5933 break; 5934 5935 case Decl::OMPDeclareMapper: 5936 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5937 break; 5938 5939 case Decl::OMPRequires: 5940 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5941 break; 5942 5943 case Decl::Typedef: 5944 case Decl::TypeAlias: // using foo = bar; [C++11] 5945 if (CGDebugInfo *DI = getModuleDebugInfo()) 5946 DI->EmitAndRetainType( 5947 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5948 break; 5949 5950 case Decl::Record: 5951 if (CGDebugInfo *DI = getModuleDebugInfo()) 5952 if (cast<RecordDecl>(D)->getDefinition()) 5953 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5954 break; 5955 5956 case Decl::Enum: 5957 if (CGDebugInfo *DI = getModuleDebugInfo()) 5958 if (cast<EnumDecl>(D)->getDefinition()) 5959 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5960 break; 5961 5962 default: 5963 // Make sure we handled everything we should, every other kind is a 5964 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5965 // function. Need to recode Decl::Kind to do that easily. 5966 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5967 break; 5968 } 5969 } 5970 5971 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5972 // Do we need to generate coverage mapping? 5973 if (!CodeGenOpts.CoverageMapping) 5974 return; 5975 switch (D->getKind()) { 5976 case Decl::CXXConversion: 5977 case Decl::CXXMethod: 5978 case Decl::Function: 5979 case Decl::ObjCMethod: 5980 case Decl::CXXConstructor: 5981 case Decl::CXXDestructor: { 5982 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5983 break; 5984 SourceManager &SM = getContext().getSourceManager(); 5985 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5986 break; 5987 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5988 if (I == DeferredEmptyCoverageMappingDecls.end()) 5989 DeferredEmptyCoverageMappingDecls[D] = true; 5990 break; 5991 } 5992 default: 5993 break; 5994 }; 5995 } 5996 5997 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5998 // Do we need to generate coverage mapping? 5999 if (!CodeGenOpts.CoverageMapping) 6000 return; 6001 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6002 if (Fn->isTemplateInstantiation()) 6003 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6004 } 6005 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6006 if (I == DeferredEmptyCoverageMappingDecls.end()) 6007 DeferredEmptyCoverageMappingDecls[D] = false; 6008 else 6009 I->second = false; 6010 } 6011 6012 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6013 // We call takeVector() here to avoid use-after-free. 6014 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6015 // we deserialize function bodies to emit coverage info for them, and that 6016 // deserializes more declarations. How should we handle that case? 6017 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6018 if (!Entry.second) 6019 continue; 6020 const Decl *D = Entry.first; 6021 switch (D->getKind()) { 6022 case Decl::CXXConversion: 6023 case Decl::CXXMethod: 6024 case Decl::Function: 6025 case Decl::ObjCMethod: { 6026 CodeGenPGO PGO(*this); 6027 GlobalDecl GD(cast<FunctionDecl>(D)); 6028 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6029 getFunctionLinkage(GD)); 6030 break; 6031 } 6032 case Decl::CXXConstructor: { 6033 CodeGenPGO PGO(*this); 6034 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6035 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6036 getFunctionLinkage(GD)); 6037 break; 6038 } 6039 case Decl::CXXDestructor: { 6040 CodeGenPGO PGO(*this); 6041 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6042 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6043 getFunctionLinkage(GD)); 6044 break; 6045 } 6046 default: 6047 break; 6048 }; 6049 } 6050 } 6051 6052 void CodeGenModule::EmitMainVoidAlias() { 6053 // In order to transition away from "__original_main" gracefully, emit an 6054 // alias for "main" in the no-argument case so that libc can detect when 6055 // new-style no-argument main is in used. 6056 if (llvm::Function *F = getModule().getFunction("main")) { 6057 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6058 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6059 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6060 } 6061 } 6062 6063 /// Turns the given pointer into a constant. 6064 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6065 const void *Ptr) { 6066 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6067 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6068 return llvm::ConstantInt::get(i64, PtrInt); 6069 } 6070 6071 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6072 llvm::NamedMDNode *&GlobalMetadata, 6073 GlobalDecl D, 6074 llvm::GlobalValue *Addr) { 6075 if (!GlobalMetadata) 6076 GlobalMetadata = 6077 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6078 6079 // TODO: should we report variant information for ctors/dtors? 6080 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6081 llvm::ConstantAsMetadata::get(GetPointerConstant( 6082 CGM.getLLVMContext(), D.getDecl()))}; 6083 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6084 } 6085 6086 /// For each function which is declared within an extern "C" region and marked 6087 /// as 'used', but has internal linkage, create an alias from the unmangled 6088 /// name to the mangled name if possible. People expect to be able to refer 6089 /// to such functions with an unmangled name from inline assembly within the 6090 /// same translation unit. 6091 void CodeGenModule::EmitStaticExternCAliases() { 6092 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6093 return; 6094 for (auto &I : StaticExternCValues) { 6095 IdentifierInfo *Name = I.first; 6096 llvm::GlobalValue *Val = I.second; 6097 if (Val && !getModule().getNamedValue(Name->getName())) 6098 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6099 } 6100 } 6101 6102 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6103 GlobalDecl &Result) const { 6104 auto Res = Manglings.find(MangledName); 6105 if (Res == Manglings.end()) 6106 return false; 6107 Result = Res->getValue(); 6108 return true; 6109 } 6110 6111 /// Emits metadata nodes associating all the global values in the 6112 /// current module with the Decls they came from. This is useful for 6113 /// projects using IR gen as a subroutine. 6114 /// 6115 /// Since there's currently no way to associate an MDNode directly 6116 /// with an llvm::GlobalValue, we create a global named metadata 6117 /// with the name 'clang.global.decl.ptrs'. 6118 void CodeGenModule::EmitDeclMetadata() { 6119 llvm::NamedMDNode *GlobalMetadata = nullptr; 6120 6121 for (auto &I : MangledDeclNames) { 6122 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6123 // Some mangled names don't necessarily have an associated GlobalValue 6124 // in this module, e.g. if we mangled it for DebugInfo. 6125 if (Addr) 6126 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6127 } 6128 } 6129 6130 /// Emits metadata nodes for all the local variables in the current 6131 /// function. 6132 void CodeGenFunction::EmitDeclMetadata() { 6133 if (LocalDeclMap.empty()) return; 6134 6135 llvm::LLVMContext &Context = getLLVMContext(); 6136 6137 // Find the unique metadata ID for this name. 6138 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6139 6140 llvm::NamedMDNode *GlobalMetadata = nullptr; 6141 6142 for (auto &I : LocalDeclMap) { 6143 const Decl *D = I.first; 6144 llvm::Value *Addr = I.second.getPointer(); 6145 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6146 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6147 Alloca->setMetadata( 6148 DeclPtrKind, llvm::MDNode::get( 6149 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6150 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6151 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6152 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6153 } 6154 } 6155 } 6156 6157 void CodeGenModule::EmitVersionIdentMetadata() { 6158 llvm::NamedMDNode *IdentMetadata = 6159 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6160 std::string Version = getClangFullVersion(); 6161 llvm::LLVMContext &Ctx = TheModule.getContext(); 6162 6163 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6164 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6165 } 6166 6167 void CodeGenModule::EmitCommandLineMetadata() { 6168 llvm::NamedMDNode *CommandLineMetadata = 6169 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6170 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6171 llvm::LLVMContext &Ctx = TheModule.getContext(); 6172 6173 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6174 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6175 } 6176 6177 void CodeGenModule::EmitCoverageFile() { 6178 if (getCodeGenOpts().CoverageDataFile.empty() && 6179 getCodeGenOpts().CoverageNotesFile.empty()) 6180 return; 6181 6182 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6183 if (!CUNode) 6184 return; 6185 6186 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6187 llvm::LLVMContext &Ctx = TheModule.getContext(); 6188 auto *CoverageDataFile = 6189 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6190 auto *CoverageNotesFile = 6191 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6192 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6193 llvm::MDNode *CU = CUNode->getOperand(i); 6194 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6195 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6196 } 6197 } 6198 6199 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6200 bool ForEH) { 6201 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6202 // FIXME: should we even be calling this method if RTTI is disabled 6203 // and it's not for EH? 6204 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6205 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6206 getTriple().isNVPTX())) 6207 return llvm::Constant::getNullValue(Int8PtrTy); 6208 6209 if (ForEH && Ty->isObjCObjectPointerType() && 6210 LangOpts.ObjCRuntime.isGNUFamily()) 6211 return ObjCRuntime->GetEHType(Ty); 6212 6213 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6214 } 6215 6216 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6217 // Do not emit threadprivates in simd-only mode. 6218 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6219 return; 6220 for (auto RefExpr : D->varlists()) { 6221 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6222 bool PerformInit = 6223 VD->getAnyInitializer() && 6224 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6225 /*ForRef=*/false); 6226 6227 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6228 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6229 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6230 CXXGlobalInits.push_back(InitFunction); 6231 } 6232 } 6233 6234 llvm::Metadata * 6235 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6236 StringRef Suffix) { 6237 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6238 if (InternalId) 6239 return InternalId; 6240 6241 if (isExternallyVisible(T->getLinkage())) { 6242 std::string OutName; 6243 llvm::raw_string_ostream Out(OutName); 6244 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6245 Out << Suffix; 6246 6247 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6248 } else { 6249 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6250 llvm::ArrayRef<llvm::Metadata *>()); 6251 } 6252 6253 return InternalId; 6254 } 6255 6256 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6257 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6258 } 6259 6260 llvm::Metadata * 6261 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6262 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6263 } 6264 6265 // Generalize pointer types to a void pointer with the qualifiers of the 6266 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6267 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6268 // 'void *'. 6269 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6270 if (!Ty->isPointerType()) 6271 return Ty; 6272 6273 return Ctx.getPointerType( 6274 QualType(Ctx.VoidTy).withCVRQualifiers( 6275 Ty->getPointeeType().getCVRQualifiers())); 6276 } 6277 6278 // Apply type generalization to a FunctionType's return and argument types 6279 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6280 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6281 SmallVector<QualType, 8> GeneralizedParams; 6282 for (auto &Param : FnType->param_types()) 6283 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6284 6285 return Ctx.getFunctionType( 6286 GeneralizeType(Ctx, FnType->getReturnType()), 6287 GeneralizedParams, FnType->getExtProtoInfo()); 6288 } 6289 6290 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6291 return Ctx.getFunctionNoProtoType( 6292 GeneralizeType(Ctx, FnType->getReturnType())); 6293 6294 llvm_unreachable("Encountered unknown FunctionType"); 6295 } 6296 6297 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6298 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6299 GeneralizedMetadataIdMap, ".generalized"); 6300 } 6301 6302 /// Returns whether this module needs the "all-vtables" type identifier. 6303 bool CodeGenModule::NeedAllVtablesTypeId() const { 6304 // Returns true if at least one of vtable-based CFI checkers is enabled and 6305 // is not in the trapping mode. 6306 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6307 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6308 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6309 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6310 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6311 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6312 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6313 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6314 } 6315 6316 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6317 CharUnits Offset, 6318 const CXXRecordDecl *RD) { 6319 llvm::Metadata *MD = 6320 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6321 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6322 6323 if (CodeGenOpts.SanitizeCfiCrossDso) 6324 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6325 VTable->addTypeMetadata(Offset.getQuantity(), 6326 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6327 6328 if (NeedAllVtablesTypeId()) { 6329 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6330 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6331 } 6332 } 6333 6334 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6335 if (!SanStats) 6336 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6337 6338 return *SanStats; 6339 } 6340 6341 llvm::Value * 6342 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6343 CodeGenFunction &CGF) { 6344 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6345 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6346 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6347 auto *Call = CGF.EmitRuntimeCall( 6348 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6349 return Call; 6350 } 6351 6352 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6353 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6354 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6355 /* forPointeeType= */ true); 6356 } 6357 6358 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6359 LValueBaseInfo *BaseInfo, 6360 TBAAAccessInfo *TBAAInfo, 6361 bool forPointeeType) { 6362 if (TBAAInfo) 6363 *TBAAInfo = getTBAAAccessInfo(T); 6364 6365 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6366 // that doesn't return the information we need to compute BaseInfo. 6367 6368 // Honor alignment typedef attributes even on incomplete types. 6369 // We also honor them straight for C++ class types, even as pointees; 6370 // there's an expressivity gap here. 6371 if (auto TT = T->getAs<TypedefType>()) { 6372 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6373 if (BaseInfo) 6374 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6375 return getContext().toCharUnitsFromBits(Align); 6376 } 6377 } 6378 6379 bool AlignForArray = T->isArrayType(); 6380 6381 // Analyze the base element type, so we don't get confused by incomplete 6382 // array types. 6383 T = getContext().getBaseElementType(T); 6384 6385 if (T->isIncompleteType()) { 6386 // We could try to replicate the logic from 6387 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6388 // type is incomplete, so it's impossible to test. We could try to reuse 6389 // getTypeAlignIfKnown, but that doesn't return the information we need 6390 // to set BaseInfo. So just ignore the possibility that the alignment is 6391 // greater than one. 6392 if (BaseInfo) 6393 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6394 return CharUnits::One(); 6395 } 6396 6397 if (BaseInfo) 6398 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6399 6400 CharUnits Alignment; 6401 const CXXRecordDecl *RD; 6402 if (T.getQualifiers().hasUnaligned()) { 6403 Alignment = CharUnits::One(); 6404 } else if (forPointeeType && !AlignForArray && 6405 (RD = T->getAsCXXRecordDecl())) { 6406 // For C++ class pointees, we don't know whether we're pointing at a 6407 // base or a complete object, so we generally need to use the 6408 // non-virtual alignment. 6409 Alignment = getClassPointerAlignment(RD); 6410 } else { 6411 Alignment = getContext().getTypeAlignInChars(T); 6412 } 6413 6414 // Cap to the global maximum type alignment unless the alignment 6415 // was somehow explicit on the type. 6416 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6417 if (Alignment.getQuantity() > MaxAlign && 6418 !getContext().isAlignmentRequired(T)) 6419 Alignment = CharUnits::fromQuantity(MaxAlign); 6420 } 6421 return Alignment; 6422 } 6423 6424 bool CodeGenModule::stopAutoInit() { 6425 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6426 if (StopAfter) { 6427 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6428 // used 6429 if (NumAutoVarInit >= StopAfter) { 6430 return true; 6431 } 6432 if (!NumAutoVarInit) { 6433 unsigned DiagID = getDiags().getCustomDiagID( 6434 DiagnosticsEngine::Warning, 6435 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6436 "number of times ftrivial-auto-var-init=%1 gets applied."); 6437 getDiags().Report(DiagID) 6438 << StopAfter 6439 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6440 LangOptions::TrivialAutoVarInitKind::Zero 6441 ? "zero" 6442 : "pattern"); 6443 } 6444 ++NumAutoVarInit; 6445 } 6446 return false; 6447 } 6448 6449 void CodeGenModule::printPostfixForExternalizedStaticVar( 6450 llvm::raw_ostream &OS) const { 6451 OS << ".static." << getContext().getCUIDHash(); 6452 } 6453