1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/DeclCXX.h" 34 #include "clang/AST/DeclObjC.h" 35 #include "clang/AST/DeclTemplate.h" 36 #include "clang/AST/Mangle.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/AST/StmtVisitor.h" 39 #include "clang/Basic/Builtins.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/CodeGenOptions.h" 42 #include "clang/Basic/Diagnostic.h" 43 #include "clang/Basic/FileManager.h" 44 #include "clang/Basic/Module.h" 45 #include "clang/Basic/SourceManager.h" 46 #include "clang/Basic/TargetInfo.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/CodeGen/BackendUtil.h" 49 #include "clang/CodeGen/ConstantInitBuilder.h" 50 #include "clang/Frontend/FrontendDiagnostic.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/StringExtras.h" 53 #include "llvm/ADT/StringSwitch.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/AttributeMask.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/ProfileSummary.h" 63 #include "llvm/ProfileData/InstrProfReader.h" 64 #include "llvm/ProfileData/SampleProf.h" 65 #include "llvm/Support/CRC.h" 66 #include "llvm/Support/CodeGen.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/ConvertUTF.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/RISCVISAInfo.h" 71 #include "llvm/Support/TimeProfiler.h" 72 #include "llvm/Support/xxhash.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include "llvm/TargetParser/X86TargetParser.h" 75 #include <optional> 76 77 using namespace clang; 78 using namespace CodeGen; 79 80 static llvm::cl::opt<bool> LimitedCoverage( 81 "limited-coverage-experimental", llvm::cl::Hidden, 82 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 83 84 static const char AnnotationSection[] = "llvm.metadata"; 85 86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 87 switch (CGM.getContext().getCXXABIKind()) { 88 case TargetCXXABI::AppleARM64: 89 case TargetCXXABI::Fuchsia: 90 case TargetCXXABI::GenericAArch64: 91 case TargetCXXABI::GenericARM: 92 case TargetCXXABI::iOS: 93 case TargetCXXABI::WatchOS: 94 case TargetCXXABI::GenericMIPS: 95 case TargetCXXABI::GenericItanium: 96 case TargetCXXABI::WebAssembly: 97 case TargetCXXABI::XL: 98 return CreateItaniumCXXABI(CGM); 99 case TargetCXXABI::Microsoft: 100 return CreateMicrosoftCXXABI(CGM); 101 } 102 103 llvm_unreachable("invalid C++ ABI kind"); 104 } 105 106 static std::unique_ptr<TargetCodeGenInfo> 107 createTargetCodeGenInfo(CodeGenModule &CGM) { 108 const TargetInfo &Target = CGM.getTarget(); 109 const llvm::Triple &Triple = Target.getTriple(); 110 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 111 112 switch (Triple.getArch()) { 113 default: 114 return createDefaultTargetCodeGenInfo(CGM); 115 116 case llvm::Triple::le32: 117 return createPNaClTargetCodeGenInfo(CGM); 118 case llvm::Triple::m68k: 119 return createM68kTargetCodeGenInfo(CGM); 120 case llvm::Triple::mips: 121 case llvm::Triple::mipsel: 122 if (Triple.getOS() == llvm::Triple::NaCl) 123 return createPNaClTargetCodeGenInfo(CGM); 124 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 125 126 case llvm::Triple::mips64: 127 case llvm::Triple::mips64el: 128 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 129 130 case llvm::Triple::avr: { 131 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 132 // on avrtiny. For passing return value, R18~R25 are used on avr, and 133 // R22~R25 are used on avrtiny. 134 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 135 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 136 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 137 } 138 139 case llvm::Triple::aarch64: 140 case llvm::Triple::aarch64_32: 141 case llvm::Triple::aarch64_be: { 142 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 143 if (Target.getABI() == "darwinpcs") 144 Kind = AArch64ABIKind::DarwinPCS; 145 else if (Triple.isOSWindows()) 146 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 147 148 return createAArch64TargetCodeGenInfo(CGM, Kind); 149 } 150 151 case llvm::Triple::wasm32: 152 case llvm::Triple::wasm64: { 153 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 154 if (Target.getABI() == "experimental-mv") 155 Kind = WebAssemblyABIKind::ExperimentalMV; 156 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 157 } 158 159 case llvm::Triple::arm: 160 case llvm::Triple::armeb: 161 case llvm::Triple::thumb: 162 case llvm::Triple::thumbeb: { 163 if (Triple.getOS() == llvm::Triple::Win32) 164 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 165 166 ARMABIKind Kind = ARMABIKind::AAPCS; 167 StringRef ABIStr = Target.getABI(); 168 if (ABIStr == "apcs-gnu") 169 Kind = ARMABIKind::APCS; 170 else if (ABIStr == "aapcs16") 171 Kind = ARMABIKind::AAPCS16_VFP; 172 else if (CodeGenOpts.FloatABI == "hard" || 173 (CodeGenOpts.FloatABI != "soft" && 174 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 175 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 176 Triple.getEnvironment() == llvm::Triple::EABIHF))) 177 Kind = ARMABIKind::AAPCS_VFP; 178 179 return createARMTargetCodeGenInfo(CGM, Kind); 180 } 181 182 case llvm::Triple::ppc: { 183 if (Triple.isOSAIX()) 184 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 185 186 bool IsSoftFloat = 187 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 188 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 189 } 190 case llvm::Triple::ppcle: { 191 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 192 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 193 } 194 case llvm::Triple::ppc64: 195 if (Triple.isOSAIX()) 196 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 197 198 if (Triple.isOSBinFormatELF()) { 199 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 200 if (Target.getABI() == "elfv2") 201 Kind = PPC64_SVR4_ABIKind::ELFv2; 202 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 203 204 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 205 } 206 return createPPC64TargetCodeGenInfo(CGM); 207 case llvm::Triple::ppc64le: { 208 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 209 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 210 if (Target.getABI() == "elfv1") 211 Kind = PPC64_SVR4_ABIKind::ELFv1; 212 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 213 214 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 215 } 216 217 case llvm::Triple::nvptx: 218 case llvm::Triple::nvptx64: 219 return createNVPTXTargetCodeGenInfo(CGM); 220 221 case llvm::Triple::msp430: 222 return createMSP430TargetCodeGenInfo(CGM); 223 224 case llvm::Triple::riscv32: 225 case llvm::Triple::riscv64: { 226 StringRef ABIStr = Target.getABI(); 227 unsigned XLen = Target.getPointerWidth(LangAS::Default); 228 unsigned ABIFLen = 0; 229 if (ABIStr.ends_with("f")) 230 ABIFLen = 32; 231 else if (ABIStr.ends_with("d")) 232 ABIFLen = 64; 233 bool EABI = ABIStr.ends_with("e"); 234 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 235 } 236 237 case llvm::Triple::systemz: { 238 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 239 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 240 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 241 } 242 243 case llvm::Triple::tce: 244 case llvm::Triple::tcele: 245 return createTCETargetCodeGenInfo(CGM); 246 247 case llvm::Triple::x86: { 248 bool IsDarwinVectorABI = Triple.isOSDarwin(); 249 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 250 251 if (Triple.getOS() == llvm::Triple::Win32) { 252 return createWinX86_32TargetCodeGenInfo( 253 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 254 CodeGenOpts.NumRegisterParameters); 255 } 256 return createX86_32TargetCodeGenInfo( 257 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 258 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 259 } 260 261 case llvm::Triple::x86_64: { 262 StringRef ABI = Target.getABI(); 263 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 264 : ABI == "avx" ? X86AVXABILevel::AVX 265 : X86AVXABILevel::None); 266 267 switch (Triple.getOS()) { 268 case llvm::Triple::Win32: 269 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 270 default: 271 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 272 } 273 } 274 case llvm::Triple::hexagon: 275 return createHexagonTargetCodeGenInfo(CGM); 276 case llvm::Triple::lanai: 277 return createLanaiTargetCodeGenInfo(CGM); 278 case llvm::Triple::r600: 279 return createAMDGPUTargetCodeGenInfo(CGM); 280 case llvm::Triple::amdgcn: 281 return createAMDGPUTargetCodeGenInfo(CGM); 282 case llvm::Triple::sparc: 283 return createSparcV8TargetCodeGenInfo(CGM); 284 case llvm::Triple::sparcv9: 285 return createSparcV9TargetCodeGenInfo(CGM); 286 case llvm::Triple::xcore: 287 return createXCoreTargetCodeGenInfo(CGM); 288 case llvm::Triple::arc: 289 return createARCTargetCodeGenInfo(CGM); 290 case llvm::Triple::spir: 291 case llvm::Triple::spir64: 292 return createCommonSPIRTargetCodeGenInfo(CGM); 293 case llvm::Triple::spirv32: 294 case llvm::Triple::spirv64: 295 return createSPIRVTargetCodeGenInfo(CGM); 296 case llvm::Triple::ve: 297 return createVETargetCodeGenInfo(CGM); 298 case llvm::Triple::csky: { 299 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 300 bool hasFP64 = 301 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 302 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 303 : hasFP64 ? 64 304 : 32); 305 } 306 case llvm::Triple::bpfeb: 307 case llvm::Triple::bpfel: 308 return createBPFTargetCodeGenInfo(CGM); 309 case llvm::Triple::loongarch32: 310 case llvm::Triple::loongarch64: { 311 StringRef ABIStr = Target.getABI(); 312 unsigned ABIFRLen = 0; 313 if (ABIStr.ends_with("f")) 314 ABIFRLen = 32; 315 else if (ABIStr.ends_with("d")) 316 ABIFRLen = 64; 317 return createLoongArchTargetCodeGenInfo( 318 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 319 } 320 } 321 } 322 323 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 324 if (!TheTargetCodeGenInfo) 325 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 326 return *TheTargetCodeGenInfo; 327 } 328 329 CodeGenModule::CodeGenModule(ASTContext &C, 330 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 331 const HeaderSearchOptions &HSO, 332 const PreprocessorOptions &PPO, 333 const CodeGenOptions &CGO, llvm::Module &M, 334 DiagnosticsEngine &diags, 335 CoverageSourceInfo *CoverageInfo) 336 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 337 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 338 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 339 VMContext(M.getContext()), Types(*this), VTables(*this), 340 SanitizerMD(new SanitizerMetadata(*this)) { 341 342 // Initialize the type cache. 343 llvm::LLVMContext &LLVMContext = M.getContext(); 344 VoidTy = llvm::Type::getVoidTy(LLVMContext); 345 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 346 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 347 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 348 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 349 HalfTy = llvm::Type::getHalfTy(LLVMContext); 350 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 351 FloatTy = llvm::Type::getFloatTy(LLVMContext); 352 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 353 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 354 PointerAlignInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 356 .getQuantity(); 357 SizeSizeInBytes = 358 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 359 IntAlignInBytes = 360 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 361 CharTy = 362 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 363 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 364 IntPtrTy = llvm::IntegerType::get(LLVMContext, 365 C.getTargetInfo().getMaxPointerWidth()); 366 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 367 const llvm::DataLayout &DL = M.getDataLayout(); 368 AllocaInt8PtrTy = 369 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 370 GlobalsInt8PtrTy = 371 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 372 ConstGlobalsPtrTy = llvm::PointerType::get( 373 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 374 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 375 376 // Build C++20 Module initializers. 377 // TODO: Add Microsoft here once we know the mangling required for the 378 // initializers. 379 CXX20ModuleInits = 380 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 381 ItaniumMangleContext::MK_Itanium; 382 383 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 384 385 if (LangOpts.ObjC) 386 createObjCRuntime(); 387 if (LangOpts.OpenCL) 388 createOpenCLRuntime(); 389 if (LangOpts.OpenMP) 390 createOpenMPRuntime(); 391 if (LangOpts.CUDA) 392 createCUDARuntime(); 393 if (LangOpts.HLSL) 394 createHLSLRuntime(); 395 396 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 397 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 398 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 399 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 400 getCXXABI().getMangleContext())); 401 402 // If debug info or coverage generation is enabled, create the CGDebugInfo 403 // object. 404 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 405 CodeGenOpts.CoverageNotesFile.size() || 406 CodeGenOpts.CoverageDataFile.size()) 407 DebugInfo.reset(new CGDebugInfo(*this)); 408 409 Block.GlobalUniqueCount = 0; 410 411 if (C.getLangOpts().ObjC) 412 ObjCData.reset(new ObjCEntrypoints()); 413 414 if (CodeGenOpts.hasProfileClangUse()) { 415 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 416 CodeGenOpts.ProfileInstrumentUsePath, *FS, 417 CodeGenOpts.ProfileRemappingFile); 418 // We're checking for profile read errors in CompilerInvocation, so if 419 // there was an error it should've already been caught. If it hasn't been 420 // somehow, trip an assertion. 421 assert(ReaderOrErr); 422 PGOReader = std::move(ReaderOrErr.get()); 423 } 424 425 // If coverage mapping generation is enabled, create the 426 // CoverageMappingModuleGen object. 427 if (CodeGenOpts.CoverageMapping) 428 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 429 430 // Generate the module name hash here if needed. 431 if (CodeGenOpts.UniqueInternalLinkageNames && 432 !getModule().getSourceFileName().empty()) { 433 std::string Path = getModule().getSourceFileName(); 434 // Check if a path substitution is needed from the MacroPrefixMap. 435 for (const auto &Entry : LangOpts.MacroPrefixMap) 436 if (Path.rfind(Entry.first, 0) != std::string::npos) { 437 Path = Entry.second + Path.substr(Entry.first.size()); 438 break; 439 } 440 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 441 } 442 } 443 444 CodeGenModule::~CodeGenModule() {} 445 446 void CodeGenModule::createObjCRuntime() { 447 // This is just isGNUFamily(), but we want to force implementors of 448 // new ABIs to decide how best to do this. 449 switch (LangOpts.ObjCRuntime.getKind()) { 450 case ObjCRuntime::GNUstep: 451 case ObjCRuntime::GCC: 452 case ObjCRuntime::ObjFW: 453 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 454 return; 455 456 case ObjCRuntime::FragileMacOSX: 457 case ObjCRuntime::MacOSX: 458 case ObjCRuntime::iOS: 459 case ObjCRuntime::WatchOS: 460 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 461 return; 462 } 463 llvm_unreachable("bad runtime kind"); 464 } 465 466 void CodeGenModule::createOpenCLRuntime() { 467 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 468 } 469 470 void CodeGenModule::createOpenMPRuntime() { 471 // Select a specialized code generation class based on the target, if any. 472 // If it does not exist use the default implementation. 473 switch (getTriple().getArch()) { 474 case llvm::Triple::nvptx: 475 case llvm::Triple::nvptx64: 476 case llvm::Triple::amdgcn: 477 assert(getLangOpts().OpenMPIsTargetDevice && 478 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 479 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 480 break; 481 default: 482 if (LangOpts.OpenMPSimd) 483 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 484 else 485 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 486 break; 487 } 488 } 489 490 void CodeGenModule::createCUDARuntime() { 491 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 492 } 493 494 void CodeGenModule::createHLSLRuntime() { 495 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 496 } 497 498 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 499 Replacements[Name] = C; 500 } 501 502 void CodeGenModule::applyReplacements() { 503 for (auto &I : Replacements) { 504 StringRef MangledName = I.first; 505 llvm::Constant *Replacement = I.second; 506 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 507 if (!Entry) 508 continue; 509 auto *OldF = cast<llvm::Function>(Entry); 510 auto *NewF = dyn_cast<llvm::Function>(Replacement); 511 if (!NewF) { 512 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 513 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 514 } else { 515 auto *CE = cast<llvm::ConstantExpr>(Replacement); 516 assert(CE->getOpcode() == llvm::Instruction::BitCast || 517 CE->getOpcode() == llvm::Instruction::GetElementPtr); 518 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 519 } 520 } 521 522 // Replace old with new, but keep the old order. 523 OldF->replaceAllUsesWith(Replacement); 524 if (NewF) { 525 NewF->removeFromParent(); 526 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 527 NewF); 528 } 529 OldF->eraseFromParent(); 530 } 531 } 532 533 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 534 GlobalValReplacements.push_back(std::make_pair(GV, C)); 535 } 536 537 void CodeGenModule::applyGlobalValReplacements() { 538 for (auto &I : GlobalValReplacements) { 539 llvm::GlobalValue *GV = I.first; 540 llvm::Constant *C = I.second; 541 542 GV->replaceAllUsesWith(C); 543 GV->eraseFromParent(); 544 } 545 } 546 547 // This is only used in aliases that we created and we know they have a 548 // linear structure. 549 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 550 const llvm::Constant *C; 551 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 552 C = GA->getAliasee(); 553 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 554 C = GI->getResolver(); 555 else 556 return GV; 557 558 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 559 if (!AliaseeGV) 560 return nullptr; 561 562 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 563 if (FinalGV == GV) 564 return nullptr; 565 566 return FinalGV; 567 } 568 569 static bool checkAliasedGlobal( 570 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 571 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 572 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 573 SourceRange AliasRange) { 574 GV = getAliasedGlobal(Alias); 575 if (!GV) { 576 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 577 return false; 578 } 579 580 if (GV->hasCommonLinkage()) { 581 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 582 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 583 Diags.Report(Location, diag::err_alias_to_common); 584 return false; 585 } 586 } 587 588 if (GV->isDeclaration()) { 589 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 590 Diags.Report(Location, diag::note_alias_requires_mangled_name) 591 << IsIFunc << IsIFunc; 592 // Provide a note if the given function is not found and exists as a 593 // mangled name. 594 for (const auto &[Decl, Name] : MangledDeclNames) { 595 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 596 if (ND->getName() == GV->getName()) { 597 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 598 << Name 599 << FixItHint::CreateReplacement( 600 AliasRange, 601 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 602 .str()); 603 } 604 } 605 } 606 return false; 607 } 608 609 if (IsIFunc) { 610 // Check resolver function type. 611 const auto *F = dyn_cast<llvm::Function>(GV); 612 if (!F) { 613 Diags.Report(Location, diag::err_alias_to_undefined) 614 << IsIFunc << IsIFunc; 615 return false; 616 } 617 618 llvm::FunctionType *FTy = F->getFunctionType(); 619 if (!FTy->getReturnType()->isPointerTy()) { 620 Diags.Report(Location, diag::err_ifunc_resolver_return); 621 return false; 622 } 623 } 624 625 return true; 626 } 627 628 void CodeGenModule::checkAliases() { 629 // Check if the constructed aliases are well formed. It is really unfortunate 630 // that we have to do this in CodeGen, but we only construct mangled names 631 // and aliases during codegen. 632 bool Error = false; 633 DiagnosticsEngine &Diags = getDiags(); 634 for (const GlobalDecl &GD : Aliases) { 635 const auto *D = cast<ValueDecl>(GD.getDecl()); 636 SourceLocation Location; 637 SourceRange Range; 638 bool IsIFunc = D->hasAttr<IFuncAttr>(); 639 if (const Attr *A = D->getDefiningAttr()) { 640 Location = A->getLocation(); 641 Range = A->getRange(); 642 } else 643 llvm_unreachable("Not an alias or ifunc?"); 644 645 StringRef MangledName = getMangledName(GD); 646 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 647 const llvm::GlobalValue *GV = nullptr; 648 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 649 MangledDeclNames, Range)) { 650 Error = true; 651 continue; 652 } 653 654 llvm::Constant *Aliasee = 655 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 656 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 657 658 llvm::GlobalValue *AliaseeGV; 659 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 660 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 661 else 662 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 663 664 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 665 StringRef AliasSection = SA->getName(); 666 if (AliasSection != AliaseeGV->getSection()) 667 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 668 << AliasSection << IsIFunc << IsIFunc; 669 } 670 671 // We have to handle alias to weak aliases in here. LLVM itself disallows 672 // this since the object semantics would not match the IL one. For 673 // compatibility with gcc we implement it by just pointing the alias 674 // to its aliasee's aliasee. We also warn, since the user is probably 675 // expecting the link to be weak. 676 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 677 if (GA->isInterposable()) { 678 Diags.Report(Location, diag::warn_alias_to_weak_alias) 679 << GV->getName() << GA->getName() << IsIFunc; 680 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 681 GA->getAliasee(), Alias->getType()); 682 683 if (IsIFunc) 684 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 685 else 686 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 687 } 688 } 689 } 690 if (!Error) 691 return; 692 693 for (const GlobalDecl &GD : Aliases) { 694 StringRef MangledName = getMangledName(GD); 695 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 696 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 697 Alias->eraseFromParent(); 698 } 699 } 700 701 void CodeGenModule::clear() { 702 DeferredDeclsToEmit.clear(); 703 EmittedDeferredDecls.clear(); 704 DeferredAnnotations.clear(); 705 if (OpenMPRuntime) 706 OpenMPRuntime->clear(); 707 } 708 709 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 710 StringRef MainFile) { 711 if (!hasDiagnostics()) 712 return; 713 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 714 if (MainFile.empty()) 715 MainFile = "<stdin>"; 716 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 717 } else { 718 if (Mismatched > 0) 719 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 720 721 if (Missing > 0) 722 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 723 } 724 } 725 726 static std::optional<llvm::GlobalValue::VisibilityTypes> 727 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 728 // Map to LLVM visibility. 729 switch (K) { 730 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 731 return std::nullopt; 732 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 733 return llvm::GlobalValue::DefaultVisibility; 734 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 735 return llvm::GlobalValue::HiddenVisibility; 736 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 737 return llvm::GlobalValue::ProtectedVisibility; 738 } 739 llvm_unreachable("unknown option value!"); 740 } 741 742 void setLLVMVisibility(llvm::GlobalValue &GV, 743 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 744 if (!V) 745 return; 746 747 // Reset DSO locality before setting the visibility. This removes 748 // any effects that visibility options and annotations may have 749 // had on the DSO locality. Setting the visibility will implicitly set 750 // appropriate globals to DSO Local; however, this will be pessimistic 751 // w.r.t. to the normal compiler IRGen. 752 GV.setDSOLocal(false); 753 GV.setVisibility(*V); 754 } 755 756 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 757 llvm::Module &M) { 758 if (!LO.VisibilityFromDLLStorageClass) 759 return; 760 761 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 762 getLLVMVisibility(LO.getDLLExportVisibility()); 763 764 std::optional<llvm::GlobalValue::VisibilityTypes> 765 NoDLLStorageClassVisibility = 766 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 767 768 std::optional<llvm::GlobalValue::VisibilityTypes> 769 ExternDeclDLLImportVisibility = 770 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 771 772 std::optional<llvm::GlobalValue::VisibilityTypes> 773 ExternDeclNoDLLStorageClassVisibility = 774 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 775 776 for (llvm::GlobalValue &GV : M.global_values()) { 777 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 778 continue; 779 780 if (GV.isDeclarationForLinker()) 781 setLLVMVisibility(GV, GV.getDLLStorageClass() == 782 llvm::GlobalValue::DLLImportStorageClass 783 ? ExternDeclDLLImportVisibility 784 : ExternDeclNoDLLStorageClassVisibility); 785 else 786 setLLVMVisibility(GV, GV.getDLLStorageClass() == 787 llvm::GlobalValue::DLLExportStorageClass 788 ? DLLExportVisibility 789 : NoDLLStorageClassVisibility); 790 791 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 792 } 793 } 794 795 static bool isStackProtectorOn(const LangOptions &LangOpts, 796 const llvm::Triple &Triple, 797 clang::LangOptions::StackProtectorMode Mode) { 798 if (Triple.isAMDGPU() || Triple.isNVPTX()) 799 return false; 800 return LangOpts.getStackProtector() == Mode; 801 } 802 803 void CodeGenModule::Release() { 804 Module *Primary = getContext().getCurrentNamedModule(); 805 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 806 EmitModuleInitializers(Primary); 807 EmitDeferred(); 808 DeferredDecls.insert(EmittedDeferredDecls.begin(), 809 EmittedDeferredDecls.end()); 810 EmittedDeferredDecls.clear(); 811 EmitVTablesOpportunistically(); 812 applyGlobalValReplacements(); 813 applyReplacements(); 814 emitMultiVersionFunctions(); 815 816 if (Context.getLangOpts().IncrementalExtensions && 817 GlobalTopLevelStmtBlockInFlight.first) { 818 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 819 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 820 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 821 } 822 823 // Module implementations are initialized the same way as a regular TU that 824 // imports one or more modules. 825 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 826 EmitCXXModuleInitFunc(Primary); 827 else 828 EmitCXXGlobalInitFunc(); 829 EmitCXXGlobalCleanUpFunc(); 830 registerGlobalDtorsWithAtExit(); 831 EmitCXXThreadLocalInitFunc(); 832 if (ObjCRuntime) 833 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 834 AddGlobalCtor(ObjCInitFunction); 835 if (Context.getLangOpts().CUDA && CUDARuntime) { 836 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 837 AddGlobalCtor(CudaCtorFunction); 838 } 839 if (OpenMPRuntime) { 840 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 841 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 842 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 843 } 844 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 845 OpenMPRuntime->clear(); 846 } 847 if (PGOReader) { 848 getModule().setProfileSummary( 849 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 850 llvm::ProfileSummary::PSK_Instr); 851 if (PGOStats.hasDiagnostics()) 852 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 853 } 854 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 855 return L.LexOrder < R.LexOrder; 856 }); 857 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 858 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 859 EmitGlobalAnnotations(); 860 EmitStaticExternCAliases(); 861 checkAliases(); 862 EmitDeferredUnusedCoverageMappings(); 863 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 864 if (CoverageMapping) 865 CoverageMapping->emit(); 866 if (CodeGenOpts.SanitizeCfiCrossDso) { 867 CodeGenFunction(*this).EmitCfiCheckFail(); 868 CodeGenFunction(*this).EmitCfiCheckStub(); 869 } 870 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 871 finalizeKCFITypes(); 872 emitAtAvailableLinkGuard(); 873 if (Context.getTargetInfo().getTriple().isWasm()) 874 EmitMainVoidAlias(); 875 876 if (getTriple().isAMDGPU()) { 877 // Emit amdgpu_code_object_version module flag, which is code object version 878 // times 100. 879 if (getTarget().getTargetOpts().CodeObjectVersion != 880 llvm::CodeObjectVersionKind::COV_None) { 881 getModule().addModuleFlag(llvm::Module::Error, 882 "amdgpu_code_object_version", 883 getTarget().getTargetOpts().CodeObjectVersion); 884 } 885 886 // Currently, "-mprintf-kind" option is only supported for HIP 887 if (LangOpts.HIP) { 888 auto *MDStr = llvm::MDString::get( 889 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 890 TargetOptions::AMDGPUPrintfKind::Hostcall) 891 ? "hostcall" 892 : "buffered"); 893 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 894 MDStr); 895 } 896 } 897 898 // Emit a global array containing all external kernels or device variables 899 // used by host functions and mark it as used for CUDA/HIP. This is necessary 900 // to get kernels or device variables in archives linked in even if these 901 // kernels or device variables are only used in host functions. 902 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 903 SmallVector<llvm::Constant *, 8> UsedArray; 904 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 905 GlobalDecl GD; 906 if (auto *FD = dyn_cast<FunctionDecl>(D)) 907 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 908 else 909 GD = GlobalDecl(D); 910 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 911 GetAddrOfGlobal(GD), Int8PtrTy)); 912 } 913 914 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 915 916 auto *GV = new llvm::GlobalVariable( 917 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 918 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 919 addCompilerUsedGlobal(GV); 920 } 921 922 emitLLVMUsed(); 923 if (SanStats) 924 SanStats->finish(); 925 926 if (CodeGenOpts.Autolink && 927 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 928 EmitModuleLinkOptions(); 929 } 930 931 // On ELF we pass the dependent library specifiers directly to the linker 932 // without manipulating them. This is in contrast to other platforms where 933 // they are mapped to a specific linker option by the compiler. This 934 // difference is a result of the greater variety of ELF linkers and the fact 935 // that ELF linkers tend to handle libraries in a more complicated fashion 936 // than on other platforms. This forces us to defer handling the dependent 937 // libs to the linker. 938 // 939 // CUDA/HIP device and host libraries are different. Currently there is no 940 // way to differentiate dependent libraries for host or device. Existing 941 // usage of #pragma comment(lib, *) is intended for host libraries on 942 // Windows. Therefore emit llvm.dependent-libraries only for host. 943 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 944 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 945 for (auto *MD : ELFDependentLibraries) 946 NMD->addOperand(MD); 947 } 948 949 // Record mregparm value now so it is visible through rest of codegen. 950 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 951 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 952 CodeGenOpts.NumRegisterParameters); 953 954 if (CodeGenOpts.DwarfVersion) { 955 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 956 CodeGenOpts.DwarfVersion); 957 } 958 959 if (CodeGenOpts.Dwarf64) 960 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 961 962 if (Context.getLangOpts().SemanticInterposition) 963 // Require various optimization to respect semantic interposition. 964 getModule().setSemanticInterposition(true); 965 966 if (CodeGenOpts.EmitCodeView) { 967 // Indicate that we want CodeView in the metadata. 968 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 969 } 970 if (CodeGenOpts.CodeViewGHash) { 971 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 972 } 973 if (CodeGenOpts.ControlFlowGuard) { 974 // Function ID tables and checks for Control Flow Guard (cfguard=2). 975 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 976 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 977 // Function ID tables for Control Flow Guard (cfguard=1). 978 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 979 } 980 if (CodeGenOpts.EHContGuard) { 981 // Function ID tables for EH Continuation Guard. 982 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 983 } 984 if (Context.getLangOpts().Kernel) { 985 // Note if we are compiling with /kernel. 986 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 987 } 988 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 989 // We don't support LTO with 2 with different StrictVTablePointers 990 // FIXME: we could support it by stripping all the information introduced 991 // by StrictVTablePointers. 992 993 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 994 995 llvm::Metadata *Ops[2] = { 996 llvm::MDString::get(VMContext, "StrictVTablePointers"), 997 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 998 llvm::Type::getInt32Ty(VMContext), 1))}; 999 1000 getModule().addModuleFlag(llvm::Module::Require, 1001 "StrictVTablePointersRequirement", 1002 llvm::MDNode::get(VMContext, Ops)); 1003 } 1004 if (getModuleDebugInfo()) 1005 // We support a single version in the linked module. The LLVM 1006 // parser will drop debug info with a different version number 1007 // (and warn about it, too). 1008 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1009 llvm::DEBUG_METADATA_VERSION); 1010 1011 // We need to record the widths of enums and wchar_t, so that we can generate 1012 // the correct build attributes in the ARM backend. wchar_size is also used by 1013 // TargetLibraryInfo. 1014 uint64_t WCharWidth = 1015 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1016 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1017 1018 if (getTriple().isOSzOS()) { 1019 getModule().addModuleFlag(llvm::Module::Warning, 1020 "zos_product_major_version", 1021 uint32_t(CLANG_VERSION_MAJOR)); 1022 getModule().addModuleFlag(llvm::Module::Warning, 1023 "zos_product_minor_version", 1024 uint32_t(CLANG_VERSION_MINOR)); 1025 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1026 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1027 std::string ProductId = getClangVendor() + "clang"; 1028 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1029 llvm::MDString::get(VMContext, ProductId)); 1030 1031 // Record the language because we need it for the PPA2. 1032 StringRef lang_str = languageToString( 1033 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1034 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1035 llvm::MDString::get(VMContext, lang_str)); 1036 1037 time_t TT = PreprocessorOpts.SourceDateEpoch 1038 ? *PreprocessorOpts.SourceDateEpoch 1039 : std::time(nullptr); 1040 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1041 static_cast<uint64_t>(TT)); 1042 1043 // Multiple modes will be supported here. 1044 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1045 llvm::MDString::get(VMContext, "ascii")); 1046 } 1047 1048 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 1049 if ( Arch == llvm::Triple::arm 1050 || Arch == llvm::Triple::armeb 1051 || Arch == llvm::Triple::thumb 1052 || Arch == llvm::Triple::thumbeb) { 1053 // The minimum width of an enum in bytes 1054 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1055 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1056 } 1057 1058 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 1059 StringRef ABIStr = Target.getABI(); 1060 llvm::LLVMContext &Ctx = TheModule.getContext(); 1061 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1062 llvm::MDString::get(Ctx, ABIStr)); 1063 1064 // Add the canonical ISA string as metadata so the backend can set the ELF 1065 // attributes correctly. We use AppendUnique so LTO will keep all of the 1066 // unique ISA strings that were linked together. 1067 const std::vector<std::string> &Features = 1068 getTarget().getTargetOpts().Features; 1069 auto ParseResult = llvm::RISCVISAInfo::parseFeatures( 1070 Arch == llvm::Triple::riscv64 ? 64 : 32, Features); 1071 if (!errorToBool(ParseResult.takeError())) 1072 getModule().addModuleFlag( 1073 llvm::Module::AppendUnique, "riscv-isa", 1074 llvm::MDNode::get( 1075 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1076 } 1077 1078 if (CodeGenOpts.SanitizeCfiCrossDso) { 1079 // Indicate that we want cross-DSO control flow integrity checks. 1080 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1081 } 1082 1083 if (CodeGenOpts.WholeProgramVTables) { 1084 // Indicate whether VFE was enabled for this module, so that the 1085 // vcall_visibility metadata added under whole program vtables is handled 1086 // appropriately in the optimizer. 1087 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1088 CodeGenOpts.VirtualFunctionElimination); 1089 } 1090 1091 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1092 getModule().addModuleFlag(llvm::Module::Override, 1093 "CFI Canonical Jump Tables", 1094 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1095 } 1096 1097 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1098 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1099 // KCFI assumes patchable-function-prefix is the same for all indirectly 1100 // called functions. Store the expected offset for code generation. 1101 if (CodeGenOpts.PatchableFunctionEntryOffset) 1102 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1103 CodeGenOpts.PatchableFunctionEntryOffset); 1104 } 1105 1106 if (CodeGenOpts.CFProtectionReturn && 1107 Target.checkCFProtectionReturnSupported(getDiags())) { 1108 // Indicate that we want to instrument return control flow protection. 1109 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1110 1); 1111 } 1112 1113 if (CodeGenOpts.CFProtectionBranch && 1114 Target.checkCFProtectionBranchSupported(getDiags())) { 1115 // Indicate that we want to instrument branch control flow protection. 1116 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1117 1); 1118 } 1119 1120 if (CodeGenOpts.FunctionReturnThunks) 1121 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1122 1123 if (CodeGenOpts.IndirectBranchCSPrefix) 1124 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1125 1126 // Add module metadata for return address signing (ignoring 1127 // non-leaf/all) and stack tagging. These are actually turned on by function 1128 // attributes, but we use module metadata to emit build attributes. This is 1129 // needed for LTO, where the function attributes are inside bitcode 1130 // serialised into a global variable by the time build attributes are 1131 // emitted, so we can't access them. LTO objects could be compiled with 1132 // different flags therefore module flags are set to "Min" behavior to achieve 1133 // the same end result of the normal build where e.g BTI is off if any object 1134 // doesn't support it. 1135 if (Context.getTargetInfo().hasFeature("ptrauth") && 1136 LangOpts.getSignReturnAddressScope() != 1137 LangOptions::SignReturnAddressScopeKind::None) 1138 getModule().addModuleFlag(llvm::Module::Override, 1139 "sign-return-address-buildattr", 1); 1140 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1141 getModule().addModuleFlag(llvm::Module::Override, 1142 "tag-stack-memory-buildattr", 1); 1143 1144 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1145 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1146 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1147 Arch == llvm::Triple::aarch64_be) { 1148 if (LangOpts.BranchTargetEnforcement) 1149 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1150 1); 1151 if (LangOpts.BranchProtectionPAuthLR) 1152 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1153 1); 1154 if (LangOpts.GuardedControlStack) 1155 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1156 if (LangOpts.hasSignReturnAddress()) 1157 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1158 if (LangOpts.isSignReturnAddressScopeAll()) 1159 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1160 1); 1161 if (!LangOpts.isSignReturnAddressWithAKey()) 1162 getModule().addModuleFlag(llvm::Module::Min, 1163 "sign-return-address-with-bkey", 1); 1164 } 1165 1166 if (CodeGenOpts.StackClashProtector) 1167 getModule().addModuleFlag( 1168 llvm::Module::Override, "probe-stack", 1169 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1170 1171 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1172 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1173 CodeGenOpts.StackProbeSize); 1174 1175 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1176 llvm::LLVMContext &Ctx = TheModule.getContext(); 1177 getModule().addModuleFlag( 1178 llvm::Module::Error, "MemProfProfileFilename", 1179 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1180 } 1181 1182 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1183 // Indicate whether __nvvm_reflect should be configured to flush denormal 1184 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1185 // property.) 1186 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1187 CodeGenOpts.FP32DenormalMode.Output != 1188 llvm::DenormalMode::IEEE); 1189 } 1190 1191 if (LangOpts.EHAsynch) 1192 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1193 1194 // Indicate whether this Module was compiled with -fopenmp 1195 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1196 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1197 if (getLangOpts().OpenMPIsTargetDevice) 1198 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1199 LangOpts.OpenMP); 1200 1201 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1202 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1203 EmitOpenCLMetadata(); 1204 // Emit SPIR version. 1205 if (getTriple().isSPIR()) { 1206 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1207 // opencl.spir.version named metadata. 1208 // C++ for OpenCL has a distinct mapping for version compatibility with 1209 // OpenCL. 1210 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1211 llvm::Metadata *SPIRVerElts[] = { 1212 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1213 Int32Ty, Version / 100)), 1214 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1215 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1216 llvm::NamedMDNode *SPIRVerMD = 1217 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1218 llvm::LLVMContext &Ctx = TheModule.getContext(); 1219 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1220 } 1221 } 1222 1223 // HLSL related end of code gen work items. 1224 if (LangOpts.HLSL) 1225 getHLSLRuntime().finishCodeGen(); 1226 1227 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1228 assert(PLevel < 3 && "Invalid PIC Level"); 1229 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1230 if (Context.getLangOpts().PIE) 1231 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1232 } 1233 1234 if (getCodeGenOpts().CodeModel.size() > 0) { 1235 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1236 .Case("tiny", llvm::CodeModel::Tiny) 1237 .Case("small", llvm::CodeModel::Small) 1238 .Case("kernel", llvm::CodeModel::Kernel) 1239 .Case("medium", llvm::CodeModel::Medium) 1240 .Case("large", llvm::CodeModel::Large) 1241 .Default(~0u); 1242 if (CM != ~0u) { 1243 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1244 getModule().setCodeModel(codeModel); 1245 1246 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1247 Context.getTargetInfo().getTriple().getArch() == 1248 llvm::Triple::x86_64) { 1249 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1250 } 1251 } 1252 } 1253 1254 if (CodeGenOpts.NoPLT) 1255 getModule().setRtLibUseGOT(); 1256 if (getTriple().isOSBinFormatELF() && 1257 CodeGenOpts.DirectAccessExternalData != 1258 getModule().getDirectAccessExternalData()) { 1259 getModule().setDirectAccessExternalData( 1260 CodeGenOpts.DirectAccessExternalData); 1261 } 1262 if (CodeGenOpts.UnwindTables) 1263 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1264 1265 switch (CodeGenOpts.getFramePointer()) { 1266 case CodeGenOptions::FramePointerKind::None: 1267 // 0 ("none") is the default. 1268 break; 1269 case CodeGenOptions::FramePointerKind::NonLeaf: 1270 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1271 break; 1272 case CodeGenOptions::FramePointerKind::All: 1273 getModule().setFramePointer(llvm::FramePointerKind::All); 1274 break; 1275 } 1276 1277 SimplifyPersonality(); 1278 1279 if (getCodeGenOpts().EmitDeclMetadata) 1280 EmitDeclMetadata(); 1281 1282 if (getCodeGenOpts().CoverageNotesFile.size() || 1283 getCodeGenOpts().CoverageDataFile.size()) 1284 EmitCoverageFile(); 1285 1286 if (CGDebugInfo *DI = getModuleDebugInfo()) 1287 DI->finalize(); 1288 1289 if (getCodeGenOpts().EmitVersionIdentMetadata) 1290 EmitVersionIdentMetadata(); 1291 1292 if (!getCodeGenOpts().RecordCommandLine.empty()) 1293 EmitCommandLineMetadata(); 1294 1295 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1296 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1297 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1298 getModule().setStackProtectorGuardReg( 1299 getCodeGenOpts().StackProtectorGuardReg); 1300 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1301 getModule().setStackProtectorGuardSymbol( 1302 getCodeGenOpts().StackProtectorGuardSymbol); 1303 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1304 getModule().setStackProtectorGuardOffset( 1305 getCodeGenOpts().StackProtectorGuardOffset); 1306 if (getCodeGenOpts().StackAlignment) 1307 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1308 if (getCodeGenOpts().SkipRaxSetup) 1309 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1310 if (getLangOpts().RegCall4) 1311 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1312 1313 if (getContext().getTargetInfo().getMaxTLSAlign()) 1314 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1315 getContext().getTargetInfo().getMaxTLSAlign()); 1316 1317 getTargetCodeGenInfo().emitTargetGlobals(*this); 1318 1319 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1320 1321 EmitBackendOptionsMetadata(getCodeGenOpts()); 1322 1323 // If there is device offloading code embed it in the host now. 1324 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1325 1326 // Set visibility from DLL storage class 1327 // We do this at the end of LLVM IR generation; after any operation 1328 // that might affect the DLL storage class or the visibility, and 1329 // before anything that might act on these. 1330 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1331 } 1332 1333 void CodeGenModule::EmitOpenCLMetadata() { 1334 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1335 // opencl.ocl.version named metadata node. 1336 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1337 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1338 llvm::Metadata *OCLVerElts[] = { 1339 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1340 Int32Ty, Version / 100)), 1341 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1342 Int32Ty, (Version % 100) / 10))}; 1343 llvm::NamedMDNode *OCLVerMD = 1344 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1345 llvm::LLVMContext &Ctx = TheModule.getContext(); 1346 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1347 } 1348 1349 void CodeGenModule::EmitBackendOptionsMetadata( 1350 const CodeGenOptions &CodeGenOpts) { 1351 if (getTriple().isRISCV()) { 1352 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1353 CodeGenOpts.SmallDataLimit); 1354 } 1355 } 1356 1357 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1358 // Make sure that this type is translated. 1359 Types.UpdateCompletedType(TD); 1360 } 1361 1362 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1363 // Make sure that this type is translated. 1364 Types.RefreshTypeCacheForClass(RD); 1365 } 1366 1367 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1368 if (!TBAA) 1369 return nullptr; 1370 return TBAA->getTypeInfo(QTy); 1371 } 1372 1373 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1374 if (!TBAA) 1375 return TBAAAccessInfo(); 1376 if (getLangOpts().CUDAIsDevice) { 1377 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1378 // access info. 1379 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1380 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1381 nullptr) 1382 return TBAAAccessInfo(); 1383 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1384 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1385 nullptr) 1386 return TBAAAccessInfo(); 1387 } 1388 } 1389 return TBAA->getAccessInfo(AccessType); 1390 } 1391 1392 TBAAAccessInfo 1393 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1394 if (!TBAA) 1395 return TBAAAccessInfo(); 1396 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1397 } 1398 1399 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1400 if (!TBAA) 1401 return nullptr; 1402 return TBAA->getTBAAStructInfo(QTy); 1403 } 1404 1405 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1406 if (!TBAA) 1407 return nullptr; 1408 return TBAA->getBaseTypeInfo(QTy); 1409 } 1410 1411 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1412 if (!TBAA) 1413 return nullptr; 1414 return TBAA->getAccessTagInfo(Info); 1415 } 1416 1417 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1418 TBAAAccessInfo TargetInfo) { 1419 if (!TBAA) 1420 return TBAAAccessInfo(); 1421 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1422 } 1423 1424 TBAAAccessInfo 1425 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1426 TBAAAccessInfo InfoB) { 1427 if (!TBAA) 1428 return TBAAAccessInfo(); 1429 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1430 } 1431 1432 TBAAAccessInfo 1433 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1434 TBAAAccessInfo SrcInfo) { 1435 if (!TBAA) 1436 return TBAAAccessInfo(); 1437 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1438 } 1439 1440 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1441 TBAAAccessInfo TBAAInfo) { 1442 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1443 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1444 } 1445 1446 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1447 llvm::Instruction *I, const CXXRecordDecl *RD) { 1448 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1449 llvm::MDNode::get(getLLVMContext(), {})); 1450 } 1451 1452 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1453 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1454 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1455 } 1456 1457 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1458 /// specified stmt yet. 1459 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1460 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1461 "cannot compile this %0 yet"); 1462 std::string Msg = Type; 1463 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1464 << Msg << S->getSourceRange(); 1465 } 1466 1467 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1468 /// specified decl yet. 1469 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1470 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1471 "cannot compile this %0 yet"); 1472 std::string Msg = Type; 1473 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1474 } 1475 1476 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1477 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1478 } 1479 1480 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1481 const NamedDecl *D) const { 1482 // Internal definitions always have default visibility. 1483 if (GV->hasLocalLinkage()) { 1484 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1485 return; 1486 } 1487 if (!D) 1488 return; 1489 1490 // Set visibility for definitions, and for declarations if requested globally 1491 // or set explicitly. 1492 LinkageInfo LV = D->getLinkageAndVisibility(); 1493 1494 // OpenMP declare target variables must be visible to the host so they can 1495 // be registered. We require protected visibility unless the variable has 1496 // the DT_nohost modifier and does not need to be registered. 1497 if (Context.getLangOpts().OpenMP && 1498 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1499 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1500 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1501 OMPDeclareTargetDeclAttr::DT_NoHost && 1502 LV.getVisibility() == HiddenVisibility) { 1503 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1504 return; 1505 } 1506 1507 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1508 // Reject incompatible dlllstorage and visibility annotations. 1509 if (!LV.isVisibilityExplicit()) 1510 return; 1511 if (GV->hasDLLExportStorageClass()) { 1512 if (LV.getVisibility() == HiddenVisibility) 1513 getDiags().Report(D->getLocation(), 1514 diag::err_hidden_visibility_dllexport); 1515 } else if (LV.getVisibility() != DefaultVisibility) { 1516 getDiags().Report(D->getLocation(), 1517 diag::err_non_default_visibility_dllimport); 1518 } 1519 return; 1520 } 1521 1522 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1523 !GV->isDeclarationForLinker()) 1524 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1525 } 1526 1527 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1528 llvm::GlobalValue *GV) { 1529 if (GV->hasLocalLinkage()) 1530 return true; 1531 1532 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1533 return true; 1534 1535 // DLLImport explicitly marks the GV as external. 1536 if (GV->hasDLLImportStorageClass()) 1537 return false; 1538 1539 const llvm::Triple &TT = CGM.getTriple(); 1540 const auto &CGOpts = CGM.getCodeGenOpts(); 1541 if (TT.isWindowsGNUEnvironment()) { 1542 // In MinGW, variables without DLLImport can still be automatically 1543 // imported from a DLL by the linker; don't mark variables that 1544 // potentially could come from another DLL as DSO local. 1545 1546 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1547 // (and this actually happens in the public interface of libstdc++), so 1548 // such variables can't be marked as DSO local. (Native TLS variables 1549 // can't be dllimported at all, though.) 1550 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1551 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1552 CGOpts.AutoImport) 1553 return false; 1554 } 1555 1556 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1557 // remain unresolved in the link, they can be resolved to zero, which is 1558 // outside the current DSO. 1559 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1560 return false; 1561 1562 // Every other GV is local on COFF. 1563 // Make an exception for windows OS in the triple: Some firmware builds use 1564 // *-win32-macho triples. This (accidentally?) produced windows relocations 1565 // without GOT tables in older clang versions; Keep this behaviour. 1566 // FIXME: even thread local variables? 1567 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1568 return true; 1569 1570 // Only handle COFF and ELF for now. 1571 if (!TT.isOSBinFormatELF()) 1572 return false; 1573 1574 // If this is not an executable, don't assume anything is local. 1575 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1576 const auto &LOpts = CGM.getLangOpts(); 1577 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1578 // On ELF, if -fno-semantic-interposition is specified and the target 1579 // supports local aliases, there will be neither CC1 1580 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1581 // dso_local on the function if using a local alias is preferable (can avoid 1582 // PLT indirection). 1583 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1584 return false; 1585 return !(CGM.getLangOpts().SemanticInterposition || 1586 CGM.getLangOpts().HalfNoSemanticInterposition); 1587 } 1588 1589 // A definition cannot be preempted from an executable. 1590 if (!GV->isDeclarationForLinker()) 1591 return true; 1592 1593 // Most PIC code sequences that assume that a symbol is local cannot produce a 1594 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1595 // depended, it seems worth it to handle it here. 1596 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1597 return false; 1598 1599 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1600 if (TT.isPPC64()) 1601 return false; 1602 1603 if (CGOpts.DirectAccessExternalData) { 1604 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1605 // for non-thread-local variables. If the symbol is not defined in the 1606 // executable, a copy relocation will be needed at link time. dso_local is 1607 // excluded for thread-local variables because they generally don't support 1608 // copy relocations. 1609 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1610 if (!Var->isThreadLocal()) 1611 return true; 1612 1613 // -fno-pic sets dso_local on a function declaration to allow direct 1614 // accesses when taking its address (similar to a data symbol). If the 1615 // function is not defined in the executable, a canonical PLT entry will be 1616 // needed at link time. -fno-direct-access-external-data can avoid the 1617 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1618 // it could just cause trouble without providing perceptible benefits. 1619 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1620 return true; 1621 } 1622 1623 // If we can use copy relocations we can assume it is local. 1624 1625 // Otherwise don't assume it is local. 1626 return false; 1627 } 1628 1629 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1630 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1631 } 1632 1633 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1634 GlobalDecl GD) const { 1635 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1636 // C++ destructors have a few C++ ABI specific special cases. 1637 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1638 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1639 return; 1640 } 1641 setDLLImportDLLExport(GV, D); 1642 } 1643 1644 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1645 const NamedDecl *D) const { 1646 if (D && D->isExternallyVisible()) { 1647 if (D->hasAttr<DLLImportAttr>()) 1648 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1649 else if ((D->hasAttr<DLLExportAttr>() || 1650 shouldMapVisibilityToDLLExport(D)) && 1651 !GV->isDeclarationForLinker()) 1652 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1653 } 1654 } 1655 1656 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1657 GlobalDecl GD) const { 1658 setDLLImportDLLExport(GV, GD); 1659 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1660 } 1661 1662 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1663 const NamedDecl *D) const { 1664 setDLLImportDLLExport(GV, D); 1665 setGVPropertiesAux(GV, D); 1666 } 1667 1668 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1669 const NamedDecl *D) const { 1670 setGlobalVisibility(GV, D); 1671 setDSOLocal(GV); 1672 GV->setPartition(CodeGenOpts.SymbolPartition); 1673 } 1674 1675 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1676 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1677 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1678 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1679 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1680 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1681 } 1682 1683 llvm::GlobalVariable::ThreadLocalMode 1684 CodeGenModule::GetDefaultLLVMTLSModel() const { 1685 switch (CodeGenOpts.getDefaultTLSModel()) { 1686 case CodeGenOptions::GeneralDynamicTLSModel: 1687 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1688 case CodeGenOptions::LocalDynamicTLSModel: 1689 return llvm::GlobalVariable::LocalDynamicTLSModel; 1690 case CodeGenOptions::InitialExecTLSModel: 1691 return llvm::GlobalVariable::InitialExecTLSModel; 1692 case CodeGenOptions::LocalExecTLSModel: 1693 return llvm::GlobalVariable::LocalExecTLSModel; 1694 } 1695 llvm_unreachable("Invalid TLS model!"); 1696 } 1697 1698 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1699 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1700 1701 llvm::GlobalValue::ThreadLocalMode TLM; 1702 TLM = GetDefaultLLVMTLSModel(); 1703 1704 // Override the TLS model if it is explicitly specified. 1705 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1706 TLM = GetLLVMTLSModel(Attr->getModel()); 1707 } 1708 1709 GV->setThreadLocalMode(TLM); 1710 } 1711 1712 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1713 StringRef Name) { 1714 const TargetInfo &Target = CGM.getTarget(); 1715 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1716 } 1717 1718 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1719 const CPUSpecificAttr *Attr, 1720 unsigned CPUIndex, 1721 raw_ostream &Out) { 1722 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1723 // supported. 1724 if (Attr) 1725 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1726 else if (CGM.getTarget().supportsIFunc()) 1727 Out << ".resolver"; 1728 } 1729 1730 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1731 const TargetVersionAttr *Attr, 1732 raw_ostream &Out) { 1733 if (Attr->isDefaultVersion()) { 1734 Out << ".default"; 1735 return; 1736 } 1737 Out << "._"; 1738 const TargetInfo &TI = CGM.getTarget(); 1739 llvm::SmallVector<StringRef, 8> Feats; 1740 Attr->getFeatures(Feats); 1741 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1742 return TI.multiVersionSortPriority(FeatL) < 1743 TI.multiVersionSortPriority(FeatR); 1744 }); 1745 for (const auto &Feat : Feats) { 1746 Out << 'M'; 1747 Out << Feat; 1748 } 1749 } 1750 1751 static void AppendTargetMangling(const CodeGenModule &CGM, 1752 const TargetAttr *Attr, raw_ostream &Out) { 1753 if (Attr->isDefaultVersion()) 1754 return; 1755 1756 Out << '.'; 1757 const TargetInfo &Target = CGM.getTarget(); 1758 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1759 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1760 // Multiversioning doesn't allow "no-${feature}", so we can 1761 // only have "+" prefixes here. 1762 assert(LHS.starts_with("+") && RHS.starts_with("+") && 1763 "Features should always have a prefix."); 1764 return Target.multiVersionSortPriority(LHS.substr(1)) > 1765 Target.multiVersionSortPriority(RHS.substr(1)); 1766 }); 1767 1768 bool IsFirst = true; 1769 1770 if (!Info.CPU.empty()) { 1771 IsFirst = false; 1772 Out << "arch_" << Info.CPU; 1773 } 1774 1775 for (StringRef Feat : Info.Features) { 1776 if (!IsFirst) 1777 Out << '_'; 1778 IsFirst = false; 1779 Out << Feat.substr(1); 1780 } 1781 } 1782 1783 // Returns true if GD is a function decl with internal linkage and 1784 // needs a unique suffix after the mangled name. 1785 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1786 CodeGenModule &CGM) { 1787 const Decl *D = GD.getDecl(); 1788 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1789 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1790 } 1791 1792 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1793 const TargetClonesAttr *Attr, 1794 unsigned VersionIndex, 1795 raw_ostream &Out) { 1796 const TargetInfo &TI = CGM.getTarget(); 1797 if (TI.getTriple().isAArch64()) { 1798 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1799 if (FeatureStr == "default") { 1800 Out << ".default"; 1801 return; 1802 } 1803 Out << "._"; 1804 SmallVector<StringRef, 8> Features; 1805 FeatureStr.split(Features, "+"); 1806 llvm::stable_sort(Features, 1807 [&TI](const StringRef FeatL, const StringRef FeatR) { 1808 return TI.multiVersionSortPriority(FeatL) < 1809 TI.multiVersionSortPriority(FeatR); 1810 }); 1811 for (auto &Feat : Features) { 1812 Out << 'M'; 1813 Out << Feat; 1814 } 1815 } else { 1816 Out << '.'; 1817 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1818 if (FeatureStr.starts_with("arch=")) 1819 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1820 else 1821 Out << FeatureStr; 1822 1823 Out << '.' << Attr->getMangledIndex(VersionIndex); 1824 } 1825 } 1826 1827 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1828 const NamedDecl *ND, 1829 bool OmitMultiVersionMangling = false) { 1830 SmallString<256> Buffer; 1831 llvm::raw_svector_ostream Out(Buffer); 1832 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1833 if (!CGM.getModuleNameHash().empty()) 1834 MC.needsUniqueInternalLinkageNames(); 1835 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1836 if (ShouldMangle) 1837 MC.mangleName(GD.getWithDecl(ND), Out); 1838 else { 1839 IdentifierInfo *II = ND->getIdentifier(); 1840 assert(II && "Attempt to mangle unnamed decl."); 1841 const auto *FD = dyn_cast<FunctionDecl>(ND); 1842 1843 if (FD && 1844 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1845 if (CGM.getLangOpts().RegCall4) 1846 Out << "__regcall4__" << II->getName(); 1847 else 1848 Out << "__regcall3__" << II->getName(); 1849 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1850 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1851 Out << "__device_stub__" << II->getName(); 1852 } else { 1853 Out << II->getName(); 1854 } 1855 } 1856 1857 // Check if the module name hash should be appended for internal linkage 1858 // symbols. This should come before multi-version target suffixes are 1859 // appended. This is to keep the name and module hash suffix of the 1860 // internal linkage function together. The unique suffix should only be 1861 // added when name mangling is done to make sure that the final name can 1862 // be properly demangled. For example, for C functions without prototypes, 1863 // name mangling is not done and the unique suffix should not be appeneded 1864 // then. 1865 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1866 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1867 "Hash computed when not explicitly requested"); 1868 Out << CGM.getModuleNameHash(); 1869 } 1870 1871 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1872 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1873 switch (FD->getMultiVersionKind()) { 1874 case MultiVersionKind::CPUDispatch: 1875 case MultiVersionKind::CPUSpecific: 1876 AppendCPUSpecificCPUDispatchMangling(CGM, 1877 FD->getAttr<CPUSpecificAttr>(), 1878 GD.getMultiVersionIndex(), Out); 1879 break; 1880 case MultiVersionKind::Target: 1881 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1882 break; 1883 case MultiVersionKind::TargetVersion: 1884 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1885 break; 1886 case MultiVersionKind::TargetClones: 1887 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1888 GD.getMultiVersionIndex(), Out); 1889 break; 1890 case MultiVersionKind::None: 1891 llvm_unreachable("None multiversion type isn't valid here"); 1892 } 1893 } 1894 1895 // Make unique name for device side static file-scope variable for HIP. 1896 if (CGM.getContext().shouldExternalize(ND) && 1897 CGM.getLangOpts().GPURelocatableDeviceCode && 1898 CGM.getLangOpts().CUDAIsDevice) 1899 CGM.printPostfixForExternalizedDecl(Out, ND); 1900 1901 return std::string(Out.str()); 1902 } 1903 1904 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1905 const FunctionDecl *FD, 1906 StringRef &CurName) { 1907 if (!FD->isMultiVersion()) 1908 return; 1909 1910 // Get the name of what this would be without the 'target' attribute. This 1911 // allows us to lookup the version that was emitted when this wasn't a 1912 // multiversion function. 1913 std::string NonTargetName = 1914 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1915 GlobalDecl OtherGD; 1916 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1917 assert(OtherGD.getCanonicalDecl() 1918 .getDecl() 1919 ->getAsFunction() 1920 ->isMultiVersion() && 1921 "Other GD should now be a multiversioned function"); 1922 // OtherFD is the version of this function that was mangled BEFORE 1923 // becoming a MultiVersion function. It potentially needs to be updated. 1924 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1925 .getDecl() 1926 ->getAsFunction() 1927 ->getMostRecentDecl(); 1928 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1929 // This is so that if the initial version was already the 'default' 1930 // version, we don't try to update it. 1931 if (OtherName != NonTargetName) { 1932 // Remove instead of erase, since others may have stored the StringRef 1933 // to this. 1934 const auto ExistingRecord = Manglings.find(NonTargetName); 1935 if (ExistingRecord != std::end(Manglings)) 1936 Manglings.remove(&(*ExistingRecord)); 1937 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1938 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1939 Result.first->first(); 1940 // If this is the current decl is being created, make sure we update the name. 1941 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1942 CurName = OtherNameRef; 1943 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1944 Entry->setName(OtherName); 1945 } 1946 } 1947 } 1948 1949 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1950 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1951 1952 // Some ABIs don't have constructor variants. Make sure that base and 1953 // complete constructors get mangled the same. 1954 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1955 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1956 CXXCtorType OrigCtorType = GD.getCtorType(); 1957 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1958 if (OrigCtorType == Ctor_Base) 1959 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1960 } 1961 } 1962 1963 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1964 // static device variable depends on whether the variable is referenced by 1965 // a host or device host function. Therefore the mangled name cannot be 1966 // cached. 1967 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1968 auto FoundName = MangledDeclNames.find(CanonicalGD); 1969 if (FoundName != MangledDeclNames.end()) 1970 return FoundName->second; 1971 } 1972 1973 // Keep the first result in the case of a mangling collision. 1974 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1975 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1976 1977 // Ensure either we have different ABIs between host and device compilations, 1978 // says host compilation following MSVC ABI but device compilation follows 1979 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1980 // mangling should be the same after name stubbing. The later checking is 1981 // very important as the device kernel name being mangled in host-compilation 1982 // is used to resolve the device binaries to be executed. Inconsistent naming 1983 // result in undefined behavior. Even though we cannot check that naming 1984 // directly between host- and device-compilations, the host- and 1985 // device-mangling in host compilation could help catching certain ones. 1986 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1987 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1988 (getContext().getAuxTargetInfo() && 1989 (getContext().getAuxTargetInfo()->getCXXABI() != 1990 getContext().getTargetInfo().getCXXABI())) || 1991 getCUDARuntime().getDeviceSideName(ND) == 1992 getMangledNameImpl( 1993 *this, 1994 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1995 ND)); 1996 1997 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1998 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1999 } 2000 2001 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2002 const BlockDecl *BD) { 2003 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2004 const Decl *D = GD.getDecl(); 2005 2006 SmallString<256> Buffer; 2007 llvm::raw_svector_ostream Out(Buffer); 2008 if (!D) 2009 MangleCtx.mangleGlobalBlock(BD, 2010 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2011 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2012 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2013 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2014 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2015 else 2016 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2017 2018 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2019 return Result.first->first(); 2020 } 2021 2022 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2023 auto it = MangledDeclNames.begin(); 2024 while (it != MangledDeclNames.end()) { 2025 if (it->second == Name) 2026 return it->first; 2027 it++; 2028 } 2029 return GlobalDecl(); 2030 } 2031 2032 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2033 return getModule().getNamedValue(Name); 2034 } 2035 2036 /// AddGlobalCtor - Add a function to the list that will be called before 2037 /// main() runs. 2038 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2039 unsigned LexOrder, 2040 llvm::Constant *AssociatedData) { 2041 // FIXME: Type coercion of void()* types. 2042 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2043 } 2044 2045 /// AddGlobalDtor - Add a function to the list that will be called 2046 /// when the module is unloaded. 2047 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2048 bool IsDtorAttrFunc) { 2049 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2050 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2051 DtorsUsingAtExit[Priority].push_back(Dtor); 2052 return; 2053 } 2054 2055 // FIXME: Type coercion of void()* types. 2056 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2057 } 2058 2059 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2060 if (Fns.empty()) return; 2061 2062 // Ctor function type is void()*. 2063 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2064 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2065 TheModule.getDataLayout().getProgramAddressSpace()); 2066 2067 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2068 llvm::StructType *CtorStructTy = llvm::StructType::get( 2069 Int32Ty, CtorPFTy, VoidPtrTy); 2070 2071 // Construct the constructor and destructor arrays. 2072 ConstantInitBuilder builder(*this); 2073 auto ctors = builder.beginArray(CtorStructTy); 2074 for (const auto &I : Fns) { 2075 auto ctor = ctors.beginStruct(CtorStructTy); 2076 ctor.addInt(Int32Ty, I.Priority); 2077 ctor.add(I.Initializer); 2078 if (I.AssociatedData) 2079 ctor.add(I.AssociatedData); 2080 else 2081 ctor.addNullPointer(VoidPtrTy); 2082 ctor.finishAndAddTo(ctors); 2083 } 2084 2085 auto list = 2086 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2087 /*constant*/ false, 2088 llvm::GlobalValue::AppendingLinkage); 2089 2090 // The LTO linker doesn't seem to like it when we set an alignment 2091 // on appending variables. Take it off as a workaround. 2092 list->setAlignment(std::nullopt); 2093 2094 Fns.clear(); 2095 } 2096 2097 llvm::GlobalValue::LinkageTypes 2098 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2099 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2100 2101 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2102 2103 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2104 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2105 2106 return getLLVMLinkageForDeclarator(D, Linkage); 2107 } 2108 2109 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2110 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2111 if (!MDS) return nullptr; 2112 2113 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2114 } 2115 2116 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2117 if (auto *FnType = T->getAs<FunctionProtoType>()) 2118 T = getContext().getFunctionType( 2119 FnType->getReturnType(), FnType->getParamTypes(), 2120 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2121 2122 std::string OutName; 2123 llvm::raw_string_ostream Out(OutName); 2124 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2125 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2126 2127 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2128 Out << ".normalized"; 2129 2130 return llvm::ConstantInt::get(Int32Ty, 2131 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2132 } 2133 2134 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2135 const CGFunctionInfo &Info, 2136 llvm::Function *F, bool IsThunk) { 2137 unsigned CallingConv; 2138 llvm::AttributeList PAL; 2139 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2140 /*AttrOnCallSite=*/false, IsThunk); 2141 F->setAttributes(PAL); 2142 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2143 } 2144 2145 static void removeImageAccessQualifier(std::string& TyName) { 2146 std::string ReadOnlyQual("__read_only"); 2147 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2148 if (ReadOnlyPos != std::string::npos) 2149 // "+ 1" for the space after access qualifier. 2150 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2151 else { 2152 std::string WriteOnlyQual("__write_only"); 2153 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2154 if (WriteOnlyPos != std::string::npos) 2155 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2156 else { 2157 std::string ReadWriteQual("__read_write"); 2158 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2159 if (ReadWritePos != std::string::npos) 2160 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2161 } 2162 } 2163 } 2164 2165 // Returns the address space id that should be produced to the 2166 // kernel_arg_addr_space metadata. This is always fixed to the ids 2167 // as specified in the SPIR 2.0 specification in order to differentiate 2168 // for example in clGetKernelArgInfo() implementation between the address 2169 // spaces with targets without unique mapping to the OpenCL address spaces 2170 // (basically all single AS CPUs). 2171 static unsigned ArgInfoAddressSpace(LangAS AS) { 2172 switch (AS) { 2173 case LangAS::opencl_global: 2174 return 1; 2175 case LangAS::opencl_constant: 2176 return 2; 2177 case LangAS::opencl_local: 2178 return 3; 2179 case LangAS::opencl_generic: 2180 return 4; // Not in SPIR 2.0 specs. 2181 case LangAS::opencl_global_device: 2182 return 5; 2183 case LangAS::opencl_global_host: 2184 return 6; 2185 default: 2186 return 0; // Assume private. 2187 } 2188 } 2189 2190 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2191 const FunctionDecl *FD, 2192 CodeGenFunction *CGF) { 2193 assert(((FD && CGF) || (!FD && !CGF)) && 2194 "Incorrect use - FD and CGF should either be both null or not!"); 2195 // Create MDNodes that represent the kernel arg metadata. 2196 // Each MDNode is a list in the form of "key", N number of values which is 2197 // the same number of values as their are kernel arguments. 2198 2199 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2200 2201 // MDNode for the kernel argument address space qualifiers. 2202 SmallVector<llvm::Metadata *, 8> addressQuals; 2203 2204 // MDNode for the kernel argument access qualifiers (images only). 2205 SmallVector<llvm::Metadata *, 8> accessQuals; 2206 2207 // MDNode for the kernel argument type names. 2208 SmallVector<llvm::Metadata *, 8> argTypeNames; 2209 2210 // MDNode for the kernel argument base type names. 2211 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2212 2213 // MDNode for the kernel argument type qualifiers. 2214 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2215 2216 // MDNode for the kernel argument names. 2217 SmallVector<llvm::Metadata *, 8> argNames; 2218 2219 if (FD && CGF) 2220 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2221 const ParmVarDecl *parm = FD->getParamDecl(i); 2222 // Get argument name. 2223 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2224 2225 if (!getLangOpts().OpenCL) 2226 continue; 2227 QualType ty = parm->getType(); 2228 std::string typeQuals; 2229 2230 // Get image and pipe access qualifier: 2231 if (ty->isImageType() || ty->isPipeType()) { 2232 const Decl *PDecl = parm; 2233 if (const auto *TD = ty->getAs<TypedefType>()) 2234 PDecl = TD->getDecl(); 2235 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2236 if (A && A->isWriteOnly()) 2237 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2238 else if (A && A->isReadWrite()) 2239 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2240 else 2241 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2242 } else 2243 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2244 2245 auto getTypeSpelling = [&](QualType Ty) { 2246 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2247 2248 if (Ty.isCanonical()) { 2249 StringRef typeNameRef = typeName; 2250 // Turn "unsigned type" to "utype" 2251 if (typeNameRef.consume_front("unsigned ")) 2252 return std::string("u") + typeNameRef.str(); 2253 if (typeNameRef.consume_front("signed ")) 2254 return typeNameRef.str(); 2255 } 2256 2257 return typeName; 2258 }; 2259 2260 if (ty->isPointerType()) { 2261 QualType pointeeTy = ty->getPointeeType(); 2262 2263 // Get address qualifier. 2264 addressQuals.push_back( 2265 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2266 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2267 2268 // Get argument type name. 2269 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2270 std::string baseTypeName = 2271 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2272 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2273 argBaseTypeNames.push_back( 2274 llvm::MDString::get(VMContext, baseTypeName)); 2275 2276 // Get argument type qualifiers: 2277 if (ty.isRestrictQualified()) 2278 typeQuals = "restrict"; 2279 if (pointeeTy.isConstQualified() || 2280 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2281 typeQuals += typeQuals.empty() ? "const" : " const"; 2282 if (pointeeTy.isVolatileQualified()) 2283 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2284 } else { 2285 uint32_t AddrSpc = 0; 2286 bool isPipe = ty->isPipeType(); 2287 if (ty->isImageType() || isPipe) 2288 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2289 2290 addressQuals.push_back( 2291 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2292 2293 // Get argument type name. 2294 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2295 std::string typeName = getTypeSpelling(ty); 2296 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2297 2298 // Remove access qualifiers on images 2299 // (as they are inseparable from type in clang implementation, 2300 // but OpenCL spec provides a special query to get access qualifier 2301 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2302 if (ty->isImageType()) { 2303 removeImageAccessQualifier(typeName); 2304 removeImageAccessQualifier(baseTypeName); 2305 } 2306 2307 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2308 argBaseTypeNames.push_back( 2309 llvm::MDString::get(VMContext, baseTypeName)); 2310 2311 if (isPipe) 2312 typeQuals = "pipe"; 2313 } 2314 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2315 } 2316 2317 if (getLangOpts().OpenCL) { 2318 Fn->setMetadata("kernel_arg_addr_space", 2319 llvm::MDNode::get(VMContext, addressQuals)); 2320 Fn->setMetadata("kernel_arg_access_qual", 2321 llvm::MDNode::get(VMContext, accessQuals)); 2322 Fn->setMetadata("kernel_arg_type", 2323 llvm::MDNode::get(VMContext, argTypeNames)); 2324 Fn->setMetadata("kernel_arg_base_type", 2325 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2326 Fn->setMetadata("kernel_arg_type_qual", 2327 llvm::MDNode::get(VMContext, argTypeQuals)); 2328 } 2329 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2330 getCodeGenOpts().HIPSaveKernelArgName) 2331 Fn->setMetadata("kernel_arg_name", 2332 llvm::MDNode::get(VMContext, argNames)); 2333 } 2334 2335 /// Determines whether the language options require us to model 2336 /// unwind exceptions. We treat -fexceptions as mandating this 2337 /// except under the fragile ObjC ABI with only ObjC exceptions 2338 /// enabled. This means, for example, that C with -fexceptions 2339 /// enables this. 2340 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2341 // If exceptions are completely disabled, obviously this is false. 2342 if (!LangOpts.Exceptions) return false; 2343 2344 // If C++ exceptions are enabled, this is true. 2345 if (LangOpts.CXXExceptions) return true; 2346 2347 // If ObjC exceptions are enabled, this depends on the ABI. 2348 if (LangOpts.ObjCExceptions) { 2349 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2350 } 2351 2352 return true; 2353 } 2354 2355 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2356 const CXXMethodDecl *MD) { 2357 // Check that the type metadata can ever actually be used by a call. 2358 if (!CGM.getCodeGenOpts().LTOUnit || 2359 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2360 return false; 2361 2362 // Only functions whose address can be taken with a member function pointer 2363 // need this sort of type metadata. 2364 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2365 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2366 } 2367 2368 SmallVector<const CXXRecordDecl *, 0> 2369 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2370 llvm::SetVector<const CXXRecordDecl *> MostBases; 2371 2372 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2373 CollectMostBases = [&](const CXXRecordDecl *RD) { 2374 if (RD->getNumBases() == 0) 2375 MostBases.insert(RD); 2376 for (const CXXBaseSpecifier &B : RD->bases()) 2377 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2378 }; 2379 CollectMostBases(RD); 2380 return MostBases.takeVector(); 2381 } 2382 2383 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2384 llvm::Function *F) { 2385 llvm::AttrBuilder B(F->getContext()); 2386 2387 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2388 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2389 2390 if (CodeGenOpts.StackClashProtector) 2391 B.addAttribute("probe-stack", "inline-asm"); 2392 2393 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2394 B.addAttribute("stack-probe-size", 2395 std::to_string(CodeGenOpts.StackProbeSize)); 2396 2397 if (!hasUnwindExceptions(LangOpts)) 2398 B.addAttribute(llvm::Attribute::NoUnwind); 2399 2400 if (D && D->hasAttr<NoStackProtectorAttr>()) 2401 ; // Do nothing. 2402 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2403 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2404 B.addAttribute(llvm::Attribute::StackProtectStrong); 2405 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2406 B.addAttribute(llvm::Attribute::StackProtect); 2407 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2408 B.addAttribute(llvm::Attribute::StackProtectStrong); 2409 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2410 B.addAttribute(llvm::Attribute::StackProtectReq); 2411 2412 if (!D) { 2413 // If we don't have a declaration to control inlining, the function isn't 2414 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2415 // disabled, mark the function as noinline. 2416 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2417 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2418 B.addAttribute(llvm::Attribute::NoInline); 2419 2420 F->addFnAttrs(B); 2421 return; 2422 } 2423 2424 // Handle SME attributes that apply to function definitions, 2425 // rather than to function prototypes. 2426 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2427 B.addAttribute("aarch64_pstate_sm_body"); 2428 2429 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2430 if (Attr->isNewZA()) 2431 B.addAttribute("aarch64_pstate_za_new"); 2432 if (Attr->isNewZT0()) 2433 B.addAttribute("aarch64_new_zt0"); 2434 } 2435 2436 // Track whether we need to add the optnone LLVM attribute, 2437 // starting with the default for this optimization level. 2438 bool ShouldAddOptNone = 2439 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2440 // We can't add optnone in the following cases, it won't pass the verifier. 2441 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2442 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2443 2444 // Add optnone, but do so only if the function isn't always_inline. 2445 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2446 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2447 B.addAttribute(llvm::Attribute::OptimizeNone); 2448 2449 // OptimizeNone implies noinline; we should not be inlining such functions. 2450 B.addAttribute(llvm::Attribute::NoInline); 2451 2452 // We still need to handle naked functions even though optnone subsumes 2453 // much of their semantics. 2454 if (D->hasAttr<NakedAttr>()) 2455 B.addAttribute(llvm::Attribute::Naked); 2456 2457 // OptimizeNone wins over OptimizeForSize and MinSize. 2458 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2459 F->removeFnAttr(llvm::Attribute::MinSize); 2460 } else if (D->hasAttr<NakedAttr>()) { 2461 // Naked implies noinline: we should not be inlining such functions. 2462 B.addAttribute(llvm::Attribute::Naked); 2463 B.addAttribute(llvm::Attribute::NoInline); 2464 } else if (D->hasAttr<NoDuplicateAttr>()) { 2465 B.addAttribute(llvm::Attribute::NoDuplicate); 2466 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2467 // Add noinline if the function isn't always_inline. 2468 B.addAttribute(llvm::Attribute::NoInline); 2469 } else if (D->hasAttr<AlwaysInlineAttr>() && 2470 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2471 // (noinline wins over always_inline, and we can't specify both in IR) 2472 B.addAttribute(llvm::Attribute::AlwaysInline); 2473 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2474 // If we're not inlining, then force everything that isn't always_inline to 2475 // carry an explicit noinline attribute. 2476 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2477 B.addAttribute(llvm::Attribute::NoInline); 2478 } else { 2479 // Otherwise, propagate the inline hint attribute and potentially use its 2480 // absence to mark things as noinline. 2481 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2482 // Search function and template pattern redeclarations for inline. 2483 auto CheckForInline = [](const FunctionDecl *FD) { 2484 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2485 return Redecl->isInlineSpecified(); 2486 }; 2487 if (any_of(FD->redecls(), CheckRedeclForInline)) 2488 return true; 2489 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2490 if (!Pattern) 2491 return false; 2492 return any_of(Pattern->redecls(), CheckRedeclForInline); 2493 }; 2494 if (CheckForInline(FD)) { 2495 B.addAttribute(llvm::Attribute::InlineHint); 2496 } else if (CodeGenOpts.getInlining() == 2497 CodeGenOptions::OnlyHintInlining && 2498 !FD->isInlined() && 2499 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2500 B.addAttribute(llvm::Attribute::NoInline); 2501 } 2502 } 2503 } 2504 2505 // Add other optimization related attributes if we are optimizing this 2506 // function. 2507 if (!D->hasAttr<OptimizeNoneAttr>()) { 2508 if (D->hasAttr<ColdAttr>()) { 2509 if (!ShouldAddOptNone) 2510 B.addAttribute(llvm::Attribute::OptimizeForSize); 2511 B.addAttribute(llvm::Attribute::Cold); 2512 } 2513 if (D->hasAttr<HotAttr>()) 2514 B.addAttribute(llvm::Attribute::Hot); 2515 if (D->hasAttr<MinSizeAttr>()) 2516 B.addAttribute(llvm::Attribute::MinSize); 2517 } 2518 2519 F->addFnAttrs(B); 2520 2521 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2522 if (alignment) 2523 F->setAlignment(llvm::Align(alignment)); 2524 2525 if (!D->hasAttr<AlignedAttr>()) 2526 if (LangOpts.FunctionAlignment) 2527 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2528 2529 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2530 // reserve a bit for differentiating between virtual and non-virtual member 2531 // functions. If the current target's C++ ABI requires this and this is a 2532 // member function, set its alignment accordingly. 2533 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2534 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2535 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2536 } 2537 2538 // In the cross-dso CFI mode with canonical jump tables, we want !type 2539 // attributes on definitions only. 2540 if (CodeGenOpts.SanitizeCfiCrossDso && 2541 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2542 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2543 // Skip available_externally functions. They won't be codegen'ed in the 2544 // current module anyway. 2545 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2546 CreateFunctionTypeMetadataForIcall(FD, F); 2547 } 2548 } 2549 2550 // Emit type metadata on member functions for member function pointer checks. 2551 // These are only ever necessary on definitions; we're guaranteed that the 2552 // definition will be present in the LTO unit as a result of LTO visibility. 2553 auto *MD = dyn_cast<CXXMethodDecl>(D); 2554 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2555 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2556 llvm::Metadata *Id = 2557 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2558 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2559 F->addTypeMetadata(0, Id); 2560 } 2561 } 2562 } 2563 2564 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2565 const Decl *D = GD.getDecl(); 2566 if (isa_and_nonnull<NamedDecl>(D)) 2567 setGVProperties(GV, GD); 2568 else 2569 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2570 2571 if (D && D->hasAttr<UsedAttr>()) 2572 addUsedOrCompilerUsedGlobal(GV); 2573 2574 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2575 VD && 2576 ((CodeGenOpts.KeepPersistentStorageVariables && 2577 (VD->getStorageDuration() == SD_Static || 2578 VD->getStorageDuration() == SD_Thread)) || 2579 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2580 VD->getType().isConstQualified()))) 2581 addUsedOrCompilerUsedGlobal(GV); 2582 } 2583 2584 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2585 llvm::AttrBuilder &Attrs, 2586 bool SetTargetFeatures) { 2587 // Add target-cpu and target-features attributes to functions. If 2588 // we have a decl for the function and it has a target attribute then 2589 // parse that and add it to the feature set. 2590 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2591 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2592 std::vector<std::string> Features; 2593 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2594 FD = FD ? FD->getMostRecentDecl() : FD; 2595 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2596 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2597 assert((!TD || !TV) && "both target_version and target specified"); 2598 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2599 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2600 bool AddedAttr = false; 2601 if (TD || TV || SD || TC) { 2602 llvm::StringMap<bool> FeatureMap; 2603 getContext().getFunctionFeatureMap(FeatureMap, GD); 2604 2605 // Produce the canonical string for this set of features. 2606 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2607 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2608 2609 // Now add the target-cpu and target-features to the function. 2610 // While we populated the feature map above, we still need to 2611 // get and parse the target attribute so we can get the cpu for 2612 // the function. 2613 if (TD) { 2614 ParsedTargetAttr ParsedAttr = 2615 Target.parseTargetAttr(TD->getFeaturesStr()); 2616 if (!ParsedAttr.CPU.empty() && 2617 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2618 TargetCPU = ParsedAttr.CPU; 2619 TuneCPU = ""; // Clear the tune CPU. 2620 } 2621 if (!ParsedAttr.Tune.empty() && 2622 getTarget().isValidCPUName(ParsedAttr.Tune)) 2623 TuneCPU = ParsedAttr.Tune; 2624 } 2625 2626 if (SD) { 2627 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2628 // favor this processor. 2629 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2630 } 2631 } else { 2632 // Otherwise just add the existing target cpu and target features to the 2633 // function. 2634 Features = getTarget().getTargetOpts().Features; 2635 } 2636 2637 if (!TargetCPU.empty()) { 2638 Attrs.addAttribute("target-cpu", TargetCPU); 2639 AddedAttr = true; 2640 } 2641 if (!TuneCPU.empty()) { 2642 Attrs.addAttribute("tune-cpu", TuneCPU); 2643 AddedAttr = true; 2644 } 2645 if (!Features.empty() && SetTargetFeatures) { 2646 llvm::erase_if(Features, [&](const std::string& F) { 2647 return getTarget().isReadOnlyFeature(F.substr(1)); 2648 }); 2649 llvm::sort(Features); 2650 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2651 AddedAttr = true; 2652 } 2653 2654 return AddedAttr; 2655 } 2656 2657 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2658 llvm::GlobalObject *GO) { 2659 const Decl *D = GD.getDecl(); 2660 SetCommonAttributes(GD, GO); 2661 2662 if (D) { 2663 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2664 if (D->hasAttr<RetainAttr>()) 2665 addUsedGlobal(GV); 2666 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2667 GV->addAttribute("bss-section", SA->getName()); 2668 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2669 GV->addAttribute("data-section", SA->getName()); 2670 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2671 GV->addAttribute("rodata-section", SA->getName()); 2672 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2673 GV->addAttribute("relro-section", SA->getName()); 2674 } 2675 2676 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2677 if (D->hasAttr<RetainAttr>()) 2678 addUsedGlobal(F); 2679 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2680 if (!D->getAttr<SectionAttr>()) 2681 F->addFnAttr("implicit-section-name", SA->getName()); 2682 2683 llvm::AttrBuilder Attrs(F->getContext()); 2684 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2685 // We know that GetCPUAndFeaturesAttributes will always have the 2686 // newest set, since it has the newest possible FunctionDecl, so the 2687 // new ones should replace the old. 2688 llvm::AttributeMask RemoveAttrs; 2689 RemoveAttrs.addAttribute("target-cpu"); 2690 RemoveAttrs.addAttribute("target-features"); 2691 RemoveAttrs.addAttribute("tune-cpu"); 2692 F->removeFnAttrs(RemoveAttrs); 2693 F->addFnAttrs(Attrs); 2694 } 2695 } 2696 2697 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2698 GO->setSection(CSA->getName()); 2699 else if (const auto *SA = D->getAttr<SectionAttr>()) 2700 GO->setSection(SA->getName()); 2701 } 2702 2703 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2704 } 2705 2706 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2707 llvm::Function *F, 2708 const CGFunctionInfo &FI) { 2709 const Decl *D = GD.getDecl(); 2710 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2711 SetLLVMFunctionAttributesForDefinition(D, F); 2712 2713 F->setLinkage(llvm::Function::InternalLinkage); 2714 2715 setNonAliasAttributes(GD, F); 2716 } 2717 2718 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2719 // Set linkage and visibility in case we never see a definition. 2720 LinkageInfo LV = ND->getLinkageAndVisibility(); 2721 // Don't set internal linkage on declarations. 2722 // "extern_weak" is overloaded in LLVM; we probably should have 2723 // separate linkage types for this. 2724 if (isExternallyVisible(LV.getLinkage()) && 2725 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2726 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2727 } 2728 2729 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2730 llvm::Function *F) { 2731 // Only if we are checking indirect calls. 2732 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2733 return; 2734 2735 // Non-static class methods are handled via vtable or member function pointer 2736 // checks elsewhere. 2737 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2738 return; 2739 2740 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2741 F->addTypeMetadata(0, MD); 2742 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2743 2744 // Emit a hash-based bit set entry for cross-DSO calls. 2745 if (CodeGenOpts.SanitizeCfiCrossDso) 2746 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2747 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2748 } 2749 2750 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2751 llvm::LLVMContext &Ctx = F->getContext(); 2752 llvm::MDBuilder MDB(Ctx); 2753 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2754 llvm::MDNode::get( 2755 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2756 } 2757 2758 static bool allowKCFIIdentifier(StringRef Name) { 2759 // KCFI type identifier constants are only necessary for external assembly 2760 // functions, which means it's safe to skip unusual names. Subset of 2761 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2762 return llvm::all_of(Name, [](const char &C) { 2763 return llvm::isAlnum(C) || C == '_' || C == '.'; 2764 }); 2765 } 2766 2767 void CodeGenModule::finalizeKCFITypes() { 2768 llvm::Module &M = getModule(); 2769 for (auto &F : M.functions()) { 2770 // Remove KCFI type metadata from non-address-taken local functions. 2771 bool AddressTaken = F.hasAddressTaken(); 2772 if (!AddressTaken && F.hasLocalLinkage()) 2773 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2774 2775 // Generate a constant with the expected KCFI type identifier for all 2776 // address-taken function declarations to support annotating indirectly 2777 // called assembly functions. 2778 if (!AddressTaken || !F.isDeclaration()) 2779 continue; 2780 2781 const llvm::ConstantInt *Type; 2782 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2783 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2784 else 2785 continue; 2786 2787 StringRef Name = F.getName(); 2788 if (!allowKCFIIdentifier(Name)) 2789 continue; 2790 2791 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2792 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2793 .str(); 2794 M.appendModuleInlineAsm(Asm); 2795 } 2796 } 2797 2798 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2799 bool IsIncompleteFunction, 2800 bool IsThunk) { 2801 2802 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2803 // If this is an intrinsic function, set the function's attributes 2804 // to the intrinsic's attributes. 2805 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2806 return; 2807 } 2808 2809 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2810 2811 if (!IsIncompleteFunction) 2812 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2813 IsThunk); 2814 2815 // Add the Returned attribute for "this", except for iOS 5 and earlier 2816 // where substantial code, including the libstdc++ dylib, was compiled with 2817 // GCC and does not actually return "this". 2818 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2819 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2820 assert(!F->arg_empty() && 2821 F->arg_begin()->getType() 2822 ->canLosslesslyBitCastTo(F->getReturnType()) && 2823 "unexpected this return"); 2824 F->addParamAttr(0, llvm::Attribute::Returned); 2825 } 2826 2827 // Only a few attributes are set on declarations; these may later be 2828 // overridden by a definition. 2829 2830 setLinkageForGV(F, FD); 2831 setGVProperties(F, FD); 2832 2833 // Setup target-specific attributes. 2834 if (!IsIncompleteFunction && F->isDeclaration()) 2835 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2836 2837 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2838 F->setSection(CSA->getName()); 2839 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2840 F->setSection(SA->getName()); 2841 2842 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2843 if (EA->isError()) 2844 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2845 else if (EA->isWarning()) 2846 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2847 } 2848 2849 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2850 if (FD->isInlineBuiltinDeclaration()) { 2851 const FunctionDecl *FDBody; 2852 bool HasBody = FD->hasBody(FDBody); 2853 (void)HasBody; 2854 assert(HasBody && "Inline builtin declarations should always have an " 2855 "available body!"); 2856 if (shouldEmitFunction(FDBody)) 2857 F->addFnAttr(llvm::Attribute::NoBuiltin); 2858 } 2859 2860 if (FD->isReplaceableGlobalAllocationFunction()) { 2861 // A replaceable global allocation function does not act like a builtin by 2862 // default, only if it is invoked by a new-expression or delete-expression. 2863 F->addFnAttr(llvm::Attribute::NoBuiltin); 2864 } 2865 2866 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2867 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2868 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2869 if (MD->isVirtual()) 2870 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2871 2872 // Don't emit entries for function declarations in the cross-DSO mode. This 2873 // is handled with better precision by the receiving DSO. But if jump tables 2874 // are non-canonical then we need type metadata in order to produce the local 2875 // jump table. 2876 if (!CodeGenOpts.SanitizeCfiCrossDso || 2877 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2878 CreateFunctionTypeMetadataForIcall(FD, F); 2879 2880 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2881 setKCFIType(FD, F); 2882 2883 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2884 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2885 2886 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2887 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2888 2889 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2890 // Annotate the callback behavior as metadata: 2891 // - The callback callee (as argument number). 2892 // - The callback payloads (as argument numbers). 2893 llvm::LLVMContext &Ctx = F->getContext(); 2894 llvm::MDBuilder MDB(Ctx); 2895 2896 // The payload indices are all but the first one in the encoding. The first 2897 // identifies the callback callee. 2898 int CalleeIdx = *CB->encoding_begin(); 2899 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2900 F->addMetadata(llvm::LLVMContext::MD_callback, 2901 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2902 CalleeIdx, PayloadIndices, 2903 /* VarArgsArePassed */ false)})); 2904 } 2905 } 2906 2907 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2908 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2909 "Only globals with definition can force usage."); 2910 LLVMUsed.emplace_back(GV); 2911 } 2912 2913 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2914 assert(!GV->isDeclaration() && 2915 "Only globals with definition can force usage."); 2916 LLVMCompilerUsed.emplace_back(GV); 2917 } 2918 2919 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2920 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2921 "Only globals with definition can force usage."); 2922 if (getTriple().isOSBinFormatELF()) 2923 LLVMCompilerUsed.emplace_back(GV); 2924 else 2925 LLVMUsed.emplace_back(GV); 2926 } 2927 2928 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2929 std::vector<llvm::WeakTrackingVH> &List) { 2930 // Don't create llvm.used if there is no need. 2931 if (List.empty()) 2932 return; 2933 2934 // Convert List to what ConstantArray needs. 2935 SmallVector<llvm::Constant*, 8> UsedArray; 2936 UsedArray.resize(List.size()); 2937 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2938 UsedArray[i] = 2939 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2940 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2941 } 2942 2943 if (UsedArray.empty()) 2944 return; 2945 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2946 2947 auto *GV = new llvm::GlobalVariable( 2948 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2949 llvm::ConstantArray::get(ATy, UsedArray), Name); 2950 2951 GV->setSection("llvm.metadata"); 2952 } 2953 2954 void CodeGenModule::emitLLVMUsed() { 2955 emitUsed(*this, "llvm.used", LLVMUsed); 2956 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2957 } 2958 2959 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2960 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2961 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2962 } 2963 2964 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2965 llvm::SmallString<32> Opt; 2966 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2967 if (Opt.empty()) 2968 return; 2969 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2970 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2971 } 2972 2973 void CodeGenModule::AddDependentLib(StringRef Lib) { 2974 auto &C = getLLVMContext(); 2975 if (getTarget().getTriple().isOSBinFormatELF()) { 2976 ELFDependentLibraries.push_back( 2977 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2978 return; 2979 } 2980 2981 llvm::SmallString<24> Opt; 2982 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2983 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2984 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2985 } 2986 2987 /// Add link options implied by the given module, including modules 2988 /// it depends on, using a postorder walk. 2989 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2990 SmallVectorImpl<llvm::MDNode *> &Metadata, 2991 llvm::SmallPtrSet<Module *, 16> &Visited) { 2992 // Import this module's parent. 2993 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2994 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2995 } 2996 2997 // Import this module's dependencies. 2998 for (Module *Import : llvm::reverse(Mod->Imports)) { 2999 if (Visited.insert(Import).second) 3000 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3001 } 3002 3003 // Add linker options to link against the libraries/frameworks 3004 // described by this module. 3005 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3006 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3007 3008 // For modules that use export_as for linking, use that module 3009 // name instead. 3010 if (Mod->UseExportAsModuleLinkName) 3011 return; 3012 3013 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3014 // Link against a framework. Frameworks are currently Darwin only, so we 3015 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3016 if (LL.IsFramework) { 3017 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3018 llvm::MDString::get(Context, LL.Library)}; 3019 3020 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3021 continue; 3022 } 3023 3024 // Link against a library. 3025 if (IsELF) { 3026 llvm::Metadata *Args[2] = { 3027 llvm::MDString::get(Context, "lib"), 3028 llvm::MDString::get(Context, LL.Library), 3029 }; 3030 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3031 } else { 3032 llvm::SmallString<24> Opt; 3033 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3034 auto *OptString = llvm::MDString::get(Context, Opt); 3035 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3036 } 3037 } 3038 } 3039 3040 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3041 assert(Primary->isNamedModuleUnit() && 3042 "We should only emit module initializers for named modules."); 3043 3044 // Emit the initializers in the order that sub-modules appear in the 3045 // source, first Global Module Fragments, if present. 3046 if (auto GMF = Primary->getGlobalModuleFragment()) { 3047 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3048 if (isa<ImportDecl>(D)) 3049 continue; 3050 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3051 EmitTopLevelDecl(D); 3052 } 3053 } 3054 // Second any associated with the module, itself. 3055 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3056 // Skip import decls, the inits for those are called explicitly. 3057 if (isa<ImportDecl>(D)) 3058 continue; 3059 EmitTopLevelDecl(D); 3060 } 3061 // Third any associated with the Privat eMOdule Fragment, if present. 3062 if (auto PMF = Primary->getPrivateModuleFragment()) { 3063 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3064 // Skip import decls, the inits for those are called explicitly. 3065 if (isa<ImportDecl>(D)) 3066 continue; 3067 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3068 EmitTopLevelDecl(D); 3069 } 3070 } 3071 } 3072 3073 void CodeGenModule::EmitModuleLinkOptions() { 3074 // Collect the set of all of the modules we want to visit to emit link 3075 // options, which is essentially the imported modules and all of their 3076 // non-explicit child modules. 3077 llvm::SetVector<clang::Module *> LinkModules; 3078 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3079 SmallVector<clang::Module *, 16> Stack; 3080 3081 // Seed the stack with imported modules. 3082 for (Module *M : ImportedModules) { 3083 // Do not add any link flags when an implementation TU of a module imports 3084 // a header of that same module. 3085 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3086 !getLangOpts().isCompilingModule()) 3087 continue; 3088 if (Visited.insert(M).second) 3089 Stack.push_back(M); 3090 } 3091 3092 // Find all of the modules to import, making a little effort to prune 3093 // non-leaf modules. 3094 while (!Stack.empty()) { 3095 clang::Module *Mod = Stack.pop_back_val(); 3096 3097 bool AnyChildren = false; 3098 3099 // Visit the submodules of this module. 3100 for (const auto &SM : Mod->submodules()) { 3101 // Skip explicit children; they need to be explicitly imported to be 3102 // linked against. 3103 if (SM->IsExplicit) 3104 continue; 3105 3106 if (Visited.insert(SM).second) { 3107 Stack.push_back(SM); 3108 AnyChildren = true; 3109 } 3110 } 3111 3112 // We didn't find any children, so add this module to the list of 3113 // modules to link against. 3114 if (!AnyChildren) { 3115 LinkModules.insert(Mod); 3116 } 3117 } 3118 3119 // Add link options for all of the imported modules in reverse topological 3120 // order. We don't do anything to try to order import link flags with respect 3121 // to linker options inserted by things like #pragma comment(). 3122 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3123 Visited.clear(); 3124 for (Module *M : LinkModules) 3125 if (Visited.insert(M).second) 3126 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3127 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3128 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3129 3130 // Add the linker options metadata flag. 3131 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3132 for (auto *MD : LinkerOptionsMetadata) 3133 NMD->addOperand(MD); 3134 } 3135 3136 void CodeGenModule::EmitDeferred() { 3137 // Emit deferred declare target declarations. 3138 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3139 getOpenMPRuntime().emitDeferredTargetDecls(); 3140 3141 // Emit code for any potentially referenced deferred decls. Since a 3142 // previously unused static decl may become used during the generation of code 3143 // for a static function, iterate until no changes are made. 3144 3145 if (!DeferredVTables.empty()) { 3146 EmitDeferredVTables(); 3147 3148 // Emitting a vtable doesn't directly cause more vtables to 3149 // become deferred, although it can cause functions to be 3150 // emitted that then need those vtables. 3151 assert(DeferredVTables.empty()); 3152 } 3153 3154 // Emit CUDA/HIP static device variables referenced by host code only. 3155 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3156 // needed for further handling. 3157 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3158 llvm::append_range(DeferredDeclsToEmit, 3159 getContext().CUDADeviceVarODRUsedByHost); 3160 3161 // Stop if we're out of both deferred vtables and deferred declarations. 3162 if (DeferredDeclsToEmit.empty()) 3163 return; 3164 3165 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3166 // work, it will not interfere with this. 3167 std::vector<GlobalDecl> CurDeclsToEmit; 3168 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3169 3170 for (GlobalDecl &D : CurDeclsToEmit) { 3171 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3172 // to get GlobalValue with exactly the type we need, not something that 3173 // might had been created for another decl with the same mangled name but 3174 // different type. 3175 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3176 GetAddrOfGlobal(D, ForDefinition)); 3177 3178 // In case of different address spaces, we may still get a cast, even with 3179 // IsForDefinition equal to true. Query mangled names table to get 3180 // GlobalValue. 3181 if (!GV) 3182 GV = GetGlobalValue(getMangledName(D)); 3183 3184 // Make sure GetGlobalValue returned non-null. 3185 assert(GV); 3186 3187 // Check to see if we've already emitted this. This is necessary 3188 // for a couple of reasons: first, decls can end up in the 3189 // deferred-decls queue multiple times, and second, decls can end 3190 // up with definitions in unusual ways (e.g. by an extern inline 3191 // function acquiring a strong function redefinition). Just 3192 // ignore these cases. 3193 if (!GV->isDeclaration()) 3194 continue; 3195 3196 // If this is OpenMP, check if it is legal to emit this global normally. 3197 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3198 continue; 3199 3200 // Otherwise, emit the definition and move on to the next one. 3201 EmitGlobalDefinition(D, GV); 3202 3203 // If we found out that we need to emit more decls, do that recursively. 3204 // This has the advantage that the decls are emitted in a DFS and related 3205 // ones are close together, which is convenient for testing. 3206 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3207 EmitDeferred(); 3208 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3209 } 3210 } 3211 } 3212 3213 void CodeGenModule::EmitVTablesOpportunistically() { 3214 // Try to emit external vtables as available_externally if they have emitted 3215 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3216 // is not allowed to create new references to things that need to be emitted 3217 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3218 3219 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3220 && "Only emit opportunistic vtables with optimizations"); 3221 3222 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3223 assert(getVTables().isVTableExternal(RD) && 3224 "This queue should only contain external vtables"); 3225 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3226 VTables.GenerateClassData(RD); 3227 } 3228 OpportunisticVTables.clear(); 3229 } 3230 3231 void CodeGenModule::EmitGlobalAnnotations() { 3232 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3233 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3234 if (GV) 3235 AddGlobalAnnotations(VD, GV); 3236 } 3237 DeferredAnnotations.clear(); 3238 3239 if (Annotations.empty()) 3240 return; 3241 3242 // Create a new global variable for the ConstantStruct in the Module. 3243 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3244 Annotations[0]->getType(), Annotations.size()), Annotations); 3245 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3246 llvm::GlobalValue::AppendingLinkage, 3247 Array, "llvm.global.annotations"); 3248 gv->setSection(AnnotationSection); 3249 } 3250 3251 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3252 llvm::Constant *&AStr = AnnotationStrings[Str]; 3253 if (AStr) 3254 return AStr; 3255 3256 // Not found yet, create a new global. 3257 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3258 auto *gv = new llvm::GlobalVariable( 3259 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3260 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3261 ConstGlobalsPtrTy->getAddressSpace()); 3262 gv->setSection(AnnotationSection); 3263 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3264 AStr = gv; 3265 return gv; 3266 } 3267 3268 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3269 SourceManager &SM = getContext().getSourceManager(); 3270 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3271 if (PLoc.isValid()) 3272 return EmitAnnotationString(PLoc.getFilename()); 3273 return EmitAnnotationString(SM.getBufferName(Loc)); 3274 } 3275 3276 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3277 SourceManager &SM = getContext().getSourceManager(); 3278 PresumedLoc PLoc = SM.getPresumedLoc(L); 3279 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3280 SM.getExpansionLineNumber(L); 3281 return llvm::ConstantInt::get(Int32Ty, LineNo); 3282 } 3283 3284 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3285 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3286 if (Exprs.empty()) 3287 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3288 3289 llvm::FoldingSetNodeID ID; 3290 for (Expr *E : Exprs) { 3291 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3292 } 3293 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3294 if (Lookup) 3295 return Lookup; 3296 3297 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3298 LLVMArgs.reserve(Exprs.size()); 3299 ConstantEmitter ConstEmiter(*this); 3300 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3301 const auto *CE = cast<clang::ConstantExpr>(E); 3302 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3303 CE->getType()); 3304 }); 3305 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3306 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3307 llvm::GlobalValue::PrivateLinkage, Struct, 3308 ".args"); 3309 GV->setSection(AnnotationSection); 3310 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3311 3312 Lookup = GV; 3313 return GV; 3314 } 3315 3316 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3317 const AnnotateAttr *AA, 3318 SourceLocation L) { 3319 // Get the globals for file name, annotation, and the line number. 3320 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3321 *UnitGV = EmitAnnotationUnit(L), 3322 *LineNoCst = EmitAnnotationLineNo(L), 3323 *Args = EmitAnnotationArgs(AA); 3324 3325 llvm::Constant *GVInGlobalsAS = GV; 3326 if (GV->getAddressSpace() != 3327 getDataLayout().getDefaultGlobalsAddressSpace()) { 3328 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3329 GV, 3330 llvm::PointerType::get( 3331 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3332 } 3333 3334 // Create the ConstantStruct for the global annotation. 3335 llvm::Constant *Fields[] = { 3336 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3337 }; 3338 return llvm::ConstantStruct::getAnon(Fields); 3339 } 3340 3341 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3342 llvm::GlobalValue *GV) { 3343 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3344 // Get the struct elements for these annotations. 3345 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3346 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3347 } 3348 3349 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3350 SourceLocation Loc) const { 3351 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3352 // NoSanitize by function name. 3353 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3354 return true; 3355 // NoSanitize by location. Check "mainfile" prefix. 3356 auto &SM = Context.getSourceManager(); 3357 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3358 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3359 return true; 3360 3361 // Check "src" prefix. 3362 if (Loc.isValid()) 3363 return NoSanitizeL.containsLocation(Kind, Loc); 3364 // If location is unknown, this may be a compiler-generated function. Assume 3365 // it's located in the main file. 3366 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3367 } 3368 3369 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3370 llvm::GlobalVariable *GV, 3371 SourceLocation Loc, QualType Ty, 3372 StringRef Category) const { 3373 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3374 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3375 return true; 3376 auto &SM = Context.getSourceManager(); 3377 if (NoSanitizeL.containsMainFile( 3378 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3379 Category)) 3380 return true; 3381 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3382 return true; 3383 3384 // Check global type. 3385 if (!Ty.isNull()) { 3386 // Drill down the array types: if global variable of a fixed type is 3387 // not sanitized, we also don't instrument arrays of them. 3388 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3389 Ty = AT->getElementType(); 3390 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3391 // Only record types (classes, structs etc.) are ignored. 3392 if (Ty->isRecordType()) { 3393 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3394 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3395 return true; 3396 } 3397 } 3398 return false; 3399 } 3400 3401 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3402 StringRef Category) const { 3403 const auto &XRayFilter = getContext().getXRayFilter(); 3404 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3405 auto Attr = ImbueAttr::NONE; 3406 if (Loc.isValid()) 3407 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3408 if (Attr == ImbueAttr::NONE) 3409 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3410 switch (Attr) { 3411 case ImbueAttr::NONE: 3412 return false; 3413 case ImbueAttr::ALWAYS: 3414 Fn->addFnAttr("function-instrument", "xray-always"); 3415 break; 3416 case ImbueAttr::ALWAYS_ARG1: 3417 Fn->addFnAttr("function-instrument", "xray-always"); 3418 Fn->addFnAttr("xray-log-args", "1"); 3419 break; 3420 case ImbueAttr::NEVER: 3421 Fn->addFnAttr("function-instrument", "xray-never"); 3422 break; 3423 } 3424 return true; 3425 } 3426 3427 ProfileList::ExclusionType 3428 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3429 SourceLocation Loc) const { 3430 const auto &ProfileList = getContext().getProfileList(); 3431 // If the profile list is empty, then instrument everything. 3432 if (ProfileList.isEmpty()) 3433 return ProfileList::Allow; 3434 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3435 // First, check the function name. 3436 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3437 return *V; 3438 // Next, check the source location. 3439 if (Loc.isValid()) 3440 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3441 return *V; 3442 // If location is unknown, this may be a compiler-generated function. Assume 3443 // it's located in the main file. 3444 auto &SM = Context.getSourceManager(); 3445 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3446 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3447 return *V; 3448 return ProfileList.getDefault(Kind); 3449 } 3450 3451 ProfileList::ExclusionType 3452 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3453 SourceLocation Loc) const { 3454 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3455 if (V != ProfileList::Allow) 3456 return V; 3457 3458 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3459 if (NumGroups > 1) { 3460 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3461 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3462 return ProfileList::Skip; 3463 } 3464 return ProfileList::Allow; 3465 } 3466 3467 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3468 // Never defer when EmitAllDecls is specified. 3469 if (LangOpts.EmitAllDecls) 3470 return true; 3471 3472 const auto *VD = dyn_cast<VarDecl>(Global); 3473 if (VD && 3474 ((CodeGenOpts.KeepPersistentStorageVariables && 3475 (VD->getStorageDuration() == SD_Static || 3476 VD->getStorageDuration() == SD_Thread)) || 3477 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3478 VD->getType().isConstQualified()))) 3479 return true; 3480 3481 return getContext().DeclMustBeEmitted(Global); 3482 } 3483 3484 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3485 // In OpenMP 5.0 variables and function may be marked as 3486 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3487 // that they must be emitted on the host/device. To be sure we need to have 3488 // seen a declare target with an explicit mentioning of the function, we know 3489 // we have if the level of the declare target attribute is -1. Note that we 3490 // check somewhere else if we should emit this at all. 3491 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3492 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3493 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3494 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3495 return false; 3496 } 3497 3498 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3499 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3500 // Implicit template instantiations may change linkage if they are later 3501 // explicitly instantiated, so they should not be emitted eagerly. 3502 return false; 3503 } 3504 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3505 if (Context.getInlineVariableDefinitionKind(VD) == 3506 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3507 // A definition of an inline constexpr static data member may change 3508 // linkage later if it's redeclared outside the class. 3509 return false; 3510 if (CXX20ModuleInits && VD->getOwningModule() && 3511 !VD->getOwningModule()->isModuleMapModule()) { 3512 // For CXX20, module-owned initializers need to be deferred, since it is 3513 // not known at this point if they will be run for the current module or 3514 // as part of the initializer for an imported one. 3515 return false; 3516 } 3517 } 3518 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3519 // codegen for global variables, because they may be marked as threadprivate. 3520 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3521 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3522 !Global->getType().isConstantStorage(getContext(), false, false) && 3523 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3524 return false; 3525 3526 return true; 3527 } 3528 3529 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3530 StringRef Name = getMangledName(GD); 3531 3532 // The UUID descriptor should be pointer aligned. 3533 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3534 3535 // Look for an existing global. 3536 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3537 return ConstantAddress(GV, GV->getValueType(), Alignment); 3538 3539 ConstantEmitter Emitter(*this); 3540 llvm::Constant *Init; 3541 3542 APValue &V = GD->getAsAPValue(); 3543 if (!V.isAbsent()) { 3544 // If possible, emit the APValue version of the initializer. In particular, 3545 // this gets the type of the constant right. 3546 Init = Emitter.emitForInitializer( 3547 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3548 } else { 3549 // As a fallback, directly construct the constant. 3550 // FIXME: This may get padding wrong under esoteric struct layout rules. 3551 // MSVC appears to create a complete type 'struct __s_GUID' that it 3552 // presumably uses to represent these constants. 3553 MSGuidDecl::Parts Parts = GD->getParts(); 3554 llvm::Constant *Fields[4] = { 3555 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3556 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3557 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3558 llvm::ConstantDataArray::getRaw( 3559 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3560 Int8Ty)}; 3561 Init = llvm::ConstantStruct::getAnon(Fields); 3562 } 3563 3564 auto *GV = new llvm::GlobalVariable( 3565 getModule(), Init->getType(), 3566 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3567 if (supportsCOMDAT()) 3568 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3569 setDSOLocal(GV); 3570 3571 if (!V.isAbsent()) { 3572 Emitter.finalize(GV); 3573 return ConstantAddress(GV, GV->getValueType(), Alignment); 3574 } 3575 3576 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3577 return ConstantAddress(GV, Ty, Alignment); 3578 } 3579 3580 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3581 const UnnamedGlobalConstantDecl *GCD) { 3582 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3583 3584 llvm::GlobalVariable **Entry = nullptr; 3585 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3586 if (*Entry) 3587 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3588 3589 ConstantEmitter Emitter(*this); 3590 llvm::Constant *Init; 3591 3592 const APValue &V = GCD->getValue(); 3593 3594 assert(!V.isAbsent()); 3595 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3596 GCD->getType()); 3597 3598 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3599 /*isConstant=*/true, 3600 llvm::GlobalValue::PrivateLinkage, Init, 3601 ".constant"); 3602 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3603 GV->setAlignment(Alignment.getAsAlign()); 3604 3605 Emitter.finalize(GV); 3606 3607 *Entry = GV; 3608 return ConstantAddress(GV, GV->getValueType(), Alignment); 3609 } 3610 3611 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3612 const TemplateParamObjectDecl *TPO) { 3613 StringRef Name = getMangledName(TPO); 3614 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3615 3616 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3617 return ConstantAddress(GV, GV->getValueType(), Alignment); 3618 3619 ConstantEmitter Emitter(*this); 3620 llvm::Constant *Init = Emitter.emitForInitializer( 3621 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3622 3623 if (!Init) { 3624 ErrorUnsupported(TPO, "template parameter object"); 3625 return ConstantAddress::invalid(); 3626 } 3627 3628 llvm::GlobalValue::LinkageTypes Linkage = 3629 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3630 ? llvm::GlobalValue::LinkOnceODRLinkage 3631 : llvm::GlobalValue::InternalLinkage; 3632 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3633 /*isConstant=*/true, Linkage, Init, Name); 3634 setGVProperties(GV, TPO); 3635 if (supportsCOMDAT()) 3636 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3637 Emitter.finalize(GV); 3638 3639 return ConstantAddress(GV, GV->getValueType(), Alignment); 3640 } 3641 3642 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3643 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3644 assert(AA && "No alias?"); 3645 3646 CharUnits Alignment = getContext().getDeclAlign(VD); 3647 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3648 3649 // See if there is already something with the target's name in the module. 3650 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3651 if (Entry) 3652 return ConstantAddress(Entry, DeclTy, Alignment); 3653 3654 llvm::Constant *Aliasee; 3655 if (isa<llvm::FunctionType>(DeclTy)) 3656 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3657 GlobalDecl(cast<FunctionDecl>(VD)), 3658 /*ForVTable=*/false); 3659 else 3660 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3661 nullptr); 3662 3663 auto *F = cast<llvm::GlobalValue>(Aliasee); 3664 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3665 WeakRefReferences.insert(F); 3666 3667 return ConstantAddress(Aliasee, DeclTy, Alignment); 3668 } 3669 3670 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3671 if (!D) 3672 return false; 3673 if (auto *A = D->getAttr<AttrT>()) 3674 return A->isImplicit(); 3675 return D->isImplicit(); 3676 } 3677 3678 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3679 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3680 3681 // Weak references don't produce any output by themselves. 3682 if (Global->hasAttr<WeakRefAttr>()) 3683 return; 3684 3685 // If this is an alias definition (which otherwise looks like a declaration) 3686 // emit it now. 3687 if (Global->hasAttr<AliasAttr>()) 3688 return EmitAliasDefinition(GD); 3689 3690 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3691 if (Global->hasAttr<IFuncAttr>()) 3692 return emitIFuncDefinition(GD); 3693 3694 // If this is a cpu_dispatch multiversion function, emit the resolver. 3695 if (Global->hasAttr<CPUDispatchAttr>()) 3696 return emitCPUDispatchDefinition(GD); 3697 3698 // If this is CUDA, be selective about which declarations we emit. 3699 // Non-constexpr non-lambda implicit host device functions are not emitted 3700 // unless they are used on device side. 3701 if (LangOpts.CUDA) { 3702 if (LangOpts.CUDAIsDevice) { 3703 const auto *FD = dyn_cast<FunctionDecl>(Global); 3704 if ((!Global->hasAttr<CUDADeviceAttr>() || 3705 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3706 hasImplicitAttr<CUDAHostAttr>(FD) && 3707 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3708 !isLambdaCallOperator(FD) && 3709 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3710 !Global->hasAttr<CUDAGlobalAttr>() && 3711 !Global->hasAttr<CUDAConstantAttr>() && 3712 !Global->hasAttr<CUDASharedAttr>() && 3713 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3714 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3715 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3716 !Global->hasAttr<CUDAHostAttr>())) 3717 return; 3718 } else { 3719 // We need to emit host-side 'shadows' for all global 3720 // device-side variables because the CUDA runtime needs their 3721 // size and host-side address in order to provide access to 3722 // their device-side incarnations. 3723 3724 // So device-only functions are the only things we skip. 3725 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3726 Global->hasAttr<CUDADeviceAttr>()) 3727 return; 3728 3729 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3730 "Expected Variable or Function"); 3731 } 3732 } 3733 3734 if (LangOpts.OpenMP) { 3735 // If this is OpenMP, check if it is legal to emit this global normally. 3736 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3737 return; 3738 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3739 if (MustBeEmitted(Global)) 3740 EmitOMPDeclareReduction(DRD); 3741 return; 3742 } 3743 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3744 if (MustBeEmitted(Global)) 3745 EmitOMPDeclareMapper(DMD); 3746 return; 3747 } 3748 } 3749 3750 // Ignore declarations, they will be emitted on their first use. 3751 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3752 // Update deferred annotations with the latest declaration if the function 3753 // function was already used or defined. 3754 if (FD->hasAttr<AnnotateAttr>()) { 3755 StringRef MangledName = getMangledName(GD); 3756 if (GetGlobalValue(MangledName)) 3757 DeferredAnnotations[MangledName] = FD; 3758 } 3759 3760 // Forward declarations are emitted lazily on first use. 3761 if (!FD->doesThisDeclarationHaveABody()) { 3762 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3763 return; 3764 3765 StringRef MangledName = getMangledName(GD); 3766 3767 // Compute the function info and LLVM type. 3768 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3769 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3770 3771 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3772 /*DontDefer=*/false); 3773 return; 3774 } 3775 } else { 3776 const auto *VD = cast<VarDecl>(Global); 3777 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3778 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3779 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3780 if (LangOpts.OpenMP) { 3781 // Emit declaration of the must-be-emitted declare target variable. 3782 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3783 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3784 3785 // If this variable has external storage and doesn't require special 3786 // link handling we defer to its canonical definition. 3787 if (VD->hasExternalStorage() && 3788 Res != OMPDeclareTargetDeclAttr::MT_Link) 3789 return; 3790 3791 bool UnifiedMemoryEnabled = 3792 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3793 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3794 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3795 !UnifiedMemoryEnabled) { 3796 (void)GetAddrOfGlobalVar(VD); 3797 } else { 3798 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3799 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3800 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3801 UnifiedMemoryEnabled)) && 3802 "Link clause or to clause with unified memory expected."); 3803 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3804 } 3805 3806 return; 3807 } 3808 } 3809 // If this declaration may have caused an inline variable definition to 3810 // change linkage, make sure that it's emitted. 3811 if (Context.getInlineVariableDefinitionKind(VD) == 3812 ASTContext::InlineVariableDefinitionKind::Strong) 3813 GetAddrOfGlobalVar(VD); 3814 return; 3815 } 3816 } 3817 3818 // Defer code generation to first use when possible, e.g. if this is an inline 3819 // function. If the global must always be emitted, do it eagerly if possible 3820 // to benefit from cache locality. 3821 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3822 // Emit the definition if it can't be deferred. 3823 EmitGlobalDefinition(GD); 3824 addEmittedDeferredDecl(GD); 3825 return; 3826 } 3827 3828 // If we're deferring emission of a C++ variable with an 3829 // initializer, remember the order in which it appeared in the file. 3830 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3831 cast<VarDecl>(Global)->hasInit()) { 3832 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3833 CXXGlobalInits.push_back(nullptr); 3834 } 3835 3836 StringRef MangledName = getMangledName(GD); 3837 if (GetGlobalValue(MangledName) != nullptr) { 3838 // The value has already been used and should therefore be emitted. 3839 addDeferredDeclToEmit(GD); 3840 } else if (MustBeEmitted(Global)) { 3841 // The value must be emitted, but cannot be emitted eagerly. 3842 assert(!MayBeEmittedEagerly(Global)); 3843 addDeferredDeclToEmit(GD); 3844 } else { 3845 // Otherwise, remember that we saw a deferred decl with this name. The 3846 // first use of the mangled name will cause it to move into 3847 // DeferredDeclsToEmit. 3848 DeferredDecls[MangledName] = GD; 3849 } 3850 } 3851 3852 // Check if T is a class type with a destructor that's not dllimport. 3853 static bool HasNonDllImportDtor(QualType T) { 3854 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3855 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3856 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3857 return true; 3858 3859 return false; 3860 } 3861 3862 namespace { 3863 struct FunctionIsDirectlyRecursive 3864 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3865 const StringRef Name; 3866 const Builtin::Context &BI; 3867 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3868 : Name(N), BI(C) {} 3869 3870 bool VisitCallExpr(const CallExpr *E) { 3871 const FunctionDecl *FD = E->getDirectCallee(); 3872 if (!FD) 3873 return false; 3874 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3875 if (Attr && Name == Attr->getLabel()) 3876 return true; 3877 unsigned BuiltinID = FD->getBuiltinID(); 3878 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3879 return false; 3880 StringRef BuiltinName = BI.getName(BuiltinID); 3881 if (BuiltinName.starts_with("__builtin_") && 3882 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3883 return true; 3884 } 3885 return false; 3886 } 3887 3888 bool VisitStmt(const Stmt *S) { 3889 for (const Stmt *Child : S->children()) 3890 if (Child && this->Visit(Child)) 3891 return true; 3892 return false; 3893 } 3894 }; 3895 3896 // Make sure we're not referencing non-imported vars or functions. 3897 struct DLLImportFunctionVisitor 3898 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3899 bool SafeToInline = true; 3900 3901 bool shouldVisitImplicitCode() const { return true; } 3902 3903 bool VisitVarDecl(VarDecl *VD) { 3904 if (VD->getTLSKind()) { 3905 // A thread-local variable cannot be imported. 3906 SafeToInline = false; 3907 return SafeToInline; 3908 } 3909 3910 // A variable definition might imply a destructor call. 3911 if (VD->isThisDeclarationADefinition()) 3912 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3913 3914 return SafeToInline; 3915 } 3916 3917 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3918 if (const auto *D = E->getTemporary()->getDestructor()) 3919 SafeToInline = D->hasAttr<DLLImportAttr>(); 3920 return SafeToInline; 3921 } 3922 3923 bool VisitDeclRefExpr(DeclRefExpr *E) { 3924 ValueDecl *VD = E->getDecl(); 3925 if (isa<FunctionDecl>(VD)) 3926 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3927 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3928 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3929 return SafeToInline; 3930 } 3931 3932 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3933 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3934 return SafeToInline; 3935 } 3936 3937 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3938 CXXMethodDecl *M = E->getMethodDecl(); 3939 if (!M) { 3940 // Call through a pointer to member function. This is safe to inline. 3941 SafeToInline = true; 3942 } else { 3943 SafeToInline = M->hasAttr<DLLImportAttr>(); 3944 } 3945 return SafeToInline; 3946 } 3947 3948 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3949 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3950 return SafeToInline; 3951 } 3952 3953 bool VisitCXXNewExpr(CXXNewExpr *E) { 3954 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3955 return SafeToInline; 3956 } 3957 }; 3958 } 3959 3960 // isTriviallyRecursive - Check if this function calls another 3961 // decl that, because of the asm attribute or the other decl being a builtin, 3962 // ends up pointing to itself. 3963 bool 3964 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3965 StringRef Name; 3966 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3967 // asm labels are a special kind of mangling we have to support. 3968 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3969 if (!Attr) 3970 return false; 3971 Name = Attr->getLabel(); 3972 } else { 3973 Name = FD->getName(); 3974 } 3975 3976 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3977 const Stmt *Body = FD->getBody(); 3978 return Body ? Walker.Visit(Body) : false; 3979 } 3980 3981 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3982 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3983 return true; 3984 3985 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3986 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3987 return false; 3988 3989 // We don't import function bodies from other named module units since that 3990 // behavior may break ABI compatibility of the current unit. 3991 if (const Module *M = F->getOwningModule(); 3992 M && M->getTopLevelModule()->isNamedModule() && 3993 getContext().getCurrentNamedModule() != M->getTopLevelModule() && 3994 !F->hasAttr<AlwaysInlineAttr>()) 3995 return false; 3996 3997 if (F->hasAttr<NoInlineAttr>()) 3998 return false; 3999 4000 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4001 // Check whether it would be safe to inline this dllimport function. 4002 DLLImportFunctionVisitor Visitor; 4003 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4004 if (!Visitor.SafeToInline) 4005 return false; 4006 4007 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4008 // Implicit destructor invocations aren't captured in the AST, so the 4009 // check above can't see them. Check for them manually here. 4010 for (const Decl *Member : Dtor->getParent()->decls()) 4011 if (isa<FieldDecl>(Member)) 4012 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4013 return false; 4014 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4015 if (HasNonDllImportDtor(B.getType())) 4016 return false; 4017 } 4018 } 4019 4020 // Inline builtins declaration must be emitted. They often are fortified 4021 // functions. 4022 if (F->isInlineBuiltinDeclaration()) 4023 return true; 4024 4025 // PR9614. Avoid cases where the source code is lying to us. An available 4026 // externally function should have an equivalent function somewhere else, 4027 // but a function that calls itself through asm label/`__builtin_` trickery is 4028 // clearly not equivalent to the real implementation. 4029 // This happens in glibc's btowc and in some configure checks. 4030 return !isTriviallyRecursive(F); 4031 } 4032 4033 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4034 return CodeGenOpts.OptimizationLevel > 0; 4035 } 4036 4037 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4038 llvm::GlobalValue *GV) { 4039 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4040 4041 if (FD->isCPUSpecificMultiVersion()) { 4042 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4043 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4044 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4045 } else if (FD->isTargetClonesMultiVersion()) { 4046 auto *Clone = FD->getAttr<TargetClonesAttr>(); 4047 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 4048 if (Clone->isFirstOfVersion(I)) 4049 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4050 // Ensure that the resolver function is also emitted. 4051 GetOrCreateMultiVersionResolver(GD); 4052 } else if (FD->hasAttr<TargetVersionAttr>()) { 4053 GetOrCreateMultiVersionResolver(GD); 4054 } else 4055 EmitGlobalFunctionDefinition(GD, GV); 4056 } 4057 4058 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4059 const auto *D = cast<ValueDecl>(GD.getDecl()); 4060 4061 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4062 Context.getSourceManager(), 4063 "Generating code for declaration"); 4064 4065 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4066 // At -O0, don't generate IR for functions with available_externally 4067 // linkage. 4068 if (!shouldEmitFunction(GD)) 4069 return; 4070 4071 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4072 std::string Name; 4073 llvm::raw_string_ostream OS(Name); 4074 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4075 /*Qualified=*/true); 4076 return Name; 4077 }); 4078 4079 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4080 // Make sure to emit the definition(s) before we emit the thunks. 4081 // This is necessary for the generation of certain thunks. 4082 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4083 ABI->emitCXXStructor(GD); 4084 else if (FD->isMultiVersion()) 4085 EmitMultiVersionFunctionDefinition(GD, GV); 4086 else 4087 EmitGlobalFunctionDefinition(GD, GV); 4088 4089 if (Method->isVirtual()) 4090 getVTables().EmitThunks(GD); 4091 4092 return; 4093 } 4094 4095 if (FD->isMultiVersion()) 4096 return EmitMultiVersionFunctionDefinition(GD, GV); 4097 return EmitGlobalFunctionDefinition(GD, GV); 4098 } 4099 4100 if (const auto *VD = dyn_cast<VarDecl>(D)) 4101 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4102 4103 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4104 } 4105 4106 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4107 llvm::Function *NewFn); 4108 4109 static unsigned 4110 TargetMVPriority(const TargetInfo &TI, 4111 const CodeGenFunction::MultiVersionResolverOption &RO) { 4112 unsigned Priority = 0; 4113 unsigned NumFeatures = 0; 4114 for (StringRef Feat : RO.Conditions.Features) { 4115 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4116 NumFeatures++; 4117 } 4118 4119 if (!RO.Conditions.Architecture.empty()) 4120 Priority = std::max( 4121 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4122 4123 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4124 4125 return Priority; 4126 } 4127 4128 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4129 // TU can forward declare the function without causing problems. Particularly 4130 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4131 // work with internal linkage functions, so that the same function name can be 4132 // used with internal linkage in multiple TUs. 4133 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4134 GlobalDecl GD) { 4135 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4136 if (FD->getFormalLinkage() == Linkage::Internal) 4137 return llvm::GlobalValue::InternalLinkage; 4138 return llvm::GlobalValue::WeakODRLinkage; 4139 } 4140 4141 void CodeGenModule::emitMultiVersionFunctions() { 4142 std::vector<GlobalDecl> MVFuncsToEmit; 4143 MultiVersionFuncs.swap(MVFuncsToEmit); 4144 for (GlobalDecl GD : MVFuncsToEmit) { 4145 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4146 assert(FD && "Expected a FunctionDecl"); 4147 4148 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4149 if (FD->isTargetMultiVersion()) { 4150 getContext().forEachMultiversionedFunctionVersion( 4151 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4152 GlobalDecl CurGD{ 4153 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4154 StringRef MangledName = getMangledName(CurGD); 4155 llvm::Constant *Func = GetGlobalValue(MangledName); 4156 if (!Func) { 4157 if (CurFD->isDefined()) { 4158 EmitGlobalFunctionDefinition(CurGD, nullptr); 4159 Func = GetGlobalValue(MangledName); 4160 } else { 4161 const CGFunctionInfo &FI = 4162 getTypes().arrangeGlobalDeclaration(GD); 4163 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4164 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4165 /*DontDefer=*/false, ForDefinition); 4166 } 4167 assert(Func && "This should have just been created"); 4168 } 4169 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4170 const auto *TA = CurFD->getAttr<TargetAttr>(); 4171 llvm::SmallVector<StringRef, 8> Feats; 4172 TA->getAddedFeatures(Feats); 4173 Options.emplace_back(cast<llvm::Function>(Func), 4174 TA->getArchitecture(), Feats); 4175 } else { 4176 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4177 llvm::SmallVector<StringRef, 8> Feats; 4178 TVA->getFeatures(Feats); 4179 Options.emplace_back(cast<llvm::Function>(Func), 4180 /*Architecture*/ "", Feats); 4181 } 4182 }); 4183 } else if (FD->isTargetClonesMultiVersion()) { 4184 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4185 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4186 ++VersionIndex) { 4187 if (!TC->isFirstOfVersion(VersionIndex)) 4188 continue; 4189 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4190 VersionIndex}; 4191 StringRef Version = TC->getFeatureStr(VersionIndex); 4192 StringRef MangledName = getMangledName(CurGD); 4193 llvm::Constant *Func = GetGlobalValue(MangledName); 4194 if (!Func) { 4195 if (FD->isDefined()) { 4196 EmitGlobalFunctionDefinition(CurGD, nullptr); 4197 Func = GetGlobalValue(MangledName); 4198 } else { 4199 const CGFunctionInfo &FI = 4200 getTypes().arrangeGlobalDeclaration(CurGD); 4201 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4202 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4203 /*DontDefer=*/false, ForDefinition); 4204 } 4205 assert(Func && "This should have just been created"); 4206 } 4207 4208 StringRef Architecture; 4209 llvm::SmallVector<StringRef, 1> Feature; 4210 4211 if (getTarget().getTriple().isAArch64()) { 4212 if (Version != "default") { 4213 llvm::SmallVector<StringRef, 8> VerFeats; 4214 Version.split(VerFeats, "+"); 4215 for (auto &CurFeat : VerFeats) 4216 Feature.push_back(CurFeat.trim()); 4217 } 4218 } else { 4219 if (Version.starts_with("arch=")) 4220 Architecture = Version.drop_front(sizeof("arch=") - 1); 4221 else if (Version != "default") 4222 Feature.push_back(Version); 4223 } 4224 4225 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4226 } 4227 } else { 4228 assert(0 && "Expected a target or target_clones multiversion function"); 4229 continue; 4230 } 4231 4232 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4233 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4234 ResolverConstant = IFunc->getResolver(); 4235 if (FD->isTargetClonesMultiVersion()) { 4236 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4237 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4238 std::string MangledName = getMangledNameImpl( 4239 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4240 // In prior versions of Clang, the mangling for ifuncs incorrectly 4241 // included an .ifunc suffix. This alias is generated for backward 4242 // compatibility. It is deprecated, and may be removed in the future. 4243 auto *Alias = llvm::GlobalAlias::create( 4244 DeclTy, 0, getMultiversionLinkage(*this, GD), 4245 MangledName + ".ifunc", IFunc, &getModule()); 4246 SetCommonAttributes(FD, Alias); 4247 } 4248 } 4249 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4250 4251 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4252 4253 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4254 ResolverFunc->setComdat( 4255 getModule().getOrInsertComdat(ResolverFunc->getName())); 4256 4257 const TargetInfo &TI = getTarget(); 4258 llvm::stable_sort( 4259 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4260 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4261 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4262 }); 4263 CodeGenFunction CGF(*this); 4264 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4265 } 4266 4267 // Ensure that any additions to the deferred decls list caused by emitting a 4268 // variant are emitted. This can happen when the variant itself is inline and 4269 // calls a function without linkage. 4270 if (!MVFuncsToEmit.empty()) 4271 EmitDeferred(); 4272 4273 // Ensure that any additions to the multiversion funcs list from either the 4274 // deferred decls or the multiversion functions themselves are emitted. 4275 if (!MultiVersionFuncs.empty()) 4276 emitMultiVersionFunctions(); 4277 } 4278 4279 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4280 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4281 assert(FD && "Not a FunctionDecl?"); 4282 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4283 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4284 assert(DD && "Not a cpu_dispatch Function?"); 4285 4286 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4287 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4288 4289 StringRef ResolverName = getMangledName(GD); 4290 UpdateMultiVersionNames(GD, FD, ResolverName); 4291 4292 llvm::Type *ResolverType; 4293 GlobalDecl ResolverGD; 4294 if (getTarget().supportsIFunc()) { 4295 ResolverType = llvm::FunctionType::get( 4296 llvm::PointerType::get(DeclTy, 4297 getTypes().getTargetAddressSpace(FD->getType())), 4298 false); 4299 } 4300 else { 4301 ResolverType = DeclTy; 4302 ResolverGD = GD; 4303 } 4304 4305 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4306 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4307 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4308 if (supportsCOMDAT()) 4309 ResolverFunc->setComdat( 4310 getModule().getOrInsertComdat(ResolverFunc->getName())); 4311 4312 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4313 const TargetInfo &Target = getTarget(); 4314 unsigned Index = 0; 4315 for (const IdentifierInfo *II : DD->cpus()) { 4316 // Get the name of the target function so we can look it up/create it. 4317 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4318 getCPUSpecificMangling(*this, II->getName()); 4319 4320 llvm::Constant *Func = GetGlobalValue(MangledName); 4321 4322 if (!Func) { 4323 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4324 if (ExistingDecl.getDecl() && 4325 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4326 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4327 Func = GetGlobalValue(MangledName); 4328 } else { 4329 if (!ExistingDecl.getDecl()) 4330 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4331 4332 Func = GetOrCreateLLVMFunction( 4333 MangledName, DeclTy, ExistingDecl, 4334 /*ForVTable=*/false, /*DontDefer=*/true, 4335 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4336 } 4337 } 4338 4339 llvm::SmallVector<StringRef, 32> Features; 4340 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4341 llvm::transform(Features, Features.begin(), 4342 [](StringRef Str) { return Str.substr(1); }); 4343 llvm::erase_if(Features, [&Target](StringRef Feat) { 4344 return !Target.validateCpuSupports(Feat); 4345 }); 4346 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4347 ++Index; 4348 } 4349 4350 llvm::stable_sort( 4351 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4352 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4353 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4354 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4355 }); 4356 4357 // If the list contains multiple 'default' versions, such as when it contains 4358 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4359 // always run on at least a 'pentium'). We do this by deleting the 'least 4360 // advanced' (read, lowest mangling letter). 4361 while (Options.size() > 1 && 4362 llvm::all_of(llvm::X86::getCpuSupportsMask( 4363 (Options.end() - 2)->Conditions.Features), 4364 [](auto X) { return X == 0; })) { 4365 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4366 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4367 if (LHSName.compare(RHSName) < 0) 4368 Options.erase(Options.end() - 2); 4369 else 4370 Options.erase(Options.end() - 1); 4371 } 4372 4373 CodeGenFunction CGF(*this); 4374 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4375 4376 if (getTarget().supportsIFunc()) { 4377 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4378 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4379 4380 // Fix up function declarations that were created for cpu_specific before 4381 // cpu_dispatch was known 4382 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4383 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4384 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4385 &getModule()); 4386 GI->takeName(IFunc); 4387 IFunc->replaceAllUsesWith(GI); 4388 IFunc->eraseFromParent(); 4389 IFunc = GI; 4390 } 4391 4392 std::string AliasName = getMangledNameImpl( 4393 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4394 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4395 if (!AliasFunc) { 4396 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4397 &getModule()); 4398 SetCommonAttributes(GD, GA); 4399 } 4400 } 4401 } 4402 4403 /// If a dispatcher for the specified mangled name is not in the module, create 4404 /// and return an llvm Function with the specified type. 4405 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4406 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4407 assert(FD && "Not a FunctionDecl?"); 4408 4409 std::string MangledName = 4410 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4411 4412 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4413 // a separate resolver). 4414 std::string ResolverName = MangledName; 4415 if (getTarget().supportsIFunc()) { 4416 if (!FD->isTargetClonesMultiVersion()) 4417 ResolverName += ".ifunc"; 4418 } else if (FD->isTargetMultiVersion()) { 4419 ResolverName += ".resolver"; 4420 } 4421 4422 // If the resolver has already been created, just return it. 4423 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4424 return ResolverGV; 4425 4426 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4427 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4428 4429 // The resolver needs to be created. For target and target_clones, defer 4430 // creation until the end of the TU. 4431 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4432 MultiVersionFuncs.push_back(GD); 4433 4434 // For cpu_specific, don't create an ifunc yet because we don't know if the 4435 // cpu_dispatch will be emitted in this translation unit. 4436 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4437 llvm::Type *ResolverType = llvm::FunctionType::get( 4438 llvm::PointerType::get(DeclTy, 4439 getTypes().getTargetAddressSpace(FD->getType())), 4440 false); 4441 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4442 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4443 /*ForVTable=*/false); 4444 llvm::GlobalIFunc *GIF = 4445 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4446 "", Resolver, &getModule()); 4447 GIF->setName(ResolverName); 4448 SetCommonAttributes(FD, GIF); 4449 4450 return GIF; 4451 } 4452 4453 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4454 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4455 assert(isa<llvm::GlobalValue>(Resolver) && 4456 "Resolver should be created for the first time"); 4457 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4458 return Resolver; 4459 } 4460 4461 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4462 /// module, create and return an llvm Function with the specified type. If there 4463 /// is something in the module with the specified name, return it potentially 4464 /// bitcasted to the right type. 4465 /// 4466 /// If D is non-null, it specifies a decl that correspond to this. This is used 4467 /// to set the attributes on the function when it is first created. 4468 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4469 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4470 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4471 ForDefinition_t IsForDefinition) { 4472 const Decl *D = GD.getDecl(); 4473 4474 // Any attempts to use a MultiVersion function should result in retrieving 4475 // the iFunc instead. Name Mangling will handle the rest of the changes. 4476 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4477 // For the device mark the function as one that should be emitted. 4478 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4479 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4480 !DontDefer && !IsForDefinition) { 4481 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4482 GlobalDecl GDDef; 4483 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4484 GDDef = GlobalDecl(CD, GD.getCtorType()); 4485 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4486 GDDef = GlobalDecl(DD, GD.getDtorType()); 4487 else 4488 GDDef = GlobalDecl(FDDef); 4489 EmitGlobal(GDDef); 4490 } 4491 } 4492 4493 if (FD->isMultiVersion()) { 4494 UpdateMultiVersionNames(GD, FD, MangledName); 4495 if (!IsForDefinition) 4496 return GetOrCreateMultiVersionResolver(GD); 4497 } 4498 } 4499 4500 // Lookup the entry, lazily creating it if necessary. 4501 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4502 if (Entry) { 4503 if (WeakRefReferences.erase(Entry)) { 4504 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4505 if (FD && !FD->hasAttr<WeakAttr>()) 4506 Entry->setLinkage(llvm::Function::ExternalLinkage); 4507 } 4508 4509 // Handle dropped DLL attributes. 4510 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4511 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4512 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4513 setDSOLocal(Entry); 4514 } 4515 4516 // If there are two attempts to define the same mangled name, issue an 4517 // error. 4518 if (IsForDefinition && !Entry->isDeclaration()) { 4519 GlobalDecl OtherGD; 4520 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4521 // to make sure that we issue an error only once. 4522 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4523 (GD.getCanonicalDecl().getDecl() != 4524 OtherGD.getCanonicalDecl().getDecl()) && 4525 DiagnosedConflictingDefinitions.insert(GD).second) { 4526 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4527 << MangledName; 4528 getDiags().Report(OtherGD.getDecl()->getLocation(), 4529 diag::note_previous_definition); 4530 } 4531 } 4532 4533 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4534 (Entry->getValueType() == Ty)) { 4535 return Entry; 4536 } 4537 4538 // Make sure the result is of the correct type. 4539 // (If function is requested for a definition, we always need to create a new 4540 // function, not just return a bitcast.) 4541 if (!IsForDefinition) 4542 return Entry; 4543 } 4544 4545 // This function doesn't have a complete type (for example, the return 4546 // type is an incomplete struct). Use a fake type instead, and make 4547 // sure not to try to set attributes. 4548 bool IsIncompleteFunction = false; 4549 4550 llvm::FunctionType *FTy; 4551 if (isa<llvm::FunctionType>(Ty)) { 4552 FTy = cast<llvm::FunctionType>(Ty); 4553 } else { 4554 FTy = llvm::FunctionType::get(VoidTy, false); 4555 IsIncompleteFunction = true; 4556 } 4557 4558 llvm::Function *F = 4559 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4560 Entry ? StringRef() : MangledName, &getModule()); 4561 4562 // Store the declaration associated with this function so it is potentially 4563 // updated by further declarations or definitions and emitted at the end. 4564 if (D && D->hasAttr<AnnotateAttr>()) 4565 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4566 4567 // If we already created a function with the same mangled name (but different 4568 // type) before, take its name and add it to the list of functions to be 4569 // replaced with F at the end of CodeGen. 4570 // 4571 // This happens if there is a prototype for a function (e.g. "int f()") and 4572 // then a definition of a different type (e.g. "int f(int x)"). 4573 if (Entry) { 4574 F->takeName(Entry); 4575 4576 // This might be an implementation of a function without a prototype, in 4577 // which case, try to do special replacement of calls which match the new 4578 // prototype. The really key thing here is that we also potentially drop 4579 // arguments from the call site so as to make a direct call, which makes the 4580 // inliner happier and suppresses a number of optimizer warnings (!) about 4581 // dropping arguments. 4582 if (!Entry->use_empty()) { 4583 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4584 Entry->removeDeadConstantUsers(); 4585 } 4586 4587 addGlobalValReplacement(Entry, F); 4588 } 4589 4590 assert(F->getName() == MangledName && "name was uniqued!"); 4591 if (D) 4592 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4593 if (ExtraAttrs.hasFnAttrs()) { 4594 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4595 F->addFnAttrs(B); 4596 } 4597 4598 if (!DontDefer) { 4599 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4600 // each other bottoming out with the base dtor. Therefore we emit non-base 4601 // dtors on usage, even if there is no dtor definition in the TU. 4602 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4603 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4604 GD.getDtorType())) 4605 addDeferredDeclToEmit(GD); 4606 4607 // This is the first use or definition of a mangled name. If there is a 4608 // deferred decl with this name, remember that we need to emit it at the end 4609 // of the file. 4610 auto DDI = DeferredDecls.find(MangledName); 4611 if (DDI != DeferredDecls.end()) { 4612 // Move the potentially referenced deferred decl to the 4613 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4614 // don't need it anymore). 4615 addDeferredDeclToEmit(DDI->second); 4616 DeferredDecls.erase(DDI); 4617 4618 // Otherwise, there are cases we have to worry about where we're 4619 // using a declaration for which we must emit a definition but where 4620 // we might not find a top-level definition: 4621 // - member functions defined inline in their classes 4622 // - friend functions defined inline in some class 4623 // - special member functions with implicit definitions 4624 // If we ever change our AST traversal to walk into class methods, 4625 // this will be unnecessary. 4626 // 4627 // We also don't emit a definition for a function if it's going to be an 4628 // entry in a vtable, unless it's already marked as used. 4629 } else if (getLangOpts().CPlusPlus && D) { 4630 // Look for a declaration that's lexically in a record. 4631 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4632 FD = FD->getPreviousDecl()) { 4633 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4634 if (FD->doesThisDeclarationHaveABody()) { 4635 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4636 break; 4637 } 4638 } 4639 } 4640 } 4641 } 4642 4643 // Make sure the result is of the requested type. 4644 if (!IsIncompleteFunction) { 4645 assert(F->getFunctionType() == Ty); 4646 return F; 4647 } 4648 4649 return F; 4650 } 4651 4652 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4653 /// non-null, then this function will use the specified type if it has to 4654 /// create it (this occurs when we see a definition of the function). 4655 llvm::Constant * 4656 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4657 bool DontDefer, 4658 ForDefinition_t IsForDefinition) { 4659 // If there was no specific requested type, just convert it now. 4660 if (!Ty) { 4661 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4662 Ty = getTypes().ConvertType(FD->getType()); 4663 } 4664 4665 // Devirtualized destructor calls may come through here instead of via 4666 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4667 // of the complete destructor when necessary. 4668 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4669 if (getTarget().getCXXABI().isMicrosoft() && 4670 GD.getDtorType() == Dtor_Complete && 4671 DD->getParent()->getNumVBases() == 0) 4672 GD = GlobalDecl(DD, Dtor_Base); 4673 } 4674 4675 StringRef MangledName = getMangledName(GD); 4676 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4677 /*IsThunk=*/false, llvm::AttributeList(), 4678 IsForDefinition); 4679 // Returns kernel handle for HIP kernel stub function. 4680 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4681 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4682 auto *Handle = getCUDARuntime().getKernelHandle( 4683 cast<llvm::Function>(F->stripPointerCasts()), GD); 4684 if (IsForDefinition) 4685 return F; 4686 return Handle; 4687 } 4688 return F; 4689 } 4690 4691 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4692 llvm::GlobalValue *F = 4693 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4694 4695 return llvm::NoCFIValue::get(F); 4696 } 4697 4698 static const FunctionDecl * 4699 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4700 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4701 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4702 4703 IdentifierInfo &CII = C.Idents.get(Name); 4704 for (const auto *Result : DC->lookup(&CII)) 4705 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4706 return FD; 4707 4708 if (!C.getLangOpts().CPlusPlus) 4709 return nullptr; 4710 4711 // Demangle the premangled name from getTerminateFn() 4712 IdentifierInfo &CXXII = 4713 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4714 ? C.Idents.get("terminate") 4715 : C.Idents.get(Name); 4716 4717 for (const auto &N : {"__cxxabiv1", "std"}) { 4718 IdentifierInfo &NS = C.Idents.get(N); 4719 for (const auto *Result : DC->lookup(&NS)) { 4720 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4721 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4722 for (const auto *Result : LSD->lookup(&NS)) 4723 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4724 break; 4725 4726 if (ND) 4727 for (const auto *Result : ND->lookup(&CXXII)) 4728 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4729 return FD; 4730 } 4731 } 4732 4733 return nullptr; 4734 } 4735 4736 /// CreateRuntimeFunction - Create a new runtime function with the specified 4737 /// type and name. 4738 llvm::FunctionCallee 4739 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4740 llvm::AttributeList ExtraAttrs, bool Local, 4741 bool AssumeConvergent) { 4742 if (AssumeConvergent) { 4743 ExtraAttrs = 4744 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4745 } 4746 4747 llvm::Constant *C = 4748 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4749 /*DontDefer=*/false, /*IsThunk=*/false, 4750 ExtraAttrs); 4751 4752 if (auto *F = dyn_cast<llvm::Function>(C)) { 4753 if (F->empty()) { 4754 F->setCallingConv(getRuntimeCC()); 4755 4756 // In Windows Itanium environments, try to mark runtime functions 4757 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4758 // will link their standard library statically or dynamically. Marking 4759 // functions imported when they are not imported can cause linker errors 4760 // and warnings. 4761 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4762 !getCodeGenOpts().LTOVisibilityPublicStd) { 4763 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4764 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4765 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4766 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4767 } 4768 } 4769 setDSOLocal(F); 4770 } 4771 } 4772 4773 return {FTy, C}; 4774 } 4775 4776 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4777 /// create and return an llvm GlobalVariable with the specified type and address 4778 /// space. If there is something in the module with the specified name, return 4779 /// it potentially bitcasted to the right type. 4780 /// 4781 /// If D is non-null, it specifies a decl that correspond to this. This is used 4782 /// to set the attributes on the global when it is first created. 4783 /// 4784 /// If IsForDefinition is true, it is guaranteed that an actual global with 4785 /// type Ty will be returned, not conversion of a variable with the same 4786 /// mangled name but some other type. 4787 llvm::Constant * 4788 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4789 LangAS AddrSpace, const VarDecl *D, 4790 ForDefinition_t IsForDefinition) { 4791 // Lookup the entry, lazily creating it if necessary. 4792 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4793 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4794 if (Entry) { 4795 if (WeakRefReferences.erase(Entry)) { 4796 if (D && !D->hasAttr<WeakAttr>()) 4797 Entry->setLinkage(llvm::Function::ExternalLinkage); 4798 } 4799 4800 // Handle dropped DLL attributes. 4801 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4802 !shouldMapVisibilityToDLLExport(D)) 4803 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4804 4805 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4806 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4807 4808 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4809 return Entry; 4810 4811 // If there are two attempts to define the same mangled name, issue an 4812 // error. 4813 if (IsForDefinition && !Entry->isDeclaration()) { 4814 GlobalDecl OtherGD; 4815 const VarDecl *OtherD; 4816 4817 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4818 // to make sure that we issue an error only once. 4819 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4820 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4821 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4822 OtherD->hasInit() && 4823 DiagnosedConflictingDefinitions.insert(D).second) { 4824 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4825 << MangledName; 4826 getDiags().Report(OtherGD.getDecl()->getLocation(), 4827 diag::note_previous_definition); 4828 } 4829 } 4830 4831 // Make sure the result is of the correct type. 4832 if (Entry->getType()->getAddressSpace() != TargetAS) 4833 return llvm::ConstantExpr::getAddrSpaceCast( 4834 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4835 4836 // (If global is requested for a definition, we always need to create a new 4837 // global, not just return a bitcast.) 4838 if (!IsForDefinition) 4839 return Entry; 4840 } 4841 4842 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4843 4844 auto *GV = new llvm::GlobalVariable( 4845 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4846 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4847 getContext().getTargetAddressSpace(DAddrSpace)); 4848 4849 // If we already created a global with the same mangled name (but different 4850 // type) before, take its name and remove it from its parent. 4851 if (Entry) { 4852 GV->takeName(Entry); 4853 4854 if (!Entry->use_empty()) { 4855 Entry->replaceAllUsesWith(GV); 4856 } 4857 4858 Entry->eraseFromParent(); 4859 } 4860 4861 // This is the first use or definition of a mangled name. If there is a 4862 // deferred decl with this name, remember that we need to emit it at the end 4863 // of the file. 4864 auto DDI = DeferredDecls.find(MangledName); 4865 if (DDI != DeferredDecls.end()) { 4866 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4867 // list, and remove it from DeferredDecls (since we don't need it anymore). 4868 addDeferredDeclToEmit(DDI->second); 4869 DeferredDecls.erase(DDI); 4870 } 4871 4872 // Handle things which are present even on external declarations. 4873 if (D) { 4874 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4875 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4876 4877 // FIXME: This code is overly simple and should be merged with other global 4878 // handling. 4879 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4880 4881 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4882 4883 setLinkageForGV(GV, D); 4884 4885 if (D->getTLSKind()) { 4886 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4887 CXXThreadLocals.push_back(D); 4888 setTLSMode(GV, *D); 4889 } 4890 4891 setGVProperties(GV, D); 4892 4893 // If required by the ABI, treat declarations of static data members with 4894 // inline initializers as definitions. 4895 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4896 EmitGlobalVarDefinition(D); 4897 } 4898 4899 // Emit section information for extern variables. 4900 if (D->hasExternalStorage()) { 4901 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4902 GV->setSection(SA->getName()); 4903 } 4904 4905 // Handle XCore specific ABI requirements. 4906 if (getTriple().getArch() == llvm::Triple::xcore && 4907 D->getLanguageLinkage() == CLanguageLinkage && 4908 D->getType().isConstant(Context) && 4909 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4910 GV->setSection(".cp.rodata"); 4911 4912 // Handle code model attribute 4913 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4914 GV->setCodeModel(CMA->getModel()); 4915 4916 // Check if we a have a const declaration with an initializer, we may be 4917 // able to emit it as available_externally to expose it's value to the 4918 // optimizer. 4919 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4920 D->getType().isConstQualified() && !GV->hasInitializer() && 4921 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4922 const auto *Record = 4923 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4924 bool HasMutableFields = Record && Record->hasMutableFields(); 4925 if (!HasMutableFields) { 4926 const VarDecl *InitDecl; 4927 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4928 if (InitExpr) { 4929 ConstantEmitter emitter(*this); 4930 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4931 if (Init) { 4932 auto *InitType = Init->getType(); 4933 if (GV->getValueType() != InitType) { 4934 // The type of the initializer does not match the definition. 4935 // This happens when an initializer has a different type from 4936 // the type of the global (because of padding at the end of a 4937 // structure for instance). 4938 GV->setName(StringRef()); 4939 // Make a new global with the correct type, this is now guaranteed 4940 // to work. 4941 auto *NewGV = cast<llvm::GlobalVariable>( 4942 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4943 ->stripPointerCasts()); 4944 4945 // Erase the old global, since it is no longer used. 4946 GV->eraseFromParent(); 4947 GV = NewGV; 4948 } else { 4949 GV->setInitializer(Init); 4950 GV->setConstant(true); 4951 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4952 } 4953 emitter.finalize(GV); 4954 } 4955 } 4956 } 4957 } 4958 } 4959 4960 if (D && 4961 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4962 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4963 // External HIP managed variables needed to be recorded for transformation 4964 // in both device and host compilations. 4965 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4966 D->hasExternalStorage()) 4967 getCUDARuntime().handleVarRegistration(D, *GV); 4968 } 4969 4970 if (D) 4971 SanitizerMD->reportGlobal(GV, *D); 4972 4973 LangAS ExpectedAS = 4974 D ? D->getType().getAddressSpace() 4975 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4976 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4977 if (DAddrSpace != ExpectedAS) { 4978 return getTargetCodeGenInfo().performAddrSpaceCast( 4979 *this, GV, DAddrSpace, ExpectedAS, 4980 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4981 } 4982 4983 return GV; 4984 } 4985 4986 llvm::Constant * 4987 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4988 const Decl *D = GD.getDecl(); 4989 4990 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4991 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4992 /*DontDefer=*/false, IsForDefinition); 4993 4994 if (isa<CXXMethodDecl>(D)) { 4995 auto FInfo = 4996 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4997 auto Ty = getTypes().GetFunctionType(*FInfo); 4998 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4999 IsForDefinition); 5000 } 5001 5002 if (isa<FunctionDecl>(D)) { 5003 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5004 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5005 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5006 IsForDefinition); 5007 } 5008 5009 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5010 } 5011 5012 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5013 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5014 llvm::Align Alignment) { 5015 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5016 llvm::GlobalVariable *OldGV = nullptr; 5017 5018 if (GV) { 5019 // Check if the variable has the right type. 5020 if (GV->getValueType() == Ty) 5021 return GV; 5022 5023 // Because C++ name mangling, the only way we can end up with an already 5024 // existing global with the same name is if it has been declared extern "C". 5025 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5026 OldGV = GV; 5027 } 5028 5029 // Create a new variable. 5030 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5031 Linkage, nullptr, Name); 5032 5033 if (OldGV) { 5034 // Replace occurrences of the old variable if needed. 5035 GV->takeName(OldGV); 5036 5037 if (!OldGV->use_empty()) { 5038 OldGV->replaceAllUsesWith(GV); 5039 } 5040 5041 OldGV->eraseFromParent(); 5042 } 5043 5044 if (supportsCOMDAT() && GV->isWeakForLinker() && 5045 !GV->hasAvailableExternallyLinkage()) 5046 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5047 5048 GV->setAlignment(Alignment); 5049 5050 return GV; 5051 } 5052 5053 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5054 /// given global variable. If Ty is non-null and if the global doesn't exist, 5055 /// then it will be created with the specified type instead of whatever the 5056 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5057 /// that an actual global with type Ty will be returned, not conversion of a 5058 /// variable with the same mangled name but some other type. 5059 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5060 llvm::Type *Ty, 5061 ForDefinition_t IsForDefinition) { 5062 assert(D->hasGlobalStorage() && "Not a global variable"); 5063 QualType ASTTy = D->getType(); 5064 if (!Ty) 5065 Ty = getTypes().ConvertTypeForMem(ASTTy); 5066 5067 StringRef MangledName = getMangledName(D); 5068 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5069 IsForDefinition); 5070 } 5071 5072 /// CreateRuntimeVariable - Create a new runtime global variable with the 5073 /// specified type and name. 5074 llvm::Constant * 5075 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5076 StringRef Name) { 5077 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5078 : LangAS::Default; 5079 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5080 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5081 return Ret; 5082 } 5083 5084 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5085 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5086 5087 StringRef MangledName = getMangledName(D); 5088 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5089 5090 // We already have a definition, not declaration, with the same mangled name. 5091 // Emitting of declaration is not required (and actually overwrites emitted 5092 // definition). 5093 if (GV && !GV->isDeclaration()) 5094 return; 5095 5096 // If we have not seen a reference to this variable yet, place it into the 5097 // deferred declarations table to be emitted if needed later. 5098 if (!MustBeEmitted(D) && !GV) { 5099 DeferredDecls[MangledName] = D; 5100 return; 5101 } 5102 5103 // The tentative definition is the only definition. 5104 EmitGlobalVarDefinition(D); 5105 } 5106 5107 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5108 EmitExternalVarDeclaration(D); 5109 } 5110 5111 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5112 return Context.toCharUnitsFromBits( 5113 getDataLayout().getTypeStoreSizeInBits(Ty)); 5114 } 5115 5116 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5117 if (LangOpts.OpenCL) { 5118 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5119 assert(AS == LangAS::opencl_global || 5120 AS == LangAS::opencl_global_device || 5121 AS == LangAS::opencl_global_host || 5122 AS == LangAS::opencl_constant || 5123 AS == LangAS::opencl_local || 5124 AS >= LangAS::FirstTargetAddressSpace); 5125 return AS; 5126 } 5127 5128 if (LangOpts.SYCLIsDevice && 5129 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5130 return LangAS::sycl_global; 5131 5132 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5133 if (D) { 5134 if (D->hasAttr<CUDAConstantAttr>()) 5135 return LangAS::cuda_constant; 5136 if (D->hasAttr<CUDASharedAttr>()) 5137 return LangAS::cuda_shared; 5138 if (D->hasAttr<CUDADeviceAttr>()) 5139 return LangAS::cuda_device; 5140 if (D->getType().isConstQualified()) 5141 return LangAS::cuda_constant; 5142 } 5143 return LangAS::cuda_device; 5144 } 5145 5146 if (LangOpts.OpenMP) { 5147 LangAS AS; 5148 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5149 return AS; 5150 } 5151 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5152 } 5153 5154 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5155 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5156 if (LangOpts.OpenCL) 5157 return LangAS::opencl_constant; 5158 if (LangOpts.SYCLIsDevice) 5159 return LangAS::sycl_global; 5160 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5161 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5162 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5163 // with OpVariable instructions with Generic storage class which is not 5164 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5165 // UniformConstant storage class is not viable as pointers to it may not be 5166 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5167 return LangAS::cuda_device; 5168 if (auto AS = getTarget().getConstantAddressSpace()) 5169 return *AS; 5170 return LangAS::Default; 5171 } 5172 5173 // In address space agnostic languages, string literals are in default address 5174 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5175 // emitted in constant address space in LLVM IR. To be consistent with other 5176 // parts of AST, string literal global variables in constant address space 5177 // need to be casted to default address space before being put into address 5178 // map and referenced by other part of CodeGen. 5179 // In OpenCL, string literals are in constant address space in AST, therefore 5180 // they should not be casted to default address space. 5181 static llvm::Constant * 5182 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5183 llvm::GlobalVariable *GV) { 5184 llvm::Constant *Cast = GV; 5185 if (!CGM.getLangOpts().OpenCL) { 5186 auto AS = CGM.GetGlobalConstantAddressSpace(); 5187 if (AS != LangAS::Default) 5188 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5189 CGM, GV, AS, LangAS::Default, 5190 llvm::PointerType::get( 5191 CGM.getLLVMContext(), 5192 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5193 } 5194 return Cast; 5195 } 5196 5197 template<typename SomeDecl> 5198 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5199 llvm::GlobalValue *GV) { 5200 if (!getLangOpts().CPlusPlus) 5201 return; 5202 5203 // Must have 'used' attribute, or else inline assembly can't rely on 5204 // the name existing. 5205 if (!D->template hasAttr<UsedAttr>()) 5206 return; 5207 5208 // Must have internal linkage and an ordinary name. 5209 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5210 return; 5211 5212 // Must be in an extern "C" context. Entities declared directly within 5213 // a record are not extern "C" even if the record is in such a context. 5214 const SomeDecl *First = D->getFirstDecl(); 5215 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5216 return; 5217 5218 // OK, this is an internal linkage entity inside an extern "C" linkage 5219 // specification. Make a note of that so we can give it the "expected" 5220 // mangled name if nothing else is using that name. 5221 std::pair<StaticExternCMap::iterator, bool> R = 5222 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5223 5224 // If we have multiple internal linkage entities with the same name 5225 // in extern "C" regions, none of them gets that name. 5226 if (!R.second) 5227 R.first->second = nullptr; 5228 } 5229 5230 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5231 if (!CGM.supportsCOMDAT()) 5232 return false; 5233 5234 if (D.hasAttr<SelectAnyAttr>()) 5235 return true; 5236 5237 GVALinkage Linkage; 5238 if (auto *VD = dyn_cast<VarDecl>(&D)) 5239 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5240 else 5241 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5242 5243 switch (Linkage) { 5244 case GVA_Internal: 5245 case GVA_AvailableExternally: 5246 case GVA_StrongExternal: 5247 return false; 5248 case GVA_DiscardableODR: 5249 case GVA_StrongODR: 5250 return true; 5251 } 5252 llvm_unreachable("No such linkage"); 5253 } 5254 5255 bool CodeGenModule::supportsCOMDAT() const { 5256 return getTriple().supportsCOMDAT(); 5257 } 5258 5259 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5260 llvm::GlobalObject &GO) { 5261 if (!shouldBeInCOMDAT(*this, D)) 5262 return; 5263 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5264 } 5265 5266 /// Pass IsTentative as true if you want to create a tentative definition. 5267 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5268 bool IsTentative) { 5269 // OpenCL global variables of sampler type are translated to function calls, 5270 // therefore no need to be translated. 5271 QualType ASTTy = D->getType(); 5272 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5273 return; 5274 5275 // If this is OpenMP device, check if it is legal to emit this global 5276 // normally. 5277 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5278 OpenMPRuntime->emitTargetGlobalVariable(D)) 5279 return; 5280 5281 llvm::TrackingVH<llvm::Constant> Init; 5282 bool NeedsGlobalCtor = false; 5283 // Whether the definition of the variable is available externally. 5284 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5285 // since this is the job for its original source. 5286 bool IsDefinitionAvailableExternally = 5287 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5288 bool NeedsGlobalDtor = 5289 !IsDefinitionAvailableExternally && 5290 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5291 5292 const VarDecl *InitDecl; 5293 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5294 5295 std::optional<ConstantEmitter> emitter; 5296 5297 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5298 // as part of their declaration." Sema has already checked for 5299 // error cases, so we just need to set Init to UndefValue. 5300 bool IsCUDASharedVar = 5301 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5302 // Shadows of initialized device-side global variables are also left 5303 // undefined. 5304 // Managed Variables should be initialized on both host side and device side. 5305 bool IsCUDAShadowVar = 5306 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5307 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5308 D->hasAttr<CUDASharedAttr>()); 5309 bool IsCUDADeviceShadowVar = 5310 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5311 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5312 D->getType()->isCUDADeviceBuiltinTextureType()); 5313 if (getLangOpts().CUDA && 5314 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5315 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5316 else if (D->hasAttr<LoaderUninitializedAttr>()) 5317 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5318 else if (!InitExpr) { 5319 // This is a tentative definition; tentative definitions are 5320 // implicitly initialized with { 0 }. 5321 // 5322 // Note that tentative definitions are only emitted at the end of 5323 // a translation unit, so they should never have incomplete 5324 // type. In addition, EmitTentativeDefinition makes sure that we 5325 // never attempt to emit a tentative definition if a real one 5326 // exists. A use may still exists, however, so we still may need 5327 // to do a RAUW. 5328 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5329 Init = EmitNullConstant(D->getType()); 5330 } else { 5331 initializedGlobalDecl = GlobalDecl(D); 5332 emitter.emplace(*this); 5333 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5334 if (!Initializer) { 5335 QualType T = InitExpr->getType(); 5336 if (D->getType()->isReferenceType()) 5337 T = D->getType(); 5338 5339 if (getLangOpts().CPlusPlus) { 5340 if (InitDecl->hasFlexibleArrayInit(getContext())) 5341 ErrorUnsupported(D, "flexible array initializer"); 5342 Init = EmitNullConstant(T); 5343 5344 if (!IsDefinitionAvailableExternally) 5345 NeedsGlobalCtor = true; 5346 } else { 5347 ErrorUnsupported(D, "static initializer"); 5348 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5349 } 5350 } else { 5351 Init = Initializer; 5352 // We don't need an initializer, so remove the entry for the delayed 5353 // initializer position (just in case this entry was delayed) if we 5354 // also don't need to register a destructor. 5355 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5356 DelayedCXXInitPosition.erase(D); 5357 5358 #ifndef NDEBUG 5359 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5360 InitDecl->getFlexibleArrayInitChars(getContext()); 5361 CharUnits CstSize = CharUnits::fromQuantity( 5362 getDataLayout().getTypeAllocSize(Init->getType())); 5363 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5364 #endif 5365 } 5366 } 5367 5368 llvm::Type* InitType = Init->getType(); 5369 llvm::Constant *Entry = 5370 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5371 5372 // Strip off pointer casts if we got them. 5373 Entry = Entry->stripPointerCasts(); 5374 5375 // Entry is now either a Function or GlobalVariable. 5376 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5377 5378 // We have a definition after a declaration with the wrong type. 5379 // We must make a new GlobalVariable* and update everything that used OldGV 5380 // (a declaration or tentative definition) with the new GlobalVariable* 5381 // (which will be a definition). 5382 // 5383 // This happens if there is a prototype for a global (e.g. 5384 // "extern int x[];") and then a definition of a different type (e.g. 5385 // "int x[10];"). This also happens when an initializer has a different type 5386 // from the type of the global (this happens with unions). 5387 if (!GV || GV->getValueType() != InitType || 5388 GV->getType()->getAddressSpace() != 5389 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5390 5391 // Move the old entry aside so that we'll create a new one. 5392 Entry->setName(StringRef()); 5393 5394 // Make a new global with the correct type, this is now guaranteed to work. 5395 GV = cast<llvm::GlobalVariable>( 5396 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5397 ->stripPointerCasts()); 5398 5399 // Replace all uses of the old global with the new global 5400 llvm::Constant *NewPtrForOldDecl = 5401 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5402 Entry->getType()); 5403 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5404 5405 // Erase the old global, since it is no longer used. 5406 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5407 } 5408 5409 MaybeHandleStaticInExternC(D, GV); 5410 5411 if (D->hasAttr<AnnotateAttr>()) 5412 AddGlobalAnnotations(D, GV); 5413 5414 // Set the llvm linkage type as appropriate. 5415 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5416 5417 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5418 // the device. [...]" 5419 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5420 // __device__, declares a variable that: [...] 5421 // Is accessible from all the threads within the grid and from the host 5422 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5423 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5424 if (LangOpts.CUDA) { 5425 if (LangOpts.CUDAIsDevice) { 5426 if (Linkage != llvm::GlobalValue::InternalLinkage && 5427 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5428 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5429 D->getType()->isCUDADeviceBuiltinTextureType())) 5430 GV->setExternallyInitialized(true); 5431 } else { 5432 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5433 } 5434 getCUDARuntime().handleVarRegistration(D, *GV); 5435 } 5436 5437 GV->setInitializer(Init); 5438 if (emitter) 5439 emitter->finalize(GV); 5440 5441 // If it is safe to mark the global 'constant', do so now. 5442 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5443 D->getType().isConstantStorage(getContext(), true, true)); 5444 5445 // If it is in a read-only section, mark it 'constant'. 5446 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5447 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5448 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5449 GV->setConstant(true); 5450 } 5451 5452 CharUnits AlignVal = getContext().getDeclAlign(D); 5453 // Check for alignment specifed in an 'omp allocate' directive. 5454 if (std::optional<CharUnits> AlignValFromAllocate = 5455 getOMPAllocateAlignment(D)) 5456 AlignVal = *AlignValFromAllocate; 5457 GV->setAlignment(AlignVal.getAsAlign()); 5458 5459 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5460 // function is only defined alongside the variable, not also alongside 5461 // callers. Normally, all accesses to a thread_local go through the 5462 // thread-wrapper in order to ensure initialization has occurred, underlying 5463 // variable will never be used other than the thread-wrapper, so it can be 5464 // converted to internal linkage. 5465 // 5466 // However, if the variable has the 'constinit' attribute, it _can_ be 5467 // referenced directly, without calling the thread-wrapper, so the linkage 5468 // must not be changed. 5469 // 5470 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5471 // weak or linkonce, the de-duplication semantics are important to preserve, 5472 // so we don't change the linkage. 5473 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5474 Linkage == llvm::GlobalValue::ExternalLinkage && 5475 Context.getTargetInfo().getTriple().isOSDarwin() && 5476 !D->hasAttr<ConstInitAttr>()) 5477 Linkage = llvm::GlobalValue::InternalLinkage; 5478 5479 GV->setLinkage(Linkage); 5480 if (D->hasAttr<DLLImportAttr>()) 5481 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5482 else if (D->hasAttr<DLLExportAttr>()) 5483 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5484 else 5485 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5486 5487 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5488 // common vars aren't constant even if declared const. 5489 GV->setConstant(false); 5490 // Tentative definition of global variables may be initialized with 5491 // non-zero null pointers. In this case they should have weak linkage 5492 // since common linkage must have zero initializer and must not have 5493 // explicit section therefore cannot have non-zero initial value. 5494 if (!GV->getInitializer()->isNullValue()) 5495 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5496 } 5497 5498 setNonAliasAttributes(D, GV); 5499 5500 if (D->getTLSKind() && !GV->isThreadLocal()) { 5501 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5502 CXXThreadLocals.push_back(D); 5503 setTLSMode(GV, *D); 5504 } 5505 5506 maybeSetTrivialComdat(*D, *GV); 5507 5508 // Emit the initializer function if necessary. 5509 if (NeedsGlobalCtor || NeedsGlobalDtor) 5510 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5511 5512 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5513 5514 // Emit global variable debug information. 5515 if (CGDebugInfo *DI = getModuleDebugInfo()) 5516 if (getCodeGenOpts().hasReducedDebugInfo()) 5517 DI->EmitGlobalVariable(GV, D); 5518 } 5519 5520 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5521 if (CGDebugInfo *DI = getModuleDebugInfo()) 5522 if (getCodeGenOpts().hasReducedDebugInfo()) { 5523 QualType ASTTy = D->getType(); 5524 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5525 llvm::Constant *GV = 5526 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5527 DI->EmitExternalVariable( 5528 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5529 } 5530 } 5531 5532 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5533 CodeGenModule &CGM, const VarDecl *D, 5534 bool NoCommon) { 5535 // Don't give variables common linkage if -fno-common was specified unless it 5536 // was overridden by a NoCommon attribute. 5537 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5538 return true; 5539 5540 // C11 6.9.2/2: 5541 // A declaration of an identifier for an object that has file scope without 5542 // an initializer, and without a storage-class specifier or with the 5543 // storage-class specifier static, constitutes a tentative definition. 5544 if (D->getInit() || D->hasExternalStorage()) 5545 return true; 5546 5547 // A variable cannot be both common and exist in a section. 5548 if (D->hasAttr<SectionAttr>()) 5549 return true; 5550 5551 // A variable cannot be both common and exist in a section. 5552 // We don't try to determine which is the right section in the front-end. 5553 // If no specialized section name is applicable, it will resort to default. 5554 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5555 D->hasAttr<PragmaClangDataSectionAttr>() || 5556 D->hasAttr<PragmaClangRelroSectionAttr>() || 5557 D->hasAttr<PragmaClangRodataSectionAttr>()) 5558 return true; 5559 5560 // Thread local vars aren't considered common linkage. 5561 if (D->getTLSKind()) 5562 return true; 5563 5564 // Tentative definitions marked with WeakImportAttr are true definitions. 5565 if (D->hasAttr<WeakImportAttr>()) 5566 return true; 5567 5568 // A variable cannot be both common and exist in a comdat. 5569 if (shouldBeInCOMDAT(CGM, *D)) 5570 return true; 5571 5572 // Declarations with a required alignment do not have common linkage in MSVC 5573 // mode. 5574 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5575 if (D->hasAttr<AlignedAttr>()) 5576 return true; 5577 QualType VarType = D->getType(); 5578 if (Context.isAlignmentRequired(VarType)) 5579 return true; 5580 5581 if (const auto *RT = VarType->getAs<RecordType>()) { 5582 const RecordDecl *RD = RT->getDecl(); 5583 for (const FieldDecl *FD : RD->fields()) { 5584 if (FD->isBitField()) 5585 continue; 5586 if (FD->hasAttr<AlignedAttr>()) 5587 return true; 5588 if (Context.isAlignmentRequired(FD->getType())) 5589 return true; 5590 } 5591 } 5592 } 5593 5594 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5595 // common symbols, so symbols with greater alignment requirements cannot be 5596 // common. 5597 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5598 // alignments for common symbols via the aligncomm directive, so this 5599 // restriction only applies to MSVC environments. 5600 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5601 Context.getTypeAlignIfKnown(D->getType()) > 5602 Context.toBits(CharUnits::fromQuantity(32))) 5603 return true; 5604 5605 return false; 5606 } 5607 5608 llvm::GlobalValue::LinkageTypes 5609 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5610 GVALinkage Linkage) { 5611 if (Linkage == GVA_Internal) 5612 return llvm::Function::InternalLinkage; 5613 5614 if (D->hasAttr<WeakAttr>()) 5615 return llvm::GlobalVariable::WeakAnyLinkage; 5616 5617 if (const auto *FD = D->getAsFunction()) 5618 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5619 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5620 5621 // We are guaranteed to have a strong definition somewhere else, 5622 // so we can use available_externally linkage. 5623 if (Linkage == GVA_AvailableExternally) 5624 return llvm::GlobalValue::AvailableExternallyLinkage; 5625 5626 // Note that Apple's kernel linker doesn't support symbol 5627 // coalescing, so we need to avoid linkonce and weak linkages there. 5628 // Normally, this means we just map to internal, but for explicit 5629 // instantiations we'll map to external. 5630 5631 // In C++, the compiler has to emit a definition in every translation unit 5632 // that references the function. We should use linkonce_odr because 5633 // a) if all references in this translation unit are optimized away, we 5634 // don't need to codegen it. b) if the function persists, it needs to be 5635 // merged with other definitions. c) C++ has the ODR, so we know the 5636 // definition is dependable. 5637 if (Linkage == GVA_DiscardableODR) 5638 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5639 : llvm::Function::InternalLinkage; 5640 5641 // An explicit instantiation of a template has weak linkage, since 5642 // explicit instantiations can occur in multiple translation units 5643 // and must all be equivalent. However, we are not allowed to 5644 // throw away these explicit instantiations. 5645 // 5646 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5647 // so say that CUDA templates are either external (for kernels) or internal. 5648 // This lets llvm perform aggressive inter-procedural optimizations. For 5649 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5650 // therefore we need to follow the normal linkage paradigm. 5651 if (Linkage == GVA_StrongODR) { 5652 if (getLangOpts().AppleKext) 5653 return llvm::Function::ExternalLinkage; 5654 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5655 !getLangOpts().GPURelocatableDeviceCode) 5656 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5657 : llvm::Function::InternalLinkage; 5658 return llvm::Function::WeakODRLinkage; 5659 } 5660 5661 // C++ doesn't have tentative definitions and thus cannot have common 5662 // linkage. 5663 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5664 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5665 CodeGenOpts.NoCommon)) 5666 return llvm::GlobalVariable::CommonLinkage; 5667 5668 // selectany symbols are externally visible, so use weak instead of 5669 // linkonce. MSVC optimizes away references to const selectany globals, so 5670 // all definitions should be the same and ODR linkage should be used. 5671 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5672 if (D->hasAttr<SelectAnyAttr>()) 5673 return llvm::GlobalVariable::WeakODRLinkage; 5674 5675 // Otherwise, we have strong external linkage. 5676 assert(Linkage == GVA_StrongExternal); 5677 return llvm::GlobalVariable::ExternalLinkage; 5678 } 5679 5680 llvm::GlobalValue::LinkageTypes 5681 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5682 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5683 return getLLVMLinkageForDeclarator(VD, Linkage); 5684 } 5685 5686 /// Replace the uses of a function that was declared with a non-proto type. 5687 /// We want to silently drop extra arguments from call sites 5688 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5689 llvm::Function *newFn) { 5690 // Fast path. 5691 if (old->use_empty()) return; 5692 5693 llvm::Type *newRetTy = newFn->getReturnType(); 5694 SmallVector<llvm::Value*, 4> newArgs; 5695 5696 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5697 ui != ue; ) { 5698 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5699 llvm::User *user = use->getUser(); 5700 5701 // Recognize and replace uses of bitcasts. Most calls to 5702 // unprototyped functions will use bitcasts. 5703 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5704 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5705 replaceUsesOfNonProtoConstant(bitcast, newFn); 5706 continue; 5707 } 5708 5709 // Recognize calls to the function. 5710 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5711 if (!callSite) continue; 5712 if (!callSite->isCallee(&*use)) 5713 continue; 5714 5715 // If the return types don't match exactly, then we can't 5716 // transform this call unless it's dead. 5717 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5718 continue; 5719 5720 // Get the call site's attribute list. 5721 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5722 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5723 5724 // If the function was passed too few arguments, don't transform. 5725 unsigned newNumArgs = newFn->arg_size(); 5726 if (callSite->arg_size() < newNumArgs) 5727 continue; 5728 5729 // If extra arguments were passed, we silently drop them. 5730 // If any of the types mismatch, we don't transform. 5731 unsigned argNo = 0; 5732 bool dontTransform = false; 5733 for (llvm::Argument &A : newFn->args()) { 5734 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5735 dontTransform = true; 5736 break; 5737 } 5738 5739 // Add any parameter attributes. 5740 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5741 argNo++; 5742 } 5743 if (dontTransform) 5744 continue; 5745 5746 // Okay, we can transform this. Create the new call instruction and copy 5747 // over the required information. 5748 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5749 5750 // Copy over any operand bundles. 5751 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5752 callSite->getOperandBundlesAsDefs(newBundles); 5753 5754 llvm::CallBase *newCall; 5755 if (isa<llvm::CallInst>(callSite)) { 5756 newCall = 5757 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5758 } else { 5759 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5760 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5761 oldInvoke->getUnwindDest(), newArgs, 5762 newBundles, "", callSite); 5763 } 5764 newArgs.clear(); // for the next iteration 5765 5766 if (!newCall->getType()->isVoidTy()) 5767 newCall->takeName(callSite); 5768 newCall->setAttributes( 5769 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5770 oldAttrs.getRetAttrs(), newArgAttrs)); 5771 newCall->setCallingConv(callSite->getCallingConv()); 5772 5773 // Finally, remove the old call, replacing any uses with the new one. 5774 if (!callSite->use_empty()) 5775 callSite->replaceAllUsesWith(newCall); 5776 5777 // Copy debug location attached to CI. 5778 if (callSite->getDebugLoc()) 5779 newCall->setDebugLoc(callSite->getDebugLoc()); 5780 5781 callSite->eraseFromParent(); 5782 } 5783 } 5784 5785 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5786 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5787 /// existing call uses of the old function in the module, this adjusts them to 5788 /// call the new function directly. 5789 /// 5790 /// This is not just a cleanup: the always_inline pass requires direct calls to 5791 /// functions to be able to inline them. If there is a bitcast in the way, it 5792 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5793 /// run at -O0. 5794 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5795 llvm::Function *NewFn) { 5796 // If we're redefining a global as a function, don't transform it. 5797 if (!isa<llvm::Function>(Old)) return; 5798 5799 replaceUsesOfNonProtoConstant(Old, NewFn); 5800 } 5801 5802 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5803 auto DK = VD->isThisDeclarationADefinition(); 5804 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5805 return; 5806 5807 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5808 // If we have a definition, this might be a deferred decl. If the 5809 // instantiation is explicit, make sure we emit it at the end. 5810 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5811 GetAddrOfGlobalVar(VD); 5812 5813 EmitTopLevelDecl(VD); 5814 } 5815 5816 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5817 llvm::GlobalValue *GV) { 5818 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5819 5820 // Compute the function info and LLVM type. 5821 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5822 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5823 5824 // Get or create the prototype for the function. 5825 if (!GV || (GV->getValueType() != Ty)) 5826 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5827 /*DontDefer=*/true, 5828 ForDefinition)); 5829 5830 // Already emitted. 5831 if (!GV->isDeclaration()) 5832 return; 5833 5834 // We need to set linkage and visibility on the function before 5835 // generating code for it because various parts of IR generation 5836 // want to propagate this information down (e.g. to local static 5837 // declarations). 5838 auto *Fn = cast<llvm::Function>(GV); 5839 setFunctionLinkage(GD, Fn); 5840 5841 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5842 setGVProperties(Fn, GD); 5843 5844 MaybeHandleStaticInExternC(D, Fn); 5845 5846 maybeSetTrivialComdat(*D, *Fn); 5847 5848 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5849 5850 setNonAliasAttributes(GD, Fn); 5851 SetLLVMFunctionAttributesForDefinition(D, Fn); 5852 5853 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5854 AddGlobalCtor(Fn, CA->getPriority()); 5855 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5856 AddGlobalDtor(Fn, DA->getPriority(), true); 5857 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5858 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5859 } 5860 5861 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5862 const auto *D = cast<ValueDecl>(GD.getDecl()); 5863 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5864 assert(AA && "Not an alias?"); 5865 5866 StringRef MangledName = getMangledName(GD); 5867 5868 if (AA->getAliasee() == MangledName) { 5869 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5870 return; 5871 } 5872 5873 // If there is a definition in the module, then it wins over the alias. 5874 // This is dubious, but allow it to be safe. Just ignore the alias. 5875 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5876 if (Entry && !Entry->isDeclaration()) 5877 return; 5878 5879 Aliases.push_back(GD); 5880 5881 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5882 5883 // Create a reference to the named value. This ensures that it is emitted 5884 // if a deferred decl. 5885 llvm::Constant *Aliasee; 5886 llvm::GlobalValue::LinkageTypes LT; 5887 if (isa<llvm::FunctionType>(DeclTy)) { 5888 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5889 /*ForVTable=*/false); 5890 LT = getFunctionLinkage(GD); 5891 } else { 5892 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5893 /*D=*/nullptr); 5894 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5895 LT = getLLVMLinkageVarDefinition(VD); 5896 else 5897 LT = getFunctionLinkage(GD); 5898 } 5899 5900 // Create the new alias itself, but don't set a name yet. 5901 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5902 auto *GA = 5903 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5904 5905 if (Entry) { 5906 if (GA->getAliasee() == Entry) { 5907 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5908 return; 5909 } 5910 5911 assert(Entry->isDeclaration()); 5912 5913 // If there is a declaration in the module, then we had an extern followed 5914 // by the alias, as in: 5915 // extern int test6(); 5916 // ... 5917 // int test6() __attribute__((alias("test7"))); 5918 // 5919 // Remove it and replace uses of it with the alias. 5920 GA->takeName(Entry); 5921 5922 Entry->replaceAllUsesWith(GA); 5923 Entry->eraseFromParent(); 5924 } else { 5925 GA->setName(MangledName); 5926 } 5927 5928 // Set attributes which are particular to an alias; this is a 5929 // specialization of the attributes which may be set on a global 5930 // variable/function. 5931 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5932 D->isWeakImported()) { 5933 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5934 } 5935 5936 if (const auto *VD = dyn_cast<VarDecl>(D)) 5937 if (VD->getTLSKind()) 5938 setTLSMode(GA, *VD); 5939 5940 SetCommonAttributes(GD, GA); 5941 5942 // Emit global alias debug information. 5943 if (isa<VarDecl>(D)) 5944 if (CGDebugInfo *DI = getModuleDebugInfo()) 5945 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5946 } 5947 5948 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5949 const auto *D = cast<ValueDecl>(GD.getDecl()); 5950 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5951 assert(IFA && "Not an ifunc?"); 5952 5953 StringRef MangledName = getMangledName(GD); 5954 5955 if (IFA->getResolver() == MangledName) { 5956 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5957 return; 5958 } 5959 5960 // Report an error if some definition overrides ifunc. 5961 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5962 if (Entry && !Entry->isDeclaration()) { 5963 GlobalDecl OtherGD; 5964 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5965 DiagnosedConflictingDefinitions.insert(GD).second) { 5966 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5967 << MangledName; 5968 Diags.Report(OtherGD.getDecl()->getLocation(), 5969 diag::note_previous_definition); 5970 } 5971 return; 5972 } 5973 5974 Aliases.push_back(GD); 5975 5976 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5977 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5978 llvm::Constant *Resolver = 5979 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5980 /*ForVTable=*/false); 5981 llvm::GlobalIFunc *GIF = 5982 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5983 "", Resolver, &getModule()); 5984 if (Entry) { 5985 if (GIF->getResolver() == Entry) { 5986 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5987 return; 5988 } 5989 assert(Entry->isDeclaration()); 5990 5991 // If there is a declaration in the module, then we had an extern followed 5992 // by the ifunc, as in: 5993 // extern int test(); 5994 // ... 5995 // int test() __attribute__((ifunc("resolver"))); 5996 // 5997 // Remove it and replace uses of it with the ifunc. 5998 GIF->takeName(Entry); 5999 6000 Entry->replaceAllUsesWith(GIF); 6001 Entry->eraseFromParent(); 6002 } else 6003 GIF->setName(MangledName); 6004 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 6005 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 6006 } 6007 SetCommonAttributes(GD, GIF); 6008 } 6009 6010 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6011 ArrayRef<llvm::Type*> Tys) { 6012 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6013 Tys); 6014 } 6015 6016 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6017 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6018 const StringLiteral *Literal, bool TargetIsLSB, 6019 bool &IsUTF16, unsigned &StringLength) { 6020 StringRef String = Literal->getString(); 6021 unsigned NumBytes = String.size(); 6022 6023 // Check for simple case. 6024 if (!Literal->containsNonAsciiOrNull()) { 6025 StringLength = NumBytes; 6026 return *Map.insert(std::make_pair(String, nullptr)).first; 6027 } 6028 6029 // Otherwise, convert the UTF8 literals into a string of shorts. 6030 IsUTF16 = true; 6031 6032 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6033 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6034 llvm::UTF16 *ToPtr = &ToBuf[0]; 6035 6036 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6037 ToPtr + NumBytes, llvm::strictConversion); 6038 6039 // ConvertUTF8toUTF16 returns the length in ToPtr. 6040 StringLength = ToPtr - &ToBuf[0]; 6041 6042 // Add an explicit null. 6043 *ToPtr = 0; 6044 return *Map.insert(std::make_pair( 6045 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6046 (StringLength + 1) * 2), 6047 nullptr)).first; 6048 } 6049 6050 ConstantAddress 6051 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6052 unsigned StringLength = 0; 6053 bool isUTF16 = false; 6054 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6055 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6056 getDataLayout().isLittleEndian(), isUTF16, 6057 StringLength); 6058 6059 if (auto *C = Entry.second) 6060 return ConstantAddress( 6061 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6062 6063 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6064 llvm::Constant *Zeros[] = { Zero, Zero }; 6065 6066 const ASTContext &Context = getContext(); 6067 const llvm::Triple &Triple = getTriple(); 6068 6069 const auto CFRuntime = getLangOpts().CFRuntime; 6070 const bool IsSwiftABI = 6071 static_cast<unsigned>(CFRuntime) >= 6072 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6073 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6074 6075 // If we don't already have it, get __CFConstantStringClassReference. 6076 if (!CFConstantStringClassRef) { 6077 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6078 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6079 Ty = llvm::ArrayType::get(Ty, 0); 6080 6081 switch (CFRuntime) { 6082 default: break; 6083 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6084 case LangOptions::CoreFoundationABI::Swift5_0: 6085 CFConstantStringClassName = 6086 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6087 : "$s10Foundation19_NSCFConstantStringCN"; 6088 Ty = IntPtrTy; 6089 break; 6090 case LangOptions::CoreFoundationABI::Swift4_2: 6091 CFConstantStringClassName = 6092 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6093 : "$S10Foundation19_NSCFConstantStringCN"; 6094 Ty = IntPtrTy; 6095 break; 6096 case LangOptions::CoreFoundationABI::Swift4_1: 6097 CFConstantStringClassName = 6098 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6099 : "__T010Foundation19_NSCFConstantStringCN"; 6100 Ty = IntPtrTy; 6101 break; 6102 } 6103 6104 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6105 6106 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6107 llvm::GlobalValue *GV = nullptr; 6108 6109 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6110 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6111 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6112 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6113 6114 const VarDecl *VD = nullptr; 6115 for (const auto *Result : DC->lookup(&II)) 6116 if ((VD = dyn_cast<VarDecl>(Result))) 6117 break; 6118 6119 if (Triple.isOSBinFormatELF()) { 6120 if (!VD) 6121 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6122 } else { 6123 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6124 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6125 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6126 else 6127 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6128 } 6129 6130 setDSOLocal(GV); 6131 } 6132 } 6133 6134 // Decay array -> ptr 6135 CFConstantStringClassRef = 6136 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6137 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6138 } 6139 6140 QualType CFTy = Context.getCFConstantStringType(); 6141 6142 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6143 6144 ConstantInitBuilder Builder(*this); 6145 auto Fields = Builder.beginStruct(STy); 6146 6147 // Class pointer. 6148 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6149 6150 // Flags. 6151 if (IsSwiftABI) { 6152 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6153 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6154 } else { 6155 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6156 } 6157 6158 // String pointer. 6159 llvm::Constant *C = nullptr; 6160 if (isUTF16) { 6161 auto Arr = llvm::ArrayRef( 6162 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6163 Entry.first().size() / 2); 6164 C = llvm::ConstantDataArray::get(VMContext, Arr); 6165 } else { 6166 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6167 } 6168 6169 // Note: -fwritable-strings doesn't make the backing store strings of 6170 // CFStrings writable. 6171 auto *GV = 6172 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6173 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6174 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6175 // Don't enforce the target's minimum global alignment, since the only use 6176 // of the string is via this class initializer. 6177 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6178 : Context.getTypeAlignInChars(Context.CharTy); 6179 GV->setAlignment(Align.getAsAlign()); 6180 6181 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6182 // Without it LLVM can merge the string with a non unnamed_addr one during 6183 // LTO. Doing that changes the section it ends in, which surprises ld64. 6184 if (Triple.isOSBinFormatMachO()) 6185 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6186 : "__TEXT,__cstring,cstring_literals"); 6187 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6188 // the static linker to adjust permissions to read-only later on. 6189 else if (Triple.isOSBinFormatELF()) 6190 GV->setSection(".rodata"); 6191 6192 // String. 6193 llvm::Constant *Str = 6194 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6195 6196 Fields.add(Str); 6197 6198 // String length. 6199 llvm::IntegerType *LengthTy = 6200 llvm::IntegerType::get(getModule().getContext(), 6201 Context.getTargetInfo().getLongWidth()); 6202 if (IsSwiftABI) { 6203 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6204 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6205 LengthTy = Int32Ty; 6206 else 6207 LengthTy = IntPtrTy; 6208 } 6209 Fields.addInt(LengthTy, StringLength); 6210 6211 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6212 // properly aligned on 32-bit platforms. 6213 CharUnits Alignment = 6214 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6215 6216 // The struct. 6217 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6218 /*isConstant=*/false, 6219 llvm::GlobalVariable::PrivateLinkage); 6220 GV->addAttribute("objc_arc_inert"); 6221 switch (Triple.getObjectFormat()) { 6222 case llvm::Triple::UnknownObjectFormat: 6223 llvm_unreachable("unknown file format"); 6224 case llvm::Triple::DXContainer: 6225 case llvm::Triple::GOFF: 6226 case llvm::Triple::SPIRV: 6227 case llvm::Triple::XCOFF: 6228 llvm_unreachable("unimplemented"); 6229 case llvm::Triple::COFF: 6230 case llvm::Triple::ELF: 6231 case llvm::Triple::Wasm: 6232 GV->setSection("cfstring"); 6233 break; 6234 case llvm::Triple::MachO: 6235 GV->setSection("__DATA,__cfstring"); 6236 break; 6237 } 6238 Entry.second = GV; 6239 6240 return ConstantAddress(GV, GV->getValueType(), Alignment); 6241 } 6242 6243 bool CodeGenModule::getExpressionLocationsEnabled() const { 6244 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6245 } 6246 6247 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6248 if (ObjCFastEnumerationStateType.isNull()) { 6249 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6250 D->startDefinition(); 6251 6252 QualType FieldTypes[] = { 6253 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6254 Context.getPointerType(Context.UnsignedLongTy), 6255 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6256 nullptr, ArraySizeModifier::Normal, 0)}; 6257 6258 for (size_t i = 0; i < 4; ++i) { 6259 FieldDecl *Field = FieldDecl::Create(Context, 6260 D, 6261 SourceLocation(), 6262 SourceLocation(), nullptr, 6263 FieldTypes[i], /*TInfo=*/nullptr, 6264 /*BitWidth=*/nullptr, 6265 /*Mutable=*/false, 6266 ICIS_NoInit); 6267 Field->setAccess(AS_public); 6268 D->addDecl(Field); 6269 } 6270 6271 D->completeDefinition(); 6272 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6273 } 6274 6275 return ObjCFastEnumerationStateType; 6276 } 6277 6278 llvm::Constant * 6279 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6280 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6281 6282 // Don't emit it as the address of the string, emit the string data itself 6283 // as an inline array. 6284 if (E->getCharByteWidth() == 1) { 6285 SmallString<64> Str(E->getString()); 6286 6287 // Resize the string to the right size, which is indicated by its type. 6288 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6289 assert(CAT && "String literal not of constant array type!"); 6290 Str.resize(CAT->getSize().getZExtValue()); 6291 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6292 } 6293 6294 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6295 llvm::Type *ElemTy = AType->getElementType(); 6296 unsigned NumElements = AType->getNumElements(); 6297 6298 // Wide strings have either 2-byte or 4-byte elements. 6299 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6300 SmallVector<uint16_t, 32> Elements; 6301 Elements.reserve(NumElements); 6302 6303 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6304 Elements.push_back(E->getCodeUnit(i)); 6305 Elements.resize(NumElements); 6306 return llvm::ConstantDataArray::get(VMContext, Elements); 6307 } 6308 6309 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6310 SmallVector<uint32_t, 32> Elements; 6311 Elements.reserve(NumElements); 6312 6313 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6314 Elements.push_back(E->getCodeUnit(i)); 6315 Elements.resize(NumElements); 6316 return llvm::ConstantDataArray::get(VMContext, Elements); 6317 } 6318 6319 static llvm::GlobalVariable * 6320 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6321 CodeGenModule &CGM, StringRef GlobalName, 6322 CharUnits Alignment) { 6323 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6324 CGM.GetGlobalConstantAddressSpace()); 6325 6326 llvm::Module &M = CGM.getModule(); 6327 // Create a global variable for this string 6328 auto *GV = new llvm::GlobalVariable( 6329 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6330 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6331 GV->setAlignment(Alignment.getAsAlign()); 6332 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6333 if (GV->isWeakForLinker()) { 6334 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6335 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6336 } 6337 CGM.setDSOLocal(GV); 6338 6339 return GV; 6340 } 6341 6342 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6343 /// constant array for the given string literal. 6344 ConstantAddress 6345 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6346 StringRef Name) { 6347 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6348 6349 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6350 llvm::GlobalVariable **Entry = nullptr; 6351 if (!LangOpts.WritableStrings) { 6352 Entry = &ConstantStringMap[C]; 6353 if (auto GV = *Entry) { 6354 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6355 GV->setAlignment(Alignment.getAsAlign()); 6356 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6357 GV->getValueType(), Alignment); 6358 } 6359 } 6360 6361 SmallString<256> MangledNameBuffer; 6362 StringRef GlobalVariableName; 6363 llvm::GlobalValue::LinkageTypes LT; 6364 6365 // Mangle the string literal if that's how the ABI merges duplicate strings. 6366 // Don't do it if they are writable, since we don't want writes in one TU to 6367 // affect strings in another. 6368 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6369 !LangOpts.WritableStrings) { 6370 llvm::raw_svector_ostream Out(MangledNameBuffer); 6371 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6372 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6373 GlobalVariableName = MangledNameBuffer; 6374 } else { 6375 LT = llvm::GlobalValue::PrivateLinkage; 6376 GlobalVariableName = Name; 6377 } 6378 6379 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6380 6381 CGDebugInfo *DI = getModuleDebugInfo(); 6382 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6383 DI->AddStringLiteralDebugInfo(GV, S); 6384 6385 if (Entry) 6386 *Entry = GV; 6387 6388 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6389 6390 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6391 GV->getValueType(), Alignment); 6392 } 6393 6394 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6395 /// array for the given ObjCEncodeExpr node. 6396 ConstantAddress 6397 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6398 std::string Str; 6399 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6400 6401 return GetAddrOfConstantCString(Str); 6402 } 6403 6404 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6405 /// the literal and a terminating '\0' character. 6406 /// The result has pointer to array type. 6407 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6408 const std::string &Str, const char *GlobalName) { 6409 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6410 CharUnits Alignment = 6411 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6412 6413 llvm::Constant *C = 6414 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6415 6416 // Don't share any string literals if strings aren't constant. 6417 llvm::GlobalVariable **Entry = nullptr; 6418 if (!LangOpts.WritableStrings) { 6419 Entry = &ConstantStringMap[C]; 6420 if (auto GV = *Entry) { 6421 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6422 GV->setAlignment(Alignment.getAsAlign()); 6423 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6424 GV->getValueType(), Alignment); 6425 } 6426 } 6427 6428 // Get the default prefix if a name wasn't specified. 6429 if (!GlobalName) 6430 GlobalName = ".str"; 6431 // Create a global variable for this. 6432 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6433 GlobalName, Alignment); 6434 if (Entry) 6435 *Entry = GV; 6436 6437 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6438 GV->getValueType(), Alignment); 6439 } 6440 6441 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6442 const MaterializeTemporaryExpr *E, const Expr *Init) { 6443 assert((E->getStorageDuration() == SD_Static || 6444 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6445 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6446 6447 // If we're not materializing a subobject of the temporary, keep the 6448 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6449 QualType MaterializedType = Init->getType(); 6450 if (Init == E->getSubExpr()) 6451 MaterializedType = E->getType(); 6452 6453 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6454 6455 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6456 if (!InsertResult.second) { 6457 // We've seen this before: either we already created it or we're in the 6458 // process of doing so. 6459 if (!InsertResult.first->second) { 6460 // We recursively re-entered this function, probably during emission of 6461 // the initializer. Create a placeholder. We'll clean this up in the 6462 // outer call, at the end of this function. 6463 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6464 InsertResult.first->second = new llvm::GlobalVariable( 6465 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6466 nullptr); 6467 } 6468 return ConstantAddress(InsertResult.first->second, 6469 llvm::cast<llvm::GlobalVariable>( 6470 InsertResult.first->second->stripPointerCasts()) 6471 ->getValueType(), 6472 Align); 6473 } 6474 6475 // FIXME: If an externally-visible declaration extends multiple temporaries, 6476 // we need to give each temporary the same name in every translation unit (and 6477 // we also need to make the temporaries externally-visible). 6478 SmallString<256> Name; 6479 llvm::raw_svector_ostream Out(Name); 6480 getCXXABI().getMangleContext().mangleReferenceTemporary( 6481 VD, E->getManglingNumber(), Out); 6482 6483 APValue *Value = nullptr; 6484 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6485 // If the initializer of the extending declaration is a constant 6486 // initializer, we should have a cached constant initializer for this 6487 // temporary. Note that this might have a different value from the value 6488 // computed by evaluating the initializer if the surrounding constant 6489 // expression modifies the temporary. 6490 Value = E->getOrCreateValue(false); 6491 } 6492 6493 // Try evaluating it now, it might have a constant initializer. 6494 Expr::EvalResult EvalResult; 6495 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6496 !EvalResult.hasSideEffects()) 6497 Value = &EvalResult.Val; 6498 6499 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6500 6501 std::optional<ConstantEmitter> emitter; 6502 llvm::Constant *InitialValue = nullptr; 6503 bool Constant = false; 6504 llvm::Type *Type; 6505 if (Value) { 6506 // The temporary has a constant initializer, use it. 6507 emitter.emplace(*this); 6508 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6509 MaterializedType); 6510 Constant = 6511 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6512 /*ExcludeDtor*/ false); 6513 Type = InitialValue->getType(); 6514 } else { 6515 // No initializer, the initialization will be provided when we 6516 // initialize the declaration which performed lifetime extension. 6517 Type = getTypes().ConvertTypeForMem(MaterializedType); 6518 } 6519 6520 // Create a global variable for this lifetime-extended temporary. 6521 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6522 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6523 const VarDecl *InitVD; 6524 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6525 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6526 // Temporaries defined inside a class get linkonce_odr linkage because the 6527 // class can be defined in multiple translation units. 6528 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6529 } else { 6530 // There is no need for this temporary to have external linkage if the 6531 // VarDecl has external linkage. 6532 Linkage = llvm::GlobalVariable::InternalLinkage; 6533 } 6534 } 6535 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6536 auto *GV = new llvm::GlobalVariable( 6537 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6538 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6539 if (emitter) emitter->finalize(GV); 6540 // Don't assign dllimport or dllexport to local linkage globals. 6541 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6542 setGVProperties(GV, VD); 6543 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6544 // The reference temporary should never be dllexport. 6545 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6546 } 6547 GV->setAlignment(Align.getAsAlign()); 6548 if (supportsCOMDAT() && GV->isWeakForLinker()) 6549 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6550 if (VD->getTLSKind()) 6551 setTLSMode(GV, *VD); 6552 llvm::Constant *CV = GV; 6553 if (AddrSpace != LangAS::Default) 6554 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6555 *this, GV, AddrSpace, LangAS::Default, 6556 llvm::PointerType::get( 6557 getLLVMContext(), 6558 getContext().getTargetAddressSpace(LangAS::Default))); 6559 6560 // Update the map with the new temporary. If we created a placeholder above, 6561 // replace it with the new global now. 6562 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6563 if (Entry) { 6564 Entry->replaceAllUsesWith(CV); 6565 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6566 } 6567 Entry = CV; 6568 6569 return ConstantAddress(CV, Type, Align); 6570 } 6571 6572 /// EmitObjCPropertyImplementations - Emit information for synthesized 6573 /// properties for an implementation. 6574 void CodeGenModule::EmitObjCPropertyImplementations(const 6575 ObjCImplementationDecl *D) { 6576 for (const auto *PID : D->property_impls()) { 6577 // Dynamic is just for type-checking. 6578 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6579 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6580 6581 // Determine which methods need to be implemented, some may have 6582 // been overridden. Note that ::isPropertyAccessor is not the method 6583 // we want, that just indicates if the decl came from a 6584 // property. What we want to know is if the method is defined in 6585 // this implementation. 6586 auto *Getter = PID->getGetterMethodDecl(); 6587 if (!Getter || Getter->isSynthesizedAccessorStub()) 6588 CodeGenFunction(*this).GenerateObjCGetter( 6589 const_cast<ObjCImplementationDecl *>(D), PID); 6590 auto *Setter = PID->getSetterMethodDecl(); 6591 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6592 CodeGenFunction(*this).GenerateObjCSetter( 6593 const_cast<ObjCImplementationDecl *>(D), PID); 6594 } 6595 } 6596 } 6597 6598 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6599 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6600 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6601 ivar; ivar = ivar->getNextIvar()) 6602 if (ivar->getType().isDestructedType()) 6603 return true; 6604 6605 return false; 6606 } 6607 6608 static bool AllTrivialInitializers(CodeGenModule &CGM, 6609 ObjCImplementationDecl *D) { 6610 CodeGenFunction CGF(CGM); 6611 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6612 E = D->init_end(); B != E; ++B) { 6613 CXXCtorInitializer *CtorInitExp = *B; 6614 Expr *Init = CtorInitExp->getInit(); 6615 if (!CGF.isTrivialInitializer(Init)) 6616 return false; 6617 } 6618 return true; 6619 } 6620 6621 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6622 /// for an implementation. 6623 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6624 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6625 if (needsDestructMethod(D)) { 6626 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6627 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6628 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6629 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6630 getContext().VoidTy, nullptr, D, 6631 /*isInstance=*/true, /*isVariadic=*/false, 6632 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6633 /*isImplicitlyDeclared=*/true, 6634 /*isDefined=*/false, ObjCImplementationControl::Required); 6635 D->addInstanceMethod(DTORMethod); 6636 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6637 D->setHasDestructors(true); 6638 } 6639 6640 // If the implementation doesn't have any ivar initializers, we don't need 6641 // a .cxx_construct. 6642 if (D->getNumIvarInitializers() == 0 || 6643 AllTrivialInitializers(*this, D)) 6644 return; 6645 6646 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6647 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6648 // The constructor returns 'self'. 6649 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6650 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6651 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6652 /*isVariadic=*/false, 6653 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6654 /*isImplicitlyDeclared=*/true, 6655 /*isDefined=*/false, ObjCImplementationControl::Required); 6656 D->addInstanceMethod(CTORMethod); 6657 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6658 D->setHasNonZeroConstructors(true); 6659 } 6660 6661 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6662 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6663 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6664 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6665 ErrorUnsupported(LSD, "linkage spec"); 6666 return; 6667 } 6668 6669 EmitDeclContext(LSD); 6670 } 6671 6672 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6673 // Device code should not be at top level. 6674 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6675 return; 6676 6677 std::unique_ptr<CodeGenFunction> &CurCGF = 6678 GlobalTopLevelStmtBlockInFlight.first; 6679 6680 // We emitted a top-level stmt but after it there is initialization. 6681 // Stop squashing the top-level stmts into a single function. 6682 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6683 CurCGF->FinishFunction(D->getEndLoc()); 6684 CurCGF = nullptr; 6685 } 6686 6687 if (!CurCGF) { 6688 // void __stmts__N(void) 6689 // FIXME: Ask the ABI name mangler to pick a name. 6690 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6691 FunctionArgList Args; 6692 QualType RetTy = getContext().VoidTy; 6693 const CGFunctionInfo &FnInfo = 6694 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6695 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6696 llvm::Function *Fn = llvm::Function::Create( 6697 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6698 6699 CurCGF.reset(new CodeGenFunction(*this)); 6700 GlobalTopLevelStmtBlockInFlight.second = D; 6701 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6702 D->getBeginLoc(), D->getBeginLoc()); 6703 CXXGlobalInits.push_back(Fn); 6704 } 6705 6706 CurCGF->EmitStmt(D->getStmt()); 6707 } 6708 6709 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6710 for (auto *I : DC->decls()) { 6711 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6712 // are themselves considered "top-level", so EmitTopLevelDecl on an 6713 // ObjCImplDecl does not recursively visit them. We need to do that in 6714 // case they're nested inside another construct (LinkageSpecDecl / 6715 // ExportDecl) that does stop them from being considered "top-level". 6716 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6717 for (auto *M : OID->methods()) 6718 EmitTopLevelDecl(M); 6719 } 6720 6721 EmitTopLevelDecl(I); 6722 } 6723 } 6724 6725 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6726 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6727 // Ignore dependent declarations. 6728 if (D->isTemplated()) 6729 return; 6730 6731 // Consteval function shouldn't be emitted. 6732 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6733 return; 6734 6735 switch (D->getKind()) { 6736 case Decl::CXXConversion: 6737 case Decl::CXXMethod: 6738 case Decl::Function: 6739 EmitGlobal(cast<FunctionDecl>(D)); 6740 // Always provide some coverage mapping 6741 // even for the functions that aren't emitted. 6742 AddDeferredUnusedCoverageMapping(D); 6743 break; 6744 6745 case Decl::CXXDeductionGuide: 6746 // Function-like, but does not result in code emission. 6747 break; 6748 6749 case Decl::Var: 6750 case Decl::Decomposition: 6751 case Decl::VarTemplateSpecialization: 6752 EmitGlobal(cast<VarDecl>(D)); 6753 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6754 for (auto *B : DD->bindings()) 6755 if (auto *HD = B->getHoldingVar()) 6756 EmitGlobal(HD); 6757 break; 6758 6759 // Indirect fields from global anonymous structs and unions can be 6760 // ignored; only the actual variable requires IR gen support. 6761 case Decl::IndirectField: 6762 break; 6763 6764 // C++ Decls 6765 case Decl::Namespace: 6766 EmitDeclContext(cast<NamespaceDecl>(D)); 6767 break; 6768 case Decl::ClassTemplateSpecialization: { 6769 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6770 if (CGDebugInfo *DI = getModuleDebugInfo()) 6771 if (Spec->getSpecializationKind() == 6772 TSK_ExplicitInstantiationDefinition && 6773 Spec->hasDefinition()) 6774 DI->completeTemplateDefinition(*Spec); 6775 } [[fallthrough]]; 6776 case Decl::CXXRecord: { 6777 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6778 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6779 if (CRD->hasDefinition()) 6780 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6781 if (auto *ES = D->getASTContext().getExternalSource()) 6782 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6783 DI->completeUnusedClass(*CRD); 6784 } 6785 // Emit any static data members, they may be definitions. 6786 for (auto *I : CRD->decls()) 6787 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6788 EmitTopLevelDecl(I); 6789 break; 6790 } 6791 // No code generation needed. 6792 case Decl::UsingShadow: 6793 case Decl::ClassTemplate: 6794 case Decl::VarTemplate: 6795 case Decl::Concept: 6796 case Decl::VarTemplatePartialSpecialization: 6797 case Decl::FunctionTemplate: 6798 case Decl::TypeAliasTemplate: 6799 case Decl::Block: 6800 case Decl::Empty: 6801 case Decl::Binding: 6802 break; 6803 case Decl::Using: // using X; [C++] 6804 if (CGDebugInfo *DI = getModuleDebugInfo()) 6805 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6806 break; 6807 case Decl::UsingEnum: // using enum X; [C++] 6808 if (CGDebugInfo *DI = getModuleDebugInfo()) 6809 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6810 break; 6811 case Decl::NamespaceAlias: 6812 if (CGDebugInfo *DI = getModuleDebugInfo()) 6813 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6814 break; 6815 case Decl::UsingDirective: // using namespace X; [C++] 6816 if (CGDebugInfo *DI = getModuleDebugInfo()) 6817 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6818 break; 6819 case Decl::CXXConstructor: 6820 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6821 break; 6822 case Decl::CXXDestructor: 6823 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6824 break; 6825 6826 case Decl::StaticAssert: 6827 // Nothing to do. 6828 break; 6829 6830 // Objective-C Decls 6831 6832 // Forward declarations, no (immediate) code generation. 6833 case Decl::ObjCInterface: 6834 case Decl::ObjCCategory: 6835 break; 6836 6837 case Decl::ObjCProtocol: { 6838 auto *Proto = cast<ObjCProtocolDecl>(D); 6839 if (Proto->isThisDeclarationADefinition()) 6840 ObjCRuntime->GenerateProtocol(Proto); 6841 break; 6842 } 6843 6844 case Decl::ObjCCategoryImpl: 6845 // Categories have properties but don't support synthesize so we 6846 // can ignore them here. 6847 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6848 break; 6849 6850 case Decl::ObjCImplementation: { 6851 auto *OMD = cast<ObjCImplementationDecl>(D); 6852 EmitObjCPropertyImplementations(OMD); 6853 EmitObjCIvarInitializations(OMD); 6854 ObjCRuntime->GenerateClass(OMD); 6855 // Emit global variable debug information. 6856 if (CGDebugInfo *DI = getModuleDebugInfo()) 6857 if (getCodeGenOpts().hasReducedDebugInfo()) 6858 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6859 OMD->getClassInterface()), OMD->getLocation()); 6860 break; 6861 } 6862 case Decl::ObjCMethod: { 6863 auto *OMD = cast<ObjCMethodDecl>(D); 6864 // If this is not a prototype, emit the body. 6865 if (OMD->getBody()) 6866 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6867 break; 6868 } 6869 case Decl::ObjCCompatibleAlias: 6870 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6871 break; 6872 6873 case Decl::PragmaComment: { 6874 const auto *PCD = cast<PragmaCommentDecl>(D); 6875 switch (PCD->getCommentKind()) { 6876 case PCK_Unknown: 6877 llvm_unreachable("unexpected pragma comment kind"); 6878 case PCK_Linker: 6879 AppendLinkerOptions(PCD->getArg()); 6880 break; 6881 case PCK_Lib: 6882 AddDependentLib(PCD->getArg()); 6883 break; 6884 case PCK_Compiler: 6885 case PCK_ExeStr: 6886 case PCK_User: 6887 break; // We ignore all of these. 6888 } 6889 break; 6890 } 6891 6892 case Decl::PragmaDetectMismatch: { 6893 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6894 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6895 break; 6896 } 6897 6898 case Decl::LinkageSpec: 6899 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6900 break; 6901 6902 case Decl::FileScopeAsm: { 6903 // File-scope asm is ignored during device-side CUDA compilation. 6904 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6905 break; 6906 // File-scope asm is ignored during device-side OpenMP compilation. 6907 if (LangOpts.OpenMPIsTargetDevice) 6908 break; 6909 // File-scope asm is ignored during device-side SYCL compilation. 6910 if (LangOpts.SYCLIsDevice) 6911 break; 6912 auto *AD = cast<FileScopeAsmDecl>(D); 6913 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6914 break; 6915 } 6916 6917 case Decl::TopLevelStmt: 6918 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6919 break; 6920 6921 case Decl::Import: { 6922 auto *Import = cast<ImportDecl>(D); 6923 6924 // If we've already imported this module, we're done. 6925 if (!ImportedModules.insert(Import->getImportedModule())) 6926 break; 6927 6928 // Emit debug information for direct imports. 6929 if (!Import->getImportedOwningModule()) { 6930 if (CGDebugInfo *DI = getModuleDebugInfo()) 6931 DI->EmitImportDecl(*Import); 6932 } 6933 6934 // For C++ standard modules we are done - we will call the module 6935 // initializer for imported modules, and that will likewise call those for 6936 // any imports it has. 6937 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6938 !Import->getImportedOwningModule()->isModuleMapModule()) 6939 break; 6940 6941 // For clang C++ module map modules the initializers for sub-modules are 6942 // emitted here. 6943 6944 // Find all of the submodules and emit the module initializers. 6945 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6946 SmallVector<clang::Module *, 16> Stack; 6947 Visited.insert(Import->getImportedModule()); 6948 Stack.push_back(Import->getImportedModule()); 6949 6950 while (!Stack.empty()) { 6951 clang::Module *Mod = Stack.pop_back_val(); 6952 if (!EmittedModuleInitializers.insert(Mod).second) 6953 continue; 6954 6955 for (auto *D : Context.getModuleInitializers(Mod)) 6956 EmitTopLevelDecl(D); 6957 6958 // Visit the submodules of this module. 6959 for (auto *Submodule : Mod->submodules()) { 6960 // Skip explicit children; they need to be explicitly imported to emit 6961 // the initializers. 6962 if (Submodule->IsExplicit) 6963 continue; 6964 6965 if (Visited.insert(Submodule).second) 6966 Stack.push_back(Submodule); 6967 } 6968 } 6969 break; 6970 } 6971 6972 case Decl::Export: 6973 EmitDeclContext(cast<ExportDecl>(D)); 6974 break; 6975 6976 case Decl::OMPThreadPrivate: 6977 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6978 break; 6979 6980 case Decl::OMPAllocate: 6981 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6982 break; 6983 6984 case Decl::OMPDeclareReduction: 6985 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6986 break; 6987 6988 case Decl::OMPDeclareMapper: 6989 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6990 break; 6991 6992 case Decl::OMPRequires: 6993 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6994 break; 6995 6996 case Decl::Typedef: 6997 case Decl::TypeAlias: // using foo = bar; [C++11] 6998 if (CGDebugInfo *DI = getModuleDebugInfo()) 6999 DI->EmitAndRetainType( 7000 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7001 break; 7002 7003 case Decl::Record: 7004 if (CGDebugInfo *DI = getModuleDebugInfo()) 7005 if (cast<RecordDecl>(D)->getDefinition()) 7006 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7007 break; 7008 7009 case Decl::Enum: 7010 if (CGDebugInfo *DI = getModuleDebugInfo()) 7011 if (cast<EnumDecl>(D)->getDefinition()) 7012 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7013 break; 7014 7015 case Decl::HLSLBuffer: 7016 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7017 break; 7018 7019 default: 7020 // Make sure we handled everything we should, every other kind is a 7021 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7022 // function. Need to recode Decl::Kind to do that easily. 7023 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7024 break; 7025 } 7026 } 7027 7028 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7029 // Do we need to generate coverage mapping? 7030 if (!CodeGenOpts.CoverageMapping) 7031 return; 7032 switch (D->getKind()) { 7033 case Decl::CXXConversion: 7034 case Decl::CXXMethod: 7035 case Decl::Function: 7036 case Decl::ObjCMethod: 7037 case Decl::CXXConstructor: 7038 case Decl::CXXDestructor: { 7039 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7040 break; 7041 SourceManager &SM = getContext().getSourceManager(); 7042 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7043 break; 7044 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7045 break; 7046 } 7047 default: 7048 break; 7049 }; 7050 } 7051 7052 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7053 // Do we need to generate coverage mapping? 7054 if (!CodeGenOpts.CoverageMapping) 7055 return; 7056 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7057 if (Fn->isTemplateInstantiation()) 7058 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7059 } 7060 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7061 } 7062 7063 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7064 // We call takeVector() here to avoid use-after-free. 7065 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7066 // we deserialize function bodies to emit coverage info for them, and that 7067 // deserializes more declarations. How should we handle that case? 7068 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7069 if (!Entry.second) 7070 continue; 7071 const Decl *D = Entry.first; 7072 switch (D->getKind()) { 7073 case Decl::CXXConversion: 7074 case Decl::CXXMethod: 7075 case Decl::Function: 7076 case Decl::ObjCMethod: { 7077 CodeGenPGO PGO(*this); 7078 GlobalDecl GD(cast<FunctionDecl>(D)); 7079 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7080 getFunctionLinkage(GD)); 7081 break; 7082 } 7083 case Decl::CXXConstructor: { 7084 CodeGenPGO PGO(*this); 7085 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7086 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7087 getFunctionLinkage(GD)); 7088 break; 7089 } 7090 case Decl::CXXDestructor: { 7091 CodeGenPGO PGO(*this); 7092 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7093 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7094 getFunctionLinkage(GD)); 7095 break; 7096 } 7097 default: 7098 break; 7099 }; 7100 } 7101 } 7102 7103 void CodeGenModule::EmitMainVoidAlias() { 7104 // In order to transition away from "__original_main" gracefully, emit an 7105 // alias for "main" in the no-argument case so that libc can detect when 7106 // new-style no-argument main is in used. 7107 if (llvm::Function *F = getModule().getFunction("main")) { 7108 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7109 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7110 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7111 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7112 } 7113 } 7114 } 7115 7116 /// Turns the given pointer into a constant. 7117 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7118 const void *Ptr) { 7119 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7120 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7121 return llvm::ConstantInt::get(i64, PtrInt); 7122 } 7123 7124 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7125 llvm::NamedMDNode *&GlobalMetadata, 7126 GlobalDecl D, 7127 llvm::GlobalValue *Addr) { 7128 if (!GlobalMetadata) 7129 GlobalMetadata = 7130 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7131 7132 // TODO: should we report variant information for ctors/dtors? 7133 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7134 llvm::ConstantAsMetadata::get(GetPointerConstant( 7135 CGM.getLLVMContext(), D.getDecl()))}; 7136 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7137 } 7138 7139 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7140 llvm::GlobalValue *CppFunc) { 7141 // Store the list of ifuncs we need to replace uses in. 7142 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7143 // List of ConstantExprs that we should be able to delete when we're done 7144 // here. 7145 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7146 7147 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7148 if (Elem == CppFunc) 7149 return false; 7150 7151 // First make sure that all users of this are ifuncs (or ifuncs via a 7152 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7153 // later. 7154 for (llvm::User *User : Elem->users()) { 7155 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7156 // ifunc directly. In any other case, just give up, as we don't know what we 7157 // could break by changing those. 7158 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7159 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7160 return false; 7161 7162 for (llvm::User *CEUser : ConstExpr->users()) { 7163 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7164 IFuncs.push_back(IFunc); 7165 } else { 7166 return false; 7167 } 7168 } 7169 CEs.push_back(ConstExpr); 7170 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7171 IFuncs.push_back(IFunc); 7172 } else { 7173 // This user is one we don't know how to handle, so fail redirection. This 7174 // will result in an ifunc retaining a resolver name that will ultimately 7175 // fail to be resolved to a defined function. 7176 return false; 7177 } 7178 } 7179 7180 // Now we know this is a valid case where we can do this alias replacement, we 7181 // need to remove all of the references to Elem (and the bitcasts!) so we can 7182 // delete it. 7183 for (llvm::GlobalIFunc *IFunc : IFuncs) 7184 IFunc->setResolver(nullptr); 7185 for (llvm::ConstantExpr *ConstExpr : CEs) 7186 ConstExpr->destroyConstant(); 7187 7188 // We should now be out of uses for the 'old' version of this function, so we 7189 // can erase it as well. 7190 Elem->eraseFromParent(); 7191 7192 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7193 // The type of the resolver is always just a function-type that returns the 7194 // type of the IFunc, so create that here. If the type of the actual 7195 // resolver doesn't match, it just gets bitcast to the right thing. 7196 auto *ResolverTy = 7197 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7198 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7199 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7200 IFunc->setResolver(Resolver); 7201 } 7202 return true; 7203 } 7204 7205 /// For each function which is declared within an extern "C" region and marked 7206 /// as 'used', but has internal linkage, create an alias from the unmangled 7207 /// name to the mangled name if possible. People expect to be able to refer 7208 /// to such functions with an unmangled name from inline assembly within the 7209 /// same translation unit. 7210 void CodeGenModule::EmitStaticExternCAliases() { 7211 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7212 return; 7213 for (auto &I : StaticExternCValues) { 7214 IdentifierInfo *Name = I.first; 7215 llvm::GlobalValue *Val = I.second; 7216 7217 // If Val is null, that implies there were multiple declarations that each 7218 // had a claim to the unmangled name. In this case, generation of the alias 7219 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7220 if (!Val) 7221 break; 7222 7223 llvm::GlobalValue *ExistingElem = 7224 getModule().getNamedValue(Name->getName()); 7225 7226 // If there is either not something already by this name, or we were able to 7227 // replace all uses from IFuncs, create the alias. 7228 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7229 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7230 } 7231 } 7232 7233 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7234 GlobalDecl &Result) const { 7235 auto Res = Manglings.find(MangledName); 7236 if (Res == Manglings.end()) 7237 return false; 7238 Result = Res->getValue(); 7239 return true; 7240 } 7241 7242 /// Emits metadata nodes associating all the global values in the 7243 /// current module with the Decls they came from. This is useful for 7244 /// projects using IR gen as a subroutine. 7245 /// 7246 /// Since there's currently no way to associate an MDNode directly 7247 /// with an llvm::GlobalValue, we create a global named metadata 7248 /// with the name 'clang.global.decl.ptrs'. 7249 void CodeGenModule::EmitDeclMetadata() { 7250 llvm::NamedMDNode *GlobalMetadata = nullptr; 7251 7252 for (auto &I : MangledDeclNames) { 7253 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7254 // Some mangled names don't necessarily have an associated GlobalValue 7255 // in this module, e.g. if we mangled it for DebugInfo. 7256 if (Addr) 7257 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7258 } 7259 } 7260 7261 /// Emits metadata nodes for all the local variables in the current 7262 /// function. 7263 void CodeGenFunction::EmitDeclMetadata() { 7264 if (LocalDeclMap.empty()) return; 7265 7266 llvm::LLVMContext &Context = getLLVMContext(); 7267 7268 // Find the unique metadata ID for this name. 7269 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7270 7271 llvm::NamedMDNode *GlobalMetadata = nullptr; 7272 7273 for (auto &I : LocalDeclMap) { 7274 const Decl *D = I.first; 7275 llvm::Value *Addr = I.second.getPointer(); 7276 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7277 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7278 Alloca->setMetadata( 7279 DeclPtrKind, llvm::MDNode::get( 7280 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7281 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7282 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7283 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7284 } 7285 } 7286 } 7287 7288 void CodeGenModule::EmitVersionIdentMetadata() { 7289 llvm::NamedMDNode *IdentMetadata = 7290 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7291 std::string Version = getClangFullVersion(); 7292 llvm::LLVMContext &Ctx = TheModule.getContext(); 7293 7294 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7295 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7296 } 7297 7298 void CodeGenModule::EmitCommandLineMetadata() { 7299 llvm::NamedMDNode *CommandLineMetadata = 7300 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7301 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7302 llvm::LLVMContext &Ctx = TheModule.getContext(); 7303 7304 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7305 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7306 } 7307 7308 void CodeGenModule::EmitCoverageFile() { 7309 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7310 if (!CUNode) 7311 return; 7312 7313 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7314 llvm::LLVMContext &Ctx = TheModule.getContext(); 7315 auto *CoverageDataFile = 7316 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7317 auto *CoverageNotesFile = 7318 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7319 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7320 llvm::MDNode *CU = CUNode->getOperand(i); 7321 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7322 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7323 } 7324 } 7325 7326 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7327 bool ForEH) { 7328 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7329 // FIXME: should we even be calling this method if RTTI is disabled 7330 // and it's not for EH? 7331 if (!shouldEmitRTTI(ForEH)) 7332 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7333 7334 if (ForEH && Ty->isObjCObjectPointerType() && 7335 LangOpts.ObjCRuntime.isGNUFamily()) 7336 return ObjCRuntime->GetEHType(Ty); 7337 7338 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7339 } 7340 7341 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7342 // Do not emit threadprivates in simd-only mode. 7343 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7344 return; 7345 for (auto RefExpr : D->varlists()) { 7346 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7347 bool PerformInit = 7348 VD->getAnyInitializer() && 7349 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7350 /*ForRef=*/false); 7351 7352 Address Addr(GetAddrOfGlobalVar(VD), 7353 getTypes().ConvertTypeForMem(VD->getType()), 7354 getContext().getDeclAlign(VD)); 7355 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7356 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7357 CXXGlobalInits.push_back(InitFunction); 7358 } 7359 } 7360 7361 llvm::Metadata * 7362 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7363 StringRef Suffix) { 7364 if (auto *FnType = T->getAs<FunctionProtoType>()) 7365 T = getContext().getFunctionType( 7366 FnType->getReturnType(), FnType->getParamTypes(), 7367 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7368 7369 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7370 if (InternalId) 7371 return InternalId; 7372 7373 if (isExternallyVisible(T->getLinkage())) { 7374 std::string OutName; 7375 llvm::raw_string_ostream Out(OutName); 7376 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7377 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7378 7379 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7380 Out << ".normalized"; 7381 7382 Out << Suffix; 7383 7384 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7385 } else { 7386 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7387 llvm::ArrayRef<llvm::Metadata *>()); 7388 } 7389 7390 return InternalId; 7391 } 7392 7393 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7394 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7395 } 7396 7397 llvm::Metadata * 7398 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7399 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7400 } 7401 7402 // Generalize pointer types to a void pointer with the qualifiers of the 7403 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7404 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7405 // 'void *'. 7406 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7407 if (!Ty->isPointerType()) 7408 return Ty; 7409 7410 return Ctx.getPointerType( 7411 QualType(Ctx.VoidTy).withCVRQualifiers( 7412 Ty->getPointeeType().getCVRQualifiers())); 7413 } 7414 7415 // Apply type generalization to a FunctionType's return and argument types 7416 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7417 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7418 SmallVector<QualType, 8> GeneralizedParams; 7419 for (auto &Param : FnType->param_types()) 7420 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7421 7422 return Ctx.getFunctionType( 7423 GeneralizeType(Ctx, FnType->getReturnType()), 7424 GeneralizedParams, FnType->getExtProtoInfo()); 7425 } 7426 7427 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7428 return Ctx.getFunctionNoProtoType( 7429 GeneralizeType(Ctx, FnType->getReturnType())); 7430 7431 llvm_unreachable("Encountered unknown FunctionType"); 7432 } 7433 7434 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7435 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7436 GeneralizedMetadataIdMap, ".generalized"); 7437 } 7438 7439 /// Returns whether this module needs the "all-vtables" type identifier. 7440 bool CodeGenModule::NeedAllVtablesTypeId() const { 7441 // Returns true if at least one of vtable-based CFI checkers is enabled and 7442 // is not in the trapping mode. 7443 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7444 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7445 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7446 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7447 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7448 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7449 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7450 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7451 } 7452 7453 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7454 CharUnits Offset, 7455 const CXXRecordDecl *RD) { 7456 llvm::Metadata *MD = 7457 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7458 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7459 7460 if (CodeGenOpts.SanitizeCfiCrossDso) 7461 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7462 VTable->addTypeMetadata(Offset.getQuantity(), 7463 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7464 7465 if (NeedAllVtablesTypeId()) { 7466 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7467 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7468 } 7469 } 7470 7471 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7472 if (!SanStats) 7473 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7474 7475 return *SanStats; 7476 } 7477 7478 llvm::Value * 7479 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7480 CodeGenFunction &CGF) { 7481 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7482 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7483 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7484 auto *Call = CGF.EmitRuntimeCall( 7485 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7486 return Call; 7487 } 7488 7489 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7490 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7491 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7492 /* forPointeeType= */ true); 7493 } 7494 7495 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7496 LValueBaseInfo *BaseInfo, 7497 TBAAAccessInfo *TBAAInfo, 7498 bool forPointeeType) { 7499 if (TBAAInfo) 7500 *TBAAInfo = getTBAAAccessInfo(T); 7501 7502 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7503 // that doesn't return the information we need to compute BaseInfo. 7504 7505 // Honor alignment typedef attributes even on incomplete types. 7506 // We also honor them straight for C++ class types, even as pointees; 7507 // there's an expressivity gap here. 7508 if (auto TT = T->getAs<TypedefType>()) { 7509 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7510 if (BaseInfo) 7511 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7512 return getContext().toCharUnitsFromBits(Align); 7513 } 7514 } 7515 7516 bool AlignForArray = T->isArrayType(); 7517 7518 // Analyze the base element type, so we don't get confused by incomplete 7519 // array types. 7520 T = getContext().getBaseElementType(T); 7521 7522 if (T->isIncompleteType()) { 7523 // We could try to replicate the logic from 7524 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7525 // type is incomplete, so it's impossible to test. We could try to reuse 7526 // getTypeAlignIfKnown, but that doesn't return the information we need 7527 // to set BaseInfo. So just ignore the possibility that the alignment is 7528 // greater than one. 7529 if (BaseInfo) 7530 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7531 return CharUnits::One(); 7532 } 7533 7534 if (BaseInfo) 7535 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7536 7537 CharUnits Alignment; 7538 const CXXRecordDecl *RD; 7539 if (T.getQualifiers().hasUnaligned()) { 7540 Alignment = CharUnits::One(); 7541 } else if (forPointeeType && !AlignForArray && 7542 (RD = T->getAsCXXRecordDecl())) { 7543 // For C++ class pointees, we don't know whether we're pointing at a 7544 // base or a complete object, so we generally need to use the 7545 // non-virtual alignment. 7546 Alignment = getClassPointerAlignment(RD); 7547 } else { 7548 Alignment = getContext().getTypeAlignInChars(T); 7549 } 7550 7551 // Cap to the global maximum type alignment unless the alignment 7552 // was somehow explicit on the type. 7553 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7554 if (Alignment.getQuantity() > MaxAlign && 7555 !getContext().isAlignmentRequired(T)) 7556 Alignment = CharUnits::fromQuantity(MaxAlign); 7557 } 7558 return Alignment; 7559 } 7560 7561 bool CodeGenModule::stopAutoInit() { 7562 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7563 if (StopAfter) { 7564 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7565 // used 7566 if (NumAutoVarInit >= StopAfter) { 7567 return true; 7568 } 7569 if (!NumAutoVarInit) { 7570 unsigned DiagID = getDiags().getCustomDiagID( 7571 DiagnosticsEngine::Warning, 7572 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7573 "number of times ftrivial-auto-var-init=%1 gets applied."); 7574 getDiags().Report(DiagID) 7575 << StopAfter 7576 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7577 LangOptions::TrivialAutoVarInitKind::Zero 7578 ? "zero" 7579 : "pattern"); 7580 } 7581 ++NumAutoVarInit; 7582 } 7583 return false; 7584 } 7585 7586 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7587 const Decl *D) const { 7588 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7589 // postfix beginning with '.' since the symbol name can be demangled. 7590 if (LangOpts.HIP) 7591 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7592 else 7593 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7594 7595 // If the CUID is not specified we try to generate a unique postfix. 7596 if (getLangOpts().CUID.empty()) { 7597 SourceManager &SM = getContext().getSourceManager(); 7598 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7599 assert(PLoc.isValid() && "Source location is expected to be valid."); 7600 7601 // Get the hash of the user defined macros. 7602 llvm::MD5 Hash; 7603 llvm::MD5::MD5Result Result; 7604 for (const auto &Arg : PreprocessorOpts.Macros) 7605 Hash.update(Arg.first); 7606 Hash.final(Result); 7607 7608 // Get the UniqueID for the file containing the decl. 7609 llvm::sys::fs::UniqueID ID; 7610 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7611 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7612 assert(PLoc.isValid() && "Source location is expected to be valid."); 7613 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7614 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7615 << PLoc.getFilename() << EC.message(); 7616 } 7617 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7618 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7619 } else { 7620 OS << getContext().getCUIDHash(); 7621 } 7622 } 7623 7624 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7625 assert(DeferredDeclsToEmit.empty() && 7626 "Should have emitted all decls deferred to emit."); 7627 assert(NewBuilder->DeferredDecls.empty() && 7628 "Newly created module should not have deferred decls"); 7629 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7630 assert(EmittedDeferredDecls.empty() && 7631 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7632 7633 assert(NewBuilder->DeferredVTables.empty() && 7634 "Newly created module should not have deferred vtables"); 7635 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7636 7637 assert(NewBuilder->MangledDeclNames.empty() && 7638 "Newly created module should not have mangled decl names"); 7639 assert(NewBuilder->Manglings.empty() && 7640 "Newly created module should not have manglings"); 7641 NewBuilder->Manglings = std::move(Manglings); 7642 7643 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7644 7645 NewBuilder->TBAA = std::move(TBAA); 7646 7647 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7648 } 7649