xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision d9052fccdf6533dcd6723739e44cd3bad5cc480b)
1  //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-module state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenModule.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCall.h"
18  #include "CGDebugInfo.h"
19  #include "CGObjCRuntime.h"
20  #include "CGOpenCLRuntime.h"
21  #include "CGOpenMPRuntime.h"
22  #include "CGOpenMPRuntimeNVPTX.h"
23  #include "CodeGenFunction.h"
24  #include "CodeGenPGO.h"
25  #include "ConstantEmitter.h"
26  #include "CoverageMappingGen.h"
27  #include "TargetInfo.h"
28  #include "clang/AST/ASTContext.h"
29  #include "clang/AST/CharUnits.h"
30  #include "clang/AST/DeclCXX.h"
31  #include "clang/AST/DeclObjC.h"
32  #include "clang/AST/DeclTemplate.h"
33  #include "clang/AST/Mangle.h"
34  #include "clang/AST/RecordLayout.h"
35  #include "clang/AST/RecursiveASTVisitor.h"
36  #include "clang/AST/StmtVisitor.h"
37  #include "clang/Basic/Builtins.h"
38  #include "clang/Basic/CharInfo.h"
39  #include "clang/Basic/CodeGenOptions.h"
40  #include "clang/Basic/Diagnostic.h"
41  #include "clang/Basic/FileManager.h"
42  #include "clang/Basic/Module.h"
43  #include "clang/Basic/SourceManager.h"
44  #include "clang/Basic/TargetInfo.h"
45  #include "clang/Basic/Version.h"
46  #include "clang/CodeGen/ConstantInitBuilder.h"
47  #include "clang/Frontend/FrontendDiagnostic.h"
48  #include "llvm/ADT/StringSwitch.h"
49  #include "llvm/ADT/Triple.h"
50  #include "llvm/Analysis/TargetLibraryInfo.h"
51  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52  #include "llvm/IR/CallingConv.h"
53  #include "llvm/IR/DataLayout.h"
54  #include "llvm/IR/Intrinsics.h"
55  #include "llvm/IR/LLVMContext.h"
56  #include "llvm/IR/Module.h"
57  #include "llvm/IR/ProfileSummary.h"
58  #include "llvm/ProfileData/InstrProfReader.h"
59  #include "llvm/Support/CodeGen.h"
60  #include "llvm/Support/CommandLine.h"
61  #include "llvm/Support/ConvertUTF.h"
62  #include "llvm/Support/ErrorHandling.h"
63  #include "llvm/Support/MD5.h"
64  #include "llvm/Support/TimeProfiler.h"
65  
66  using namespace clang;
67  using namespace CodeGen;
68  
69  static llvm::cl::opt<bool> LimitedCoverage(
70      "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
71      llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
72      llvm::cl::init(false));
73  
74  static const char AnnotationSection[] = "llvm.metadata";
75  
76  static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
77    switch (CGM.getTarget().getCXXABI().getKind()) {
78    case TargetCXXABI::Fuchsia:
79    case TargetCXXABI::GenericAArch64:
80    case TargetCXXABI::GenericARM:
81    case TargetCXXABI::iOS:
82    case TargetCXXABI::iOS64:
83    case TargetCXXABI::WatchOS:
84    case TargetCXXABI::GenericMIPS:
85    case TargetCXXABI::GenericItanium:
86    case TargetCXXABI::WebAssembly:
87    case TargetCXXABI::XL:
88      return CreateItaniumCXXABI(CGM);
89    case TargetCXXABI::Microsoft:
90      return CreateMicrosoftCXXABI(CGM);
91    }
92  
93    llvm_unreachable("invalid C++ ABI kind");
94  }
95  
96  CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
97                               const PreprocessorOptions &PPO,
98                               const CodeGenOptions &CGO, llvm::Module &M,
99                               DiagnosticsEngine &diags,
100                               CoverageSourceInfo *CoverageInfo)
101      : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
102        PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
103        Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
104        VMContext(M.getContext()), Types(*this), VTables(*this),
105        SanitizerMD(new SanitizerMetadata(*this)) {
106  
107    // Initialize the type cache.
108    llvm::LLVMContext &LLVMContext = M.getContext();
109    VoidTy = llvm::Type::getVoidTy(LLVMContext);
110    Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
111    Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
112    Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
113    Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
114    HalfTy = llvm::Type::getHalfTy(LLVMContext);
115    BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
116    FloatTy = llvm::Type::getFloatTy(LLVMContext);
117    DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
118    PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
119    PointerAlignInBytes =
120      C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
121    SizeSizeInBytes =
122      C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
123    IntAlignInBytes =
124      C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
125    IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
126    IntPtrTy = llvm::IntegerType::get(LLVMContext,
127      C.getTargetInfo().getMaxPointerWidth());
128    Int8PtrTy = Int8Ty->getPointerTo(0);
129    Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
130    AllocaInt8PtrTy = Int8Ty->getPointerTo(
131        M.getDataLayout().getAllocaAddrSpace());
132    ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
133  
134    RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
135  
136    if (LangOpts.ObjC)
137      createObjCRuntime();
138    if (LangOpts.OpenCL)
139      createOpenCLRuntime();
140    if (LangOpts.OpenMP)
141      createOpenMPRuntime();
142    if (LangOpts.CUDA)
143      createCUDARuntime();
144  
145    // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
146    if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
147        (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
148      TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
149                                 getCXXABI().getMangleContext()));
150  
151    // If debug info or coverage generation is enabled, create the CGDebugInfo
152    // object.
153    if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
154        CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
155      DebugInfo.reset(new CGDebugInfo(*this));
156  
157    Block.GlobalUniqueCount = 0;
158  
159    if (C.getLangOpts().ObjC)
160      ObjCData.reset(new ObjCEntrypoints());
161  
162    if (CodeGenOpts.hasProfileClangUse()) {
163      auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
164          CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
165      if (auto E = ReaderOrErr.takeError()) {
166        unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
167                                                "Could not read profile %0: %1");
168        llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
169          getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
170                                    << EI.message();
171        });
172      } else
173        PGOReader = std::move(ReaderOrErr.get());
174    }
175  
176    // If coverage mapping generation is enabled, create the
177    // CoverageMappingModuleGen object.
178    if (CodeGenOpts.CoverageMapping)
179      CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
180  }
181  
182  CodeGenModule::~CodeGenModule() {}
183  
184  void CodeGenModule::createObjCRuntime() {
185    // This is just isGNUFamily(), but we want to force implementors of
186    // new ABIs to decide how best to do this.
187    switch (LangOpts.ObjCRuntime.getKind()) {
188    case ObjCRuntime::GNUstep:
189    case ObjCRuntime::GCC:
190    case ObjCRuntime::ObjFW:
191      ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
192      return;
193  
194    case ObjCRuntime::FragileMacOSX:
195    case ObjCRuntime::MacOSX:
196    case ObjCRuntime::iOS:
197    case ObjCRuntime::WatchOS:
198      ObjCRuntime.reset(CreateMacObjCRuntime(*this));
199      return;
200    }
201    llvm_unreachable("bad runtime kind");
202  }
203  
204  void CodeGenModule::createOpenCLRuntime() {
205    OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
206  }
207  
208  void CodeGenModule::createOpenMPRuntime() {
209    // Select a specialized code generation class based on the target, if any.
210    // If it does not exist use the default implementation.
211    switch (getTriple().getArch()) {
212    case llvm::Triple::nvptx:
213    case llvm::Triple::nvptx64:
214      assert(getLangOpts().OpenMPIsDevice &&
215             "OpenMP NVPTX is only prepared to deal with device code.");
216      OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
217      break;
218    default:
219      if (LangOpts.OpenMPSimd)
220        OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
221      else
222        OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
223      break;
224    }
225  }
226  
227  void CodeGenModule::createCUDARuntime() {
228    CUDARuntime.reset(CreateNVCUDARuntime(*this));
229  }
230  
231  void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
232    Replacements[Name] = C;
233  }
234  
235  void CodeGenModule::applyReplacements() {
236    for (auto &I : Replacements) {
237      StringRef MangledName = I.first();
238      llvm::Constant *Replacement = I.second;
239      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
240      if (!Entry)
241        continue;
242      auto *OldF = cast<llvm::Function>(Entry);
243      auto *NewF = dyn_cast<llvm::Function>(Replacement);
244      if (!NewF) {
245        if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
246          NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
247        } else {
248          auto *CE = cast<llvm::ConstantExpr>(Replacement);
249          assert(CE->getOpcode() == llvm::Instruction::BitCast ||
250                 CE->getOpcode() == llvm::Instruction::GetElementPtr);
251          NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
252        }
253      }
254  
255      // Replace old with new, but keep the old order.
256      OldF->replaceAllUsesWith(Replacement);
257      if (NewF) {
258        NewF->removeFromParent();
259        OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
260                                                         NewF);
261      }
262      OldF->eraseFromParent();
263    }
264  }
265  
266  void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
267    GlobalValReplacements.push_back(std::make_pair(GV, C));
268  }
269  
270  void CodeGenModule::applyGlobalValReplacements() {
271    for (auto &I : GlobalValReplacements) {
272      llvm::GlobalValue *GV = I.first;
273      llvm::Constant *C = I.second;
274  
275      GV->replaceAllUsesWith(C);
276      GV->eraseFromParent();
277    }
278  }
279  
280  // This is only used in aliases that we created and we know they have a
281  // linear structure.
282  static const llvm::GlobalObject *getAliasedGlobal(
283      const llvm::GlobalIndirectSymbol &GIS) {
284    llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
285    const llvm::Constant *C = &GIS;
286    for (;;) {
287      C = C->stripPointerCasts();
288      if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
289        return GO;
290      // stripPointerCasts will not walk over weak aliases.
291      auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
292      if (!GIS2)
293        return nullptr;
294      if (!Visited.insert(GIS2).second)
295        return nullptr;
296      C = GIS2->getIndirectSymbol();
297    }
298  }
299  
300  void CodeGenModule::checkAliases() {
301    // Check if the constructed aliases are well formed. It is really unfortunate
302    // that we have to do this in CodeGen, but we only construct mangled names
303    // and aliases during codegen.
304    bool Error = false;
305    DiagnosticsEngine &Diags = getDiags();
306    for (const GlobalDecl &GD : Aliases) {
307      const auto *D = cast<ValueDecl>(GD.getDecl());
308      SourceLocation Location;
309      bool IsIFunc = D->hasAttr<IFuncAttr>();
310      if (const Attr *A = D->getDefiningAttr())
311        Location = A->getLocation();
312      else
313        llvm_unreachable("Not an alias or ifunc?");
314      StringRef MangledName = getMangledName(GD);
315      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
316      auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
317      const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
318      if (!GV) {
319        Error = true;
320        Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
321      } else if (GV->isDeclaration()) {
322        Error = true;
323        Diags.Report(Location, diag::err_alias_to_undefined)
324            << IsIFunc << IsIFunc;
325      } else if (IsIFunc) {
326        // Check resolver function type.
327        llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
328            GV->getType()->getPointerElementType());
329        assert(FTy);
330        if (!FTy->getReturnType()->isPointerTy())
331          Diags.Report(Location, diag::err_ifunc_resolver_return);
332      }
333  
334      llvm::Constant *Aliasee = Alias->getIndirectSymbol();
335      llvm::GlobalValue *AliaseeGV;
336      if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
337        AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
338      else
339        AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
340  
341      if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
342        StringRef AliasSection = SA->getName();
343        if (AliasSection != AliaseeGV->getSection())
344          Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
345              << AliasSection << IsIFunc << IsIFunc;
346      }
347  
348      // We have to handle alias to weak aliases in here. LLVM itself disallows
349      // this since the object semantics would not match the IL one. For
350      // compatibility with gcc we implement it by just pointing the alias
351      // to its aliasee's aliasee. We also warn, since the user is probably
352      // expecting the link to be weak.
353      if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
354        if (GA->isInterposable()) {
355          Diags.Report(Location, diag::warn_alias_to_weak_alias)
356              << GV->getName() << GA->getName() << IsIFunc;
357          Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
358              GA->getIndirectSymbol(), Alias->getType());
359          Alias->setIndirectSymbol(Aliasee);
360        }
361      }
362    }
363    if (!Error)
364      return;
365  
366    for (const GlobalDecl &GD : Aliases) {
367      StringRef MangledName = getMangledName(GD);
368      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
369      auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
370      Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
371      Alias->eraseFromParent();
372    }
373  }
374  
375  void CodeGenModule::clear() {
376    DeferredDeclsToEmit.clear();
377    if (OpenMPRuntime)
378      OpenMPRuntime->clear();
379  }
380  
381  void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
382                                         StringRef MainFile) {
383    if (!hasDiagnostics())
384      return;
385    if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
386      if (MainFile.empty())
387        MainFile = "<stdin>";
388      Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
389    } else {
390      if (Mismatched > 0)
391        Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
392  
393      if (Missing > 0)
394        Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
395    }
396  }
397  
398  void CodeGenModule::Release() {
399    EmitDeferred();
400    EmitVTablesOpportunistically();
401    applyGlobalValReplacements();
402    applyReplacements();
403    checkAliases();
404    emitMultiVersionFunctions();
405    EmitCXXGlobalInitFunc();
406    EmitCXXGlobalCleanUpFunc();
407    registerGlobalDtorsWithAtExit();
408    EmitCXXThreadLocalInitFunc();
409    if (ObjCRuntime)
410      if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
411        AddGlobalCtor(ObjCInitFunction);
412    if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
413        CUDARuntime) {
414      if (llvm::Function *CudaCtorFunction =
415              CUDARuntime->makeModuleCtorFunction())
416        AddGlobalCtor(CudaCtorFunction);
417    }
418    if (OpenMPRuntime) {
419      if (llvm::Function *OpenMPRequiresDirectiveRegFun =
420              OpenMPRuntime->emitRequiresDirectiveRegFun()) {
421        AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
422      }
423      OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
424      OpenMPRuntime->clear();
425    }
426    if (PGOReader) {
427      getModule().setProfileSummary(
428          PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
429          llvm::ProfileSummary::PSK_Instr);
430      if (PGOStats.hasDiagnostics())
431        PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
432    }
433    EmitCtorList(GlobalCtors, "llvm.global_ctors");
434    EmitCtorList(GlobalDtors, "llvm.global_dtors");
435    EmitGlobalAnnotations();
436    EmitStaticExternCAliases();
437    EmitDeferredUnusedCoverageMappings();
438    if (CoverageMapping)
439      CoverageMapping->emit();
440    if (CodeGenOpts.SanitizeCfiCrossDso) {
441      CodeGenFunction(*this).EmitCfiCheckFail();
442      CodeGenFunction(*this).EmitCfiCheckStub();
443    }
444    emitAtAvailableLinkGuard();
445    if (Context.getTargetInfo().getTriple().isWasm() &&
446        !Context.getTargetInfo().getTriple().isOSEmscripten()) {
447      EmitMainVoidAlias();
448    }
449    emitLLVMUsed();
450    if (SanStats)
451      SanStats->finish();
452  
453    if (CodeGenOpts.Autolink &&
454        (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
455      EmitModuleLinkOptions();
456    }
457  
458    // On ELF we pass the dependent library specifiers directly to the linker
459    // without manipulating them. This is in contrast to other platforms where
460    // they are mapped to a specific linker option by the compiler. This
461    // difference is a result of the greater variety of ELF linkers and the fact
462    // that ELF linkers tend to handle libraries in a more complicated fashion
463    // than on other platforms. This forces us to defer handling the dependent
464    // libs to the linker.
465    //
466    // CUDA/HIP device and host libraries are different. Currently there is no
467    // way to differentiate dependent libraries for host or device. Existing
468    // usage of #pragma comment(lib, *) is intended for host libraries on
469    // Windows. Therefore emit llvm.dependent-libraries only for host.
470    if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
471      auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
472      for (auto *MD : ELFDependentLibraries)
473        NMD->addOperand(MD);
474    }
475  
476    // Record mregparm value now so it is visible through rest of codegen.
477    if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
478      getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
479                                CodeGenOpts.NumRegisterParameters);
480  
481    if (CodeGenOpts.DwarfVersion) {
482      getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
483                                CodeGenOpts.DwarfVersion);
484    }
485  
486    if (Context.getLangOpts().SemanticInterposition)
487      // Require various optimization to respect semantic interposition.
488      getModule().setSemanticInterposition(1);
489    else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
490      // Allow dso_local on applicable targets.
491      getModule().setSemanticInterposition(0);
492  
493    if (CodeGenOpts.EmitCodeView) {
494      // Indicate that we want CodeView in the metadata.
495      getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
496    }
497    if (CodeGenOpts.CodeViewGHash) {
498      getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
499    }
500    if (CodeGenOpts.ControlFlowGuard) {
501      // Function ID tables and checks for Control Flow Guard (cfguard=2).
502      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
503    } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
504      // Function ID tables for Control Flow Guard (cfguard=1).
505      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
506    }
507    if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
508      // We don't support LTO with 2 with different StrictVTablePointers
509      // FIXME: we could support it by stripping all the information introduced
510      // by StrictVTablePointers.
511  
512      getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
513  
514      llvm::Metadata *Ops[2] = {
515                llvm::MDString::get(VMContext, "StrictVTablePointers"),
516                llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
517                    llvm::Type::getInt32Ty(VMContext), 1))};
518  
519      getModule().addModuleFlag(llvm::Module::Require,
520                                "StrictVTablePointersRequirement",
521                                llvm::MDNode::get(VMContext, Ops));
522    }
523    if (getModuleDebugInfo())
524      // We support a single version in the linked module. The LLVM
525      // parser will drop debug info with a different version number
526      // (and warn about it, too).
527      getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
528                                llvm::DEBUG_METADATA_VERSION);
529  
530    // We need to record the widths of enums and wchar_t, so that we can generate
531    // the correct build attributes in the ARM backend. wchar_size is also used by
532    // TargetLibraryInfo.
533    uint64_t WCharWidth =
534        Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
535    getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
536  
537    llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
538    if (   Arch == llvm::Triple::arm
539        || Arch == llvm::Triple::armeb
540        || Arch == llvm::Triple::thumb
541        || Arch == llvm::Triple::thumbeb) {
542      // The minimum width of an enum in bytes
543      uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
544      getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
545    }
546  
547    if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
548      StringRef ABIStr = Target.getABI();
549      llvm::LLVMContext &Ctx = TheModule.getContext();
550      getModule().addModuleFlag(llvm::Module::Error, "target-abi",
551                                llvm::MDString::get(Ctx, ABIStr));
552    }
553  
554    if (CodeGenOpts.SanitizeCfiCrossDso) {
555      // Indicate that we want cross-DSO control flow integrity checks.
556      getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
557    }
558  
559    if (CodeGenOpts.WholeProgramVTables) {
560      // Indicate whether VFE was enabled for this module, so that the
561      // vcall_visibility metadata added under whole program vtables is handled
562      // appropriately in the optimizer.
563      getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
564                                CodeGenOpts.VirtualFunctionElimination);
565    }
566  
567    if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
568      getModule().addModuleFlag(llvm::Module::Override,
569                                "CFI Canonical Jump Tables",
570                                CodeGenOpts.SanitizeCfiCanonicalJumpTables);
571    }
572  
573    if (CodeGenOpts.CFProtectionReturn &&
574        Target.checkCFProtectionReturnSupported(getDiags())) {
575      // Indicate that we want to instrument return control flow protection.
576      getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
577                                1);
578    }
579  
580    if (CodeGenOpts.CFProtectionBranch &&
581        Target.checkCFProtectionBranchSupported(getDiags())) {
582      // Indicate that we want to instrument branch control flow protection.
583      getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
584                                1);
585    }
586  
587    if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
588      // Indicate whether __nvvm_reflect should be configured to flush denormal
589      // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
590      // property.)
591      getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
592                                CodeGenOpts.FP32DenormalMode.Output !=
593                                    llvm::DenormalMode::IEEE);
594    }
595  
596    // Emit OpenCL specific module metadata: OpenCL/SPIR version.
597    if (LangOpts.OpenCL) {
598      EmitOpenCLMetadata();
599      // Emit SPIR version.
600      if (getTriple().isSPIR()) {
601        // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
602        // opencl.spir.version named metadata.
603        // C++ is backwards compatible with OpenCL v2.0.
604        auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
605        llvm::Metadata *SPIRVerElts[] = {
606            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
607                Int32Ty, Version / 100)),
608            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
609                Int32Ty, (Version / 100 > 1) ? 0 : 2))};
610        llvm::NamedMDNode *SPIRVerMD =
611            TheModule.getOrInsertNamedMetadata("opencl.spir.version");
612        llvm::LLVMContext &Ctx = TheModule.getContext();
613        SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
614      }
615    }
616  
617    if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
618      assert(PLevel < 3 && "Invalid PIC Level");
619      getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
620      if (Context.getLangOpts().PIE)
621        getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
622    }
623  
624    if (getCodeGenOpts().CodeModel.size() > 0) {
625      unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
626                    .Case("tiny", llvm::CodeModel::Tiny)
627                    .Case("small", llvm::CodeModel::Small)
628                    .Case("kernel", llvm::CodeModel::Kernel)
629                    .Case("medium", llvm::CodeModel::Medium)
630                    .Case("large", llvm::CodeModel::Large)
631                    .Default(~0u);
632      if (CM != ~0u) {
633        llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
634        getModule().setCodeModel(codeModel);
635      }
636    }
637  
638    if (CodeGenOpts.NoPLT)
639      getModule().setRtLibUseGOT();
640  
641    SimplifyPersonality();
642  
643    if (getCodeGenOpts().EmitDeclMetadata)
644      EmitDeclMetadata();
645  
646    if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
647      EmitCoverageFile();
648  
649    if (CGDebugInfo *DI = getModuleDebugInfo())
650      DI->finalize();
651  
652    if (getCodeGenOpts().EmitVersionIdentMetadata)
653      EmitVersionIdentMetadata();
654  
655    if (!getCodeGenOpts().RecordCommandLine.empty())
656      EmitCommandLineMetadata();
657  
658    getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
659  
660    EmitBackendOptionsMetadata(getCodeGenOpts());
661  }
662  
663  void CodeGenModule::EmitOpenCLMetadata() {
664    // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
665    // opencl.ocl.version named metadata node.
666    // C++ is backwards compatible with OpenCL v2.0.
667    // FIXME: We might need to add CXX version at some point too?
668    auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
669    llvm::Metadata *OCLVerElts[] = {
670        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
671            Int32Ty, Version / 100)),
672        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
673            Int32Ty, (Version % 100) / 10))};
674    llvm::NamedMDNode *OCLVerMD =
675        TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
676    llvm::LLVMContext &Ctx = TheModule.getContext();
677    OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
678  }
679  
680  void CodeGenModule::EmitBackendOptionsMetadata(
681      const CodeGenOptions CodeGenOpts) {
682    switch (getTriple().getArch()) {
683    default:
684      break;
685    case llvm::Triple::riscv32:
686    case llvm::Triple::riscv64:
687      getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
688                                CodeGenOpts.SmallDataLimit);
689      break;
690    }
691  }
692  
693  void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
694    // Make sure that this type is translated.
695    Types.UpdateCompletedType(TD);
696  }
697  
698  void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
699    // Make sure that this type is translated.
700    Types.RefreshTypeCacheForClass(RD);
701  }
702  
703  llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
704    if (!TBAA)
705      return nullptr;
706    return TBAA->getTypeInfo(QTy);
707  }
708  
709  TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
710    if (!TBAA)
711      return TBAAAccessInfo();
712    if (getLangOpts().CUDAIsDevice) {
713      // As CUDA builtin surface/texture types are replaced, skip generating TBAA
714      // access info.
715      if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
716        if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
717            nullptr)
718          return TBAAAccessInfo();
719      } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
720        if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
721            nullptr)
722          return TBAAAccessInfo();
723      }
724    }
725    return TBAA->getAccessInfo(AccessType);
726  }
727  
728  TBAAAccessInfo
729  CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
730    if (!TBAA)
731      return TBAAAccessInfo();
732    return TBAA->getVTablePtrAccessInfo(VTablePtrType);
733  }
734  
735  llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
736    if (!TBAA)
737      return nullptr;
738    return TBAA->getTBAAStructInfo(QTy);
739  }
740  
741  llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
742    if (!TBAA)
743      return nullptr;
744    return TBAA->getBaseTypeInfo(QTy);
745  }
746  
747  llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
748    if (!TBAA)
749      return nullptr;
750    return TBAA->getAccessTagInfo(Info);
751  }
752  
753  TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
754                                                     TBAAAccessInfo TargetInfo) {
755    if (!TBAA)
756      return TBAAAccessInfo();
757    return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
758  }
759  
760  TBAAAccessInfo
761  CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
762                                                     TBAAAccessInfo InfoB) {
763    if (!TBAA)
764      return TBAAAccessInfo();
765    return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
766  }
767  
768  TBAAAccessInfo
769  CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
770                                                TBAAAccessInfo SrcInfo) {
771    if (!TBAA)
772      return TBAAAccessInfo();
773    return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
774  }
775  
776  void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
777                                                  TBAAAccessInfo TBAAInfo) {
778    if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
779      Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
780  }
781  
782  void CodeGenModule::DecorateInstructionWithInvariantGroup(
783      llvm::Instruction *I, const CXXRecordDecl *RD) {
784    I->setMetadata(llvm::LLVMContext::MD_invariant_group,
785                   llvm::MDNode::get(getLLVMContext(), {}));
786  }
787  
788  void CodeGenModule::Error(SourceLocation loc, StringRef message) {
789    unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
790    getDiags().Report(Context.getFullLoc(loc), diagID) << message;
791  }
792  
793  /// ErrorUnsupported - Print out an error that codegen doesn't support the
794  /// specified stmt yet.
795  void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
796    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
797                                                 "cannot compile this %0 yet");
798    std::string Msg = Type;
799    getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
800        << Msg << S->getSourceRange();
801  }
802  
803  /// ErrorUnsupported - Print out an error that codegen doesn't support the
804  /// specified decl yet.
805  void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
806    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
807                                                 "cannot compile this %0 yet");
808    std::string Msg = Type;
809    getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
810  }
811  
812  llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
813    return llvm::ConstantInt::get(SizeTy, size.getQuantity());
814  }
815  
816  void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
817                                          const NamedDecl *D) const {
818    if (GV->hasDLLImportStorageClass())
819      return;
820    // Internal definitions always have default visibility.
821    if (GV->hasLocalLinkage()) {
822      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
823      return;
824    }
825    if (!D)
826      return;
827    // Set visibility for definitions, and for declarations if requested globally
828    // or set explicitly.
829    LinkageInfo LV = D->getLinkageAndVisibility();
830    if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
831        !GV->isDeclarationForLinker())
832      GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
833  }
834  
835  static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
836                                   llvm::GlobalValue *GV) {
837    if (GV->hasLocalLinkage())
838      return true;
839  
840    if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
841      return true;
842  
843    // DLLImport explicitly marks the GV as external.
844    if (GV->hasDLLImportStorageClass())
845      return false;
846  
847    const llvm::Triple &TT = CGM.getTriple();
848    if (TT.isWindowsGNUEnvironment()) {
849      // In MinGW, variables without DLLImport can still be automatically
850      // imported from a DLL by the linker; don't mark variables that
851      // potentially could come from another DLL as DSO local.
852      if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
853          !GV->isThreadLocal())
854        return false;
855    }
856  
857    // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
858    // remain unresolved in the link, they can be resolved to zero, which is
859    // outside the current DSO.
860    if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
861      return false;
862  
863    // Every other GV is local on COFF.
864    // Make an exception for windows OS in the triple: Some firmware builds use
865    // *-win32-macho triples. This (accidentally?) produced windows relocations
866    // without GOT tables in older clang versions; Keep this behaviour.
867    // FIXME: even thread local variables?
868    if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
869      return true;
870  
871    // Only handle COFF and ELF for now.
872    if (!TT.isOSBinFormatELF())
873      return false;
874  
875    // If this is not an executable, don't assume anything is local.
876    const auto &CGOpts = CGM.getCodeGenOpts();
877    llvm::Reloc::Model RM = CGOpts.RelocationModel;
878    const auto &LOpts = CGM.getLangOpts();
879    if (RM != llvm::Reloc::Static && !LOpts.PIE)
880      return false;
881  
882    // A definition cannot be preempted from an executable.
883    if (!GV->isDeclarationForLinker())
884      return true;
885  
886    // Most PIC code sequences that assume that a symbol is local cannot produce a
887    // 0 if it turns out the symbol is undefined. While this is ABI and relocation
888    // depended, it seems worth it to handle it here.
889    if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
890      return false;
891  
892    // PPC has no copy relocations and cannot use a plt entry as a symbol address.
893    llvm::Triple::ArchType Arch = TT.getArch();
894    if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
895        Arch == llvm::Triple::ppc64le)
896      return false;
897  
898    // If we can use copy relocations we can assume it is local.
899    if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
900      if (!Var->isThreadLocal() &&
901          (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
902        return true;
903  
904    // If we can use a plt entry as the symbol address we can assume it
905    // is local.
906    // FIXME: This should work for PIE, but the gold linker doesn't support it.
907    if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
908      return true;
909  
910    // Otherwise don't assume it is local.
911    return false;
912  }
913  
914  void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
915    GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
916  }
917  
918  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
919                                            GlobalDecl GD) const {
920    const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
921    // C++ destructors have a few C++ ABI specific special cases.
922    if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
923      getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
924      return;
925    }
926    setDLLImportDLLExport(GV, D);
927  }
928  
929  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
930                                            const NamedDecl *D) const {
931    if (D && D->isExternallyVisible()) {
932      if (D->hasAttr<DLLImportAttr>())
933        GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
934      else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
935        GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
936    }
937  }
938  
939  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
940                                      GlobalDecl GD) const {
941    setDLLImportDLLExport(GV, GD);
942    setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
943  }
944  
945  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
946                                      const NamedDecl *D) const {
947    setDLLImportDLLExport(GV, D);
948    setGVPropertiesAux(GV, D);
949  }
950  
951  void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
952                                         const NamedDecl *D) const {
953    setGlobalVisibility(GV, D);
954    setDSOLocal(GV);
955    GV->setPartition(CodeGenOpts.SymbolPartition);
956  }
957  
958  static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
959    return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
960        .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
961        .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
962        .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
963        .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
964  }
965  
966  llvm::GlobalVariable::ThreadLocalMode
967  CodeGenModule::GetDefaultLLVMTLSModel() const {
968    switch (CodeGenOpts.getDefaultTLSModel()) {
969    case CodeGenOptions::GeneralDynamicTLSModel:
970      return llvm::GlobalVariable::GeneralDynamicTLSModel;
971    case CodeGenOptions::LocalDynamicTLSModel:
972      return llvm::GlobalVariable::LocalDynamicTLSModel;
973    case CodeGenOptions::InitialExecTLSModel:
974      return llvm::GlobalVariable::InitialExecTLSModel;
975    case CodeGenOptions::LocalExecTLSModel:
976      return llvm::GlobalVariable::LocalExecTLSModel;
977    }
978    llvm_unreachable("Invalid TLS model!");
979  }
980  
981  void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
982    assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
983  
984    llvm::GlobalValue::ThreadLocalMode TLM;
985    TLM = GetDefaultLLVMTLSModel();
986  
987    // Override the TLS model if it is explicitly specified.
988    if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
989      TLM = GetLLVMTLSModel(Attr->getModel());
990    }
991  
992    GV->setThreadLocalMode(TLM);
993  }
994  
995  static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
996                                            StringRef Name) {
997    const TargetInfo &Target = CGM.getTarget();
998    return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
999  }
1000  
1001  static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1002                                                   const CPUSpecificAttr *Attr,
1003                                                   unsigned CPUIndex,
1004                                                   raw_ostream &Out) {
1005    // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1006    // supported.
1007    if (Attr)
1008      Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1009    else if (CGM.getTarget().supportsIFunc())
1010      Out << ".resolver";
1011  }
1012  
1013  static void AppendTargetMangling(const CodeGenModule &CGM,
1014                                   const TargetAttr *Attr, raw_ostream &Out) {
1015    if (Attr->isDefaultVersion())
1016      return;
1017  
1018    Out << '.';
1019    const TargetInfo &Target = CGM.getTarget();
1020    ParsedTargetAttr Info =
1021        Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1022          // Multiversioning doesn't allow "no-${feature}", so we can
1023          // only have "+" prefixes here.
1024          assert(LHS.startswith("+") && RHS.startswith("+") &&
1025                 "Features should always have a prefix.");
1026          return Target.multiVersionSortPriority(LHS.substr(1)) >
1027                 Target.multiVersionSortPriority(RHS.substr(1));
1028        });
1029  
1030    bool IsFirst = true;
1031  
1032    if (!Info.Architecture.empty()) {
1033      IsFirst = false;
1034      Out << "arch_" << Info.Architecture;
1035    }
1036  
1037    for (StringRef Feat : Info.Features) {
1038      if (!IsFirst)
1039        Out << '_';
1040      IsFirst = false;
1041      Out << Feat.substr(1);
1042    }
1043  }
1044  
1045  static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1046                                        const NamedDecl *ND,
1047                                        bool OmitMultiVersionMangling = false) {
1048    SmallString<256> Buffer;
1049    llvm::raw_svector_ostream Out(Buffer);
1050    MangleContext &MC = CGM.getCXXABI().getMangleContext();
1051    if (MC.shouldMangleDeclName(ND))
1052      MC.mangleName(GD.getWithDecl(ND), Out);
1053    else {
1054      IdentifierInfo *II = ND->getIdentifier();
1055      assert(II && "Attempt to mangle unnamed decl.");
1056      const auto *FD = dyn_cast<FunctionDecl>(ND);
1057  
1058      if (FD &&
1059          FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1060        Out << "__regcall3__" << II->getName();
1061      } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1062                 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1063        Out << "__device_stub__" << II->getName();
1064      } else {
1065        Out << II->getName();
1066      }
1067    }
1068  
1069    if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1070      if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1071        switch (FD->getMultiVersionKind()) {
1072        case MultiVersionKind::CPUDispatch:
1073        case MultiVersionKind::CPUSpecific:
1074          AppendCPUSpecificCPUDispatchMangling(CGM,
1075                                               FD->getAttr<CPUSpecificAttr>(),
1076                                               GD.getMultiVersionIndex(), Out);
1077          break;
1078        case MultiVersionKind::Target:
1079          AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1080          break;
1081        case MultiVersionKind::None:
1082          llvm_unreachable("None multiversion type isn't valid here");
1083        }
1084      }
1085  
1086    return std::string(Out.str());
1087  }
1088  
1089  void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1090                                              const FunctionDecl *FD) {
1091    if (!FD->isMultiVersion())
1092      return;
1093  
1094    // Get the name of what this would be without the 'target' attribute.  This
1095    // allows us to lookup the version that was emitted when this wasn't a
1096    // multiversion function.
1097    std::string NonTargetName =
1098        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1099    GlobalDecl OtherGD;
1100    if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1101      assert(OtherGD.getCanonicalDecl()
1102                 .getDecl()
1103                 ->getAsFunction()
1104                 ->isMultiVersion() &&
1105             "Other GD should now be a multiversioned function");
1106      // OtherFD is the version of this function that was mangled BEFORE
1107      // becoming a MultiVersion function.  It potentially needs to be updated.
1108      const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1109                                        .getDecl()
1110                                        ->getAsFunction()
1111                                        ->getMostRecentDecl();
1112      std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1113      // This is so that if the initial version was already the 'default'
1114      // version, we don't try to update it.
1115      if (OtherName != NonTargetName) {
1116        // Remove instead of erase, since others may have stored the StringRef
1117        // to this.
1118        const auto ExistingRecord = Manglings.find(NonTargetName);
1119        if (ExistingRecord != std::end(Manglings))
1120          Manglings.remove(&(*ExistingRecord));
1121        auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1122        MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1123        if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1124          Entry->setName(OtherName);
1125      }
1126    }
1127  }
1128  
1129  StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1130    GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1131  
1132    // Some ABIs don't have constructor variants.  Make sure that base and
1133    // complete constructors get mangled the same.
1134    if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1135      if (!getTarget().getCXXABI().hasConstructorVariants()) {
1136        CXXCtorType OrigCtorType = GD.getCtorType();
1137        assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1138        if (OrigCtorType == Ctor_Base)
1139          CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1140      }
1141    }
1142  
1143    auto FoundName = MangledDeclNames.find(CanonicalGD);
1144    if (FoundName != MangledDeclNames.end())
1145      return FoundName->second;
1146  
1147    // Keep the first result in the case of a mangling collision.
1148    const auto *ND = cast<NamedDecl>(GD.getDecl());
1149    std::string MangledName = getMangledNameImpl(*this, GD, ND);
1150  
1151    // Ensure either we have different ABIs between host and device compilations,
1152    // says host compilation following MSVC ABI but device compilation follows
1153    // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1154    // mangling should be the same after name stubbing. The later checking is
1155    // very important as the device kernel name being mangled in host-compilation
1156    // is used to resolve the device binaries to be executed. Inconsistent naming
1157    // result in undefined behavior. Even though we cannot check that naming
1158    // directly between host- and device-compilations, the host- and
1159    // device-mangling in host compilation could help catching certain ones.
1160    assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1161           getLangOpts().CUDAIsDevice ||
1162           (getContext().getAuxTargetInfo() &&
1163            (getContext().getAuxTargetInfo()->getCXXABI() !=
1164             getContext().getTargetInfo().getCXXABI())) ||
1165           getCUDARuntime().getDeviceSideName(ND) ==
1166               getMangledNameImpl(
1167                   *this,
1168                   GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1169                   ND));
1170  
1171    auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1172    return MangledDeclNames[CanonicalGD] = Result.first->first();
1173  }
1174  
1175  StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1176                                               const BlockDecl *BD) {
1177    MangleContext &MangleCtx = getCXXABI().getMangleContext();
1178    const Decl *D = GD.getDecl();
1179  
1180    SmallString<256> Buffer;
1181    llvm::raw_svector_ostream Out(Buffer);
1182    if (!D)
1183      MangleCtx.mangleGlobalBlock(BD,
1184        dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1185    else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1186      MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1187    else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1188      MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1189    else
1190      MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1191  
1192    auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1193    return Result.first->first();
1194  }
1195  
1196  llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1197    return getModule().getNamedValue(Name);
1198  }
1199  
1200  /// AddGlobalCtor - Add a function to the list that will be called before
1201  /// main() runs.
1202  void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1203                                    llvm::Constant *AssociatedData) {
1204    // FIXME: Type coercion of void()* types.
1205    GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1206  }
1207  
1208  /// AddGlobalDtor - Add a function to the list that will be called
1209  /// when the module is unloaded.
1210  void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1211    if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1212      DtorsUsingAtExit[Priority].push_back(Dtor);
1213      return;
1214    }
1215  
1216    // FIXME: Type coercion of void()* types.
1217    GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1218  }
1219  
1220  void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1221    if (Fns.empty()) return;
1222  
1223    // Ctor function type is void()*.
1224    llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1225    llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1226        TheModule.getDataLayout().getProgramAddressSpace());
1227  
1228    // Get the type of a ctor entry, { i32, void ()*, i8* }.
1229    llvm::StructType *CtorStructTy = llvm::StructType::get(
1230        Int32Ty, CtorPFTy, VoidPtrTy);
1231  
1232    // Construct the constructor and destructor arrays.
1233    ConstantInitBuilder builder(*this);
1234    auto ctors = builder.beginArray(CtorStructTy);
1235    for (const auto &I : Fns) {
1236      auto ctor = ctors.beginStruct(CtorStructTy);
1237      ctor.addInt(Int32Ty, I.Priority);
1238      ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1239      if (I.AssociatedData)
1240        ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1241      else
1242        ctor.addNullPointer(VoidPtrTy);
1243      ctor.finishAndAddTo(ctors);
1244    }
1245  
1246    auto list =
1247      ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1248                                  /*constant*/ false,
1249                                  llvm::GlobalValue::AppendingLinkage);
1250  
1251    // The LTO linker doesn't seem to like it when we set an alignment
1252    // on appending variables.  Take it off as a workaround.
1253    list->setAlignment(llvm::None);
1254  
1255    Fns.clear();
1256  }
1257  
1258  llvm::GlobalValue::LinkageTypes
1259  CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1260    const auto *D = cast<FunctionDecl>(GD.getDecl());
1261  
1262    GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1263  
1264    if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1265      return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1266  
1267    if (isa<CXXConstructorDecl>(D) &&
1268        cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1269        Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1270      // Our approach to inheriting constructors is fundamentally different from
1271      // that used by the MS ABI, so keep our inheriting constructor thunks
1272      // internal rather than trying to pick an unambiguous mangling for them.
1273      return llvm::GlobalValue::InternalLinkage;
1274    }
1275  
1276    return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1277  }
1278  
1279  llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1280    llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1281    if (!MDS) return nullptr;
1282  
1283    return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1284  }
1285  
1286  void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1287                                                const CGFunctionInfo &Info,
1288                                                llvm::Function *F) {
1289    unsigned CallingConv;
1290    llvm::AttributeList PAL;
1291    ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1292    F->setAttributes(PAL);
1293    F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1294  }
1295  
1296  static void removeImageAccessQualifier(std::string& TyName) {
1297    std::string ReadOnlyQual("__read_only");
1298    std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1299    if (ReadOnlyPos != std::string::npos)
1300      // "+ 1" for the space after access qualifier.
1301      TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1302    else {
1303      std::string WriteOnlyQual("__write_only");
1304      std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1305      if (WriteOnlyPos != std::string::npos)
1306        TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1307      else {
1308        std::string ReadWriteQual("__read_write");
1309        std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1310        if (ReadWritePos != std::string::npos)
1311          TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1312      }
1313    }
1314  }
1315  
1316  // Returns the address space id that should be produced to the
1317  // kernel_arg_addr_space metadata. This is always fixed to the ids
1318  // as specified in the SPIR 2.0 specification in order to differentiate
1319  // for example in clGetKernelArgInfo() implementation between the address
1320  // spaces with targets without unique mapping to the OpenCL address spaces
1321  // (basically all single AS CPUs).
1322  static unsigned ArgInfoAddressSpace(LangAS AS) {
1323    switch (AS) {
1324    case LangAS::opencl_global:   return 1;
1325    case LangAS::opencl_constant: return 2;
1326    case LangAS::opencl_local:    return 3;
1327    case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1328    default:
1329      return 0; // Assume private.
1330    }
1331  }
1332  
1333  void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1334                                           const FunctionDecl *FD,
1335                                           CodeGenFunction *CGF) {
1336    assert(((FD && CGF) || (!FD && !CGF)) &&
1337           "Incorrect use - FD and CGF should either be both null or not!");
1338    // Create MDNodes that represent the kernel arg metadata.
1339    // Each MDNode is a list in the form of "key", N number of values which is
1340    // the same number of values as their are kernel arguments.
1341  
1342    const PrintingPolicy &Policy = Context.getPrintingPolicy();
1343  
1344    // MDNode for the kernel argument address space qualifiers.
1345    SmallVector<llvm::Metadata *, 8> addressQuals;
1346  
1347    // MDNode for the kernel argument access qualifiers (images only).
1348    SmallVector<llvm::Metadata *, 8> accessQuals;
1349  
1350    // MDNode for the kernel argument type names.
1351    SmallVector<llvm::Metadata *, 8> argTypeNames;
1352  
1353    // MDNode for the kernel argument base type names.
1354    SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1355  
1356    // MDNode for the kernel argument type qualifiers.
1357    SmallVector<llvm::Metadata *, 8> argTypeQuals;
1358  
1359    // MDNode for the kernel argument names.
1360    SmallVector<llvm::Metadata *, 8> argNames;
1361  
1362    if (FD && CGF)
1363      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1364        const ParmVarDecl *parm = FD->getParamDecl(i);
1365        QualType ty = parm->getType();
1366        std::string typeQuals;
1367  
1368        if (ty->isPointerType()) {
1369          QualType pointeeTy = ty->getPointeeType();
1370  
1371          // Get address qualifier.
1372          addressQuals.push_back(
1373              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1374                  ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1375  
1376          // Get argument type name.
1377          std::string typeName =
1378              pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1379  
1380          // Turn "unsigned type" to "utype"
1381          std::string::size_type pos = typeName.find("unsigned");
1382          if (pointeeTy.isCanonical() && pos != std::string::npos)
1383            typeName.erase(pos + 1, 8);
1384  
1385          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1386  
1387          std::string baseTypeName =
1388              pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1389                  Policy) +
1390              "*";
1391  
1392          // Turn "unsigned type" to "utype"
1393          pos = baseTypeName.find("unsigned");
1394          if (pos != std::string::npos)
1395            baseTypeName.erase(pos + 1, 8);
1396  
1397          argBaseTypeNames.push_back(
1398              llvm::MDString::get(VMContext, baseTypeName));
1399  
1400          // Get argument type qualifiers:
1401          if (ty.isRestrictQualified())
1402            typeQuals = "restrict";
1403          if (pointeeTy.isConstQualified() ||
1404              (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1405            typeQuals += typeQuals.empty() ? "const" : " const";
1406          if (pointeeTy.isVolatileQualified())
1407            typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1408        } else {
1409          uint32_t AddrSpc = 0;
1410          bool isPipe = ty->isPipeType();
1411          if (ty->isImageType() || isPipe)
1412            AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1413  
1414          addressQuals.push_back(
1415              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1416  
1417          // Get argument type name.
1418          std::string typeName;
1419          if (isPipe)
1420            typeName = ty.getCanonicalType()
1421                           ->castAs<PipeType>()
1422                           ->getElementType()
1423                           .getAsString(Policy);
1424          else
1425            typeName = ty.getUnqualifiedType().getAsString(Policy);
1426  
1427          // Turn "unsigned type" to "utype"
1428          std::string::size_type pos = typeName.find("unsigned");
1429          if (ty.isCanonical() && pos != std::string::npos)
1430            typeName.erase(pos + 1, 8);
1431  
1432          std::string baseTypeName;
1433          if (isPipe)
1434            baseTypeName = ty.getCanonicalType()
1435                               ->castAs<PipeType>()
1436                               ->getElementType()
1437                               .getCanonicalType()
1438                               .getAsString(Policy);
1439          else
1440            baseTypeName =
1441                ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1442  
1443          // Remove access qualifiers on images
1444          // (as they are inseparable from type in clang implementation,
1445          // but OpenCL spec provides a special query to get access qualifier
1446          // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1447          if (ty->isImageType()) {
1448            removeImageAccessQualifier(typeName);
1449            removeImageAccessQualifier(baseTypeName);
1450          }
1451  
1452          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1453  
1454          // Turn "unsigned type" to "utype"
1455          pos = baseTypeName.find("unsigned");
1456          if (pos != std::string::npos)
1457            baseTypeName.erase(pos + 1, 8);
1458  
1459          argBaseTypeNames.push_back(
1460              llvm::MDString::get(VMContext, baseTypeName));
1461  
1462          if (isPipe)
1463            typeQuals = "pipe";
1464        }
1465  
1466        argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1467  
1468        // Get image and pipe access qualifier:
1469        if (ty->isImageType() || ty->isPipeType()) {
1470          const Decl *PDecl = parm;
1471          if (auto *TD = dyn_cast<TypedefType>(ty))
1472            PDecl = TD->getDecl();
1473          const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1474          if (A && A->isWriteOnly())
1475            accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1476          else if (A && A->isReadWrite())
1477            accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1478          else
1479            accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1480        } else
1481          accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1482  
1483        // Get argument name.
1484        argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1485      }
1486  
1487    Fn->setMetadata("kernel_arg_addr_space",
1488                    llvm::MDNode::get(VMContext, addressQuals));
1489    Fn->setMetadata("kernel_arg_access_qual",
1490                    llvm::MDNode::get(VMContext, accessQuals));
1491    Fn->setMetadata("kernel_arg_type",
1492                    llvm::MDNode::get(VMContext, argTypeNames));
1493    Fn->setMetadata("kernel_arg_base_type",
1494                    llvm::MDNode::get(VMContext, argBaseTypeNames));
1495    Fn->setMetadata("kernel_arg_type_qual",
1496                    llvm::MDNode::get(VMContext, argTypeQuals));
1497    if (getCodeGenOpts().EmitOpenCLArgMetadata)
1498      Fn->setMetadata("kernel_arg_name",
1499                      llvm::MDNode::get(VMContext, argNames));
1500  }
1501  
1502  /// Determines whether the language options require us to model
1503  /// unwind exceptions.  We treat -fexceptions as mandating this
1504  /// except under the fragile ObjC ABI with only ObjC exceptions
1505  /// enabled.  This means, for example, that C with -fexceptions
1506  /// enables this.
1507  static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1508    // If exceptions are completely disabled, obviously this is false.
1509    if (!LangOpts.Exceptions) return false;
1510  
1511    // If C++ exceptions are enabled, this is true.
1512    if (LangOpts.CXXExceptions) return true;
1513  
1514    // If ObjC exceptions are enabled, this depends on the ABI.
1515    if (LangOpts.ObjCExceptions) {
1516      return LangOpts.ObjCRuntime.hasUnwindExceptions();
1517    }
1518  
1519    return true;
1520  }
1521  
1522  static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1523                                                        const CXXMethodDecl *MD) {
1524    // Check that the type metadata can ever actually be used by a call.
1525    if (!CGM.getCodeGenOpts().LTOUnit ||
1526        !CGM.HasHiddenLTOVisibility(MD->getParent()))
1527      return false;
1528  
1529    // Only functions whose address can be taken with a member function pointer
1530    // need this sort of type metadata.
1531    return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1532           !isa<CXXDestructorDecl>(MD);
1533  }
1534  
1535  std::vector<const CXXRecordDecl *>
1536  CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1537    llvm::SetVector<const CXXRecordDecl *> MostBases;
1538  
1539    std::function<void (const CXXRecordDecl *)> CollectMostBases;
1540    CollectMostBases = [&](const CXXRecordDecl *RD) {
1541      if (RD->getNumBases() == 0)
1542        MostBases.insert(RD);
1543      for (const CXXBaseSpecifier &B : RD->bases())
1544        CollectMostBases(B.getType()->getAsCXXRecordDecl());
1545    };
1546    CollectMostBases(RD);
1547    return MostBases.takeVector();
1548  }
1549  
1550  void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1551                                                             llvm::Function *F) {
1552    llvm::AttrBuilder B;
1553  
1554    if (CodeGenOpts.UnwindTables)
1555      B.addAttribute(llvm::Attribute::UWTable);
1556  
1557    if (CodeGenOpts.StackClashProtector)
1558      B.addAttribute("probe-stack", "inline-asm");
1559  
1560    if (!hasUnwindExceptions(LangOpts))
1561      B.addAttribute(llvm::Attribute::NoUnwind);
1562  
1563    if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1564      if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1565        B.addAttribute(llvm::Attribute::StackProtect);
1566      else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1567        B.addAttribute(llvm::Attribute::StackProtectStrong);
1568      else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1569        B.addAttribute(llvm::Attribute::StackProtectReq);
1570    }
1571  
1572    if (!D) {
1573      // If we don't have a declaration to control inlining, the function isn't
1574      // explicitly marked as alwaysinline for semantic reasons, and inlining is
1575      // disabled, mark the function as noinline.
1576      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1577          CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1578        B.addAttribute(llvm::Attribute::NoInline);
1579  
1580      F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1581      return;
1582    }
1583  
1584    // Track whether we need to add the optnone LLVM attribute,
1585    // starting with the default for this optimization level.
1586    bool ShouldAddOptNone =
1587        !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1588    // We can't add optnone in the following cases, it won't pass the verifier.
1589    ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1590    ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1591  
1592    // Add optnone, but do so only if the function isn't always_inline.
1593    if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1594        !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1595      B.addAttribute(llvm::Attribute::OptimizeNone);
1596  
1597      // OptimizeNone implies noinline; we should not be inlining such functions.
1598      B.addAttribute(llvm::Attribute::NoInline);
1599  
1600      // We still need to handle naked functions even though optnone subsumes
1601      // much of their semantics.
1602      if (D->hasAttr<NakedAttr>())
1603        B.addAttribute(llvm::Attribute::Naked);
1604  
1605      // OptimizeNone wins over OptimizeForSize and MinSize.
1606      F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1607      F->removeFnAttr(llvm::Attribute::MinSize);
1608    } else if (D->hasAttr<NakedAttr>()) {
1609      // Naked implies noinline: we should not be inlining such functions.
1610      B.addAttribute(llvm::Attribute::Naked);
1611      B.addAttribute(llvm::Attribute::NoInline);
1612    } else if (D->hasAttr<NoDuplicateAttr>()) {
1613      B.addAttribute(llvm::Attribute::NoDuplicate);
1614    } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1615      // Add noinline if the function isn't always_inline.
1616      B.addAttribute(llvm::Attribute::NoInline);
1617    } else if (D->hasAttr<AlwaysInlineAttr>() &&
1618               !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1619      // (noinline wins over always_inline, and we can't specify both in IR)
1620      B.addAttribute(llvm::Attribute::AlwaysInline);
1621    } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1622      // If we're not inlining, then force everything that isn't always_inline to
1623      // carry an explicit noinline attribute.
1624      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1625        B.addAttribute(llvm::Attribute::NoInline);
1626    } else {
1627      // Otherwise, propagate the inline hint attribute and potentially use its
1628      // absence to mark things as noinline.
1629      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1630        // Search function and template pattern redeclarations for inline.
1631        auto CheckForInline = [](const FunctionDecl *FD) {
1632          auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1633            return Redecl->isInlineSpecified();
1634          };
1635          if (any_of(FD->redecls(), CheckRedeclForInline))
1636            return true;
1637          const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1638          if (!Pattern)
1639            return false;
1640          return any_of(Pattern->redecls(), CheckRedeclForInline);
1641        };
1642        if (CheckForInline(FD)) {
1643          B.addAttribute(llvm::Attribute::InlineHint);
1644        } else if (CodeGenOpts.getInlining() ==
1645                       CodeGenOptions::OnlyHintInlining &&
1646                   !FD->isInlined() &&
1647                   !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1648          B.addAttribute(llvm::Attribute::NoInline);
1649        }
1650      }
1651    }
1652  
1653    // Add other optimization related attributes if we are optimizing this
1654    // function.
1655    if (!D->hasAttr<OptimizeNoneAttr>()) {
1656      if (D->hasAttr<ColdAttr>()) {
1657        if (!ShouldAddOptNone)
1658          B.addAttribute(llvm::Attribute::OptimizeForSize);
1659        B.addAttribute(llvm::Attribute::Cold);
1660      }
1661  
1662      if (D->hasAttr<MinSizeAttr>())
1663        B.addAttribute(llvm::Attribute::MinSize);
1664    }
1665  
1666    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1667  
1668    unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1669    if (alignment)
1670      F->setAlignment(llvm::Align(alignment));
1671  
1672    if (!D->hasAttr<AlignedAttr>())
1673      if (LangOpts.FunctionAlignment)
1674        F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1675  
1676    // Some C++ ABIs require 2-byte alignment for member functions, in order to
1677    // reserve a bit for differentiating between virtual and non-virtual member
1678    // functions. If the current target's C++ ABI requires this and this is a
1679    // member function, set its alignment accordingly.
1680    if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1681      if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1682        F->setAlignment(llvm::Align(2));
1683    }
1684  
1685    // In the cross-dso CFI mode with canonical jump tables, we want !type
1686    // attributes on definitions only.
1687    if (CodeGenOpts.SanitizeCfiCrossDso &&
1688        CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1689      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1690        // Skip available_externally functions. They won't be codegen'ed in the
1691        // current module anyway.
1692        if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1693          CreateFunctionTypeMetadataForIcall(FD, F);
1694      }
1695    }
1696  
1697    // Emit type metadata on member functions for member function pointer checks.
1698    // These are only ever necessary on definitions; we're guaranteed that the
1699    // definition will be present in the LTO unit as a result of LTO visibility.
1700    auto *MD = dyn_cast<CXXMethodDecl>(D);
1701    if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1702      for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1703        llvm::Metadata *Id =
1704            CreateMetadataIdentifierForType(Context.getMemberPointerType(
1705                MD->getType(), Context.getRecordType(Base).getTypePtr()));
1706        F->addTypeMetadata(0, Id);
1707      }
1708    }
1709  }
1710  
1711  void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1712    const Decl *D = GD.getDecl();
1713    if (dyn_cast_or_null<NamedDecl>(D))
1714      setGVProperties(GV, GD);
1715    else
1716      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1717  
1718    if (D && D->hasAttr<UsedAttr>())
1719      addUsedGlobal(GV);
1720  
1721    if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1722      const auto *VD = cast<VarDecl>(D);
1723      if (VD->getType().isConstQualified() &&
1724          VD->getStorageDuration() == SD_Static)
1725        addUsedGlobal(GV);
1726    }
1727  }
1728  
1729  bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1730                                                  llvm::AttrBuilder &Attrs) {
1731    // Add target-cpu and target-features attributes to functions. If
1732    // we have a decl for the function and it has a target attribute then
1733    // parse that and add it to the feature set.
1734    StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1735    std::vector<std::string> Features;
1736    const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1737    FD = FD ? FD->getMostRecentDecl() : FD;
1738    const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1739    const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1740    bool AddedAttr = false;
1741    if (TD || SD) {
1742      llvm::StringMap<bool> FeatureMap;
1743      getContext().getFunctionFeatureMap(FeatureMap, GD);
1744  
1745      // Produce the canonical string for this set of features.
1746      for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1747        Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1748  
1749      // Now add the target-cpu and target-features to the function.
1750      // While we populated the feature map above, we still need to
1751      // get and parse the target attribute so we can get the cpu for
1752      // the function.
1753      if (TD) {
1754        ParsedTargetAttr ParsedAttr = TD->parse();
1755        if (ParsedAttr.Architecture != "" &&
1756            getTarget().isValidCPUName(ParsedAttr.Architecture))
1757          TargetCPU = ParsedAttr.Architecture;
1758      }
1759    } else {
1760      // Otherwise just add the existing target cpu and target features to the
1761      // function.
1762      Features = getTarget().getTargetOpts().Features;
1763    }
1764  
1765    if (TargetCPU != "") {
1766      Attrs.addAttribute("target-cpu", TargetCPU);
1767      AddedAttr = true;
1768    }
1769    if (!Features.empty()) {
1770      llvm::sort(Features);
1771      Attrs.addAttribute("target-features", llvm::join(Features, ","));
1772      AddedAttr = true;
1773    }
1774  
1775    return AddedAttr;
1776  }
1777  
1778  void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1779                                            llvm::GlobalObject *GO) {
1780    const Decl *D = GD.getDecl();
1781    SetCommonAttributes(GD, GO);
1782  
1783    if (D) {
1784      if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1785        if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1786          GV->addAttribute("bss-section", SA->getName());
1787        if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1788          GV->addAttribute("data-section", SA->getName());
1789        if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1790          GV->addAttribute("rodata-section", SA->getName());
1791        if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1792          GV->addAttribute("relro-section", SA->getName());
1793      }
1794  
1795      if (auto *F = dyn_cast<llvm::Function>(GO)) {
1796        if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1797          if (!D->getAttr<SectionAttr>())
1798            F->addFnAttr("implicit-section-name", SA->getName());
1799  
1800        llvm::AttrBuilder Attrs;
1801        if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1802          // We know that GetCPUAndFeaturesAttributes will always have the
1803          // newest set, since it has the newest possible FunctionDecl, so the
1804          // new ones should replace the old.
1805          F->removeFnAttr("target-cpu");
1806          F->removeFnAttr("target-features");
1807          F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1808        }
1809      }
1810  
1811      if (const auto *CSA = D->getAttr<CodeSegAttr>())
1812        GO->setSection(CSA->getName());
1813      else if (const auto *SA = D->getAttr<SectionAttr>())
1814        GO->setSection(SA->getName());
1815    }
1816  
1817    getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1818  }
1819  
1820  void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1821                                                    llvm::Function *F,
1822                                                    const CGFunctionInfo &FI) {
1823    const Decl *D = GD.getDecl();
1824    SetLLVMFunctionAttributes(GD, FI, F);
1825    SetLLVMFunctionAttributesForDefinition(D, F);
1826  
1827    F->setLinkage(llvm::Function::InternalLinkage);
1828  
1829    setNonAliasAttributes(GD, F);
1830  }
1831  
1832  static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1833    // Set linkage and visibility in case we never see a definition.
1834    LinkageInfo LV = ND->getLinkageAndVisibility();
1835    // Don't set internal linkage on declarations.
1836    // "extern_weak" is overloaded in LLVM; we probably should have
1837    // separate linkage types for this.
1838    if (isExternallyVisible(LV.getLinkage()) &&
1839        (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1840      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1841  }
1842  
1843  void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1844                                                         llvm::Function *F) {
1845    // Only if we are checking indirect calls.
1846    if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1847      return;
1848  
1849    // Non-static class methods are handled via vtable or member function pointer
1850    // checks elsewhere.
1851    if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1852      return;
1853  
1854    llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1855    F->addTypeMetadata(0, MD);
1856    F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1857  
1858    // Emit a hash-based bit set entry for cross-DSO calls.
1859    if (CodeGenOpts.SanitizeCfiCrossDso)
1860      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1861        F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1862  }
1863  
1864  void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1865                                            bool IsIncompleteFunction,
1866                                            bool IsThunk) {
1867  
1868    if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1869      // If this is an intrinsic function, set the function's attributes
1870      // to the intrinsic's attributes.
1871      F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1872      return;
1873    }
1874  
1875    const auto *FD = cast<FunctionDecl>(GD.getDecl());
1876  
1877    if (!IsIncompleteFunction)
1878      SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1879  
1880    // Add the Returned attribute for "this", except for iOS 5 and earlier
1881    // where substantial code, including the libstdc++ dylib, was compiled with
1882    // GCC and does not actually return "this".
1883    if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1884        !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1885      assert(!F->arg_empty() &&
1886             F->arg_begin()->getType()
1887               ->canLosslesslyBitCastTo(F->getReturnType()) &&
1888             "unexpected this return");
1889      F->addAttribute(1, llvm::Attribute::Returned);
1890    }
1891  
1892    // Only a few attributes are set on declarations; these may later be
1893    // overridden by a definition.
1894  
1895    setLinkageForGV(F, FD);
1896    setGVProperties(F, FD);
1897  
1898    // Setup target-specific attributes.
1899    if (!IsIncompleteFunction && F->isDeclaration())
1900      getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1901  
1902    if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1903      F->setSection(CSA->getName());
1904    else if (const auto *SA = FD->getAttr<SectionAttr>())
1905       F->setSection(SA->getName());
1906  
1907    // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1908    if (FD->isInlineBuiltinDeclaration()) {
1909      const FunctionDecl *FDBody;
1910      bool HasBody = FD->hasBody(FDBody);
1911      (void)HasBody;
1912      assert(HasBody && "Inline builtin declarations should always have an "
1913                        "available body!");
1914      if (shouldEmitFunction(FDBody))
1915        F->addAttribute(llvm::AttributeList::FunctionIndex,
1916                        llvm::Attribute::NoBuiltin);
1917    }
1918  
1919    if (FD->isReplaceableGlobalAllocationFunction()) {
1920      // A replaceable global allocation function does not act like a builtin by
1921      // default, only if it is invoked by a new-expression or delete-expression.
1922      F->addAttribute(llvm::AttributeList::FunctionIndex,
1923                      llvm::Attribute::NoBuiltin);
1924    }
1925  
1926    if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1927      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1928    else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1929      if (MD->isVirtual())
1930        F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1931  
1932    // Don't emit entries for function declarations in the cross-DSO mode. This
1933    // is handled with better precision by the receiving DSO. But if jump tables
1934    // are non-canonical then we need type metadata in order to produce the local
1935    // jump table.
1936    if (!CodeGenOpts.SanitizeCfiCrossDso ||
1937        !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1938      CreateFunctionTypeMetadataForIcall(FD, F);
1939  
1940    if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1941      getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1942  
1943    if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1944      // Annotate the callback behavior as metadata:
1945      //  - The callback callee (as argument number).
1946      //  - The callback payloads (as argument numbers).
1947      llvm::LLVMContext &Ctx = F->getContext();
1948      llvm::MDBuilder MDB(Ctx);
1949  
1950      // The payload indices are all but the first one in the encoding. The first
1951      // identifies the callback callee.
1952      int CalleeIdx = *CB->encoding_begin();
1953      ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1954      F->addMetadata(llvm::LLVMContext::MD_callback,
1955                     *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1956                                                 CalleeIdx, PayloadIndices,
1957                                                 /* VarArgsArePassed */ false)}));
1958    }
1959  }
1960  
1961  void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1962    assert(!GV->isDeclaration() &&
1963           "Only globals with definition can force usage.");
1964    LLVMUsed.emplace_back(GV);
1965  }
1966  
1967  void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1968    assert(!GV->isDeclaration() &&
1969           "Only globals with definition can force usage.");
1970    LLVMCompilerUsed.emplace_back(GV);
1971  }
1972  
1973  static void emitUsed(CodeGenModule &CGM, StringRef Name,
1974                       std::vector<llvm::WeakTrackingVH> &List) {
1975    // Don't create llvm.used if there is no need.
1976    if (List.empty())
1977      return;
1978  
1979    // Convert List to what ConstantArray needs.
1980    SmallVector<llvm::Constant*, 8> UsedArray;
1981    UsedArray.resize(List.size());
1982    for (unsigned i = 0, e = List.size(); i != e; ++i) {
1983      UsedArray[i] =
1984          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1985              cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1986    }
1987  
1988    if (UsedArray.empty())
1989      return;
1990    llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1991  
1992    auto *GV = new llvm::GlobalVariable(
1993        CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1994        llvm::ConstantArray::get(ATy, UsedArray), Name);
1995  
1996    GV->setSection("llvm.metadata");
1997  }
1998  
1999  void CodeGenModule::emitLLVMUsed() {
2000    emitUsed(*this, "llvm.used", LLVMUsed);
2001    emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2002  }
2003  
2004  void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2005    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2006    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2007  }
2008  
2009  void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2010    llvm::SmallString<32> Opt;
2011    getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2012    if (Opt.empty())
2013      return;
2014    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2015    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2016  }
2017  
2018  void CodeGenModule::AddDependentLib(StringRef Lib) {
2019    auto &C = getLLVMContext();
2020    if (getTarget().getTriple().isOSBinFormatELF()) {
2021        ELFDependentLibraries.push_back(
2022          llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2023      return;
2024    }
2025  
2026    llvm::SmallString<24> Opt;
2027    getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2028    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2029    LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2030  }
2031  
2032  /// Add link options implied by the given module, including modules
2033  /// it depends on, using a postorder walk.
2034  static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2035                                      SmallVectorImpl<llvm::MDNode *> &Metadata,
2036                                      llvm::SmallPtrSet<Module *, 16> &Visited) {
2037    // Import this module's parent.
2038    if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2039      addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2040    }
2041  
2042    // Import this module's dependencies.
2043    for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2044      if (Visited.insert(Mod->Imports[I - 1]).second)
2045        addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2046    }
2047  
2048    // Add linker options to link against the libraries/frameworks
2049    // described by this module.
2050    llvm::LLVMContext &Context = CGM.getLLVMContext();
2051    bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2052  
2053    // For modules that use export_as for linking, use that module
2054    // name instead.
2055    if (Mod->UseExportAsModuleLinkName)
2056      return;
2057  
2058    for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2059      // Link against a framework.  Frameworks are currently Darwin only, so we
2060      // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2061      if (Mod->LinkLibraries[I-1].IsFramework) {
2062        llvm::Metadata *Args[2] = {
2063            llvm::MDString::get(Context, "-framework"),
2064            llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2065  
2066        Metadata.push_back(llvm::MDNode::get(Context, Args));
2067        continue;
2068      }
2069  
2070      // Link against a library.
2071      if (IsELF) {
2072        llvm::Metadata *Args[2] = {
2073            llvm::MDString::get(Context, "lib"),
2074            llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2075        };
2076        Metadata.push_back(llvm::MDNode::get(Context, Args));
2077      } else {
2078        llvm::SmallString<24> Opt;
2079        CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2080            Mod->LinkLibraries[I - 1].Library, Opt);
2081        auto *OptString = llvm::MDString::get(Context, Opt);
2082        Metadata.push_back(llvm::MDNode::get(Context, OptString));
2083      }
2084    }
2085  }
2086  
2087  void CodeGenModule::EmitModuleLinkOptions() {
2088    // Collect the set of all of the modules we want to visit to emit link
2089    // options, which is essentially the imported modules and all of their
2090    // non-explicit child modules.
2091    llvm::SetVector<clang::Module *> LinkModules;
2092    llvm::SmallPtrSet<clang::Module *, 16> Visited;
2093    SmallVector<clang::Module *, 16> Stack;
2094  
2095    // Seed the stack with imported modules.
2096    for (Module *M : ImportedModules) {
2097      // Do not add any link flags when an implementation TU of a module imports
2098      // a header of that same module.
2099      if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2100          !getLangOpts().isCompilingModule())
2101        continue;
2102      if (Visited.insert(M).second)
2103        Stack.push_back(M);
2104    }
2105  
2106    // Find all of the modules to import, making a little effort to prune
2107    // non-leaf modules.
2108    while (!Stack.empty()) {
2109      clang::Module *Mod = Stack.pop_back_val();
2110  
2111      bool AnyChildren = false;
2112  
2113      // Visit the submodules of this module.
2114      for (const auto &SM : Mod->submodules()) {
2115        // Skip explicit children; they need to be explicitly imported to be
2116        // linked against.
2117        if (SM->IsExplicit)
2118          continue;
2119  
2120        if (Visited.insert(SM).second) {
2121          Stack.push_back(SM);
2122          AnyChildren = true;
2123        }
2124      }
2125  
2126      // We didn't find any children, so add this module to the list of
2127      // modules to link against.
2128      if (!AnyChildren) {
2129        LinkModules.insert(Mod);
2130      }
2131    }
2132  
2133    // Add link options for all of the imported modules in reverse topological
2134    // order.  We don't do anything to try to order import link flags with respect
2135    // to linker options inserted by things like #pragma comment().
2136    SmallVector<llvm::MDNode *, 16> MetadataArgs;
2137    Visited.clear();
2138    for (Module *M : LinkModules)
2139      if (Visited.insert(M).second)
2140        addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2141    std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2142    LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2143  
2144    // Add the linker options metadata flag.
2145    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2146    for (auto *MD : LinkerOptionsMetadata)
2147      NMD->addOperand(MD);
2148  }
2149  
2150  void CodeGenModule::EmitDeferred() {
2151    // Emit deferred declare target declarations.
2152    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2153      getOpenMPRuntime().emitDeferredTargetDecls();
2154  
2155    // Emit code for any potentially referenced deferred decls.  Since a
2156    // previously unused static decl may become used during the generation of code
2157    // for a static function, iterate until no changes are made.
2158  
2159    if (!DeferredVTables.empty()) {
2160      EmitDeferredVTables();
2161  
2162      // Emitting a vtable doesn't directly cause more vtables to
2163      // become deferred, although it can cause functions to be
2164      // emitted that then need those vtables.
2165      assert(DeferredVTables.empty());
2166    }
2167  
2168    // Stop if we're out of both deferred vtables and deferred declarations.
2169    if (DeferredDeclsToEmit.empty())
2170      return;
2171  
2172    // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2173    // work, it will not interfere with this.
2174    std::vector<GlobalDecl> CurDeclsToEmit;
2175    CurDeclsToEmit.swap(DeferredDeclsToEmit);
2176  
2177    for (GlobalDecl &D : CurDeclsToEmit) {
2178      // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2179      // to get GlobalValue with exactly the type we need, not something that
2180      // might had been created for another decl with the same mangled name but
2181      // different type.
2182      llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2183          GetAddrOfGlobal(D, ForDefinition));
2184  
2185      // In case of different address spaces, we may still get a cast, even with
2186      // IsForDefinition equal to true. Query mangled names table to get
2187      // GlobalValue.
2188      if (!GV)
2189        GV = GetGlobalValue(getMangledName(D));
2190  
2191      // Make sure GetGlobalValue returned non-null.
2192      assert(GV);
2193  
2194      // Check to see if we've already emitted this.  This is necessary
2195      // for a couple of reasons: first, decls can end up in the
2196      // deferred-decls queue multiple times, and second, decls can end
2197      // up with definitions in unusual ways (e.g. by an extern inline
2198      // function acquiring a strong function redefinition).  Just
2199      // ignore these cases.
2200      if (!GV->isDeclaration())
2201        continue;
2202  
2203      // If this is OpenMP, check if it is legal to emit this global normally.
2204      if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2205        continue;
2206  
2207      // Otherwise, emit the definition and move on to the next one.
2208      EmitGlobalDefinition(D, GV);
2209  
2210      // If we found out that we need to emit more decls, do that recursively.
2211      // This has the advantage that the decls are emitted in a DFS and related
2212      // ones are close together, which is convenient for testing.
2213      if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2214        EmitDeferred();
2215        assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2216      }
2217    }
2218  }
2219  
2220  void CodeGenModule::EmitVTablesOpportunistically() {
2221    // Try to emit external vtables as available_externally if they have emitted
2222    // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2223    // is not allowed to create new references to things that need to be emitted
2224    // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2225  
2226    assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2227           && "Only emit opportunistic vtables with optimizations");
2228  
2229    for (const CXXRecordDecl *RD : OpportunisticVTables) {
2230      assert(getVTables().isVTableExternal(RD) &&
2231             "This queue should only contain external vtables");
2232      if (getCXXABI().canSpeculativelyEmitVTable(RD))
2233        VTables.GenerateClassData(RD);
2234    }
2235    OpportunisticVTables.clear();
2236  }
2237  
2238  void CodeGenModule::EmitGlobalAnnotations() {
2239    if (Annotations.empty())
2240      return;
2241  
2242    // Create a new global variable for the ConstantStruct in the Module.
2243    llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2244      Annotations[0]->getType(), Annotations.size()), Annotations);
2245    auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2246                                        llvm::GlobalValue::AppendingLinkage,
2247                                        Array, "llvm.global.annotations");
2248    gv->setSection(AnnotationSection);
2249  }
2250  
2251  llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2252    llvm::Constant *&AStr = AnnotationStrings[Str];
2253    if (AStr)
2254      return AStr;
2255  
2256    // Not found yet, create a new global.
2257    llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2258    auto *gv =
2259        new llvm::GlobalVariable(getModule(), s->getType(), true,
2260                                 llvm::GlobalValue::PrivateLinkage, s, ".str");
2261    gv->setSection(AnnotationSection);
2262    gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2263    AStr = gv;
2264    return gv;
2265  }
2266  
2267  llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2268    SourceManager &SM = getContext().getSourceManager();
2269    PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2270    if (PLoc.isValid())
2271      return EmitAnnotationString(PLoc.getFilename());
2272    return EmitAnnotationString(SM.getBufferName(Loc));
2273  }
2274  
2275  llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2276    SourceManager &SM = getContext().getSourceManager();
2277    PresumedLoc PLoc = SM.getPresumedLoc(L);
2278    unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2279      SM.getExpansionLineNumber(L);
2280    return llvm::ConstantInt::get(Int32Ty, LineNo);
2281  }
2282  
2283  llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2284                                                  const AnnotateAttr *AA,
2285                                                  SourceLocation L) {
2286    // Get the globals for file name, annotation, and the line number.
2287    llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2288                   *UnitGV = EmitAnnotationUnit(L),
2289                   *LineNoCst = EmitAnnotationLineNo(L);
2290  
2291    llvm::Constant *ASZeroGV = GV;
2292    if (GV->getAddressSpace() != 0) {
2293      ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2294                     GV, GV->getValueType()->getPointerTo(0));
2295    }
2296  
2297    // Create the ConstantStruct for the global annotation.
2298    llvm::Constant *Fields[4] = {
2299      llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2300      llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2301      llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2302      LineNoCst
2303    };
2304    return llvm::ConstantStruct::getAnon(Fields);
2305  }
2306  
2307  void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2308                                           llvm::GlobalValue *GV) {
2309    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2310    // Get the struct elements for these annotations.
2311    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2312      Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2313  }
2314  
2315  bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2316                                             llvm::Function *Fn,
2317                                             SourceLocation Loc) const {
2318    const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2319    // Blacklist by function name.
2320    if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2321      return true;
2322    // Blacklist by location.
2323    if (Loc.isValid())
2324      return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2325    // If location is unknown, this may be a compiler-generated function. Assume
2326    // it's located in the main file.
2327    auto &SM = Context.getSourceManager();
2328    if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2329      return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2330    }
2331    return false;
2332  }
2333  
2334  bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2335                                             SourceLocation Loc, QualType Ty,
2336                                             StringRef Category) const {
2337    // For now globals can be blacklisted only in ASan and KASan.
2338    const SanitizerMask EnabledAsanMask =
2339        LangOpts.Sanitize.Mask &
2340        (SanitizerKind::Address | SanitizerKind::KernelAddress |
2341         SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2342         SanitizerKind::MemTag);
2343    if (!EnabledAsanMask)
2344      return false;
2345    const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2346    if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2347      return true;
2348    if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2349      return true;
2350    // Check global type.
2351    if (!Ty.isNull()) {
2352      // Drill down the array types: if global variable of a fixed type is
2353      // blacklisted, we also don't instrument arrays of them.
2354      while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2355        Ty = AT->getElementType();
2356      Ty = Ty.getCanonicalType().getUnqualifiedType();
2357      // We allow to blacklist only record types (classes, structs etc.)
2358      if (Ty->isRecordType()) {
2359        std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2360        if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2361          return true;
2362      }
2363    }
2364    return false;
2365  }
2366  
2367  bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2368                                     StringRef Category) const {
2369    const auto &XRayFilter = getContext().getXRayFilter();
2370    using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2371    auto Attr = ImbueAttr::NONE;
2372    if (Loc.isValid())
2373      Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2374    if (Attr == ImbueAttr::NONE)
2375      Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2376    switch (Attr) {
2377    case ImbueAttr::NONE:
2378      return false;
2379    case ImbueAttr::ALWAYS:
2380      Fn->addFnAttr("function-instrument", "xray-always");
2381      break;
2382    case ImbueAttr::ALWAYS_ARG1:
2383      Fn->addFnAttr("function-instrument", "xray-always");
2384      Fn->addFnAttr("xray-log-args", "1");
2385      break;
2386    case ImbueAttr::NEVER:
2387      Fn->addFnAttr("function-instrument", "xray-never");
2388      break;
2389    }
2390    return true;
2391  }
2392  
2393  bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2394    // Never defer when EmitAllDecls is specified.
2395    if (LangOpts.EmitAllDecls)
2396      return true;
2397  
2398    if (CodeGenOpts.KeepStaticConsts) {
2399      const auto *VD = dyn_cast<VarDecl>(Global);
2400      if (VD && VD->getType().isConstQualified() &&
2401          VD->getStorageDuration() == SD_Static)
2402        return true;
2403    }
2404  
2405    return getContext().DeclMustBeEmitted(Global);
2406  }
2407  
2408  bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2409    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2410      if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2411        // Implicit template instantiations may change linkage if they are later
2412        // explicitly instantiated, so they should not be emitted eagerly.
2413        return false;
2414      // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2415      // not emit them eagerly unless we sure that the function must be emitted on
2416      // the host.
2417      if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2418          !LangOpts.OpenMPIsDevice &&
2419          !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2420          !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2421        return false;
2422    }
2423    if (const auto *VD = dyn_cast<VarDecl>(Global))
2424      if (Context.getInlineVariableDefinitionKind(VD) ==
2425          ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2426        // A definition of an inline constexpr static data member may change
2427        // linkage later if it's redeclared outside the class.
2428        return false;
2429    // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2430    // codegen for global variables, because they may be marked as threadprivate.
2431    if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2432        getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2433        !isTypeConstant(Global->getType(), false) &&
2434        !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2435      return false;
2436  
2437    return true;
2438  }
2439  
2440  ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2441    StringRef Name = getMangledName(GD);
2442  
2443    // The UUID descriptor should be pointer aligned.
2444    CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2445  
2446    // Look for an existing global.
2447    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2448      return ConstantAddress(GV, Alignment);
2449  
2450    ConstantEmitter Emitter(*this);
2451    llvm::Constant *Init;
2452  
2453    APValue &V = GD->getAsAPValue();
2454    if (!V.isAbsent()) {
2455      // If possible, emit the APValue version of the initializer. In particular,
2456      // this gets the type of the constant right.
2457      Init = Emitter.emitForInitializer(
2458          GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2459    } else {
2460      // As a fallback, directly construct the constant.
2461      // FIXME: This may get padding wrong under esoteric struct layout rules.
2462      // MSVC appears to create a complete type 'struct __s_GUID' that it
2463      // presumably uses to represent these constants.
2464      MSGuidDecl::Parts Parts = GD->getParts();
2465      llvm::Constant *Fields[4] = {
2466          llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2467          llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2468          llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2469          llvm::ConstantDataArray::getRaw(
2470              StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2471              Int8Ty)};
2472      Init = llvm::ConstantStruct::getAnon(Fields);
2473    }
2474  
2475    auto *GV = new llvm::GlobalVariable(
2476        getModule(), Init->getType(),
2477        /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2478    if (supportsCOMDAT())
2479      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2480    setDSOLocal(GV);
2481  
2482    llvm::Constant *Addr = GV;
2483    if (!V.isAbsent()) {
2484      Emitter.finalize(GV);
2485    } else {
2486      llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2487      Addr = llvm::ConstantExpr::getBitCast(
2488          GV, Ty->getPointerTo(GV->getAddressSpace()));
2489    }
2490    return ConstantAddress(Addr, Alignment);
2491  }
2492  
2493  ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2494    const AliasAttr *AA = VD->getAttr<AliasAttr>();
2495    assert(AA && "No alias?");
2496  
2497    CharUnits Alignment = getContext().getDeclAlign(VD);
2498    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2499  
2500    // See if there is already something with the target's name in the module.
2501    llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2502    if (Entry) {
2503      unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2504      auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2505      return ConstantAddress(Ptr, Alignment);
2506    }
2507  
2508    llvm::Constant *Aliasee;
2509    if (isa<llvm::FunctionType>(DeclTy))
2510      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2511                                        GlobalDecl(cast<FunctionDecl>(VD)),
2512                                        /*ForVTable=*/false);
2513    else
2514      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2515                                      llvm::PointerType::getUnqual(DeclTy),
2516                                      nullptr);
2517  
2518    auto *F = cast<llvm::GlobalValue>(Aliasee);
2519    F->setLinkage(llvm::Function::ExternalWeakLinkage);
2520    WeakRefReferences.insert(F);
2521  
2522    return ConstantAddress(Aliasee, Alignment);
2523  }
2524  
2525  void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2526    const auto *Global = cast<ValueDecl>(GD.getDecl());
2527  
2528    // Weak references don't produce any output by themselves.
2529    if (Global->hasAttr<WeakRefAttr>())
2530      return;
2531  
2532    // If this is an alias definition (which otherwise looks like a declaration)
2533    // emit it now.
2534    if (Global->hasAttr<AliasAttr>())
2535      return EmitAliasDefinition(GD);
2536  
2537    // IFunc like an alias whose value is resolved at runtime by calling resolver.
2538    if (Global->hasAttr<IFuncAttr>())
2539      return emitIFuncDefinition(GD);
2540  
2541    // If this is a cpu_dispatch multiversion function, emit the resolver.
2542    if (Global->hasAttr<CPUDispatchAttr>())
2543      return emitCPUDispatchDefinition(GD);
2544  
2545    // If this is CUDA, be selective about which declarations we emit.
2546    if (LangOpts.CUDA) {
2547      if (LangOpts.CUDAIsDevice) {
2548        if (!Global->hasAttr<CUDADeviceAttr>() &&
2549            !Global->hasAttr<CUDAGlobalAttr>() &&
2550            !Global->hasAttr<CUDAConstantAttr>() &&
2551            !Global->hasAttr<CUDASharedAttr>() &&
2552            !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2553            !Global->getType()->isCUDADeviceBuiltinTextureType())
2554          return;
2555      } else {
2556        // We need to emit host-side 'shadows' for all global
2557        // device-side variables because the CUDA runtime needs their
2558        // size and host-side address in order to provide access to
2559        // their device-side incarnations.
2560  
2561        // So device-only functions are the only things we skip.
2562        if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2563            Global->hasAttr<CUDADeviceAttr>())
2564          return;
2565  
2566        assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2567               "Expected Variable or Function");
2568      }
2569    }
2570  
2571    if (LangOpts.OpenMP) {
2572      // If this is OpenMP, check if it is legal to emit this global normally.
2573      if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2574        return;
2575      if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2576        if (MustBeEmitted(Global))
2577          EmitOMPDeclareReduction(DRD);
2578        return;
2579      } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2580        if (MustBeEmitted(Global))
2581          EmitOMPDeclareMapper(DMD);
2582        return;
2583      }
2584    }
2585  
2586    // Ignore declarations, they will be emitted on their first use.
2587    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2588      // Forward declarations are emitted lazily on first use.
2589      if (!FD->doesThisDeclarationHaveABody()) {
2590        if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2591          return;
2592  
2593        StringRef MangledName = getMangledName(GD);
2594  
2595        // Compute the function info and LLVM type.
2596        const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2597        llvm::Type *Ty = getTypes().GetFunctionType(FI);
2598  
2599        GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2600                                /*DontDefer=*/false);
2601        return;
2602      }
2603    } else {
2604      const auto *VD = cast<VarDecl>(Global);
2605      assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2606      if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2607          !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2608        if (LangOpts.OpenMP) {
2609          // Emit declaration of the must-be-emitted declare target variable.
2610          if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2611                  OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2612            bool UnifiedMemoryEnabled =
2613                getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2614            if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2615                !UnifiedMemoryEnabled) {
2616              (void)GetAddrOfGlobalVar(VD);
2617            } else {
2618              assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2619                      (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2620                       UnifiedMemoryEnabled)) &&
2621                     "Link clause or to clause with unified memory expected.");
2622              (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2623            }
2624  
2625            return;
2626          }
2627        }
2628        // If this declaration may have caused an inline variable definition to
2629        // change linkage, make sure that it's emitted.
2630        if (Context.getInlineVariableDefinitionKind(VD) ==
2631            ASTContext::InlineVariableDefinitionKind::Strong)
2632          GetAddrOfGlobalVar(VD);
2633        return;
2634      }
2635    }
2636  
2637    // Defer code generation to first use when possible, e.g. if this is an inline
2638    // function. If the global must always be emitted, do it eagerly if possible
2639    // to benefit from cache locality.
2640    if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2641      // Emit the definition if it can't be deferred.
2642      EmitGlobalDefinition(GD);
2643      return;
2644    }
2645  
2646    // If we're deferring emission of a C++ variable with an
2647    // initializer, remember the order in which it appeared in the file.
2648    if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2649        cast<VarDecl>(Global)->hasInit()) {
2650      DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2651      CXXGlobalInits.push_back(nullptr);
2652    }
2653  
2654    StringRef MangledName = getMangledName(GD);
2655    if (GetGlobalValue(MangledName) != nullptr) {
2656      // The value has already been used and should therefore be emitted.
2657      addDeferredDeclToEmit(GD);
2658    } else if (MustBeEmitted(Global)) {
2659      // The value must be emitted, but cannot be emitted eagerly.
2660      assert(!MayBeEmittedEagerly(Global));
2661      addDeferredDeclToEmit(GD);
2662    } else {
2663      // Otherwise, remember that we saw a deferred decl with this name.  The
2664      // first use of the mangled name will cause it to move into
2665      // DeferredDeclsToEmit.
2666      DeferredDecls[MangledName] = GD;
2667    }
2668  }
2669  
2670  // Check if T is a class type with a destructor that's not dllimport.
2671  static bool HasNonDllImportDtor(QualType T) {
2672    if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2673      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2674        if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2675          return true;
2676  
2677    return false;
2678  }
2679  
2680  namespace {
2681    struct FunctionIsDirectlyRecursive
2682        : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2683      const StringRef Name;
2684      const Builtin::Context &BI;
2685      FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2686          : Name(N), BI(C) {}
2687  
2688      bool VisitCallExpr(const CallExpr *E) {
2689        const FunctionDecl *FD = E->getDirectCallee();
2690        if (!FD)
2691          return false;
2692        AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2693        if (Attr && Name == Attr->getLabel())
2694          return true;
2695        unsigned BuiltinID = FD->getBuiltinID();
2696        if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2697          return false;
2698        StringRef BuiltinName = BI.getName(BuiltinID);
2699        if (BuiltinName.startswith("__builtin_") &&
2700            Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2701          return true;
2702        }
2703        return false;
2704      }
2705  
2706      bool VisitStmt(const Stmt *S) {
2707        for (const Stmt *Child : S->children())
2708          if (Child && this->Visit(Child))
2709            return true;
2710        return false;
2711      }
2712    };
2713  
2714    // Make sure we're not referencing non-imported vars or functions.
2715    struct DLLImportFunctionVisitor
2716        : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2717      bool SafeToInline = true;
2718  
2719      bool shouldVisitImplicitCode() const { return true; }
2720  
2721      bool VisitVarDecl(VarDecl *VD) {
2722        if (VD->getTLSKind()) {
2723          // A thread-local variable cannot be imported.
2724          SafeToInline = false;
2725          return SafeToInline;
2726        }
2727  
2728        // A variable definition might imply a destructor call.
2729        if (VD->isThisDeclarationADefinition())
2730          SafeToInline = !HasNonDllImportDtor(VD->getType());
2731  
2732        return SafeToInline;
2733      }
2734  
2735      bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2736        if (const auto *D = E->getTemporary()->getDestructor())
2737          SafeToInline = D->hasAttr<DLLImportAttr>();
2738        return SafeToInline;
2739      }
2740  
2741      bool VisitDeclRefExpr(DeclRefExpr *E) {
2742        ValueDecl *VD = E->getDecl();
2743        if (isa<FunctionDecl>(VD))
2744          SafeToInline = VD->hasAttr<DLLImportAttr>();
2745        else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2746          SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2747        return SafeToInline;
2748      }
2749  
2750      bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2751        SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2752        return SafeToInline;
2753      }
2754  
2755      bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2756        CXXMethodDecl *M = E->getMethodDecl();
2757        if (!M) {
2758          // Call through a pointer to member function. This is safe to inline.
2759          SafeToInline = true;
2760        } else {
2761          SafeToInline = M->hasAttr<DLLImportAttr>();
2762        }
2763        return SafeToInline;
2764      }
2765  
2766      bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2767        SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2768        return SafeToInline;
2769      }
2770  
2771      bool VisitCXXNewExpr(CXXNewExpr *E) {
2772        SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2773        return SafeToInline;
2774      }
2775    };
2776  }
2777  
2778  // isTriviallyRecursive - Check if this function calls another
2779  // decl that, because of the asm attribute or the other decl being a builtin,
2780  // ends up pointing to itself.
2781  bool
2782  CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2783    StringRef Name;
2784    if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2785      // asm labels are a special kind of mangling we have to support.
2786      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2787      if (!Attr)
2788        return false;
2789      Name = Attr->getLabel();
2790    } else {
2791      Name = FD->getName();
2792    }
2793  
2794    FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2795    const Stmt *Body = FD->getBody();
2796    return Body ? Walker.Visit(Body) : false;
2797  }
2798  
2799  bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2800    if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2801      return true;
2802    const auto *F = cast<FunctionDecl>(GD.getDecl());
2803    if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2804      return false;
2805  
2806    if (F->hasAttr<DLLImportAttr>()) {
2807      // Check whether it would be safe to inline this dllimport function.
2808      DLLImportFunctionVisitor Visitor;
2809      Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2810      if (!Visitor.SafeToInline)
2811        return false;
2812  
2813      if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2814        // Implicit destructor invocations aren't captured in the AST, so the
2815        // check above can't see them. Check for them manually here.
2816        for (const Decl *Member : Dtor->getParent()->decls())
2817          if (isa<FieldDecl>(Member))
2818            if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2819              return false;
2820        for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2821          if (HasNonDllImportDtor(B.getType()))
2822            return false;
2823      }
2824    }
2825  
2826    // PR9614. Avoid cases where the source code is lying to us. An available
2827    // externally function should have an equivalent function somewhere else,
2828    // but a function that calls itself through asm label/`__builtin_` trickery is
2829    // clearly not equivalent to the real implementation.
2830    // This happens in glibc's btowc and in some configure checks.
2831    return !isTriviallyRecursive(F);
2832  }
2833  
2834  bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2835    return CodeGenOpts.OptimizationLevel > 0;
2836  }
2837  
2838  void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2839                                                         llvm::GlobalValue *GV) {
2840    const auto *FD = cast<FunctionDecl>(GD.getDecl());
2841  
2842    if (FD->isCPUSpecificMultiVersion()) {
2843      auto *Spec = FD->getAttr<CPUSpecificAttr>();
2844      for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2845        EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2846      // Requires multiple emits.
2847    } else
2848      EmitGlobalFunctionDefinition(GD, GV);
2849  }
2850  
2851  void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2852    const auto *D = cast<ValueDecl>(GD.getDecl());
2853  
2854    PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2855                                   Context.getSourceManager(),
2856                                   "Generating code for declaration");
2857  
2858    if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2859      // At -O0, don't generate IR for functions with available_externally
2860      // linkage.
2861      if (!shouldEmitFunction(GD))
2862        return;
2863  
2864      llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2865        std::string Name;
2866        llvm::raw_string_ostream OS(Name);
2867        FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2868                                 /*Qualified=*/true);
2869        return Name;
2870      });
2871  
2872      if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2873        // Make sure to emit the definition(s) before we emit the thunks.
2874        // This is necessary for the generation of certain thunks.
2875        if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2876          ABI->emitCXXStructor(GD);
2877        else if (FD->isMultiVersion())
2878          EmitMultiVersionFunctionDefinition(GD, GV);
2879        else
2880          EmitGlobalFunctionDefinition(GD, GV);
2881  
2882        if (Method->isVirtual())
2883          getVTables().EmitThunks(GD);
2884  
2885        return;
2886      }
2887  
2888      if (FD->isMultiVersion())
2889        return EmitMultiVersionFunctionDefinition(GD, GV);
2890      return EmitGlobalFunctionDefinition(GD, GV);
2891    }
2892  
2893    if (const auto *VD = dyn_cast<VarDecl>(D))
2894      return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2895  
2896    llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2897  }
2898  
2899  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2900                                                        llvm::Function *NewFn);
2901  
2902  static unsigned
2903  TargetMVPriority(const TargetInfo &TI,
2904                   const CodeGenFunction::MultiVersionResolverOption &RO) {
2905    unsigned Priority = 0;
2906    for (StringRef Feat : RO.Conditions.Features)
2907      Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2908  
2909    if (!RO.Conditions.Architecture.empty())
2910      Priority = std::max(
2911          Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2912    return Priority;
2913  }
2914  
2915  void CodeGenModule::emitMultiVersionFunctions() {
2916    for (GlobalDecl GD : MultiVersionFuncs) {
2917      SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2918      const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2919      getContext().forEachMultiversionedFunctionVersion(
2920          FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2921            GlobalDecl CurGD{
2922                (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2923            StringRef MangledName = getMangledName(CurGD);
2924            llvm::Constant *Func = GetGlobalValue(MangledName);
2925            if (!Func) {
2926              if (CurFD->isDefined()) {
2927                EmitGlobalFunctionDefinition(CurGD, nullptr);
2928                Func = GetGlobalValue(MangledName);
2929              } else {
2930                const CGFunctionInfo &FI =
2931                    getTypes().arrangeGlobalDeclaration(GD);
2932                llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2933                Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2934                                         /*DontDefer=*/false, ForDefinition);
2935              }
2936              assert(Func && "This should have just been created");
2937            }
2938  
2939            const auto *TA = CurFD->getAttr<TargetAttr>();
2940            llvm::SmallVector<StringRef, 8> Feats;
2941            TA->getAddedFeatures(Feats);
2942  
2943            Options.emplace_back(cast<llvm::Function>(Func),
2944                                 TA->getArchitecture(), Feats);
2945          });
2946  
2947      llvm::Function *ResolverFunc;
2948      const TargetInfo &TI = getTarget();
2949  
2950      if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2951        ResolverFunc = cast<llvm::Function>(
2952            GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2953        ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2954      } else {
2955        ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2956      }
2957  
2958      if (supportsCOMDAT())
2959        ResolverFunc->setComdat(
2960            getModule().getOrInsertComdat(ResolverFunc->getName()));
2961  
2962      llvm::stable_sort(
2963          Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2964                         const CodeGenFunction::MultiVersionResolverOption &RHS) {
2965            return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2966          });
2967      CodeGenFunction CGF(*this);
2968      CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2969    }
2970  }
2971  
2972  void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2973    const auto *FD = cast<FunctionDecl>(GD.getDecl());
2974    assert(FD && "Not a FunctionDecl?");
2975    const auto *DD = FD->getAttr<CPUDispatchAttr>();
2976    assert(DD && "Not a cpu_dispatch Function?");
2977    llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2978  
2979    if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2980      const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2981      DeclTy = getTypes().GetFunctionType(FInfo);
2982    }
2983  
2984    StringRef ResolverName = getMangledName(GD);
2985  
2986    llvm::Type *ResolverType;
2987    GlobalDecl ResolverGD;
2988    if (getTarget().supportsIFunc())
2989      ResolverType = llvm::FunctionType::get(
2990          llvm::PointerType::get(DeclTy,
2991                                 Context.getTargetAddressSpace(FD->getType())),
2992          false);
2993    else {
2994      ResolverType = DeclTy;
2995      ResolverGD = GD;
2996    }
2997  
2998    auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2999        ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3000    ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3001    if (supportsCOMDAT())
3002      ResolverFunc->setComdat(
3003          getModule().getOrInsertComdat(ResolverFunc->getName()));
3004  
3005    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3006    const TargetInfo &Target = getTarget();
3007    unsigned Index = 0;
3008    for (const IdentifierInfo *II : DD->cpus()) {
3009      // Get the name of the target function so we can look it up/create it.
3010      std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3011                                getCPUSpecificMangling(*this, II->getName());
3012  
3013      llvm::Constant *Func = GetGlobalValue(MangledName);
3014  
3015      if (!Func) {
3016        GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3017        if (ExistingDecl.getDecl() &&
3018            ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3019          EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3020          Func = GetGlobalValue(MangledName);
3021        } else {
3022          if (!ExistingDecl.getDecl())
3023            ExistingDecl = GD.getWithMultiVersionIndex(Index);
3024  
3025        Func = GetOrCreateLLVMFunction(
3026            MangledName, DeclTy, ExistingDecl,
3027            /*ForVTable=*/false, /*DontDefer=*/true,
3028            /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3029        }
3030      }
3031  
3032      llvm::SmallVector<StringRef, 32> Features;
3033      Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3034      llvm::transform(Features, Features.begin(),
3035                      [](StringRef Str) { return Str.substr(1); });
3036      Features.erase(std::remove_if(
3037          Features.begin(), Features.end(), [&Target](StringRef Feat) {
3038            return !Target.validateCpuSupports(Feat);
3039          }), Features.end());
3040      Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3041      ++Index;
3042    }
3043  
3044    llvm::sort(
3045        Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3046                    const CodeGenFunction::MultiVersionResolverOption &RHS) {
3047          return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3048                 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3049        });
3050  
3051    // If the list contains multiple 'default' versions, such as when it contains
3052    // 'pentium' and 'generic', don't emit the call to the generic one (since we
3053    // always run on at least a 'pentium'). We do this by deleting the 'least
3054    // advanced' (read, lowest mangling letter).
3055    while (Options.size() > 1 &&
3056           CodeGenFunction::GetX86CpuSupportsMask(
3057               (Options.end() - 2)->Conditions.Features) == 0) {
3058      StringRef LHSName = (Options.end() - 2)->Function->getName();
3059      StringRef RHSName = (Options.end() - 1)->Function->getName();
3060      if (LHSName.compare(RHSName) < 0)
3061        Options.erase(Options.end() - 2);
3062      else
3063        Options.erase(Options.end() - 1);
3064    }
3065  
3066    CodeGenFunction CGF(*this);
3067    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3068  
3069    if (getTarget().supportsIFunc()) {
3070      std::string AliasName = getMangledNameImpl(
3071          *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3072      llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3073      if (!AliasFunc) {
3074        auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3075            AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3076            /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3077        auto *GA = llvm::GlobalAlias::create(
3078           DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3079        GA->setLinkage(llvm::Function::WeakODRLinkage);
3080        SetCommonAttributes(GD, GA);
3081      }
3082    }
3083  }
3084  
3085  /// If a dispatcher for the specified mangled name is not in the module, create
3086  /// and return an llvm Function with the specified type.
3087  llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3088      GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3089    std::string MangledName =
3090        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3091  
3092    // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3093    // a separate resolver).
3094    std::string ResolverName = MangledName;
3095    if (getTarget().supportsIFunc())
3096      ResolverName += ".ifunc";
3097    else if (FD->isTargetMultiVersion())
3098      ResolverName += ".resolver";
3099  
3100    // If this already exists, just return that one.
3101    if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3102      return ResolverGV;
3103  
3104    // Since this is the first time we've created this IFunc, make sure
3105    // that we put this multiversioned function into the list to be
3106    // replaced later if necessary (target multiversioning only).
3107    if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3108      MultiVersionFuncs.push_back(GD);
3109  
3110    if (getTarget().supportsIFunc()) {
3111      llvm::Type *ResolverType = llvm::FunctionType::get(
3112          llvm::PointerType::get(
3113              DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3114          false);
3115      llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3116          MangledName + ".resolver", ResolverType, GlobalDecl{},
3117          /*ForVTable=*/false);
3118      llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3119          DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3120      GIF->setName(ResolverName);
3121      SetCommonAttributes(FD, GIF);
3122  
3123      return GIF;
3124    }
3125  
3126    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3127        ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3128    assert(isa<llvm::GlobalValue>(Resolver) &&
3129           "Resolver should be created for the first time");
3130    SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3131    return Resolver;
3132  }
3133  
3134  /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3135  /// module, create and return an llvm Function with the specified type. If there
3136  /// is something in the module with the specified name, return it potentially
3137  /// bitcasted to the right type.
3138  ///
3139  /// If D is non-null, it specifies a decl that correspond to this.  This is used
3140  /// to set the attributes on the function when it is first created.
3141  llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3142      StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3143      bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3144      ForDefinition_t IsForDefinition) {
3145    const Decl *D = GD.getDecl();
3146  
3147    // Any attempts to use a MultiVersion function should result in retrieving
3148    // the iFunc instead. Name Mangling will handle the rest of the changes.
3149    if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3150      // For the device mark the function as one that should be emitted.
3151      if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3152          !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3153          !DontDefer && !IsForDefinition) {
3154        if (const FunctionDecl *FDDef = FD->getDefinition()) {
3155          GlobalDecl GDDef;
3156          if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3157            GDDef = GlobalDecl(CD, GD.getCtorType());
3158          else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3159            GDDef = GlobalDecl(DD, GD.getDtorType());
3160          else
3161            GDDef = GlobalDecl(FDDef);
3162          EmitGlobal(GDDef);
3163        }
3164      }
3165  
3166      if (FD->isMultiVersion()) {
3167        if (FD->hasAttr<TargetAttr>())
3168          UpdateMultiVersionNames(GD, FD);
3169        if (!IsForDefinition)
3170          return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3171      }
3172    }
3173  
3174    // Lookup the entry, lazily creating it if necessary.
3175    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3176    if (Entry) {
3177      if (WeakRefReferences.erase(Entry)) {
3178        const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3179        if (FD && !FD->hasAttr<WeakAttr>())
3180          Entry->setLinkage(llvm::Function::ExternalLinkage);
3181      }
3182  
3183      // Handle dropped DLL attributes.
3184      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3185        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3186        setDSOLocal(Entry);
3187      }
3188  
3189      // If there are two attempts to define the same mangled name, issue an
3190      // error.
3191      if (IsForDefinition && !Entry->isDeclaration()) {
3192        GlobalDecl OtherGD;
3193        // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3194        // to make sure that we issue an error only once.
3195        if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3196            (GD.getCanonicalDecl().getDecl() !=
3197             OtherGD.getCanonicalDecl().getDecl()) &&
3198            DiagnosedConflictingDefinitions.insert(GD).second) {
3199          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3200              << MangledName;
3201          getDiags().Report(OtherGD.getDecl()->getLocation(),
3202                            diag::note_previous_definition);
3203        }
3204      }
3205  
3206      if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3207          (Entry->getValueType() == Ty)) {
3208        return Entry;
3209      }
3210  
3211      // Make sure the result is of the correct type.
3212      // (If function is requested for a definition, we always need to create a new
3213      // function, not just return a bitcast.)
3214      if (!IsForDefinition)
3215        return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3216    }
3217  
3218    // This function doesn't have a complete type (for example, the return
3219    // type is an incomplete struct). Use a fake type instead, and make
3220    // sure not to try to set attributes.
3221    bool IsIncompleteFunction = false;
3222  
3223    llvm::FunctionType *FTy;
3224    if (isa<llvm::FunctionType>(Ty)) {
3225      FTy = cast<llvm::FunctionType>(Ty);
3226    } else {
3227      FTy = llvm::FunctionType::get(VoidTy, false);
3228      IsIncompleteFunction = true;
3229    }
3230  
3231    llvm::Function *F =
3232        llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3233                               Entry ? StringRef() : MangledName, &getModule());
3234  
3235    // If we already created a function with the same mangled name (but different
3236    // type) before, take its name and add it to the list of functions to be
3237    // replaced with F at the end of CodeGen.
3238    //
3239    // This happens if there is a prototype for a function (e.g. "int f()") and
3240    // then a definition of a different type (e.g. "int f(int x)").
3241    if (Entry) {
3242      F->takeName(Entry);
3243  
3244      // This might be an implementation of a function without a prototype, in
3245      // which case, try to do special replacement of calls which match the new
3246      // prototype.  The really key thing here is that we also potentially drop
3247      // arguments from the call site so as to make a direct call, which makes the
3248      // inliner happier and suppresses a number of optimizer warnings (!) about
3249      // dropping arguments.
3250      if (!Entry->use_empty()) {
3251        ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3252        Entry->removeDeadConstantUsers();
3253      }
3254  
3255      llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3256          F, Entry->getValueType()->getPointerTo());
3257      addGlobalValReplacement(Entry, BC);
3258    }
3259  
3260    assert(F->getName() == MangledName && "name was uniqued!");
3261    if (D)
3262      SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3263    if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3264      llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3265      F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3266    }
3267  
3268    if (!DontDefer) {
3269      // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3270      // each other bottoming out with the base dtor.  Therefore we emit non-base
3271      // dtors on usage, even if there is no dtor definition in the TU.
3272      if (D && isa<CXXDestructorDecl>(D) &&
3273          getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3274                                             GD.getDtorType()))
3275        addDeferredDeclToEmit(GD);
3276  
3277      // This is the first use or definition of a mangled name.  If there is a
3278      // deferred decl with this name, remember that we need to emit it at the end
3279      // of the file.
3280      auto DDI = DeferredDecls.find(MangledName);
3281      if (DDI != DeferredDecls.end()) {
3282        // Move the potentially referenced deferred decl to the
3283        // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3284        // don't need it anymore).
3285        addDeferredDeclToEmit(DDI->second);
3286        DeferredDecls.erase(DDI);
3287  
3288        // Otherwise, there are cases we have to worry about where we're
3289        // using a declaration for which we must emit a definition but where
3290        // we might not find a top-level definition:
3291        //   - member functions defined inline in their classes
3292        //   - friend functions defined inline in some class
3293        //   - special member functions with implicit definitions
3294        // If we ever change our AST traversal to walk into class methods,
3295        // this will be unnecessary.
3296        //
3297        // We also don't emit a definition for a function if it's going to be an
3298        // entry in a vtable, unless it's already marked as used.
3299      } else if (getLangOpts().CPlusPlus && D) {
3300        // Look for a declaration that's lexically in a record.
3301        for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3302             FD = FD->getPreviousDecl()) {
3303          if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3304            if (FD->doesThisDeclarationHaveABody()) {
3305              addDeferredDeclToEmit(GD.getWithDecl(FD));
3306              break;
3307            }
3308          }
3309        }
3310      }
3311    }
3312  
3313    // Make sure the result is of the requested type.
3314    if (!IsIncompleteFunction) {
3315      assert(F->getFunctionType() == Ty);
3316      return F;
3317    }
3318  
3319    llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3320    return llvm::ConstantExpr::getBitCast(F, PTy);
3321  }
3322  
3323  /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3324  /// non-null, then this function will use the specified type if it has to
3325  /// create it (this occurs when we see a definition of the function).
3326  llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3327                                                   llvm::Type *Ty,
3328                                                   bool ForVTable,
3329                                                   bool DontDefer,
3330                                                ForDefinition_t IsForDefinition) {
3331    assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3332           "consteval function should never be emitted");
3333    // If there was no specific requested type, just convert it now.
3334    if (!Ty) {
3335      const auto *FD = cast<FunctionDecl>(GD.getDecl());
3336      Ty = getTypes().ConvertType(FD->getType());
3337    }
3338  
3339    // Devirtualized destructor calls may come through here instead of via
3340    // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3341    // of the complete destructor when necessary.
3342    if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3343      if (getTarget().getCXXABI().isMicrosoft() &&
3344          GD.getDtorType() == Dtor_Complete &&
3345          DD->getParent()->getNumVBases() == 0)
3346        GD = GlobalDecl(DD, Dtor_Base);
3347    }
3348  
3349    StringRef MangledName = getMangledName(GD);
3350    return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3351                                   /*IsThunk=*/false, llvm::AttributeList(),
3352                                   IsForDefinition);
3353  }
3354  
3355  static const FunctionDecl *
3356  GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3357    TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3358    DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3359  
3360    IdentifierInfo &CII = C.Idents.get(Name);
3361    for (const auto &Result : DC->lookup(&CII))
3362      if (const auto FD = dyn_cast<FunctionDecl>(Result))
3363        return FD;
3364  
3365    if (!C.getLangOpts().CPlusPlus)
3366      return nullptr;
3367  
3368    // Demangle the premangled name from getTerminateFn()
3369    IdentifierInfo &CXXII =
3370        (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3371            ? C.Idents.get("terminate")
3372            : C.Idents.get(Name);
3373  
3374    for (const auto &N : {"__cxxabiv1", "std"}) {
3375      IdentifierInfo &NS = C.Idents.get(N);
3376      for (const auto &Result : DC->lookup(&NS)) {
3377        NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3378        if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3379          for (const auto &Result : LSD->lookup(&NS))
3380            if ((ND = dyn_cast<NamespaceDecl>(Result)))
3381              break;
3382  
3383        if (ND)
3384          for (const auto &Result : ND->lookup(&CXXII))
3385            if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3386              return FD;
3387      }
3388    }
3389  
3390    return nullptr;
3391  }
3392  
3393  /// CreateRuntimeFunction - Create a new runtime function with the specified
3394  /// type and name.
3395  llvm::FunctionCallee
3396  CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3397                                       llvm::AttributeList ExtraAttrs, bool Local,
3398                                       bool AssumeConvergent) {
3399    if (AssumeConvergent) {
3400      ExtraAttrs =
3401          ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3402                                  llvm::Attribute::Convergent);
3403    }
3404  
3405    llvm::Constant *C =
3406        GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3407                                /*DontDefer=*/false, /*IsThunk=*/false,
3408                                ExtraAttrs);
3409  
3410    if (auto *F = dyn_cast<llvm::Function>(C)) {
3411      if (F->empty()) {
3412        F->setCallingConv(getRuntimeCC());
3413  
3414        // In Windows Itanium environments, try to mark runtime functions
3415        // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3416        // will link their standard library statically or dynamically. Marking
3417        // functions imported when they are not imported can cause linker errors
3418        // and warnings.
3419        if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3420            !getCodeGenOpts().LTOVisibilityPublicStd) {
3421          const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3422          if (!FD || FD->hasAttr<DLLImportAttr>()) {
3423            F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3424            F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3425          }
3426        }
3427        setDSOLocal(F);
3428      }
3429    }
3430  
3431    return {FTy, C};
3432  }
3433  
3434  /// isTypeConstant - Determine whether an object of this type can be emitted
3435  /// as a constant.
3436  ///
3437  /// If ExcludeCtor is true, the duration when the object's constructor runs
3438  /// will not be considered. The caller will need to verify that the object is
3439  /// not written to during its construction.
3440  bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3441    if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3442      return false;
3443  
3444    if (Context.getLangOpts().CPlusPlus) {
3445      if (const CXXRecordDecl *Record
3446            = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3447        return ExcludeCtor && !Record->hasMutableFields() &&
3448               Record->hasTrivialDestructor();
3449    }
3450  
3451    return true;
3452  }
3453  
3454  /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3455  /// create and return an llvm GlobalVariable with the specified type.  If there
3456  /// is something in the module with the specified name, return it potentially
3457  /// bitcasted to the right type.
3458  ///
3459  /// If D is non-null, it specifies a decl that correspond to this.  This is used
3460  /// to set the attributes on the global when it is first created.
3461  ///
3462  /// If IsForDefinition is true, it is guaranteed that an actual global with
3463  /// type Ty will be returned, not conversion of a variable with the same
3464  /// mangled name but some other type.
3465  llvm::Constant *
3466  CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3467                                       llvm::PointerType *Ty,
3468                                       const VarDecl *D,
3469                                       ForDefinition_t IsForDefinition) {
3470    // Lookup the entry, lazily creating it if necessary.
3471    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3472    if (Entry) {
3473      if (WeakRefReferences.erase(Entry)) {
3474        if (D && !D->hasAttr<WeakAttr>())
3475          Entry->setLinkage(llvm::Function::ExternalLinkage);
3476      }
3477  
3478      // Handle dropped DLL attributes.
3479      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3480        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3481  
3482      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3483        getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3484  
3485      if (Entry->getType() == Ty)
3486        return Entry;
3487  
3488      // If there are two attempts to define the same mangled name, issue an
3489      // error.
3490      if (IsForDefinition && !Entry->isDeclaration()) {
3491        GlobalDecl OtherGD;
3492        const VarDecl *OtherD;
3493  
3494        // Check that D is not yet in DiagnosedConflictingDefinitions is required
3495        // to make sure that we issue an error only once.
3496        if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3497            (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3498            (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3499            OtherD->hasInit() &&
3500            DiagnosedConflictingDefinitions.insert(D).second) {
3501          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3502              << MangledName;
3503          getDiags().Report(OtherGD.getDecl()->getLocation(),
3504                            diag::note_previous_definition);
3505        }
3506      }
3507  
3508      // Make sure the result is of the correct type.
3509      if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3510        return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3511  
3512      // (If global is requested for a definition, we always need to create a new
3513      // global, not just return a bitcast.)
3514      if (!IsForDefinition)
3515        return llvm::ConstantExpr::getBitCast(Entry, Ty);
3516    }
3517  
3518    auto AddrSpace = GetGlobalVarAddressSpace(D);
3519    auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3520  
3521    auto *GV = new llvm::GlobalVariable(
3522        getModule(), Ty->getElementType(), false,
3523        llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3524        llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3525  
3526    // If we already created a global with the same mangled name (but different
3527    // type) before, take its name and remove it from its parent.
3528    if (Entry) {
3529      GV->takeName(Entry);
3530  
3531      if (!Entry->use_empty()) {
3532        llvm::Constant *NewPtrForOldDecl =
3533            llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3534        Entry->replaceAllUsesWith(NewPtrForOldDecl);
3535      }
3536  
3537      Entry->eraseFromParent();
3538    }
3539  
3540    // This is the first use or definition of a mangled name.  If there is a
3541    // deferred decl with this name, remember that we need to emit it at the end
3542    // of the file.
3543    auto DDI = DeferredDecls.find(MangledName);
3544    if (DDI != DeferredDecls.end()) {
3545      // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3546      // list, and remove it from DeferredDecls (since we don't need it anymore).
3547      addDeferredDeclToEmit(DDI->second);
3548      DeferredDecls.erase(DDI);
3549    }
3550  
3551    // Handle things which are present even on external declarations.
3552    if (D) {
3553      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3554        getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3555  
3556      // FIXME: This code is overly simple and should be merged with other global
3557      // handling.
3558      GV->setConstant(isTypeConstant(D->getType(), false));
3559  
3560      GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3561  
3562      setLinkageForGV(GV, D);
3563  
3564      if (D->getTLSKind()) {
3565        if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3566          CXXThreadLocals.push_back(D);
3567        setTLSMode(GV, *D);
3568      }
3569  
3570      setGVProperties(GV, D);
3571  
3572      // If required by the ABI, treat declarations of static data members with
3573      // inline initializers as definitions.
3574      if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3575        EmitGlobalVarDefinition(D);
3576      }
3577  
3578      // Emit section information for extern variables.
3579      if (D->hasExternalStorage()) {
3580        if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3581          GV->setSection(SA->getName());
3582      }
3583  
3584      // Handle XCore specific ABI requirements.
3585      if (getTriple().getArch() == llvm::Triple::xcore &&
3586          D->getLanguageLinkage() == CLanguageLinkage &&
3587          D->getType().isConstant(Context) &&
3588          isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3589        GV->setSection(".cp.rodata");
3590  
3591      // Check if we a have a const declaration with an initializer, we may be
3592      // able to emit it as available_externally to expose it's value to the
3593      // optimizer.
3594      if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3595          D->getType().isConstQualified() && !GV->hasInitializer() &&
3596          !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3597        const auto *Record =
3598            Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3599        bool HasMutableFields = Record && Record->hasMutableFields();
3600        if (!HasMutableFields) {
3601          const VarDecl *InitDecl;
3602          const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3603          if (InitExpr) {
3604            ConstantEmitter emitter(*this);
3605            llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3606            if (Init) {
3607              auto *InitType = Init->getType();
3608              if (GV->getValueType() != InitType) {
3609                // The type of the initializer does not match the definition.
3610                // This happens when an initializer has a different type from
3611                // the type of the global (because of padding at the end of a
3612                // structure for instance).
3613                GV->setName(StringRef());
3614                // Make a new global with the correct type, this is now guaranteed
3615                // to work.
3616                auto *NewGV = cast<llvm::GlobalVariable>(
3617                    GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3618                        ->stripPointerCasts());
3619  
3620                // Erase the old global, since it is no longer used.
3621                GV->eraseFromParent();
3622                GV = NewGV;
3623              } else {
3624                GV->setInitializer(Init);
3625                GV->setConstant(true);
3626                GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3627              }
3628              emitter.finalize(GV);
3629            }
3630          }
3631        }
3632      }
3633    }
3634  
3635    if (GV->isDeclaration())
3636      getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3637  
3638    LangAS ExpectedAS =
3639        D ? D->getType().getAddressSpace()
3640          : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3641    assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3642           Ty->getPointerAddressSpace());
3643    if (AddrSpace != ExpectedAS)
3644      return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3645                                                         ExpectedAS, Ty);
3646  
3647    return GV;
3648  }
3649  
3650  llvm::Constant *
3651  CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3652    const Decl *D = GD.getDecl();
3653  
3654    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3655      return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3656                                  /*DontDefer=*/false, IsForDefinition);
3657  
3658    if (isa<CXXMethodDecl>(D)) {
3659      auto FInfo =
3660          &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3661      auto Ty = getTypes().GetFunctionType(*FInfo);
3662      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3663                               IsForDefinition);
3664    }
3665  
3666    if (isa<FunctionDecl>(D)) {
3667      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3668      llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3669      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3670                               IsForDefinition);
3671    }
3672  
3673    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3674  }
3675  
3676  llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3677      StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3678      unsigned Alignment) {
3679    llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3680    llvm::GlobalVariable *OldGV = nullptr;
3681  
3682    if (GV) {
3683      // Check if the variable has the right type.
3684      if (GV->getValueType() == Ty)
3685        return GV;
3686  
3687      // Because C++ name mangling, the only way we can end up with an already
3688      // existing global with the same name is if it has been declared extern "C".
3689      assert(GV->isDeclaration() && "Declaration has wrong type!");
3690      OldGV = GV;
3691    }
3692  
3693    // Create a new variable.
3694    GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3695                                  Linkage, nullptr, Name);
3696  
3697    if (OldGV) {
3698      // Replace occurrences of the old variable if needed.
3699      GV->takeName(OldGV);
3700  
3701      if (!OldGV->use_empty()) {
3702        llvm::Constant *NewPtrForOldDecl =
3703        llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3704        OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3705      }
3706  
3707      OldGV->eraseFromParent();
3708    }
3709  
3710    if (supportsCOMDAT() && GV->isWeakForLinker() &&
3711        !GV->hasAvailableExternallyLinkage())
3712      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3713  
3714    GV->setAlignment(llvm::MaybeAlign(Alignment));
3715  
3716    return GV;
3717  }
3718  
3719  /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3720  /// given global variable.  If Ty is non-null and if the global doesn't exist,
3721  /// then it will be created with the specified type instead of whatever the
3722  /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3723  /// that an actual global with type Ty will be returned, not conversion of a
3724  /// variable with the same mangled name but some other type.
3725  llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3726                                                    llvm::Type *Ty,
3727                                             ForDefinition_t IsForDefinition) {
3728    assert(D->hasGlobalStorage() && "Not a global variable");
3729    QualType ASTTy = D->getType();
3730    if (!Ty)
3731      Ty = getTypes().ConvertTypeForMem(ASTTy);
3732  
3733    llvm::PointerType *PTy =
3734      llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3735  
3736    StringRef MangledName = getMangledName(D);
3737    return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3738  }
3739  
3740  /// CreateRuntimeVariable - Create a new runtime global variable with the
3741  /// specified type and name.
3742  llvm::Constant *
3743  CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3744                                       StringRef Name) {
3745    auto PtrTy =
3746        getContext().getLangOpts().OpenCL
3747            ? llvm::PointerType::get(
3748                  Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3749            : llvm::PointerType::getUnqual(Ty);
3750    auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3751    setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3752    return Ret;
3753  }
3754  
3755  void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3756    assert(!D->getInit() && "Cannot emit definite definitions here!");
3757  
3758    StringRef MangledName = getMangledName(D);
3759    llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3760  
3761    // We already have a definition, not declaration, with the same mangled name.
3762    // Emitting of declaration is not required (and actually overwrites emitted
3763    // definition).
3764    if (GV && !GV->isDeclaration())
3765      return;
3766  
3767    // If we have not seen a reference to this variable yet, place it into the
3768    // deferred declarations table to be emitted if needed later.
3769    if (!MustBeEmitted(D) && !GV) {
3770        DeferredDecls[MangledName] = D;
3771        return;
3772    }
3773  
3774    // The tentative definition is the only definition.
3775    EmitGlobalVarDefinition(D);
3776  }
3777  
3778  void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3779    EmitExternalVarDeclaration(D);
3780  }
3781  
3782  CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3783    return Context.toCharUnitsFromBits(
3784        getDataLayout().getTypeStoreSizeInBits(Ty));
3785  }
3786  
3787  LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3788    LangAS AddrSpace = LangAS::Default;
3789    if (LangOpts.OpenCL) {
3790      AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3791      assert(AddrSpace == LangAS::opencl_global ||
3792             AddrSpace == LangAS::opencl_constant ||
3793             AddrSpace == LangAS::opencl_local ||
3794             AddrSpace >= LangAS::FirstTargetAddressSpace);
3795      return AddrSpace;
3796    }
3797  
3798    if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3799      if (D && D->hasAttr<CUDAConstantAttr>())
3800        return LangAS::cuda_constant;
3801      else if (D && D->hasAttr<CUDASharedAttr>())
3802        return LangAS::cuda_shared;
3803      else if (D && D->hasAttr<CUDADeviceAttr>())
3804        return LangAS::cuda_device;
3805      else if (D && D->getType().isConstQualified())
3806        return LangAS::cuda_constant;
3807      else
3808        return LangAS::cuda_device;
3809    }
3810  
3811    if (LangOpts.OpenMP) {
3812      LangAS AS;
3813      if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3814        return AS;
3815    }
3816    return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3817  }
3818  
3819  LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3820    // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3821    if (LangOpts.OpenCL)
3822      return LangAS::opencl_constant;
3823    if (auto AS = getTarget().getConstantAddressSpace())
3824      return AS.getValue();
3825    return LangAS::Default;
3826  }
3827  
3828  // In address space agnostic languages, string literals are in default address
3829  // space in AST. However, certain targets (e.g. amdgcn) request them to be
3830  // emitted in constant address space in LLVM IR. To be consistent with other
3831  // parts of AST, string literal global variables in constant address space
3832  // need to be casted to default address space before being put into address
3833  // map and referenced by other part of CodeGen.
3834  // In OpenCL, string literals are in constant address space in AST, therefore
3835  // they should not be casted to default address space.
3836  static llvm::Constant *
3837  castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3838                                         llvm::GlobalVariable *GV) {
3839    llvm::Constant *Cast = GV;
3840    if (!CGM.getLangOpts().OpenCL) {
3841      if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3842        if (AS != LangAS::Default)
3843          Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3844              CGM, GV, AS.getValue(), LangAS::Default,
3845              GV->getValueType()->getPointerTo(
3846                  CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3847      }
3848    }
3849    return Cast;
3850  }
3851  
3852  template<typename SomeDecl>
3853  void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3854                                                 llvm::GlobalValue *GV) {
3855    if (!getLangOpts().CPlusPlus)
3856      return;
3857  
3858    // Must have 'used' attribute, or else inline assembly can't rely on
3859    // the name existing.
3860    if (!D->template hasAttr<UsedAttr>())
3861      return;
3862  
3863    // Must have internal linkage and an ordinary name.
3864    if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3865      return;
3866  
3867    // Must be in an extern "C" context. Entities declared directly within
3868    // a record are not extern "C" even if the record is in such a context.
3869    const SomeDecl *First = D->getFirstDecl();
3870    if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3871      return;
3872  
3873    // OK, this is an internal linkage entity inside an extern "C" linkage
3874    // specification. Make a note of that so we can give it the "expected"
3875    // mangled name if nothing else is using that name.
3876    std::pair<StaticExternCMap::iterator, bool> R =
3877        StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3878  
3879    // If we have multiple internal linkage entities with the same name
3880    // in extern "C" regions, none of them gets that name.
3881    if (!R.second)
3882      R.first->second = nullptr;
3883  }
3884  
3885  static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3886    if (!CGM.supportsCOMDAT())
3887      return false;
3888  
3889    // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3890    // them being "merged" by the COMDAT Folding linker optimization.
3891    if (D.hasAttr<CUDAGlobalAttr>())
3892      return false;
3893  
3894    if (D.hasAttr<SelectAnyAttr>())
3895      return true;
3896  
3897    GVALinkage Linkage;
3898    if (auto *VD = dyn_cast<VarDecl>(&D))
3899      Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3900    else
3901      Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3902  
3903    switch (Linkage) {
3904    case GVA_Internal:
3905    case GVA_AvailableExternally:
3906    case GVA_StrongExternal:
3907      return false;
3908    case GVA_DiscardableODR:
3909    case GVA_StrongODR:
3910      return true;
3911    }
3912    llvm_unreachable("No such linkage");
3913  }
3914  
3915  void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3916                                            llvm::GlobalObject &GO) {
3917    if (!shouldBeInCOMDAT(*this, D))
3918      return;
3919    GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3920  }
3921  
3922  /// Pass IsTentative as true if you want to create a tentative definition.
3923  void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3924                                              bool IsTentative) {
3925    // OpenCL global variables of sampler type are translated to function calls,
3926    // therefore no need to be translated.
3927    QualType ASTTy = D->getType();
3928    if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3929      return;
3930  
3931    // If this is OpenMP device, check if it is legal to emit this global
3932    // normally.
3933    if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3934        OpenMPRuntime->emitTargetGlobalVariable(D))
3935      return;
3936  
3937    llvm::Constant *Init = nullptr;
3938    bool NeedsGlobalCtor = false;
3939    bool NeedsGlobalDtor =
3940        D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3941  
3942    const VarDecl *InitDecl;
3943    const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3944  
3945    Optional<ConstantEmitter> emitter;
3946  
3947    // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3948    // as part of their declaration."  Sema has already checked for
3949    // error cases, so we just need to set Init to UndefValue.
3950    bool IsCUDASharedVar =
3951        getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3952    // Shadows of initialized device-side global variables are also left
3953    // undefined.
3954    bool IsCUDAShadowVar =
3955        !getLangOpts().CUDAIsDevice &&
3956        (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3957         D->hasAttr<CUDASharedAttr>());
3958    bool IsCUDADeviceShadowVar =
3959        getLangOpts().CUDAIsDevice &&
3960        (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
3961         D->getType()->isCUDADeviceBuiltinTextureType());
3962    // HIP pinned shadow of initialized host-side global variables are also
3963    // left undefined.
3964    if (getLangOpts().CUDA &&
3965        (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
3966      Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3967    else if (D->hasAttr<LoaderUninitializedAttr>())
3968      Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3969    else if (!InitExpr) {
3970      // This is a tentative definition; tentative definitions are
3971      // implicitly initialized with { 0 }.
3972      //
3973      // Note that tentative definitions are only emitted at the end of
3974      // a translation unit, so they should never have incomplete
3975      // type. In addition, EmitTentativeDefinition makes sure that we
3976      // never attempt to emit a tentative definition if a real one
3977      // exists. A use may still exists, however, so we still may need
3978      // to do a RAUW.
3979      assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3980      Init = EmitNullConstant(D->getType());
3981    } else {
3982      initializedGlobalDecl = GlobalDecl(D);
3983      emitter.emplace(*this);
3984      Init = emitter->tryEmitForInitializer(*InitDecl);
3985  
3986      if (!Init) {
3987        QualType T = InitExpr->getType();
3988        if (D->getType()->isReferenceType())
3989          T = D->getType();
3990  
3991        if (getLangOpts().CPlusPlus) {
3992          Init = EmitNullConstant(T);
3993          NeedsGlobalCtor = true;
3994        } else {
3995          ErrorUnsupported(D, "static initializer");
3996          Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3997        }
3998      } else {
3999        // We don't need an initializer, so remove the entry for the delayed
4000        // initializer position (just in case this entry was delayed) if we
4001        // also don't need to register a destructor.
4002        if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4003          DelayedCXXInitPosition.erase(D);
4004      }
4005    }
4006  
4007    llvm::Type* InitType = Init->getType();
4008    llvm::Constant *Entry =
4009        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4010  
4011    // Strip off pointer casts if we got them.
4012    Entry = Entry->stripPointerCasts();
4013  
4014    // Entry is now either a Function or GlobalVariable.
4015    auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4016  
4017    // We have a definition after a declaration with the wrong type.
4018    // We must make a new GlobalVariable* and update everything that used OldGV
4019    // (a declaration or tentative definition) with the new GlobalVariable*
4020    // (which will be a definition).
4021    //
4022    // This happens if there is a prototype for a global (e.g.
4023    // "extern int x[];") and then a definition of a different type (e.g.
4024    // "int x[10];"). This also happens when an initializer has a different type
4025    // from the type of the global (this happens with unions).
4026    if (!GV || GV->getValueType() != InitType ||
4027        GV->getType()->getAddressSpace() !=
4028            getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4029  
4030      // Move the old entry aside so that we'll create a new one.
4031      Entry->setName(StringRef());
4032  
4033      // Make a new global with the correct type, this is now guaranteed to work.
4034      GV = cast<llvm::GlobalVariable>(
4035          GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4036              ->stripPointerCasts());
4037  
4038      // Replace all uses of the old global with the new global
4039      llvm::Constant *NewPtrForOldDecl =
4040          llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4041      Entry->replaceAllUsesWith(NewPtrForOldDecl);
4042  
4043      // Erase the old global, since it is no longer used.
4044      cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4045    }
4046  
4047    MaybeHandleStaticInExternC(D, GV);
4048  
4049    if (D->hasAttr<AnnotateAttr>())
4050      AddGlobalAnnotations(D, GV);
4051  
4052    // Set the llvm linkage type as appropriate.
4053    llvm::GlobalValue::LinkageTypes Linkage =
4054        getLLVMLinkageVarDefinition(D, GV->isConstant());
4055  
4056    // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4057    // the device. [...]"
4058    // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4059    // __device__, declares a variable that: [...]
4060    // Is accessible from all the threads within the grid and from the host
4061    // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4062    // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4063    if (GV && LangOpts.CUDA) {
4064      if (LangOpts.CUDAIsDevice) {
4065        if (Linkage != llvm::GlobalValue::InternalLinkage &&
4066            (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4067          GV->setExternallyInitialized(true);
4068      } else {
4069        // Host-side shadows of external declarations of device-side
4070        // global variables become internal definitions. These have to
4071        // be internal in order to prevent name conflicts with global
4072        // host variables with the same name in a different TUs.
4073        if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4074          Linkage = llvm::GlobalValue::InternalLinkage;
4075          // Shadow variables and their properties must be registered with CUDA
4076          // runtime. Skip Extern global variables, which will be registered in
4077          // the TU where they are defined.
4078          if (!D->hasExternalStorage())
4079            getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4080                                               D->hasAttr<CUDAConstantAttr>());
4081        } else if (D->hasAttr<CUDASharedAttr>()) {
4082          // __shared__ variables are odd. Shadows do get created, but
4083          // they are not registered with the CUDA runtime, so they
4084          // can't really be used to access their device-side
4085          // counterparts. It's not clear yet whether it's nvcc's bug or
4086          // a feature, but we've got to do the same for compatibility.
4087          Linkage = llvm::GlobalValue::InternalLinkage;
4088        } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4089                   D->getType()->isCUDADeviceBuiltinTextureType()) {
4090          // Builtin surfaces and textures and their template arguments are
4091          // also registered with CUDA runtime.
4092          Linkage = llvm::GlobalValue::InternalLinkage;
4093          const ClassTemplateSpecializationDecl *TD =
4094              cast<ClassTemplateSpecializationDecl>(
4095                  D->getType()->getAs<RecordType>()->getDecl());
4096          const TemplateArgumentList &Args = TD->getTemplateArgs();
4097          if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4098            assert(Args.size() == 2 &&
4099                   "Unexpected number of template arguments of CUDA device "
4100                   "builtin surface type.");
4101            auto SurfType = Args[1].getAsIntegral();
4102            if (!D->hasExternalStorage())
4103              getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4104                                                  SurfType.getSExtValue());
4105          } else {
4106            assert(Args.size() == 3 &&
4107                   "Unexpected number of template arguments of CUDA device "
4108                   "builtin texture type.");
4109            auto TexType = Args[1].getAsIntegral();
4110            auto Normalized = Args[2].getAsIntegral();
4111            if (!D->hasExternalStorage())
4112              getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4113                                                 TexType.getSExtValue(),
4114                                                 Normalized.getZExtValue());
4115          }
4116        }
4117      }
4118    }
4119  
4120    GV->setInitializer(Init);
4121    if (emitter)
4122      emitter->finalize(GV);
4123  
4124    // If it is safe to mark the global 'constant', do so now.
4125    GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4126                    isTypeConstant(D->getType(), true));
4127  
4128    // If it is in a read-only section, mark it 'constant'.
4129    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4130      const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4131      if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4132        GV->setConstant(true);
4133    }
4134  
4135    GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4136  
4137    // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4138    // function is only defined alongside the variable, not also alongside
4139    // callers. Normally, all accesses to a thread_local go through the
4140    // thread-wrapper in order to ensure initialization has occurred, underlying
4141    // variable will never be used other than the thread-wrapper, so it can be
4142    // converted to internal linkage.
4143    //
4144    // However, if the variable has the 'constinit' attribute, it _can_ be
4145    // referenced directly, without calling the thread-wrapper, so the linkage
4146    // must not be changed.
4147    //
4148    // Additionally, if the variable isn't plain external linkage, e.g. if it's
4149    // weak or linkonce, the de-duplication semantics are important to preserve,
4150    // so we don't change the linkage.
4151    if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4152        Linkage == llvm::GlobalValue::ExternalLinkage &&
4153        Context.getTargetInfo().getTriple().isOSDarwin() &&
4154        !D->hasAttr<ConstInitAttr>())
4155      Linkage = llvm::GlobalValue::InternalLinkage;
4156  
4157    GV->setLinkage(Linkage);
4158    if (D->hasAttr<DLLImportAttr>())
4159      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4160    else if (D->hasAttr<DLLExportAttr>())
4161      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4162    else
4163      GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4164  
4165    if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4166      // common vars aren't constant even if declared const.
4167      GV->setConstant(false);
4168      // Tentative definition of global variables may be initialized with
4169      // non-zero null pointers. In this case they should have weak linkage
4170      // since common linkage must have zero initializer and must not have
4171      // explicit section therefore cannot have non-zero initial value.
4172      if (!GV->getInitializer()->isNullValue())
4173        GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4174    }
4175  
4176    setNonAliasAttributes(D, GV);
4177  
4178    if (D->getTLSKind() && !GV->isThreadLocal()) {
4179      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4180        CXXThreadLocals.push_back(D);
4181      setTLSMode(GV, *D);
4182    }
4183  
4184    maybeSetTrivialComdat(*D, *GV);
4185  
4186    // Emit the initializer function if necessary.
4187    if (NeedsGlobalCtor || NeedsGlobalDtor)
4188      EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4189  
4190    SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4191  
4192    // Emit global variable debug information.
4193    if (CGDebugInfo *DI = getModuleDebugInfo())
4194      if (getCodeGenOpts().hasReducedDebugInfo())
4195        DI->EmitGlobalVariable(GV, D);
4196  }
4197  
4198  void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4199    if (CGDebugInfo *DI = getModuleDebugInfo())
4200      if (getCodeGenOpts().hasReducedDebugInfo()) {
4201        QualType ASTTy = D->getType();
4202        llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4203        llvm::PointerType *PTy =
4204            llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4205        llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4206        DI->EmitExternalVariable(
4207            cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4208      }
4209  }
4210  
4211  static bool isVarDeclStrongDefinition(const ASTContext &Context,
4212                                        CodeGenModule &CGM, const VarDecl *D,
4213                                        bool NoCommon) {
4214    // Don't give variables common linkage if -fno-common was specified unless it
4215    // was overridden by a NoCommon attribute.
4216    if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4217      return true;
4218  
4219    // C11 6.9.2/2:
4220    //   A declaration of an identifier for an object that has file scope without
4221    //   an initializer, and without a storage-class specifier or with the
4222    //   storage-class specifier static, constitutes a tentative definition.
4223    if (D->getInit() || D->hasExternalStorage())
4224      return true;
4225  
4226    // A variable cannot be both common and exist in a section.
4227    if (D->hasAttr<SectionAttr>())
4228      return true;
4229  
4230    // A variable cannot be both common and exist in a section.
4231    // We don't try to determine which is the right section in the front-end.
4232    // If no specialized section name is applicable, it will resort to default.
4233    if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4234        D->hasAttr<PragmaClangDataSectionAttr>() ||
4235        D->hasAttr<PragmaClangRelroSectionAttr>() ||
4236        D->hasAttr<PragmaClangRodataSectionAttr>())
4237      return true;
4238  
4239    // Thread local vars aren't considered common linkage.
4240    if (D->getTLSKind())
4241      return true;
4242  
4243    // Tentative definitions marked with WeakImportAttr are true definitions.
4244    if (D->hasAttr<WeakImportAttr>())
4245      return true;
4246  
4247    // A variable cannot be both common and exist in a comdat.
4248    if (shouldBeInCOMDAT(CGM, *D))
4249      return true;
4250  
4251    // Declarations with a required alignment do not have common linkage in MSVC
4252    // mode.
4253    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4254      if (D->hasAttr<AlignedAttr>())
4255        return true;
4256      QualType VarType = D->getType();
4257      if (Context.isAlignmentRequired(VarType))
4258        return true;
4259  
4260      if (const auto *RT = VarType->getAs<RecordType>()) {
4261        const RecordDecl *RD = RT->getDecl();
4262        for (const FieldDecl *FD : RD->fields()) {
4263          if (FD->isBitField())
4264            continue;
4265          if (FD->hasAttr<AlignedAttr>())
4266            return true;
4267          if (Context.isAlignmentRequired(FD->getType()))
4268            return true;
4269        }
4270      }
4271    }
4272  
4273    // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4274    // common symbols, so symbols with greater alignment requirements cannot be
4275    // common.
4276    // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4277    // alignments for common symbols via the aligncomm directive, so this
4278    // restriction only applies to MSVC environments.
4279    if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4280        Context.getTypeAlignIfKnown(D->getType()) >
4281            Context.toBits(CharUnits::fromQuantity(32)))
4282      return true;
4283  
4284    return false;
4285  }
4286  
4287  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4288      const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4289    if (Linkage == GVA_Internal)
4290      return llvm::Function::InternalLinkage;
4291  
4292    if (D->hasAttr<WeakAttr>()) {
4293      if (IsConstantVariable)
4294        return llvm::GlobalVariable::WeakODRLinkage;
4295      else
4296        return llvm::GlobalVariable::WeakAnyLinkage;
4297    }
4298  
4299    if (const auto *FD = D->getAsFunction())
4300      if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4301        return llvm::GlobalVariable::LinkOnceAnyLinkage;
4302  
4303    // We are guaranteed to have a strong definition somewhere else,
4304    // so we can use available_externally linkage.
4305    if (Linkage == GVA_AvailableExternally)
4306      return llvm::GlobalValue::AvailableExternallyLinkage;
4307  
4308    // Note that Apple's kernel linker doesn't support symbol
4309    // coalescing, so we need to avoid linkonce and weak linkages there.
4310    // Normally, this means we just map to internal, but for explicit
4311    // instantiations we'll map to external.
4312  
4313    // In C++, the compiler has to emit a definition in every translation unit
4314    // that references the function.  We should use linkonce_odr because
4315    // a) if all references in this translation unit are optimized away, we
4316    // don't need to codegen it.  b) if the function persists, it needs to be
4317    // merged with other definitions. c) C++ has the ODR, so we know the
4318    // definition is dependable.
4319    if (Linkage == GVA_DiscardableODR)
4320      return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4321                                              : llvm::Function::InternalLinkage;
4322  
4323    // An explicit instantiation of a template has weak linkage, since
4324    // explicit instantiations can occur in multiple translation units
4325    // and must all be equivalent. However, we are not allowed to
4326    // throw away these explicit instantiations.
4327    //
4328    // We don't currently support CUDA device code spread out across multiple TUs,
4329    // so say that CUDA templates are either external (for kernels) or internal.
4330    // This lets llvm perform aggressive inter-procedural optimizations.
4331    if (Linkage == GVA_StrongODR) {
4332      if (Context.getLangOpts().AppleKext)
4333        return llvm::Function::ExternalLinkage;
4334      if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4335        return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4336                                            : llvm::Function::InternalLinkage;
4337      return llvm::Function::WeakODRLinkage;
4338    }
4339  
4340    // C++ doesn't have tentative definitions and thus cannot have common
4341    // linkage.
4342    if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4343        !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4344                                   CodeGenOpts.NoCommon))
4345      return llvm::GlobalVariable::CommonLinkage;
4346  
4347    // selectany symbols are externally visible, so use weak instead of
4348    // linkonce.  MSVC optimizes away references to const selectany globals, so
4349    // all definitions should be the same and ODR linkage should be used.
4350    // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4351    if (D->hasAttr<SelectAnyAttr>())
4352      return llvm::GlobalVariable::WeakODRLinkage;
4353  
4354    // Otherwise, we have strong external linkage.
4355    assert(Linkage == GVA_StrongExternal);
4356    return llvm::GlobalVariable::ExternalLinkage;
4357  }
4358  
4359  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4360      const VarDecl *VD, bool IsConstant) {
4361    GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4362    return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4363  }
4364  
4365  /// Replace the uses of a function that was declared with a non-proto type.
4366  /// We want to silently drop extra arguments from call sites
4367  static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4368                                            llvm::Function *newFn) {
4369    // Fast path.
4370    if (old->use_empty()) return;
4371  
4372    llvm::Type *newRetTy = newFn->getReturnType();
4373    SmallVector<llvm::Value*, 4> newArgs;
4374    SmallVector<llvm::OperandBundleDef, 1> newBundles;
4375  
4376    for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4377           ui != ue; ) {
4378      llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4379      llvm::User *user = use->getUser();
4380  
4381      // Recognize and replace uses of bitcasts.  Most calls to
4382      // unprototyped functions will use bitcasts.
4383      if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4384        if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4385          replaceUsesOfNonProtoConstant(bitcast, newFn);
4386        continue;
4387      }
4388  
4389      // Recognize calls to the function.
4390      llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4391      if (!callSite) continue;
4392      if (!callSite->isCallee(&*use))
4393        continue;
4394  
4395      // If the return types don't match exactly, then we can't
4396      // transform this call unless it's dead.
4397      if (callSite->getType() != newRetTy && !callSite->use_empty())
4398        continue;
4399  
4400      // Get the call site's attribute list.
4401      SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4402      llvm::AttributeList oldAttrs = callSite->getAttributes();
4403  
4404      // If the function was passed too few arguments, don't transform.
4405      unsigned newNumArgs = newFn->arg_size();
4406      if (callSite->arg_size() < newNumArgs)
4407        continue;
4408  
4409      // If extra arguments were passed, we silently drop them.
4410      // If any of the types mismatch, we don't transform.
4411      unsigned argNo = 0;
4412      bool dontTransform = false;
4413      for (llvm::Argument &A : newFn->args()) {
4414        if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4415          dontTransform = true;
4416          break;
4417        }
4418  
4419        // Add any parameter attributes.
4420        newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4421        argNo++;
4422      }
4423      if (dontTransform)
4424        continue;
4425  
4426      // Okay, we can transform this.  Create the new call instruction and copy
4427      // over the required information.
4428      newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4429  
4430      // Copy over any operand bundles.
4431      callSite->getOperandBundlesAsDefs(newBundles);
4432  
4433      llvm::CallBase *newCall;
4434      if (dyn_cast<llvm::CallInst>(callSite)) {
4435        newCall =
4436            llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4437      } else {
4438        auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4439        newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4440                                           oldInvoke->getUnwindDest(), newArgs,
4441                                           newBundles, "", callSite);
4442      }
4443      newArgs.clear(); // for the next iteration
4444  
4445      if (!newCall->getType()->isVoidTy())
4446        newCall->takeName(callSite);
4447      newCall->setAttributes(llvm::AttributeList::get(
4448          newFn->getContext(), oldAttrs.getFnAttributes(),
4449          oldAttrs.getRetAttributes(), newArgAttrs));
4450      newCall->setCallingConv(callSite->getCallingConv());
4451  
4452      // Finally, remove the old call, replacing any uses with the new one.
4453      if (!callSite->use_empty())
4454        callSite->replaceAllUsesWith(newCall);
4455  
4456      // Copy debug location attached to CI.
4457      if (callSite->getDebugLoc())
4458        newCall->setDebugLoc(callSite->getDebugLoc());
4459  
4460      callSite->eraseFromParent();
4461    }
4462  }
4463  
4464  /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4465  /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4466  /// existing call uses of the old function in the module, this adjusts them to
4467  /// call the new function directly.
4468  ///
4469  /// This is not just a cleanup: the always_inline pass requires direct calls to
4470  /// functions to be able to inline them.  If there is a bitcast in the way, it
4471  /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4472  /// run at -O0.
4473  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4474                                                        llvm::Function *NewFn) {
4475    // If we're redefining a global as a function, don't transform it.
4476    if (!isa<llvm::Function>(Old)) return;
4477  
4478    replaceUsesOfNonProtoConstant(Old, NewFn);
4479  }
4480  
4481  void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4482    auto DK = VD->isThisDeclarationADefinition();
4483    if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4484      return;
4485  
4486    TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4487    // If we have a definition, this might be a deferred decl. If the
4488    // instantiation is explicit, make sure we emit it at the end.
4489    if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4490      GetAddrOfGlobalVar(VD);
4491  
4492    EmitTopLevelDecl(VD);
4493  }
4494  
4495  void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4496                                                   llvm::GlobalValue *GV) {
4497    const auto *D = cast<FunctionDecl>(GD.getDecl());
4498  
4499    // Compute the function info and LLVM type.
4500    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4501    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4502  
4503    // Get or create the prototype for the function.
4504    if (!GV || (GV->getValueType() != Ty))
4505      GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4506                                                     /*DontDefer=*/true,
4507                                                     ForDefinition));
4508  
4509    // Already emitted.
4510    if (!GV->isDeclaration())
4511      return;
4512  
4513    // We need to set linkage and visibility on the function before
4514    // generating code for it because various parts of IR generation
4515    // want to propagate this information down (e.g. to local static
4516    // declarations).
4517    auto *Fn = cast<llvm::Function>(GV);
4518    setFunctionLinkage(GD, Fn);
4519  
4520    // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4521    setGVProperties(Fn, GD);
4522  
4523    MaybeHandleStaticInExternC(D, Fn);
4524  
4525  
4526    maybeSetTrivialComdat(*D, *Fn);
4527  
4528    CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4529  
4530    setNonAliasAttributes(GD, Fn);
4531    SetLLVMFunctionAttributesForDefinition(D, Fn);
4532  
4533    if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4534      AddGlobalCtor(Fn, CA->getPriority());
4535    if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4536      AddGlobalDtor(Fn, DA->getPriority());
4537    if (D->hasAttr<AnnotateAttr>())
4538      AddGlobalAnnotations(D, Fn);
4539  }
4540  
4541  void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4542    const auto *D = cast<ValueDecl>(GD.getDecl());
4543    const AliasAttr *AA = D->getAttr<AliasAttr>();
4544    assert(AA && "Not an alias?");
4545  
4546    StringRef MangledName = getMangledName(GD);
4547  
4548    if (AA->getAliasee() == MangledName) {
4549      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4550      return;
4551    }
4552  
4553    // If there is a definition in the module, then it wins over the alias.
4554    // This is dubious, but allow it to be safe.  Just ignore the alias.
4555    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4556    if (Entry && !Entry->isDeclaration())
4557      return;
4558  
4559    Aliases.push_back(GD);
4560  
4561    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4562  
4563    // Create a reference to the named value.  This ensures that it is emitted
4564    // if a deferred decl.
4565    llvm::Constant *Aliasee;
4566    llvm::GlobalValue::LinkageTypes LT;
4567    if (isa<llvm::FunctionType>(DeclTy)) {
4568      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4569                                        /*ForVTable=*/false);
4570      LT = getFunctionLinkage(GD);
4571    } else {
4572      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4573                                      llvm::PointerType::getUnqual(DeclTy),
4574                                      /*D=*/nullptr);
4575      LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4576                                       D->getType().isConstQualified());
4577    }
4578  
4579    // Create the new alias itself, but don't set a name yet.
4580    unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4581    auto *GA =
4582        llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4583  
4584    if (Entry) {
4585      if (GA->getAliasee() == Entry) {
4586        Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4587        return;
4588      }
4589  
4590      assert(Entry->isDeclaration());
4591  
4592      // If there is a declaration in the module, then we had an extern followed
4593      // by the alias, as in:
4594      //   extern int test6();
4595      //   ...
4596      //   int test6() __attribute__((alias("test7")));
4597      //
4598      // Remove it and replace uses of it with the alias.
4599      GA->takeName(Entry);
4600  
4601      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4602                                                            Entry->getType()));
4603      Entry->eraseFromParent();
4604    } else {
4605      GA->setName(MangledName);
4606    }
4607  
4608    // Set attributes which are particular to an alias; this is a
4609    // specialization of the attributes which may be set on a global
4610    // variable/function.
4611    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4612        D->isWeakImported()) {
4613      GA->setLinkage(llvm::Function::WeakAnyLinkage);
4614    }
4615  
4616    if (const auto *VD = dyn_cast<VarDecl>(D))
4617      if (VD->getTLSKind())
4618        setTLSMode(GA, *VD);
4619  
4620    SetCommonAttributes(GD, GA);
4621  }
4622  
4623  void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4624    const auto *D = cast<ValueDecl>(GD.getDecl());
4625    const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4626    assert(IFA && "Not an ifunc?");
4627  
4628    StringRef MangledName = getMangledName(GD);
4629  
4630    if (IFA->getResolver() == MangledName) {
4631      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4632      return;
4633    }
4634  
4635    // Report an error if some definition overrides ifunc.
4636    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4637    if (Entry && !Entry->isDeclaration()) {
4638      GlobalDecl OtherGD;
4639      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4640          DiagnosedConflictingDefinitions.insert(GD).second) {
4641        Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4642            << MangledName;
4643        Diags.Report(OtherGD.getDecl()->getLocation(),
4644                     diag::note_previous_definition);
4645      }
4646      return;
4647    }
4648  
4649    Aliases.push_back(GD);
4650  
4651    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4652    llvm::Constant *Resolver =
4653        GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4654                                /*ForVTable=*/false);
4655    llvm::GlobalIFunc *GIF =
4656        llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4657                                  "", Resolver, &getModule());
4658    if (Entry) {
4659      if (GIF->getResolver() == Entry) {
4660        Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4661        return;
4662      }
4663      assert(Entry->isDeclaration());
4664  
4665      // If there is a declaration in the module, then we had an extern followed
4666      // by the ifunc, as in:
4667      //   extern int test();
4668      //   ...
4669      //   int test() __attribute__((ifunc("resolver")));
4670      //
4671      // Remove it and replace uses of it with the ifunc.
4672      GIF->takeName(Entry);
4673  
4674      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4675                                                            Entry->getType()));
4676      Entry->eraseFromParent();
4677    } else
4678      GIF->setName(MangledName);
4679  
4680    SetCommonAttributes(GD, GIF);
4681  }
4682  
4683  llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4684                                              ArrayRef<llvm::Type*> Tys) {
4685    return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4686                                           Tys);
4687  }
4688  
4689  static llvm::StringMapEntry<llvm::GlobalVariable *> &
4690  GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4691                           const StringLiteral *Literal, bool TargetIsLSB,
4692                           bool &IsUTF16, unsigned &StringLength) {
4693    StringRef String = Literal->getString();
4694    unsigned NumBytes = String.size();
4695  
4696    // Check for simple case.
4697    if (!Literal->containsNonAsciiOrNull()) {
4698      StringLength = NumBytes;
4699      return *Map.insert(std::make_pair(String, nullptr)).first;
4700    }
4701  
4702    // Otherwise, convert the UTF8 literals into a string of shorts.
4703    IsUTF16 = true;
4704  
4705    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4706    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4707    llvm::UTF16 *ToPtr = &ToBuf[0];
4708  
4709    (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4710                                   ToPtr + NumBytes, llvm::strictConversion);
4711  
4712    // ConvertUTF8toUTF16 returns the length in ToPtr.
4713    StringLength = ToPtr - &ToBuf[0];
4714  
4715    // Add an explicit null.
4716    *ToPtr = 0;
4717    return *Map.insert(std::make_pair(
4718                           StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4719                                     (StringLength + 1) * 2),
4720                           nullptr)).first;
4721  }
4722  
4723  ConstantAddress
4724  CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4725    unsigned StringLength = 0;
4726    bool isUTF16 = false;
4727    llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4728        GetConstantCFStringEntry(CFConstantStringMap, Literal,
4729                                 getDataLayout().isLittleEndian(), isUTF16,
4730                                 StringLength);
4731  
4732    if (auto *C = Entry.second)
4733      return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4734  
4735    llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4736    llvm::Constant *Zeros[] = { Zero, Zero };
4737  
4738    const ASTContext &Context = getContext();
4739    const llvm::Triple &Triple = getTriple();
4740  
4741    const auto CFRuntime = getLangOpts().CFRuntime;
4742    const bool IsSwiftABI =
4743        static_cast<unsigned>(CFRuntime) >=
4744        static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4745    const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4746  
4747    // If we don't already have it, get __CFConstantStringClassReference.
4748    if (!CFConstantStringClassRef) {
4749      const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4750      llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4751      Ty = llvm::ArrayType::get(Ty, 0);
4752  
4753      switch (CFRuntime) {
4754      default: break;
4755      case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4756      case LangOptions::CoreFoundationABI::Swift5_0:
4757        CFConstantStringClassName =
4758            Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4759                                : "$s10Foundation19_NSCFConstantStringCN";
4760        Ty = IntPtrTy;
4761        break;
4762      case LangOptions::CoreFoundationABI::Swift4_2:
4763        CFConstantStringClassName =
4764            Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4765                                : "$S10Foundation19_NSCFConstantStringCN";
4766        Ty = IntPtrTy;
4767        break;
4768      case LangOptions::CoreFoundationABI::Swift4_1:
4769        CFConstantStringClassName =
4770            Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4771                                : "__T010Foundation19_NSCFConstantStringCN";
4772        Ty = IntPtrTy;
4773        break;
4774      }
4775  
4776      llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4777  
4778      if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4779        llvm::GlobalValue *GV = nullptr;
4780  
4781        if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4782          IdentifierInfo &II = Context.Idents.get(GV->getName());
4783          TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4784          DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4785  
4786          const VarDecl *VD = nullptr;
4787          for (const auto &Result : DC->lookup(&II))
4788            if ((VD = dyn_cast<VarDecl>(Result)))
4789              break;
4790  
4791          if (Triple.isOSBinFormatELF()) {
4792            if (!VD)
4793              GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4794          } else {
4795            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4796            if (!VD || !VD->hasAttr<DLLExportAttr>())
4797              GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4798            else
4799              GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4800          }
4801  
4802          setDSOLocal(GV);
4803        }
4804      }
4805  
4806      // Decay array -> ptr
4807      CFConstantStringClassRef =
4808          IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4809                     : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4810    }
4811  
4812    QualType CFTy = Context.getCFConstantStringType();
4813  
4814    auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4815  
4816    ConstantInitBuilder Builder(*this);
4817    auto Fields = Builder.beginStruct(STy);
4818  
4819    // Class pointer.
4820    Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4821  
4822    // Flags.
4823    if (IsSwiftABI) {
4824      Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4825      Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4826    } else {
4827      Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4828    }
4829  
4830    // String pointer.
4831    llvm::Constant *C = nullptr;
4832    if (isUTF16) {
4833      auto Arr = llvm::makeArrayRef(
4834          reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4835          Entry.first().size() / 2);
4836      C = llvm::ConstantDataArray::get(VMContext, Arr);
4837    } else {
4838      C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4839    }
4840  
4841    // Note: -fwritable-strings doesn't make the backing store strings of
4842    // CFStrings writable. (See <rdar://problem/10657500>)
4843    auto *GV =
4844        new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4845                                 llvm::GlobalValue::PrivateLinkage, C, ".str");
4846    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4847    // Don't enforce the target's minimum global alignment, since the only use
4848    // of the string is via this class initializer.
4849    CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4850                              : Context.getTypeAlignInChars(Context.CharTy);
4851    GV->setAlignment(Align.getAsAlign());
4852  
4853    // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4854    // Without it LLVM can merge the string with a non unnamed_addr one during
4855    // LTO.  Doing that changes the section it ends in, which surprises ld64.
4856    if (Triple.isOSBinFormatMachO())
4857      GV->setSection(isUTF16 ? "__TEXT,__ustring"
4858                             : "__TEXT,__cstring,cstring_literals");
4859    // Make sure the literal ends up in .rodata to allow for safe ICF and for
4860    // the static linker to adjust permissions to read-only later on.
4861    else if (Triple.isOSBinFormatELF())
4862      GV->setSection(".rodata");
4863  
4864    // String.
4865    llvm::Constant *Str =
4866        llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4867  
4868    if (isUTF16)
4869      // Cast the UTF16 string to the correct type.
4870      Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4871    Fields.add(Str);
4872  
4873    // String length.
4874    llvm::IntegerType *LengthTy =
4875        llvm::IntegerType::get(getModule().getContext(),
4876                               Context.getTargetInfo().getLongWidth());
4877    if (IsSwiftABI) {
4878      if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4879          CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4880        LengthTy = Int32Ty;
4881      else
4882        LengthTy = IntPtrTy;
4883    }
4884    Fields.addInt(LengthTy, StringLength);
4885  
4886    // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4887    // properly aligned on 32-bit platforms.
4888    CharUnits Alignment =
4889        IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4890  
4891    // The struct.
4892    GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4893                                      /*isConstant=*/false,
4894                                      llvm::GlobalVariable::PrivateLinkage);
4895    GV->addAttribute("objc_arc_inert");
4896    switch (Triple.getObjectFormat()) {
4897    case llvm::Triple::UnknownObjectFormat:
4898      llvm_unreachable("unknown file format");
4899    case llvm::Triple::XCOFF:
4900      llvm_unreachable("XCOFF is not yet implemented");
4901    case llvm::Triple::COFF:
4902    case llvm::Triple::ELF:
4903    case llvm::Triple::Wasm:
4904      GV->setSection("cfstring");
4905      break;
4906    case llvm::Triple::MachO:
4907      GV->setSection("__DATA,__cfstring");
4908      break;
4909    }
4910    Entry.second = GV;
4911  
4912    return ConstantAddress(GV, Alignment);
4913  }
4914  
4915  bool CodeGenModule::getExpressionLocationsEnabled() const {
4916    return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4917  }
4918  
4919  QualType CodeGenModule::getObjCFastEnumerationStateType() {
4920    if (ObjCFastEnumerationStateType.isNull()) {
4921      RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4922      D->startDefinition();
4923  
4924      QualType FieldTypes[] = {
4925        Context.UnsignedLongTy,
4926        Context.getPointerType(Context.getObjCIdType()),
4927        Context.getPointerType(Context.UnsignedLongTy),
4928        Context.getConstantArrayType(Context.UnsignedLongTy,
4929                             llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4930      };
4931  
4932      for (size_t i = 0; i < 4; ++i) {
4933        FieldDecl *Field = FieldDecl::Create(Context,
4934                                             D,
4935                                             SourceLocation(),
4936                                             SourceLocation(), nullptr,
4937                                             FieldTypes[i], /*TInfo=*/nullptr,
4938                                             /*BitWidth=*/nullptr,
4939                                             /*Mutable=*/false,
4940                                             ICIS_NoInit);
4941        Field->setAccess(AS_public);
4942        D->addDecl(Field);
4943      }
4944  
4945      D->completeDefinition();
4946      ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4947    }
4948  
4949    return ObjCFastEnumerationStateType;
4950  }
4951  
4952  llvm::Constant *
4953  CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4954    assert(!E->getType()->isPointerType() && "Strings are always arrays");
4955  
4956    // Don't emit it as the address of the string, emit the string data itself
4957    // as an inline array.
4958    if (E->getCharByteWidth() == 1) {
4959      SmallString<64> Str(E->getString());
4960  
4961      // Resize the string to the right size, which is indicated by its type.
4962      const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4963      Str.resize(CAT->getSize().getZExtValue());
4964      return llvm::ConstantDataArray::getString(VMContext, Str, false);
4965    }
4966  
4967    auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4968    llvm::Type *ElemTy = AType->getElementType();
4969    unsigned NumElements = AType->getNumElements();
4970  
4971    // Wide strings have either 2-byte or 4-byte elements.
4972    if (ElemTy->getPrimitiveSizeInBits() == 16) {
4973      SmallVector<uint16_t, 32> Elements;
4974      Elements.reserve(NumElements);
4975  
4976      for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4977        Elements.push_back(E->getCodeUnit(i));
4978      Elements.resize(NumElements);
4979      return llvm::ConstantDataArray::get(VMContext, Elements);
4980    }
4981  
4982    assert(ElemTy->getPrimitiveSizeInBits() == 32);
4983    SmallVector<uint32_t, 32> Elements;
4984    Elements.reserve(NumElements);
4985  
4986    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4987      Elements.push_back(E->getCodeUnit(i));
4988    Elements.resize(NumElements);
4989    return llvm::ConstantDataArray::get(VMContext, Elements);
4990  }
4991  
4992  static llvm::GlobalVariable *
4993  GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4994                        CodeGenModule &CGM, StringRef GlobalName,
4995                        CharUnits Alignment) {
4996    unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4997        CGM.getStringLiteralAddressSpace());
4998  
4999    llvm::Module &M = CGM.getModule();
5000    // Create a global variable for this string
5001    auto *GV = new llvm::GlobalVariable(
5002        M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5003        nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5004    GV->setAlignment(Alignment.getAsAlign());
5005    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5006    if (GV->isWeakForLinker()) {
5007      assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5008      GV->setComdat(M.getOrInsertComdat(GV->getName()));
5009    }
5010    CGM.setDSOLocal(GV);
5011  
5012    return GV;
5013  }
5014  
5015  /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5016  /// constant array for the given string literal.
5017  ConstantAddress
5018  CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5019                                                    StringRef Name) {
5020    CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5021  
5022    llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5023    llvm::GlobalVariable **Entry = nullptr;
5024    if (!LangOpts.WritableStrings) {
5025      Entry = &ConstantStringMap[C];
5026      if (auto GV = *Entry) {
5027        if (Alignment.getQuantity() > GV->getAlignment())
5028          GV->setAlignment(Alignment.getAsAlign());
5029        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5030                               Alignment);
5031      }
5032    }
5033  
5034    SmallString<256> MangledNameBuffer;
5035    StringRef GlobalVariableName;
5036    llvm::GlobalValue::LinkageTypes LT;
5037  
5038    // Mangle the string literal if that's how the ABI merges duplicate strings.
5039    // Don't do it if they are writable, since we don't want writes in one TU to
5040    // affect strings in another.
5041    if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5042        !LangOpts.WritableStrings) {
5043      llvm::raw_svector_ostream Out(MangledNameBuffer);
5044      getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5045      LT = llvm::GlobalValue::LinkOnceODRLinkage;
5046      GlobalVariableName = MangledNameBuffer;
5047    } else {
5048      LT = llvm::GlobalValue::PrivateLinkage;
5049      GlobalVariableName = Name;
5050    }
5051  
5052    auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5053    if (Entry)
5054      *Entry = GV;
5055  
5056    SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5057                                    QualType());
5058  
5059    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5060                           Alignment);
5061  }
5062  
5063  /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5064  /// array for the given ObjCEncodeExpr node.
5065  ConstantAddress
5066  CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5067    std::string Str;
5068    getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5069  
5070    return GetAddrOfConstantCString(Str);
5071  }
5072  
5073  /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5074  /// the literal and a terminating '\0' character.
5075  /// The result has pointer to array type.
5076  ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5077      const std::string &Str, const char *GlobalName) {
5078    StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5079    CharUnits Alignment =
5080      getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5081  
5082    llvm::Constant *C =
5083        llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5084  
5085    // Don't share any string literals if strings aren't constant.
5086    llvm::GlobalVariable **Entry = nullptr;
5087    if (!LangOpts.WritableStrings) {
5088      Entry = &ConstantStringMap[C];
5089      if (auto GV = *Entry) {
5090        if (Alignment.getQuantity() > GV->getAlignment())
5091          GV->setAlignment(Alignment.getAsAlign());
5092        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5093                               Alignment);
5094      }
5095    }
5096  
5097    // Get the default prefix if a name wasn't specified.
5098    if (!GlobalName)
5099      GlobalName = ".str";
5100    // Create a global variable for this.
5101    auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5102                                    GlobalName, Alignment);
5103    if (Entry)
5104      *Entry = GV;
5105  
5106    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5107                           Alignment);
5108  }
5109  
5110  ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5111      const MaterializeTemporaryExpr *E, const Expr *Init) {
5112    assert((E->getStorageDuration() == SD_Static ||
5113            E->getStorageDuration() == SD_Thread) && "not a global temporary");
5114    const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5115  
5116    // If we're not materializing a subobject of the temporary, keep the
5117    // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5118    QualType MaterializedType = Init->getType();
5119    if (Init == E->getSubExpr())
5120      MaterializedType = E->getType();
5121  
5122    CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5123  
5124    if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5125      return ConstantAddress(Slot, Align);
5126  
5127    // FIXME: If an externally-visible declaration extends multiple temporaries,
5128    // we need to give each temporary the same name in every translation unit (and
5129    // we also need to make the temporaries externally-visible).
5130    SmallString<256> Name;
5131    llvm::raw_svector_ostream Out(Name);
5132    getCXXABI().getMangleContext().mangleReferenceTemporary(
5133        VD, E->getManglingNumber(), Out);
5134  
5135    APValue *Value = nullptr;
5136    if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5137      // If the initializer of the extending declaration is a constant
5138      // initializer, we should have a cached constant initializer for this
5139      // temporary. Note that this might have a different value from the value
5140      // computed by evaluating the initializer if the surrounding constant
5141      // expression modifies the temporary.
5142      Value = E->getOrCreateValue(false);
5143    }
5144  
5145    // Try evaluating it now, it might have a constant initializer.
5146    Expr::EvalResult EvalResult;
5147    if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5148        !EvalResult.hasSideEffects())
5149      Value = &EvalResult.Val;
5150  
5151    LangAS AddrSpace =
5152        VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5153  
5154    Optional<ConstantEmitter> emitter;
5155    llvm::Constant *InitialValue = nullptr;
5156    bool Constant = false;
5157    llvm::Type *Type;
5158    if (Value) {
5159      // The temporary has a constant initializer, use it.
5160      emitter.emplace(*this);
5161      InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5162                                                 MaterializedType);
5163      Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5164      Type = InitialValue->getType();
5165    } else {
5166      // No initializer, the initialization will be provided when we
5167      // initialize the declaration which performed lifetime extension.
5168      Type = getTypes().ConvertTypeForMem(MaterializedType);
5169    }
5170  
5171    // Create a global variable for this lifetime-extended temporary.
5172    llvm::GlobalValue::LinkageTypes Linkage =
5173        getLLVMLinkageVarDefinition(VD, Constant);
5174    if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5175      const VarDecl *InitVD;
5176      if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5177          isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5178        // Temporaries defined inside a class get linkonce_odr linkage because the
5179        // class can be defined in multiple translation units.
5180        Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5181      } else {
5182        // There is no need for this temporary to have external linkage if the
5183        // VarDecl has external linkage.
5184        Linkage = llvm::GlobalVariable::InternalLinkage;
5185      }
5186    }
5187    auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5188    auto *GV = new llvm::GlobalVariable(
5189        getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5190        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5191    if (emitter) emitter->finalize(GV);
5192    setGVProperties(GV, VD);
5193    GV->setAlignment(Align.getAsAlign());
5194    if (supportsCOMDAT() && GV->isWeakForLinker())
5195      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5196    if (VD->getTLSKind())
5197      setTLSMode(GV, *VD);
5198    llvm::Constant *CV = GV;
5199    if (AddrSpace != LangAS::Default)
5200      CV = getTargetCodeGenInfo().performAddrSpaceCast(
5201          *this, GV, AddrSpace, LangAS::Default,
5202          Type->getPointerTo(
5203              getContext().getTargetAddressSpace(LangAS::Default)));
5204    MaterializedGlobalTemporaryMap[E] = CV;
5205    return ConstantAddress(CV, Align);
5206  }
5207  
5208  /// EmitObjCPropertyImplementations - Emit information for synthesized
5209  /// properties for an implementation.
5210  void CodeGenModule::EmitObjCPropertyImplementations(const
5211                                                      ObjCImplementationDecl *D) {
5212    for (const auto *PID : D->property_impls()) {
5213      // Dynamic is just for type-checking.
5214      if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5215        ObjCPropertyDecl *PD = PID->getPropertyDecl();
5216  
5217        // Determine which methods need to be implemented, some may have
5218        // been overridden. Note that ::isPropertyAccessor is not the method
5219        // we want, that just indicates if the decl came from a
5220        // property. What we want to know is if the method is defined in
5221        // this implementation.
5222        auto *Getter = PID->getGetterMethodDecl();
5223        if (!Getter || Getter->isSynthesizedAccessorStub())
5224          CodeGenFunction(*this).GenerateObjCGetter(
5225              const_cast<ObjCImplementationDecl *>(D), PID);
5226        auto *Setter = PID->getSetterMethodDecl();
5227        if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5228          CodeGenFunction(*this).GenerateObjCSetter(
5229                                   const_cast<ObjCImplementationDecl *>(D), PID);
5230      }
5231    }
5232  }
5233  
5234  static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5235    const ObjCInterfaceDecl *iface = impl->getClassInterface();
5236    for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5237         ivar; ivar = ivar->getNextIvar())
5238      if (ivar->getType().isDestructedType())
5239        return true;
5240  
5241    return false;
5242  }
5243  
5244  static bool AllTrivialInitializers(CodeGenModule &CGM,
5245                                     ObjCImplementationDecl *D) {
5246    CodeGenFunction CGF(CGM);
5247    for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5248         E = D->init_end(); B != E; ++B) {
5249      CXXCtorInitializer *CtorInitExp = *B;
5250      Expr *Init = CtorInitExp->getInit();
5251      if (!CGF.isTrivialInitializer(Init))
5252        return false;
5253    }
5254    return true;
5255  }
5256  
5257  /// EmitObjCIvarInitializations - Emit information for ivar initialization
5258  /// for an implementation.
5259  void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5260    // We might need a .cxx_destruct even if we don't have any ivar initializers.
5261    if (needsDestructMethod(D)) {
5262      IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5263      Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5264      ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5265          getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5266          getContext().VoidTy, nullptr, D,
5267          /*isInstance=*/true, /*isVariadic=*/false,
5268          /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5269          /*isImplicitlyDeclared=*/true,
5270          /*isDefined=*/false, ObjCMethodDecl::Required);
5271      D->addInstanceMethod(DTORMethod);
5272      CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5273      D->setHasDestructors(true);
5274    }
5275  
5276    // If the implementation doesn't have any ivar initializers, we don't need
5277    // a .cxx_construct.
5278    if (D->getNumIvarInitializers() == 0 ||
5279        AllTrivialInitializers(*this, D))
5280      return;
5281  
5282    IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5283    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5284    // The constructor returns 'self'.
5285    ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5286        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5287        getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5288        /*isVariadic=*/false,
5289        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5290        /*isImplicitlyDeclared=*/true,
5291        /*isDefined=*/false, ObjCMethodDecl::Required);
5292    D->addInstanceMethod(CTORMethod);
5293    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5294    D->setHasNonZeroConstructors(true);
5295  }
5296  
5297  // EmitLinkageSpec - Emit all declarations in a linkage spec.
5298  void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5299    if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5300        LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5301      ErrorUnsupported(LSD, "linkage spec");
5302      return;
5303    }
5304  
5305    EmitDeclContext(LSD);
5306  }
5307  
5308  void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5309    for (auto *I : DC->decls()) {
5310      // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5311      // are themselves considered "top-level", so EmitTopLevelDecl on an
5312      // ObjCImplDecl does not recursively visit them. We need to do that in
5313      // case they're nested inside another construct (LinkageSpecDecl /
5314      // ExportDecl) that does stop them from being considered "top-level".
5315      if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5316        for (auto *M : OID->methods())
5317          EmitTopLevelDecl(M);
5318      }
5319  
5320      EmitTopLevelDecl(I);
5321    }
5322  }
5323  
5324  /// EmitTopLevelDecl - Emit code for a single top level declaration.
5325  void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5326    // Ignore dependent declarations.
5327    if (D->isTemplated())
5328      return;
5329  
5330    // Consteval function shouldn't be emitted.
5331    if (auto *FD = dyn_cast<FunctionDecl>(D))
5332      if (FD->isConsteval())
5333        return;
5334  
5335    switch (D->getKind()) {
5336    case Decl::CXXConversion:
5337    case Decl::CXXMethod:
5338    case Decl::Function:
5339      EmitGlobal(cast<FunctionDecl>(D));
5340      // Always provide some coverage mapping
5341      // even for the functions that aren't emitted.
5342      AddDeferredUnusedCoverageMapping(D);
5343      break;
5344  
5345    case Decl::CXXDeductionGuide:
5346      // Function-like, but does not result in code emission.
5347      break;
5348  
5349    case Decl::Var:
5350    case Decl::Decomposition:
5351    case Decl::VarTemplateSpecialization:
5352      EmitGlobal(cast<VarDecl>(D));
5353      if (auto *DD = dyn_cast<DecompositionDecl>(D))
5354        for (auto *B : DD->bindings())
5355          if (auto *HD = B->getHoldingVar())
5356            EmitGlobal(HD);
5357      break;
5358  
5359    // Indirect fields from global anonymous structs and unions can be
5360    // ignored; only the actual variable requires IR gen support.
5361    case Decl::IndirectField:
5362      break;
5363  
5364    // C++ Decls
5365    case Decl::Namespace:
5366      EmitDeclContext(cast<NamespaceDecl>(D));
5367      break;
5368    case Decl::ClassTemplateSpecialization: {
5369      const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5370      if (CGDebugInfo *DI = getModuleDebugInfo())
5371        if (Spec->getSpecializationKind() ==
5372                TSK_ExplicitInstantiationDefinition &&
5373            Spec->hasDefinition())
5374          DI->completeTemplateDefinition(*Spec);
5375    } LLVM_FALLTHROUGH;
5376    case Decl::CXXRecord:
5377      if (CGDebugInfo *DI = getModuleDebugInfo())
5378        if (auto *ES = D->getASTContext().getExternalSource())
5379          if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5380            DI->completeUnusedClass(cast<CXXRecordDecl>(*D));
5381      // Emit any static data members, they may be definitions.
5382      for (auto *I : cast<CXXRecordDecl>(D)->decls())
5383        if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5384          EmitTopLevelDecl(I);
5385      break;
5386      // No code generation needed.
5387    case Decl::UsingShadow:
5388    case Decl::ClassTemplate:
5389    case Decl::VarTemplate:
5390    case Decl::Concept:
5391    case Decl::VarTemplatePartialSpecialization:
5392    case Decl::FunctionTemplate:
5393    case Decl::TypeAliasTemplate:
5394    case Decl::Block:
5395    case Decl::Empty:
5396    case Decl::Binding:
5397      break;
5398    case Decl::Using:          // using X; [C++]
5399      if (CGDebugInfo *DI = getModuleDebugInfo())
5400          DI->EmitUsingDecl(cast<UsingDecl>(*D));
5401      break;
5402    case Decl::NamespaceAlias:
5403      if (CGDebugInfo *DI = getModuleDebugInfo())
5404          DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5405      break;
5406    case Decl::UsingDirective: // using namespace X; [C++]
5407      if (CGDebugInfo *DI = getModuleDebugInfo())
5408        DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5409      break;
5410    case Decl::CXXConstructor:
5411      getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5412      break;
5413    case Decl::CXXDestructor:
5414      getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5415      break;
5416  
5417    case Decl::StaticAssert:
5418      // Nothing to do.
5419      break;
5420  
5421    // Objective-C Decls
5422  
5423    // Forward declarations, no (immediate) code generation.
5424    case Decl::ObjCInterface:
5425    case Decl::ObjCCategory:
5426      break;
5427  
5428    case Decl::ObjCProtocol: {
5429      auto *Proto = cast<ObjCProtocolDecl>(D);
5430      if (Proto->isThisDeclarationADefinition())
5431        ObjCRuntime->GenerateProtocol(Proto);
5432      break;
5433    }
5434  
5435    case Decl::ObjCCategoryImpl:
5436      // Categories have properties but don't support synthesize so we
5437      // can ignore them here.
5438      ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5439      break;
5440  
5441    case Decl::ObjCImplementation: {
5442      auto *OMD = cast<ObjCImplementationDecl>(D);
5443      EmitObjCPropertyImplementations(OMD);
5444      EmitObjCIvarInitializations(OMD);
5445      ObjCRuntime->GenerateClass(OMD);
5446      // Emit global variable debug information.
5447      if (CGDebugInfo *DI = getModuleDebugInfo())
5448        if (getCodeGenOpts().hasReducedDebugInfo())
5449          DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5450              OMD->getClassInterface()), OMD->getLocation());
5451      break;
5452    }
5453    case Decl::ObjCMethod: {
5454      auto *OMD = cast<ObjCMethodDecl>(D);
5455      // If this is not a prototype, emit the body.
5456      if (OMD->getBody())
5457        CodeGenFunction(*this).GenerateObjCMethod(OMD);
5458      break;
5459    }
5460    case Decl::ObjCCompatibleAlias:
5461      ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5462      break;
5463  
5464    case Decl::PragmaComment: {
5465      const auto *PCD = cast<PragmaCommentDecl>(D);
5466      switch (PCD->getCommentKind()) {
5467      case PCK_Unknown:
5468        llvm_unreachable("unexpected pragma comment kind");
5469      case PCK_Linker:
5470        AppendLinkerOptions(PCD->getArg());
5471        break;
5472      case PCK_Lib:
5473          AddDependentLib(PCD->getArg());
5474        break;
5475      case PCK_Compiler:
5476      case PCK_ExeStr:
5477      case PCK_User:
5478        break; // We ignore all of these.
5479      }
5480      break;
5481    }
5482  
5483    case Decl::PragmaDetectMismatch: {
5484      const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5485      AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5486      break;
5487    }
5488  
5489    case Decl::LinkageSpec:
5490      EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5491      break;
5492  
5493    case Decl::FileScopeAsm: {
5494      // File-scope asm is ignored during device-side CUDA compilation.
5495      if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5496        break;
5497      // File-scope asm is ignored during device-side OpenMP compilation.
5498      if (LangOpts.OpenMPIsDevice)
5499        break;
5500      auto *AD = cast<FileScopeAsmDecl>(D);
5501      getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5502      break;
5503    }
5504  
5505    case Decl::Import: {
5506      auto *Import = cast<ImportDecl>(D);
5507  
5508      // If we've already imported this module, we're done.
5509      if (!ImportedModules.insert(Import->getImportedModule()))
5510        break;
5511  
5512      // Emit debug information for direct imports.
5513      if (!Import->getImportedOwningModule()) {
5514        if (CGDebugInfo *DI = getModuleDebugInfo())
5515          DI->EmitImportDecl(*Import);
5516      }
5517  
5518      // Find all of the submodules and emit the module initializers.
5519      llvm::SmallPtrSet<clang::Module *, 16> Visited;
5520      SmallVector<clang::Module *, 16> Stack;
5521      Visited.insert(Import->getImportedModule());
5522      Stack.push_back(Import->getImportedModule());
5523  
5524      while (!Stack.empty()) {
5525        clang::Module *Mod = Stack.pop_back_val();
5526        if (!EmittedModuleInitializers.insert(Mod).second)
5527          continue;
5528  
5529        for (auto *D : Context.getModuleInitializers(Mod))
5530          EmitTopLevelDecl(D);
5531  
5532        // Visit the submodules of this module.
5533        for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5534                                               SubEnd = Mod->submodule_end();
5535             Sub != SubEnd; ++Sub) {
5536          // Skip explicit children; they need to be explicitly imported to emit
5537          // the initializers.
5538          if ((*Sub)->IsExplicit)
5539            continue;
5540  
5541          if (Visited.insert(*Sub).second)
5542            Stack.push_back(*Sub);
5543        }
5544      }
5545      break;
5546    }
5547  
5548    case Decl::Export:
5549      EmitDeclContext(cast<ExportDecl>(D));
5550      break;
5551  
5552    case Decl::OMPThreadPrivate:
5553      EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5554      break;
5555  
5556    case Decl::OMPAllocate:
5557      break;
5558  
5559    case Decl::OMPDeclareReduction:
5560      EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5561      break;
5562  
5563    case Decl::OMPDeclareMapper:
5564      EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5565      break;
5566  
5567    case Decl::OMPRequires:
5568      EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5569      break;
5570  
5571    default:
5572      // Make sure we handled everything we should, every other kind is a
5573      // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5574      // function. Need to recode Decl::Kind to do that easily.
5575      assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5576      break;
5577    }
5578  }
5579  
5580  void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5581    // Do we need to generate coverage mapping?
5582    if (!CodeGenOpts.CoverageMapping)
5583      return;
5584    switch (D->getKind()) {
5585    case Decl::CXXConversion:
5586    case Decl::CXXMethod:
5587    case Decl::Function:
5588    case Decl::ObjCMethod:
5589    case Decl::CXXConstructor:
5590    case Decl::CXXDestructor: {
5591      if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5592        break;
5593      SourceManager &SM = getContext().getSourceManager();
5594      if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5595        break;
5596      auto I = DeferredEmptyCoverageMappingDecls.find(D);
5597      if (I == DeferredEmptyCoverageMappingDecls.end())
5598        DeferredEmptyCoverageMappingDecls[D] = true;
5599      break;
5600    }
5601    default:
5602      break;
5603    };
5604  }
5605  
5606  void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5607    // Do we need to generate coverage mapping?
5608    if (!CodeGenOpts.CoverageMapping)
5609      return;
5610    if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5611      if (Fn->isTemplateInstantiation())
5612        ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5613    }
5614    auto I = DeferredEmptyCoverageMappingDecls.find(D);
5615    if (I == DeferredEmptyCoverageMappingDecls.end())
5616      DeferredEmptyCoverageMappingDecls[D] = false;
5617    else
5618      I->second = false;
5619  }
5620  
5621  void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5622    // We call takeVector() here to avoid use-after-free.
5623    // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5624    // we deserialize function bodies to emit coverage info for them, and that
5625    // deserializes more declarations. How should we handle that case?
5626    for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5627      if (!Entry.second)
5628        continue;
5629      const Decl *D = Entry.first;
5630      switch (D->getKind()) {
5631      case Decl::CXXConversion:
5632      case Decl::CXXMethod:
5633      case Decl::Function:
5634      case Decl::ObjCMethod: {
5635        CodeGenPGO PGO(*this);
5636        GlobalDecl GD(cast<FunctionDecl>(D));
5637        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5638                                    getFunctionLinkage(GD));
5639        break;
5640      }
5641      case Decl::CXXConstructor: {
5642        CodeGenPGO PGO(*this);
5643        GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5644        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5645                                    getFunctionLinkage(GD));
5646        break;
5647      }
5648      case Decl::CXXDestructor: {
5649        CodeGenPGO PGO(*this);
5650        GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5651        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5652                                    getFunctionLinkage(GD));
5653        break;
5654      }
5655      default:
5656        break;
5657      };
5658    }
5659  }
5660  
5661  void CodeGenModule::EmitMainVoidAlias() {
5662    // In order to transition away from "__original_main" gracefully, emit an
5663    // alias for "main" in the no-argument case so that libc can detect when
5664    // new-style no-argument main is in used.
5665    if (llvm::Function *F = getModule().getFunction("main")) {
5666      if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5667          F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5668        addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5669    }
5670  }
5671  
5672  /// Turns the given pointer into a constant.
5673  static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5674                                            const void *Ptr) {
5675    uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5676    llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5677    return llvm::ConstantInt::get(i64, PtrInt);
5678  }
5679  
5680  static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5681                                     llvm::NamedMDNode *&GlobalMetadata,
5682                                     GlobalDecl D,
5683                                     llvm::GlobalValue *Addr) {
5684    if (!GlobalMetadata)
5685      GlobalMetadata =
5686        CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5687  
5688    // TODO: should we report variant information for ctors/dtors?
5689    llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5690                             llvm::ConstantAsMetadata::get(GetPointerConstant(
5691                                 CGM.getLLVMContext(), D.getDecl()))};
5692    GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5693  }
5694  
5695  /// For each function which is declared within an extern "C" region and marked
5696  /// as 'used', but has internal linkage, create an alias from the unmangled
5697  /// name to the mangled name if possible. People expect to be able to refer
5698  /// to such functions with an unmangled name from inline assembly within the
5699  /// same translation unit.
5700  void CodeGenModule::EmitStaticExternCAliases() {
5701    if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5702      return;
5703    for (auto &I : StaticExternCValues) {
5704      IdentifierInfo *Name = I.first;
5705      llvm::GlobalValue *Val = I.second;
5706      if (Val && !getModule().getNamedValue(Name->getName()))
5707        addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5708    }
5709  }
5710  
5711  bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5712                                               GlobalDecl &Result) const {
5713    auto Res = Manglings.find(MangledName);
5714    if (Res == Manglings.end())
5715      return false;
5716    Result = Res->getValue();
5717    return true;
5718  }
5719  
5720  /// Emits metadata nodes associating all the global values in the
5721  /// current module with the Decls they came from.  This is useful for
5722  /// projects using IR gen as a subroutine.
5723  ///
5724  /// Since there's currently no way to associate an MDNode directly
5725  /// with an llvm::GlobalValue, we create a global named metadata
5726  /// with the name 'clang.global.decl.ptrs'.
5727  void CodeGenModule::EmitDeclMetadata() {
5728    llvm::NamedMDNode *GlobalMetadata = nullptr;
5729  
5730    for (auto &I : MangledDeclNames) {
5731      llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5732      // Some mangled names don't necessarily have an associated GlobalValue
5733      // in this module, e.g. if we mangled it for DebugInfo.
5734      if (Addr)
5735        EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5736    }
5737  }
5738  
5739  /// Emits metadata nodes for all the local variables in the current
5740  /// function.
5741  void CodeGenFunction::EmitDeclMetadata() {
5742    if (LocalDeclMap.empty()) return;
5743  
5744    llvm::LLVMContext &Context = getLLVMContext();
5745  
5746    // Find the unique metadata ID for this name.
5747    unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5748  
5749    llvm::NamedMDNode *GlobalMetadata = nullptr;
5750  
5751    for (auto &I : LocalDeclMap) {
5752      const Decl *D = I.first;
5753      llvm::Value *Addr = I.second.getPointer();
5754      if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5755        llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5756        Alloca->setMetadata(
5757            DeclPtrKind, llvm::MDNode::get(
5758                             Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5759      } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5760        GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5761        EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5762      }
5763    }
5764  }
5765  
5766  void CodeGenModule::EmitVersionIdentMetadata() {
5767    llvm::NamedMDNode *IdentMetadata =
5768      TheModule.getOrInsertNamedMetadata("llvm.ident");
5769    std::string Version = getClangFullVersion();
5770    llvm::LLVMContext &Ctx = TheModule.getContext();
5771  
5772    llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5773    IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5774  }
5775  
5776  void CodeGenModule::EmitCommandLineMetadata() {
5777    llvm::NamedMDNode *CommandLineMetadata =
5778      TheModule.getOrInsertNamedMetadata("llvm.commandline");
5779    std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5780    llvm::LLVMContext &Ctx = TheModule.getContext();
5781  
5782    llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5783    CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5784  }
5785  
5786  void CodeGenModule::EmitCoverageFile() {
5787    if (getCodeGenOpts().CoverageDataFile.empty() &&
5788        getCodeGenOpts().CoverageNotesFile.empty())
5789      return;
5790  
5791    llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5792    if (!CUNode)
5793      return;
5794  
5795    llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5796    llvm::LLVMContext &Ctx = TheModule.getContext();
5797    auto *CoverageDataFile =
5798        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5799    auto *CoverageNotesFile =
5800        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5801    for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5802      llvm::MDNode *CU = CUNode->getOperand(i);
5803      llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5804      GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5805    }
5806  }
5807  
5808  llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5809                                                         bool ForEH) {
5810    // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5811    // FIXME: should we even be calling this method if RTTI is disabled
5812    // and it's not for EH?
5813    if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5814        (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5815         getTriple().isNVPTX()))
5816      return llvm::Constant::getNullValue(Int8PtrTy);
5817  
5818    if (ForEH && Ty->isObjCObjectPointerType() &&
5819        LangOpts.ObjCRuntime.isGNUFamily())
5820      return ObjCRuntime->GetEHType(Ty);
5821  
5822    return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5823  }
5824  
5825  void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5826    // Do not emit threadprivates in simd-only mode.
5827    if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5828      return;
5829    for (auto RefExpr : D->varlists()) {
5830      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5831      bool PerformInit =
5832          VD->getAnyInitializer() &&
5833          !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5834                                                          /*ForRef=*/false);
5835  
5836      Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5837      if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5838              VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5839        CXXGlobalInits.push_back(InitFunction);
5840    }
5841  }
5842  
5843  llvm::Metadata *
5844  CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5845                                              StringRef Suffix) {
5846    llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5847    if (InternalId)
5848      return InternalId;
5849  
5850    if (isExternallyVisible(T->getLinkage())) {
5851      std::string OutName;
5852      llvm::raw_string_ostream Out(OutName);
5853      getCXXABI().getMangleContext().mangleTypeName(T, Out);
5854      Out << Suffix;
5855  
5856      InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5857    } else {
5858      InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5859                                             llvm::ArrayRef<llvm::Metadata *>());
5860    }
5861  
5862    return InternalId;
5863  }
5864  
5865  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5866    return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5867  }
5868  
5869  llvm::Metadata *
5870  CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5871    return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5872  }
5873  
5874  // Generalize pointer types to a void pointer with the qualifiers of the
5875  // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5876  // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5877  // 'void *'.
5878  static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5879    if (!Ty->isPointerType())
5880      return Ty;
5881  
5882    return Ctx.getPointerType(
5883        QualType(Ctx.VoidTy).withCVRQualifiers(
5884            Ty->getPointeeType().getCVRQualifiers()));
5885  }
5886  
5887  // Apply type generalization to a FunctionType's return and argument types
5888  static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5889    if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5890      SmallVector<QualType, 8> GeneralizedParams;
5891      for (auto &Param : FnType->param_types())
5892        GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5893  
5894      return Ctx.getFunctionType(
5895          GeneralizeType(Ctx, FnType->getReturnType()),
5896          GeneralizedParams, FnType->getExtProtoInfo());
5897    }
5898  
5899    if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5900      return Ctx.getFunctionNoProtoType(
5901          GeneralizeType(Ctx, FnType->getReturnType()));
5902  
5903    llvm_unreachable("Encountered unknown FunctionType");
5904  }
5905  
5906  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5907    return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5908                                        GeneralizedMetadataIdMap, ".generalized");
5909  }
5910  
5911  /// Returns whether this module needs the "all-vtables" type identifier.
5912  bool CodeGenModule::NeedAllVtablesTypeId() const {
5913    // Returns true if at least one of vtable-based CFI checkers is enabled and
5914    // is not in the trapping mode.
5915    return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5916             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5917            (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5918             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5919            (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5920             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5921            (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5922             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5923  }
5924  
5925  void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5926                                            CharUnits Offset,
5927                                            const CXXRecordDecl *RD) {
5928    llvm::Metadata *MD =
5929        CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5930    VTable->addTypeMetadata(Offset.getQuantity(), MD);
5931  
5932    if (CodeGenOpts.SanitizeCfiCrossDso)
5933      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5934        VTable->addTypeMetadata(Offset.getQuantity(),
5935                                llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5936  
5937    if (NeedAllVtablesTypeId()) {
5938      llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5939      VTable->addTypeMetadata(Offset.getQuantity(), MD);
5940    }
5941  }
5942  
5943  llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5944    if (!SanStats)
5945      SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5946  
5947    return *SanStats;
5948  }
5949  llvm::Value *
5950  CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5951                                                    CodeGenFunction &CGF) {
5952    llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5953    auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5954    auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5955    return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5956                                  "__translate_sampler_initializer"),
5957                                  {C});
5958  }
5959  
5960  CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
5961      QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
5962    return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
5963                                   /* forPointeeType= */ true);
5964  }
5965  
5966  CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
5967                                                   LValueBaseInfo *BaseInfo,
5968                                                   TBAAAccessInfo *TBAAInfo,
5969                                                   bool forPointeeType) {
5970    if (TBAAInfo)
5971      *TBAAInfo = getTBAAAccessInfo(T);
5972  
5973    // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
5974    // that doesn't return the information we need to compute BaseInfo.
5975  
5976    // Honor alignment typedef attributes even on incomplete types.
5977    // We also honor them straight for C++ class types, even as pointees;
5978    // there's an expressivity gap here.
5979    if (auto TT = T->getAs<TypedefType>()) {
5980      if (auto Align = TT->getDecl()->getMaxAlignment()) {
5981        if (BaseInfo)
5982          *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
5983        return getContext().toCharUnitsFromBits(Align);
5984      }
5985    }
5986  
5987    bool AlignForArray = T->isArrayType();
5988  
5989    // Analyze the base element type, so we don't get confused by incomplete
5990    // array types.
5991    T = getContext().getBaseElementType(T);
5992  
5993    if (T->isIncompleteType()) {
5994      // We could try to replicate the logic from
5995      // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
5996      // type is incomplete, so it's impossible to test. We could try to reuse
5997      // getTypeAlignIfKnown, but that doesn't return the information we need
5998      // to set BaseInfo.  So just ignore the possibility that the alignment is
5999      // greater than one.
6000      if (BaseInfo)
6001        *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6002      return CharUnits::One();
6003    }
6004  
6005    if (BaseInfo)
6006      *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6007  
6008    CharUnits Alignment;
6009    // For C++ class pointees, we don't know whether we're pointing at a
6010    // base or a complete object, so we generally need to use the
6011    // non-virtual alignment.
6012    const CXXRecordDecl *RD;
6013    if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6014      Alignment = getClassPointerAlignment(RD);
6015    } else {
6016      Alignment = getContext().getTypeAlignInChars(T);
6017      if (T.getQualifiers().hasUnaligned())
6018        Alignment = CharUnits::One();
6019    }
6020  
6021    // Cap to the global maximum type alignment unless the alignment
6022    // was somehow explicit on the type.
6023    if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6024      if (Alignment.getQuantity() > MaxAlign &&
6025          !getContext().isAlignmentRequired(T))
6026        Alignment = CharUnits::fromQuantity(MaxAlign);
6027    }
6028    return Alignment;
6029  }
6030  
6031  bool CodeGenModule::stopAutoInit() {
6032    unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6033    if (StopAfter) {
6034      // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6035      // used
6036      if (NumAutoVarInit >= StopAfter) {
6037        return true;
6038      }
6039      if (!NumAutoVarInit) {
6040        unsigned DiagID = getDiags().getCustomDiagID(
6041            DiagnosticsEngine::Warning,
6042            "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6043            "number of times ftrivial-auto-var-init=%1 gets applied.");
6044        getDiags().Report(DiagID)
6045            << StopAfter
6046            << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6047                        LangOptions::TrivialAutoVarInitKind::Zero
6048                    ? "zero"
6049                    : "pattern");
6050      }
6051      ++NumAutoVarInit;
6052    }
6053    return false;
6054  }
6055