xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ProfileSummary.h"
57 #include "llvm/ProfileData/InstrProfReader.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/ConvertUTF.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MD5.h"
63 #include "llvm/Support/TimeProfiler.h"
64 
65 using namespace clang;
66 using namespace CodeGen;
67 
68 static llvm::cl::opt<bool> LimitedCoverage(
69     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71     llvm::cl::init(false));
72 
73 static const char AnnotationSection[] = "llvm.metadata";
74 
75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76   switch (CGM.getTarget().getCXXABI().getKind()) {
77   case TargetCXXABI::Fuchsia:
78   case TargetCXXABI::GenericAArch64:
79   case TargetCXXABI::GenericARM:
80   case TargetCXXABI::iOS:
81   case TargetCXXABI::iOS64:
82   case TargetCXXABI::WatchOS:
83   case TargetCXXABI::GenericMIPS:
84   case TargetCXXABI::GenericItanium:
85   case TargetCXXABI::WebAssembly:
86     return CreateItaniumCXXABI(CGM);
87   case TargetCXXABI::Microsoft:
88     return CreateMicrosoftCXXABI(CGM);
89   }
90 
91   llvm_unreachable("invalid C++ ABI kind");
92 }
93 
94 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
95                              const PreprocessorOptions &PPO,
96                              const CodeGenOptions &CGO, llvm::Module &M,
97                              DiagnosticsEngine &diags,
98                              CoverageSourceInfo *CoverageInfo)
99     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
100       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
101       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
102       VMContext(M.getContext()), Types(*this), VTables(*this),
103       SanitizerMD(new SanitizerMetadata(*this)) {
104 
105   // Initialize the type cache.
106   llvm::LLVMContext &LLVMContext = M.getContext();
107   VoidTy = llvm::Type::getVoidTy(LLVMContext);
108   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
109   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
110   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
111   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
112   HalfTy = llvm::Type::getHalfTy(LLVMContext);
113   FloatTy = llvm::Type::getFloatTy(LLVMContext);
114   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
115   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
116   PointerAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
118   SizeSizeInBytes =
119     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
120   IntAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
122   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
123   IntPtrTy = llvm::IntegerType::get(LLVMContext,
124     C.getTargetInfo().getMaxPointerWidth());
125   Int8PtrTy = Int8Ty->getPointerTo(0);
126   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
127   AllocaInt8PtrTy = Int8Ty->getPointerTo(
128       M.getDataLayout().getAllocaAddrSpace());
129   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
130 
131   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
132 
133   if (LangOpts.ObjC)
134     createObjCRuntime();
135   if (LangOpts.OpenCL)
136     createOpenCLRuntime();
137   if (LangOpts.OpenMP)
138     createOpenMPRuntime();
139   if (LangOpts.CUDA)
140     createCUDARuntime();
141 
142   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
143   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
144       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
145     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
146                                getCXXABI().getMangleContext()));
147 
148   // If debug info or coverage generation is enabled, create the CGDebugInfo
149   // object.
150   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
151       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
152     DebugInfo.reset(new CGDebugInfo(*this));
153 
154   Block.GlobalUniqueCount = 0;
155 
156   if (C.getLangOpts().ObjC)
157     ObjCData.reset(new ObjCEntrypoints());
158 
159   if (CodeGenOpts.hasProfileClangUse()) {
160     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
161         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
162     if (auto E = ReaderOrErr.takeError()) {
163       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
164                                               "Could not read profile %0: %1");
165       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
166         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
167                                   << EI.message();
168       });
169     } else
170       PGOReader = std::move(ReaderOrErr.get());
171   }
172 
173   // If coverage mapping generation is enabled, create the
174   // CoverageMappingModuleGen object.
175   if (CodeGenOpts.CoverageMapping)
176     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
177 }
178 
179 CodeGenModule::~CodeGenModule() {}
180 
181 void CodeGenModule::createObjCRuntime() {
182   // This is just isGNUFamily(), but we want to force implementors of
183   // new ABIs to decide how best to do this.
184   switch (LangOpts.ObjCRuntime.getKind()) {
185   case ObjCRuntime::GNUstep:
186   case ObjCRuntime::GCC:
187   case ObjCRuntime::ObjFW:
188     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
189     return;
190 
191   case ObjCRuntime::FragileMacOSX:
192   case ObjCRuntime::MacOSX:
193   case ObjCRuntime::iOS:
194   case ObjCRuntime::WatchOS:
195     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
196     return;
197   }
198   llvm_unreachable("bad runtime kind");
199 }
200 
201 void CodeGenModule::createOpenCLRuntime() {
202   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
203 }
204 
205 void CodeGenModule::createOpenMPRuntime() {
206   // Select a specialized code generation class based on the target, if any.
207   // If it does not exist use the default implementation.
208   switch (getTriple().getArch()) {
209   case llvm::Triple::nvptx:
210   case llvm::Triple::nvptx64:
211     assert(getLangOpts().OpenMPIsDevice &&
212            "OpenMP NVPTX is only prepared to deal with device code.");
213     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
214     break;
215   default:
216     if (LangOpts.OpenMPSimd)
217       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
218     else
219       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
220     break;
221   }
222 
223   // The OpenMP-IR-Builder should eventually replace the above runtime codegens
224   // but we are not there yet so they both reside in CGModule for now and the
225   // OpenMP-IR-Builder is opt-in only.
226   if (LangOpts.OpenMPIRBuilder) {
227     OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
228     OMPBuilder->initialize();
229   }
230 }
231 
232 void CodeGenModule::createCUDARuntime() {
233   CUDARuntime.reset(CreateNVCUDARuntime(*this));
234 }
235 
236 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
237   Replacements[Name] = C;
238 }
239 
240 void CodeGenModule::applyReplacements() {
241   for (auto &I : Replacements) {
242     StringRef MangledName = I.first();
243     llvm::Constant *Replacement = I.second;
244     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
245     if (!Entry)
246       continue;
247     auto *OldF = cast<llvm::Function>(Entry);
248     auto *NewF = dyn_cast<llvm::Function>(Replacement);
249     if (!NewF) {
250       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
251         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
252       } else {
253         auto *CE = cast<llvm::ConstantExpr>(Replacement);
254         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
255                CE->getOpcode() == llvm::Instruction::GetElementPtr);
256         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
257       }
258     }
259 
260     // Replace old with new, but keep the old order.
261     OldF->replaceAllUsesWith(Replacement);
262     if (NewF) {
263       NewF->removeFromParent();
264       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
265                                                        NewF);
266     }
267     OldF->eraseFromParent();
268   }
269 }
270 
271 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
272   GlobalValReplacements.push_back(std::make_pair(GV, C));
273 }
274 
275 void CodeGenModule::applyGlobalValReplacements() {
276   for (auto &I : GlobalValReplacements) {
277     llvm::GlobalValue *GV = I.first;
278     llvm::Constant *C = I.second;
279 
280     GV->replaceAllUsesWith(C);
281     GV->eraseFromParent();
282   }
283 }
284 
285 // This is only used in aliases that we created and we know they have a
286 // linear structure.
287 static const llvm::GlobalObject *getAliasedGlobal(
288     const llvm::GlobalIndirectSymbol &GIS) {
289   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
290   const llvm::Constant *C = &GIS;
291   for (;;) {
292     C = C->stripPointerCasts();
293     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
294       return GO;
295     // stripPointerCasts will not walk over weak aliases.
296     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
297     if (!GIS2)
298       return nullptr;
299     if (!Visited.insert(GIS2).second)
300       return nullptr;
301     C = GIS2->getIndirectSymbol();
302   }
303 }
304 
305 void CodeGenModule::checkAliases() {
306   // Check if the constructed aliases are well formed. It is really unfortunate
307   // that we have to do this in CodeGen, but we only construct mangled names
308   // and aliases during codegen.
309   bool Error = false;
310   DiagnosticsEngine &Diags = getDiags();
311   for (const GlobalDecl &GD : Aliases) {
312     const auto *D = cast<ValueDecl>(GD.getDecl());
313     SourceLocation Location;
314     bool IsIFunc = D->hasAttr<IFuncAttr>();
315     if (const Attr *A = D->getDefiningAttr())
316       Location = A->getLocation();
317     else
318       llvm_unreachable("Not an alias or ifunc?");
319     StringRef MangledName = getMangledName(GD);
320     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
321     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
322     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
323     if (!GV) {
324       Error = true;
325       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
326     } else if (GV->isDeclaration()) {
327       Error = true;
328       Diags.Report(Location, diag::err_alias_to_undefined)
329           << IsIFunc << IsIFunc;
330     } else if (IsIFunc) {
331       // Check resolver function type.
332       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
333           GV->getType()->getPointerElementType());
334       assert(FTy);
335       if (!FTy->getReturnType()->isPointerTy())
336         Diags.Report(Location, diag::err_ifunc_resolver_return);
337     }
338 
339     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
340     llvm::GlobalValue *AliaseeGV;
341     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
342       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
343     else
344       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
345 
346     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
347       StringRef AliasSection = SA->getName();
348       if (AliasSection != AliaseeGV->getSection())
349         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
350             << AliasSection << IsIFunc << IsIFunc;
351     }
352 
353     // We have to handle alias to weak aliases in here. LLVM itself disallows
354     // this since the object semantics would not match the IL one. For
355     // compatibility with gcc we implement it by just pointing the alias
356     // to its aliasee's aliasee. We also warn, since the user is probably
357     // expecting the link to be weak.
358     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
359       if (GA->isInterposable()) {
360         Diags.Report(Location, diag::warn_alias_to_weak_alias)
361             << GV->getName() << GA->getName() << IsIFunc;
362         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
363             GA->getIndirectSymbol(), Alias->getType());
364         Alias->setIndirectSymbol(Aliasee);
365       }
366     }
367   }
368   if (!Error)
369     return;
370 
371   for (const GlobalDecl &GD : Aliases) {
372     StringRef MangledName = getMangledName(GD);
373     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
374     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
375     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
376     Alias->eraseFromParent();
377   }
378 }
379 
380 void CodeGenModule::clear() {
381   DeferredDeclsToEmit.clear();
382   if (OpenMPRuntime)
383     OpenMPRuntime->clear();
384 }
385 
386 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
387                                        StringRef MainFile) {
388   if (!hasDiagnostics())
389     return;
390   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
391     if (MainFile.empty())
392       MainFile = "<stdin>";
393     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
394   } else {
395     if (Mismatched > 0)
396       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
397 
398     if (Missing > 0)
399       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
400   }
401 }
402 
403 void CodeGenModule::Release() {
404   EmitDeferred();
405   EmitVTablesOpportunistically();
406   applyGlobalValReplacements();
407   applyReplacements();
408   checkAliases();
409   emitMultiVersionFunctions();
410   EmitCXXGlobalInitFunc();
411   EmitCXXGlobalDtorFunc();
412   registerGlobalDtorsWithAtExit();
413   EmitCXXThreadLocalInitFunc();
414   if (ObjCRuntime)
415     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
416       AddGlobalCtor(ObjCInitFunction);
417   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
418       CUDARuntime) {
419     if (llvm::Function *CudaCtorFunction =
420             CUDARuntime->makeModuleCtorFunction())
421       AddGlobalCtor(CudaCtorFunction);
422   }
423   if (OpenMPRuntime) {
424     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
425             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
426       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
427     }
428     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
429     OpenMPRuntime->clear();
430   }
431   if (PGOReader) {
432     getModule().setProfileSummary(
433         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
434         llvm::ProfileSummary::PSK_Instr);
435     if (PGOStats.hasDiagnostics())
436       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
437   }
438   EmitCtorList(GlobalCtors, "llvm.global_ctors");
439   EmitCtorList(GlobalDtors, "llvm.global_dtors");
440   EmitGlobalAnnotations();
441   EmitStaticExternCAliases();
442   EmitDeferredUnusedCoverageMappings();
443   if (CoverageMapping)
444     CoverageMapping->emit();
445   if (CodeGenOpts.SanitizeCfiCrossDso) {
446     CodeGenFunction(*this).EmitCfiCheckFail();
447     CodeGenFunction(*this).EmitCfiCheckStub();
448   }
449   emitAtAvailableLinkGuard();
450   emitLLVMUsed();
451   if (SanStats)
452     SanStats->finish();
453 
454   if (CodeGenOpts.Autolink &&
455       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
456     EmitModuleLinkOptions();
457   }
458 
459   // On ELF we pass the dependent library specifiers directly to the linker
460   // without manipulating them. This is in contrast to other platforms where
461   // they are mapped to a specific linker option by the compiler. This
462   // difference is a result of the greater variety of ELF linkers and the fact
463   // that ELF linkers tend to handle libraries in a more complicated fashion
464   // than on other platforms. This forces us to defer handling the dependent
465   // libs to the linker.
466   //
467   // CUDA/HIP device and host libraries are different. Currently there is no
468   // way to differentiate dependent libraries for host or device. Existing
469   // usage of #pragma comment(lib, *) is intended for host libraries on
470   // Windows. Therefore emit llvm.dependent-libraries only for host.
471   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
472     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
473     for (auto *MD : ELFDependentLibraries)
474       NMD->addOperand(MD);
475   }
476 
477   // Record mregparm value now so it is visible through rest of codegen.
478   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
479     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
480                               CodeGenOpts.NumRegisterParameters);
481 
482   if (CodeGenOpts.DwarfVersion) {
483     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
484                               CodeGenOpts.DwarfVersion);
485   }
486   if (CodeGenOpts.EmitCodeView) {
487     // Indicate that we want CodeView in the metadata.
488     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
489   }
490   if (CodeGenOpts.CodeViewGHash) {
491     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
492   }
493   if (CodeGenOpts.ControlFlowGuard) {
494     // Function ID tables and checks for Control Flow Guard (cfguard=2).
495     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
496   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
497     // Function ID tables for Control Flow Guard (cfguard=1).
498     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
499   }
500   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
501     // We don't support LTO with 2 with different StrictVTablePointers
502     // FIXME: we could support it by stripping all the information introduced
503     // by StrictVTablePointers.
504 
505     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
506 
507     llvm::Metadata *Ops[2] = {
508               llvm::MDString::get(VMContext, "StrictVTablePointers"),
509               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
510                   llvm::Type::getInt32Ty(VMContext), 1))};
511 
512     getModule().addModuleFlag(llvm::Module::Require,
513                               "StrictVTablePointersRequirement",
514                               llvm::MDNode::get(VMContext, Ops));
515   }
516   if (DebugInfo)
517     // We support a single version in the linked module. The LLVM
518     // parser will drop debug info with a different version number
519     // (and warn about it, too).
520     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
521                               llvm::DEBUG_METADATA_VERSION);
522 
523   // We need to record the widths of enums and wchar_t, so that we can generate
524   // the correct build attributes in the ARM backend. wchar_size is also used by
525   // TargetLibraryInfo.
526   uint64_t WCharWidth =
527       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
528   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
529 
530   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
531   if (   Arch == llvm::Triple::arm
532       || Arch == llvm::Triple::armeb
533       || Arch == llvm::Triple::thumb
534       || Arch == llvm::Triple::thumbeb) {
535     // The minimum width of an enum in bytes
536     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
537     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
538   }
539 
540   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
541     StringRef ABIStr = Target.getABI();
542     llvm::LLVMContext &Ctx = TheModule.getContext();
543     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
544                               llvm::MDString::get(Ctx, ABIStr));
545   }
546 
547   if (CodeGenOpts.SanitizeCfiCrossDso) {
548     // Indicate that we want cross-DSO control flow integrity checks.
549     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
550   }
551 
552   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
553     getModule().addModuleFlag(llvm::Module::Override,
554                               "CFI Canonical Jump Tables",
555                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
556   }
557 
558   if (CodeGenOpts.CFProtectionReturn &&
559       Target.checkCFProtectionReturnSupported(getDiags())) {
560     // Indicate that we want to instrument return control flow protection.
561     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
562                               1);
563   }
564 
565   if (CodeGenOpts.CFProtectionBranch &&
566       Target.checkCFProtectionBranchSupported(getDiags())) {
567     // Indicate that we want to instrument branch control flow protection.
568     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
569                               1);
570   }
571 
572   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
573     // Indicate whether __nvvm_reflect should be configured to flush denormal
574     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
575     // property.)
576     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
577                               CodeGenOpts.FlushDenorm ? 1 : 0);
578   }
579 
580   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
581   if (LangOpts.OpenCL) {
582     EmitOpenCLMetadata();
583     // Emit SPIR version.
584     if (getTriple().isSPIR()) {
585       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
586       // opencl.spir.version named metadata.
587       // C++ is backwards compatible with OpenCL v2.0.
588       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
589       llvm::Metadata *SPIRVerElts[] = {
590           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
591               Int32Ty, Version / 100)),
592           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
593               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
594       llvm::NamedMDNode *SPIRVerMD =
595           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
596       llvm::LLVMContext &Ctx = TheModule.getContext();
597       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
598     }
599   }
600 
601   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
602     assert(PLevel < 3 && "Invalid PIC Level");
603     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
604     if (Context.getLangOpts().PIE)
605       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
606   }
607 
608   if (getCodeGenOpts().CodeModel.size() > 0) {
609     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
610                   .Case("tiny", llvm::CodeModel::Tiny)
611                   .Case("small", llvm::CodeModel::Small)
612                   .Case("kernel", llvm::CodeModel::Kernel)
613                   .Case("medium", llvm::CodeModel::Medium)
614                   .Case("large", llvm::CodeModel::Large)
615                   .Default(~0u);
616     if (CM != ~0u) {
617       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
618       getModule().setCodeModel(codeModel);
619     }
620   }
621 
622   if (CodeGenOpts.NoPLT)
623     getModule().setRtLibUseGOT();
624 
625   SimplifyPersonality();
626 
627   if (getCodeGenOpts().EmitDeclMetadata)
628     EmitDeclMetadata();
629 
630   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
631     EmitCoverageFile();
632 
633   if (DebugInfo)
634     DebugInfo->finalize();
635 
636   if (getCodeGenOpts().EmitVersionIdentMetadata)
637     EmitVersionIdentMetadata();
638 
639   if (!getCodeGenOpts().RecordCommandLine.empty())
640     EmitCommandLineMetadata();
641 
642   EmitTargetMetadata();
643 }
644 
645 void CodeGenModule::EmitOpenCLMetadata() {
646   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
647   // opencl.ocl.version named metadata node.
648   // C++ is backwards compatible with OpenCL v2.0.
649   // FIXME: We might need to add CXX version at some point too?
650   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
651   llvm::Metadata *OCLVerElts[] = {
652       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
653           Int32Ty, Version / 100)),
654       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
655           Int32Ty, (Version % 100) / 10))};
656   llvm::NamedMDNode *OCLVerMD =
657       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
658   llvm::LLVMContext &Ctx = TheModule.getContext();
659   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
660 }
661 
662 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
663   // Make sure that this type is translated.
664   Types.UpdateCompletedType(TD);
665 }
666 
667 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
668   // Make sure that this type is translated.
669   Types.RefreshTypeCacheForClass(RD);
670 }
671 
672 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
673   if (!TBAA)
674     return nullptr;
675   return TBAA->getTypeInfo(QTy);
676 }
677 
678 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
679   if (!TBAA)
680     return TBAAAccessInfo();
681   return TBAA->getAccessInfo(AccessType);
682 }
683 
684 TBAAAccessInfo
685 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
686   if (!TBAA)
687     return TBAAAccessInfo();
688   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
689 }
690 
691 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
692   if (!TBAA)
693     return nullptr;
694   return TBAA->getTBAAStructInfo(QTy);
695 }
696 
697 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
698   if (!TBAA)
699     return nullptr;
700   return TBAA->getBaseTypeInfo(QTy);
701 }
702 
703 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
704   if (!TBAA)
705     return nullptr;
706   return TBAA->getAccessTagInfo(Info);
707 }
708 
709 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
710                                                    TBAAAccessInfo TargetInfo) {
711   if (!TBAA)
712     return TBAAAccessInfo();
713   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
714 }
715 
716 TBAAAccessInfo
717 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
718                                                    TBAAAccessInfo InfoB) {
719   if (!TBAA)
720     return TBAAAccessInfo();
721   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
722 }
723 
724 TBAAAccessInfo
725 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
726                                               TBAAAccessInfo SrcInfo) {
727   if (!TBAA)
728     return TBAAAccessInfo();
729   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
730 }
731 
732 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
733                                                 TBAAAccessInfo TBAAInfo) {
734   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
735     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
736 }
737 
738 void CodeGenModule::DecorateInstructionWithInvariantGroup(
739     llvm::Instruction *I, const CXXRecordDecl *RD) {
740   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
741                  llvm::MDNode::get(getLLVMContext(), {}));
742 }
743 
744 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
745   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
746   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
747 }
748 
749 /// ErrorUnsupported - Print out an error that codegen doesn't support the
750 /// specified stmt yet.
751 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
752   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
753                                                "cannot compile this %0 yet");
754   std::string Msg = Type;
755   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
756       << Msg << S->getSourceRange();
757 }
758 
759 /// ErrorUnsupported - Print out an error that codegen doesn't support the
760 /// specified decl yet.
761 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
762   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
763                                                "cannot compile this %0 yet");
764   std::string Msg = Type;
765   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
766 }
767 
768 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
769   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
770 }
771 
772 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
773                                         const NamedDecl *D) const {
774   if (GV->hasDLLImportStorageClass())
775     return;
776   // Internal definitions always have default visibility.
777   if (GV->hasLocalLinkage()) {
778     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
779     return;
780   }
781   if (!D)
782     return;
783   // Set visibility for definitions, and for declarations if requested globally
784   // or set explicitly.
785   LinkageInfo LV = D->getLinkageAndVisibility();
786   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
787       !GV->isDeclarationForLinker())
788     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
789 }
790 
791 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
792                                  llvm::GlobalValue *GV) {
793   if (GV->hasLocalLinkage())
794     return true;
795 
796   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
797     return true;
798 
799   // DLLImport explicitly marks the GV as external.
800   if (GV->hasDLLImportStorageClass())
801     return false;
802 
803   const llvm::Triple &TT = CGM.getTriple();
804   if (TT.isWindowsGNUEnvironment()) {
805     // In MinGW, variables without DLLImport can still be automatically
806     // imported from a DLL by the linker; don't mark variables that
807     // potentially could come from another DLL as DSO local.
808     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
809         !GV->isThreadLocal())
810       return false;
811   }
812 
813   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
814   // remain unresolved in the link, they can be resolved to zero, which is
815   // outside the current DSO.
816   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
817     return false;
818 
819   // Every other GV is local on COFF.
820   // Make an exception for windows OS in the triple: Some firmware builds use
821   // *-win32-macho triples. This (accidentally?) produced windows relocations
822   // without GOT tables in older clang versions; Keep this behaviour.
823   // FIXME: even thread local variables?
824   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
825     return true;
826 
827   // Only handle COFF and ELF for now.
828   if (!TT.isOSBinFormatELF())
829     return false;
830 
831   // If this is not an executable, don't assume anything is local.
832   const auto &CGOpts = CGM.getCodeGenOpts();
833   llvm::Reloc::Model RM = CGOpts.RelocationModel;
834   const auto &LOpts = CGM.getLangOpts();
835   if (RM != llvm::Reloc::Static && !LOpts.PIE)
836     return false;
837 
838   // A definition cannot be preempted from an executable.
839   if (!GV->isDeclarationForLinker())
840     return true;
841 
842   // Most PIC code sequences that assume that a symbol is local cannot produce a
843   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
844   // depended, it seems worth it to handle it here.
845   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
846     return false;
847 
848   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
849   llvm::Triple::ArchType Arch = TT.getArch();
850   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
851       Arch == llvm::Triple::ppc64le)
852     return false;
853 
854   // If we can use copy relocations we can assume it is local.
855   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
856     if (!Var->isThreadLocal() &&
857         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
858       return true;
859 
860   // If we can use a plt entry as the symbol address we can assume it
861   // is local.
862   // FIXME: This should work for PIE, but the gold linker doesn't support it.
863   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
864     return true;
865 
866   // Otherwise don't assue it is local.
867   return false;
868 }
869 
870 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
871   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
872 }
873 
874 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
875                                           GlobalDecl GD) const {
876   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
877   // C++ destructors have a few C++ ABI specific special cases.
878   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
879     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
880     return;
881   }
882   setDLLImportDLLExport(GV, D);
883 }
884 
885 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
886                                           const NamedDecl *D) const {
887   if (D && D->isExternallyVisible()) {
888     if (D->hasAttr<DLLImportAttr>())
889       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
890     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
891       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
892   }
893 }
894 
895 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
896                                     GlobalDecl GD) const {
897   setDLLImportDLLExport(GV, GD);
898   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
899 }
900 
901 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
902                                     const NamedDecl *D) const {
903   setDLLImportDLLExport(GV, D);
904   setGVPropertiesAux(GV, D);
905 }
906 
907 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
908                                        const NamedDecl *D) const {
909   setGlobalVisibility(GV, D);
910   setDSOLocal(GV);
911   GV->setPartition(CodeGenOpts.SymbolPartition);
912 }
913 
914 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
915   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
916       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
917       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
918       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
919       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
920 }
921 
922 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
923     CodeGenOptions::TLSModel M) {
924   switch (M) {
925   case CodeGenOptions::GeneralDynamicTLSModel:
926     return llvm::GlobalVariable::GeneralDynamicTLSModel;
927   case CodeGenOptions::LocalDynamicTLSModel:
928     return llvm::GlobalVariable::LocalDynamicTLSModel;
929   case CodeGenOptions::InitialExecTLSModel:
930     return llvm::GlobalVariable::InitialExecTLSModel;
931   case CodeGenOptions::LocalExecTLSModel:
932     return llvm::GlobalVariable::LocalExecTLSModel;
933   }
934   llvm_unreachable("Invalid TLS model!");
935 }
936 
937 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
938   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
939 
940   llvm::GlobalValue::ThreadLocalMode TLM;
941   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
942 
943   // Override the TLS model if it is explicitly specified.
944   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
945     TLM = GetLLVMTLSModel(Attr->getModel());
946   }
947 
948   GV->setThreadLocalMode(TLM);
949 }
950 
951 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
952                                           StringRef Name) {
953   const TargetInfo &Target = CGM.getTarget();
954   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
955 }
956 
957 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
958                                                  const CPUSpecificAttr *Attr,
959                                                  unsigned CPUIndex,
960                                                  raw_ostream &Out) {
961   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
962   // supported.
963   if (Attr)
964     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
965   else if (CGM.getTarget().supportsIFunc())
966     Out << ".resolver";
967 }
968 
969 static void AppendTargetMangling(const CodeGenModule &CGM,
970                                  const TargetAttr *Attr, raw_ostream &Out) {
971   if (Attr->isDefaultVersion())
972     return;
973 
974   Out << '.';
975   const TargetInfo &Target = CGM.getTarget();
976   ParsedTargetAttr Info =
977       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
978         // Multiversioning doesn't allow "no-${feature}", so we can
979         // only have "+" prefixes here.
980         assert(LHS.startswith("+") && RHS.startswith("+") &&
981                "Features should always have a prefix.");
982         return Target.multiVersionSortPriority(LHS.substr(1)) >
983                Target.multiVersionSortPriority(RHS.substr(1));
984       });
985 
986   bool IsFirst = true;
987 
988   if (!Info.Architecture.empty()) {
989     IsFirst = false;
990     Out << "arch_" << Info.Architecture;
991   }
992 
993   for (StringRef Feat : Info.Features) {
994     if (!IsFirst)
995       Out << '_';
996     IsFirst = false;
997     Out << Feat.substr(1);
998   }
999 }
1000 
1001 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1002                                       const NamedDecl *ND,
1003                                       bool OmitMultiVersionMangling = false) {
1004   SmallString<256> Buffer;
1005   llvm::raw_svector_ostream Out(Buffer);
1006   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1007   if (MC.shouldMangleDeclName(ND)) {
1008     llvm::raw_svector_ostream Out(Buffer);
1009     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
1010       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
1011     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
1012       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
1013     else
1014       MC.mangleName(ND, Out);
1015   } else {
1016     IdentifierInfo *II = ND->getIdentifier();
1017     assert(II && "Attempt to mangle unnamed decl.");
1018     const auto *FD = dyn_cast<FunctionDecl>(ND);
1019 
1020     if (FD &&
1021         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1022       llvm::raw_svector_ostream Out(Buffer);
1023       Out << "__regcall3__" << II->getName();
1024     } else {
1025       Out << II->getName();
1026     }
1027   }
1028 
1029   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1030     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1031       switch (FD->getMultiVersionKind()) {
1032       case MultiVersionKind::CPUDispatch:
1033       case MultiVersionKind::CPUSpecific:
1034         AppendCPUSpecificCPUDispatchMangling(CGM,
1035                                              FD->getAttr<CPUSpecificAttr>(),
1036                                              GD.getMultiVersionIndex(), Out);
1037         break;
1038       case MultiVersionKind::Target:
1039         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1040         break;
1041       case MultiVersionKind::None:
1042         llvm_unreachable("None multiversion type isn't valid here");
1043       }
1044     }
1045 
1046   return Out.str();
1047 }
1048 
1049 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1050                                             const FunctionDecl *FD) {
1051   if (!FD->isMultiVersion())
1052     return;
1053 
1054   // Get the name of what this would be without the 'target' attribute.  This
1055   // allows us to lookup the version that was emitted when this wasn't a
1056   // multiversion function.
1057   std::string NonTargetName =
1058       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1059   GlobalDecl OtherGD;
1060   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1061     assert(OtherGD.getCanonicalDecl()
1062                .getDecl()
1063                ->getAsFunction()
1064                ->isMultiVersion() &&
1065            "Other GD should now be a multiversioned function");
1066     // OtherFD is the version of this function that was mangled BEFORE
1067     // becoming a MultiVersion function.  It potentially needs to be updated.
1068     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1069                                       .getDecl()
1070                                       ->getAsFunction()
1071                                       ->getMostRecentDecl();
1072     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1073     // This is so that if the initial version was already the 'default'
1074     // version, we don't try to update it.
1075     if (OtherName != NonTargetName) {
1076       // Remove instead of erase, since others may have stored the StringRef
1077       // to this.
1078       const auto ExistingRecord = Manglings.find(NonTargetName);
1079       if (ExistingRecord != std::end(Manglings))
1080         Manglings.remove(&(*ExistingRecord));
1081       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1082       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1083       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1084         Entry->setName(OtherName);
1085     }
1086   }
1087 }
1088 
1089 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1090   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1091 
1092   // Some ABIs don't have constructor variants.  Make sure that base and
1093   // complete constructors get mangled the same.
1094   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1095     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1096       CXXCtorType OrigCtorType = GD.getCtorType();
1097       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1098       if (OrigCtorType == Ctor_Base)
1099         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1100     }
1101   }
1102 
1103   auto FoundName = MangledDeclNames.find(CanonicalGD);
1104   if (FoundName != MangledDeclNames.end())
1105     return FoundName->second;
1106 
1107   // Keep the first result in the case of a mangling collision.
1108   const auto *ND = cast<NamedDecl>(GD.getDecl());
1109   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1110 
1111   // Adjust kernel stub mangling as we may need to be able to differentiate
1112   // them from the kernel itself (e.g., for HIP).
1113   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1114     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1115       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1116 
1117   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1118   return MangledDeclNames[CanonicalGD] = Result.first->first();
1119 }
1120 
1121 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1122                                              const BlockDecl *BD) {
1123   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1124   const Decl *D = GD.getDecl();
1125 
1126   SmallString<256> Buffer;
1127   llvm::raw_svector_ostream Out(Buffer);
1128   if (!D)
1129     MangleCtx.mangleGlobalBlock(BD,
1130       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1131   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1132     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1133   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1134     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1135   else
1136     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1137 
1138   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1139   return Result.first->first();
1140 }
1141 
1142 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1143   return getModule().getNamedValue(Name);
1144 }
1145 
1146 /// AddGlobalCtor - Add a function to the list that will be called before
1147 /// main() runs.
1148 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1149                                   llvm::Constant *AssociatedData) {
1150   // FIXME: Type coercion of void()* types.
1151   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1152 }
1153 
1154 /// AddGlobalDtor - Add a function to the list that will be called
1155 /// when the module is unloaded.
1156 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1157   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1158     DtorsUsingAtExit[Priority].push_back(Dtor);
1159     return;
1160   }
1161 
1162   // FIXME: Type coercion of void()* types.
1163   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1164 }
1165 
1166 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1167   if (Fns.empty()) return;
1168 
1169   // Ctor function type is void()*.
1170   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1171   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1172       TheModule.getDataLayout().getProgramAddressSpace());
1173 
1174   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1175   llvm::StructType *CtorStructTy = llvm::StructType::get(
1176       Int32Ty, CtorPFTy, VoidPtrTy);
1177 
1178   // Construct the constructor and destructor arrays.
1179   ConstantInitBuilder builder(*this);
1180   auto ctors = builder.beginArray(CtorStructTy);
1181   for (const auto &I : Fns) {
1182     auto ctor = ctors.beginStruct(CtorStructTy);
1183     ctor.addInt(Int32Ty, I.Priority);
1184     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1185     if (I.AssociatedData)
1186       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1187     else
1188       ctor.addNullPointer(VoidPtrTy);
1189     ctor.finishAndAddTo(ctors);
1190   }
1191 
1192   auto list =
1193     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1194                                 /*constant*/ false,
1195                                 llvm::GlobalValue::AppendingLinkage);
1196 
1197   // The LTO linker doesn't seem to like it when we set an alignment
1198   // on appending variables.  Take it off as a workaround.
1199   list->setAlignment(llvm::None);
1200 
1201   Fns.clear();
1202 }
1203 
1204 llvm::GlobalValue::LinkageTypes
1205 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1206   const auto *D = cast<FunctionDecl>(GD.getDecl());
1207 
1208   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1209 
1210   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1211     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1212 
1213   if (isa<CXXConstructorDecl>(D) &&
1214       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1215       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1216     // Our approach to inheriting constructors is fundamentally different from
1217     // that used by the MS ABI, so keep our inheriting constructor thunks
1218     // internal rather than trying to pick an unambiguous mangling for them.
1219     return llvm::GlobalValue::InternalLinkage;
1220   }
1221 
1222   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1223 }
1224 
1225 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1226   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1227   if (!MDS) return nullptr;
1228 
1229   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1230 }
1231 
1232 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1233                                               const CGFunctionInfo &Info,
1234                                               llvm::Function *F) {
1235   unsigned CallingConv;
1236   llvm::AttributeList PAL;
1237   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1238   F->setAttributes(PAL);
1239   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1240 }
1241 
1242 static void removeImageAccessQualifier(std::string& TyName) {
1243   std::string ReadOnlyQual("__read_only");
1244   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1245   if (ReadOnlyPos != std::string::npos)
1246     // "+ 1" for the space after access qualifier.
1247     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1248   else {
1249     std::string WriteOnlyQual("__write_only");
1250     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1251     if (WriteOnlyPos != std::string::npos)
1252       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1253     else {
1254       std::string ReadWriteQual("__read_write");
1255       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1256       if (ReadWritePos != std::string::npos)
1257         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1258     }
1259   }
1260 }
1261 
1262 // Returns the address space id that should be produced to the
1263 // kernel_arg_addr_space metadata. This is always fixed to the ids
1264 // as specified in the SPIR 2.0 specification in order to differentiate
1265 // for example in clGetKernelArgInfo() implementation between the address
1266 // spaces with targets without unique mapping to the OpenCL address spaces
1267 // (basically all single AS CPUs).
1268 static unsigned ArgInfoAddressSpace(LangAS AS) {
1269   switch (AS) {
1270   case LangAS::opencl_global:   return 1;
1271   case LangAS::opencl_constant: return 2;
1272   case LangAS::opencl_local:    return 3;
1273   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1274   default:
1275     return 0; // Assume private.
1276   }
1277 }
1278 
1279 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1280                                          const FunctionDecl *FD,
1281                                          CodeGenFunction *CGF) {
1282   assert(((FD && CGF) || (!FD && !CGF)) &&
1283          "Incorrect use - FD and CGF should either be both null or not!");
1284   // Create MDNodes that represent the kernel arg metadata.
1285   // Each MDNode is a list in the form of "key", N number of values which is
1286   // the same number of values as their are kernel arguments.
1287 
1288   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1289 
1290   // MDNode for the kernel argument address space qualifiers.
1291   SmallVector<llvm::Metadata *, 8> addressQuals;
1292 
1293   // MDNode for the kernel argument access qualifiers (images only).
1294   SmallVector<llvm::Metadata *, 8> accessQuals;
1295 
1296   // MDNode for the kernel argument type names.
1297   SmallVector<llvm::Metadata *, 8> argTypeNames;
1298 
1299   // MDNode for the kernel argument base type names.
1300   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1301 
1302   // MDNode for the kernel argument type qualifiers.
1303   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1304 
1305   // MDNode for the kernel argument names.
1306   SmallVector<llvm::Metadata *, 8> argNames;
1307 
1308   if (FD && CGF)
1309     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1310       const ParmVarDecl *parm = FD->getParamDecl(i);
1311       QualType ty = parm->getType();
1312       std::string typeQuals;
1313 
1314       if (ty->isPointerType()) {
1315         QualType pointeeTy = ty->getPointeeType();
1316 
1317         // Get address qualifier.
1318         addressQuals.push_back(
1319             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1320                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1321 
1322         // Get argument type name.
1323         std::string typeName =
1324             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1325 
1326         // Turn "unsigned type" to "utype"
1327         std::string::size_type pos = typeName.find("unsigned");
1328         if (pointeeTy.isCanonical() && pos != std::string::npos)
1329           typeName.erase(pos + 1, 8);
1330 
1331         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1332 
1333         std::string baseTypeName =
1334             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1335                 Policy) +
1336             "*";
1337 
1338         // Turn "unsigned type" to "utype"
1339         pos = baseTypeName.find("unsigned");
1340         if (pos != std::string::npos)
1341           baseTypeName.erase(pos + 1, 8);
1342 
1343         argBaseTypeNames.push_back(
1344             llvm::MDString::get(VMContext, baseTypeName));
1345 
1346         // Get argument type qualifiers:
1347         if (ty.isRestrictQualified())
1348           typeQuals = "restrict";
1349         if (pointeeTy.isConstQualified() ||
1350             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1351           typeQuals += typeQuals.empty() ? "const" : " const";
1352         if (pointeeTy.isVolatileQualified())
1353           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1354       } else {
1355         uint32_t AddrSpc = 0;
1356         bool isPipe = ty->isPipeType();
1357         if (ty->isImageType() || isPipe)
1358           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1359 
1360         addressQuals.push_back(
1361             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1362 
1363         // Get argument type name.
1364         std::string typeName;
1365         if (isPipe)
1366           typeName = ty.getCanonicalType()
1367                          ->getAs<PipeType>()
1368                          ->getElementType()
1369                          .getAsString(Policy);
1370         else
1371           typeName = ty.getUnqualifiedType().getAsString(Policy);
1372 
1373         // Turn "unsigned type" to "utype"
1374         std::string::size_type pos = typeName.find("unsigned");
1375         if (ty.isCanonical() && pos != std::string::npos)
1376           typeName.erase(pos + 1, 8);
1377 
1378         std::string baseTypeName;
1379         if (isPipe)
1380           baseTypeName = ty.getCanonicalType()
1381                              ->getAs<PipeType>()
1382                              ->getElementType()
1383                              .getCanonicalType()
1384                              .getAsString(Policy);
1385         else
1386           baseTypeName =
1387               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1388 
1389         // Remove access qualifiers on images
1390         // (as they are inseparable from type in clang implementation,
1391         // but OpenCL spec provides a special query to get access qualifier
1392         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1393         if (ty->isImageType()) {
1394           removeImageAccessQualifier(typeName);
1395           removeImageAccessQualifier(baseTypeName);
1396         }
1397 
1398         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1399 
1400         // Turn "unsigned type" to "utype"
1401         pos = baseTypeName.find("unsigned");
1402         if (pos != std::string::npos)
1403           baseTypeName.erase(pos + 1, 8);
1404 
1405         argBaseTypeNames.push_back(
1406             llvm::MDString::get(VMContext, baseTypeName));
1407 
1408         if (isPipe)
1409           typeQuals = "pipe";
1410       }
1411 
1412       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1413 
1414       // Get image and pipe access qualifier:
1415       if (ty->isImageType() || ty->isPipeType()) {
1416         const Decl *PDecl = parm;
1417         if (auto *TD = dyn_cast<TypedefType>(ty))
1418           PDecl = TD->getDecl();
1419         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1420         if (A && A->isWriteOnly())
1421           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1422         else if (A && A->isReadWrite())
1423           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1424         else
1425           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1426       } else
1427         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1428 
1429       // Get argument name.
1430       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1431     }
1432 
1433   Fn->setMetadata("kernel_arg_addr_space",
1434                   llvm::MDNode::get(VMContext, addressQuals));
1435   Fn->setMetadata("kernel_arg_access_qual",
1436                   llvm::MDNode::get(VMContext, accessQuals));
1437   Fn->setMetadata("kernel_arg_type",
1438                   llvm::MDNode::get(VMContext, argTypeNames));
1439   Fn->setMetadata("kernel_arg_base_type",
1440                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1441   Fn->setMetadata("kernel_arg_type_qual",
1442                   llvm::MDNode::get(VMContext, argTypeQuals));
1443   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1444     Fn->setMetadata("kernel_arg_name",
1445                     llvm::MDNode::get(VMContext, argNames));
1446 }
1447 
1448 /// Determines whether the language options require us to model
1449 /// unwind exceptions.  We treat -fexceptions as mandating this
1450 /// except under the fragile ObjC ABI with only ObjC exceptions
1451 /// enabled.  This means, for example, that C with -fexceptions
1452 /// enables this.
1453 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1454   // If exceptions are completely disabled, obviously this is false.
1455   if (!LangOpts.Exceptions) return false;
1456 
1457   // If C++ exceptions are enabled, this is true.
1458   if (LangOpts.CXXExceptions) return true;
1459 
1460   // If ObjC exceptions are enabled, this depends on the ABI.
1461   if (LangOpts.ObjCExceptions) {
1462     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1463   }
1464 
1465   return true;
1466 }
1467 
1468 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1469                                                       const CXXMethodDecl *MD) {
1470   // Check that the type metadata can ever actually be used by a call.
1471   if (!CGM.getCodeGenOpts().LTOUnit ||
1472       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1473     return false;
1474 
1475   // Only functions whose address can be taken with a member function pointer
1476   // need this sort of type metadata.
1477   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1478          !isa<CXXDestructorDecl>(MD);
1479 }
1480 
1481 std::vector<const CXXRecordDecl *>
1482 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1483   llvm::SetVector<const CXXRecordDecl *> MostBases;
1484 
1485   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1486   CollectMostBases = [&](const CXXRecordDecl *RD) {
1487     if (RD->getNumBases() == 0)
1488       MostBases.insert(RD);
1489     for (const CXXBaseSpecifier &B : RD->bases())
1490       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1491   };
1492   CollectMostBases(RD);
1493   return MostBases.takeVector();
1494 }
1495 
1496 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1497                                                            llvm::Function *F) {
1498   llvm::AttrBuilder B;
1499 
1500   if (CodeGenOpts.UnwindTables)
1501     B.addAttribute(llvm::Attribute::UWTable);
1502 
1503   if (!hasUnwindExceptions(LangOpts))
1504     B.addAttribute(llvm::Attribute::NoUnwind);
1505 
1506   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1507     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1508       B.addAttribute(llvm::Attribute::StackProtect);
1509     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1510       B.addAttribute(llvm::Attribute::StackProtectStrong);
1511     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1512       B.addAttribute(llvm::Attribute::StackProtectReq);
1513   }
1514 
1515   if (!D) {
1516     // If we don't have a declaration to control inlining, the function isn't
1517     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1518     // disabled, mark the function as noinline.
1519     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1520         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1521       B.addAttribute(llvm::Attribute::NoInline);
1522 
1523     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1524     return;
1525   }
1526 
1527   // Track whether we need to add the optnone LLVM attribute,
1528   // starting with the default for this optimization level.
1529   bool ShouldAddOptNone =
1530       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1531   // We can't add optnone in the following cases, it won't pass the verifier.
1532   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1533   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1534 
1535   // Add optnone, but do so only if the function isn't always_inline.
1536   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1537       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1538     B.addAttribute(llvm::Attribute::OptimizeNone);
1539 
1540     // OptimizeNone implies noinline; we should not be inlining such functions.
1541     B.addAttribute(llvm::Attribute::NoInline);
1542 
1543     // We still need to handle naked functions even though optnone subsumes
1544     // much of their semantics.
1545     if (D->hasAttr<NakedAttr>())
1546       B.addAttribute(llvm::Attribute::Naked);
1547 
1548     // OptimizeNone wins over OptimizeForSize and MinSize.
1549     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1550     F->removeFnAttr(llvm::Attribute::MinSize);
1551   } else if (D->hasAttr<NakedAttr>()) {
1552     // Naked implies noinline: we should not be inlining such functions.
1553     B.addAttribute(llvm::Attribute::Naked);
1554     B.addAttribute(llvm::Attribute::NoInline);
1555   } else if (D->hasAttr<NoDuplicateAttr>()) {
1556     B.addAttribute(llvm::Attribute::NoDuplicate);
1557   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1558     // Add noinline if the function isn't always_inline.
1559     B.addAttribute(llvm::Attribute::NoInline);
1560   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1561              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1562     // (noinline wins over always_inline, and we can't specify both in IR)
1563     B.addAttribute(llvm::Attribute::AlwaysInline);
1564   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1565     // If we're not inlining, then force everything that isn't always_inline to
1566     // carry an explicit noinline attribute.
1567     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1568       B.addAttribute(llvm::Attribute::NoInline);
1569   } else {
1570     // Otherwise, propagate the inline hint attribute and potentially use its
1571     // absence to mark things as noinline.
1572     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1573       // Search function and template pattern redeclarations for inline.
1574       auto CheckForInline = [](const FunctionDecl *FD) {
1575         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1576           return Redecl->isInlineSpecified();
1577         };
1578         if (any_of(FD->redecls(), CheckRedeclForInline))
1579           return true;
1580         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1581         if (!Pattern)
1582           return false;
1583         return any_of(Pattern->redecls(), CheckRedeclForInline);
1584       };
1585       if (CheckForInline(FD)) {
1586         B.addAttribute(llvm::Attribute::InlineHint);
1587       } else if (CodeGenOpts.getInlining() ==
1588                      CodeGenOptions::OnlyHintInlining &&
1589                  !FD->isInlined() &&
1590                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1591         B.addAttribute(llvm::Attribute::NoInline);
1592       }
1593     }
1594   }
1595 
1596   // Add other optimization related attributes if we are optimizing this
1597   // function.
1598   if (!D->hasAttr<OptimizeNoneAttr>()) {
1599     if (D->hasAttr<ColdAttr>()) {
1600       if (!ShouldAddOptNone)
1601         B.addAttribute(llvm::Attribute::OptimizeForSize);
1602       B.addAttribute(llvm::Attribute::Cold);
1603     }
1604 
1605     if (D->hasAttr<MinSizeAttr>())
1606       B.addAttribute(llvm::Attribute::MinSize);
1607   }
1608 
1609   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1610 
1611   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1612   if (alignment)
1613     F->setAlignment(llvm::Align(alignment));
1614 
1615   if (!D->hasAttr<AlignedAttr>())
1616     if (LangOpts.FunctionAlignment)
1617       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1618 
1619   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1620   // reserve a bit for differentiating between virtual and non-virtual member
1621   // functions. If the current target's C++ ABI requires this and this is a
1622   // member function, set its alignment accordingly.
1623   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1624     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1625       F->setAlignment(llvm::Align(2));
1626   }
1627 
1628   // In the cross-dso CFI mode with canonical jump tables, we want !type
1629   // attributes on definitions only.
1630   if (CodeGenOpts.SanitizeCfiCrossDso &&
1631       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1632     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1633       // Skip available_externally functions. They won't be codegen'ed in the
1634       // current module anyway.
1635       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1636         CreateFunctionTypeMetadataForIcall(FD, F);
1637     }
1638   }
1639 
1640   // Emit type metadata on member functions for member function pointer checks.
1641   // These are only ever necessary on definitions; we're guaranteed that the
1642   // definition will be present in the LTO unit as a result of LTO visibility.
1643   auto *MD = dyn_cast<CXXMethodDecl>(D);
1644   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1645     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1646       llvm::Metadata *Id =
1647           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1648               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1649       F->addTypeMetadata(0, Id);
1650     }
1651   }
1652 }
1653 
1654 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1655   const Decl *D = GD.getDecl();
1656   if (dyn_cast_or_null<NamedDecl>(D))
1657     setGVProperties(GV, GD);
1658   else
1659     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1660 
1661   if (D && D->hasAttr<UsedAttr>())
1662     addUsedGlobal(GV);
1663 
1664   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1665     const auto *VD = cast<VarDecl>(D);
1666     if (VD->getType().isConstQualified() &&
1667         VD->getStorageDuration() == SD_Static)
1668       addUsedGlobal(GV);
1669   }
1670 }
1671 
1672 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1673                                                 llvm::AttrBuilder &Attrs) {
1674   // Add target-cpu and target-features attributes to functions. If
1675   // we have a decl for the function and it has a target attribute then
1676   // parse that and add it to the feature set.
1677   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1678   std::vector<std::string> Features;
1679   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1680   FD = FD ? FD->getMostRecentDecl() : FD;
1681   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1682   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1683   bool AddedAttr = false;
1684   if (TD || SD) {
1685     llvm::StringMap<bool> FeatureMap;
1686     getContext().getFunctionFeatureMap(FeatureMap, GD);
1687 
1688     // Produce the canonical string for this set of features.
1689     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1690       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1691 
1692     // Now add the target-cpu and target-features to the function.
1693     // While we populated the feature map above, we still need to
1694     // get and parse the target attribute so we can get the cpu for
1695     // the function.
1696     if (TD) {
1697       ParsedTargetAttr ParsedAttr = TD->parse();
1698       if (ParsedAttr.Architecture != "" &&
1699           getTarget().isValidCPUName(ParsedAttr.Architecture))
1700         TargetCPU = ParsedAttr.Architecture;
1701     }
1702   } else {
1703     // Otherwise just add the existing target cpu and target features to the
1704     // function.
1705     Features = getTarget().getTargetOpts().Features;
1706   }
1707 
1708   if (TargetCPU != "") {
1709     Attrs.addAttribute("target-cpu", TargetCPU);
1710     AddedAttr = true;
1711   }
1712   if (!Features.empty()) {
1713     llvm::sort(Features);
1714     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1715     AddedAttr = true;
1716   }
1717 
1718   return AddedAttr;
1719 }
1720 
1721 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1722                                           llvm::GlobalObject *GO) {
1723   const Decl *D = GD.getDecl();
1724   SetCommonAttributes(GD, GO);
1725 
1726   if (D) {
1727     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1728       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1729         GV->addAttribute("bss-section", SA->getName());
1730       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1731         GV->addAttribute("data-section", SA->getName());
1732       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1733         GV->addAttribute("rodata-section", SA->getName());
1734       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1735         GV->addAttribute("relro-section", SA->getName());
1736     }
1737 
1738     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1739       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1740         if (!D->getAttr<SectionAttr>())
1741           F->addFnAttr("implicit-section-name", SA->getName());
1742 
1743       llvm::AttrBuilder Attrs;
1744       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1745         // We know that GetCPUAndFeaturesAttributes will always have the
1746         // newest set, since it has the newest possible FunctionDecl, so the
1747         // new ones should replace the old.
1748         F->removeFnAttr("target-cpu");
1749         F->removeFnAttr("target-features");
1750         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1751       }
1752     }
1753 
1754     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1755       GO->setSection(CSA->getName());
1756     else if (const auto *SA = D->getAttr<SectionAttr>())
1757       GO->setSection(SA->getName());
1758   }
1759 
1760   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1761 }
1762 
1763 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1764                                                   llvm::Function *F,
1765                                                   const CGFunctionInfo &FI) {
1766   const Decl *D = GD.getDecl();
1767   SetLLVMFunctionAttributes(GD, FI, F);
1768   SetLLVMFunctionAttributesForDefinition(D, F);
1769 
1770   F->setLinkage(llvm::Function::InternalLinkage);
1771 
1772   setNonAliasAttributes(GD, F);
1773 }
1774 
1775 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1776   // Set linkage and visibility in case we never see a definition.
1777   LinkageInfo LV = ND->getLinkageAndVisibility();
1778   // Don't set internal linkage on declarations.
1779   // "extern_weak" is overloaded in LLVM; we probably should have
1780   // separate linkage types for this.
1781   if (isExternallyVisible(LV.getLinkage()) &&
1782       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1783     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1784 }
1785 
1786 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1787                                                        llvm::Function *F) {
1788   // Only if we are checking indirect calls.
1789   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1790     return;
1791 
1792   // Non-static class methods are handled via vtable or member function pointer
1793   // checks elsewhere.
1794   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1795     return;
1796 
1797   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1798   F->addTypeMetadata(0, MD);
1799   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1800 
1801   // Emit a hash-based bit set entry for cross-DSO calls.
1802   if (CodeGenOpts.SanitizeCfiCrossDso)
1803     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1804       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1805 }
1806 
1807 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1808                                           bool IsIncompleteFunction,
1809                                           bool IsThunk) {
1810 
1811   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1812     // If this is an intrinsic function, set the function's attributes
1813     // to the intrinsic's attributes.
1814     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1815     return;
1816   }
1817 
1818   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1819 
1820   if (!IsIncompleteFunction)
1821     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1822 
1823   // Add the Returned attribute for "this", except for iOS 5 and earlier
1824   // where substantial code, including the libstdc++ dylib, was compiled with
1825   // GCC and does not actually return "this".
1826   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1827       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1828     assert(!F->arg_empty() &&
1829            F->arg_begin()->getType()
1830              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1831            "unexpected this return");
1832     F->addAttribute(1, llvm::Attribute::Returned);
1833   }
1834 
1835   // Only a few attributes are set on declarations; these may later be
1836   // overridden by a definition.
1837 
1838   setLinkageForGV(F, FD);
1839   setGVProperties(F, FD);
1840 
1841   // Setup target-specific attributes.
1842   if (!IsIncompleteFunction && F->isDeclaration())
1843     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1844 
1845   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1846     F->setSection(CSA->getName());
1847   else if (const auto *SA = FD->getAttr<SectionAttr>())
1848      F->setSection(SA->getName());
1849 
1850   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1851   if (FD->isInlineBuiltinDeclaration()) {
1852     const FunctionDecl *FDBody;
1853     bool HasBody = FD->hasBody(FDBody);
1854     (void)HasBody;
1855     assert(HasBody && "Inline builtin declarations should always have an "
1856                       "available body!");
1857     if (shouldEmitFunction(FDBody))
1858       F->addAttribute(llvm::AttributeList::FunctionIndex,
1859                       llvm::Attribute::NoBuiltin);
1860   }
1861 
1862   if (FD->isReplaceableGlobalAllocationFunction()) {
1863     // A replaceable global allocation function does not act like a builtin by
1864     // default, only if it is invoked by a new-expression or delete-expression.
1865     F->addAttribute(llvm::AttributeList::FunctionIndex,
1866                     llvm::Attribute::NoBuiltin);
1867 
1868     // A sane operator new returns a non-aliasing pointer.
1869     // FIXME: Also add NonNull attribute to the return value
1870     // for the non-nothrow forms?
1871     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1872     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1873         (Kind == OO_New || Kind == OO_Array_New))
1874       F->addAttribute(llvm::AttributeList::ReturnIndex,
1875                       llvm::Attribute::NoAlias);
1876   }
1877 
1878   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1879     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1880   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1881     if (MD->isVirtual())
1882       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1883 
1884   // Don't emit entries for function declarations in the cross-DSO mode. This
1885   // is handled with better precision by the receiving DSO. But if jump tables
1886   // are non-canonical then we need type metadata in order to produce the local
1887   // jump table.
1888   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1889       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1890     CreateFunctionTypeMetadataForIcall(FD, F);
1891 
1892   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1893     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1894 
1895   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1896     // Annotate the callback behavior as metadata:
1897     //  - The callback callee (as argument number).
1898     //  - The callback payloads (as argument numbers).
1899     llvm::LLVMContext &Ctx = F->getContext();
1900     llvm::MDBuilder MDB(Ctx);
1901 
1902     // The payload indices are all but the first one in the encoding. The first
1903     // identifies the callback callee.
1904     int CalleeIdx = *CB->encoding_begin();
1905     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1906     F->addMetadata(llvm::LLVMContext::MD_callback,
1907                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1908                                                CalleeIdx, PayloadIndices,
1909                                                /* VarArgsArePassed */ false)}));
1910   }
1911 }
1912 
1913 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1914   assert(!GV->isDeclaration() &&
1915          "Only globals with definition can force usage.");
1916   LLVMUsed.emplace_back(GV);
1917 }
1918 
1919 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1920   assert(!GV->isDeclaration() &&
1921          "Only globals with definition can force usage.");
1922   LLVMCompilerUsed.emplace_back(GV);
1923 }
1924 
1925 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1926                      std::vector<llvm::WeakTrackingVH> &List) {
1927   // Don't create llvm.used if there is no need.
1928   if (List.empty())
1929     return;
1930 
1931   // Convert List to what ConstantArray needs.
1932   SmallVector<llvm::Constant*, 8> UsedArray;
1933   UsedArray.resize(List.size());
1934   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1935     UsedArray[i] =
1936         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1937             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1938   }
1939 
1940   if (UsedArray.empty())
1941     return;
1942   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1943 
1944   auto *GV = new llvm::GlobalVariable(
1945       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1946       llvm::ConstantArray::get(ATy, UsedArray), Name);
1947 
1948   GV->setSection("llvm.metadata");
1949 }
1950 
1951 void CodeGenModule::emitLLVMUsed() {
1952   emitUsed(*this, "llvm.used", LLVMUsed);
1953   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1954 }
1955 
1956 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1957   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1958   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1959 }
1960 
1961 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1962   llvm::SmallString<32> Opt;
1963   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1964   if (Opt.empty())
1965     return;
1966   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1967   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1968 }
1969 
1970 void CodeGenModule::AddDependentLib(StringRef Lib) {
1971   auto &C = getLLVMContext();
1972   if (getTarget().getTriple().isOSBinFormatELF()) {
1973       ELFDependentLibraries.push_back(
1974         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1975     return;
1976   }
1977 
1978   llvm::SmallString<24> Opt;
1979   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1980   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1981   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1982 }
1983 
1984 /// Add link options implied by the given module, including modules
1985 /// it depends on, using a postorder walk.
1986 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1987                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1988                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1989   // Import this module's parent.
1990   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1991     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1992   }
1993 
1994   // Import this module's dependencies.
1995   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1996     if (Visited.insert(Mod->Imports[I - 1]).second)
1997       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1998   }
1999 
2000   // Add linker options to link against the libraries/frameworks
2001   // described by this module.
2002   llvm::LLVMContext &Context = CGM.getLLVMContext();
2003   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2004 
2005   // For modules that use export_as for linking, use that module
2006   // name instead.
2007   if (Mod->UseExportAsModuleLinkName)
2008     return;
2009 
2010   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2011     // Link against a framework.  Frameworks are currently Darwin only, so we
2012     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2013     if (Mod->LinkLibraries[I-1].IsFramework) {
2014       llvm::Metadata *Args[2] = {
2015           llvm::MDString::get(Context, "-framework"),
2016           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2017 
2018       Metadata.push_back(llvm::MDNode::get(Context, Args));
2019       continue;
2020     }
2021 
2022     // Link against a library.
2023     if (IsELF) {
2024       llvm::Metadata *Args[2] = {
2025           llvm::MDString::get(Context, "lib"),
2026           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2027       };
2028       Metadata.push_back(llvm::MDNode::get(Context, Args));
2029     } else {
2030       llvm::SmallString<24> Opt;
2031       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2032           Mod->LinkLibraries[I - 1].Library, Opt);
2033       auto *OptString = llvm::MDString::get(Context, Opt);
2034       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2035     }
2036   }
2037 }
2038 
2039 void CodeGenModule::EmitModuleLinkOptions() {
2040   // Collect the set of all of the modules we want to visit to emit link
2041   // options, which is essentially the imported modules and all of their
2042   // non-explicit child modules.
2043   llvm::SetVector<clang::Module *> LinkModules;
2044   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2045   SmallVector<clang::Module *, 16> Stack;
2046 
2047   // Seed the stack with imported modules.
2048   for (Module *M : ImportedModules) {
2049     // Do not add any link flags when an implementation TU of a module imports
2050     // a header of that same module.
2051     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2052         !getLangOpts().isCompilingModule())
2053       continue;
2054     if (Visited.insert(M).second)
2055       Stack.push_back(M);
2056   }
2057 
2058   // Find all of the modules to import, making a little effort to prune
2059   // non-leaf modules.
2060   while (!Stack.empty()) {
2061     clang::Module *Mod = Stack.pop_back_val();
2062 
2063     bool AnyChildren = false;
2064 
2065     // Visit the submodules of this module.
2066     for (const auto &SM : Mod->submodules()) {
2067       // Skip explicit children; they need to be explicitly imported to be
2068       // linked against.
2069       if (SM->IsExplicit)
2070         continue;
2071 
2072       if (Visited.insert(SM).second) {
2073         Stack.push_back(SM);
2074         AnyChildren = true;
2075       }
2076     }
2077 
2078     // We didn't find any children, so add this module to the list of
2079     // modules to link against.
2080     if (!AnyChildren) {
2081       LinkModules.insert(Mod);
2082     }
2083   }
2084 
2085   // Add link options for all of the imported modules in reverse topological
2086   // order.  We don't do anything to try to order import link flags with respect
2087   // to linker options inserted by things like #pragma comment().
2088   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2089   Visited.clear();
2090   for (Module *M : LinkModules)
2091     if (Visited.insert(M).second)
2092       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2093   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2094   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2095 
2096   // Add the linker options metadata flag.
2097   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2098   for (auto *MD : LinkerOptionsMetadata)
2099     NMD->addOperand(MD);
2100 }
2101 
2102 void CodeGenModule::EmitDeferred() {
2103   // Emit deferred declare target declarations.
2104   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2105     getOpenMPRuntime().emitDeferredTargetDecls();
2106 
2107   // Emit code for any potentially referenced deferred decls.  Since a
2108   // previously unused static decl may become used during the generation of code
2109   // for a static function, iterate until no changes are made.
2110 
2111   if (!DeferredVTables.empty()) {
2112     EmitDeferredVTables();
2113 
2114     // Emitting a vtable doesn't directly cause more vtables to
2115     // become deferred, although it can cause functions to be
2116     // emitted that then need those vtables.
2117     assert(DeferredVTables.empty());
2118   }
2119 
2120   // Stop if we're out of both deferred vtables and deferred declarations.
2121   if (DeferredDeclsToEmit.empty())
2122     return;
2123 
2124   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2125   // work, it will not interfere with this.
2126   std::vector<GlobalDecl> CurDeclsToEmit;
2127   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2128 
2129   for (GlobalDecl &D : CurDeclsToEmit) {
2130     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2131     // to get GlobalValue with exactly the type we need, not something that
2132     // might had been created for another decl with the same mangled name but
2133     // different type.
2134     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2135         GetAddrOfGlobal(D, ForDefinition));
2136 
2137     // In case of different address spaces, we may still get a cast, even with
2138     // IsForDefinition equal to true. Query mangled names table to get
2139     // GlobalValue.
2140     if (!GV)
2141       GV = GetGlobalValue(getMangledName(D));
2142 
2143     // Make sure GetGlobalValue returned non-null.
2144     assert(GV);
2145 
2146     // Check to see if we've already emitted this.  This is necessary
2147     // for a couple of reasons: first, decls can end up in the
2148     // deferred-decls queue multiple times, and second, decls can end
2149     // up with definitions in unusual ways (e.g. by an extern inline
2150     // function acquiring a strong function redefinition).  Just
2151     // ignore these cases.
2152     if (!GV->isDeclaration())
2153       continue;
2154 
2155     // If this is OpenMP, check if it is legal to emit this global normally.
2156     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2157       continue;
2158 
2159     // Otherwise, emit the definition and move on to the next one.
2160     EmitGlobalDefinition(D, GV);
2161 
2162     // If we found out that we need to emit more decls, do that recursively.
2163     // This has the advantage that the decls are emitted in a DFS and related
2164     // ones are close together, which is convenient for testing.
2165     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2166       EmitDeferred();
2167       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2168     }
2169   }
2170 }
2171 
2172 void CodeGenModule::EmitVTablesOpportunistically() {
2173   // Try to emit external vtables as available_externally if they have emitted
2174   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2175   // is not allowed to create new references to things that need to be emitted
2176   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2177 
2178   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2179          && "Only emit opportunistic vtables with optimizations");
2180 
2181   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2182     assert(getVTables().isVTableExternal(RD) &&
2183            "This queue should only contain external vtables");
2184     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2185       VTables.GenerateClassData(RD);
2186   }
2187   OpportunisticVTables.clear();
2188 }
2189 
2190 void CodeGenModule::EmitGlobalAnnotations() {
2191   if (Annotations.empty())
2192     return;
2193 
2194   // Create a new global variable for the ConstantStruct in the Module.
2195   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2196     Annotations[0]->getType(), Annotations.size()), Annotations);
2197   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2198                                       llvm::GlobalValue::AppendingLinkage,
2199                                       Array, "llvm.global.annotations");
2200   gv->setSection(AnnotationSection);
2201 }
2202 
2203 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2204   llvm::Constant *&AStr = AnnotationStrings[Str];
2205   if (AStr)
2206     return AStr;
2207 
2208   // Not found yet, create a new global.
2209   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2210   auto *gv =
2211       new llvm::GlobalVariable(getModule(), s->getType(), true,
2212                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2213   gv->setSection(AnnotationSection);
2214   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2215   AStr = gv;
2216   return gv;
2217 }
2218 
2219 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2220   SourceManager &SM = getContext().getSourceManager();
2221   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2222   if (PLoc.isValid())
2223     return EmitAnnotationString(PLoc.getFilename());
2224   return EmitAnnotationString(SM.getBufferName(Loc));
2225 }
2226 
2227 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2228   SourceManager &SM = getContext().getSourceManager();
2229   PresumedLoc PLoc = SM.getPresumedLoc(L);
2230   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2231     SM.getExpansionLineNumber(L);
2232   return llvm::ConstantInt::get(Int32Ty, LineNo);
2233 }
2234 
2235 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2236                                                 const AnnotateAttr *AA,
2237                                                 SourceLocation L) {
2238   // Get the globals for file name, annotation, and the line number.
2239   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2240                  *UnitGV = EmitAnnotationUnit(L),
2241                  *LineNoCst = EmitAnnotationLineNo(L);
2242 
2243   llvm::Constant *ASZeroGV = GV;
2244   if (GV->getAddressSpace() != 0) {
2245     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2246                    GV, GV->getValueType()->getPointerTo(0));
2247   }
2248 
2249   // Create the ConstantStruct for the global annotation.
2250   llvm::Constant *Fields[4] = {
2251     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2252     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2253     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2254     LineNoCst
2255   };
2256   return llvm::ConstantStruct::getAnon(Fields);
2257 }
2258 
2259 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2260                                          llvm::GlobalValue *GV) {
2261   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2262   // Get the struct elements for these annotations.
2263   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2264     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2265 }
2266 
2267 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2268                                            llvm::Function *Fn,
2269                                            SourceLocation Loc) const {
2270   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2271   // Blacklist by function name.
2272   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2273     return true;
2274   // Blacklist by location.
2275   if (Loc.isValid())
2276     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2277   // If location is unknown, this may be a compiler-generated function. Assume
2278   // it's located in the main file.
2279   auto &SM = Context.getSourceManager();
2280   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2281     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2282   }
2283   return false;
2284 }
2285 
2286 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2287                                            SourceLocation Loc, QualType Ty,
2288                                            StringRef Category) const {
2289   // For now globals can be blacklisted only in ASan and KASan.
2290   const SanitizerMask EnabledAsanMask =
2291       LangOpts.Sanitize.Mask &
2292       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2293        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2294        SanitizerKind::MemTag);
2295   if (!EnabledAsanMask)
2296     return false;
2297   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2298   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2299     return true;
2300   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2301     return true;
2302   // Check global type.
2303   if (!Ty.isNull()) {
2304     // Drill down the array types: if global variable of a fixed type is
2305     // blacklisted, we also don't instrument arrays of them.
2306     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2307       Ty = AT->getElementType();
2308     Ty = Ty.getCanonicalType().getUnqualifiedType();
2309     // We allow to blacklist only record types (classes, structs etc.)
2310     if (Ty->isRecordType()) {
2311       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2312       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2313         return true;
2314     }
2315   }
2316   return false;
2317 }
2318 
2319 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2320                                    StringRef Category) const {
2321   const auto &XRayFilter = getContext().getXRayFilter();
2322   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2323   auto Attr = ImbueAttr::NONE;
2324   if (Loc.isValid())
2325     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2326   if (Attr == ImbueAttr::NONE)
2327     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2328   switch (Attr) {
2329   case ImbueAttr::NONE:
2330     return false;
2331   case ImbueAttr::ALWAYS:
2332     Fn->addFnAttr("function-instrument", "xray-always");
2333     break;
2334   case ImbueAttr::ALWAYS_ARG1:
2335     Fn->addFnAttr("function-instrument", "xray-always");
2336     Fn->addFnAttr("xray-log-args", "1");
2337     break;
2338   case ImbueAttr::NEVER:
2339     Fn->addFnAttr("function-instrument", "xray-never");
2340     break;
2341   }
2342   return true;
2343 }
2344 
2345 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2346   // Never defer when EmitAllDecls is specified.
2347   if (LangOpts.EmitAllDecls)
2348     return true;
2349 
2350   if (CodeGenOpts.KeepStaticConsts) {
2351     const auto *VD = dyn_cast<VarDecl>(Global);
2352     if (VD && VD->getType().isConstQualified() &&
2353         VD->getStorageDuration() == SD_Static)
2354       return true;
2355   }
2356 
2357   return getContext().DeclMustBeEmitted(Global);
2358 }
2359 
2360 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2361   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2362     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2363       // Implicit template instantiations may change linkage if they are later
2364       // explicitly instantiated, so they should not be emitted eagerly.
2365       return false;
2366     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2367     // not emit them eagerly unless we sure that the function must be emitted on
2368     // the host.
2369     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2370         !LangOpts.OpenMPIsDevice &&
2371         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2372         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2373       return false;
2374   }
2375   if (const auto *VD = dyn_cast<VarDecl>(Global))
2376     if (Context.getInlineVariableDefinitionKind(VD) ==
2377         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2378       // A definition of an inline constexpr static data member may change
2379       // linkage later if it's redeclared outside the class.
2380       return false;
2381   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2382   // codegen for global variables, because they may be marked as threadprivate.
2383   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2384       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2385       !isTypeConstant(Global->getType(), false) &&
2386       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2387     return false;
2388 
2389   return true;
2390 }
2391 
2392 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2393     const CXXUuidofExpr* E) {
2394   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2395   // well-formed.
2396   StringRef Uuid = E->getUuidStr();
2397   std::string Name = "_GUID_" + Uuid.lower();
2398   std::replace(Name.begin(), Name.end(), '-', '_');
2399 
2400   // The UUID descriptor should be pointer aligned.
2401   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2402 
2403   // Look for an existing global.
2404   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2405     return ConstantAddress(GV, Alignment);
2406 
2407   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2408   assert(Init && "failed to initialize as constant");
2409 
2410   auto *GV = new llvm::GlobalVariable(
2411       getModule(), Init->getType(),
2412       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2413   if (supportsCOMDAT())
2414     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2415   setDSOLocal(GV);
2416   return ConstantAddress(GV, Alignment);
2417 }
2418 
2419 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2420   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2421   assert(AA && "No alias?");
2422 
2423   CharUnits Alignment = getContext().getDeclAlign(VD);
2424   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2425 
2426   // See if there is already something with the target's name in the module.
2427   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2428   if (Entry) {
2429     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2430     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2431     return ConstantAddress(Ptr, Alignment);
2432   }
2433 
2434   llvm::Constant *Aliasee;
2435   if (isa<llvm::FunctionType>(DeclTy))
2436     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2437                                       GlobalDecl(cast<FunctionDecl>(VD)),
2438                                       /*ForVTable=*/false);
2439   else
2440     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2441                                     llvm::PointerType::getUnqual(DeclTy),
2442                                     nullptr);
2443 
2444   auto *F = cast<llvm::GlobalValue>(Aliasee);
2445   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2446   WeakRefReferences.insert(F);
2447 
2448   return ConstantAddress(Aliasee, Alignment);
2449 }
2450 
2451 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2452   const auto *Global = cast<ValueDecl>(GD.getDecl());
2453 
2454   // Weak references don't produce any output by themselves.
2455   if (Global->hasAttr<WeakRefAttr>())
2456     return;
2457 
2458   // If this is an alias definition (which otherwise looks like a declaration)
2459   // emit it now.
2460   if (Global->hasAttr<AliasAttr>())
2461     return EmitAliasDefinition(GD);
2462 
2463   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2464   if (Global->hasAttr<IFuncAttr>())
2465     return emitIFuncDefinition(GD);
2466 
2467   // If this is a cpu_dispatch multiversion function, emit the resolver.
2468   if (Global->hasAttr<CPUDispatchAttr>())
2469     return emitCPUDispatchDefinition(GD);
2470 
2471   // If this is CUDA, be selective about which declarations we emit.
2472   if (LangOpts.CUDA) {
2473     if (LangOpts.CUDAIsDevice) {
2474       if (!Global->hasAttr<CUDADeviceAttr>() &&
2475           !Global->hasAttr<CUDAGlobalAttr>() &&
2476           !Global->hasAttr<CUDAConstantAttr>() &&
2477           !Global->hasAttr<CUDASharedAttr>() &&
2478           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2479         return;
2480     } else {
2481       // We need to emit host-side 'shadows' for all global
2482       // device-side variables because the CUDA runtime needs their
2483       // size and host-side address in order to provide access to
2484       // their device-side incarnations.
2485 
2486       // So device-only functions are the only things we skip.
2487       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2488           Global->hasAttr<CUDADeviceAttr>())
2489         return;
2490 
2491       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2492              "Expected Variable or Function");
2493     }
2494   }
2495 
2496   if (LangOpts.OpenMP) {
2497     // If this is OpenMP, check if it is legal to emit this global normally.
2498     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2499       return;
2500     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2501       if (MustBeEmitted(Global))
2502         EmitOMPDeclareReduction(DRD);
2503       return;
2504     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2505       if (MustBeEmitted(Global))
2506         EmitOMPDeclareMapper(DMD);
2507       return;
2508     }
2509   }
2510 
2511   // Ignore declarations, they will be emitted on their first use.
2512   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2513     // Forward declarations are emitted lazily on first use.
2514     if (!FD->doesThisDeclarationHaveABody()) {
2515       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2516         return;
2517 
2518       StringRef MangledName = getMangledName(GD);
2519 
2520       // Compute the function info and LLVM type.
2521       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2522       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2523 
2524       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2525                               /*DontDefer=*/false);
2526       return;
2527     }
2528   } else {
2529     const auto *VD = cast<VarDecl>(Global);
2530     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2531     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2532         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2533       if (LangOpts.OpenMP) {
2534         // Emit declaration of the must-be-emitted declare target variable.
2535         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2536                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2537           bool UnifiedMemoryEnabled =
2538               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2539           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2540               !UnifiedMemoryEnabled) {
2541             (void)GetAddrOfGlobalVar(VD);
2542           } else {
2543             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2544                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2545                      UnifiedMemoryEnabled)) &&
2546                    "Link clause or to clause with unified memory expected.");
2547             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2548           }
2549 
2550           return;
2551         }
2552       }
2553       // If this declaration may have caused an inline variable definition to
2554       // change linkage, make sure that it's emitted.
2555       if (Context.getInlineVariableDefinitionKind(VD) ==
2556           ASTContext::InlineVariableDefinitionKind::Strong)
2557         GetAddrOfGlobalVar(VD);
2558       return;
2559     }
2560   }
2561 
2562   // Defer code generation to first use when possible, e.g. if this is an inline
2563   // function. If the global must always be emitted, do it eagerly if possible
2564   // to benefit from cache locality.
2565   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2566     // Emit the definition if it can't be deferred.
2567     EmitGlobalDefinition(GD);
2568     return;
2569   }
2570 
2571     // Check if this must be emitted as declare variant.
2572   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2573       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2574     return;
2575 
2576   // If we're deferring emission of a C++ variable with an
2577   // initializer, remember the order in which it appeared in the file.
2578   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2579       cast<VarDecl>(Global)->hasInit()) {
2580     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2581     CXXGlobalInits.push_back(nullptr);
2582   }
2583 
2584   StringRef MangledName = getMangledName(GD);
2585   if (GetGlobalValue(MangledName) != nullptr) {
2586     // The value has already been used and should therefore be emitted.
2587     addDeferredDeclToEmit(GD);
2588   } else if (MustBeEmitted(Global)) {
2589     // The value must be emitted, but cannot be emitted eagerly.
2590     assert(!MayBeEmittedEagerly(Global));
2591     addDeferredDeclToEmit(GD);
2592   } else {
2593     // Otherwise, remember that we saw a deferred decl with this name.  The
2594     // first use of the mangled name will cause it to move into
2595     // DeferredDeclsToEmit.
2596     DeferredDecls[MangledName] = GD;
2597   }
2598 }
2599 
2600 // Check if T is a class type with a destructor that's not dllimport.
2601 static bool HasNonDllImportDtor(QualType T) {
2602   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2603     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2604       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2605         return true;
2606 
2607   return false;
2608 }
2609 
2610 namespace {
2611   struct FunctionIsDirectlyRecursive
2612       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2613     const StringRef Name;
2614     const Builtin::Context &BI;
2615     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2616         : Name(N), BI(C) {}
2617 
2618     bool VisitCallExpr(const CallExpr *E) {
2619       const FunctionDecl *FD = E->getDirectCallee();
2620       if (!FD)
2621         return false;
2622       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2623       if (Attr && Name == Attr->getLabel())
2624         return true;
2625       unsigned BuiltinID = FD->getBuiltinID();
2626       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2627         return false;
2628       StringRef BuiltinName = BI.getName(BuiltinID);
2629       if (BuiltinName.startswith("__builtin_") &&
2630           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2631         return true;
2632       }
2633       return false;
2634     }
2635 
2636     bool VisitStmt(const Stmt *S) {
2637       for (const Stmt *Child : S->children())
2638         if (Child && this->Visit(Child))
2639           return true;
2640       return false;
2641     }
2642   };
2643 
2644   // Make sure we're not referencing non-imported vars or functions.
2645   struct DLLImportFunctionVisitor
2646       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2647     bool SafeToInline = true;
2648 
2649     bool shouldVisitImplicitCode() const { return true; }
2650 
2651     bool VisitVarDecl(VarDecl *VD) {
2652       if (VD->getTLSKind()) {
2653         // A thread-local variable cannot be imported.
2654         SafeToInline = false;
2655         return SafeToInline;
2656       }
2657 
2658       // A variable definition might imply a destructor call.
2659       if (VD->isThisDeclarationADefinition())
2660         SafeToInline = !HasNonDllImportDtor(VD->getType());
2661 
2662       return SafeToInline;
2663     }
2664 
2665     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2666       if (const auto *D = E->getTemporary()->getDestructor())
2667         SafeToInline = D->hasAttr<DLLImportAttr>();
2668       return SafeToInline;
2669     }
2670 
2671     bool VisitDeclRefExpr(DeclRefExpr *E) {
2672       ValueDecl *VD = E->getDecl();
2673       if (isa<FunctionDecl>(VD))
2674         SafeToInline = VD->hasAttr<DLLImportAttr>();
2675       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2676         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2677       return SafeToInline;
2678     }
2679 
2680     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2681       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2682       return SafeToInline;
2683     }
2684 
2685     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2686       CXXMethodDecl *M = E->getMethodDecl();
2687       if (!M) {
2688         // Call through a pointer to member function. This is safe to inline.
2689         SafeToInline = true;
2690       } else {
2691         SafeToInline = M->hasAttr<DLLImportAttr>();
2692       }
2693       return SafeToInline;
2694     }
2695 
2696     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2697       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2698       return SafeToInline;
2699     }
2700 
2701     bool VisitCXXNewExpr(CXXNewExpr *E) {
2702       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2703       return SafeToInline;
2704     }
2705   };
2706 }
2707 
2708 // isTriviallyRecursive - Check if this function calls another
2709 // decl that, because of the asm attribute or the other decl being a builtin,
2710 // ends up pointing to itself.
2711 bool
2712 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2713   StringRef Name;
2714   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2715     // asm labels are a special kind of mangling we have to support.
2716     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2717     if (!Attr)
2718       return false;
2719     Name = Attr->getLabel();
2720   } else {
2721     Name = FD->getName();
2722   }
2723 
2724   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2725   const Stmt *Body = FD->getBody();
2726   return Body ? Walker.Visit(Body) : false;
2727 }
2728 
2729 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2730   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2731     return true;
2732   const auto *F = cast<FunctionDecl>(GD.getDecl());
2733   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2734     return false;
2735 
2736   if (F->hasAttr<DLLImportAttr>()) {
2737     // Check whether it would be safe to inline this dllimport function.
2738     DLLImportFunctionVisitor Visitor;
2739     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2740     if (!Visitor.SafeToInline)
2741       return false;
2742 
2743     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2744       // Implicit destructor invocations aren't captured in the AST, so the
2745       // check above can't see them. Check for them manually here.
2746       for (const Decl *Member : Dtor->getParent()->decls())
2747         if (isa<FieldDecl>(Member))
2748           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2749             return false;
2750       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2751         if (HasNonDllImportDtor(B.getType()))
2752           return false;
2753     }
2754   }
2755 
2756   // PR9614. Avoid cases where the source code is lying to us. An available
2757   // externally function should have an equivalent function somewhere else,
2758   // but a function that calls itself is clearly not equivalent to the real
2759   // implementation.
2760   // This happens in glibc's btowc and in some configure checks.
2761   return !isTriviallyRecursive(F);
2762 }
2763 
2764 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2765   return CodeGenOpts.OptimizationLevel > 0;
2766 }
2767 
2768 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2769                                                        llvm::GlobalValue *GV) {
2770   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2771 
2772   if (FD->isCPUSpecificMultiVersion()) {
2773     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2774     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2775       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2776     // Requires multiple emits.
2777   } else
2778     EmitGlobalFunctionDefinition(GD, GV);
2779 }
2780 
2781 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2782     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2783   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2784          OpenMPRuntime && "Expected OpenMP device mode.");
2785   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2786 
2787   // Compute the function info and LLVM type.
2788   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2789   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2790 
2791   // Get or create the prototype for the function.
2792   if (!GV || (GV->getType()->getElementType() != Ty)) {
2793     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2794         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2795         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2796         ForDefinition));
2797     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2798                           /*IsIncompleteFunction=*/false,
2799                           /*IsThunk=*/false);
2800   }
2801   // We need to set linkage and visibility on the function before
2802   // generating code for it because various parts of IR generation
2803   // want to propagate this information down (e.g. to local static
2804   // declarations).
2805   auto *Fn = cast<llvm::Function>(GV);
2806   setFunctionLinkage(OldGD, Fn);
2807 
2808   // FIXME: this is redundant with part of
2809   // setFunctionDefinitionAttributes
2810   setGVProperties(Fn, OldGD);
2811 
2812   MaybeHandleStaticInExternC(D, Fn);
2813 
2814   maybeSetTrivialComdat(*D, *Fn);
2815 
2816   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2817 
2818   setNonAliasAttributes(OldGD, Fn);
2819   SetLLVMFunctionAttributesForDefinition(D, Fn);
2820 
2821   if (D->hasAttr<AnnotateAttr>())
2822     AddGlobalAnnotations(D, Fn);
2823 }
2824 
2825 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2826   const auto *D = cast<ValueDecl>(GD.getDecl());
2827 
2828   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2829                                  Context.getSourceManager(),
2830                                  "Generating code for declaration");
2831 
2832   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2833     // At -O0, don't generate IR for functions with available_externally
2834     // linkage.
2835     if (!shouldEmitFunction(GD))
2836       return;
2837 
2838     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2839       std::string Name;
2840       llvm::raw_string_ostream OS(Name);
2841       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2842                                /*Qualified=*/true);
2843       return Name;
2844     });
2845 
2846     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2847       // Make sure to emit the definition(s) before we emit the thunks.
2848       // This is necessary for the generation of certain thunks.
2849       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2850         ABI->emitCXXStructor(GD);
2851       else if (FD->isMultiVersion())
2852         EmitMultiVersionFunctionDefinition(GD, GV);
2853       else
2854         EmitGlobalFunctionDefinition(GD, GV);
2855 
2856       if (Method->isVirtual())
2857         getVTables().EmitThunks(GD);
2858 
2859       return;
2860     }
2861 
2862     if (FD->isMultiVersion())
2863       return EmitMultiVersionFunctionDefinition(GD, GV);
2864     return EmitGlobalFunctionDefinition(GD, GV);
2865   }
2866 
2867   if (const auto *VD = dyn_cast<VarDecl>(D))
2868     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2869 
2870   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2871 }
2872 
2873 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2874                                                       llvm::Function *NewFn);
2875 
2876 static unsigned
2877 TargetMVPriority(const TargetInfo &TI,
2878                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2879   unsigned Priority = 0;
2880   for (StringRef Feat : RO.Conditions.Features)
2881     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2882 
2883   if (!RO.Conditions.Architecture.empty())
2884     Priority = std::max(
2885         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2886   return Priority;
2887 }
2888 
2889 void CodeGenModule::emitMultiVersionFunctions() {
2890   for (GlobalDecl GD : MultiVersionFuncs) {
2891     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2892     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2893     getContext().forEachMultiversionedFunctionVersion(
2894         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2895           GlobalDecl CurGD{
2896               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2897           StringRef MangledName = getMangledName(CurGD);
2898           llvm::Constant *Func = GetGlobalValue(MangledName);
2899           if (!Func) {
2900             if (CurFD->isDefined()) {
2901               EmitGlobalFunctionDefinition(CurGD, nullptr);
2902               Func = GetGlobalValue(MangledName);
2903             } else {
2904               const CGFunctionInfo &FI =
2905                   getTypes().arrangeGlobalDeclaration(GD);
2906               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2907               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2908                                        /*DontDefer=*/false, ForDefinition);
2909             }
2910             assert(Func && "This should have just been created");
2911           }
2912 
2913           const auto *TA = CurFD->getAttr<TargetAttr>();
2914           llvm::SmallVector<StringRef, 8> Feats;
2915           TA->getAddedFeatures(Feats);
2916 
2917           Options.emplace_back(cast<llvm::Function>(Func),
2918                                TA->getArchitecture(), Feats);
2919         });
2920 
2921     llvm::Function *ResolverFunc;
2922     const TargetInfo &TI = getTarget();
2923 
2924     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2925       ResolverFunc = cast<llvm::Function>(
2926           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2927       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2928     } else {
2929       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2930     }
2931 
2932     if (supportsCOMDAT())
2933       ResolverFunc->setComdat(
2934           getModule().getOrInsertComdat(ResolverFunc->getName()));
2935 
2936     llvm::stable_sort(
2937         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2938                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2939           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2940         });
2941     CodeGenFunction CGF(*this);
2942     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2943   }
2944 }
2945 
2946 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2947   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2948   assert(FD && "Not a FunctionDecl?");
2949   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2950   assert(DD && "Not a cpu_dispatch Function?");
2951   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2952 
2953   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2954     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2955     DeclTy = getTypes().GetFunctionType(FInfo);
2956   }
2957 
2958   StringRef ResolverName = getMangledName(GD);
2959 
2960   llvm::Type *ResolverType;
2961   GlobalDecl ResolverGD;
2962   if (getTarget().supportsIFunc())
2963     ResolverType = llvm::FunctionType::get(
2964         llvm::PointerType::get(DeclTy,
2965                                Context.getTargetAddressSpace(FD->getType())),
2966         false);
2967   else {
2968     ResolverType = DeclTy;
2969     ResolverGD = GD;
2970   }
2971 
2972   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2973       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2974   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2975   if (supportsCOMDAT())
2976     ResolverFunc->setComdat(
2977         getModule().getOrInsertComdat(ResolverFunc->getName()));
2978 
2979   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2980   const TargetInfo &Target = getTarget();
2981   unsigned Index = 0;
2982   for (const IdentifierInfo *II : DD->cpus()) {
2983     // Get the name of the target function so we can look it up/create it.
2984     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2985                               getCPUSpecificMangling(*this, II->getName());
2986 
2987     llvm::Constant *Func = GetGlobalValue(MangledName);
2988 
2989     if (!Func) {
2990       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2991       if (ExistingDecl.getDecl() &&
2992           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2993         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2994         Func = GetGlobalValue(MangledName);
2995       } else {
2996         if (!ExistingDecl.getDecl())
2997           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2998 
2999       Func = GetOrCreateLLVMFunction(
3000           MangledName, DeclTy, ExistingDecl,
3001           /*ForVTable=*/false, /*DontDefer=*/true,
3002           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3003       }
3004     }
3005 
3006     llvm::SmallVector<StringRef, 32> Features;
3007     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3008     llvm::transform(Features, Features.begin(),
3009                     [](StringRef Str) { return Str.substr(1); });
3010     Features.erase(std::remove_if(
3011         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3012           return !Target.validateCpuSupports(Feat);
3013         }), Features.end());
3014     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3015     ++Index;
3016   }
3017 
3018   llvm::sort(
3019       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3020                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3021         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3022                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3023       });
3024 
3025   // If the list contains multiple 'default' versions, such as when it contains
3026   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3027   // always run on at least a 'pentium'). We do this by deleting the 'least
3028   // advanced' (read, lowest mangling letter).
3029   while (Options.size() > 1 &&
3030          CodeGenFunction::GetX86CpuSupportsMask(
3031              (Options.end() - 2)->Conditions.Features) == 0) {
3032     StringRef LHSName = (Options.end() - 2)->Function->getName();
3033     StringRef RHSName = (Options.end() - 1)->Function->getName();
3034     if (LHSName.compare(RHSName) < 0)
3035       Options.erase(Options.end() - 2);
3036     else
3037       Options.erase(Options.end() - 1);
3038   }
3039 
3040   CodeGenFunction CGF(*this);
3041   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3042 
3043   if (getTarget().supportsIFunc()) {
3044     std::string AliasName = getMangledNameImpl(
3045         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3046     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3047     if (!AliasFunc) {
3048       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3049           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3050           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3051       auto *GA = llvm::GlobalAlias::create(
3052          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3053       GA->setLinkage(llvm::Function::WeakODRLinkage);
3054       SetCommonAttributes(GD, GA);
3055     }
3056   }
3057 }
3058 
3059 /// If a dispatcher for the specified mangled name is not in the module, create
3060 /// and return an llvm Function with the specified type.
3061 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3062     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3063   std::string MangledName =
3064       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3065 
3066   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3067   // a separate resolver).
3068   std::string ResolverName = MangledName;
3069   if (getTarget().supportsIFunc())
3070     ResolverName += ".ifunc";
3071   else if (FD->isTargetMultiVersion())
3072     ResolverName += ".resolver";
3073 
3074   // If this already exists, just return that one.
3075   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3076     return ResolverGV;
3077 
3078   // Since this is the first time we've created this IFunc, make sure
3079   // that we put this multiversioned function into the list to be
3080   // replaced later if necessary (target multiversioning only).
3081   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3082     MultiVersionFuncs.push_back(GD);
3083 
3084   if (getTarget().supportsIFunc()) {
3085     llvm::Type *ResolverType = llvm::FunctionType::get(
3086         llvm::PointerType::get(
3087             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3088         false);
3089     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3090         MangledName + ".resolver", ResolverType, GlobalDecl{},
3091         /*ForVTable=*/false);
3092     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3093         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3094     GIF->setName(ResolverName);
3095     SetCommonAttributes(FD, GIF);
3096 
3097     return GIF;
3098   }
3099 
3100   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3101       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3102   assert(isa<llvm::GlobalValue>(Resolver) &&
3103          "Resolver should be created for the first time");
3104   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3105   return Resolver;
3106 }
3107 
3108 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3109 /// module, create and return an llvm Function with the specified type. If there
3110 /// is something in the module with the specified name, return it potentially
3111 /// bitcasted to the right type.
3112 ///
3113 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3114 /// to set the attributes on the function when it is first created.
3115 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3116     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3117     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3118     ForDefinition_t IsForDefinition) {
3119   const Decl *D = GD.getDecl();
3120 
3121   // Any attempts to use a MultiVersion function should result in retrieving
3122   // the iFunc instead. Name Mangling will handle the rest of the changes.
3123   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3124     // For the device mark the function as one that should be emitted.
3125     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3126         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3127         !DontDefer && !IsForDefinition) {
3128       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3129         GlobalDecl GDDef;
3130         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3131           GDDef = GlobalDecl(CD, GD.getCtorType());
3132         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3133           GDDef = GlobalDecl(DD, GD.getDtorType());
3134         else
3135           GDDef = GlobalDecl(FDDef);
3136         EmitGlobal(GDDef);
3137       }
3138     }
3139     // Check if this must be emitted as declare variant and emit reference to
3140     // the the declare variant function.
3141     if (LangOpts.OpenMP && OpenMPRuntime)
3142       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3143 
3144     if (FD->isMultiVersion()) {
3145       const auto *TA = FD->getAttr<TargetAttr>();
3146       if (TA && TA->isDefaultVersion())
3147         UpdateMultiVersionNames(GD, FD);
3148       if (!IsForDefinition)
3149         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3150     }
3151   }
3152 
3153   // Lookup the entry, lazily creating it if necessary.
3154   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3155   if (Entry) {
3156     if (WeakRefReferences.erase(Entry)) {
3157       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3158       if (FD && !FD->hasAttr<WeakAttr>())
3159         Entry->setLinkage(llvm::Function::ExternalLinkage);
3160     }
3161 
3162     // Handle dropped DLL attributes.
3163     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3164       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3165       setDSOLocal(Entry);
3166     }
3167 
3168     // If there are two attempts to define the same mangled name, issue an
3169     // error.
3170     if (IsForDefinition && !Entry->isDeclaration()) {
3171       GlobalDecl OtherGD;
3172       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3173       // to make sure that we issue an error only once.
3174       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3175           (GD.getCanonicalDecl().getDecl() !=
3176            OtherGD.getCanonicalDecl().getDecl()) &&
3177           DiagnosedConflictingDefinitions.insert(GD).second) {
3178         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3179             << MangledName;
3180         getDiags().Report(OtherGD.getDecl()->getLocation(),
3181                           diag::note_previous_definition);
3182       }
3183     }
3184 
3185     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3186         (Entry->getType()->getElementType() == Ty)) {
3187       return Entry;
3188     }
3189 
3190     // Make sure the result is of the correct type.
3191     // (If function is requested for a definition, we always need to create a new
3192     // function, not just return a bitcast.)
3193     if (!IsForDefinition)
3194       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3195   }
3196 
3197   // This function doesn't have a complete type (for example, the return
3198   // type is an incomplete struct). Use a fake type instead, and make
3199   // sure not to try to set attributes.
3200   bool IsIncompleteFunction = false;
3201 
3202   llvm::FunctionType *FTy;
3203   if (isa<llvm::FunctionType>(Ty)) {
3204     FTy = cast<llvm::FunctionType>(Ty);
3205   } else {
3206     FTy = llvm::FunctionType::get(VoidTy, false);
3207     IsIncompleteFunction = true;
3208   }
3209 
3210   llvm::Function *F =
3211       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3212                              Entry ? StringRef() : MangledName, &getModule());
3213 
3214   // If we already created a function with the same mangled name (but different
3215   // type) before, take its name and add it to the list of functions to be
3216   // replaced with F at the end of CodeGen.
3217   //
3218   // This happens if there is a prototype for a function (e.g. "int f()") and
3219   // then a definition of a different type (e.g. "int f(int x)").
3220   if (Entry) {
3221     F->takeName(Entry);
3222 
3223     // This might be an implementation of a function without a prototype, in
3224     // which case, try to do special replacement of calls which match the new
3225     // prototype.  The really key thing here is that we also potentially drop
3226     // arguments from the call site so as to make a direct call, which makes the
3227     // inliner happier and suppresses a number of optimizer warnings (!) about
3228     // dropping arguments.
3229     if (!Entry->use_empty()) {
3230       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3231       Entry->removeDeadConstantUsers();
3232     }
3233 
3234     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3235         F, Entry->getType()->getElementType()->getPointerTo());
3236     addGlobalValReplacement(Entry, BC);
3237   }
3238 
3239   assert(F->getName() == MangledName && "name was uniqued!");
3240   if (D)
3241     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3242   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3243     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3244     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3245   }
3246 
3247   if (!DontDefer) {
3248     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3249     // each other bottoming out with the base dtor.  Therefore we emit non-base
3250     // dtors on usage, even if there is no dtor definition in the TU.
3251     if (D && isa<CXXDestructorDecl>(D) &&
3252         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3253                                            GD.getDtorType()))
3254       addDeferredDeclToEmit(GD);
3255 
3256     // This is the first use or definition of a mangled name.  If there is a
3257     // deferred decl with this name, remember that we need to emit it at the end
3258     // of the file.
3259     auto DDI = DeferredDecls.find(MangledName);
3260     if (DDI != DeferredDecls.end()) {
3261       // Move the potentially referenced deferred decl to the
3262       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3263       // don't need it anymore).
3264       addDeferredDeclToEmit(DDI->second);
3265       DeferredDecls.erase(DDI);
3266 
3267       // Otherwise, there are cases we have to worry about where we're
3268       // using a declaration for which we must emit a definition but where
3269       // we might not find a top-level definition:
3270       //   - member functions defined inline in their classes
3271       //   - friend functions defined inline in some class
3272       //   - special member functions with implicit definitions
3273       // If we ever change our AST traversal to walk into class methods,
3274       // this will be unnecessary.
3275       //
3276       // We also don't emit a definition for a function if it's going to be an
3277       // entry in a vtable, unless it's already marked as used.
3278     } else if (getLangOpts().CPlusPlus && D) {
3279       // Look for a declaration that's lexically in a record.
3280       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3281            FD = FD->getPreviousDecl()) {
3282         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3283           if (FD->doesThisDeclarationHaveABody()) {
3284             addDeferredDeclToEmit(GD.getWithDecl(FD));
3285             break;
3286           }
3287         }
3288       }
3289     }
3290   }
3291 
3292   // Make sure the result is of the requested type.
3293   if (!IsIncompleteFunction) {
3294     assert(F->getType()->getElementType() == Ty);
3295     return F;
3296   }
3297 
3298   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3299   return llvm::ConstantExpr::getBitCast(F, PTy);
3300 }
3301 
3302 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3303 /// non-null, then this function will use the specified type if it has to
3304 /// create it (this occurs when we see a definition of the function).
3305 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3306                                                  llvm::Type *Ty,
3307                                                  bool ForVTable,
3308                                                  bool DontDefer,
3309                                               ForDefinition_t IsForDefinition) {
3310   // If there was no specific requested type, just convert it now.
3311   if (!Ty) {
3312     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3313     Ty = getTypes().ConvertType(FD->getType());
3314   }
3315 
3316   // Devirtualized destructor calls may come through here instead of via
3317   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3318   // of the complete destructor when necessary.
3319   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3320     if (getTarget().getCXXABI().isMicrosoft() &&
3321         GD.getDtorType() == Dtor_Complete &&
3322         DD->getParent()->getNumVBases() == 0)
3323       GD = GlobalDecl(DD, Dtor_Base);
3324   }
3325 
3326   StringRef MangledName = getMangledName(GD);
3327   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3328                                  /*IsThunk=*/false, llvm::AttributeList(),
3329                                  IsForDefinition);
3330 }
3331 
3332 static const FunctionDecl *
3333 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3334   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3335   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3336 
3337   IdentifierInfo &CII = C.Idents.get(Name);
3338   for (const auto &Result : DC->lookup(&CII))
3339     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3340       return FD;
3341 
3342   if (!C.getLangOpts().CPlusPlus)
3343     return nullptr;
3344 
3345   // Demangle the premangled name from getTerminateFn()
3346   IdentifierInfo &CXXII =
3347       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3348           ? C.Idents.get("terminate")
3349           : C.Idents.get(Name);
3350 
3351   for (const auto &N : {"__cxxabiv1", "std"}) {
3352     IdentifierInfo &NS = C.Idents.get(N);
3353     for (const auto &Result : DC->lookup(&NS)) {
3354       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3355       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3356         for (const auto &Result : LSD->lookup(&NS))
3357           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3358             break;
3359 
3360       if (ND)
3361         for (const auto &Result : ND->lookup(&CXXII))
3362           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3363             return FD;
3364     }
3365   }
3366 
3367   return nullptr;
3368 }
3369 
3370 /// CreateRuntimeFunction - Create a new runtime function with the specified
3371 /// type and name.
3372 llvm::FunctionCallee
3373 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3374                                      llvm::AttributeList ExtraAttrs, bool Local,
3375                                      bool AssumeConvergent) {
3376   if (AssumeConvergent) {
3377     ExtraAttrs =
3378         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3379                                 llvm::Attribute::Convergent);
3380   }
3381 
3382   llvm::Constant *C =
3383       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3384                               /*DontDefer=*/false, /*IsThunk=*/false,
3385                               ExtraAttrs);
3386 
3387   if (auto *F = dyn_cast<llvm::Function>(C)) {
3388     if (F->empty()) {
3389       F->setCallingConv(getRuntimeCC());
3390 
3391       // In Windows Itanium environments, try to mark runtime functions
3392       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3393       // will link their standard library statically or dynamically. Marking
3394       // functions imported when they are not imported can cause linker errors
3395       // and warnings.
3396       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3397           !getCodeGenOpts().LTOVisibilityPublicStd) {
3398         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3399         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3400           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3401           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3402         }
3403       }
3404       setDSOLocal(F);
3405     }
3406   }
3407 
3408   return {FTy, C};
3409 }
3410 
3411 /// isTypeConstant - Determine whether an object of this type can be emitted
3412 /// as a constant.
3413 ///
3414 /// If ExcludeCtor is true, the duration when the object's constructor runs
3415 /// will not be considered. The caller will need to verify that the object is
3416 /// not written to during its construction.
3417 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3418   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3419     return false;
3420 
3421   if (Context.getLangOpts().CPlusPlus) {
3422     if (const CXXRecordDecl *Record
3423           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3424       return ExcludeCtor && !Record->hasMutableFields() &&
3425              Record->hasTrivialDestructor();
3426   }
3427 
3428   return true;
3429 }
3430 
3431 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3432 /// create and return an llvm GlobalVariable with the specified type.  If there
3433 /// is something in the module with the specified name, return it potentially
3434 /// bitcasted to the right type.
3435 ///
3436 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3437 /// to set the attributes on the global when it is first created.
3438 ///
3439 /// If IsForDefinition is true, it is guaranteed that an actual global with
3440 /// type Ty will be returned, not conversion of a variable with the same
3441 /// mangled name but some other type.
3442 llvm::Constant *
3443 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3444                                      llvm::PointerType *Ty,
3445                                      const VarDecl *D,
3446                                      ForDefinition_t IsForDefinition) {
3447   // Lookup the entry, lazily creating it if necessary.
3448   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3449   if (Entry) {
3450     if (WeakRefReferences.erase(Entry)) {
3451       if (D && !D->hasAttr<WeakAttr>())
3452         Entry->setLinkage(llvm::Function::ExternalLinkage);
3453     }
3454 
3455     // Handle dropped DLL attributes.
3456     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3457       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3458 
3459     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3460       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3461 
3462     if (Entry->getType() == Ty)
3463       return Entry;
3464 
3465     // If there are two attempts to define the same mangled name, issue an
3466     // error.
3467     if (IsForDefinition && !Entry->isDeclaration()) {
3468       GlobalDecl OtherGD;
3469       const VarDecl *OtherD;
3470 
3471       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3472       // to make sure that we issue an error only once.
3473       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3474           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3475           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3476           OtherD->hasInit() &&
3477           DiagnosedConflictingDefinitions.insert(D).second) {
3478         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3479             << MangledName;
3480         getDiags().Report(OtherGD.getDecl()->getLocation(),
3481                           diag::note_previous_definition);
3482       }
3483     }
3484 
3485     // Make sure the result is of the correct type.
3486     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3487       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3488 
3489     // (If global is requested for a definition, we always need to create a new
3490     // global, not just return a bitcast.)
3491     if (!IsForDefinition)
3492       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3493   }
3494 
3495   auto AddrSpace = GetGlobalVarAddressSpace(D);
3496   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3497 
3498   auto *GV = new llvm::GlobalVariable(
3499       getModule(), Ty->getElementType(), false,
3500       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3501       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3502 
3503   // If we already created a global with the same mangled name (but different
3504   // type) before, take its name and remove it from its parent.
3505   if (Entry) {
3506     GV->takeName(Entry);
3507 
3508     if (!Entry->use_empty()) {
3509       llvm::Constant *NewPtrForOldDecl =
3510           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3511       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3512     }
3513 
3514     Entry->eraseFromParent();
3515   }
3516 
3517   // This is the first use or definition of a mangled name.  If there is a
3518   // deferred decl with this name, remember that we need to emit it at the end
3519   // of the file.
3520   auto DDI = DeferredDecls.find(MangledName);
3521   if (DDI != DeferredDecls.end()) {
3522     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3523     // list, and remove it from DeferredDecls (since we don't need it anymore).
3524     addDeferredDeclToEmit(DDI->second);
3525     DeferredDecls.erase(DDI);
3526   }
3527 
3528   // Handle things which are present even on external declarations.
3529   if (D) {
3530     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3531       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3532 
3533     // FIXME: This code is overly simple and should be merged with other global
3534     // handling.
3535     GV->setConstant(isTypeConstant(D->getType(), false));
3536 
3537     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3538 
3539     setLinkageForGV(GV, D);
3540 
3541     if (D->getTLSKind()) {
3542       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3543         CXXThreadLocals.push_back(D);
3544       setTLSMode(GV, *D);
3545     }
3546 
3547     setGVProperties(GV, D);
3548 
3549     // If required by the ABI, treat declarations of static data members with
3550     // inline initializers as definitions.
3551     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3552       EmitGlobalVarDefinition(D);
3553     }
3554 
3555     // Emit section information for extern variables.
3556     if (D->hasExternalStorage()) {
3557       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3558         GV->setSection(SA->getName());
3559     }
3560 
3561     // Handle XCore specific ABI requirements.
3562     if (getTriple().getArch() == llvm::Triple::xcore &&
3563         D->getLanguageLinkage() == CLanguageLinkage &&
3564         D->getType().isConstant(Context) &&
3565         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3566       GV->setSection(".cp.rodata");
3567 
3568     // Check if we a have a const declaration with an initializer, we may be
3569     // able to emit it as available_externally to expose it's value to the
3570     // optimizer.
3571     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3572         D->getType().isConstQualified() && !GV->hasInitializer() &&
3573         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3574       const auto *Record =
3575           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3576       bool HasMutableFields = Record && Record->hasMutableFields();
3577       if (!HasMutableFields) {
3578         const VarDecl *InitDecl;
3579         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3580         if (InitExpr) {
3581           ConstantEmitter emitter(*this);
3582           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3583           if (Init) {
3584             auto *InitType = Init->getType();
3585             if (GV->getType()->getElementType() != InitType) {
3586               // The type of the initializer does not match the definition.
3587               // This happens when an initializer has a different type from
3588               // the type of the global (because of padding at the end of a
3589               // structure for instance).
3590               GV->setName(StringRef());
3591               // Make a new global with the correct type, this is now guaranteed
3592               // to work.
3593               auto *NewGV = cast<llvm::GlobalVariable>(
3594                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3595                       ->stripPointerCasts());
3596 
3597               // Erase the old global, since it is no longer used.
3598               GV->eraseFromParent();
3599               GV = NewGV;
3600             } else {
3601               GV->setInitializer(Init);
3602               GV->setConstant(true);
3603               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3604             }
3605             emitter.finalize(GV);
3606           }
3607         }
3608       }
3609     }
3610   }
3611 
3612   if (GV->isDeclaration())
3613     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3614 
3615   LangAS ExpectedAS =
3616       D ? D->getType().getAddressSpace()
3617         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3618   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3619          Ty->getPointerAddressSpace());
3620   if (AddrSpace != ExpectedAS)
3621     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3622                                                        ExpectedAS, Ty);
3623 
3624   return GV;
3625 }
3626 
3627 llvm::Constant *
3628 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3629                                ForDefinition_t IsForDefinition) {
3630   const Decl *D = GD.getDecl();
3631   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3632     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3633                                 /*DontDefer=*/false, IsForDefinition);
3634   else if (isa<CXXMethodDecl>(D)) {
3635     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3636         cast<CXXMethodDecl>(D));
3637     auto Ty = getTypes().GetFunctionType(*FInfo);
3638     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3639                              IsForDefinition);
3640   } else if (isa<FunctionDecl>(D)) {
3641     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3642     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3643     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3644                              IsForDefinition);
3645   } else
3646     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3647                               IsForDefinition);
3648 }
3649 
3650 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3651     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3652     unsigned Alignment) {
3653   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3654   llvm::GlobalVariable *OldGV = nullptr;
3655 
3656   if (GV) {
3657     // Check if the variable has the right type.
3658     if (GV->getType()->getElementType() == Ty)
3659       return GV;
3660 
3661     // Because C++ name mangling, the only way we can end up with an already
3662     // existing global with the same name is if it has been declared extern "C".
3663     assert(GV->isDeclaration() && "Declaration has wrong type!");
3664     OldGV = GV;
3665   }
3666 
3667   // Create a new variable.
3668   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3669                                 Linkage, nullptr, Name);
3670 
3671   if (OldGV) {
3672     // Replace occurrences of the old variable if needed.
3673     GV->takeName(OldGV);
3674 
3675     if (!OldGV->use_empty()) {
3676       llvm::Constant *NewPtrForOldDecl =
3677       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3678       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3679     }
3680 
3681     OldGV->eraseFromParent();
3682   }
3683 
3684   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3685       !GV->hasAvailableExternallyLinkage())
3686     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3687 
3688   GV->setAlignment(llvm::MaybeAlign(Alignment));
3689 
3690   return GV;
3691 }
3692 
3693 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3694 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3695 /// then it will be created with the specified type instead of whatever the
3696 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3697 /// that an actual global with type Ty will be returned, not conversion of a
3698 /// variable with the same mangled name but some other type.
3699 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3700                                                   llvm::Type *Ty,
3701                                            ForDefinition_t IsForDefinition) {
3702   assert(D->hasGlobalStorage() && "Not a global variable");
3703   QualType ASTTy = D->getType();
3704   if (!Ty)
3705     Ty = getTypes().ConvertTypeForMem(ASTTy);
3706 
3707   llvm::PointerType *PTy =
3708     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3709 
3710   StringRef MangledName = getMangledName(D);
3711   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3712 }
3713 
3714 /// CreateRuntimeVariable - Create a new runtime global variable with the
3715 /// specified type and name.
3716 llvm::Constant *
3717 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3718                                      StringRef Name) {
3719   auto PtrTy =
3720       getContext().getLangOpts().OpenCL
3721           ? llvm::PointerType::get(
3722                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3723           : llvm::PointerType::getUnqual(Ty);
3724   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3725   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3726   return Ret;
3727 }
3728 
3729 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3730   assert(!D->getInit() && "Cannot emit definite definitions here!");
3731 
3732   StringRef MangledName = getMangledName(D);
3733   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3734 
3735   // We already have a definition, not declaration, with the same mangled name.
3736   // Emitting of declaration is not required (and actually overwrites emitted
3737   // definition).
3738   if (GV && !GV->isDeclaration())
3739     return;
3740 
3741   // If we have not seen a reference to this variable yet, place it into the
3742   // deferred declarations table to be emitted if needed later.
3743   if (!MustBeEmitted(D) && !GV) {
3744       DeferredDecls[MangledName] = D;
3745       return;
3746   }
3747 
3748   // The tentative definition is the only definition.
3749   EmitGlobalVarDefinition(D);
3750 }
3751 
3752 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3753   EmitExternalVarDeclaration(D);
3754 }
3755 
3756 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3757   return Context.toCharUnitsFromBits(
3758       getDataLayout().getTypeStoreSizeInBits(Ty));
3759 }
3760 
3761 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3762   LangAS AddrSpace = LangAS::Default;
3763   if (LangOpts.OpenCL) {
3764     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3765     assert(AddrSpace == LangAS::opencl_global ||
3766            AddrSpace == LangAS::opencl_constant ||
3767            AddrSpace == LangAS::opencl_local ||
3768            AddrSpace >= LangAS::FirstTargetAddressSpace);
3769     return AddrSpace;
3770   }
3771 
3772   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3773     if (D && D->hasAttr<CUDAConstantAttr>())
3774       return LangAS::cuda_constant;
3775     else if (D && D->hasAttr<CUDASharedAttr>())
3776       return LangAS::cuda_shared;
3777     else if (D && D->hasAttr<CUDADeviceAttr>())
3778       return LangAS::cuda_device;
3779     else if (D && D->getType().isConstQualified())
3780       return LangAS::cuda_constant;
3781     else
3782       return LangAS::cuda_device;
3783   }
3784 
3785   if (LangOpts.OpenMP) {
3786     LangAS AS;
3787     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3788       return AS;
3789   }
3790   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3791 }
3792 
3793 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3794   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3795   if (LangOpts.OpenCL)
3796     return LangAS::opencl_constant;
3797   if (auto AS = getTarget().getConstantAddressSpace())
3798     return AS.getValue();
3799   return LangAS::Default;
3800 }
3801 
3802 // In address space agnostic languages, string literals are in default address
3803 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3804 // emitted in constant address space in LLVM IR. To be consistent with other
3805 // parts of AST, string literal global variables in constant address space
3806 // need to be casted to default address space before being put into address
3807 // map and referenced by other part of CodeGen.
3808 // In OpenCL, string literals are in constant address space in AST, therefore
3809 // they should not be casted to default address space.
3810 static llvm::Constant *
3811 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3812                                        llvm::GlobalVariable *GV) {
3813   llvm::Constant *Cast = GV;
3814   if (!CGM.getLangOpts().OpenCL) {
3815     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3816       if (AS != LangAS::Default)
3817         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3818             CGM, GV, AS.getValue(), LangAS::Default,
3819             GV->getValueType()->getPointerTo(
3820                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3821     }
3822   }
3823   return Cast;
3824 }
3825 
3826 template<typename SomeDecl>
3827 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3828                                                llvm::GlobalValue *GV) {
3829   if (!getLangOpts().CPlusPlus)
3830     return;
3831 
3832   // Must have 'used' attribute, or else inline assembly can't rely on
3833   // the name existing.
3834   if (!D->template hasAttr<UsedAttr>())
3835     return;
3836 
3837   // Must have internal linkage and an ordinary name.
3838   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3839     return;
3840 
3841   // Must be in an extern "C" context. Entities declared directly within
3842   // a record are not extern "C" even if the record is in such a context.
3843   const SomeDecl *First = D->getFirstDecl();
3844   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3845     return;
3846 
3847   // OK, this is an internal linkage entity inside an extern "C" linkage
3848   // specification. Make a note of that so we can give it the "expected"
3849   // mangled name if nothing else is using that name.
3850   std::pair<StaticExternCMap::iterator, bool> R =
3851       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3852 
3853   // If we have multiple internal linkage entities with the same name
3854   // in extern "C" regions, none of them gets that name.
3855   if (!R.second)
3856     R.first->second = nullptr;
3857 }
3858 
3859 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3860   if (!CGM.supportsCOMDAT())
3861     return false;
3862 
3863   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3864   // them being "merged" by the COMDAT Folding linker optimization.
3865   if (D.hasAttr<CUDAGlobalAttr>())
3866     return false;
3867 
3868   if (D.hasAttr<SelectAnyAttr>())
3869     return true;
3870 
3871   GVALinkage Linkage;
3872   if (auto *VD = dyn_cast<VarDecl>(&D))
3873     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3874   else
3875     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3876 
3877   switch (Linkage) {
3878   case GVA_Internal:
3879   case GVA_AvailableExternally:
3880   case GVA_StrongExternal:
3881     return false;
3882   case GVA_DiscardableODR:
3883   case GVA_StrongODR:
3884     return true;
3885   }
3886   llvm_unreachable("No such linkage");
3887 }
3888 
3889 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3890                                           llvm::GlobalObject &GO) {
3891   if (!shouldBeInCOMDAT(*this, D))
3892     return;
3893   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3894 }
3895 
3896 /// Pass IsTentative as true if you want to create a tentative definition.
3897 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3898                                             bool IsTentative) {
3899   // OpenCL global variables of sampler type are translated to function calls,
3900   // therefore no need to be translated.
3901   QualType ASTTy = D->getType();
3902   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3903     return;
3904 
3905   // If this is OpenMP device, check if it is legal to emit this global
3906   // normally.
3907   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3908       OpenMPRuntime->emitTargetGlobalVariable(D))
3909     return;
3910 
3911   llvm::Constant *Init = nullptr;
3912   bool NeedsGlobalCtor = false;
3913   bool NeedsGlobalDtor =
3914       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3915 
3916   const VarDecl *InitDecl;
3917   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3918 
3919   Optional<ConstantEmitter> emitter;
3920 
3921   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3922   // as part of their declaration."  Sema has already checked for
3923   // error cases, so we just need to set Init to UndefValue.
3924   bool IsCUDASharedVar =
3925       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3926   // Shadows of initialized device-side global variables are also left
3927   // undefined.
3928   bool IsCUDAShadowVar =
3929       !getLangOpts().CUDAIsDevice &&
3930       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3931        D->hasAttr<CUDASharedAttr>());
3932   // HIP pinned shadow of initialized host-side global variables are also
3933   // left undefined.
3934   bool IsHIPPinnedShadowVar =
3935       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3936   if (getLangOpts().CUDA &&
3937       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3938     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3939   else if (!InitExpr) {
3940     // This is a tentative definition; tentative definitions are
3941     // implicitly initialized with { 0 }.
3942     //
3943     // Note that tentative definitions are only emitted at the end of
3944     // a translation unit, so they should never have incomplete
3945     // type. In addition, EmitTentativeDefinition makes sure that we
3946     // never attempt to emit a tentative definition if a real one
3947     // exists. A use may still exists, however, so we still may need
3948     // to do a RAUW.
3949     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3950     Init = EmitNullConstant(D->getType());
3951   } else {
3952     initializedGlobalDecl = GlobalDecl(D);
3953     emitter.emplace(*this);
3954     Init = emitter->tryEmitForInitializer(*InitDecl);
3955 
3956     if (!Init) {
3957       QualType T = InitExpr->getType();
3958       if (D->getType()->isReferenceType())
3959         T = D->getType();
3960 
3961       if (getLangOpts().CPlusPlus) {
3962         Init = EmitNullConstant(T);
3963         NeedsGlobalCtor = true;
3964       } else {
3965         ErrorUnsupported(D, "static initializer");
3966         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3967       }
3968     } else {
3969       // We don't need an initializer, so remove the entry for the delayed
3970       // initializer position (just in case this entry was delayed) if we
3971       // also don't need to register a destructor.
3972       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3973         DelayedCXXInitPosition.erase(D);
3974     }
3975   }
3976 
3977   llvm::Type* InitType = Init->getType();
3978   llvm::Constant *Entry =
3979       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3980 
3981   // Strip off pointer casts if we got them.
3982   Entry = Entry->stripPointerCasts();
3983 
3984   // Entry is now either a Function or GlobalVariable.
3985   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3986 
3987   // We have a definition after a declaration with the wrong type.
3988   // We must make a new GlobalVariable* and update everything that used OldGV
3989   // (a declaration or tentative definition) with the new GlobalVariable*
3990   // (which will be a definition).
3991   //
3992   // This happens if there is a prototype for a global (e.g.
3993   // "extern int x[];") and then a definition of a different type (e.g.
3994   // "int x[10];"). This also happens when an initializer has a different type
3995   // from the type of the global (this happens with unions).
3996   if (!GV || GV->getType()->getElementType() != InitType ||
3997       GV->getType()->getAddressSpace() !=
3998           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3999 
4000     // Move the old entry aside so that we'll create a new one.
4001     Entry->setName(StringRef());
4002 
4003     // Make a new global with the correct type, this is now guaranteed to work.
4004     GV = cast<llvm::GlobalVariable>(
4005         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4006             ->stripPointerCasts());
4007 
4008     // Replace all uses of the old global with the new global
4009     llvm::Constant *NewPtrForOldDecl =
4010         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4011     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4012 
4013     // Erase the old global, since it is no longer used.
4014     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4015   }
4016 
4017   MaybeHandleStaticInExternC(D, GV);
4018 
4019   if (D->hasAttr<AnnotateAttr>())
4020     AddGlobalAnnotations(D, GV);
4021 
4022   // Set the llvm linkage type as appropriate.
4023   llvm::GlobalValue::LinkageTypes Linkage =
4024       getLLVMLinkageVarDefinition(D, GV->isConstant());
4025 
4026   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4027   // the device. [...]"
4028   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4029   // __device__, declares a variable that: [...]
4030   // Is accessible from all the threads within the grid and from the host
4031   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4032   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4033   if (GV && LangOpts.CUDA) {
4034     if (LangOpts.CUDAIsDevice) {
4035       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4036           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4037         GV->setExternallyInitialized(true);
4038     } else {
4039       // Host-side shadows of external declarations of device-side
4040       // global variables become internal definitions. These have to
4041       // be internal in order to prevent name conflicts with global
4042       // host variables with the same name in a different TUs.
4043       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4044           D->hasAttr<HIPPinnedShadowAttr>()) {
4045         Linkage = llvm::GlobalValue::InternalLinkage;
4046 
4047         // Shadow variables and their properties must be registered
4048         // with CUDA runtime.
4049         unsigned Flags = 0;
4050         if (!D->hasDefinition())
4051           Flags |= CGCUDARuntime::ExternDeviceVar;
4052         if (D->hasAttr<CUDAConstantAttr>())
4053           Flags |= CGCUDARuntime::ConstantDeviceVar;
4054         // Extern global variables will be registered in the TU where they are
4055         // defined.
4056         if (!D->hasExternalStorage())
4057           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4058       } else if (D->hasAttr<CUDASharedAttr>())
4059         // __shared__ variables are odd. Shadows do get created, but
4060         // they are not registered with the CUDA runtime, so they
4061         // can't really be used to access their device-side
4062         // counterparts. It's not clear yet whether it's nvcc's bug or
4063         // a feature, but we've got to do the same for compatibility.
4064         Linkage = llvm::GlobalValue::InternalLinkage;
4065     }
4066   }
4067 
4068   if (!IsHIPPinnedShadowVar)
4069     GV->setInitializer(Init);
4070   if (emitter) emitter->finalize(GV);
4071 
4072   // If it is safe to mark the global 'constant', do so now.
4073   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4074                   isTypeConstant(D->getType(), true));
4075 
4076   // If it is in a read-only section, mark it 'constant'.
4077   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4078     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4079     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4080       GV->setConstant(true);
4081   }
4082 
4083   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4084 
4085   // On Darwin, if the normal linkage of a C++ thread_local variable is
4086   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4087   // copies within a linkage unit; otherwise, the backing variable has
4088   // internal linkage and all accesses should just be calls to the
4089   // Itanium-specified entry point, which has the normal linkage of the
4090   // variable. This is to preserve the ability to change the implementation
4091   // behind the scenes.
4092   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4093       Context.getTargetInfo().getTriple().isOSDarwin() &&
4094       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4095       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4096     Linkage = llvm::GlobalValue::InternalLinkage;
4097 
4098   GV->setLinkage(Linkage);
4099   if (D->hasAttr<DLLImportAttr>())
4100     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4101   else if (D->hasAttr<DLLExportAttr>())
4102     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4103   else
4104     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4105 
4106   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4107     // common vars aren't constant even if declared const.
4108     GV->setConstant(false);
4109     // Tentative definition of global variables may be initialized with
4110     // non-zero null pointers. In this case they should have weak linkage
4111     // since common linkage must have zero initializer and must not have
4112     // explicit section therefore cannot have non-zero initial value.
4113     if (!GV->getInitializer()->isNullValue())
4114       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4115   }
4116 
4117   setNonAliasAttributes(D, GV);
4118 
4119   if (D->getTLSKind() && !GV->isThreadLocal()) {
4120     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4121       CXXThreadLocals.push_back(D);
4122     setTLSMode(GV, *D);
4123   }
4124 
4125   maybeSetTrivialComdat(*D, *GV);
4126 
4127   // Emit the initializer function if necessary.
4128   if (NeedsGlobalCtor || NeedsGlobalDtor)
4129     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4130 
4131   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4132 
4133   // Emit global variable debug information.
4134   if (CGDebugInfo *DI = getModuleDebugInfo())
4135     if (getCodeGenOpts().hasReducedDebugInfo())
4136       DI->EmitGlobalVariable(GV, D);
4137 }
4138 
4139 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4140   if (CGDebugInfo *DI = getModuleDebugInfo())
4141     if (getCodeGenOpts().hasReducedDebugInfo()) {
4142       QualType ASTTy = D->getType();
4143       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4144       llvm::PointerType *PTy =
4145           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4146       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4147       DI->EmitExternalVariable(
4148           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4149     }
4150 }
4151 
4152 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4153                                       CodeGenModule &CGM, const VarDecl *D,
4154                                       bool NoCommon) {
4155   // Don't give variables common linkage if -fno-common was specified unless it
4156   // was overridden by a NoCommon attribute.
4157   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4158     return true;
4159 
4160   // C11 6.9.2/2:
4161   //   A declaration of an identifier for an object that has file scope without
4162   //   an initializer, and without a storage-class specifier or with the
4163   //   storage-class specifier static, constitutes a tentative definition.
4164   if (D->getInit() || D->hasExternalStorage())
4165     return true;
4166 
4167   // A variable cannot be both common and exist in a section.
4168   if (D->hasAttr<SectionAttr>())
4169     return true;
4170 
4171   // A variable cannot be both common and exist in a section.
4172   // We don't try to determine which is the right section in the front-end.
4173   // If no specialized section name is applicable, it will resort to default.
4174   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4175       D->hasAttr<PragmaClangDataSectionAttr>() ||
4176       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4177       D->hasAttr<PragmaClangRodataSectionAttr>())
4178     return true;
4179 
4180   // Thread local vars aren't considered common linkage.
4181   if (D->getTLSKind())
4182     return true;
4183 
4184   // Tentative definitions marked with WeakImportAttr are true definitions.
4185   if (D->hasAttr<WeakImportAttr>())
4186     return true;
4187 
4188   // A variable cannot be both common and exist in a comdat.
4189   if (shouldBeInCOMDAT(CGM, *D))
4190     return true;
4191 
4192   // Declarations with a required alignment do not have common linkage in MSVC
4193   // mode.
4194   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4195     if (D->hasAttr<AlignedAttr>())
4196       return true;
4197     QualType VarType = D->getType();
4198     if (Context.isAlignmentRequired(VarType))
4199       return true;
4200 
4201     if (const auto *RT = VarType->getAs<RecordType>()) {
4202       const RecordDecl *RD = RT->getDecl();
4203       for (const FieldDecl *FD : RD->fields()) {
4204         if (FD->isBitField())
4205           continue;
4206         if (FD->hasAttr<AlignedAttr>())
4207           return true;
4208         if (Context.isAlignmentRequired(FD->getType()))
4209           return true;
4210       }
4211     }
4212   }
4213 
4214   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4215   // common symbols, so symbols with greater alignment requirements cannot be
4216   // common.
4217   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4218   // alignments for common symbols via the aligncomm directive, so this
4219   // restriction only applies to MSVC environments.
4220   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4221       Context.getTypeAlignIfKnown(D->getType()) >
4222           Context.toBits(CharUnits::fromQuantity(32)))
4223     return true;
4224 
4225   return false;
4226 }
4227 
4228 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4229     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4230   if (Linkage == GVA_Internal)
4231     return llvm::Function::InternalLinkage;
4232 
4233   if (D->hasAttr<WeakAttr>()) {
4234     if (IsConstantVariable)
4235       return llvm::GlobalVariable::WeakODRLinkage;
4236     else
4237       return llvm::GlobalVariable::WeakAnyLinkage;
4238   }
4239 
4240   if (const auto *FD = D->getAsFunction())
4241     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4242       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4243 
4244   // We are guaranteed to have a strong definition somewhere else,
4245   // so we can use available_externally linkage.
4246   if (Linkage == GVA_AvailableExternally)
4247     return llvm::GlobalValue::AvailableExternallyLinkage;
4248 
4249   // Note that Apple's kernel linker doesn't support symbol
4250   // coalescing, so we need to avoid linkonce and weak linkages there.
4251   // Normally, this means we just map to internal, but for explicit
4252   // instantiations we'll map to external.
4253 
4254   // In C++, the compiler has to emit a definition in every translation unit
4255   // that references the function.  We should use linkonce_odr because
4256   // a) if all references in this translation unit are optimized away, we
4257   // don't need to codegen it.  b) if the function persists, it needs to be
4258   // merged with other definitions. c) C++ has the ODR, so we know the
4259   // definition is dependable.
4260   if (Linkage == GVA_DiscardableODR)
4261     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4262                                             : llvm::Function::InternalLinkage;
4263 
4264   // An explicit instantiation of a template has weak linkage, since
4265   // explicit instantiations can occur in multiple translation units
4266   // and must all be equivalent. However, we are not allowed to
4267   // throw away these explicit instantiations.
4268   //
4269   // We don't currently support CUDA device code spread out across multiple TUs,
4270   // so say that CUDA templates are either external (for kernels) or internal.
4271   // This lets llvm perform aggressive inter-procedural optimizations.
4272   if (Linkage == GVA_StrongODR) {
4273     if (Context.getLangOpts().AppleKext)
4274       return llvm::Function::ExternalLinkage;
4275     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4276       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4277                                           : llvm::Function::InternalLinkage;
4278     return llvm::Function::WeakODRLinkage;
4279   }
4280 
4281   // C++ doesn't have tentative definitions and thus cannot have common
4282   // linkage.
4283   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4284       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4285                                  CodeGenOpts.NoCommon))
4286     return llvm::GlobalVariable::CommonLinkage;
4287 
4288   // selectany symbols are externally visible, so use weak instead of
4289   // linkonce.  MSVC optimizes away references to const selectany globals, so
4290   // all definitions should be the same and ODR linkage should be used.
4291   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4292   if (D->hasAttr<SelectAnyAttr>())
4293     return llvm::GlobalVariable::WeakODRLinkage;
4294 
4295   // Otherwise, we have strong external linkage.
4296   assert(Linkage == GVA_StrongExternal);
4297   return llvm::GlobalVariable::ExternalLinkage;
4298 }
4299 
4300 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4301     const VarDecl *VD, bool IsConstant) {
4302   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4303   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4304 }
4305 
4306 /// Replace the uses of a function that was declared with a non-proto type.
4307 /// We want to silently drop extra arguments from call sites
4308 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4309                                           llvm::Function *newFn) {
4310   // Fast path.
4311   if (old->use_empty()) return;
4312 
4313   llvm::Type *newRetTy = newFn->getReturnType();
4314   SmallVector<llvm::Value*, 4> newArgs;
4315   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4316 
4317   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4318          ui != ue; ) {
4319     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4320     llvm::User *user = use->getUser();
4321 
4322     // Recognize and replace uses of bitcasts.  Most calls to
4323     // unprototyped functions will use bitcasts.
4324     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4325       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4326         replaceUsesOfNonProtoConstant(bitcast, newFn);
4327       continue;
4328     }
4329 
4330     // Recognize calls to the function.
4331     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4332     if (!callSite) continue;
4333     if (!callSite->isCallee(&*use))
4334       continue;
4335 
4336     // If the return types don't match exactly, then we can't
4337     // transform this call unless it's dead.
4338     if (callSite->getType() != newRetTy && !callSite->use_empty())
4339       continue;
4340 
4341     // Get the call site's attribute list.
4342     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4343     llvm::AttributeList oldAttrs = callSite->getAttributes();
4344 
4345     // If the function was passed too few arguments, don't transform.
4346     unsigned newNumArgs = newFn->arg_size();
4347     if (callSite->arg_size() < newNumArgs)
4348       continue;
4349 
4350     // If extra arguments were passed, we silently drop them.
4351     // If any of the types mismatch, we don't transform.
4352     unsigned argNo = 0;
4353     bool dontTransform = false;
4354     for (llvm::Argument &A : newFn->args()) {
4355       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4356         dontTransform = true;
4357         break;
4358       }
4359 
4360       // Add any parameter attributes.
4361       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4362       argNo++;
4363     }
4364     if (dontTransform)
4365       continue;
4366 
4367     // Okay, we can transform this.  Create the new call instruction and copy
4368     // over the required information.
4369     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4370 
4371     // Copy over any operand bundles.
4372     callSite->getOperandBundlesAsDefs(newBundles);
4373 
4374     llvm::CallBase *newCall;
4375     if (dyn_cast<llvm::CallInst>(callSite)) {
4376       newCall =
4377           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4378     } else {
4379       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4380       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4381                                          oldInvoke->getUnwindDest(), newArgs,
4382                                          newBundles, "", callSite);
4383     }
4384     newArgs.clear(); // for the next iteration
4385 
4386     if (!newCall->getType()->isVoidTy())
4387       newCall->takeName(callSite);
4388     newCall->setAttributes(llvm::AttributeList::get(
4389         newFn->getContext(), oldAttrs.getFnAttributes(),
4390         oldAttrs.getRetAttributes(), newArgAttrs));
4391     newCall->setCallingConv(callSite->getCallingConv());
4392 
4393     // Finally, remove the old call, replacing any uses with the new one.
4394     if (!callSite->use_empty())
4395       callSite->replaceAllUsesWith(newCall);
4396 
4397     // Copy debug location attached to CI.
4398     if (callSite->getDebugLoc())
4399       newCall->setDebugLoc(callSite->getDebugLoc());
4400 
4401     callSite->eraseFromParent();
4402   }
4403 }
4404 
4405 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4406 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4407 /// existing call uses of the old function in the module, this adjusts them to
4408 /// call the new function directly.
4409 ///
4410 /// This is not just a cleanup: the always_inline pass requires direct calls to
4411 /// functions to be able to inline them.  If there is a bitcast in the way, it
4412 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4413 /// run at -O0.
4414 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4415                                                       llvm::Function *NewFn) {
4416   // If we're redefining a global as a function, don't transform it.
4417   if (!isa<llvm::Function>(Old)) return;
4418 
4419   replaceUsesOfNonProtoConstant(Old, NewFn);
4420 }
4421 
4422 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4423   auto DK = VD->isThisDeclarationADefinition();
4424   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4425     return;
4426 
4427   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4428   // If we have a definition, this might be a deferred decl. If the
4429   // instantiation is explicit, make sure we emit it at the end.
4430   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4431     GetAddrOfGlobalVar(VD);
4432 
4433   EmitTopLevelDecl(VD);
4434 }
4435 
4436 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4437                                                  llvm::GlobalValue *GV) {
4438   // Check if this must be emitted as declare variant.
4439   if (LangOpts.OpenMP && OpenMPRuntime &&
4440       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4441     return;
4442 
4443   const auto *D = cast<FunctionDecl>(GD.getDecl());
4444 
4445   // Compute the function info and LLVM type.
4446   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4447   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4448 
4449   // Get or create the prototype for the function.
4450   if (!GV || (GV->getType()->getElementType() != Ty))
4451     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4452                                                    /*DontDefer=*/true,
4453                                                    ForDefinition));
4454 
4455   // Already emitted.
4456   if (!GV->isDeclaration())
4457     return;
4458 
4459   // We need to set linkage and visibility on the function before
4460   // generating code for it because various parts of IR generation
4461   // want to propagate this information down (e.g. to local static
4462   // declarations).
4463   auto *Fn = cast<llvm::Function>(GV);
4464   setFunctionLinkage(GD, Fn);
4465 
4466   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4467   setGVProperties(Fn, GD);
4468 
4469   MaybeHandleStaticInExternC(D, Fn);
4470 
4471 
4472   maybeSetTrivialComdat(*D, *Fn);
4473 
4474   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4475 
4476   setNonAliasAttributes(GD, Fn);
4477   SetLLVMFunctionAttributesForDefinition(D, Fn);
4478 
4479   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4480     AddGlobalCtor(Fn, CA->getPriority());
4481   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4482     AddGlobalDtor(Fn, DA->getPriority());
4483   if (D->hasAttr<AnnotateAttr>())
4484     AddGlobalAnnotations(D, Fn);
4485 }
4486 
4487 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4488   const auto *D = cast<ValueDecl>(GD.getDecl());
4489   const AliasAttr *AA = D->getAttr<AliasAttr>();
4490   assert(AA && "Not an alias?");
4491 
4492   StringRef MangledName = getMangledName(GD);
4493 
4494   if (AA->getAliasee() == MangledName) {
4495     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4496     return;
4497   }
4498 
4499   // If there is a definition in the module, then it wins over the alias.
4500   // This is dubious, but allow it to be safe.  Just ignore the alias.
4501   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4502   if (Entry && !Entry->isDeclaration())
4503     return;
4504 
4505   Aliases.push_back(GD);
4506 
4507   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4508 
4509   // Create a reference to the named value.  This ensures that it is emitted
4510   // if a deferred decl.
4511   llvm::Constant *Aliasee;
4512   llvm::GlobalValue::LinkageTypes LT;
4513   if (isa<llvm::FunctionType>(DeclTy)) {
4514     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4515                                       /*ForVTable=*/false);
4516     LT = getFunctionLinkage(GD);
4517   } else {
4518     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4519                                     llvm::PointerType::getUnqual(DeclTy),
4520                                     /*D=*/nullptr);
4521     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4522                                      D->getType().isConstQualified());
4523   }
4524 
4525   // Create the new alias itself, but don't set a name yet.
4526   auto *GA =
4527       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4528 
4529   if (Entry) {
4530     if (GA->getAliasee() == Entry) {
4531       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4532       return;
4533     }
4534 
4535     assert(Entry->isDeclaration());
4536 
4537     // If there is a declaration in the module, then we had an extern followed
4538     // by the alias, as in:
4539     //   extern int test6();
4540     //   ...
4541     //   int test6() __attribute__((alias("test7")));
4542     //
4543     // Remove it and replace uses of it with the alias.
4544     GA->takeName(Entry);
4545 
4546     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4547                                                           Entry->getType()));
4548     Entry->eraseFromParent();
4549   } else {
4550     GA->setName(MangledName);
4551   }
4552 
4553   // Set attributes which are particular to an alias; this is a
4554   // specialization of the attributes which may be set on a global
4555   // variable/function.
4556   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4557       D->isWeakImported()) {
4558     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4559   }
4560 
4561   if (const auto *VD = dyn_cast<VarDecl>(D))
4562     if (VD->getTLSKind())
4563       setTLSMode(GA, *VD);
4564 
4565   SetCommonAttributes(GD, GA);
4566 }
4567 
4568 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4569   const auto *D = cast<ValueDecl>(GD.getDecl());
4570   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4571   assert(IFA && "Not an ifunc?");
4572 
4573   StringRef MangledName = getMangledName(GD);
4574 
4575   if (IFA->getResolver() == MangledName) {
4576     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4577     return;
4578   }
4579 
4580   // Report an error if some definition overrides ifunc.
4581   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4582   if (Entry && !Entry->isDeclaration()) {
4583     GlobalDecl OtherGD;
4584     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4585         DiagnosedConflictingDefinitions.insert(GD).second) {
4586       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4587           << MangledName;
4588       Diags.Report(OtherGD.getDecl()->getLocation(),
4589                    diag::note_previous_definition);
4590     }
4591     return;
4592   }
4593 
4594   Aliases.push_back(GD);
4595 
4596   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4597   llvm::Constant *Resolver =
4598       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4599                               /*ForVTable=*/false);
4600   llvm::GlobalIFunc *GIF =
4601       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4602                                 "", Resolver, &getModule());
4603   if (Entry) {
4604     if (GIF->getResolver() == Entry) {
4605       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4606       return;
4607     }
4608     assert(Entry->isDeclaration());
4609 
4610     // If there is a declaration in the module, then we had an extern followed
4611     // by the ifunc, as in:
4612     //   extern int test();
4613     //   ...
4614     //   int test() __attribute__((ifunc("resolver")));
4615     //
4616     // Remove it and replace uses of it with the ifunc.
4617     GIF->takeName(Entry);
4618 
4619     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4620                                                           Entry->getType()));
4621     Entry->eraseFromParent();
4622   } else
4623     GIF->setName(MangledName);
4624 
4625   SetCommonAttributes(GD, GIF);
4626 }
4627 
4628 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4629                                             ArrayRef<llvm::Type*> Tys) {
4630   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4631                                          Tys);
4632 }
4633 
4634 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4635 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4636                          const StringLiteral *Literal, bool TargetIsLSB,
4637                          bool &IsUTF16, unsigned &StringLength) {
4638   StringRef String = Literal->getString();
4639   unsigned NumBytes = String.size();
4640 
4641   // Check for simple case.
4642   if (!Literal->containsNonAsciiOrNull()) {
4643     StringLength = NumBytes;
4644     return *Map.insert(std::make_pair(String, nullptr)).first;
4645   }
4646 
4647   // Otherwise, convert the UTF8 literals into a string of shorts.
4648   IsUTF16 = true;
4649 
4650   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4651   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4652   llvm::UTF16 *ToPtr = &ToBuf[0];
4653 
4654   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4655                                  ToPtr + NumBytes, llvm::strictConversion);
4656 
4657   // ConvertUTF8toUTF16 returns the length in ToPtr.
4658   StringLength = ToPtr - &ToBuf[0];
4659 
4660   // Add an explicit null.
4661   *ToPtr = 0;
4662   return *Map.insert(std::make_pair(
4663                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4664                                    (StringLength + 1) * 2),
4665                          nullptr)).first;
4666 }
4667 
4668 ConstantAddress
4669 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4670   unsigned StringLength = 0;
4671   bool isUTF16 = false;
4672   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4673       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4674                                getDataLayout().isLittleEndian(), isUTF16,
4675                                StringLength);
4676 
4677   if (auto *C = Entry.second)
4678     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4679 
4680   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4681   llvm::Constant *Zeros[] = { Zero, Zero };
4682 
4683   const ASTContext &Context = getContext();
4684   const llvm::Triple &Triple = getTriple();
4685 
4686   const auto CFRuntime = getLangOpts().CFRuntime;
4687   const bool IsSwiftABI =
4688       static_cast<unsigned>(CFRuntime) >=
4689       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4690   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4691 
4692   // If we don't already have it, get __CFConstantStringClassReference.
4693   if (!CFConstantStringClassRef) {
4694     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4695     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4696     Ty = llvm::ArrayType::get(Ty, 0);
4697 
4698     switch (CFRuntime) {
4699     default: break;
4700     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4701     case LangOptions::CoreFoundationABI::Swift5_0:
4702       CFConstantStringClassName =
4703           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4704                               : "$s10Foundation19_NSCFConstantStringCN";
4705       Ty = IntPtrTy;
4706       break;
4707     case LangOptions::CoreFoundationABI::Swift4_2:
4708       CFConstantStringClassName =
4709           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4710                               : "$S10Foundation19_NSCFConstantStringCN";
4711       Ty = IntPtrTy;
4712       break;
4713     case LangOptions::CoreFoundationABI::Swift4_1:
4714       CFConstantStringClassName =
4715           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4716                               : "__T010Foundation19_NSCFConstantStringCN";
4717       Ty = IntPtrTy;
4718       break;
4719     }
4720 
4721     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4722 
4723     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4724       llvm::GlobalValue *GV = nullptr;
4725 
4726       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4727         IdentifierInfo &II = Context.Idents.get(GV->getName());
4728         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4729         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4730 
4731         const VarDecl *VD = nullptr;
4732         for (const auto &Result : DC->lookup(&II))
4733           if ((VD = dyn_cast<VarDecl>(Result)))
4734             break;
4735 
4736         if (Triple.isOSBinFormatELF()) {
4737           if (!VD)
4738             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4739         } else {
4740           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4741           if (!VD || !VD->hasAttr<DLLExportAttr>())
4742             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4743           else
4744             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4745         }
4746 
4747         setDSOLocal(GV);
4748       }
4749     }
4750 
4751     // Decay array -> ptr
4752     CFConstantStringClassRef =
4753         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4754                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4755   }
4756 
4757   QualType CFTy = Context.getCFConstantStringType();
4758 
4759   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4760 
4761   ConstantInitBuilder Builder(*this);
4762   auto Fields = Builder.beginStruct(STy);
4763 
4764   // Class pointer.
4765   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4766 
4767   // Flags.
4768   if (IsSwiftABI) {
4769     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4770     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4771   } else {
4772     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4773   }
4774 
4775   // String pointer.
4776   llvm::Constant *C = nullptr;
4777   if (isUTF16) {
4778     auto Arr = llvm::makeArrayRef(
4779         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4780         Entry.first().size() / 2);
4781     C = llvm::ConstantDataArray::get(VMContext, Arr);
4782   } else {
4783     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4784   }
4785 
4786   // Note: -fwritable-strings doesn't make the backing store strings of
4787   // CFStrings writable. (See <rdar://problem/10657500>)
4788   auto *GV =
4789       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4790                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4791   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4792   // Don't enforce the target's minimum global alignment, since the only use
4793   // of the string is via this class initializer.
4794   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4795                             : Context.getTypeAlignInChars(Context.CharTy);
4796   GV->setAlignment(Align.getAsAlign());
4797 
4798   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4799   // Without it LLVM can merge the string with a non unnamed_addr one during
4800   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4801   if (Triple.isOSBinFormatMachO())
4802     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4803                            : "__TEXT,__cstring,cstring_literals");
4804   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4805   // the static linker to adjust permissions to read-only later on.
4806   else if (Triple.isOSBinFormatELF())
4807     GV->setSection(".rodata");
4808 
4809   // String.
4810   llvm::Constant *Str =
4811       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4812 
4813   if (isUTF16)
4814     // Cast the UTF16 string to the correct type.
4815     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4816   Fields.add(Str);
4817 
4818   // String length.
4819   llvm::IntegerType *LengthTy =
4820       llvm::IntegerType::get(getModule().getContext(),
4821                              Context.getTargetInfo().getLongWidth());
4822   if (IsSwiftABI) {
4823     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4824         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4825       LengthTy = Int32Ty;
4826     else
4827       LengthTy = IntPtrTy;
4828   }
4829   Fields.addInt(LengthTy, StringLength);
4830 
4831   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4832   // properly aligned on 32-bit platforms.
4833   CharUnits Alignment =
4834       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4835 
4836   // The struct.
4837   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4838                                     /*isConstant=*/false,
4839                                     llvm::GlobalVariable::PrivateLinkage);
4840   GV->addAttribute("objc_arc_inert");
4841   switch (Triple.getObjectFormat()) {
4842   case llvm::Triple::UnknownObjectFormat:
4843     llvm_unreachable("unknown file format");
4844   case llvm::Triple::XCOFF:
4845     llvm_unreachable("XCOFF is not yet implemented");
4846   case llvm::Triple::COFF:
4847   case llvm::Triple::ELF:
4848   case llvm::Triple::Wasm:
4849     GV->setSection("cfstring");
4850     break;
4851   case llvm::Triple::MachO:
4852     GV->setSection("__DATA,__cfstring");
4853     break;
4854   }
4855   Entry.second = GV;
4856 
4857   return ConstantAddress(GV, Alignment);
4858 }
4859 
4860 bool CodeGenModule::getExpressionLocationsEnabled() const {
4861   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4862 }
4863 
4864 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4865   if (ObjCFastEnumerationStateType.isNull()) {
4866     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4867     D->startDefinition();
4868 
4869     QualType FieldTypes[] = {
4870       Context.UnsignedLongTy,
4871       Context.getPointerType(Context.getObjCIdType()),
4872       Context.getPointerType(Context.UnsignedLongTy),
4873       Context.getConstantArrayType(Context.UnsignedLongTy,
4874                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4875     };
4876 
4877     for (size_t i = 0; i < 4; ++i) {
4878       FieldDecl *Field = FieldDecl::Create(Context,
4879                                            D,
4880                                            SourceLocation(),
4881                                            SourceLocation(), nullptr,
4882                                            FieldTypes[i], /*TInfo=*/nullptr,
4883                                            /*BitWidth=*/nullptr,
4884                                            /*Mutable=*/false,
4885                                            ICIS_NoInit);
4886       Field->setAccess(AS_public);
4887       D->addDecl(Field);
4888     }
4889 
4890     D->completeDefinition();
4891     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4892   }
4893 
4894   return ObjCFastEnumerationStateType;
4895 }
4896 
4897 llvm::Constant *
4898 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4899   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4900 
4901   // Don't emit it as the address of the string, emit the string data itself
4902   // as an inline array.
4903   if (E->getCharByteWidth() == 1) {
4904     SmallString<64> Str(E->getString());
4905 
4906     // Resize the string to the right size, which is indicated by its type.
4907     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4908     Str.resize(CAT->getSize().getZExtValue());
4909     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4910   }
4911 
4912   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4913   llvm::Type *ElemTy = AType->getElementType();
4914   unsigned NumElements = AType->getNumElements();
4915 
4916   // Wide strings have either 2-byte or 4-byte elements.
4917   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4918     SmallVector<uint16_t, 32> Elements;
4919     Elements.reserve(NumElements);
4920 
4921     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4922       Elements.push_back(E->getCodeUnit(i));
4923     Elements.resize(NumElements);
4924     return llvm::ConstantDataArray::get(VMContext, Elements);
4925   }
4926 
4927   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4928   SmallVector<uint32_t, 32> Elements;
4929   Elements.reserve(NumElements);
4930 
4931   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4932     Elements.push_back(E->getCodeUnit(i));
4933   Elements.resize(NumElements);
4934   return llvm::ConstantDataArray::get(VMContext, Elements);
4935 }
4936 
4937 static llvm::GlobalVariable *
4938 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4939                       CodeGenModule &CGM, StringRef GlobalName,
4940                       CharUnits Alignment) {
4941   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4942       CGM.getStringLiteralAddressSpace());
4943 
4944   llvm::Module &M = CGM.getModule();
4945   // Create a global variable for this string
4946   auto *GV = new llvm::GlobalVariable(
4947       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4948       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4949   GV->setAlignment(Alignment.getAsAlign());
4950   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4951   if (GV->isWeakForLinker()) {
4952     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4953     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4954   }
4955   CGM.setDSOLocal(GV);
4956 
4957   return GV;
4958 }
4959 
4960 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4961 /// constant array for the given string literal.
4962 ConstantAddress
4963 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4964                                                   StringRef Name) {
4965   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4966 
4967   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4968   llvm::GlobalVariable **Entry = nullptr;
4969   if (!LangOpts.WritableStrings) {
4970     Entry = &ConstantStringMap[C];
4971     if (auto GV = *Entry) {
4972       if (Alignment.getQuantity() > GV->getAlignment())
4973         GV->setAlignment(Alignment.getAsAlign());
4974       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4975                              Alignment);
4976     }
4977   }
4978 
4979   SmallString<256> MangledNameBuffer;
4980   StringRef GlobalVariableName;
4981   llvm::GlobalValue::LinkageTypes LT;
4982 
4983   // Mangle the string literal if that's how the ABI merges duplicate strings.
4984   // Don't do it if they are writable, since we don't want writes in one TU to
4985   // affect strings in another.
4986   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4987       !LangOpts.WritableStrings) {
4988     llvm::raw_svector_ostream Out(MangledNameBuffer);
4989     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4990     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4991     GlobalVariableName = MangledNameBuffer;
4992   } else {
4993     LT = llvm::GlobalValue::PrivateLinkage;
4994     GlobalVariableName = Name;
4995   }
4996 
4997   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4998   if (Entry)
4999     *Entry = GV;
5000 
5001   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5002                                   QualType());
5003 
5004   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5005                          Alignment);
5006 }
5007 
5008 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5009 /// array for the given ObjCEncodeExpr node.
5010 ConstantAddress
5011 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5012   std::string Str;
5013   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5014 
5015   return GetAddrOfConstantCString(Str);
5016 }
5017 
5018 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5019 /// the literal and a terminating '\0' character.
5020 /// The result has pointer to array type.
5021 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5022     const std::string &Str, const char *GlobalName) {
5023   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5024   CharUnits Alignment =
5025     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5026 
5027   llvm::Constant *C =
5028       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5029 
5030   // Don't share any string literals if strings aren't constant.
5031   llvm::GlobalVariable **Entry = nullptr;
5032   if (!LangOpts.WritableStrings) {
5033     Entry = &ConstantStringMap[C];
5034     if (auto GV = *Entry) {
5035       if (Alignment.getQuantity() > GV->getAlignment())
5036         GV->setAlignment(Alignment.getAsAlign());
5037       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5038                              Alignment);
5039     }
5040   }
5041 
5042   // Get the default prefix if a name wasn't specified.
5043   if (!GlobalName)
5044     GlobalName = ".str";
5045   // Create a global variable for this.
5046   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5047                                   GlobalName, Alignment);
5048   if (Entry)
5049     *Entry = GV;
5050 
5051   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5052                          Alignment);
5053 }
5054 
5055 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5056     const MaterializeTemporaryExpr *E, const Expr *Init) {
5057   assert((E->getStorageDuration() == SD_Static ||
5058           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5059   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5060 
5061   // If we're not materializing a subobject of the temporary, keep the
5062   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5063   QualType MaterializedType = Init->getType();
5064   if (Init == E->getSubExpr())
5065     MaterializedType = E->getType();
5066 
5067   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5068 
5069   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5070     return ConstantAddress(Slot, Align);
5071 
5072   // FIXME: If an externally-visible declaration extends multiple temporaries,
5073   // we need to give each temporary the same name in every translation unit (and
5074   // we also need to make the temporaries externally-visible).
5075   SmallString<256> Name;
5076   llvm::raw_svector_ostream Out(Name);
5077   getCXXABI().getMangleContext().mangleReferenceTemporary(
5078       VD, E->getManglingNumber(), Out);
5079 
5080   APValue *Value = nullptr;
5081   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5082     // If the initializer of the extending declaration is a constant
5083     // initializer, we should have a cached constant initializer for this
5084     // temporary. Note that this might have a different value from the value
5085     // computed by evaluating the initializer if the surrounding constant
5086     // expression modifies the temporary.
5087     Value = E->getOrCreateValue(false);
5088   }
5089 
5090   // Try evaluating it now, it might have a constant initializer.
5091   Expr::EvalResult EvalResult;
5092   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5093       !EvalResult.hasSideEffects())
5094     Value = &EvalResult.Val;
5095 
5096   LangAS AddrSpace =
5097       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5098 
5099   Optional<ConstantEmitter> emitter;
5100   llvm::Constant *InitialValue = nullptr;
5101   bool Constant = false;
5102   llvm::Type *Type;
5103   if (Value) {
5104     // The temporary has a constant initializer, use it.
5105     emitter.emplace(*this);
5106     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5107                                                MaterializedType);
5108     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5109     Type = InitialValue->getType();
5110   } else {
5111     // No initializer, the initialization will be provided when we
5112     // initialize the declaration which performed lifetime extension.
5113     Type = getTypes().ConvertTypeForMem(MaterializedType);
5114   }
5115 
5116   // Create a global variable for this lifetime-extended temporary.
5117   llvm::GlobalValue::LinkageTypes Linkage =
5118       getLLVMLinkageVarDefinition(VD, Constant);
5119   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5120     const VarDecl *InitVD;
5121     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5122         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5123       // Temporaries defined inside a class get linkonce_odr linkage because the
5124       // class can be defined in multiple translation units.
5125       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5126     } else {
5127       // There is no need for this temporary to have external linkage if the
5128       // VarDecl has external linkage.
5129       Linkage = llvm::GlobalVariable::InternalLinkage;
5130     }
5131   }
5132   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5133   auto *GV = new llvm::GlobalVariable(
5134       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5135       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5136   if (emitter) emitter->finalize(GV);
5137   setGVProperties(GV, VD);
5138   GV->setAlignment(Align.getAsAlign());
5139   if (supportsCOMDAT() && GV->isWeakForLinker())
5140     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5141   if (VD->getTLSKind())
5142     setTLSMode(GV, *VD);
5143   llvm::Constant *CV = GV;
5144   if (AddrSpace != LangAS::Default)
5145     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5146         *this, GV, AddrSpace, LangAS::Default,
5147         Type->getPointerTo(
5148             getContext().getTargetAddressSpace(LangAS::Default)));
5149   MaterializedGlobalTemporaryMap[E] = CV;
5150   return ConstantAddress(CV, Align);
5151 }
5152 
5153 /// EmitObjCPropertyImplementations - Emit information for synthesized
5154 /// properties for an implementation.
5155 void CodeGenModule::EmitObjCPropertyImplementations(const
5156                                                     ObjCImplementationDecl *D) {
5157   for (const auto *PID : D->property_impls()) {
5158     // Dynamic is just for type-checking.
5159     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5160       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5161 
5162       // Determine which methods need to be implemented, some may have
5163       // been overridden. Note that ::isPropertyAccessor is not the method
5164       // we want, that just indicates if the decl came from a
5165       // property. What we want to know is if the method is defined in
5166       // this implementation.
5167       auto *Getter = PID->getGetterMethodDecl();
5168       if (!Getter || Getter->isSynthesizedAccessorStub())
5169         CodeGenFunction(*this).GenerateObjCGetter(
5170             const_cast<ObjCImplementationDecl *>(D), PID);
5171       auto *Setter = PID->getSetterMethodDecl();
5172       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5173         CodeGenFunction(*this).GenerateObjCSetter(
5174                                  const_cast<ObjCImplementationDecl *>(D), PID);
5175     }
5176   }
5177 }
5178 
5179 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5180   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5181   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5182        ivar; ivar = ivar->getNextIvar())
5183     if (ivar->getType().isDestructedType())
5184       return true;
5185 
5186   return false;
5187 }
5188 
5189 static bool AllTrivialInitializers(CodeGenModule &CGM,
5190                                    ObjCImplementationDecl *D) {
5191   CodeGenFunction CGF(CGM);
5192   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5193        E = D->init_end(); B != E; ++B) {
5194     CXXCtorInitializer *CtorInitExp = *B;
5195     Expr *Init = CtorInitExp->getInit();
5196     if (!CGF.isTrivialInitializer(Init))
5197       return false;
5198   }
5199   return true;
5200 }
5201 
5202 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5203 /// for an implementation.
5204 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5205   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5206   if (needsDestructMethod(D)) {
5207     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5208     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5209     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5210         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5211         getContext().VoidTy, nullptr, D,
5212         /*isInstance=*/true, /*isVariadic=*/false,
5213         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5214         /*isImplicitlyDeclared=*/true,
5215         /*isDefined=*/false, ObjCMethodDecl::Required);
5216     D->addInstanceMethod(DTORMethod);
5217     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5218     D->setHasDestructors(true);
5219   }
5220 
5221   // If the implementation doesn't have any ivar initializers, we don't need
5222   // a .cxx_construct.
5223   if (D->getNumIvarInitializers() == 0 ||
5224       AllTrivialInitializers(*this, D))
5225     return;
5226 
5227   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5228   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5229   // The constructor returns 'self'.
5230   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5231       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5232       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5233       /*isVariadic=*/false,
5234       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5235       /*isImplicitlyDeclared=*/true,
5236       /*isDefined=*/false, ObjCMethodDecl::Required);
5237   D->addInstanceMethod(CTORMethod);
5238   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5239   D->setHasNonZeroConstructors(true);
5240 }
5241 
5242 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5243 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5244   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5245       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5246     ErrorUnsupported(LSD, "linkage spec");
5247     return;
5248   }
5249 
5250   EmitDeclContext(LSD);
5251 }
5252 
5253 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5254   for (auto *I : DC->decls()) {
5255     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5256     // are themselves considered "top-level", so EmitTopLevelDecl on an
5257     // ObjCImplDecl does not recursively visit them. We need to do that in
5258     // case they're nested inside another construct (LinkageSpecDecl /
5259     // ExportDecl) that does stop them from being considered "top-level".
5260     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5261       for (auto *M : OID->methods())
5262         EmitTopLevelDecl(M);
5263     }
5264 
5265     EmitTopLevelDecl(I);
5266   }
5267 }
5268 
5269 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5270 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5271   // Ignore dependent declarations.
5272   if (D->isTemplated())
5273     return;
5274 
5275   switch (D->getKind()) {
5276   case Decl::CXXConversion:
5277   case Decl::CXXMethod:
5278   case Decl::Function:
5279     EmitGlobal(cast<FunctionDecl>(D));
5280     // Always provide some coverage mapping
5281     // even for the functions that aren't emitted.
5282     AddDeferredUnusedCoverageMapping(D);
5283     break;
5284 
5285   case Decl::CXXDeductionGuide:
5286     // Function-like, but does not result in code emission.
5287     break;
5288 
5289   case Decl::Var:
5290   case Decl::Decomposition:
5291   case Decl::VarTemplateSpecialization:
5292     EmitGlobal(cast<VarDecl>(D));
5293     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5294       for (auto *B : DD->bindings())
5295         if (auto *HD = B->getHoldingVar())
5296           EmitGlobal(HD);
5297     break;
5298 
5299   // Indirect fields from global anonymous structs and unions can be
5300   // ignored; only the actual variable requires IR gen support.
5301   case Decl::IndirectField:
5302     break;
5303 
5304   // C++ Decls
5305   case Decl::Namespace:
5306     EmitDeclContext(cast<NamespaceDecl>(D));
5307     break;
5308   case Decl::ClassTemplateSpecialization: {
5309     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5310     if (DebugInfo &&
5311         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5312         Spec->hasDefinition())
5313       DebugInfo->completeTemplateDefinition(*Spec);
5314   } LLVM_FALLTHROUGH;
5315   case Decl::CXXRecord:
5316     if (DebugInfo) {
5317       if (auto *ES = D->getASTContext().getExternalSource())
5318         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5319           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5320     }
5321     // Emit any static data members, they may be definitions.
5322     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5323       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5324         EmitTopLevelDecl(I);
5325     break;
5326     // No code generation needed.
5327   case Decl::UsingShadow:
5328   case Decl::ClassTemplate:
5329   case Decl::VarTemplate:
5330   case Decl::Concept:
5331   case Decl::VarTemplatePartialSpecialization:
5332   case Decl::FunctionTemplate:
5333   case Decl::TypeAliasTemplate:
5334   case Decl::Block:
5335   case Decl::Empty:
5336   case Decl::Binding:
5337     break;
5338   case Decl::Using:          // using X; [C++]
5339     if (CGDebugInfo *DI = getModuleDebugInfo())
5340         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5341     return;
5342   case Decl::NamespaceAlias:
5343     if (CGDebugInfo *DI = getModuleDebugInfo())
5344         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5345     return;
5346   case Decl::UsingDirective: // using namespace X; [C++]
5347     if (CGDebugInfo *DI = getModuleDebugInfo())
5348       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5349     return;
5350   case Decl::CXXConstructor:
5351     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5352     break;
5353   case Decl::CXXDestructor:
5354     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5355     break;
5356 
5357   case Decl::StaticAssert:
5358     // Nothing to do.
5359     break;
5360 
5361   // Objective-C Decls
5362 
5363   // Forward declarations, no (immediate) code generation.
5364   case Decl::ObjCInterface:
5365   case Decl::ObjCCategory:
5366     break;
5367 
5368   case Decl::ObjCProtocol: {
5369     auto *Proto = cast<ObjCProtocolDecl>(D);
5370     if (Proto->isThisDeclarationADefinition())
5371       ObjCRuntime->GenerateProtocol(Proto);
5372     break;
5373   }
5374 
5375   case Decl::ObjCCategoryImpl:
5376     // Categories have properties but don't support synthesize so we
5377     // can ignore them here.
5378     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5379     break;
5380 
5381   case Decl::ObjCImplementation: {
5382     auto *OMD = cast<ObjCImplementationDecl>(D);
5383     EmitObjCPropertyImplementations(OMD);
5384     EmitObjCIvarInitializations(OMD);
5385     ObjCRuntime->GenerateClass(OMD);
5386     // Emit global variable debug information.
5387     if (CGDebugInfo *DI = getModuleDebugInfo())
5388       if (getCodeGenOpts().hasReducedDebugInfo())
5389         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5390             OMD->getClassInterface()), OMD->getLocation());
5391     break;
5392   }
5393   case Decl::ObjCMethod: {
5394     auto *OMD = cast<ObjCMethodDecl>(D);
5395     // If this is not a prototype, emit the body.
5396     if (OMD->getBody())
5397       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5398     break;
5399   }
5400   case Decl::ObjCCompatibleAlias:
5401     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5402     break;
5403 
5404   case Decl::PragmaComment: {
5405     const auto *PCD = cast<PragmaCommentDecl>(D);
5406     switch (PCD->getCommentKind()) {
5407     case PCK_Unknown:
5408       llvm_unreachable("unexpected pragma comment kind");
5409     case PCK_Linker:
5410       AppendLinkerOptions(PCD->getArg());
5411       break;
5412     case PCK_Lib:
5413         AddDependentLib(PCD->getArg());
5414       break;
5415     case PCK_Compiler:
5416     case PCK_ExeStr:
5417     case PCK_User:
5418       break; // We ignore all of these.
5419     }
5420     break;
5421   }
5422 
5423   case Decl::PragmaDetectMismatch: {
5424     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5425     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5426     break;
5427   }
5428 
5429   case Decl::LinkageSpec:
5430     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5431     break;
5432 
5433   case Decl::FileScopeAsm: {
5434     // File-scope asm is ignored during device-side CUDA compilation.
5435     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5436       break;
5437     // File-scope asm is ignored during device-side OpenMP compilation.
5438     if (LangOpts.OpenMPIsDevice)
5439       break;
5440     auto *AD = cast<FileScopeAsmDecl>(D);
5441     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5442     break;
5443   }
5444 
5445   case Decl::Import: {
5446     auto *Import = cast<ImportDecl>(D);
5447 
5448     // If we've already imported this module, we're done.
5449     if (!ImportedModules.insert(Import->getImportedModule()))
5450       break;
5451 
5452     // Emit debug information for direct imports.
5453     if (!Import->getImportedOwningModule()) {
5454       if (CGDebugInfo *DI = getModuleDebugInfo())
5455         DI->EmitImportDecl(*Import);
5456     }
5457 
5458     // Find all of the submodules and emit the module initializers.
5459     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5460     SmallVector<clang::Module *, 16> Stack;
5461     Visited.insert(Import->getImportedModule());
5462     Stack.push_back(Import->getImportedModule());
5463 
5464     while (!Stack.empty()) {
5465       clang::Module *Mod = Stack.pop_back_val();
5466       if (!EmittedModuleInitializers.insert(Mod).second)
5467         continue;
5468 
5469       for (auto *D : Context.getModuleInitializers(Mod))
5470         EmitTopLevelDecl(D);
5471 
5472       // Visit the submodules of this module.
5473       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5474                                              SubEnd = Mod->submodule_end();
5475            Sub != SubEnd; ++Sub) {
5476         // Skip explicit children; they need to be explicitly imported to emit
5477         // the initializers.
5478         if ((*Sub)->IsExplicit)
5479           continue;
5480 
5481         if (Visited.insert(*Sub).second)
5482           Stack.push_back(*Sub);
5483       }
5484     }
5485     break;
5486   }
5487 
5488   case Decl::Export:
5489     EmitDeclContext(cast<ExportDecl>(D));
5490     break;
5491 
5492   case Decl::OMPThreadPrivate:
5493     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5494     break;
5495 
5496   case Decl::OMPAllocate:
5497     break;
5498 
5499   case Decl::OMPDeclareReduction:
5500     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5501     break;
5502 
5503   case Decl::OMPDeclareMapper:
5504     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5505     break;
5506 
5507   case Decl::OMPRequires:
5508     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5509     break;
5510 
5511   default:
5512     // Make sure we handled everything we should, every other kind is a
5513     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5514     // function. Need to recode Decl::Kind to do that easily.
5515     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5516     break;
5517   }
5518 }
5519 
5520 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5521   // Do we need to generate coverage mapping?
5522   if (!CodeGenOpts.CoverageMapping)
5523     return;
5524   switch (D->getKind()) {
5525   case Decl::CXXConversion:
5526   case Decl::CXXMethod:
5527   case Decl::Function:
5528   case Decl::ObjCMethod:
5529   case Decl::CXXConstructor:
5530   case Decl::CXXDestructor: {
5531     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5532       return;
5533     SourceManager &SM = getContext().getSourceManager();
5534     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5535       return;
5536     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5537     if (I == DeferredEmptyCoverageMappingDecls.end())
5538       DeferredEmptyCoverageMappingDecls[D] = true;
5539     break;
5540   }
5541   default:
5542     break;
5543   };
5544 }
5545 
5546 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5547   // Do we need to generate coverage mapping?
5548   if (!CodeGenOpts.CoverageMapping)
5549     return;
5550   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5551     if (Fn->isTemplateInstantiation())
5552       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5553   }
5554   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5555   if (I == DeferredEmptyCoverageMappingDecls.end())
5556     DeferredEmptyCoverageMappingDecls[D] = false;
5557   else
5558     I->second = false;
5559 }
5560 
5561 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5562   // We call takeVector() here to avoid use-after-free.
5563   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5564   // we deserialize function bodies to emit coverage info for them, and that
5565   // deserializes more declarations. How should we handle that case?
5566   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5567     if (!Entry.second)
5568       continue;
5569     const Decl *D = Entry.first;
5570     switch (D->getKind()) {
5571     case Decl::CXXConversion:
5572     case Decl::CXXMethod:
5573     case Decl::Function:
5574     case Decl::ObjCMethod: {
5575       CodeGenPGO PGO(*this);
5576       GlobalDecl GD(cast<FunctionDecl>(D));
5577       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5578                                   getFunctionLinkage(GD));
5579       break;
5580     }
5581     case Decl::CXXConstructor: {
5582       CodeGenPGO PGO(*this);
5583       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5584       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5585                                   getFunctionLinkage(GD));
5586       break;
5587     }
5588     case Decl::CXXDestructor: {
5589       CodeGenPGO PGO(*this);
5590       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5591       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5592                                   getFunctionLinkage(GD));
5593       break;
5594     }
5595     default:
5596       break;
5597     };
5598   }
5599 }
5600 
5601 /// Turns the given pointer into a constant.
5602 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5603                                           const void *Ptr) {
5604   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5605   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5606   return llvm::ConstantInt::get(i64, PtrInt);
5607 }
5608 
5609 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5610                                    llvm::NamedMDNode *&GlobalMetadata,
5611                                    GlobalDecl D,
5612                                    llvm::GlobalValue *Addr) {
5613   if (!GlobalMetadata)
5614     GlobalMetadata =
5615       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5616 
5617   // TODO: should we report variant information for ctors/dtors?
5618   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5619                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5620                                CGM.getLLVMContext(), D.getDecl()))};
5621   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5622 }
5623 
5624 /// For each function which is declared within an extern "C" region and marked
5625 /// as 'used', but has internal linkage, create an alias from the unmangled
5626 /// name to the mangled name if possible. People expect to be able to refer
5627 /// to such functions with an unmangled name from inline assembly within the
5628 /// same translation unit.
5629 void CodeGenModule::EmitStaticExternCAliases() {
5630   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5631     return;
5632   for (auto &I : StaticExternCValues) {
5633     IdentifierInfo *Name = I.first;
5634     llvm::GlobalValue *Val = I.second;
5635     if (Val && !getModule().getNamedValue(Name->getName()))
5636       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5637   }
5638 }
5639 
5640 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5641                                              GlobalDecl &Result) const {
5642   auto Res = Manglings.find(MangledName);
5643   if (Res == Manglings.end())
5644     return false;
5645   Result = Res->getValue();
5646   return true;
5647 }
5648 
5649 /// Emits metadata nodes associating all the global values in the
5650 /// current module with the Decls they came from.  This is useful for
5651 /// projects using IR gen as a subroutine.
5652 ///
5653 /// Since there's currently no way to associate an MDNode directly
5654 /// with an llvm::GlobalValue, we create a global named metadata
5655 /// with the name 'clang.global.decl.ptrs'.
5656 void CodeGenModule::EmitDeclMetadata() {
5657   llvm::NamedMDNode *GlobalMetadata = nullptr;
5658 
5659   for (auto &I : MangledDeclNames) {
5660     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5661     // Some mangled names don't necessarily have an associated GlobalValue
5662     // in this module, e.g. if we mangled it for DebugInfo.
5663     if (Addr)
5664       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5665   }
5666 }
5667 
5668 /// Emits metadata nodes for all the local variables in the current
5669 /// function.
5670 void CodeGenFunction::EmitDeclMetadata() {
5671   if (LocalDeclMap.empty()) return;
5672 
5673   llvm::LLVMContext &Context = getLLVMContext();
5674 
5675   // Find the unique metadata ID for this name.
5676   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5677 
5678   llvm::NamedMDNode *GlobalMetadata = nullptr;
5679 
5680   for (auto &I : LocalDeclMap) {
5681     const Decl *D = I.first;
5682     llvm::Value *Addr = I.second.getPointer();
5683     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5684       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5685       Alloca->setMetadata(
5686           DeclPtrKind, llvm::MDNode::get(
5687                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5688     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5689       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5690       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5691     }
5692   }
5693 }
5694 
5695 void CodeGenModule::EmitVersionIdentMetadata() {
5696   llvm::NamedMDNode *IdentMetadata =
5697     TheModule.getOrInsertNamedMetadata("llvm.ident");
5698   std::string Version = getClangFullVersion();
5699   llvm::LLVMContext &Ctx = TheModule.getContext();
5700 
5701   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5702   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5703 }
5704 
5705 void CodeGenModule::EmitCommandLineMetadata() {
5706   llvm::NamedMDNode *CommandLineMetadata =
5707     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5708   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5709   llvm::LLVMContext &Ctx = TheModule.getContext();
5710 
5711   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5712   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5713 }
5714 
5715 void CodeGenModule::EmitTargetMetadata() {
5716   // Warning, new MangledDeclNames may be appended within this loop.
5717   // We rely on MapVector insertions adding new elements to the end
5718   // of the container.
5719   // FIXME: Move this loop into the one target that needs it, and only
5720   // loop over those declarations for which we couldn't emit the target
5721   // metadata when we emitted the declaration.
5722   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5723     auto Val = *(MangledDeclNames.begin() + I);
5724     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5725     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5726     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5727   }
5728 }
5729 
5730 void CodeGenModule::EmitCoverageFile() {
5731   if (getCodeGenOpts().CoverageDataFile.empty() &&
5732       getCodeGenOpts().CoverageNotesFile.empty())
5733     return;
5734 
5735   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5736   if (!CUNode)
5737     return;
5738 
5739   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5740   llvm::LLVMContext &Ctx = TheModule.getContext();
5741   auto *CoverageDataFile =
5742       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5743   auto *CoverageNotesFile =
5744       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5745   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5746     llvm::MDNode *CU = CUNode->getOperand(i);
5747     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5748     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5749   }
5750 }
5751 
5752 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5753   // Sema has checked that all uuid strings are of the form
5754   // "12345678-1234-1234-1234-1234567890ab".
5755   assert(Uuid.size() == 36);
5756   for (unsigned i = 0; i < 36; ++i) {
5757     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5758     else                                         assert(isHexDigit(Uuid[i]));
5759   }
5760 
5761   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5762   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5763 
5764   llvm::Constant *Field3[8];
5765   for (unsigned Idx = 0; Idx < 8; ++Idx)
5766     Field3[Idx] = llvm::ConstantInt::get(
5767         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5768 
5769   llvm::Constant *Fields[4] = {
5770     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5771     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5772     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5773     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5774   };
5775 
5776   return llvm::ConstantStruct::getAnon(Fields);
5777 }
5778 
5779 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5780                                                        bool ForEH) {
5781   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5782   // FIXME: should we even be calling this method if RTTI is disabled
5783   // and it's not for EH?
5784   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5785     return llvm::Constant::getNullValue(Int8PtrTy);
5786 
5787   if (ForEH && Ty->isObjCObjectPointerType() &&
5788       LangOpts.ObjCRuntime.isGNUFamily())
5789     return ObjCRuntime->GetEHType(Ty);
5790 
5791   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5792 }
5793 
5794 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5795   // Do not emit threadprivates in simd-only mode.
5796   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5797     return;
5798   for (auto RefExpr : D->varlists()) {
5799     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5800     bool PerformInit =
5801         VD->getAnyInitializer() &&
5802         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5803                                                         /*ForRef=*/false);
5804 
5805     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5806     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5807             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5808       CXXGlobalInits.push_back(InitFunction);
5809   }
5810 }
5811 
5812 llvm::Metadata *
5813 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5814                                             StringRef Suffix) {
5815   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5816   if (InternalId)
5817     return InternalId;
5818 
5819   if (isExternallyVisible(T->getLinkage())) {
5820     std::string OutName;
5821     llvm::raw_string_ostream Out(OutName);
5822     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5823     Out << Suffix;
5824 
5825     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5826   } else {
5827     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5828                                            llvm::ArrayRef<llvm::Metadata *>());
5829   }
5830 
5831   return InternalId;
5832 }
5833 
5834 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5835   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5836 }
5837 
5838 llvm::Metadata *
5839 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5840   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5841 }
5842 
5843 // Generalize pointer types to a void pointer with the qualifiers of the
5844 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5845 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5846 // 'void *'.
5847 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5848   if (!Ty->isPointerType())
5849     return Ty;
5850 
5851   return Ctx.getPointerType(
5852       QualType(Ctx.VoidTy).withCVRQualifiers(
5853           Ty->getPointeeType().getCVRQualifiers()));
5854 }
5855 
5856 // Apply type generalization to a FunctionType's return and argument types
5857 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5858   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5859     SmallVector<QualType, 8> GeneralizedParams;
5860     for (auto &Param : FnType->param_types())
5861       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5862 
5863     return Ctx.getFunctionType(
5864         GeneralizeType(Ctx, FnType->getReturnType()),
5865         GeneralizedParams, FnType->getExtProtoInfo());
5866   }
5867 
5868   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5869     return Ctx.getFunctionNoProtoType(
5870         GeneralizeType(Ctx, FnType->getReturnType()));
5871 
5872   llvm_unreachable("Encountered unknown FunctionType");
5873 }
5874 
5875 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5876   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5877                                       GeneralizedMetadataIdMap, ".generalized");
5878 }
5879 
5880 /// Returns whether this module needs the "all-vtables" type identifier.
5881 bool CodeGenModule::NeedAllVtablesTypeId() const {
5882   // Returns true if at least one of vtable-based CFI checkers is enabled and
5883   // is not in the trapping mode.
5884   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5885            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5886           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5887            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5888           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5889            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5890           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5891            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5892 }
5893 
5894 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5895                                           CharUnits Offset,
5896                                           const CXXRecordDecl *RD) {
5897   llvm::Metadata *MD =
5898       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5899   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5900 
5901   if (CodeGenOpts.SanitizeCfiCrossDso)
5902     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5903       VTable->addTypeMetadata(Offset.getQuantity(),
5904                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5905 
5906   if (NeedAllVtablesTypeId()) {
5907     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5908     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5909   }
5910 }
5911 
5912 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5913   if (!SanStats)
5914     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5915 
5916   return *SanStats;
5917 }
5918 llvm::Value *
5919 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5920                                                   CodeGenFunction &CGF) {
5921   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5922   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5923   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5924   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5925                                 "__translate_sampler_initializer"),
5926                                 {C});
5927 }
5928