xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cf13e67730d232eb637987306b13bda100671d97)
1  //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-module state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenModule.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCall.h"
18  #include "CGDebugInfo.h"
19  #include "CGObjCRuntime.h"
20  #include "CGOpenCLRuntime.h"
21  #include "CGOpenMPRuntime.h"
22  #include "CGOpenMPRuntimeGPU.h"
23  #include "CodeGenFunction.h"
24  #include "CodeGenPGO.h"
25  #include "ConstantEmitter.h"
26  #include "CoverageMappingGen.h"
27  #include "TargetInfo.h"
28  #include "clang/AST/ASTContext.h"
29  #include "clang/AST/CharUnits.h"
30  #include "clang/AST/DeclCXX.h"
31  #include "clang/AST/DeclObjC.h"
32  #include "clang/AST/DeclTemplate.h"
33  #include "clang/AST/Mangle.h"
34  #include "clang/AST/RecordLayout.h"
35  #include "clang/AST/RecursiveASTVisitor.h"
36  #include "clang/AST/StmtVisitor.h"
37  #include "clang/Basic/Builtins.h"
38  #include "clang/Basic/CharInfo.h"
39  #include "clang/Basic/CodeGenOptions.h"
40  #include "clang/Basic/Diagnostic.h"
41  #include "clang/Basic/FileManager.h"
42  #include "clang/Basic/Module.h"
43  #include "clang/Basic/SourceManager.h"
44  #include "clang/Basic/TargetInfo.h"
45  #include "clang/Basic/Version.h"
46  #include "clang/CodeGen/ConstantInitBuilder.h"
47  #include "clang/Frontend/FrontendDiagnostic.h"
48  #include "llvm/ADT/StringSwitch.h"
49  #include "llvm/ADT/Triple.h"
50  #include "llvm/Analysis/TargetLibraryInfo.h"
51  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52  #include "llvm/IR/CallingConv.h"
53  #include "llvm/IR/DataLayout.h"
54  #include "llvm/IR/Intrinsics.h"
55  #include "llvm/IR/LLVMContext.h"
56  #include "llvm/IR/Module.h"
57  #include "llvm/IR/ProfileSummary.h"
58  #include "llvm/ProfileData/InstrProfReader.h"
59  #include "llvm/Support/CodeGen.h"
60  #include "llvm/Support/CommandLine.h"
61  #include "llvm/Support/ConvertUTF.h"
62  #include "llvm/Support/ErrorHandling.h"
63  #include "llvm/Support/MD5.h"
64  #include "llvm/Support/TimeProfiler.h"
65  #include "llvm/Support/X86TargetParser.h"
66  
67  using namespace clang;
68  using namespace CodeGen;
69  
70  static llvm::cl::opt<bool> LimitedCoverage(
71      "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72      llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73      llvm::cl::init(false));
74  
75  static const char AnnotationSection[] = "llvm.metadata";
76  
77  static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78    switch (CGM.getContext().getCXXABIKind()) {
79    case TargetCXXABI::AppleARM64:
80    case TargetCXXABI::Fuchsia:
81    case TargetCXXABI::GenericAArch64:
82    case TargetCXXABI::GenericARM:
83    case TargetCXXABI::iOS:
84    case TargetCXXABI::WatchOS:
85    case TargetCXXABI::GenericMIPS:
86    case TargetCXXABI::GenericItanium:
87    case TargetCXXABI::WebAssembly:
88    case TargetCXXABI::XL:
89      return CreateItaniumCXXABI(CGM);
90    case TargetCXXABI::Microsoft:
91      return CreateMicrosoftCXXABI(CGM);
92    }
93  
94    llvm_unreachable("invalid C++ ABI kind");
95  }
96  
97  CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                               const PreprocessorOptions &PPO,
99                               const CodeGenOptions &CGO, llvm::Module &M,
100                               DiagnosticsEngine &diags,
101                               CoverageSourceInfo *CoverageInfo)
102      : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103        PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104        Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105        VMContext(M.getContext()), Types(*this), VTables(*this),
106        SanitizerMD(new SanitizerMetadata(*this)) {
107  
108    // Initialize the type cache.
109    llvm::LLVMContext &LLVMContext = M.getContext();
110    VoidTy = llvm::Type::getVoidTy(LLVMContext);
111    Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112    Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113    Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114    Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115    HalfTy = llvm::Type::getHalfTy(LLVMContext);
116    BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117    FloatTy = llvm::Type::getFloatTy(LLVMContext);
118    DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119    PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120    PointerAlignInBytes =
121      C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122    SizeSizeInBytes =
123      C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124    IntAlignInBytes =
125      C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126    CharTy =
127      llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128    IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129    IntPtrTy = llvm::IntegerType::get(LLVMContext,
130      C.getTargetInfo().getMaxPointerWidth());
131    Int8PtrTy = Int8Ty->getPointerTo(0);
132    Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133    const llvm::DataLayout &DL = M.getDataLayout();
134    AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135    GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136    ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137  
138    RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139  
140    if (LangOpts.ObjC)
141      createObjCRuntime();
142    if (LangOpts.OpenCL)
143      createOpenCLRuntime();
144    if (LangOpts.OpenMP)
145      createOpenMPRuntime();
146    if (LangOpts.CUDA)
147      createCUDARuntime();
148  
149    // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150    if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151        (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152      TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                 getCXXABI().getMangleContext()));
154  
155    // If debug info or coverage generation is enabled, create the CGDebugInfo
156    // object.
157    if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158        CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159      DebugInfo.reset(new CGDebugInfo(*this));
160  
161    Block.GlobalUniqueCount = 0;
162  
163    if (C.getLangOpts().ObjC)
164      ObjCData.reset(new ObjCEntrypoints());
165  
166    if (CodeGenOpts.hasProfileClangUse()) {
167      auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168          CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169      if (auto E = ReaderOrErr.takeError()) {
170        unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                                "Could not read profile %0: %1");
172        llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173          getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                    << EI.message();
175        });
176      } else
177        PGOReader = std::move(ReaderOrErr.get());
178    }
179  
180    // If coverage mapping generation is enabled, create the
181    // CoverageMappingModuleGen object.
182    if (CodeGenOpts.CoverageMapping)
183      CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184  
185    // Generate the module name hash here if needed.
186    if (CodeGenOpts.UniqueInternalLinkageNames &&
187        !getModule().getSourceFileName().empty()) {
188      std::string Path = getModule().getSourceFileName();
189      // Check if a path substitution is needed from the MacroPrefixMap.
190      for (const auto &Entry : LangOpts.MacroPrefixMap)
191        if (Path.rfind(Entry.first, 0) != std::string::npos) {
192          Path = Entry.second + Path.substr(Entry.first.size());
193          break;
194        }
195      llvm::MD5 Md5;
196      Md5.update(Path);
197      llvm::MD5::MD5Result R;
198      Md5.final(R);
199      SmallString<32> Str;
200      llvm::MD5::stringifyResult(R, Str);
201      // Convert MD5hash to Decimal. Demangler suffixes can either contain
202      // numbers or characters but not both.
203      llvm::APInt IntHash(128, Str.str(), 16);
204      // Prepend "__uniq" before the hash for tools like profilers to understand
205      // that this symbol is of internal linkage type.  The "__uniq" is the
206      // pre-determined prefix that is used to tell tools that this symbol was
207      // created with -funique-internal-linakge-symbols and the tools can strip or
208      // keep the prefix as needed.
209      ModuleNameHash = (Twine(".__uniq.") +
210          Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211    }
212  }
213  
214  CodeGenModule::~CodeGenModule() {}
215  
216  void CodeGenModule::createObjCRuntime() {
217    // This is just isGNUFamily(), but we want to force implementors of
218    // new ABIs to decide how best to do this.
219    switch (LangOpts.ObjCRuntime.getKind()) {
220    case ObjCRuntime::GNUstep:
221    case ObjCRuntime::GCC:
222    case ObjCRuntime::ObjFW:
223      ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224      return;
225  
226    case ObjCRuntime::FragileMacOSX:
227    case ObjCRuntime::MacOSX:
228    case ObjCRuntime::iOS:
229    case ObjCRuntime::WatchOS:
230      ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231      return;
232    }
233    llvm_unreachable("bad runtime kind");
234  }
235  
236  void CodeGenModule::createOpenCLRuntime() {
237    OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238  }
239  
240  void CodeGenModule::createOpenMPRuntime() {
241    // Select a specialized code generation class based on the target, if any.
242    // If it does not exist use the default implementation.
243    switch (getTriple().getArch()) {
244    case llvm::Triple::nvptx:
245    case llvm::Triple::nvptx64:
246    case llvm::Triple::amdgcn:
247      assert(getLangOpts().OpenMPIsDevice &&
248             "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249      OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250      break;
251    default:
252      if (LangOpts.OpenMPSimd)
253        OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254      else
255        OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256      break;
257    }
258  }
259  
260  void CodeGenModule::createCUDARuntime() {
261    CUDARuntime.reset(CreateNVCUDARuntime(*this));
262  }
263  
264  void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
265    Replacements[Name] = C;
266  }
267  
268  void CodeGenModule::applyReplacements() {
269    for (auto &I : Replacements) {
270      StringRef MangledName = I.first();
271      llvm::Constant *Replacement = I.second;
272      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273      if (!Entry)
274        continue;
275      auto *OldF = cast<llvm::Function>(Entry);
276      auto *NewF = dyn_cast<llvm::Function>(Replacement);
277      if (!NewF) {
278        if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
279          NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
280        } else {
281          auto *CE = cast<llvm::ConstantExpr>(Replacement);
282          assert(CE->getOpcode() == llvm::Instruction::BitCast ||
283                 CE->getOpcode() == llvm::Instruction::GetElementPtr);
284          NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
285        }
286      }
287  
288      // Replace old with new, but keep the old order.
289      OldF->replaceAllUsesWith(Replacement);
290      if (NewF) {
291        NewF->removeFromParent();
292        OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
293                                                         NewF);
294      }
295      OldF->eraseFromParent();
296    }
297  }
298  
299  void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
300    GlobalValReplacements.push_back(std::make_pair(GV, C));
301  }
302  
303  void CodeGenModule::applyGlobalValReplacements() {
304    for (auto &I : GlobalValReplacements) {
305      llvm::GlobalValue *GV = I.first;
306      llvm::Constant *C = I.second;
307  
308      GV->replaceAllUsesWith(C);
309      GV->eraseFromParent();
310    }
311  }
312  
313  // This is only used in aliases that we created and we know they have a
314  // linear structure.
315  static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
316    const llvm::Constant *C;
317    if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
318      C = GA->getAliasee();
319    else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
320      C = GI->getResolver();
321    else
322      return GV;
323  
324    const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
325    if (!AliaseeGV)
326      return nullptr;
327  
328    const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
329    if (FinalGV == GV)
330      return nullptr;
331  
332    return FinalGV;
333  }
334  
335  static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
336                                 SourceLocation Location, bool IsIFunc,
337                                 const llvm::GlobalValue *Alias,
338                                 const llvm::GlobalValue *&GV) {
339    GV = getAliasedGlobal(Alias);
340    if (!GV) {
341      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
342      return false;
343    }
344  
345    if (GV->isDeclaration()) {
346      Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
347      return false;
348    }
349  
350    if (IsIFunc) {
351      // Check resolver function type.
352      const auto *F = dyn_cast<llvm::Function>(GV);
353      if (!F) {
354        Diags.Report(Location, diag::err_alias_to_undefined)
355            << IsIFunc << IsIFunc;
356        return false;
357      }
358  
359      llvm::FunctionType *FTy = F->getFunctionType();
360      if (!FTy->getReturnType()->isPointerTy()) {
361        Diags.Report(Location, diag::err_ifunc_resolver_return);
362        return false;
363      }
364    }
365  
366    return true;
367  }
368  
369  void CodeGenModule::checkAliases() {
370    // Check if the constructed aliases are well formed. It is really unfortunate
371    // that we have to do this in CodeGen, but we only construct mangled names
372    // and aliases during codegen.
373    bool Error = false;
374    DiagnosticsEngine &Diags = getDiags();
375    for (const GlobalDecl &GD : Aliases) {
376      const auto *D = cast<ValueDecl>(GD.getDecl());
377      SourceLocation Location;
378      bool IsIFunc = D->hasAttr<IFuncAttr>();
379      if (const Attr *A = D->getDefiningAttr())
380        Location = A->getLocation();
381      else
382        llvm_unreachable("Not an alias or ifunc?");
383  
384      StringRef MangledName = getMangledName(GD);
385      llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
386      const llvm::GlobalValue *GV = nullptr;
387      if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
388        Error = true;
389        continue;
390      }
391  
392      llvm::Constant *Aliasee =
393          IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
394                  : cast<llvm::GlobalAlias>(Alias)->getAliasee();
395  
396      llvm::GlobalValue *AliaseeGV;
397      if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
398        AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
399      else
400        AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
401  
402      if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
403        StringRef AliasSection = SA->getName();
404        if (AliasSection != AliaseeGV->getSection())
405          Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
406              << AliasSection << IsIFunc << IsIFunc;
407      }
408  
409      // We have to handle alias to weak aliases in here. LLVM itself disallows
410      // this since the object semantics would not match the IL one. For
411      // compatibility with gcc we implement it by just pointing the alias
412      // to its aliasee's aliasee. We also warn, since the user is probably
413      // expecting the link to be weak.
414      if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
415        if (GA->isInterposable()) {
416          Diags.Report(Location, diag::warn_alias_to_weak_alias)
417              << GV->getName() << GA->getName() << IsIFunc;
418          Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
419              GA->getAliasee(), Alias->getType());
420  
421          if (IsIFunc)
422            cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
423          else
424            cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
425        }
426      }
427    }
428    if (!Error)
429      return;
430  
431    for (const GlobalDecl &GD : Aliases) {
432      StringRef MangledName = getMangledName(GD);
433      llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
434      Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
435      Alias->eraseFromParent();
436    }
437  }
438  
439  void CodeGenModule::clear() {
440    DeferredDeclsToEmit.clear();
441    if (OpenMPRuntime)
442      OpenMPRuntime->clear();
443  }
444  
445  void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
446                                         StringRef MainFile) {
447    if (!hasDiagnostics())
448      return;
449    if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
450      if (MainFile.empty())
451        MainFile = "<stdin>";
452      Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
453    } else {
454      if (Mismatched > 0)
455        Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
456  
457      if (Missing > 0)
458        Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
459    }
460  }
461  
462  static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
463                                               llvm::Module &M) {
464    if (!LO.VisibilityFromDLLStorageClass)
465      return;
466  
467    llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
468        CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
469    llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
470        CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
471    llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
472        CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
473    llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
474        CodeGenModule::GetLLVMVisibility(
475            LO.getExternDeclNoDLLStorageClassVisibility());
476  
477    for (llvm::GlobalValue &GV : M.global_values()) {
478      if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
479        continue;
480  
481      // Reset DSO locality before setting the visibility. This removes
482      // any effects that visibility options and annotations may have
483      // had on the DSO locality. Setting the visibility will implicitly set
484      // appropriate globals to DSO Local; however, this will be pessimistic
485      // w.r.t. to the normal compiler IRGen.
486      GV.setDSOLocal(false);
487  
488      if (GV.isDeclarationForLinker()) {
489        GV.setVisibility(GV.getDLLStorageClass() ==
490                                 llvm::GlobalValue::DLLImportStorageClass
491                             ? ExternDeclDLLImportVisibility
492                             : ExternDeclNoDLLStorageClassVisibility);
493      } else {
494        GV.setVisibility(GV.getDLLStorageClass() ==
495                                 llvm::GlobalValue::DLLExportStorageClass
496                             ? DLLExportVisibility
497                             : NoDLLStorageClassVisibility);
498      }
499  
500      GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
501    }
502  }
503  
504  void CodeGenModule::Release() {
505    EmitDeferred();
506    EmitVTablesOpportunistically();
507    applyGlobalValReplacements();
508    applyReplacements();
509    checkAliases();
510    emitMultiVersionFunctions();
511    EmitCXXGlobalInitFunc();
512    EmitCXXGlobalCleanUpFunc();
513    registerGlobalDtorsWithAtExit();
514    EmitCXXThreadLocalInitFunc();
515    if (ObjCRuntime)
516      if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517        AddGlobalCtor(ObjCInitFunction);
518    if (Context.getLangOpts().CUDA && CUDARuntime) {
519      if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520        AddGlobalCtor(CudaCtorFunction);
521    }
522    if (OpenMPRuntime) {
523      if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524              OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525        AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526      }
527      OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528      OpenMPRuntime->clear();
529    }
530    if (PGOReader) {
531      getModule().setProfileSummary(
532          PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533          llvm::ProfileSummary::PSK_Instr);
534      if (PGOStats.hasDiagnostics())
535        PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536    }
537    EmitCtorList(GlobalCtors, "llvm.global_ctors");
538    EmitCtorList(GlobalDtors, "llvm.global_dtors");
539    EmitGlobalAnnotations();
540    EmitStaticExternCAliases();
541    EmitDeferredUnusedCoverageMappings();
542    CodeGenPGO(*this).setValueProfilingFlag(getModule());
543    if (CoverageMapping)
544      CoverageMapping->emit();
545    if (CodeGenOpts.SanitizeCfiCrossDso) {
546      CodeGenFunction(*this).EmitCfiCheckFail();
547      CodeGenFunction(*this).EmitCfiCheckStub();
548    }
549    emitAtAvailableLinkGuard();
550    if (Context.getTargetInfo().getTriple().isWasm() &&
551        !Context.getTargetInfo().getTriple().isOSEmscripten()) {
552      EmitMainVoidAlias();
553    }
554  
555    // Emit reference of __amdgpu_device_library_preserve_asan_functions to
556    // preserve ASAN functions in bitcode libraries.
557    if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
558      auto *FT = llvm::FunctionType::get(VoidTy, {});
559      auto *F = llvm::Function::Create(
560          FT, llvm::GlobalValue::ExternalLinkage,
561          "__amdgpu_device_library_preserve_asan_functions", &getModule());
562      auto *Var = new llvm::GlobalVariable(
563          getModule(), FT->getPointerTo(),
564          /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
565          "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
566          llvm::GlobalVariable::NotThreadLocal);
567      addCompilerUsedGlobal(Var);
568      if (!getModule().getModuleFlag("amdgpu_hostcall")) {
569        getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1);
570      }
571    }
572  
573    emitLLVMUsed();
574    if (SanStats)
575      SanStats->finish();
576  
577    if (CodeGenOpts.Autolink &&
578        (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
579      EmitModuleLinkOptions();
580    }
581  
582    // On ELF we pass the dependent library specifiers directly to the linker
583    // without manipulating them. This is in contrast to other platforms where
584    // they are mapped to a specific linker option by the compiler. This
585    // difference is a result of the greater variety of ELF linkers and the fact
586    // that ELF linkers tend to handle libraries in a more complicated fashion
587    // than on other platforms. This forces us to defer handling the dependent
588    // libs to the linker.
589    //
590    // CUDA/HIP device and host libraries are different. Currently there is no
591    // way to differentiate dependent libraries for host or device. Existing
592    // usage of #pragma comment(lib, *) is intended for host libraries on
593    // Windows. Therefore emit llvm.dependent-libraries only for host.
594    if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
595      auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
596      for (auto *MD : ELFDependentLibraries)
597        NMD->addOperand(MD);
598    }
599  
600    // Record mregparm value now so it is visible through rest of codegen.
601    if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
602      getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
603                                CodeGenOpts.NumRegisterParameters);
604  
605    if (CodeGenOpts.DwarfVersion) {
606      getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
607                                CodeGenOpts.DwarfVersion);
608    }
609  
610    if (CodeGenOpts.Dwarf64)
611      getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
612  
613    if (Context.getLangOpts().SemanticInterposition)
614      // Require various optimization to respect semantic interposition.
615      getModule().setSemanticInterposition(true);
616  
617    if (CodeGenOpts.EmitCodeView) {
618      // Indicate that we want CodeView in the metadata.
619      getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
620    }
621    if (CodeGenOpts.CodeViewGHash) {
622      getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
623    }
624    if (CodeGenOpts.ControlFlowGuard) {
625      // Function ID tables and checks for Control Flow Guard (cfguard=2).
626      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
627    } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
628      // Function ID tables for Control Flow Guard (cfguard=1).
629      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
630    }
631    if (CodeGenOpts.EHContGuard) {
632      // Function ID tables for EH Continuation Guard.
633      getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
634    }
635    if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
636      // We don't support LTO with 2 with different StrictVTablePointers
637      // FIXME: we could support it by stripping all the information introduced
638      // by StrictVTablePointers.
639  
640      getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
641  
642      llvm::Metadata *Ops[2] = {
643                llvm::MDString::get(VMContext, "StrictVTablePointers"),
644                llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
645                    llvm::Type::getInt32Ty(VMContext), 1))};
646  
647      getModule().addModuleFlag(llvm::Module::Require,
648                                "StrictVTablePointersRequirement",
649                                llvm::MDNode::get(VMContext, Ops));
650    }
651    if (getModuleDebugInfo())
652      // We support a single version in the linked module. The LLVM
653      // parser will drop debug info with a different version number
654      // (and warn about it, too).
655      getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
656                                llvm::DEBUG_METADATA_VERSION);
657  
658    // We need to record the widths of enums and wchar_t, so that we can generate
659    // the correct build attributes in the ARM backend. wchar_size is also used by
660    // TargetLibraryInfo.
661    uint64_t WCharWidth =
662        Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
663    getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
664  
665    llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
666    if (   Arch == llvm::Triple::arm
667        || Arch == llvm::Triple::armeb
668        || Arch == llvm::Triple::thumb
669        || Arch == llvm::Triple::thumbeb) {
670      // The minimum width of an enum in bytes
671      uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
672      getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
673    }
674  
675    if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
676      StringRef ABIStr = Target.getABI();
677      llvm::LLVMContext &Ctx = TheModule.getContext();
678      getModule().addModuleFlag(llvm::Module::Error, "target-abi",
679                                llvm::MDString::get(Ctx, ABIStr));
680    }
681  
682    if (CodeGenOpts.SanitizeCfiCrossDso) {
683      // Indicate that we want cross-DSO control flow integrity checks.
684      getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
685    }
686  
687    if (CodeGenOpts.WholeProgramVTables) {
688      // Indicate whether VFE was enabled for this module, so that the
689      // vcall_visibility metadata added under whole program vtables is handled
690      // appropriately in the optimizer.
691      getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
692                                CodeGenOpts.VirtualFunctionElimination);
693    }
694  
695    if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
696      getModule().addModuleFlag(llvm::Module::Override,
697                                "CFI Canonical Jump Tables",
698                                CodeGenOpts.SanitizeCfiCanonicalJumpTables);
699    }
700  
701    if (CodeGenOpts.CFProtectionReturn &&
702        Target.checkCFProtectionReturnSupported(getDiags())) {
703      // Indicate that we want to instrument return control flow protection.
704      getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
705                                1);
706    }
707  
708    if (CodeGenOpts.CFProtectionBranch &&
709        Target.checkCFProtectionBranchSupported(getDiags())) {
710      // Indicate that we want to instrument branch control flow protection.
711      getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
712                                1);
713    }
714  
715    if (CodeGenOpts.IBTSeal)
716      getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
717  
718    // Add module metadata for return address signing (ignoring
719    // non-leaf/all) and stack tagging. These are actually turned on by function
720    // attributes, but we use module metadata to emit build attributes. This is
721    // needed for LTO, where the function attributes are inside bitcode
722    // serialised into a global variable by the time build attributes are
723    // emitted, so we can't access them.
724    if (Context.getTargetInfo().hasFeature("ptrauth") &&
725        LangOpts.getSignReturnAddressScope() !=
726            LangOptions::SignReturnAddressScopeKind::None)
727      getModule().addModuleFlag(llvm::Module::Override,
728                                "sign-return-address-buildattr", 1);
729    if (LangOpts.Sanitize.has(SanitizerKind::MemTag))
730      getModule().addModuleFlag(llvm::Module::Override,
731                                "tag-stack-memory-buildattr", 1);
732  
733    if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
734        Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
735        Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
736        Arch == llvm::Triple::aarch64_be) {
737      getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement",
738                                LangOpts.BranchTargetEnforcement);
739  
740      getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
741                                LangOpts.hasSignReturnAddress());
742  
743      getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
744                                LangOpts.isSignReturnAddressScopeAll());
745  
746      getModule().addModuleFlag(llvm::Module::Error,
747                                "sign-return-address-with-bkey",
748                                !LangOpts.isSignReturnAddressWithAKey());
749    }
750  
751    if (!CodeGenOpts.MemoryProfileOutput.empty()) {
752      llvm::LLVMContext &Ctx = TheModule.getContext();
753      getModule().addModuleFlag(
754          llvm::Module::Error, "MemProfProfileFilename",
755          llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
756    }
757  
758    if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
759      // Indicate whether __nvvm_reflect should be configured to flush denormal
760      // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
761      // property.)
762      getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
763                                CodeGenOpts.FP32DenormalMode.Output !=
764                                    llvm::DenormalMode::IEEE);
765    }
766  
767    if (LangOpts.EHAsynch)
768      getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
769  
770    // Indicate whether this Module was compiled with -fopenmp
771    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
772      getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
773    if (getLangOpts().OpenMPIsDevice)
774      getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
775                                LangOpts.OpenMP);
776  
777    // Emit OpenCL specific module metadata: OpenCL/SPIR version.
778    if (LangOpts.OpenCL) {
779      EmitOpenCLMetadata();
780      // Emit SPIR version.
781      if (getTriple().isSPIR()) {
782        // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
783        // opencl.spir.version named metadata.
784        // C++ for OpenCL has a distinct mapping for version compatibility with
785        // OpenCL.
786        auto Version = LangOpts.getOpenCLCompatibleVersion();
787        llvm::Metadata *SPIRVerElts[] = {
788            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
789                Int32Ty, Version / 100)),
790            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
791                Int32Ty, (Version / 100 > 1) ? 0 : 2))};
792        llvm::NamedMDNode *SPIRVerMD =
793            TheModule.getOrInsertNamedMetadata("opencl.spir.version");
794        llvm::LLVMContext &Ctx = TheModule.getContext();
795        SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
796      }
797    }
798  
799    if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
800      assert(PLevel < 3 && "Invalid PIC Level");
801      getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
802      if (Context.getLangOpts().PIE)
803        getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
804    }
805  
806    if (getCodeGenOpts().CodeModel.size() > 0) {
807      unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
808                    .Case("tiny", llvm::CodeModel::Tiny)
809                    .Case("small", llvm::CodeModel::Small)
810                    .Case("kernel", llvm::CodeModel::Kernel)
811                    .Case("medium", llvm::CodeModel::Medium)
812                    .Case("large", llvm::CodeModel::Large)
813                    .Default(~0u);
814      if (CM != ~0u) {
815        llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
816        getModule().setCodeModel(codeModel);
817      }
818    }
819  
820    if (CodeGenOpts.NoPLT)
821      getModule().setRtLibUseGOT();
822    if (CodeGenOpts.UnwindTables)
823      getModule().setUwtable();
824  
825    switch (CodeGenOpts.getFramePointer()) {
826    case CodeGenOptions::FramePointerKind::None:
827      // 0 ("none") is the default.
828      break;
829    case CodeGenOptions::FramePointerKind::NonLeaf:
830      getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
831      break;
832    case CodeGenOptions::FramePointerKind::All:
833      getModule().setFramePointer(llvm::FramePointerKind::All);
834      break;
835    }
836  
837    SimplifyPersonality();
838  
839    if (getCodeGenOpts().EmitDeclMetadata)
840      EmitDeclMetadata();
841  
842    if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
843      EmitCoverageFile();
844  
845    if (CGDebugInfo *DI = getModuleDebugInfo())
846      DI->finalize();
847  
848    if (getCodeGenOpts().EmitVersionIdentMetadata)
849      EmitVersionIdentMetadata();
850  
851    if (!getCodeGenOpts().RecordCommandLine.empty())
852      EmitCommandLineMetadata();
853  
854    if (!getCodeGenOpts().StackProtectorGuard.empty())
855      getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
856    if (!getCodeGenOpts().StackProtectorGuardReg.empty())
857      getModule().setStackProtectorGuardReg(
858          getCodeGenOpts().StackProtectorGuardReg);
859    if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
860      getModule().setStackProtectorGuardOffset(
861          getCodeGenOpts().StackProtectorGuardOffset);
862    if (getCodeGenOpts().StackAlignment)
863      getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
864    if (getCodeGenOpts().SkipRaxSetup)
865      getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
866  
867    getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
868  
869    EmitBackendOptionsMetadata(getCodeGenOpts());
870  
871    // Set visibility from DLL storage class
872    // We do this at the end of LLVM IR generation; after any operation
873    // that might affect the DLL storage class or the visibility, and
874    // before anything that might act on these.
875    setVisibilityFromDLLStorageClass(LangOpts, getModule());
876  }
877  
878  void CodeGenModule::EmitOpenCLMetadata() {
879    // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
880    // opencl.ocl.version named metadata node.
881    // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
882    auto Version = LangOpts.getOpenCLCompatibleVersion();
883    llvm::Metadata *OCLVerElts[] = {
884        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
885            Int32Ty, Version / 100)),
886        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
887            Int32Ty, (Version % 100) / 10))};
888    llvm::NamedMDNode *OCLVerMD =
889        TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
890    llvm::LLVMContext &Ctx = TheModule.getContext();
891    OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
892  }
893  
894  void CodeGenModule::EmitBackendOptionsMetadata(
895      const CodeGenOptions CodeGenOpts) {
896    switch (getTriple().getArch()) {
897    default:
898      break;
899    case llvm::Triple::riscv32:
900    case llvm::Triple::riscv64:
901      getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
902                                CodeGenOpts.SmallDataLimit);
903      break;
904    }
905  }
906  
907  void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
908    // Make sure that this type is translated.
909    Types.UpdateCompletedType(TD);
910  }
911  
912  void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
913    // Make sure that this type is translated.
914    Types.RefreshTypeCacheForClass(RD);
915  }
916  
917  llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
918    if (!TBAA)
919      return nullptr;
920    return TBAA->getTypeInfo(QTy);
921  }
922  
923  TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
924    if (!TBAA)
925      return TBAAAccessInfo();
926    if (getLangOpts().CUDAIsDevice) {
927      // As CUDA builtin surface/texture types are replaced, skip generating TBAA
928      // access info.
929      if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
930        if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
931            nullptr)
932          return TBAAAccessInfo();
933      } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
934        if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
935            nullptr)
936          return TBAAAccessInfo();
937      }
938    }
939    return TBAA->getAccessInfo(AccessType);
940  }
941  
942  TBAAAccessInfo
943  CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
944    if (!TBAA)
945      return TBAAAccessInfo();
946    return TBAA->getVTablePtrAccessInfo(VTablePtrType);
947  }
948  
949  llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
950    if (!TBAA)
951      return nullptr;
952    return TBAA->getTBAAStructInfo(QTy);
953  }
954  
955  llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
956    if (!TBAA)
957      return nullptr;
958    return TBAA->getBaseTypeInfo(QTy);
959  }
960  
961  llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
962    if (!TBAA)
963      return nullptr;
964    return TBAA->getAccessTagInfo(Info);
965  }
966  
967  TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
968                                                     TBAAAccessInfo TargetInfo) {
969    if (!TBAA)
970      return TBAAAccessInfo();
971    return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
972  }
973  
974  TBAAAccessInfo
975  CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
976                                                     TBAAAccessInfo InfoB) {
977    if (!TBAA)
978      return TBAAAccessInfo();
979    return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
980  }
981  
982  TBAAAccessInfo
983  CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
984                                                TBAAAccessInfo SrcInfo) {
985    if (!TBAA)
986      return TBAAAccessInfo();
987    return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
988  }
989  
990  void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
991                                                  TBAAAccessInfo TBAAInfo) {
992    if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
993      Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
994  }
995  
996  void CodeGenModule::DecorateInstructionWithInvariantGroup(
997      llvm::Instruction *I, const CXXRecordDecl *RD) {
998    I->setMetadata(llvm::LLVMContext::MD_invariant_group,
999                   llvm::MDNode::get(getLLVMContext(), {}));
1000  }
1001  
1002  void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1003    unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1004    getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1005  }
1006  
1007  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1008  /// specified stmt yet.
1009  void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1010    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1011                                                 "cannot compile this %0 yet");
1012    std::string Msg = Type;
1013    getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1014        << Msg << S->getSourceRange();
1015  }
1016  
1017  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1018  /// specified decl yet.
1019  void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1020    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1021                                                 "cannot compile this %0 yet");
1022    std::string Msg = Type;
1023    getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1024  }
1025  
1026  llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1027    return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1028  }
1029  
1030  void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1031                                          const NamedDecl *D) const {
1032    if (GV->hasDLLImportStorageClass())
1033      return;
1034    // Internal definitions always have default visibility.
1035    if (GV->hasLocalLinkage()) {
1036      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1037      return;
1038    }
1039    if (!D)
1040      return;
1041    // Set visibility for definitions, and for declarations if requested globally
1042    // or set explicitly.
1043    LinkageInfo LV = D->getLinkageAndVisibility();
1044    if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1045        !GV->isDeclarationForLinker())
1046      GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1047  }
1048  
1049  static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1050                                   llvm::GlobalValue *GV) {
1051    if (GV->hasLocalLinkage())
1052      return true;
1053  
1054    if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1055      return true;
1056  
1057    // DLLImport explicitly marks the GV as external.
1058    if (GV->hasDLLImportStorageClass())
1059      return false;
1060  
1061    const llvm::Triple &TT = CGM.getTriple();
1062    if (TT.isWindowsGNUEnvironment()) {
1063      // In MinGW, variables without DLLImport can still be automatically
1064      // imported from a DLL by the linker; don't mark variables that
1065      // potentially could come from another DLL as DSO local.
1066  
1067      // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1068      // (and this actually happens in the public interface of libstdc++), so
1069      // such variables can't be marked as DSO local. (Native TLS variables
1070      // can't be dllimported at all, though.)
1071      if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1072          (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1073        return false;
1074    }
1075  
1076    // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1077    // remain unresolved in the link, they can be resolved to zero, which is
1078    // outside the current DSO.
1079    if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1080      return false;
1081  
1082    // Every other GV is local on COFF.
1083    // Make an exception for windows OS in the triple: Some firmware builds use
1084    // *-win32-macho triples. This (accidentally?) produced windows relocations
1085    // without GOT tables in older clang versions; Keep this behaviour.
1086    // FIXME: even thread local variables?
1087    if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1088      return true;
1089  
1090    // Only handle COFF and ELF for now.
1091    if (!TT.isOSBinFormatELF())
1092      return false;
1093  
1094    // If this is not an executable, don't assume anything is local.
1095    const auto &CGOpts = CGM.getCodeGenOpts();
1096    llvm::Reloc::Model RM = CGOpts.RelocationModel;
1097    const auto &LOpts = CGM.getLangOpts();
1098    if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1099      // On ELF, if -fno-semantic-interposition is specified and the target
1100      // supports local aliases, there will be neither CC1
1101      // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1102      // dso_local on the function if using a local alias is preferable (can avoid
1103      // PLT indirection).
1104      if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1105        return false;
1106      return !(CGM.getLangOpts().SemanticInterposition ||
1107               CGM.getLangOpts().HalfNoSemanticInterposition);
1108    }
1109  
1110    // A definition cannot be preempted from an executable.
1111    if (!GV->isDeclarationForLinker())
1112      return true;
1113  
1114    // Most PIC code sequences that assume that a symbol is local cannot produce a
1115    // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1116    // depended, it seems worth it to handle it here.
1117    if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1118      return false;
1119  
1120    // PowerPC64 prefers TOC indirection to avoid copy relocations.
1121    if (TT.isPPC64())
1122      return false;
1123  
1124    if (CGOpts.DirectAccessExternalData) {
1125      // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1126      // for non-thread-local variables. If the symbol is not defined in the
1127      // executable, a copy relocation will be needed at link time. dso_local is
1128      // excluded for thread-local variables because they generally don't support
1129      // copy relocations.
1130      if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1131        if (!Var->isThreadLocal())
1132          return true;
1133  
1134      // -fno-pic sets dso_local on a function declaration to allow direct
1135      // accesses when taking its address (similar to a data symbol). If the
1136      // function is not defined in the executable, a canonical PLT entry will be
1137      // needed at link time. -fno-direct-access-external-data can avoid the
1138      // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1139      // it could just cause trouble without providing perceptible benefits.
1140      if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1141        return true;
1142    }
1143  
1144    // If we can use copy relocations we can assume it is local.
1145  
1146    // Otherwise don't assume it is local.
1147    return false;
1148  }
1149  
1150  void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1151    GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1152  }
1153  
1154  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1155                                            GlobalDecl GD) const {
1156    const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1157    // C++ destructors have a few C++ ABI specific special cases.
1158    if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1159      getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1160      return;
1161    }
1162    setDLLImportDLLExport(GV, D);
1163  }
1164  
1165  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1166                                            const NamedDecl *D) const {
1167    if (D && D->isExternallyVisible()) {
1168      if (D->hasAttr<DLLImportAttr>())
1169        GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1170      else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1171        GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1172    }
1173  }
1174  
1175  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1176                                      GlobalDecl GD) const {
1177    setDLLImportDLLExport(GV, GD);
1178    setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1179  }
1180  
1181  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1182                                      const NamedDecl *D) const {
1183    setDLLImportDLLExport(GV, D);
1184    setGVPropertiesAux(GV, D);
1185  }
1186  
1187  void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1188                                         const NamedDecl *D) const {
1189    setGlobalVisibility(GV, D);
1190    setDSOLocal(GV);
1191    GV->setPartition(CodeGenOpts.SymbolPartition);
1192  }
1193  
1194  static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1195    return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1196        .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1197        .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1198        .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1199        .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1200  }
1201  
1202  llvm::GlobalVariable::ThreadLocalMode
1203  CodeGenModule::GetDefaultLLVMTLSModel() const {
1204    switch (CodeGenOpts.getDefaultTLSModel()) {
1205    case CodeGenOptions::GeneralDynamicTLSModel:
1206      return llvm::GlobalVariable::GeneralDynamicTLSModel;
1207    case CodeGenOptions::LocalDynamicTLSModel:
1208      return llvm::GlobalVariable::LocalDynamicTLSModel;
1209    case CodeGenOptions::InitialExecTLSModel:
1210      return llvm::GlobalVariable::InitialExecTLSModel;
1211    case CodeGenOptions::LocalExecTLSModel:
1212      return llvm::GlobalVariable::LocalExecTLSModel;
1213    }
1214    llvm_unreachable("Invalid TLS model!");
1215  }
1216  
1217  void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1218    assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1219  
1220    llvm::GlobalValue::ThreadLocalMode TLM;
1221    TLM = GetDefaultLLVMTLSModel();
1222  
1223    // Override the TLS model if it is explicitly specified.
1224    if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1225      TLM = GetLLVMTLSModel(Attr->getModel());
1226    }
1227  
1228    GV->setThreadLocalMode(TLM);
1229  }
1230  
1231  static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1232                                            StringRef Name) {
1233    const TargetInfo &Target = CGM.getTarget();
1234    return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1235  }
1236  
1237  static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1238                                                   const CPUSpecificAttr *Attr,
1239                                                   unsigned CPUIndex,
1240                                                   raw_ostream &Out) {
1241    // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1242    // supported.
1243    if (Attr)
1244      Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1245    else if (CGM.getTarget().supportsIFunc())
1246      Out << ".resolver";
1247  }
1248  
1249  static void AppendTargetMangling(const CodeGenModule &CGM,
1250                                   const TargetAttr *Attr, raw_ostream &Out) {
1251    if (Attr->isDefaultVersion())
1252      return;
1253  
1254    Out << '.';
1255    const TargetInfo &Target = CGM.getTarget();
1256    ParsedTargetAttr Info =
1257        Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1258          // Multiversioning doesn't allow "no-${feature}", so we can
1259          // only have "+" prefixes here.
1260          assert(LHS.startswith("+") && RHS.startswith("+") &&
1261                 "Features should always have a prefix.");
1262          return Target.multiVersionSortPriority(LHS.substr(1)) >
1263                 Target.multiVersionSortPriority(RHS.substr(1));
1264        });
1265  
1266    bool IsFirst = true;
1267  
1268    if (!Info.Architecture.empty()) {
1269      IsFirst = false;
1270      Out << "arch_" << Info.Architecture;
1271    }
1272  
1273    for (StringRef Feat : Info.Features) {
1274      if (!IsFirst)
1275        Out << '_';
1276      IsFirst = false;
1277      Out << Feat.substr(1);
1278    }
1279  }
1280  
1281  // Returns true if GD is a function decl with internal linkage and
1282  // needs a unique suffix after the mangled name.
1283  static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1284                                          CodeGenModule &CGM) {
1285    const Decl *D = GD.getDecl();
1286    return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1287           (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1288  }
1289  
1290  static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1291                                         const TargetClonesAttr *Attr,
1292                                         unsigned VersionIndex,
1293                                         raw_ostream &Out) {
1294    Out << '.';
1295    StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1296    if (FeatureStr.startswith("arch="))
1297      Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1298    else
1299      Out << FeatureStr;
1300  
1301    Out << '.' << Attr->getMangledIndex(VersionIndex);
1302  }
1303  
1304  static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1305                                        const NamedDecl *ND,
1306                                        bool OmitMultiVersionMangling = false) {
1307    SmallString<256> Buffer;
1308    llvm::raw_svector_ostream Out(Buffer);
1309    MangleContext &MC = CGM.getCXXABI().getMangleContext();
1310    if (!CGM.getModuleNameHash().empty())
1311      MC.needsUniqueInternalLinkageNames();
1312    bool ShouldMangle = MC.shouldMangleDeclName(ND);
1313    if (ShouldMangle)
1314      MC.mangleName(GD.getWithDecl(ND), Out);
1315    else {
1316      IdentifierInfo *II = ND->getIdentifier();
1317      assert(II && "Attempt to mangle unnamed decl.");
1318      const auto *FD = dyn_cast<FunctionDecl>(ND);
1319  
1320      if (FD &&
1321          FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1322        Out << "__regcall3__" << II->getName();
1323      } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1324                 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1325        Out << "__device_stub__" << II->getName();
1326      } else {
1327        Out << II->getName();
1328      }
1329    }
1330  
1331    // Check if the module name hash should be appended for internal linkage
1332    // symbols.   This should come before multi-version target suffixes are
1333    // appended. This is to keep the name and module hash suffix of the
1334    // internal linkage function together.  The unique suffix should only be
1335    // added when name mangling is done to make sure that the final name can
1336    // be properly demangled.  For example, for C functions without prototypes,
1337    // name mangling is not done and the unique suffix should not be appeneded
1338    // then.
1339    if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1340      assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1341             "Hash computed when not explicitly requested");
1342      Out << CGM.getModuleNameHash();
1343    }
1344  
1345    if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1346      if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1347        switch (FD->getMultiVersionKind()) {
1348        case MultiVersionKind::CPUDispatch:
1349        case MultiVersionKind::CPUSpecific:
1350          AppendCPUSpecificCPUDispatchMangling(CGM,
1351                                               FD->getAttr<CPUSpecificAttr>(),
1352                                               GD.getMultiVersionIndex(), Out);
1353          break;
1354        case MultiVersionKind::Target:
1355          AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1356          break;
1357        case MultiVersionKind::TargetClones:
1358          AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1359                                     GD.getMultiVersionIndex(), Out);
1360          break;
1361        case MultiVersionKind::None:
1362          llvm_unreachable("None multiversion type isn't valid here");
1363        }
1364      }
1365  
1366    // Make unique name for device side static file-scope variable for HIP.
1367    if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1368        CGM.getLangOpts().GPURelocatableDeviceCode &&
1369        CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1370      CGM.printPostfixForExternalizedDecl(Out, ND);
1371    return std::string(Out.str());
1372  }
1373  
1374  void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1375                                              const FunctionDecl *FD,
1376                                              StringRef &CurName) {
1377    if (!FD->isMultiVersion())
1378      return;
1379  
1380    // Get the name of what this would be without the 'target' attribute.  This
1381    // allows us to lookup the version that was emitted when this wasn't a
1382    // multiversion function.
1383    std::string NonTargetName =
1384        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1385    GlobalDecl OtherGD;
1386    if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1387      assert(OtherGD.getCanonicalDecl()
1388                 .getDecl()
1389                 ->getAsFunction()
1390                 ->isMultiVersion() &&
1391             "Other GD should now be a multiversioned function");
1392      // OtherFD is the version of this function that was mangled BEFORE
1393      // becoming a MultiVersion function.  It potentially needs to be updated.
1394      const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1395                                        .getDecl()
1396                                        ->getAsFunction()
1397                                        ->getMostRecentDecl();
1398      std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1399      // This is so that if the initial version was already the 'default'
1400      // version, we don't try to update it.
1401      if (OtherName != NonTargetName) {
1402        // Remove instead of erase, since others may have stored the StringRef
1403        // to this.
1404        const auto ExistingRecord = Manglings.find(NonTargetName);
1405        if (ExistingRecord != std::end(Manglings))
1406          Manglings.remove(&(*ExistingRecord));
1407        auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1408        StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1409            Result.first->first();
1410        // If this is the current decl is being created, make sure we update the name.
1411        if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1412          CurName = OtherNameRef;
1413        if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1414          Entry->setName(OtherName);
1415      }
1416    }
1417  }
1418  
1419  StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1420    GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1421  
1422    // Some ABIs don't have constructor variants.  Make sure that base and
1423    // complete constructors get mangled the same.
1424    if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1425      if (!getTarget().getCXXABI().hasConstructorVariants()) {
1426        CXXCtorType OrigCtorType = GD.getCtorType();
1427        assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1428        if (OrigCtorType == Ctor_Base)
1429          CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1430      }
1431    }
1432  
1433    // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1434    // static device variable depends on whether the variable is referenced by
1435    // a host or device host function. Therefore the mangled name cannot be
1436    // cached.
1437    if (!LangOpts.CUDAIsDevice ||
1438        !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1439      auto FoundName = MangledDeclNames.find(CanonicalGD);
1440      if (FoundName != MangledDeclNames.end())
1441        return FoundName->second;
1442    }
1443  
1444    // Keep the first result in the case of a mangling collision.
1445    const auto *ND = cast<NamedDecl>(GD.getDecl());
1446    std::string MangledName = getMangledNameImpl(*this, GD, ND);
1447  
1448    // Ensure either we have different ABIs between host and device compilations,
1449    // says host compilation following MSVC ABI but device compilation follows
1450    // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1451    // mangling should be the same after name stubbing. The later checking is
1452    // very important as the device kernel name being mangled in host-compilation
1453    // is used to resolve the device binaries to be executed. Inconsistent naming
1454    // result in undefined behavior. Even though we cannot check that naming
1455    // directly between host- and device-compilations, the host- and
1456    // device-mangling in host compilation could help catching certain ones.
1457    assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1458           getContext().shouldExternalizeStaticVar(ND) || getLangOpts().CUDAIsDevice ||
1459           (getContext().getAuxTargetInfo() &&
1460            (getContext().getAuxTargetInfo()->getCXXABI() !=
1461             getContext().getTargetInfo().getCXXABI())) ||
1462           getCUDARuntime().getDeviceSideName(ND) ==
1463               getMangledNameImpl(
1464                   *this,
1465                   GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1466                   ND));
1467  
1468    auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1469    return MangledDeclNames[CanonicalGD] = Result.first->first();
1470  }
1471  
1472  StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1473                                               const BlockDecl *BD) {
1474    MangleContext &MangleCtx = getCXXABI().getMangleContext();
1475    const Decl *D = GD.getDecl();
1476  
1477    SmallString<256> Buffer;
1478    llvm::raw_svector_ostream Out(Buffer);
1479    if (!D)
1480      MangleCtx.mangleGlobalBlock(BD,
1481        dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1482    else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1483      MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1484    else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1485      MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1486    else
1487      MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1488  
1489    auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1490    return Result.first->first();
1491  }
1492  
1493  llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1494    return getModule().getNamedValue(Name);
1495  }
1496  
1497  /// AddGlobalCtor - Add a function to the list that will be called before
1498  /// main() runs.
1499  void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1500                                    llvm::Constant *AssociatedData) {
1501    // FIXME: Type coercion of void()* types.
1502    GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1503  }
1504  
1505  /// AddGlobalDtor - Add a function to the list that will be called
1506  /// when the module is unloaded.
1507  void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1508                                    bool IsDtorAttrFunc) {
1509    if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1510        (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1511      DtorsUsingAtExit[Priority].push_back(Dtor);
1512      return;
1513    }
1514  
1515    // FIXME: Type coercion of void()* types.
1516    GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1517  }
1518  
1519  void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1520    if (Fns.empty()) return;
1521  
1522    // Ctor function type is void()*.
1523    llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1524    llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1525        TheModule.getDataLayout().getProgramAddressSpace());
1526  
1527    // Get the type of a ctor entry, { i32, void ()*, i8* }.
1528    llvm::StructType *CtorStructTy = llvm::StructType::get(
1529        Int32Ty, CtorPFTy, VoidPtrTy);
1530  
1531    // Construct the constructor and destructor arrays.
1532    ConstantInitBuilder builder(*this);
1533    auto ctors = builder.beginArray(CtorStructTy);
1534    for (const auto &I : Fns) {
1535      auto ctor = ctors.beginStruct(CtorStructTy);
1536      ctor.addInt(Int32Ty, I.Priority);
1537      ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1538      if (I.AssociatedData)
1539        ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1540      else
1541        ctor.addNullPointer(VoidPtrTy);
1542      ctor.finishAndAddTo(ctors);
1543    }
1544  
1545    auto list =
1546      ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1547                                  /*constant*/ false,
1548                                  llvm::GlobalValue::AppendingLinkage);
1549  
1550    // The LTO linker doesn't seem to like it when we set an alignment
1551    // on appending variables.  Take it off as a workaround.
1552    list->setAlignment(llvm::None);
1553  
1554    Fns.clear();
1555  }
1556  
1557  llvm::GlobalValue::LinkageTypes
1558  CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1559    const auto *D = cast<FunctionDecl>(GD.getDecl());
1560  
1561    GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1562  
1563    if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1564      return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1565  
1566    if (isa<CXXConstructorDecl>(D) &&
1567        cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1568        Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1569      // Our approach to inheriting constructors is fundamentally different from
1570      // that used by the MS ABI, so keep our inheriting constructor thunks
1571      // internal rather than trying to pick an unambiguous mangling for them.
1572      return llvm::GlobalValue::InternalLinkage;
1573    }
1574  
1575    return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1576  }
1577  
1578  llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1579    llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1580    if (!MDS) return nullptr;
1581  
1582    return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1583  }
1584  
1585  void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1586                                                const CGFunctionInfo &Info,
1587                                                llvm::Function *F, bool IsThunk) {
1588    unsigned CallingConv;
1589    llvm::AttributeList PAL;
1590    ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1591                           /*AttrOnCallSite=*/false, IsThunk);
1592    F->setAttributes(PAL);
1593    F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1594  }
1595  
1596  static void removeImageAccessQualifier(std::string& TyName) {
1597    std::string ReadOnlyQual("__read_only");
1598    std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1599    if (ReadOnlyPos != std::string::npos)
1600      // "+ 1" for the space after access qualifier.
1601      TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1602    else {
1603      std::string WriteOnlyQual("__write_only");
1604      std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1605      if (WriteOnlyPos != std::string::npos)
1606        TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1607      else {
1608        std::string ReadWriteQual("__read_write");
1609        std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1610        if (ReadWritePos != std::string::npos)
1611          TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1612      }
1613    }
1614  }
1615  
1616  // Returns the address space id that should be produced to the
1617  // kernel_arg_addr_space metadata. This is always fixed to the ids
1618  // as specified in the SPIR 2.0 specification in order to differentiate
1619  // for example in clGetKernelArgInfo() implementation between the address
1620  // spaces with targets without unique mapping to the OpenCL address spaces
1621  // (basically all single AS CPUs).
1622  static unsigned ArgInfoAddressSpace(LangAS AS) {
1623    switch (AS) {
1624    case LangAS::opencl_global:
1625      return 1;
1626    case LangAS::opencl_constant:
1627      return 2;
1628    case LangAS::opencl_local:
1629      return 3;
1630    case LangAS::opencl_generic:
1631      return 4; // Not in SPIR 2.0 specs.
1632    case LangAS::opencl_global_device:
1633      return 5;
1634    case LangAS::opencl_global_host:
1635      return 6;
1636    default:
1637      return 0; // Assume private.
1638    }
1639  }
1640  
1641  void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1642                                           const FunctionDecl *FD,
1643                                           CodeGenFunction *CGF) {
1644    assert(((FD && CGF) || (!FD && !CGF)) &&
1645           "Incorrect use - FD and CGF should either be both null or not!");
1646    // Create MDNodes that represent the kernel arg metadata.
1647    // Each MDNode is a list in the form of "key", N number of values which is
1648    // the same number of values as their are kernel arguments.
1649  
1650    const PrintingPolicy &Policy = Context.getPrintingPolicy();
1651  
1652    // MDNode for the kernel argument address space qualifiers.
1653    SmallVector<llvm::Metadata *, 8> addressQuals;
1654  
1655    // MDNode for the kernel argument access qualifiers (images only).
1656    SmallVector<llvm::Metadata *, 8> accessQuals;
1657  
1658    // MDNode for the kernel argument type names.
1659    SmallVector<llvm::Metadata *, 8> argTypeNames;
1660  
1661    // MDNode for the kernel argument base type names.
1662    SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1663  
1664    // MDNode for the kernel argument type qualifiers.
1665    SmallVector<llvm::Metadata *, 8> argTypeQuals;
1666  
1667    // MDNode for the kernel argument names.
1668    SmallVector<llvm::Metadata *, 8> argNames;
1669  
1670    if (FD && CGF)
1671      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1672        const ParmVarDecl *parm = FD->getParamDecl(i);
1673        QualType ty = parm->getType();
1674        std::string typeQuals;
1675  
1676        // Get image and pipe access qualifier:
1677        if (ty->isImageType() || ty->isPipeType()) {
1678          const Decl *PDecl = parm;
1679          if (auto *TD = dyn_cast<TypedefType>(ty))
1680            PDecl = TD->getDecl();
1681          const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1682          if (A && A->isWriteOnly())
1683            accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1684          else if (A && A->isReadWrite())
1685            accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1686          else
1687            accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1688        } else
1689          accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1690  
1691        // Get argument name.
1692        argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1693  
1694        auto getTypeSpelling = [&](QualType Ty) {
1695          auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1696  
1697          if (Ty.isCanonical()) {
1698            StringRef typeNameRef = typeName;
1699            // Turn "unsigned type" to "utype"
1700            if (typeNameRef.consume_front("unsigned "))
1701              return std::string("u") + typeNameRef.str();
1702            if (typeNameRef.consume_front("signed "))
1703              return typeNameRef.str();
1704          }
1705  
1706          return typeName;
1707        };
1708  
1709        if (ty->isPointerType()) {
1710          QualType pointeeTy = ty->getPointeeType();
1711  
1712          // Get address qualifier.
1713          addressQuals.push_back(
1714              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1715                  ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1716  
1717          // Get argument type name.
1718          std::string typeName = getTypeSpelling(pointeeTy) + "*";
1719          std::string baseTypeName =
1720              getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1721          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1722          argBaseTypeNames.push_back(
1723              llvm::MDString::get(VMContext, baseTypeName));
1724  
1725          // Get argument type qualifiers:
1726          if (ty.isRestrictQualified())
1727            typeQuals = "restrict";
1728          if (pointeeTy.isConstQualified() ||
1729              (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1730            typeQuals += typeQuals.empty() ? "const" : " const";
1731          if (pointeeTy.isVolatileQualified())
1732            typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1733        } else {
1734          uint32_t AddrSpc = 0;
1735          bool isPipe = ty->isPipeType();
1736          if (ty->isImageType() || isPipe)
1737            AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1738  
1739          addressQuals.push_back(
1740              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1741  
1742          // Get argument type name.
1743          ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1744          std::string typeName = getTypeSpelling(ty);
1745          std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1746  
1747          // Remove access qualifiers on images
1748          // (as they are inseparable from type in clang implementation,
1749          // but OpenCL spec provides a special query to get access qualifier
1750          // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1751          if (ty->isImageType()) {
1752            removeImageAccessQualifier(typeName);
1753            removeImageAccessQualifier(baseTypeName);
1754          }
1755  
1756          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1757          argBaseTypeNames.push_back(
1758              llvm::MDString::get(VMContext, baseTypeName));
1759  
1760          if (isPipe)
1761            typeQuals = "pipe";
1762        }
1763        argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1764      }
1765  
1766    Fn->setMetadata("kernel_arg_addr_space",
1767                    llvm::MDNode::get(VMContext, addressQuals));
1768    Fn->setMetadata("kernel_arg_access_qual",
1769                    llvm::MDNode::get(VMContext, accessQuals));
1770    Fn->setMetadata("kernel_arg_type",
1771                    llvm::MDNode::get(VMContext, argTypeNames));
1772    Fn->setMetadata("kernel_arg_base_type",
1773                    llvm::MDNode::get(VMContext, argBaseTypeNames));
1774    Fn->setMetadata("kernel_arg_type_qual",
1775                    llvm::MDNode::get(VMContext, argTypeQuals));
1776    if (getCodeGenOpts().EmitOpenCLArgMetadata)
1777      Fn->setMetadata("kernel_arg_name",
1778                      llvm::MDNode::get(VMContext, argNames));
1779  }
1780  
1781  /// Determines whether the language options require us to model
1782  /// unwind exceptions.  We treat -fexceptions as mandating this
1783  /// except under the fragile ObjC ABI with only ObjC exceptions
1784  /// enabled.  This means, for example, that C with -fexceptions
1785  /// enables this.
1786  static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1787    // If exceptions are completely disabled, obviously this is false.
1788    if (!LangOpts.Exceptions) return false;
1789  
1790    // If C++ exceptions are enabled, this is true.
1791    if (LangOpts.CXXExceptions) return true;
1792  
1793    // If ObjC exceptions are enabled, this depends on the ABI.
1794    if (LangOpts.ObjCExceptions) {
1795      return LangOpts.ObjCRuntime.hasUnwindExceptions();
1796    }
1797  
1798    return true;
1799  }
1800  
1801  static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1802                                                        const CXXMethodDecl *MD) {
1803    // Check that the type metadata can ever actually be used by a call.
1804    if (!CGM.getCodeGenOpts().LTOUnit ||
1805        !CGM.HasHiddenLTOVisibility(MD->getParent()))
1806      return false;
1807  
1808    // Only functions whose address can be taken with a member function pointer
1809    // need this sort of type metadata.
1810    return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1811           !isa<CXXDestructorDecl>(MD);
1812  }
1813  
1814  std::vector<const CXXRecordDecl *>
1815  CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1816    llvm::SetVector<const CXXRecordDecl *> MostBases;
1817  
1818    std::function<void (const CXXRecordDecl *)> CollectMostBases;
1819    CollectMostBases = [&](const CXXRecordDecl *RD) {
1820      if (RD->getNumBases() == 0)
1821        MostBases.insert(RD);
1822      for (const CXXBaseSpecifier &B : RD->bases())
1823        CollectMostBases(B.getType()->getAsCXXRecordDecl());
1824    };
1825    CollectMostBases(RD);
1826    return MostBases.takeVector();
1827  }
1828  
1829  void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1830                                                             llvm::Function *F) {
1831    llvm::AttrBuilder B(F->getContext());
1832  
1833    if (CodeGenOpts.UnwindTables)
1834      B.addAttribute(llvm::Attribute::UWTable);
1835  
1836    if (CodeGenOpts.StackClashProtector)
1837      B.addAttribute("probe-stack", "inline-asm");
1838  
1839    if (!hasUnwindExceptions(LangOpts))
1840      B.addAttribute(llvm::Attribute::NoUnwind);
1841  
1842    if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1843      if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1844        B.addAttribute(llvm::Attribute::StackProtect);
1845      else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1846        B.addAttribute(llvm::Attribute::StackProtectStrong);
1847      else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1848        B.addAttribute(llvm::Attribute::StackProtectReq);
1849    }
1850  
1851    if (!D) {
1852      // If we don't have a declaration to control inlining, the function isn't
1853      // explicitly marked as alwaysinline for semantic reasons, and inlining is
1854      // disabled, mark the function as noinline.
1855      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1856          CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1857        B.addAttribute(llvm::Attribute::NoInline);
1858  
1859      F->addFnAttrs(B);
1860      return;
1861    }
1862  
1863    // Track whether we need to add the optnone LLVM attribute,
1864    // starting with the default for this optimization level.
1865    bool ShouldAddOptNone =
1866        !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1867    // We can't add optnone in the following cases, it won't pass the verifier.
1868    ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1869    ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1870  
1871    // Add optnone, but do so only if the function isn't always_inline.
1872    if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1873        !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1874      B.addAttribute(llvm::Attribute::OptimizeNone);
1875  
1876      // OptimizeNone implies noinline; we should not be inlining such functions.
1877      B.addAttribute(llvm::Attribute::NoInline);
1878  
1879      // We still need to handle naked functions even though optnone subsumes
1880      // much of their semantics.
1881      if (D->hasAttr<NakedAttr>())
1882        B.addAttribute(llvm::Attribute::Naked);
1883  
1884      // OptimizeNone wins over OptimizeForSize and MinSize.
1885      F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1886      F->removeFnAttr(llvm::Attribute::MinSize);
1887    } else if (D->hasAttr<NakedAttr>()) {
1888      // Naked implies noinline: we should not be inlining such functions.
1889      B.addAttribute(llvm::Attribute::Naked);
1890      B.addAttribute(llvm::Attribute::NoInline);
1891    } else if (D->hasAttr<NoDuplicateAttr>()) {
1892      B.addAttribute(llvm::Attribute::NoDuplicate);
1893    } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1894      // Add noinline if the function isn't always_inline.
1895      B.addAttribute(llvm::Attribute::NoInline);
1896    } else if (D->hasAttr<AlwaysInlineAttr>() &&
1897               !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1898      // (noinline wins over always_inline, and we can't specify both in IR)
1899      B.addAttribute(llvm::Attribute::AlwaysInline);
1900    } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1901      // If we're not inlining, then force everything that isn't always_inline to
1902      // carry an explicit noinline attribute.
1903      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1904        B.addAttribute(llvm::Attribute::NoInline);
1905    } else {
1906      // Otherwise, propagate the inline hint attribute and potentially use its
1907      // absence to mark things as noinline.
1908      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1909        // Search function and template pattern redeclarations for inline.
1910        auto CheckForInline = [](const FunctionDecl *FD) {
1911          auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1912            return Redecl->isInlineSpecified();
1913          };
1914          if (any_of(FD->redecls(), CheckRedeclForInline))
1915            return true;
1916          const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1917          if (!Pattern)
1918            return false;
1919          return any_of(Pattern->redecls(), CheckRedeclForInline);
1920        };
1921        if (CheckForInline(FD)) {
1922          B.addAttribute(llvm::Attribute::InlineHint);
1923        } else if (CodeGenOpts.getInlining() ==
1924                       CodeGenOptions::OnlyHintInlining &&
1925                   !FD->isInlined() &&
1926                   !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1927          B.addAttribute(llvm::Attribute::NoInline);
1928        }
1929      }
1930    }
1931  
1932    // Add other optimization related attributes if we are optimizing this
1933    // function.
1934    if (!D->hasAttr<OptimizeNoneAttr>()) {
1935      if (D->hasAttr<ColdAttr>()) {
1936        if (!ShouldAddOptNone)
1937          B.addAttribute(llvm::Attribute::OptimizeForSize);
1938        B.addAttribute(llvm::Attribute::Cold);
1939      }
1940      if (D->hasAttr<HotAttr>())
1941        B.addAttribute(llvm::Attribute::Hot);
1942      if (D->hasAttr<MinSizeAttr>())
1943        B.addAttribute(llvm::Attribute::MinSize);
1944    }
1945  
1946    F->addFnAttrs(B);
1947  
1948    unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1949    if (alignment)
1950      F->setAlignment(llvm::Align(alignment));
1951  
1952    if (!D->hasAttr<AlignedAttr>())
1953      if (LangOpts.FunctionAlignment)
1954        F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1955  
1956    // Some C++ ABIs require 2-byte alignment for member functions, in order to
1957    // reserve a bit for differentiating between virtual and non-virtual member
1958    // functions. If the current target's C++ ABI requires this and this is a
1959    // member function, set its alignment accordingly.
1960    if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1961      if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1962        F->setAlignment(llvm::Align(2));
1963    }
1964  
1965    // In the cross-dso CFI mode with canonical jump tables, we want !type
1966    // attributes on definitions only.
1967    if (CodeGenOpts.SanitizeCfiCrossDso &&
1968        CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1969      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1970        // Skip available_externally functions. They won't be codegen'ed in the
1971        // current module anyway.
1972        if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1973          CreateFunctionTypeMetadataForIcall(FD, F);
1974      }
1975    }
1976  
1977    // Emit type metadata on member functions for member function pointer checks.
1978    // These are only ever necessary on definitions; we're guaranteed that the
1979    // definition will be present in the LTO unit as a result of LTO visibility.
1980    auto *MD = dyn_cast<CXXMethodDecl>(D);
1981    if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1982      for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1983        llvm::Metadata *Id =
1984            CreateMetadataIdentifierForType(Context.getMemberPointerType(
1985                MD->getType(), Context.getRecordType(Base).getTypePtr()));
1986        F->addTypeMetadata(0, Id);
1987      }
1988    }
1989  }
1990  
1991  void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1992                                                    llvm::Function *F) {
1993    if (D->hasAttr<StrictFPAttr>()) {
1994      llvm::AttrBuilder FuncAttrs(F->getContext());
1995      FuncAttrs.addAttribute("strictfp");
1996      F->addFnAttrs(FuncAttrs);
1997    }
1998  }
1999  
2000  void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2001    const Decl *D = GD.getDecl();
2002    if (isa_and_nonnull<NamedDecl>(D))
2003      setGVProperties(GV, GD);
2004    else
2005      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2006  
2007    if (D && D->hasAttr<UsedAttr>())
2008      addUsedOrCompilerUsedGlobal(GV);
2009  
2010    if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2011      const auto *VD = cast<VarDecl>(D);
2012      if (VD->getType().isConstQualified() &&
2013          VD->getStorageDuration() == SD_Static)
2014        addUsedOrCompilerUsedGlobal(GV);
2015    }
2016  }
2017  
2018  bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2019                                                  llvm::AttrBuilder &Attrs) {
2020    // Add target-cpu and target-features attributes to functions. If
2021    // we have a decl for the function and it has a target attribute then
2022    // parse that and add it to the feature set.
2023    StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2024    StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2025    std::vector<std::string> Features;
2026    const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2027    FD = FD ? FD->getMostRecentDecl() : FD;
2028    const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2029    const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2030    const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2031    bool AddedAttr = false;
2032    if (TD || SD || TC) {
2033      llvm::StringMap<bool> FeatureMap;
2034      getContext().getFunctionFeatureMap(FeatureMap, GD);
2035  
2036      // Produce the canonical string for this set of features.
2037      for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2038        Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2039  
2040      // Now add the target-cpu and target-features to the function.
2041      // While we populated the feature map above, we still need to
2042      // get and parse the target attribute so we can get the cpu for
2043      // the function.
2044      if (TD) {
2045        ParsedTargetAttr ParsedAttr = TD->parse();
2046        if (!ParsedAttr.Architecture.empty() &&
2047            getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2048          TargetCPU = ParsedAttr.Architecture;
2049          TuneCPU = ""; // Clear the tune CPU.
2050        }
2051        if (!ParsedAttr.Tune.empty() &&
2052            getTarget().isValidCPUName(ParsedAttr.Tune))
2053          TuneCPU = ParsedAttr.Tune;
2054      }
2055    } else {
2056      // Otherwise just add the existing target cpu and target features to the
2057      // function.
2058      Features = getTarget().getTargetOpts().Features;
2059    }
2060  
2061    if (!TargetCPU.empty()) {
2062      Attrs.addAttribute("target-cpu", TargetCPU);
2063      AddedAttr = true;
2064    }
2065    if (!TuneCPU.empty()) {
2066      Attrs.addAttribute("tune-cpu", TuneCPU);
2067      AddedAttr = true;
2068    }
2069    if (!Features.empty()) {
2070      llvm::sort(Features);
2071      Attrs.addAttribute("target-features", llvm::join(Features, ","));
2072      AddedAttr = true;
2073    }
2074  
2075    return AddedAttr;
2076  }
2077  
2078  void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2079                                            llvm::GlobalObject *GO) {
2080    const Decl *D = GD.getDecl();
2081    SetCommonAttributes(GD, GO);
2082  
2083    if (D) {
2084      if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2085        if (D->hasAttr<RetainAttr>())
2086          addUsedGlobal(GV);
2087        if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2088          GV->addAttribute("bss-section", SA->getName());
2089        if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2090          GV->addAttribute("data-section", SA->getName());
2091        if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2092          GV->addAttribute("rodata-section", SA->getName());
2093        if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2094          GV->addAttribute("relro-section", SA->getName());
2095      }
2096  
2097      if (auto *F = dyn_cast<llvm::Function>(GO)) {
2098        if (D->hasAttr<RetainAttr>())
2099          addUsedGlobal(F);
2100        if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2101          if (!D->getAttr<SectionAttr>())
2102            F->addFnAttr("implicit-section-name", SA->getName());
2103  
2104        llvm::AttrBuilder Attrs(F->getContext());
2105        if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2106          // We know that GetCPUAndFeaturesAttributes will always have the
2107          // newest set, since it has the newest possible FunctionDecl, so the
2108          // new ones should replace the old.
2109          llvm::AttributeMask RemoveAttrs;
2110          RemoveAttrs.addAttribute("target-cpu");
2111          RemoveAttrs.addAttribute("target-features");
2112          RemoveAttrs.addAttribute("tune-cpu");
2113          F->removeFnAttrs(RemoveAttrs);
2114          F->addFnAttrs(Attrs);
2115        }
2116      }
2117  
2118      if (const auto *CSA = D->getAttr<CodeSegAttr>())
2119        GO->setSection(CSA->getName());
2120      else if (const auto *SA = D->getAttr<SectionAttr>())
2121        GO->setSection(SA->getName());
2122    }
2123  
2124    getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2125  }
2126  
2127  void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2128                                                    llvm::Function *F,
2129                                                    const CGFunctionInfo &FI) {
2130    const Decl *D = GD.getDecl();
2131    SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2132    SetLLVMFunctionAttributesForDefinition(D, F);
2133  
2134    F->setLinkage(llvm::Function::InternalLinkage);
2135  
2136    setNonAliasAttributes(GD, F);
2137  }
2138  
2139  static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2140    // Set linkage and visibility in case we never see a definition.
2141    LinkageInfo LV = ND->getLinkageAndVisibility();
2142    // Don't set internal linkage on declarations.
2143    // "extern_weak" is overloaded in LLVM; we probably should have
2144    // separate linkage types for this.
2145    if (isExternallyVisible(LV.getLinkage()) &&
2146        (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2147      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2148  }
2149  
2150  void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2151                                                         llvm::Function *F) {
2152    // Only if we are checking indirect calls.
2153    if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2154      return;
2155  
2156    // Non-static class methods are handled via vtable or member function pointer
2157    // checks elsewhere.
2158    if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2159      return;
2160  
2161    llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2162    F->addTypeMetadata(0, MD);
2163    F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2164  
2165    // Emit a hash-based bit set entry for cross-DSO calls.
2166    if (CodeGenOpts.SanitizeCfiCrossDso)
2167      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2168        F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2169  }
2170  
2171  void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2172                                            bool IsIncompleteFunction,
2173                                            bool IsThunk) {
2174  
2175    if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2176      // If this is an intrinsic function, set the function's attributes
2177      // to the intrinsic's attributes.
2178      F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2179      return;
2180    }
2181  
2182    const auto *FD = cast<FunctionDecl>(GD.getDecl());
2183  
2184    if (!IsIncompleteFunction)
2185      SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2186                                IsThunk);
2187  
2188    // Add the Returned attribute for "this", except for iOS 5 and earlier
2189    // where substantial code, including the libstdc++ dylib, was compiled with
2190    // GCC and does not actually return "this".
2191    if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2192        !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2193      assert(!F->arg_empty() &&
2194             F->arg_begin()->getType()
2195               ->canLosslesslyBitCastTo(F->getReturnType()) &&
2196             "unexpected this return");
2197      F->addParamAttr(0, llvm::Attribute::Returned);
2198    }
2199  
2200    // Only a few attributes are set on declarations; these may later be
2201    // overridden by a definition.
2202  
2203    setLinkageForGV(F, FD);
2204    setGVProperties(F, FD);
2205  
2206    // Setup target-specific attributes.
2207    if (!IsIncompleteFunction && F->isDeclaration())
2208      getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2209  
2210    if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2211      F->setSection(CSA->getName());
2212    else if (const auto *SA = FD->getAttr<SectionAttr>())
2213       F->setSection(SA->getName());
2214  
2215    if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2216      if (EA->isError())
2217        F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2218      else if (EA->isWarning())
2219        F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2220    }
2221  
2222    // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2223    if (FD->isInlineBuiltinDeclaration()) {
2224      const FunctionDecl *FDBody;
2225      bool HasBody = FD->hasBody(FDBody);
2226      (void)HasBody;
2227      assert(HasBody && "Inline builtin declarations should always have an "
2228                        "available body!");
2229      if (shouldEmitFunction(FDBody))
2230        F->addFnAttr(llvm::Attribute::NoBuiltin);
2231    }
2232  
2233    if (FD->isReplaceableGlobalAllocationFunction()) {
2234      // A replaceable global allocation function does not act like a builtin by
2235      // default, only if it is invoked by a new-expression or delete-expression.
2236      F->addFnAttr(llvm::Attribute::NoBuiltin);
2237    }
2238  
2239    if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2240      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2241    else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2242      if (MD->isVirtual())
2243        F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2244  
2245    // Don't emit entries for function declarations in the cross-DSO mode. This
2246    // is handled with better precision by the receiving DSO. But if jump tables
2247    // are non-canonical then we need type metadata in order to produce the local
2248    // jump table.
2249    if (!CodeGenOpts.SanitizeCfiCrossDso ||
2250        !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2251      CreateFunctionTypeMetadataForIcall(FD, F);
2252  
2253    if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2254      getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2255  
2256    if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2257      // Annotate the callback behavior as metadata:
2258      //  - The callback callee (as argument number).
2259      //  - The callback payloads (as argument numbers).
2260      llvm::LLVMContext &Ctx = F->getContext();
2261      llvm::MDBuilder MDB(Ctx);
2262  
2263      // The payload indices are all but the first one in the encoding. The first
2264      // identifies the callback callee.
2265      int CalleeIdx = *CB->encoding_begin();
2266      ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2267      F->addMetadata(llvm::LLVMContext::MD_callback,
2268                     *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2269                                                 CalleeIdx, PayloadIndices,
2270                                                 /* VarArgsArePassed */ false)}));
2271    }
2272  }
2273  
2274  void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2275    assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2276           "Only globals with definition can force usage.");
2277    LLVMUsed.emplace_back(GV);
2278  }
2279  
2280  void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2281    assert(!GV->isDeclaration() &&
2282           "Only globals with definition can force usage.");
2283    LLVMCompilerUsed.emplace_back(GV);
2284  }
2285  
2286  void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2287    assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2288           "Only globals with definition can force usage.");
2289    if (getTriple().isOSBinFormatELF())
2290      LLVMCompilerUsed.emplace_back(GV);
2291    else
2292      LLVMUsed.emplace_back(GV);
2293  }
2294  
2295  static void emitUsed(CodeGenModule &CGM, StringRef Name,
2296                       std::vector<llvm::WeakTrackingVH> &List) {
2297    // Don't create llvm.used if there is no need.
2298    if (List.empty())
2299      return;
2300  
2301    // Convert List to what ConstantArray needs.
2302    SmallVector<llvm::Constant*, 8> UsedArray;
2303    UsedArray.resize(List.size());
2304    for (unsigned i = 0, e = List.size(); i != e; ++i) {
2305      UsedArray[i] =
2306          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2307              cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2308    }
2309  
2310    if (UsedArray.empty())
2311      return;
2312    llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2313  
2314    auto *GV = new llvm::GlobalVariable(
2315        CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2316        llvm::ConstantArray::get(ATy, UsedArray), Name);
2317  
2318    GV->setSection("llvm.metadata");
2319  }
2320  
2321  void CodeGenModule::emitLLVMUsed() {
2322    emitUsed(*this, "llvm.used", LLVMUsed);
2323    emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2324  }
2325  
2326  void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2327    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2328    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2329  }
2330  
2331  void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2332    llvm::SmallString<32> Opt;
2333    getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2334    if (Opt.empty())
2335      return;
2336    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2337    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2338  }
2339  
2340  void CodeGenModule::AddDependentLib(StringRef Lib) {
2341    auto &C = getLLVMContext();
2342    if (getTarget().getTriple().isOSBinFormatELF()) {
2343        ELFDependentLibraries.push_back(
2344          llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2345      return;
2346    }
2347  
2348    llvm::SmallString<24> Opt;
2349    getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2350    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2351    LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2352  }
2353  
2354  /// Add link options implied by the given module, including modules
2355  /// it depends on, using a postorder walk.
2356  static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2357                                      SmallVectorImpl<llvm::MDNode *> &Metadata,
2358                                      llvm::SmallPtrSet<Module *, 16> &Visited) {
2359    // Import this module's parent.
2360    if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2361      addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2362    }
2363  
2364    // Import this module's dependencies.
2365    for (Module *Import : llvm::reverse(Mod->Imports)) {
2366      if (Visited.insert(Import).second)
2367        addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2368    }
2369  
2370    // Add linker options to link against the libraries/frameworks
2371    // described by this module.
2372    llvm::LLVMContext &Context = CGM.getLLVMContext();
2373    bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2374  
2375    // For modules that use export_as for linking, use that module
2376    // name instead.
2377    if (Mod->UseExportAsModuleLinkName)
2378      return;
2379  
2380    for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2381      // Link against a framework.  Frameworks are currently Darwin only, so we
2382      // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2383      if (LL.IsFramework) {
2384        llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2385                                   llvm::MDString::get(Context, LL.Library)};
2386  
2387        Metadata.push_back(llvm::MDNode::get(Context, Args));
2388        continue;
2389      }
2390  
2391      // Link against a library.
2392      if (IsELF) {
2393        llvm::Metadata *Args[2] = {
2394            llvm::MDString::get(Context, "lib"),
2395            llvm::MDString::get(Context, LL.Library),
2396        };
2397        Metadata.push_back(llvm::MDNode::get(Context, Args));
2398      } else {
2399        llvm::SmallString<24> Opt;
2400        CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2401        auto *OptString = llvm::MDString::get(Context, Opt);
2402        Metadata.push_back(llvm::MDNode::get(Context, OptString));
2403      }
2404    }
2405  }
2406  
2407  void CodeGenModule::EmitModuleLinkOptions() {
2408    // Collect the set of all of the modules we want to visit to emit link
2409    // options, which is essentially the imported modules and all of their
2410    // non-explicit child modules.
2411    llvm::SetVector<clang::Module *> LinkModules;
2412    llvm::SmallPtrSet<clang::Module *, 16> Visited;
2413    SmallVector<clang::Module *, 16> Stack;
2414  
2415    // Seed the stack with imported modules.
2416    for (Module *M : ImportedModules) {
2417      // Do not add any link flags when an implementation TU of a module imports
2418      // a header of that same module.
2419      if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2420          !getLangOpts().isCompilingModule())
2421        continue;
2422      if (Visited.insert(M).second)
2423        Stack.push_back(M);
2424    }
2425  
2426    // Find all of the modules to import, making a little effort to prune
2427    // non-leaf modules.
2428    while (!Stack.empty()) {
2429      clang::Module *Mod = Stack.pop_back_val();
2430  
2431      bool AnyChildren = false;
2432  
2433      // Visit the submodules of this module.
2434      for (const auto &SM : Mod->submodules()) {
2435        // Skip explicit children; they need to be explicitly imported to be
2436        // linked against.
2437        if (SM->IsExplicit)
2438          continue;
2439  
2440        if (Visited.insert(SM).second) {
2441          Stack.push_back(SM);
2442          AnyChildren = true;
2443        }
2444      }
2445  
2446      // We didn't find any children, so add this module to the list of
2447      // modules to link against.
2448      if (!AnyChildren) {
2449        LinkModules.insert(Mod);
2450      }
2451    }
2452  
2453    // Add link options for all of the imported modules in reverse topological
2454    // order.  We don't do anything to try to order import link flags with respect
2455    // to linker options inserted by things like #pragma comment().
2456    SmallVector<llvm::MDNode *, 16> MetadataArgs;
2457    Visited.clear();
2458    for (Module *M : LinkModules)
2459      if (Visited.insert(M).second)
2460        addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2461    std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2462    LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2463  
2464    // Add the linker options metadata flag.
2465    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2466    for (auto *MD : LinkerOptionsMetadata)
2467      NMD->addOperand(MD);
2468  }
2469  
2470  void CodeGenModule::EmitDeferred() {
2471    // Emit deferred declare target declarations.
2472    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2473      getOpenMPRuntime().emitDeferredTargetDecls();
2474  
2475    // Emit code for any potentially referenced deferred decls.  Since a
2476    // previously unused static decl may become used during the generation of code
2477    // for a static function, iterate until no changes are made.
2478  
2479    if (!DeferredVTables.empty()) {
2480      EmitDeferredVTables();
2481  
2482      // Emitting a vtable doesn't directly cause more vtables to
2483      // become deferred, although it can cause functions to be
2484      // emitted that then need those vtables.
2485      assert(DeferredVTables.empty());
2486    }
2487  
2488    // Emit CUDA/HIP static device variables referenced by host code only.
2489    // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2490    // needed for further handling.
2491    if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2492      for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2493        DeferredDeclsToEmit.push_back(V);
2494  
2495    // Stop if we're out of both deferred vtables and deferred declarations.
2496    if (DeferredDeclsToEmit.empty())
2497      return;
2498  
2499    // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2500    // work, it will not interfere with this.
2501    std::vector<GlobalDecl> CurDeclsToEmit;
2502    CurDeclsToEmit.swap(DeferredDeclsToEmit);
2503  
2504    for (GlobalDecl &D : CurDeclsToEmit) {
2505      // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2506      // to get GlobalValue with exactly the type we need, not something that
2507      // might had been created for another decl with the same mangled name but
2508      // different type.
2509      llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2510          GetAddrOfGlobal(D, ForDefinition));
2511  
2512      // In case of different address spaces, we may still get a cast, even with
2513      // IsForDefinition equal to true. Query mangled names table to get
2514      // GlobalValue.
2515      if (!GV)
2516        GV = GetGlobalValue(getMangledName(D));
2517  
2518      // Make sure GetGlobalValue returned non-null.
2519      assert(GV);
2520  
2521      // Check to see if we've already emitted this.  This is necessary
2522      // for a couple of reasons: first, decls can end up in the
2523      // deferred-decls queue multiple times, and second, decls can end
2524      // up with definitions in unusual ways (e.g. by an extern inline
2525      // function acquiring a strong function redefinition).  Just
2526      // ignore these cases.
2527      if (!GV->isDeclaration())
2528        continue;
2529  
2530      // If this is OpenMP, check if it is legal to emit this global normally.
2531      if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2532        continue;
2533  
2534      // Otherwise, emit the definition and move on to the next one.
2535      EmitGlobalDefinition(D, GV);
2536  
2537      // If we found out that we need to emit more decls, do that recursively.
2538      // This has the advantage that the decls are emitted in a DFS and related
2539      // ones are close together, which is convenient for testing.
2540      if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2541        EmitDeferred();
2542        assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2543      }
2544    }
2545  }
2546  
2547  void CodeGenModule::EmitVTablesOpportunistically() {
2548    // Try to emit external vtables as available_externally if they have emitted
2549    // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2550    // is not allowed to create new references to things that need to be emitted
2551    // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2552  
2553    assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2554           && "Only emit opportunistic vtables with optimizations");
2555  
2556    for (const CXXRecordDecl *RD : OpportunisticVTables) {
2557      assert(getVTables().isVTableExternal(RD) &&
2558             "This queue should only contain external vtables");
2559      if (getCXXABI().canSpeculativelyEmitVTable(RD))
2560        VTables.GenerateClassData(RD);
2561    }
2562    OpportunisticVTables.clear();
2563  }
2564  
2565  void CodeGenModule::EmitGlobalAnnotations() {
2566    if (Annotations.empty())
2567      return;
2568  
2569    // Create a new global variable for the ConstantStruct in the Module.
2570    llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2571      Annotations[0]->getType(), Annotations.size()), Annotations);
2572    auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2573                                        llvm::GlobalValue::AppendingLinkage,
2574                                        Array, "llvm.global.annotations");
2575    gv->setSection(AnnotationSection);
2576  }
2577  
2578  llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2579    llvm::Constant *&AStr = AnnotationStrings[Str];
2580    if (AStr)
2581      return AStr;
2582  
2583    // Not found yet, create a new global.
2584    llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2585    auto *gv =
2586        new llvm::GlobalVariable(getModule(), s->getType(), true,
2587                                 llvm::GlobalValue::PrivateLinkage, s, ".str");
2588    gv->setSection(AnnotationSection);
2589    gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2590    AStr = gv;
2591    return gv;
2592  }
2593  
2594  llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2595    SourceManager &SM = getContext().getSourceManager();
2596    PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2597    if (PLoc.isValid())
2598      return EmitAnnotationString(PLoc.getFilename());
2599    return EmitAnnotationString(SM.getBufferName(Loc));
2600  }
2601  
2602  llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2603    SourceManager &SM = getContext().getSourceManager();
2604    PresumedLoc PLoc = SM.getPresumedLoc(L);
2605    unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2606      SM.getExpansionLineNumber(L);
2607    return llvm::ConstantInt::get(Int32Ty, LineNo);
2608  }
2609  
2610  llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2611    ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2612    if (Exprs.empty())
2613      return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2614  
2615    llvm::FoldingSetNodeID ID;
2616    for (Expr *E : Exprs) {
2617      ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2618    }
2619    llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2620    if (Lookup)
2621      return Lookup;
2622  
2623    llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2624    LLVMArgs.reserve(Exprs.size());
2625    ConstantEmitter ConstEmiter(*this);
2626    llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2627      const auto *CE = cast<clang::ConstantExpr>(E);
2628      return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2629                                      CE->getType());
2630    });
2631    auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2632    auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2633                                        llvm::GlobalValue::PrivateLinkage, Struct,
2634                                        ".args");
2635    GV->setSection(AnnotationSection);
2636    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2637    auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2638  
2639    Lookup = Bitcasted;
2640    return Bitcasted;
2641  }
2642  
2643  llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2644                                                  const AnnotateAttr *AA,
2645                                                  SourceLocation L) {
2646    // Get the globals for file name, annotation, and the line number.
2647    llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2648                   *UnitGV = EmitAnnotationUnit(L),
2649                   *LineNoCst = EmitAnnotationLineNo(L),
2650                   *Args = EmitAnnotationArgs(AA);
2651  
2652    llvm::Constant *GVInGlobalsAS = GV;
2653    if (GV->getAddressSpace() !=
2654        getDataLayout().getDefaultGlobalsAddressSpace()) {
2655      GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2656          GV, GV->getValueType()->getPointerTo(
2657                  getDataLayout().getDefaultGlobalsAddressSpace()));
2658    }
2659  
2660    // Create the ConstantStruct for the global annotation.
2661    llvm::Constant *Fields[] = {
2662        llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2663        llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2664        llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2665        LineNoCst,
2666        Args,
2667    };
2668    return llvm::ConstantStruct::getAnon(Fields);
2669  }
2670  
2671  void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2672                                           llvm::GlobalValue *GV) {
2673    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2674    // Get the struct elements for these annotations.
2675    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2676      Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2677  }
2678  
2679  bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2680                                         SourceLocation Loc) const {
2681    const auto &NoSanitizeL = getContext().getNoSanitizeList();
2682    // NoSanitize by function name.
2683    if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2684      return true;
2685    // NoSanitize by location.
2686    if (Loc.isValid())
2687      return NoSanitizeL.containsLocation(Kind, Loc);
2688    // If location is unknown, this may be a compiler-generated function. Assume
2689    // it's located in the main file.
2690    auto &SM = Context.getSourceManager();
2691    if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2692      return NoSanitizeL.containsFile(Kind, MainFile->getName());
2693    }
2694    return false;
2695  }
2696  
2697  bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2698                                         SourceLocation Loc, QualType Ty,
2699                                         StringRef Category) const {
2700    // For now globals can be ignored only in ASan and KASan.
2701    const SanitizerMask EnabledAsanMask =
2702        LangOpts.Sanitize.Mask &
2703        (SanitizerKind::Address | SanitizerKind::KernelAddress |
2704         SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2705         SanitizerKind::MemTag);
2706    if (!EnabledAsanMask)
2707      return false;
2708    const auto &NoSanitizeL = getContext().getNoSanitizeList();
2709    if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2710      return true;
2711    if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2712      return true;
2713    // Check global type.
2714    if (!Ty.isNull()) {
2715      // Drill down the array types: if global variable of a fixed type is
2716      // not sanitized, we also don't instrument arrays of them.
2717      while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2718        Ty = AT->getElementType();
2719      Ty = Ty.getCanonicalType().getUnqualifiedType();
2720      // Only record types (classes, structs etc.) are ignored.
2721      if (Ty->isRecordType()) {
2722        std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2723        if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2724          return true;
2725      }
2726    }
2727    return false;
2728  }
2729  
2730  bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2731                                     StringRef Category) const {
2732    const auto &XRayFilter = getContext().getXRayFilter();
2733    using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2734    auto Attr = ImbueAttr::NONE;
2735    if (Loc.isValid())
2736      Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2737    if (Attr == ImbueAttr::NONE)
2738      Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2739    switch (Attr) {
2740    case ImbueAttr::NONE:
2741      return false;
2742    case ImbueAttr::ALWAYS:
2743      Fn->addFnAttr("function-instrument", "xray-always");
2744      break;
2745    case ImbueAttr::ALWAYS_ARG1:
2746      Fn->addFnAttr("function-instrument", "xray-always");
2747      Fn->addFnAttr("xray-log-args", "1");
2748      break;
2749    case ImbueAttr::NEVER:
2750      Fn->addFnAttr("function-instrument", "xray-never");
2751      break;
2752    }
2753    return true;
2754  }
2755  
2756  bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2757                                             SourceLocation Loc) const {
2758    const auto &ProfileList = getContext().getProfileList();
2759    // If the profile list is empty, then instrument everything.
2760    if (ProfileList.isEmpty())
2761      return false;
2762    CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2763    // First, check the function name.
2764    Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2765    if (V.hasValue())
2766      return *V;
2767    // Next, check the source location.
2768    if (Loc.isValid()) {
2769      Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2770      if (V.hasValue())
2771        return *V;
2772    }
2773    // If location is unknown, this may be a compiler-generated function. Assume
2774    // it's located in the main file.
2775    auto &SM = Context.getSourceManager();
2776    if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2777      Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2778      if (V.hasValue())
2779        return *V;
2780    }
2781    return ProfileList.getDefault();
2782  }
2783  
2784  bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2785    // Never defer when EmitAllDecls is specified.
2786    if (LangOpts.EmitAllDecls)
2787      return true;
2788  
2789    if (CodeGenOpts.KeepStaticConsts) {
2790      const auto *VD = dyn_cast<VarDecl>(Global);
2791      if (VD && VD->getType().isConstQualified() &&
2792          VD->getStorageDuration() == SD_Static)
2793        return true;
2794    }
2795  
2796    return getContext().DeclMustBeEmitted(Global);
2797  }
2798  
2799  bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2800    // In OpenMP 5.0 variables and function may be marked as
2801    // device_type(host/nohost) and we should not emit them eagerly unless we sure
2802    // that they must be emitted on the host/device. To be sure we need to have
2803    // seen a declare target with an explicit mentioning of the function, we know
2804    // we have if the level of the declare target attribute is -1. Note that we
2805    // check somewhere else if we should emit this at all.
2806    if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2807      llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2808          OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2809      if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2810        return false;
2811    }
2812  
2813    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2814      if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2815        // Implicit template instantiations may change linkage if they are later
2816        // explicitly instantiated, so they should not be emitted eagerly.
2817        return false;
2818    }
2819    if (const auto *VD = dyn_cast<VarDecl>(Global))
2820      if (Context.getInlineVariableDefinitionKind(VD) ==
2821          ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2822        // A definition of an inline constexpr static data member may change
2823        // linkage later if it's redeclared outside the class.
2824        return false;
2825    // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2826    // codegen for global variables, because they may be marked as threadprivate.
2827    if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2828        getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2829        !isTypeConstant(Global->getType(), false) &&
2830        !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2831      return false;
2832  
2833    return true;
2834  }
2835  
2836  ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2837    StringRef Name = getMangledName(GD);
2838  
2839    // The UUID descriptor should be pointer aligned.
2840    CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2841  
2842    // Look for an existing global.
2843    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2844      return ConstantAddress(GV, GV->getValueType(), Alignment);
2845  
2846    ConstantEmitter Emitter(*this);
2847    llvm::Constant *Init;
2848  
2849    APValue &V = GD->getAsAPValue();
2850    if (!V.isAbsent()) {
2851      // If possible, emit the APValue version of the initializer. In particular,
2852      // this gets the type of the constant right.
2853      Init = Emitter.emitForInitializer(
2854          GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2855    } else {
2856      // As a fallback, directly construct the constant.
2857      // FIXME: This may get padding wrong under esoteric struct layout rules.
2858      // MSVC appears to create a complete type 'struct __s_GUID' that it
2859      // presumably uses to represent these constants.
2860      MSGuidDecl::Parts Parts = GD->getParts();
2861      llvm::Constant *Fields[4] = {
2862          llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2863          llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2864          llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2865          llvm::ConstantDataArray::getRaw(
2866              StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2867              Int8Ty)};
2868      Init = llvm::ConstantStruct::getAnon(Fields);
2869    }
2870  
2871    auto *GV = new llvm::GlobalVariable(
2872        getModule(), Init->getType(),
2873        /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2874    if (supportsCOMDAT())
2875      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2876    setDSOLocal(GV);
2877  
2878    if (!V.isAbsent()) {
2879      Emitter.finalize(GV);
2880      return ConstantAddress(GV, GV->getValueType(), Alignment);
2881    }
2882  
2883    llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2884    llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2885        GV, Ty->getPointerTo(GV->getAddressSpace()));
2886    return ConstantAddress(Addr, Ty, Alignment);
2887  }
2888  
2889  ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2890      const TemplateParamObjectDecl *TPO) {
2891    StringRef Name = getMangledName(TPO);
2892    CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2893  
2894    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2895      return ConstantAddress(GV, GV->getValueType(), Alignment);
2896  
2897    ConstantEmitter Emitter(*this);
2898    llvm::Constant *Init = Emitter.emitForInitializer(
2899          TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2900  
2901    if (!Init) {
2902      ErrorUnsupported(TPO, "template parameter object");
2903      return ConstantAddress::invalid();
2904    }
2905  
2906    auto *GV = new llvm::GlobalVariable(
2907        getModule(), Init->getType(),
2908        /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2909    if (supportsCOMDAT())
2910      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2911    Emitter.finalize(GV);
2912  
2913    return ConstantAddress(GV, GV->getValueType(), Alignment);
2914  }
2915  
2916  ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2917    const AliasAttr *AA = VD->getAttr<AliasAttr>();
2918    assert(AA && "No alias?");
2919  
2920    CharUnits Alignment = getContext().getDeclAlign(VD);
2921    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2922  
2923    // See if there is already something with the target's name in the module.
2924    llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2925    if (Entry) {
2926      unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2927      auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2928      return ConstantAddress(Ptr, DeclTy, Alignment);
2929    }
2930  
2931    llvm::Constant *Aliasee;
2932    if (isa<llvm::FunctionType>(DeclTy))
2933      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2934                                        GlobalDecl(cast<FunctionDecl>(VD)),
2935                                        /*ForVTable=*/false);
2936    else
2937      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2938                                      nullptr);
2939  
2940    auto *F = cast<llvm::GlobalValue>(Aliasee);
2941    F->setLinkage(llvm::Function::ExternalWeakLinkage);
2942    WeakRefReferences.insert(F);
2943  
2944    return ConstantAddress(Aliasee, DeclTy, Alignment);
2945  }
2946  
2947  void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2948    const auto *Global = cast<ValueDecl>(GD.getDecl());
2949  
2950    // Weak references don't produce any output by themselves.
2951    if (Global->hasAttr<WeakRefAttr>())
2952      return;
2953  
2954    // If this is an alias definition (which otherwise looks like a declaration)
2955    // emit it now.
2956    if (Global->hasAttr<AliasAttr>())
2957      return EmitAliasDefinition(GD);
2958  
2959    // IFunc like an alias whose value is resolved at runtime by calling resolver.
2960    if (Global->hasAttr<IFuncAttr>())
2961      return emitIFuncDefinition(GD);
2962  
2963    // If this is a cpu_dispatch multiversion function, emit the resolver.
2964    if (Global->hasAttr<CPUDispatchAttr>())
2965      return emitCPUDispatchDefinition(GD);
2966  
2967    // If this is CUDA, be selective about which declarations we emit.
2968    if (LangOpts.CUDA) {
2969      if (LangOpts.CUDAIsDevice) {
2970        if (!Global->hasAttr<CUDADeviceAttr>() &&
2971            !Global->hasAttr<CUDAGlobalAttr>() &&
2972            !Global->hasAttr<CUDAConstantAttr>() &&
2973            !Global->hasAttr<CUDASharedAttr>() &&
2974            !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2975            !Global->getType()->isCUDADeviceBuiltinTextureType())
2976          return;
2977      } else {
2978        // We need to emit host-side 'shadows' for all global
2979        // device-side variables because the CUDA runtime needs their
2980        // size and host-side address in order to provide access to
2981        // their device-side incarnations.
2982  
2983        // So device-only functions are the only things we skip.
2984        if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2985            Global->hasAttr<CUDADeviceAttr>())
2986          return;
2987  
2988        assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2989               "Expected Variable or Function");
2990      }
2991    }
2992  
2993    if (LangOpts.OpenMP) {
2994      // If this is OpenMP, check if it is legal to emit this global normally.
2995      if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2996        return;
2997      if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2998        if (MustBeEmitted(Global))
2999          EmitOMPDeclareReduction(DRD);
3000        return;
3001      } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3002        if (MustBeEmitted(Global))
3003          EmitOMPDeclareMapper(DMD);
3004        return;
3005      }
3006    }
3007  
3008    // Ignore declarations, they will be emitted on their first use.
3009    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3010      // Forward declarations are emitted lazily on first use.
3011      if (!FD->doesThisDeclarationHaveABody()) {
3012        if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3013          return;
3014  
3015        StringRef MangledName = getMangledName(GD);
3016  
3017        // Compute the function info and LLVM type.
3018        const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3019        llvm::Type *Ty = getTypes().GetFunctionType(FI);
3020  
3021        GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3022                                /*DontDefer=*/false);
3023        return;
3024      }
3025    } else {
3026      const auto *VD = cast<VarDecl>(Global);
3027      assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3028      if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3029          !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3030        if (LangOpts.OpenMP) {
3031          // Emit declaration of the must-be-emitted declare target variable.
3032          if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3033                  OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3034            bool UnifiedMemoryEnabled =
3035                getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3036            if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3037                !UnifiedMemoryEnabled) {
3038              (void)GetAddrOfGlobalVar(VD);
3039            } else {
3040              assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3041                      (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3042                       UnifiedMemoryEnabled)) &&
3043                     "Link clause or to clause with unified memory expected.");
3044              (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3045            }
3046  
3047            return;
3048          }
3049        }
3050        // If this declaration may have caused an inline variable definition to
3051        // change linkage, make sure that it's emitted.
3052        if (Context.getInlineVariableDefinitionKind(VD) ==
3053            ASTContext::InlineVariableDefinitionKind::Strong)
3054          GetAddrOfGlobalVar(VD);
3055        return;
3056      }
3057    }
3058  
3059    // Defer code generation to first use when possible, e.g. if this is an inline
3060    // function. If the global must always be emitted, do it eagerly if possible
3061    // to benefit from cache locality.
3062    if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3063      // Emit the definition if it can't be deferred.
3064      EmitGlobalDefinition(GD);
3065      return;
3066    }
3067  
3068    // If we're deferring emission of a C++ variable with an
3069    // initializer, remember the order in which it appeared in the file.
3070    if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3071        cast<VarDecl>(Global)->hasInit()) {
3072      DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3073      CXXGlobalInits.push_back(nullptr);
3074    }
3075  
3076    StringRef MangledName = getMangledName(GD);
3077    if (GetGlobalValue(MangledName) != nullptr) {
3078      // The value has already been used and should therefore be emitted.
3079      addDeferredDeclToEmit(GD);
3080    } else if (MustBeEmitted(Global)) {
3081      // The value must be emitted, but cannot be emitted eagerly.
3082      assert(!MayBeEmittedEagerly(Global));
3083      addDeferredDeclToEmit(GD);
3084    } else {
3085      // Otherwise, remember that we saw a deferred decl with this name.  The
3086      // first use of the mangled name will cause it to move into
3087      // DeferredDeclsToEmit.
3088      DeferredDecls[MangledName] = GD;
3089    }
3090  }
3091  
3092  // Check if T is a class type with a destructor that's not dllimport.
3093  static bool HasNonDllImportDtor(QualType T) {
3094    if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3095      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3096        if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3097          return true;
3098  
3099    return false;
3100  }
3101  
3102  namespace {
3103    struct FunctionIsDirectlyRecursive
3104        : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3105      const StringRef Name;
3106      const Builtin::Context &BI;
3107      FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3108          : Name(N), BI(C) {}
3109  
3110      bool VisitCallExpr(const CallExpr *E) {
3111        const FunctionDecl *FD = E->getDirectCallee();
3112        if (!FD)
3113          return false;
3114        AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3115        if (Attr && Name == Attr->getLabel())
3116          return true;
3117        unsigned BuiltinID = FD->getBuiltinID();
3118        if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3119          return false;
3120        StringRef BuiltinName = BI.getName(BuiltinID);
3121        if (BuiltinName.startswith("__builtin_") &&
3122            Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3123          return true;
3124        }
3125        return false;
3126      }
3127  
3128      bool VisitStmt(const Stmt *S) {
3129        for (const Stmt *Child : S->children())
3130          if (Child && this->Visit(Child))
3131            return true;
3132        return false;
3133      }
3134    };
3135  
3136    // Make sure we're not referencing non-imported vars or functions.
3137    struct DLLImportFunctionVisitor
3138        : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3139      bool SafeToInline = true;
3140  
3141      bool shouldVisitImplicitCode() const { return true; }
3142  
3143      bool VisitVarDecl(VarDecl *VD) {
3144        if (VD->getTLSKind()) {
3145          // A thread-local variable cannot be imported.
3146          SafeToInline = false;
3147          return SafeToInline;
3148        }
3149  
3150        // A variable definition might imply a destructor call.
3151        if (VD->isThisDeclarationADefinition())
3152          SafeToInline = !HasNonDllImportDtor(VD->getType());
3153  
3154        return SafeToInline;
3155      }
3156  
3157      bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3158        if (const auto *D = E->getTemporary()->getDestructor())
3159          SafeToInline = D->hasAttr<DLLImportAttr>();
3160        return SafeToInline;
3161      }
3162  
3163      bool VisitDeclRefExpr(DeclRefExpr *E) {
3164        ValueDecl *VD = E->getDecl();
3165        if (isa<FunctionDecl>(VD))
3166          SafeToInline = VD->hasAttr<DLLImportAttr>();
3167        else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3168          SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3169        return SafeToInline;
3170      }
3171  
3172      bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3173        SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3174        return SafeToInline;
3175      }
3176  
3177      bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3178        CXXMethodDecl *M = E->getMethodDecl();
3179        if (!M) {
3180          // Call through a pointer to member function. This is safe to inline.
3181          SafeToInline = true;
3182        } else {
3183          SafeToInline = M->hasAttr<DLLImportAttr>();
3184        }
3185        return SafeToInline;
3186      }
3187  
3188      bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3189        SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3190        return SafeToInline;
3191      }
3192  
3193      bool VisitCXXNewExpr(CXXNewExpr *E) {
3194        SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3195        return SafeToInline;
3196      }
3197    };
3198  }
3199  
3200  // isTriviallyRecursive - Check if this function calls another
3201  // decl that, because of the asm attribute or the other decl being a builtin,
3202  // ends up pointing to itself.
3203  bool
3204  CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3205    StringRef Name;
3206    if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3207      // asm labels are a special kind of mangling we have to support.
3208      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3209      if (!Attr)
3210        return false;
3211      Name = Attr->getLabel();
3212    } else {
3213      Name = FD->getName();
3214    }
3215  
3216    FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3217    const Stmt *Body = FD->getBody();
3218    return Body ? Walker.Visit(Body) : false;
3219  }
3220  
3221  bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3222    if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3223      return true;
3224    const auto *F = cast<FunctionDecl>(GD.getDecl());
3225    if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3226      return false;
3227  
3228    if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3229      // Check whether it would be safe to inline this dllimport function.
3230      DLLImportFunctionVisitor Visitor;
3231      Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3232      if (!Visitor.SafeToInline)
3233        return false;
3234  
3235      if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3236        // Implicit destructor invocations aren't captured in the AST, so the
3237        // check above can't see them. Check for them manually here.
3238        for (const Decl *Member : Dtor->getParent()->decls())
3239          if (isa<FieldDecl>(Member))
3240            if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3241              return false;
3242        for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3243          if (HasNonDllImportDtor(B.getType()))
3244            return false;
3245      }
3246    }
3247  
3248    // Inline builtins declaration must be emitted. They often are fortified
3249    // functions.
3250    if (F->isInlineBuiltinDeclaration())
3251      return true;
3252  
3253    // PR9614. Avoid cases where the source code is lying to us. An available
3254    // externally function should have an equivalent function somewhere else,
3255    // but a function that calls itself through asm label/`__builtin_` trickery is
3256    // clearly not equivalent to the real implementation.
3257    // This happens in glibc's btowc and in some configure checks.
3258    return !isTriviallyRecursive(F);
3259  }
3260  
3261  bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3262    return CodeGenOpts.OptimizationLevel > 0;
3263  }
3264  
3265  void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3266                                                         llvm::GlobalValue *GV) {
3267    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3268  
3269    if (FD->isCPUSpecificMultiVersion()) {
3270      auto *Spec = FD->getAttr<CPUSpecificAttr>();
3271      for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3272        EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3273      // Requires multiple emits.
3274    } else if (FD->isTargetClonesMultiVersion()) {
3275      auto *Clone = FD->getAttr<TargetClonesAttr>();
3276      for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3277        if (Clone->isFirstOfVersion(I))
3278          EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3279      EmitTargetClonesResolver(GD);
3280    } else
3281      EmitGlobalFunctionDefinition(GD, GV);
3282  }
3283  
3284  void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3285    const auto *D = cast<ValueDecl>(GD.getDecl());
3286  
3287    PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3288                                   Context.getSourceManager(),
3289                                   "Generating code for declaration");
3290  
3291    if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3292      // At -O0, don't generate IR for functions with available_externally
3293      // linkage.
3294      if (!shouldEmitFunction(GD))
3295        return;
3296  
3297      llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3298        std::string Name;
3299        llvm::raw_string_ostream OS(Name);
3300        FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3301                                 /*Qualified=*/true);
3302        return Name;
3303      });
3304  
3305      if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3306        // Make sure to emit the definition(s) before we emit the thunks.
3307        // This is necessary for the generation of certain thunks.
3308        if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3309          ABI->emitCXXStructor(GD);
3310        else if (FD->isMultiVersion())
3311          EmitMultiVersionFunctionDefinition(GD, GV);
3312        else
3313          EmitGlobalFunctionDefinition(GD, GV);
3314  
3315        if (Method->isVirtual())
3316          getVTables().EmitThunks(GD);
3317  
3318        return;
3319      }
3320  
3321      if (FD->isMultiVersion())
3322        return EmitMultiVersionFunctionDefinition(GD, GV);
3323      return EmitGlobalFunctionDefinition(GD, GV);
3324    }
3325  
3326    if (const auto *VD = dyn_cast<VarDecl>(D))
3327      return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3328  
3329    llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3330  }
3331  
3332  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3333                                                        llvm::Function *NewFn);
3334  
3335  static unsigned
3336  TargetMVPriority(const TargetInfo &TI,
3337                   const CodeGenFunction::MultiVersionResolverOption &RO) {
3338    unsigned Priority = 0;
3339    for (StringRef Feat : RO.Conditions.Features)
3340      Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3341  
3342    if (!RO.Conditions.Architecture.empty())
3343      Priority = std::max(
3344          Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3345    return Priority;
3346  }
3347  
3348  // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3349  // TU can forward declare the function without causing problems.  Particularly
3350  // in the cases of CPUDispatch, this causes issues. This also makes sure we
3351  // work with internal linkage functions, so that the same function name can be
3352  // used with internal linkage in multiple TUs.
3353  llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3354                                                         GlobalDecl GD) {
3355    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3356    if (FD->getFormalLinkage() == InternalLinkage)
3357      return llvm::GlobalValue::InternalLinkage;
3358    return llvm::GlobalValue::WeakODRLinkage;
3359  }
3360  
3361  void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) {
3362    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3363    assert(FD && "Not a FunctionDecl?");
3364    const auto *TC = FD->getAttr<TargetClonesAttr>();
3365    assert(TC && "Not a target_clones Function?");
3366  
3367    QualType CanonTy = Context.getCanonicalType(FD->getType());
3368    llvm::Type *DeclTy = getTypes().ConvertType(CanonTy);
3369  
3370    if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3371      const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3372      DeclTy = getTypes().GetFunctionType(FInfo);
3373    }
3374  
3375    llvm::Function *ResolverFunc;
3376    if (getTarget().supportsIFunc()) {
3377      auto *IFunc = cast<llvm::GlobalIFunc>(
3378          GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3379      ResolverFunc = cast<llvm::Function>(IFunc->getResolver());
3380    } else
3381      ResolverFunc =
3382          cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3383  
3384    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3385    for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3386         ++VersionIndex) {
3387      if (!TC->isFirstOfVersion(VersionIndex))
3388        continue;
3389      StringRef Version = TC->getFeatureStr(VersionIndex);
3390      StringRef MangledName =
3391          getMangledName(GD.getWithMultiVersionIndex(VersionIndex));
3392      llvm::Constant *Func = GetGlobalValue(MangledName);
3393      assert(Func &&
3394             "Should have already been created before calling resolver emit");
3395  
3396      StringRef Architecture;
3397      llvm::SmallVector<StringRef, 1> Feature;
3398  
3399      if (Version.startswith("arch="))
3400        Architecture = Version.drop_front(sizeof("arch=") - 1);
3401      else if (Version != "default")
3402        Feature.push_back(Version);
3403  
3404      Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3405    }
3406  
3407    const TargetInfo &TI = getTarget();
3408    std::stable_sort(
3409        Options.begin(), Options.end(),
3410        [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3411              const CodeGenFunction::MultiVersionResolverOption &RHS) {
3412          return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3413        });
3414    CodeGenFunction CGF(*this);
3415    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3416  }
3417  
3418  void CodeGenModule::emitMultiVersionFunctions() {
3419    std::vector<GlobalDecl> MVFuncsToEmit;
3420    MultiVersionFuncs.swap(MVFuncsToEmit);
3421    for (GlobalDecl GD : MVFuncsToEmit) {
3422      SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3423      const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3424      getContext().forEachMultiversionedFunctionVersion(
3425          FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3426            GlobalDecl CurGD{
3427                (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3428            StringRef MangledName = getMangledName(CurGD);
3429            llvm::Constant *Func = GetGlobalValue(MangledName);
3430            if (!Func) {
3431              if (CurFD->isDefined()) {
3432                EmitGlobalFunctionDefinition(CurGD, nullptr);
3433                Func = GetGlobalValue(MangledName);
3434              } else {
3435                const CGFunctionInfo &FI =
3436                    getTypes().arrangeGlobalDeclaration(GD);
3437                llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3438                Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3439                                         /*DontDefer=*/false, ForDefinition);
3440              }
3441              assert(Func && "This should have just been created");
3442            }
3443  
3444            const auto *TA = CurFD->getAttr<TargetAttr>();
3445            llvm::SmallVector<StringRef, 8> Feats;
3446            TA->getAddedFeatures(Feats);
3447  
3448            Options.emplace_back(cast<llvm::Function>(Func),
3449                                 TA->getArchitecture(), Feats);
3450          });
3451  
3452      llvm::Function *ResolverFunc;
3453      const TargetInfo &TI = getTarget();
3454  
3455      if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3456        ResolverFunc = cast<llvm::Function>(
3457            GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3458        ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3459      } else {
3460        ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3461      }
3462  
3463      if (supportsCOMDAT())
3464        ResolverFunc->setComdat(
3465            getModule().getOrInsertComdat(ResolverFunc->getName()));
3466  
3467      llvm::stable_sort(
3468          Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3469                         const CodeGenFunction::MultiVersionResolverOption &RHS) {
3470            return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3471          });
3472      CodeGenFunction CGF(*this);
3473      CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3474    }
3475  
3476    // Ensure that any additions to the deferred decls list caused by emitting a
3477    // variant are emitted.  This can happen when the variant itself is inline and
3478    // calls a function without linkage.
3479    if (!MVFuncsToEmit.empty())
3480      EmitDeferred();
3481  
3482    // Ensure that any additions to the multiversion funcs list from either the
3483    // deferred decls or the multiversion functions themselves are emitted.
3484    if (!MultiVersionFuncs.empty())
3485      emitMultiVersionFunctions();
3486  }
3487  
3488  void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3489    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3490    assert(FD && "Not a FunctionDecl?");
3491    assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3492    const auto *DD = FD->getAttr<CPUDispatchAttr>();
3493    assert(DD && "Not a cpu_dispatch Function?");
3494    llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3495  
3496    if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3497      const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3498      DeclTy = getTypes().GetFunctionType(FInfo);
3499    }
3500  
3501    StringRef ResolverName = getMangledName(GD);
3502    UpdateMultiVersionNames(GD, FD, ResolverName);
3503  
3504    llvm::Type *ResolverType;
3505    GlobalDecl ResolverGD;
3506    if (getTarget().supportsIFunc()) {
3507      ResolverType = llvm::FunctionType::get(
3508          llvm::PointerType::get(DeclTy,
3509                                 Context.getTargetAddressSpace(FD->getType())),
3510          false);
3511    }
3512    else {
3513      ResolverType = DeclTy;
3514      ResolverGD = GD;
3515    }
3516  
3517    auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3518        ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3519    ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3520    if (supportsCOMDAT())
3521      ResolverFunc->setComdat(
3522          getModule().getOrInsertComdat(ResolverFunc->getName()));
3523  
3524    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3525    const TargetInfo &Target = getTarget();
3526    unsigned Index = 0;
3527    for (const IdentifierInfo *II : DD->cpus()) {
3528      // Get the name of the target function so we can look it up/create it.
3529      std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3530                                getCPUSpecificMangling(*this, II->getName());
3531  
3532      llvm::Constant *Func = GetGlobalValue(MangledName);
3533  
3534      if (!Func) {
3535        GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3536        if (ExistingDecl.getDecl() &&
3537            ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3538          EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3539          Func = GetGlobalValue(MangledName);
3540        } else {
3541          if (!ExistingDecl.getDecl())
3542            ExistingDecl = GD.getWithMultiVersionIndex(Index);
3543  
3544        Func = GetOrCreateLLVMFunction(
3545            MangledName, DeclTy, ExistingDecl,
3546            /*ForVTable=*/false, /*DontDefer=*/true,
3547            /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3548        }
3549      }
3550  
3551      llvm::SmallVector<StringRef, 32> Features;
3552      Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3553      llvm::transform(Features, Features.begin(),
3554                      [](StringRef Str) { return Str.substr(1); });
3555      llvm::erase_if(Features, [&Target](StringRef Feat) {
3556        return !Target.validateCpuSupports(Feat);
3557      });
3558      Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3559      ++Index;
3560    }
3561  
3562    llvm::stable_sort(
3563        Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3564                    const CodeGenFunction::MultiVersionResolverOption &RHS) {
3565          return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3566                 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3567        });
3568  
3569    // If the list contains multiple 'default' versions, such as when it contains
3570    // 'pentium' and 'generic', don't emit the call to the generic one (since we
3571    // always run on at least a 'pentium'). We do this by deleting the 'least
3572    // advanced' (read, lowest mangling letter).
3573    while (Options.size() > 1 &&
3574           llvm::X86::getCpuSupportsMask(
3575               (Options.end() - 2)->Conditions.Features) == 0) {
3576      StringRef LHSName = (Options.end() - 2)->Function->getName();
3577      StringRef RHSName = (Options.end() - 1)->Function->getName();
3578      if (LHSName.compare(RHSName) < 0)
3579        Options.erase(Options.end() - 2);
3580      else
3581        Options.erase(Options.end() - 1);
3582    }
3583  
3584    CodeGenFunction CGF(*this);
3585    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3586  
3587    if (getTarget().supportsIFunc()) {
3588      std::string AliasName = getMangledNameImpl(
3589          *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3590      llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3591      if (!AliasFunc) {
3592        auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3593            AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3594            /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3595        auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3596                                             getMultiversionLinkage(*this, GD),
3597                                             AliasName, IFunc, &getModule());
3598        SetCommonAttributes(GD, GA);
3599      }
3600    }
3601  }
3602  
3603  /// If a dispatcher for the specified mangled name is not in the module, create
3604  /// and return an llvm Function with the specified type.
3605  llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3606      GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3607    std::string MangledName =
3608        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3609  
3610    // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3611    // a separate resolver).
3612    std::string ResolverName = MangledName;
3613    if (getTarget().supportsIFunc())
3614      ResolverName += ".ifunc";
3615    else if (FD->isTargetMultiVersion())
3616      ResolverName += ".resolver";
3617  
3618    // If this already exists, just return that one.
3619    if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3620      return ResolverGV;
3621  
3622    // Since this is the first time we've created this IFunc, make sure
3623    // that we put this multiversioned function into the list to be
3624    // replaced later if necessary (target multiversioning only).
3625    if (FD->isTargetMultiVersion())
3626      MultiVersionFuncs.push_back(GD);
3627    else if (FD->isTargetClonesMultiVersion()) {
3628      // In target_clones multiversioning, make sure we emit this if used.
3629      auto DDI =
3630          DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0)));
3631      if (DDI != DeferredDecls.end()) {
3632        addDeferredDeclToEmit(GD);
3633        DeferredDecls.erase(DDI);
3634      } else {
3635        // Emit the symbol of the 1st variant, so that the deferred decls know we
3636        // need it, otherwise the only global value will be the resolver/ifunc,
3637        // which end up getting broken if we search for them with GetGlobalValue'.
3638        GetOrCreateLLVMFunction(
3639            getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD,
3640            /*ForVTable=*/false, /*DontDefer=*/true,
3641            /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3642      }
3643    }
3644  
3645    if (getTarget().supportsIFunc()) {
3646      llvm::Type *ResolverType = llvm::FunctionType::get(
3647          llvm::PointerType::get(
3648              DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3649          false);
3650      llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3651          MangledName + ".resolver", ResolverType, GlobalDecl{},
3652          /*ForVTable=*/false);
3653      llvm::GlobalIFunc *GIF =
3654          llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3655                                    "", Resolver, &getModule());
3656      GIF->setName(ResolverName);
3657      SetCommonAttributes(FD, GIF);
3658  
3659      return GIF;
3660    }
3661  
3662    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3663        ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3664    assert(isa<llvm::GlobalValue>(Resolver) &&
3665           "Resolver should be created for the first time");
3666    SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3667    return Resolver;
3668  }
3669  
3670  /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3671  /// module, create and return an llvm Function with the specified type. If there
3672  /// is something in the module with the specified name, return it potentially
3673  /// bitcasted to the right type.
3674  ///
3675  /// If D is non-null, it specifies a decl that correspond to this.  This is used
3676  /// to set the attributes on the function when it is first created.
3677  llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3678      StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3679      bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3680      ForDefinition_t IsForDefinition) {
3681    const Decl *D = GD.getDecl();
3682  
3683    // Any attempts to use a MultiVersion function should result in retrieving
3684    // the iFunc instead. Name Mangling will handle the rest of the changes.
3685    if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3686      // For the device mark the function as one that should be emitted.
3687      if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3688          !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3689          !DontDefer && !IsForDefinition) {
3690        if (const FunctionDecl *FDDef = FD->getDefinition()) {
3691          GlobalDecl GDDef;
3692          if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3693            GDDef = GlobalDecl(CD, GD.getCtorType());
3694          else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3695            GDDef = GlobalDecl(DD, GD.getDtorType());
3696          else
3697            GDDef = GlobalDecl(FDDef);
3698          EmitGlobal(GDDef);
3699        }
3700      }
3701  
3702      if (FD->isMultiVersion()) {
3703          UpdateMultiVersionNames(GD, FD, MangledName);
3704        if (!IsForDefinition)
3705          return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3706      }
3707    }
3708  
3709    // Lookup the entry, lazily creating it if necessary.
3710    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3711    if (Entry) {
3712      if (WeakRefReferences.erase(Entry)) {
3713        const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3714        if (FD && !FD->hasAttr<WeakAttr>())
3715          Entry->setLinkage(llvm::Function::ExternalLinkage);
3716      }
3717  
3718      // Handle dropped DLL attributes.
3719      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3720        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3721        setDSOLocal(Entry);
3722      }
3723  
3724      // If there are two attempts to define the same mangled name, issue an
3725      // error.
3726      if (IsForDefinition && !Entry->isDeclaration()) {
3727        GlobalDecl OtherGD;
3728        // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3729        // to make sure that we issue an error only once.
3730        if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3731            (GD.getCanonicalDecl().getDecl() !=
3732             OtherGD.getCanonicalDecl().getDecl()) &&
3733            DiagnosedConflictingDefinitions.insert(GD).second) {
3734          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3735              << MangledName;
3736          getDiags().Report(OtherGD.getDecl()->getLocation(),
3737                            diag::note_previous_definition);
3738        }
3739      }
3740  
3741      if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3742          (Entry->getValueType() == Ty)) {
3743        return Entry;
3744      }
3745  
3746      // Make sure the result is of the correct type.
3747      // (If function is requested for a definition, we always need to create a new
3748      // function, not just return a bitcast.)
3749      if (!IsForDefinition)
3750        return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3751    }
3752  
3753    // This function doesn't have a complete type (for example, the return
3754    // type is an incomplete struct). Use a fake type instead, and make
3755    // sure not to try to set attributes.
3756    bool IsIncompleteFunction = false;
3757  
3758    llvm::FunctionType *FTy;
3759    if (isa<llvm::FunctionType>(Ty)) {
3760      FTy = cast<llvm::FunctionType>(Ty);
3761    } else {
3762      FTy = llvm::FunctionType::get(VoidTy, false);
3763      IsIncompleteFunction = true;
3764    }
3765  
3766    llvm::Function *F =
3767        llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3768                               Entry ? StringRef() : MangledName, &getModule());
3769  
3770    // If we already created a function with the same mangled name (but different
3771    // type) before, take its name and add it to the list of functions to be
3772    // replaced with F at the end of CodeGen.
3773    //
3774    // This happens if there is a prototype for a function (e.g. "int f()") and
3775    // then a definition of a different type (e.g. "int f(int x)").
3776    if (Entry) {
3777      F->takeName(Entry);
3778  
3779      // This might be an implementation of a function without a prototype, in
3780      // which case, try to do special replacement of calls which match the new
3781      // prototype.  The really key thing here is that we also potentially drop
3782      // arguments from the call site so as to make a direct call, which makes the
3783      // inliner happier and suppresses a number of optimizer warnings (!) about
3784      // dropping arguments.
3785      if (!Entry->use_empty()) {
3786        ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3787        Entry->removeDeadConstantUsers();
3788      }
3789  
3790      llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3791          F, Entry->getValueType()->getPointerTo());
3792      addGlobalValReplacement(Entry, BC);
3793    }
3794  
3795    assert(F->getName() == MangledName && "name was uniqued!");
3796    if (D)
3797      SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3798    if (ExtraAttrs.hasFnAttrs()) {
3799      llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3800      F->addFnAttrs(B);
3801    }
3802  
3803    if (!DontDefer) {
3804      // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3805      // each other bottoming out with the base dtor.  Therefore we emit non-base
3806      // dtors on usage, even if there is no dtor definition in the TU.
3807      if (D && isa<CXXDestructorDecl>(D) &&
3808          getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3809                                             GD.getDtorType()))
3810        addDeferredDeclToEmit(GD);
3811  
3812      // This is the first use or definition of a mangled name.  If there is a
3813      // deferred decl with this name, remember that we need to emit it at the end
3814      // of the file.
3815      auto DDI = DeferredDecls.find(MangledName);
3816      if (DDI != DeferredDecls.end()) {
3817        // Move the potentially referenced deferred decl to the
3818        // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3819        // don't need it anymore).
3820        addDeferredDeclToEmit(DDI->second);
3821        DeferredDecls.erase(DDI);
3822  
3823        // Otherwise, there are cases we have to worry about where we're
3824        // using a declaration for which we must emit a definition but where
3825        // we might not find a top-level definition:
3826        //   - member functions defined inline in their classes
3827        //   - friend functions defined inline in some class
3828        //   - special member functions with implicit definitions
3829        // If we ever change our AST traversal to walk into class methods,
3830        // this will be unnecessary.
3831        //
3832        // We also don't emit a definition for a function if it's going to be an
3833        // entry in a vtable, unless it's already marked as used.
3834      } else if (getLangOpts().CPlusPlus && D) {
3835        // Look for a declaration that's lexically in a record.
3836        for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3837             FD = FD->getPreviousDecl()) {
3838          if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3839            if (FD->doesThisDeclarationHaveABody()) {
3840              addDeferredDeclToEmit(GD.getWithDecl(FD));
3841              break;
3842            }
3843          }
3844        }
3845      }
3846    }
3847  
3848    // Make sure the result is of the requested type.
3849    if (!IsIncompleteFunction) {
3850      assert(F->getFunctionType() == Ty);
3851      return F;
3852    }
3853  
3854    llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3855    return llvm::ConstantExpr::getBitCast(F, PTy);
3856  }
3857  
3858  /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3859  /// non-null, then this function will use the specified type if it has to
3860  /// create it (this occurs when we see a definition of the function).
3861  llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3862                                                   llvm::Type *Ty,
3863                                                   bool ForVTable,
3864                                                   bool DontDefer,
3865                                                ForDefinition_t IsForDefinition) {
3866    assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3867           "consteval function should never be emitted");
3868    // If there was no specific requested type, just convert it now.
3869    if (!Ty) {
3870      const auto *FD = cast<FunctionDecl>(GD.getDecl());
3871      Ty = getTypes().ConvertType(FD->getType());
3872    }
3873  
3874    // Devirtualized destructor calls may come through here instead of via
3875    // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3876    // of the complete destructor when necessary.
3877    if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3878      if (getTarget().getCXXABI().isMicrosoft() &&
3879          GD.getDtorType() == Dtor_Complete &&
3880          DD->getParent()->getNumVBases() == 0)
3881        GD = GlobalDecl(DD, Dtor_Base);
3882    }
3883  
3884    StringRef MangledName = getMangledName(GD);
3885    auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3886                                      /*IsThunk=*/false, llvm::AttributeList(),
3887                                      IsForDefinition);
3888    // Returns kernel handle for HIP kernel stub function.
3889    if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3890        cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3891      auto *Handle = getCUDARuntime().getKernelHandle(
3892          cast<llvm::Function>(F->stripPointerCasts()), GD);
3893      if (IsForDefinition)
3894        return F;
3895      return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3896    }
3897    return F;
3898  }
3899  
3900  llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3901    llvm::GlobalValue *F =
3902        cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3903  
3904    return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3905                                          llvm::Type::getInt8PtrTy(VMContext));
3906  }
3907  
3908  static const FunctionDecl *
3909  GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3910    TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3911    DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3912  
3913    IdentifierInfo &CII = C.Idents.get(Name);
3914    for (const auto *Result : DC->lookup(&CII))
3915      if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3916        return FD;
3917  
3918    if (!C.getLangOpts().CPlusPlus)
3919      return nullptr;
3920  
3921    // Demangle the premangled name from getTerminateFn()
3922    IdentifierInfo &CXXII =
3923        (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3924            ? C.Idents.get("terminate")
3925            : C.Idents.get(Name);
3926  
3927    for (const auto &N : {"__cxxabiv1", "std"}) {
3928      IdentifierInfo &NS = C.Idents.get(N);
3929      for (const auto *Result : DC->lookup(&NS)) {
3930        const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3931        if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3932          for (const auto *Result : LSD->lookup(&NS))
3933            if ((ND = dyn_cast<NamespaceDecl>(Result)))
3934              break;
3935  
3936        if (ND)
3937          for (const auto *Result : ND->lookup(&CXXII))
3938            if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3939              return FD;
3940      }
3941    }
3942  
3943    return nullptr;
3944  }
3945  
3946  /// CreateRuntimeFunction - Create a new runtime function with the specified
3947  /// type and name.
3948  llvm::FunctionCallee
3949  CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3950                                       llvm::AttributeList ExtraAttrs, bool Local,
3951                                       bool AssumeConvergent) {
3952    if (AssumeConvergent) {
3953      ExtraAttrs =
3954          ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3955    }
3956  
3957    llvm::Constant *C =
3958        GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3959                                /*DontDefer=*/false, /*IsThunk=*/false,
3960                                ExtraAttrs);
3961  
3962    if (auto *F = dyn_cast<llvm::Function>(C)) {
3963      if (F->empty()) {
3964        F->setCallingConv(getRuntimeCC());
3965  
3966        // In Windows Itanium environments, try to mark runtime functions
3967        // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3968        // will link their standard library statically or dynamically. Marking
3969        // functions imported when they are not imported can cause linker errors
3970        // and warnings.
3971        if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3972            !getCodeGenOpts().LTOVisibilityPublicStd) {
3973          const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3974          if (!FD || FD->hasAttr<DLLImportAttr>()) {
3975            F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3976            F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3977          }
3978        }
3979        setDSOLocal(F);
3980      }
3981    }
3982  
3983    return {FTy, C};
3984  }
3985  
3986  /// isTypeConstant - Determine whether an object of this type can be emitted
3987  /// as a constant.
3988  ///
3989  /// If ExcludeCtor is true, the duration when the object's constructor runs
3990  /// will not be considered. The caller will need to verify that the object is
3991  /// not written to during its construction.
3992  bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3993    if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3994      return false;
3995  
3996    if (Context.getLangOpts().CPlusPlus) {
3997      if (const CXXRecordDecl *Record
3998            = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3999        return ExcludeCtor && !Record->hasMutableFields() &&
4000               Record->hasTrivialDestructor();
4001    }
4002  
4003    return true;
4004  }
4005  
4006  /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4007  /// create and return an llvm GlobalVariable with the specified type and address
4008  /// space. If there is something in the module with the specified name, return
4009  /// it potentially bitcasted to the right type.
4010  ///
4011  /// If D is non-null, it specifies a decl that correspond to this.  This is used
4012  /// to set the attributes on the global when it is first created.
4013  ///
4014  /// If IsForDefinition is true, it is guaranteed that an actual global with
4015  /// type Ty will be returned, not conversion of a variable with the same
4016  /// mangled name but some other type.
4017  llvm::Constant *
4018  CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4019                                       LangAS AddrSpace, const VarDecl *D,
4020                                       ForDefinition_t IsForDefinition) {
4021    // Lookup the entry, lazily creating it if necessary.
4022    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4023    unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4024    if (Entry) {
4025      if (WeakRefReferences.erase(Entry)) {
4026        if (D && !D->hasAttr<WeakAttr>())
4027          Entry->setLinkage(llvm::Function::ExternalLinkage);
4028      }
4029  
4030      // Handle dropped DLL attributes.
4031      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
4032        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4033  
4034      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4035        getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4036  
4037      if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4038        return Entry;
4039  
4040      // If there are two attempts to define the same mangled name, issue an
4041      // error.
4042      if (IsForDefinition && !Entry->isDeclaration()) {
4043        GlobalDecl OtherGD;
4044        const VarDecl *OtherD;
4045  
4046        // Check that D is not yet in DiagnosedConflictingDefinitions is required
4047        // to make sure that we issue an error only once.
4048        if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4049            (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4050            (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4051            OtherD->hasInit() &&
4052            DiagnosedConflictingDefinitions.insert(D).second) {
4053          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4054              << MangledName;
4055          getDiags().Report(OtherGD.getDecl()->getLocation(),
4056                            diag::note_previous_definition);
4057        }
4058      }
4059  
4060      // Make sure the result is of the correct type.
4061      if (Entry->getType()->getAddressSpace() != TargetAS) {
4062        return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4063                                                    Ty->getPointerTo(TargetAS));
4064      }
4065  
4066      // (If global is requested for a definition, we always need to create a new
4067      // global, not just return a bitcast.)
4068      if (!IsForDefinition)
4069        return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4070    }
4071  
4072    auto DAddrSpace = GetGlobalVarAddressSpace(D);
4073  
4074    auto *GV = new llvm::GlobalVariable(
4075        getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4076        MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4077        getContext().getTargetAddressSpace(DAddrSpace));
4078  
4079    // If we already created a global with the same mangled name (but different
4080    // type) before, take its name and remove it from its parent.
4081    if (Entry) {
4082      GV->takeName(Entry);
4083  
4084      if (!Entry->use_empty()) {
4085        llvm::Constant *NewPtrForOldDecl =
4086            llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4087        Entry->replaceAllUsesWith(NewPtrForOldDecl);
4088      }
4089  
4090      Entry->eraseFromParent();
4091    }
4092  
4093    // This is the first use or definition of a mangled name.  If there is a
4094    // deferred decl with this name, remember that we need to emit it at the end
4095    // of the file.
4096    auto DDI = DeferredDecls.find(MangledName);
4097    if (DDI != DeferredDecls.end()) {
4098      // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4099      // list, and remove it from DeferredDecls (since we don't need it anymore).
4100      addDeferredDeclToEmit(DDI->second);
4101      DeferredDecls.erase(DDI);
4102    }
4103  
4104    // Handle things which are present even on external declarations.
4105    if (D) {
4106      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4107        getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4108  
4109      // FIXME: This code is overly simple and should be merged with other global
4110      // handling.
4111      GV->setConstant(isTypeConstant(D->getType(), false));
4112  
4113      GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4114  
4115      setLinkageForGV(GV, D);
4116  
4117      if (D->getTLSKind()) {
4118        if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4119          CXXThreadLocals.push_back(D);
4120        setTLSMode(GV, *D);
4121      }
4122  
4123      setGVProperties(GV, D);
4124  
4125      // If required by the ABI, treat declarations of static data members with
4126      // inline initializers as definitions.
4127      if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4128        EmitGlobalVarDefinition(D);
4129      }
4130  
4131      // Emit section information for extern variables.
4132      if (D->hasExternalStorage()) {
4133        if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4134          GV->setSection(SA->getName());
4135      }
4136  
4137      // Handle XCore specific ABI requirements.
4138      if (getTriple().getArch() == llvm::Triple::xcore &&
4139          D->getLanguageLinkage() == CLanguageLinkage &&
4140          D->getType().isConstant(Context) &&
4141          isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4142        GV->setSection(".cp.rodata");
4143  
4144      // Check if we a have a const declaration with an initializer, we may be
4145      // able to emit it as available_externally to expose it's value to the
4146      // optimizer.
4147      if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4148          D->getType().isConstQualified() && !GV->hasInitializer() &&
4149          !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4150        const auto *Record =
4151            Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4152        bool HasMutableFields = Record && Record->hasMutableFields();
4153        if (!HasMutableFields) {
4154          const VarDecl *InitDecl;
4155          const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4156          if (InitExpr) {
4157            ConstantEmitter emitter(*this);
4158            llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4159            if (Init) {
4160              auto *InitType = Init->getType();
4161              if (GV->getValueType() != InitType) {
4162                // The type of the initializer does not match the definition.
4163                // This happens when an initializer has a different type from
4164                // the type of the global (because of padding at the end of a
4165                // structure for instance).
4166                GV->setName(StringRef());
4167                // Make a new global with the correct type, this is now guaranteed
4168                // to work.
4169                auto *NewGV = cast<llvm::GlobalVariable>(
4170                    GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4171                        ->stripPointerCasts());
4172  
4173                // Erase the old global, since it is no longer used.
4174                GV->eraseFromParent();
4175                GV = NewGV;
4176              } else {
4177                GV->setInitializer(Init);
4178                GV->setConstant(true);
4179                GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4180              }
4181              emitter.finalize(GV);
4182            }
4183          }
4184        }
4185      }
4186    }
4187  
4188    if (GV->isDeclaration()) {
4189      getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4190      // External HIP managed variables needed to be recorded for transformation
4191      // in both device and host compilations.
4192      if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4193          D->hasExternalStorage())
4194        getCUDARuntime().handleVarRegistration(D, *GV);
4195    }
4196  
4197    LangAS ExpectedAS =
4198        D ? D->getType().getAddressSpace()
4199          : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4200    assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4201    if (DAddrSpace != ExpectedAS) {
4202      return getTargetCodeGenInfo().performAddrSpaceCast(
4203          *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4204    }
4205  
4206    return GV;
4207  }
4208  
4209  llvm::Constant *
4210  CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4211    const Decl *D = GD.getDecl();
4212  
4213    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4214      return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4215                                  /*DontDefer=*/false, IsForDefinition);
4216  
4217    if (isa<CXXMethodDecl>(D)) {
4218      auto FInfo =
4219          &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4220      auto Ty = getTypes().GetFunctionType(*FInfo);
4221      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4222                               IsForDefinition);
4223    }
4224  
4225    if (isa<FunctionDecl>(D)) {
4226      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4227      llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4228      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4229                               IsForDefinition);
4230    }
4231  
4232    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4233  }
4234  
4235  llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4236      StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4237      unsigned Alignment) {
4238    llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4239    llvm::GlobalVariable *OldGV = nullptr;
4240  
4241    if (GV) {
4242      // Check if the variable has the right type.
4243      if (GV->getValueType() == Ty)
4244        return GV;
4245  
4246      // Because C++ name mangling, the only way we can end up with an already
4247      // existing global with the same name is if it has been declared extern "C".
4248      assert(GV->isDeclaration() && "Declaration has wrong type!");
4249      OldGV = GV;
4250    }
4251  
4252    // Create a new variable.
4253    GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4254                                  Linkage, nullptr, Name);
4255  
4256    if (OldGV) {
4257      // Replace occurrences of the old variable if needed.
4258      GV->takeName(OldGV);
4259  
4260      if (!OldGV->use_empty()) {
4261        llvm::Constant *NewPtrForOldDecl =
4262        llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4263        OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4264      }
4265  
4266      OldGV->eraseFromParent();
4267    }
4268  
4269    if (supportsCOMDAT() && GV->isWeakForLinker() &&
4270        !GV->hasAvailableExternallyLinkage())
4271      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4272  
4273    GV->setAlignment(llvm::MaybeAlign(Alignment));
4274  
4275    return GV;
4276  }
4277  
4278  /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4279  /// given global variable.  If Ty is non-null and if the global doesn't exist,
4280  /// then it will be created with the specified type instead of whatever the
4281  /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4282  /// that an actual global with type Ty will be returned, not conversion of a
4283  /// variable with the same mangled name but some other type.
4284  llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4285                                                    llvm::Type *Ty,
4286                                             ForDefinition_t IsForDefinition) {
4287    assert(D->hasGlobalStorage() && "Not a global variable");
4288    QualType ASTTy = D->getType();
4289    if (!Ty)
4290      Ty = getTypes().ConvertTypeForMem(ASTTy);
4291  
4292    StringRef MangledName = getMangledName(D);
4293    return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4294                                 IsForDefinition);
4295  }
4296  
4297  /// CreateRuntimeVariable - Create a new runtime global variable with the
4298  /// specified type and name.
4299  llvm::Constant *
4300  CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4301                                       StringRef Name) {
4302    LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4303                                                         : LangAS::Default;
4304    auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4305    setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4306    return Ret;
4307  }
4308  
4309  void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4310    assert(!D->getInit() && "Cannot emit definite definitions here!");
4311  
4312    StringRef MangledName = getMangledName(D);
4313    llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4314  
4315    // We already have a definition, not declaration, with the same mangled name.
4316    // Emitting of declaration is not required (and actually overwrites emitted
4317    // definition).
4318    if (GV && !GV->isDeclaration())
4319      return;
4320  
4321    // If we have not seen a reference to this variable yet, place it into the
4322    // deferred declarations table to be emitted if needed later.
4323    if (!MustBeEmitted(D) && !GV) {
4324        DeferredDecls[MangledName] = D;
4325        return;
4326    }
4327  
4328    // The tentative definition is the only definition.
4329    EmitGlobalVarDefinition(D);
4330  }
4331  
4332  void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4333    EmitExternalVarDeclaration(D);
4334  }
4335  
4336  CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4337    return Context.toCharUnitsFromBits(
4338        getDataLayout().getTypeStoreSizeInBits(Ty));
4339  }
4340  
4341  LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4342    if (LangOpts.OpenCL) {
4343      LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4344      assert(AS == LangAS::opencl_global ||
4345             AS == LangAS::opencl_global_device ||
4346             AS == LangAS::opencl_global_host ||
4347             AS == LangAS::opencl_constant ||
4348             AS == LangAS::opencl_local ||
4349             AS >= LangAS::FirstTargetAddressSpace);
4350      return AS;
4351    }
4352  
4353    if (LangOpts.SYCLIsDevice &&
4354        (!D || D->getType().getAddressSpace() == LangAS::Default))
4355      return LangAS::sycl_global;
4356  
4357    if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4358      if (D && D->hasAttr<CUDAConstantAttr>())
4359        return LangAS::cuda_constant;
4360      else if (D && D->hasAttr<CUDASharedAttr>())
4361        return LangAS::cuda_shared;
4362      else if (D && D->hasAttr<CUDADeviceAttr>())
4363        return LangAS::cuda_device;
4364      else if (D && D->getType().isConstQualified())
4365        return LangAS::cuda_constant;
4366      else
4367        return LangAS::cuda_device;
4368    }
4369  
4370    if (LangOpts.OpenMP) {
4371      LangAS AS;
4372      if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4373        return AS;
4374    }
4375    return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4376  }
4377  
4378  LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4379    // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4380    if (LangOpts.OpenCL)
4381      return LangAS::opencl_constant;
4382    if (LangOpts.SYCLIsDevice)
4383      return LangAS::sycl_global;
4384    if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4385      // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4386      // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4387      // with OpVariable instructions with Generic storage class which is not
4388      // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4389      // UniformConstant storage class is not viable as pointers to it may not be
4390      // casted to Generic pointers which are used to model HIP's "flat" pointers.
4391      return LangAS::cuda_device;
4392    if (auto AS = getTarget().getConstantAddressSpace())
4393      return AS.getValue();
4394    return LangAS::Default;
4395  }
4396  
4397  // In address space agnostic languages, string literals are in default address
4398  // space in AST. However, certain targets (e.g. amdgcn) request them to be
4399  // emitted in constant address space in LLVM IR. To be consistent with other
4400  // parts of AST, string literal global variables in constant address space
4401  // need to be casted to default address space before being put into address
4402  // map and referenced by other part of CodeGen.
4403  // In OpenCL, string literals are in constant address space in AST, therefore
4404  // they should not be casted to default address space.
4405  static llvm::Constant *
4406  castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4407                                         llvm::GlobalVariable *GV) {
4408    llvm::Constant *Cast = GV;
4409    if (!CGM.getLangOpts().OpenCL) {
4410      auto AS = CGM.GetGlobalConstantAddressSpace();
4411      if (AS != LangAS::Default)
4412        Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4413            CGM, GV, AS, LangAS::Default,
4414            GV->getValueType()->getPointerTo(
4415                CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4416    }
4417    return Cast;
4418  }
4419  
4420  template<typename SomeDecl>
4421  void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4422                                                 llvm::GlobalValue *GV) {
4423    if (!getLangOpts().CPlusPlus)
4424      return;
4425  
4426    // Must have 'used' attribute, or else inline assembly can't rely on
4427    // the name existing.
4428    if (!D->template hasAttr<UsedAttr>())
4429      return;
4430  
4431    // Must have internal linkage and an ordinary name.
4432    if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4433      return;
4434  
4435    // Must be in an extern "C" context. Entities declared directly within
4436    // a record are not extern "C" even if the record is in such a context.
4437    const SomeDecl *First = D->getFirstDecl();
4438    if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4439      return;
4440  
4441    // OK, this is an internal linkage entity inside an extern "C" linkage
4442    // specification. Make a note of that so we can give it the "expected"
4443    // mangled name if nothing else is using that name.
4444    std::pair<StaticExternCMap::iterator, bool> R =
4445        StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4446  
4447    // If we have multiple internal linkage entities with the same name
4448    // in extern "C" regions, none of them gets that name.
4449    if (!R.second)
4450      R.first->second = nullptr;
4451  }
4452  
4453  static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4454    if (!CGM.supportsCOMDAT())
4455      return false;
4456  
4457    if (D.hasAttr<SelectAnyAttr>())
4458      return true;
4459  
4460    GVALinkage Linkage;
4461    if (auto *VD = dyn_cast<VarDecl>(&D))
4462      Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4463    else
4464      Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4465  
4466    switch (Linkage) {
4467    case GVA_Internal:
4468    case GVA_AvailableExternally:
4469    case GVA_StrongExternal:
4470      return false;
4471    case GVA_DiscardableODR:
4472    case GVA_StrongODR:
4473      return true;
4474    }
4475    llvm_unreachable("No such linkage");
4476  }
4477  
4478  void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4479                                            llvm::GlobalObject &GO) {
4480    if (!shouldBeInCOMDAT(*this, D))
4481      return;
4482    GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4483  }
4484  
4485  /// Pass IsTentative as true if you want to create a tentative definition.
4486  void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4487                                              bool IsTentative) {
4488    // OpenCL global variables of sampler type are translated to function calls,
4489    // therefore no need to be translated.
4490    QualType ASTTy = D->getType();
4491    if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4492      return;
4493  
4494    // If this is OpenMP device, check if it is legal to emit this global
4495    // normally.
4496    if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4497        OpenMPRuntime->emitTargetGlobalVariable(D))
4498      return;
4499  
4500    llvm::TrackingVH<llvm::Constant> Init;
4501    bool NeedsGlobalCtor = false;
4502    bool NeedsGlobalDtor =
4503        D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4504  
4505    const VarDecl *InitDecl;
4506    const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4507  
4508    Optional<ConstantEmitter> emitter;
4509  
4510    // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4511    // as part of their declaration."  Sema has already checked for
4512    // error cases, so we just need to set Init to UndefValue.
4513    bool IsCUDASharedVar =
4514        getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4515    // Shadows of initialized device-side global variables are also left
4516    // undefined.
4517    // Managed Variables should be initialized on both host side and device side.
4518    bool IsCUDAShadowVar =
4519        !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4520        (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4521         D->hasAttr<CUDASharedAttr>());
4522    bool IsCUDADeviceShadowVar =
4523        getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4524        (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4525         D->getType()->isCUDADeviceBuiltinTextureType());
4526    if (getLangOpts().CUDA &&
4527        (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4528      Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4529    else if (D->hasAttr<LoaderUninitializedAttr>())
4530      Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4531    else if (!InitExpr) {
4532      // This is a tentative definition; tentative definitions are
4533      // implicitly initialized with { 0 }.
4534      //
4535      // Note that tentative definitions are only emitted at the end of
4536      // a translation unit, so they should never have incomplete
4537      // type. In addition, EmitTentativeDefinition makes sure that we
4538      // never attempt to emit a tentative definition if a real one
4539      // exists. A use may still exists, however, so we still may need
4540      // to do a RAUW.
4541      assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4542      Init = EmitNullConstant(D->getType());
4543    } else {
4544      initializedGlobalDecl = GlobalDecl(D);
4545      emitter.emplace(*this);
4546      llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4547      if (!Initializer) {
4548        QualType T = InitExpr->getType();
4549        if (D->getType()->isReferenceType())
4550          T = D->getType();
4551  
4552        if (getLangOpts().CPlusPlus) {
4553          Init = EmitNullConstant(T);
4554          NeedsGlobalCtor = true;
4555        } else {
4556          ErrorUnsupported(D, "static initializer");
4557          Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4558        }
4559      } else {
4560        Init = Initializer;
4561        // We don't need an initializer, so remove the entry for the delayed
4562        // initializer position (just in case this entry was delayed) if we
4563        // also don't need to register a destructor.
4564        if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4565          DelayedCXXInitPosition.erase(D);
4566      }
4567    }
4568  
4569    llvm::Type* InitType = Init->getType();
4570    llvm::Constant *Entry =
4571        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4572  
4573    // Strip off pointer casts if we got them.
4574    Entry = Entry->stripPointerCasts();
4575  
4576    // Entry is now either a Function or GlobalVariable.
4577    auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4578  
4579    // We have a definition after a declaration with the wrong type.
4580    // We must make a new GlobalVariable* and update everything that used OldGV
4581    // (a declaration or tentative definition) with the new GlobalVariable*
4582    // (which will be a definition).
4583    //
4584    // This happens if there is a prototype for a global (e.g.
4585    // "extern int x[];") and then a definition of a different type (e.g.
4586    // "int x[10];"). This also happens when an initializer has a different type
4587    // from the type of the global (this happens with unions).
4588    if (!GV || GV->getValueType() != InitType ||
4589        GV->getType()->getAddressSpace() !=
4590            getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4591  
4592      // Move the old entry aside so that we'll create a new one.
4593      Entry->setName(StringRef());
4594  
4595      // Make a new global with the correct type, this is now guaranteed to work.
4596      GV = cast<llvm::GlobalVariable>(
4597          GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4598              ->stripPointerCasts());
4599  
4600      // Replace all uses of the old global with the new global
4601      llvm::Constant *NewPtrForOldDecl =
4602          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4603                                                               Entry->getType());
4604      Entry->replaceAllUsesWith(NewPtrForOldDecl);
4605  
4606      // Erase the old global, since it is no longer used.
4607      cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4608    }
4609  
4610    MaybeHandleStaticInExternC(D, GV);
4611  
4612    if (D->hasAttr<AnnotateAttr>())
4613      AddGlobalAnnotations(D, GV);
4614  
4615    // Set the llvm linkage type as appropriate.
4616    llvm::GlobalValue::LinkageTypes Linkage =
4617        getLLVMLinkageVarDefinition(D, GV->isConstant());
4618  
4619    // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4620    // the device. [...]"
4621    // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4622    // __device__, declares a variable that: [...]
4623    // Is accessible from all the threads within the grid and from the host
4624    // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4625    // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4626    if (GV && LangOpts.CUDA) {
4627      if (LangOpts.CUDAIsDevice) {
4628        if (Linkage != llvm::GlobalValue::InternalLinkage &&
4629            (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4630             D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4631             D->getType()->isCUDADeviceBuiltinTextureType()))
4632          GV->setExternallyInitialized(true);
4633      } else {
4634        getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4635      }
4636      getCUDARuntime().handleVarRegistration(D, *GV);
4637    }
4638  
4639    GV->setInitializer(Init);
4640    if (emitter)
4641      emitter->finalize(GV);
4642  
4643    // If it is safe to mark the global 'constant', do so now.
4644    GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4645                    isTypeConstant(D->getType(), true));
4646  
4647    // If it is in a read-only section, mark it 'constant'.
4648    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4649      const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4650      if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4651        GV->setConstant(true);
4652    }
4653  
4654    GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4655  
4656    // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4657    // function is only defined alongside the variable, not also alongside
4658    // callers. Normally, all accesses to a thread_local go through the
4659    // thread-wrapper in order to ensure initialization has occurred, underlying
4660    // variable will never be used other than the thread-wrapper, so it can be
4661    // converted to internal linkage.
4662    //
4663    // However, if the variable has the 'constinit' attribute, it _can_ be
4664    // referenced directly, without calling the thread-wrapper, so the linkage
4665    // must not be changed.
4666    //
4667    // Additionally, if the variable isn't plain external linkage, e.g. if it's
4668    // weak or linkonce, the de-duplication semantics are important to preserve,
4669    // so we don't change the linkage.
4670    if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4671        Linkage == llvm::GlobalValue::ExternalLinkage &&
4672        Context.getTargetInfo().getTriple().isOSDarwin() &&
4673        !D->hasAttr<ConstInitAttr>())
4674      Linkage = llvm::GlobalValue::InternalLinkage;
4675  
4676    GV->setLinkage(Linkage);
4677    if (D->hasAttr<DLLImportAttr>())
4678      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4679    else if (D->hasAttr<DLLExportAttr>())
4680      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4681    else
4682      GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4683  
4684    if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4685      // common vars aren't constant even if declared const.
4686      GV->setConstant(false);
4687      // Tentative definition of global variables may be initialized with
4688      // non-zero null pointers. In this case they should have weak linkage
4689      // since common linkage must have zero initializer and must not have
4690      // explicit section therefore cannot have non-zero initial value.
4691      if (!GV->getInitializer()->isNullValue())
4692        GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4693    }
4694  
4695    setNonAliasAttributes(D, GV);
4696  
4697    if (D->getTLSKind() && !GV->isThreadLocal()) {
4698      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4699        CXXThreadLocals.push_back(D);
4700      setTLSMode(GV, *D);
4701    }
4702  
4703    maybeSetTrivialComdat(*D, *GV);
4704  
4705    // Emit the initializer function if necessary.
4706    if (NeedsGlobalCtor || NeedsGlobalDtor)
4707      EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4708  
4709    SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4710  
4711    // Emit global variable debug information.
4712    if (CGDebugInfo *DI = getModuleDebugInfo())
4713      if (getCodeGenOpts().hasReducedDebugInfo())
4714        DI->EmitGlobalVariable(GV, D);
4715  }
4716  
4717  void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4718    if (CGDebugInfo *DI = getModuleDebugInfo())
4719      if (getCodeGenOpts().hasReducedDebugInfo()) {
4720        QualType ASTTy = D->getType();
4721        llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4722        llvm::Constant *GV =
4723            GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4724        DI->EmitExternalVariable(
4725            cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4726      }
4727  }
4728  
4729  static bool isVarDeclStrongDefinition(const ASTContext &Context,
4730                                        CodeGenModule &CGM, const VarDecl *D,
4731                                        bool NoCommon) {
4732    // Don't give variables common linkage if -fno-common was specified unless it
4733    // was overridden by a NoCommon attribute.
4734    if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4735      return true;
4736  
4737    // C11 6.9.2/2:
4738    //   A declaration of an identifier for an object that has file scope without
4739    //   an initializer, and without a storage-class specifier or with the
4740    //   storage-class specifier static, constitutes a tentative definition.
4741    if (D->getInit() || D->hasExternalStorage())
4742      return true;
4743  
4744    // A variable cannot be both common and exist in a section.
4745    if (D->hasAttr<SectionAttr>())
4746      return true;
4747  
4748    // A variable cannot be both common and exist in a section.
4749    // We don't try to determine which is the right section in the front-end.
4750    // If no specialized section name is applicable, it will resort to default.
4751    if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4752        D->hasAttr<PragmaClangDataSectionAttr>() ||
4753        D->hasAttr<PragmaClangRelroSectionAttr>() ||
4754        D->hasAttr<PragmaClangRodataSectionAttr>())
4755      return true;
4756  
4757    // Thread local vars aren't considered common linkage.
4758    if (D->getTLSKind())
4759      return true;
4760  
4761    // Tentative definitions marked with WeakImportAttr are true definitions.
4762    if (D->hasAttr<WeakImportAttr>())
4763      return true;
4764  
4765    // A variable cannot be both common and exist in a comdat.
4766    if (shouldBeInCOMDAT(CGM, *D))
4767      return true;
4768  
4769    // Declarations with a required alignment do not have common linkage in MSVC
4770    // mode.
4771    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4772      if (D->hasAttr<AlignedAttr>())
4773        return true;
4774      QualType VarType = D->getType();
4775      if (Context.isAlignmentRequired(VarType))
4776        return true;
4777  
4778      if (const auto *RT = VarType->getAs<RecordType>()) {
4779        const RecordDecl *RD = RT->getDecl();
4780        for (const FieldDecl *FD : RD->fields()) {
4781          if (FD->isBitField())
4782            continue;
4783          if (FD->hasAttr<AlignedAttr>())
4784            return true;
4785          if (Context.isAlignmentRequired(FD->getType()))
4786            return true;
4787        }
4788      }
4789    }
4790  
4791    // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4792    // common symbols, so symbols with greater alignment requirements cannot be
4793    // common.
4794    // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4795    // alignments for common symbols via the aligncomm directive, so this
4796    // restriction only applies to MSVC environments.
4797    if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4798        Context.getTypeAlignIfKnown(D->getType()) >
4799            Context.toBits(CharUnits::fromQuantity(32)))
4800      return true;
4801  
4802    return false;
4803  }
4804  
4805  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4806      const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4807    if (Linkage == GVA_Internal)
4808      return llvm::Function::InternalLinkage;
4809  
4810    if (D->hasAttr<WeakAttr>()) {
4811      if (IsConstantVariable)
4812        return llvm::GlobalVariable::WeakODRLinkage;
4813      else
4814        return llvm::GlobalVariable::WeakAnyLinkage;
4815    }
4816  
4817    if (const auto *FD = D->getAsFunction())
4818      if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4819        return llvm::GlobalVariable::LinkOnceAnyLinkage;
4820  
4821    // We are guaranteed to have a strong definition somewhere else,
4822    // so we can use available_externally linkage.
4823    if (Linkage == GVA_AvailableExternally)
4824      return llvm::GlobalValue::AvailableExternallyLinkage;
4825  
4826    // Note that Apple's kernel linker doesn't support symbol
4827    // coalescing, so we need to avoid linkonce and weak linkages there.
4828    // Normally, this means we just map to internal, but for explicit
4829    // instantiations we'll map to external.
4830  
4831    // In C++, the compiler has to emit a definition in every translation unit
4832    // that references the function.  We should use linkonce_odr because
4833    // a) if all references in this translation unit are optimized away, we
4834    // don't need to codegen it.  b) if the function persists, it needs to be
4835    // merged with other definitions. c) C++ has the ODR, so we know the
4836    // definition is dependable.
4837    if (Linkage == GVA_DiscardableODR)
4838      return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4839                                              : llvm::Function::InternalLinkage;
4840  
4841    // An explicit instantiation of a template has weak linkage, since
4842    // explicit instantiations can occur in multiple translation units
4843    // and must all be equivalent. However, we are not allowed to
4844    // throw away these explicit instantiations.
4845    //
4846    // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4847    // so say that CUDA templates are either external (for kernels) or internal.
4848    // This lets llvm perform aggressive inter-procedural optimizations. For
4849    // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4850    // therefore we need to follow the normal linkage paradigm.
4851    if (Linkage == GVA_StrongODR) {
4852      if (getLangOpts().AppleKext)
4853        return llvm::Function::ExternalLinkage;
4854      if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4855          !getLangOpts().GPURelocatableDeviceCode)
4856        return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4857                                            : llvm::Function::InternalLinkage;
4858      return llvm::Function::WeakODRLinkage;
4859    }
4860  
4861    // C++ doesn't have tentative definitions and thus cannot have common
4862    // linkage.
4863    if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4864        !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4865                                   CodeGenOpts.NoCommon))
4866      return llvm::GlobalVariable::CommonLinkage;
4867  
4868    // selectany symbols are externally visible, so use weak instead of
4869    // linkonce.  MSVC optimizes away references to const selectany globals, so
4870    // all definitions should be the same and ODR linkage should be used.
4871    // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4872    if (D->hasAttr<SelectAnyAttr>())
4873      return llvm::GlobalVariable::WeakODRLinkage;
4874  
4875    // Otherwise, we have strong external linkage.
4876    assert(Linkage == GVA_StrongExternal);
4877    return llvm::GlobalVariable::ExternalLinkage;
4878  }
4879  
4880  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4881      const VarDecl *VD, bool IsConstant) {
4882    GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4883    return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4884  }
4885  
4886  /// Replace the uses of a function that was declared with a non-proto type.
4887  /// We want to silently drop extra arguments from call sites
4888  static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4889                                            llvm::Function *newFn) {
4890    // Fast path.
4891    if (old->use_empty()) return;
4892  
4893    llvm::Type *newRetTy = newFn->getReturnType();
4894    SmallVector<llvm::Value*, 4> newArgs;
4895  
4896    for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4897           ui != ue; ) {
4898      llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4899      llvm::User *user = use->getUser();
4900  
4901      // Recognize and replace uses of bitcasts.  Most calls to
4902      // unprototyped functions will use bitcasts.
4903      if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4904        if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4905          replaceUsesOfNonProtoConstant(bitcast, newFn);
4906        continue;
4907      }
4908  
4909      // Recognize calls to the function.
4910      llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4911      if (!callSite) continue;
4912      if (!callSite->isCallee(&*use))
4913        continue;
4914  
4915      // If the return types don't match exactly, then we can't
4916      // transform this call unless it's dead.
4917      if (callSite->getType() != newRetTy && !callSite->use_empty())
4918        continue;
4919  
4920      // Get the call site's attribute list.
4921      SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4922      llvm::AttributeList oldAttrs = callSite->getAttributes();
4923  
4924      // If the function was passed too few arguments, don't transform.
4925      unsigned newNumArgs = newFn->arg_size();
4926      if (callSite->arg_size() < newNumArgs)
4927        continue;
4928  
4929      // If extra arguments were passed, we silently drop them.
4930      // If any of the types mismatch, we don't transform.
4931      unsigned argNo = 0;
4932      bool dontTransform = false;
4933      for (llvm::Argument &A : newFn->args()) {
4934        if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4935          dontTransform = true;
4936          break;
4937        }
4938  
4939        // Add any parameter attributes.
4940        newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4941        argNo++;
4942      }
4943      if (dontTransform)
4944        continue;
4945  
4946      // Okay, we can transform this.  Create the new call instruction and copy
4947      // over the required information.
4948      newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4949  
4950      // Copy over any operand bundles.
4951      SmallVector<llvm::OperandBundleDef, 1> newBundles;
4952      callSite->getOperandBundlesAsDefs(newBundles);
4953  
4954      llvm::CallBase *newCall;
4955      if (isa<llvm::CallInst>(callSite)) {
4956        newCall =
4957            llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4958      } else {
4959        auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4960        newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4961                                           oldInvoke->getUnwindDest(), newArgs,
4962                                           newBundles, "", callSite);
4963      }
4964      newArgs.clear(); // for the next iteration
4965  
4966      if (!newCall->getType()->isVoidTy())
4967        newCall->takeName(callSite);
4968      newCall->setAttributes(
4969          llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4970                                   oldAttrs.getRetAttrs(), newArgAttrs));
4971      newCall->setCallingConv(callSite->getCallingConv());
4972  
4973      // Finally, remove the old call, replacing any uses with the new one.
4974      if (!callSite->use_empty())
4975        callSite->replaceAllUsesWith(newCall);
4976  
4977      // Copy debug location attached to CI.
4978      if (callSite->getDebugLoc())
4979        newCall->setDebugLoc(callSite->getDebugLoc());
4980  
4981      callSite->eraseFromParent();
4982    }
4983  }
4984  
4985  /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4986  /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4987  /// existing call uses of the old function in the module, this adjusts them to
4988  /// call the new function directly.
4989  ///
4990  /// This is not just a cleanup: the always_inline pass requires direct calls to
4991  /// functions to be able to inline them.  If there is a bitcast in the way, it
4992  /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4993  /// run at -O0.
4994  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4995                                                        llvm::Function *NewFn) {
4996    // If we're redefining a global as a function, don't transform it.
4997    if (!isa<llvm::Function>(Old)) return;
4998  
4999    replaceUsesOfNonProtoConstant(Old, NewFn);
5000  }
5001  
5002  void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5003    auto DK = VD->isThisDeclarationADefinition();
5004    if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5005      return;
5006  
5007    TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5008    // If we have a definition, this might be a deferred decl. If the
5009    // instantiation is explicit, make sure we emit it at the end.
5010    if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5011      GetAddrOfGlobalVar(VD);
5012  
5013    EmitTopLevelDecl(VD);
5014  }
5015  
5016  void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5017                                                   llvm::GlobalValue *GV) {
5018    const auto *D = cast<FunctionDecl>(GD.getDecl());
5019  
5020    // Compute the function info and LLVM type.
5021    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5022    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5023  
5024    // Get or create the prototype for the function.
5025    if (!GV || (GV->getValueType() != Ty))
5026      GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5027                                                     /*DontDefer=*/true,
5028                                                     ForDefinition));
5029  
5030    // Already emitted.
5031    if (!GV->isDeclaration())
5032      return;
5033  
5034    // We need to set linkage and visibility on the function before
5035    // generating code for it because various parts of IR generation
5036    // want to propagate this information down (e.g. to local static
5037    // declarations).
5038    auto *Fn = cast<llvm::Function>(GV);
5039    setFunctionLinkage(GD, Fn);
5040  
5041    // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5042    setGVProperties(Fn, GD);
5043  
5044    MaybeHandleStaticInExternC(D, Fn);
5045  
5046    maybeSetTrivialComdat(*D, *Fn);
5047  
5048    // Set CodeGen attributes that represent floating point environment.
5049    setLLVMFunctionFEnvAttributes(D, Fn);
5050  
5051    CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5052  
5053    setNonAliasAttributes(GD, Fn);
5054    SetLLVMFunctionAttributesForDefinition(D, Fn);
5055  
5056    if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5057      AddGlobalCtor(Fn, CA->getPriority());
5058    if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5059      AddGlobalDtor(Fn, DA->getPriority(), true);
5060    if (D->hasAttr<AnnotateAttr>())
5061      AddGlobalAnnotations(D, Fn);
5062  }
5063  
5064  void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5065    const auto *D = cast<ValueDecl>(GD.getDecl());
5066    const AliasAttr *AA = D->getAttr<AliasAttr>();
5067    assert(AA && "Not an alias?");
5068  
5069    StringRef MangledName = getMangledName(GD);
5070  
5071    if (AA->getAliasee() == MangledName) {
5072      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5073      return;
5074    }
5075  
5076    // If there is a definition in the module, then it wins over the alias.
5077    // This is dubious, but allow it to be safe.  Just ignore the alias.
5078    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5079    if (Entry && !Entry->isDeclaration())
5080      return;
5081  
5082    Aliases.push_back(GD);
5083  
5084    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5085  
5086    // Create a reference to the named value.  This ensures that it is emitted
5087    // if a deferred decl.
5088    llvm::Constant *Aliasee;
5089    llvm::GlobalValue::LinkageTypes LT;
5090    if (isa<llvm::FunctionType>(DeclTy)) {
5091      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5092                                        /*ForVTable=*/false);
5093      LT = getFunctionLinkage(GD);
5094    } else {
5095      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5096                                      /*D=*/nullptr);
5097      if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5098        LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5099      else
5100        LT = getFunctionLinkage(GD);
5101    }
5102  
5103    // Create the new alias itself, but don't set a name yet.
5104    unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5105    auto *GA =
5106        llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5107  
5108    if (Entry) {
5109      if (GA->getAliasee() == Entry) {
5110        Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5111        return;
5112      }
5113  
5114      assert(Entry->isDeclaration());
5115  
5116      // If there is a declaration in the module, then we had an extern followed
5117      // by the alias, as in:
5118      //   extern int test6();
5119      //   ...
5120      //   int test6() __attribute__((alias("test7")));
5121      //
5122      // Remove it and replace uses of it with the alias.
5123      GA->takeName(Entry);
5124  
5125      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5126                                                            Entry->getType()));
5127      Entry->eraseFromParent();
5128    } else {
5129      GA->setName(MangledName);
5130    }
5131  
5132    // Set attributes which are particular to an alias; this is a
5133    // specialization of the attributes which may be set on a global
5134    // variable/function.
5135    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5136        D->isWeakImported()) {
5137      GA->setLinkage(llvm::Function::WeakAnyLinkage);
5138    }
5139  
5140    if (const auto *VD = dyn_cast<VarDecl>(D))
5141      if (VD->getTLSKind())
5142        setTLSMode(GA, *VD);
5143  
5144    SetCommonAttributes(GD, GA);
5145  }
5146  
5147  void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5148    const auto *D = cast<ValueDecl>(GD.getDecl());
5149    const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5150    assert(IFA && "Not an ifunc?");
5151  
5152    StringRef MangledName = getMangledName(GD);
5153  
5154    if (IFA->getResolver() == MangledName) {
5155      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5156      return;
5157    }
5158  
5159    // Report an error if some definition overrides ifunc.
5160    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5161    if (Entry && !Entry->isDeclaration()) {
5162      GlobalDecl OtherGD;
5163      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5164          DiagnosedConflictingDefinitions.insert(GD).second) {
5165        Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5166            << MangledName;
5167        Diags.Report(OtherGD.getDecl()->getLocation(),
5168                     diag::note_previous_definition);
5169      }
5170      return;
5171    }
5172  
5173    Aliases.push_back(GD);
5174  
5175    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5176    llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5177    llvm::Constant *Resolver =
5178        GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5179                                /*ForVTable=*/false);
5180    llvm::GlobalIFunc *GIF =
5181        llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5182                                  "", Resolver, &getModule());
5183    if (Entry) {
5184      if (GIF->getResolver() == Entry) {
5185        Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5186        return;
5187      }
5188      assert(Entry->isDeclaration());
5189  
5190      // If there is a declaration in the module, then we had an extern followed
5191      // by the ifunc, as in:
5192      //   extern int test();
5193      //   ...
5194      //   int test() __attribute__((ifunc("resolver")));
5195      //
5196      // Remove it and replace uses of it with the ifunc.
5197      GIF->takeName(Entry);
5198  
5199      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5200                                                            Entry->getType()));
5201      Entry->eraseFromParent();
5202    } else
5203      GIF->setName(MangledName);
5204  
5205    SetCommonAttributes(GD, GIF);
5206  }
5207  
5208  llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5209                                              ArrayRef<llvm::Type*> Tys) {
5210    return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5211                                           Tys);
5212  }
5213  
5214  static llvm::StringMapEntry<llvm::GlobalVariable *> &
5215  GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5216                           const StringLiteral *Literal, bool TargetIsLSB,
5217                           bool &IsUTF16, unsigned &StringLength) {
5218    StringRef String = Literal->getString();
5219    unsigned NumBytes = String.size();
5220  
5221    // Check for simple case.
5222    if (!Literal->containsNonAsciiOrNull()) {
5223      StringLength = NumBytes;
5224      return *Map.insert(std::make_pair(String, nullptr)).first;
5225    }
5226  
5227    // Otherwise, convert the UTF8 literals into a string of shorts.
5228    IsUTF16 = true;
5229  
5230    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5231    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5232    llvm::UTF16 *ToPtr = &ToBuf[0];
5233  
5234    (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5235                                   ToPtr + NumBytes, llvm::strictConversion);
5236  
5237    // ConvertUTF8toUTF16 returns the length in ToPtr.
5238    StringLength = ToPtr - &ToBuf[0];
5239  
5240    // Add an explicit null.
5241    *ToPtr = 0;
5242    return *Map.insert(std::make_pair(
5243                           StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5244                                     (StringLength + 1) * 2),
5245                           nullptr)).first;
5246  }
5247  
5248  ConstantAddress
5249  CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5250    unsigned StringLength = 0;
5251    bool isUTF16 = false;
5252    llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5253        GetConstantCFStringEntry(CFConstantStringMap, Literal,
5254                                 getDataLayout().isLittleEndian(), isUTF16,
5255                                 StringLength);
5256  
5257    if (auto *C = Entry.second)
5258      return ConstantAddress(
5259          C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5260  
5261    llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5262    llvm::Constant *Zeros[] = { Zero, Zero };
5263  
5264    const ASTContext &Context = getContext();
5265    const llvm::Triple &Triple = getTriple();
5266  
5267    const auto CFRuntime = getLangOpts().CFRuntime;
5268    const bool IsSwiftABI =
5269        static_cast<unsigned>(CFRuntime) >=
5270        static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5271    const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5272  
5273    // If we don't already have it, get __CFConstantStringClassReference.
5274    if (!CFConstantStringClassRef) {
5275      const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5276      llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5277      Ty = llvm::ArrayType::get(Ty, 0);
5278  
5279      switch (CFRuntime) {
5280      default: break;
5281      case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5282      case LangOptions::CoreFoundationABI::Swift5_0:
5283        CFConstantStringClassName =
5284            Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5285                                : "$s10Foundation19_NSCFConstantStringCN";
5286        Ty = IntPtrTy;
5287        break;
5288      case LangOptions::CoreFoundationABI::Swift4_2:
5289        CFConstantStringClassName =
5290            Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5291                                : "$S10Foundation19_NSCFConstantStringCN";
5292        Ty = IntPtrTy;
5293        break;
5294      case LangOptions::CoreFoundationABI::Swift4_1:
5295        CFConstantStringClassName =
5296            Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5297                                : "__T010Foundation19_NSCFConstantStringCN";
5298        Ty = IntPtrTy;
5299        break;
5300      }
5301  
5302      llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5303  
5304      if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5305        llvm::GlobalValue *GV = nullptr;
5306  
5307        if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5308          IdentifierInfo &II = Context.Idents.get(GV->getName());
5309          TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5310          DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5311  
5312          const VarDecl *VD = nullptr;
5313          for (const auto *Result : DC->lookup(&II))
5314            if ((VD = dyn_cast<VarDecl>(Result)))
5315              break;
5316  
5317          if (Triple.isOSBinFormatELF()) {
5318            if (!VD)
5319              GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5320          } else {
5321            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5322            if (!VD || !VD->hasAttr<DLLExportAttr>())
5323              GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5324            else
5325              GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5326          }
5327  
5328          setDSOLocal(GV);
5329        }
5330      }
5331  
5332      // Decay array -> ptr
5333      CFConstantStringClassRef =
5334          IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5335                     : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5336    }
5337  
5338    QualType CFTy = Context.getCFConstantStringType();
5339  
5340    auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5341  
5342    ConstantInitBuilder Builder(*this);
5343    auto Fields = Builder.beginStruct(STy);
5344  
5345    // Class pointer.
5346    Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5347  
5348    // Flags.
5349    if (IsSwiftABI) {
5350      Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5351      Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5352    } else {
5353      Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5354    }
5355  
5356    // String pointer.
5357    llvm::Constant *C = nullptr;
5358    if (isUTF16) {
5359      auto Arr = llvm::makeArrayRef(
5360          reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5361          Entry.first().size() / 2);
5362      C = llvm::ConstantDataArray::get(VMContext, Arr);
5363    } else {
5364      C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5365    }
5366  
5367    // Note: -fwritable-strings doesn't make the backing store strings of
5368    // CFStrings writable. (See <rdar://problem/10657500>)
5369    auto *GV =
5370        new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5371                                 llvm::GlobalValue::PrivateLinkage, C, ".str");
5372    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5373    // Don't enforce the target's minimum global alignment, since the only use
5374    // of the string is via this class initializer.
5375    CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5376                              : Context.getTypeAlignInChars(Context.CharTy);
5377    GV->setAlignment(Align.getAsAlign());
5378  
5379    // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5380    // Without it LLVM can merge the string with a non unnamed_addr one during
5381    // LTO.  Doing that changes the section it ends in, which surprises ld64.
5382    if (Triple.isOSBinFormatMachO())
5383      GV->setSection(isUTF16 ? "__TEXT,__ustring"
5384                             : "__TEXT,__cstring,cstring_literals");
5385    // Make sure the literal ends up in .rodata to allow for safe ICF and for
5386    // the static linker to adjust permissions to read-only later on.
5387    else if (Triple.isOSBinFormatELF())
5388      GV->setSection(".rodata");
5389  
5390    // String.
5391    llvm::Constant *Str =
5392        llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5393  
5394    if (isUTF16)
5395      // Cast the UTF16 string to the correct type.
5396      Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5397    Fields.add(Str);
5398  
5399    // String length.
5400    llvm::IntegerType *LengthTy =
5401        llvm::IntegerType::get(getModule().getContext(),
5402                               Context.getTargetInfo().getLongWidth());
5403    if (IsSwiftABI) {
5404      if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5405          CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5406        LengthTy = Int32Ty;
5407      else
5408        LengthTy = IntPtrTy;
5409    }
5410    Fields.addInt(LengthTy, StringLength);
5411  
5412    // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5413    // properly aligned on 32-bit platforms.
5414    CharUnits Alignment =
5415        IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5416  
5417    // The struct.
5418    GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5419                                      /*isConstant=*/false,
5420                                      llvm::GlobalVariable::PrivateLinkage);
5421    GV->addAttribute("objc_arc_inert");
5422    switch (Triple.getObjectFormat()) {
5423    case llvm::Triple::UnknownObjectFormat:
5424      llvm_unreachable("unknown file format");
5425    case llvm::Triple::GOFF:
5426      llvm_unreachable("GOFF is not yet implemented");
5427    case llvm::Triple::XCOFF:
5428      llvm_unreachable("XCOFF is not yet implemented");
5429    case llvm::Triple::COFF:
5430    case llvm::Triple::ELF:
5431    case llvm::Triple::Wasm:
5432      GV->setSection("cfstring");
5433      break;
5434    case llvm::Triple::MachO:
5435      GV->setSection("__DATA,__cfstring");
5436      break;
5437    }
5438    Entry.second = GV;
5439  
5440    return ConstantAddress(GV, GV->getValueType(), Alignment);
5441  }
5442  
5443  bool CodeGenModule::getExpressionLocationsEnabled() const {
5444    return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5445  }
5446  
5447  QualType CodeGenModule::getObjCFastEnumerationStateType() {
5448    if (ObjCFastEnumerationStateType.isNull()) {
5449      RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5450      D->startDefinition();
5451  
5452      QualType FieldTypes[] = {
5453        Context.UnsignedLongTy,
5454        Context.getPointerType(Context.getObjCIdType()),
5455        Context.getPointerType(Context.UnsignedLongTy),
5456        Context.getConstantArrayType(Context.UnsignedLongTy,
5457                             llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5458      };
5459  
5460      for (size_t i = 0; i < 4; ++i) {
5461        FieldDecl *Field = FieldDecl::Create(Context,
5462                                             D,
5463                                             SourceLocation(),
5464                                             SourceLocation(), nullptr,
5465                                             FieldTypes[i], /*TInfo=*/nullptr,
5466                                             /*BitWidth=*/nullptr,
5467                                             /*Mutable=*/false,
5468                                             ICIS_NoInit);
5469        Field->setAccess(AS_public);
5470        D->addDecl(Field);
5471      }
5472  
5473      D->completeDefinition();
5474      ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5475    }
5476  
5477    return ObjCFastEnumerationStateType;
5478  }
5479  
5480  llvm::Constant *
5481  CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5482    assert(!E->getType()->isPointerType() && "Strings are always arrays");
5483  
5484    // Don't emit it as the address of the string, emit the string data itself
5485    // as an inline array.
5486    if (E->getCharByteWidth() == 1) {
5487      SmallString<64> Str(E->getString());
5488  
5489      // Resize the string to the right size, which is indicated by its type.
5490      const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5491      Str.resize(CAT->getSize().getZExtValue());
5492      return llvm::ConstantDataArray::getString(VMContext, Str, false);
5493    }
5494  
5495    auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5496    llvm::Type *ElemTy = AType->getElementType();
5497    unsigned NumElements = AType->getNumElements();
5498  
5499    // Wide strings have either 2-byte or 4-byte elements.
5500    if (ElemTy->getPrimitiveSizeInBits() == 16) {
5501      SmallVector<uint16_t, 32> Elements;
5502      Elements.reserve(NumElements);
5503  
5504      for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5505        Elements.push_back(E->getCodeUnit(i));
5506      Elements.resize(NumElements);
5507      return llvm::ConstantDataArray::get(VMContext, Elements);
5508    }
5509  
5510    assert(ElemTy->getPrimitiveSizeInBits() == 32);
5511    SmallVector<uint32_t, 32> Elements;
5512    Elements.reserve(NumElements);
5513  
5514    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5515      Elements.push_back(E->getCodeUnit(i));
5516    Elements.resize(NumElements);
5517    return llvm::ConstantDataArray::get(VMContext, Elements);
5518  }
5519  
5520  static llvm::GlobalVariable *
5521  GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5522                        CodeGenModule &CGM, StringRef GlobalName,
5523                        CharUnits Alignment) {
5524    unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5525        CGM.GetGlobalConstantAddressSpace());
5526  
5527    llvm::Module &M = CGM.getModule();
5528    // Create a global variable for this string
5529    auto *GV = new llvm::GlobalVariable(
5530        M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5531        nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5532    GV->setAlignment(Alignment.getAsAlign());
5533    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5534    if (GV->isWeakForLinker()) {
5535      assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5536      GV->setComdat(M.getOrInsertComdat(GV->getName()));
5537    }
5538    CGM.setDSOLocal(GV);
5539  
5540    return GV;
5541  }
5542  
5543  /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5544  /// constant array for the given string literal.
5545  ConstantAddress
5546  CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5547                                                    StringRef Name) {
5548    CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5549  
5550    llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5551    llvm::GlobalVariable **Entry = nullptr;
5552    if (!LangOpts.WritableStrings) {
5553      Entry = &ConstantStringMap[C];
5554      if (auto GV = *Entry) {
5555        if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5556          GV->setAlignment(Alignment.getAsAlign());
5557        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5558                               GV->getValueType(), Alignment);
5559      }
5560    }
5561  
5562    SmallString<256> MangledNameBuffer;
5563    StringRef GlobalVariableName;
5564    llvm::GlobalValue::LinkageTypes LT;
5565  
5566    // Mangle the string literal if that's how the ABI merges duplicate strings.
5567    // Don't do it if they are writable, since we don't want writes in one TU to
5568    // affect strings in another.
5569    if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5570        !LangOpts.WritableStrings) {
5571      llvm::raw_svector_ostream Out(MangledNameBuffer);
5572      getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5573      LT = llvm::GlobalValue::LinkOnceODRLinkage;
5574      GlobalVariableName = MangledNameBuffer;
5575    } else {
5576      LT = llvm::GlobalValue::PrivateLinkage;
5577      GlobalVariableName = Name;
5578    }
5579  
5580    auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5581    if (Entry)
5582      *Entry = GV;
5583  
5584    SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5585                                    QualType());
5586  
5587    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5588                           GV->getValueType(), Alignment);
5589  }
5590  
5591  /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5592  /// array for the given ObjCEncodeExpr node.
5593  ConstantAddress
5594  CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5595    std::string Str;
5596    getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5597  
5598    return GetAddrOfConstantCString(Str);
5599  }
5600  
5601  /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5602  /// the literal and a terminating '\0' character.
5603  /// The result has pointer to array type.
5604  ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5605      const std::string &Str, const char *GlobalName) {
5606    StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5607    CharUnits Alignment =
5608      getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5609  
5610    llvm::Constant *C =
5611        llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5612  
5613    // Don't share any string literals if strings aren't constant.
5614    llvm::GlobalVariable **Entry = nullptr;
5615    if (!LangOpts.WritableStrings) {
5616      Entry = &ConstantStringMap[C];
5617      if (auto GV = *Entry) {
5618        if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5619          GV->setAlignment(Alignment.getAsAlign());
5620        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5621                               GV->getValueType(), Alignment);
5622      }
5623    }
5624  
5625    // Get the default prefix if a name wasn't specified.
5626    if (!GlobalName)
5627      GlobalName = ".str";
5628    // Create a global variable for this.
5629    auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5630                                    GlobalName, Alignment);
5631    if (Entry)
5632      *Entry = GV;
5633  
5634    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5635                           GV->getValueType(), Alignment);
5636  }
5637  
5638  ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5639      const MaterializeTemporaryExpr *E, const Expr *Init) {
5640    assert((E->getStorageDuration() == SD_Static ||
5641            E->getStorageDuration() == SD_Thread) && "not a global temporary");
5642    const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5643  
5644    // If we're not materializing a subobject of the temporary, keep the
5645    // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5646    QualType MaterializedType = Init->getType();
5647    if (Init == E->getSubExpr())
5648      MaterializedType = E->getType();
5649  
5650    CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5651  
5652    auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5653    if (!InsertResult.second) {
5654      // We've seen this before: either we already created it or we're in the
5655      // process of doing so.
5656      if (!InsertResult.first->second) {
5657        // We recursively re-entered this function, probably during emission of
5658        // the initializer. Create a placeholder. We'll clean this up in the
5659        // outer call, at the end of this function.
5660        llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5661        InsertResult.first->second = new llvm::GlobalVariable(
5662            getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5663            nullptr);
5664      }
5665      return ConstantAddress(
5666          InsertResult.first->second,
5667          InsertResult.first->second->getType()->getPointerElementType(), Align);
5668    }
5669  
5670    // FIXME: If an externally-visible declaration extends multiple temporaries,
5671    // we need to give each temporary the same name in every translation unit (and
5672    // we also need to make the temporaries externally-visible).
5673    SmallString<256> Name;
5674    llvm::raw_svector_ostream Out(Name);
5675    getCXXABI().getMangleContext().mangleReferenceTemporary(
5676        VD, E->getManglingNumber(), Out);
5677  
5678    APValue *Value = nullptr;
5679    if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5680      // If the initializer of the extending declaration is a constant
5681      // initializer, we should have a cached constant initializer for this
5682      // temporary. Note that this might have a different value from the value
5683      // computed by evaluating the initializer if the surrounding constant
5684      // expression modifies the temporary.
5685      Value = E->getOrCreateValue(false);
5686    }
5687  
5688    // Try evaluating it now, it might have a constant initializer.
5689    Expr::EvalResult EvalResult;
5690    if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5691        !EvalResult.hasSideEffects())
5692      Value = &EvalResult.Val;
5693  
5694    LangAS AddrSpace =
5695        VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5696  
5697    Optional<ConstantEmitter> emitter;
5698    llvm::Constant *InitialValue = nullptr;
5699    bool Constant = false;
5700    llvm::Type *Type;
5701    if (Value) {
5702      // The temporary has a constant initializer, use it.
5703      emitter.emplace(*this);
5704      InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5705                                                 MaterializedType);
5706      Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5707      Type = InitialValue->getType();
5708    } else {
5709      // No initializer, the initialization will be provided when we
5710      // initialize the declaration which performed lifetime extension.
5711      Type = getTypes().ConvertTypeForMem(MaterializedType);
5712    }
5713  
5714    // Create a global variable for this lifetime-extended temporary.
5715    llvm::GlobalValue::LinkageTypes Linkage =
5716        getLLVMLinkageVarDefinition(VD, Constant);
5717    if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5718      const VarDecl *InitVD;
5719      if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5720          isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5721        // Temporaries defined inside a class get linkonce_odr linkage because the
5722        // class can be defined in multiple translation units.
5723        Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5724      } else {
5725        // There is no need for this temporary to have external linkage if the
5726        // VarDecl has external linkage.
5727        Linkage = llvm::GlobalVariable::InternalLinkage;
5728      }
5729    }
5730    auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5731    auto *GV = new llvm::GlobalVariable(
5732        getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5733        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5734    if (emitter) emitter->finalize(GV);
5735    setGVProperties(GV, VD);
5736    GV->setAlignment(Align.getAsAlign());
5737    if (supportsCOMDAT() && GV->isWeakForLinker())
5738      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5739    if (VD->getTLSKind())
5740      setTLSMode(GV, *VD);
5741    llvm::Constant *CV = GV;
5742    if (AddrSpace != LangAS::Default)
5743      CV = getTargetCodeGenInfo().performAddrSpaceCast(
5744          *this, GV, AddrSpace, LangAS::Default,
5745          Type->getPointerTo(
5746              getContext().getTargetAddressSpace(LangAS::Default)));
5747  
5748    // Update the map with the new temporary. If we created a placeholder above,
5749    // replace it with the new global now.
5750    llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5751    if (Entry) {
5752      Entry->replaceAllUsesWith(
5753          llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5754      llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5755    }
5756    Entry = CV;
5757  
5758    return ConstantAddress(CV, Type, Align);
5759  }
5760  
5761  /// EmitObjCPropertyImplementations - Emit information for synthesized
5762  /// properties for an implementation.
5763  void CodeGenModule::EmitObjCPropertyImplementations(const
5764                                                      ObjCImplementationDecl *D) {
5765    for (const auto *PID : D->property_impls()) {
5766      // Dynamic is just for type-checking.
5767      if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5768        ObjCPropertyDecl *PD = PID->getPropertyDecl();
5769  
5770        // Determine which methods need to be implemented, some may have
5771        // been overridden. Note that ::isPropertyAccessor is not the method
5772        // we want, that just indicates if the decl came from a
5773        // property. What we want to know is if the method is defined in
5774        // this implementation.
5775        auto *Getter = PID->getGetterMethodDecl();
5776        if (!Getter || Getter->isSynthesizedAccessorStub())
5777          CodeGenFunction(*this).GenerateObjCGetter(
5778              const_cast<ObjCImplementationDecl *>(D), PID);
5779        auto *Setter = PID->getSetterMethodDecl();
5780        if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5781          CodeGenFunction(*this).GenerateObjCSetter(
5782                                   const_cast<ObjCImplementationDecl *>(D), PID);
5783      }
5784    }
5785  }
5786  
5787  static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5788    const ObjCInterfaceDecl *iface = impl->getClassInterface();
5789    for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5790         ivar; ivar = ivar->getNextIvar())
5791      if (ivar->getType().isDestructedType())
5792        return true;
5793  
5794    return false;
5795  }
5796  
5797  static bool AllTrivialInitializers(CodeGenModule &CGM,
5798                                     ObjCImplementationDecl *D) {
5799    CodeGenFunction CGF(CGM);
5800    for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5801         E = D->init_end(); B != E; ++B) {
5802      CXXCtorInitializer *CtorInitExp = *B;
5803      Expr *Init = CtorInitExp->getInit();
5804      if (!CGF.isTrivialInitializer(Init))
5805        return false;
5806    }
5807    return true;
5808  }
5809  
5810  /// EmitObjCIvarInitializations - Emit information for ivar initialization
5811  /// for an implementation.
5812  void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5813    // We might need a .cxx_destruct even if we don't have any ivar initializers.
5814    if (needsDestructMethod(D)) {
5815      IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5816      Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5817      ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5818          getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5819          getContext().VoidTy, nullptr, D,
5820          /*isInstance=*/true, /*isVariadic=*/false,
5821          /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5822          /*isImplicitlyDeclared=*/true,
5823          /*isDefined=*/false, ObjCMethodDecl::Required);
5824      D->addInstanceMethod(DTORMethod);
5825      CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5826      D->setHasDestructors(true);
5827    }
5828  
5829    // If the implementation doesn't have any ivar initializers, we don't need
5830    // a .cxx_construct.
5831    if (D->getNumIvarInitializers() == 0 ||
5832        AllTrivialInitializers(*this, D))
5833      return;
5834  
5835    IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5836    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5837    // The constructor returns 'self'.
5838    ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5839        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5840        getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5841        /*isVariadic=*/false,
5842        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5843        /*isImplicitlyDeclared=*/true,
5844        /*isDefined=*/false, ObjCMethodDecl::Required);
5845    D->addInstanceMethod(CTORMethod);
5846    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5847    D->setHasNonZeroConstructors(true);
5848  }
5849  
5850  // EmitLinkageSpec - Emit all declarations in a linkage spec.
5851  void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5852    if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5853        LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5854      ErrorUnsupported(LSD, "linkage spec");
5855      return;
5856    }
5857  
5858    EmitDeclContext(LSD);
5859  }
5860  
5861  void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5862    for (auto *I : DC->decls()) {
5863      // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5864      // are themselves considered "top-level", so EmitTopLevelDecl on an
5865      // ObjCImplDecl does not recursively visit them. We need to do that in
5866      // case they're nested inside another construct (LinkageSpecDecl /
5867      // ExportDecl) that does stop them from being considered "top-level".
5868      if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5869        for (auto *M : OID->methods())
5870          EmitTopLevelDecl(M);
5871      }
5872  
5873      EmitTopLevelDecl(I);
5874    }
5875  }
5876  
5877  /// EmitTopLevelDecl - Emit code for a single top level declaration.
5878  void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5879    // Ignore dependent declarations.
5880    if (D->isTemplated())
5881      return;
5882  
5883    // Consteval function shouldn't be emitted.
5884    if (auto *FD = dyn_cast<FunctionDecl>(D))
5885      if (FD->isConsteval())
5886        return;
5887  
5888    switch (D->getKind()) {
5889    case Decl::CXXConversion:
5890    case Decl::CXXMethod:
5891    case Decl::Function:
5892      EmitGlobal(cast<FunctionDecl>(D));
5893      // Always provide some coverage mapping
5894      // even for the functions that aren't emitted.
5895      AddDeferredUnusedCoverageMapping(D);
5896      break;
5897  
5898    case Decl::CXXDeductionGuide:
5899      // Function-like, but does not result in code emission.
5900      break;
5901  
5902    case Decl::Var:
5903    case Decl::Decomposition:
5904    case Decl::VarTemplateSpecialization:
5905      EmitGlobal(cast<VarDecl>(D));
5906      if (auto *DD = dyn_cast<DecompositionDecl>(D))
5907        for (auto *B : DD->bindings())
5908          if (auto *HD = B->getHoldingVar())
5909            EmitGlobal(HD);
5910      break;
5911  
5912    // Indirect fields from global anonymous structs and unions can be
5913    // ignored; only the actual variable requires IR gen support.
5914    case Decl::IndirectField:
5915      break;
5916  
5917    // C++ Decls
5918    case Decl::Namespace:
5919      EmitDeclContext(cast<NamespaceDecl>(D));
5920      break;
5921    case Decl::ClassTemplateSpecialization: {
5922      const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5923      if (CGDebugInfo *DI = getModuleDebugInfo())
5924        if (Spec->getSpecializationKind() ==
5925                TSK_ExplicitInstantiationDefinition &&
5926            Spec->hasDefinition())
5927          DI->completeTemplateDefinition(*Spec);
5928    } LLVM_FALLTHROUGH;
5929    case Decl::CXXRecord: {
5930      CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5931      if (CGDebugInfo *DI = getModuleDebugInfo()) {
5932        if (CRD->hasDefinition())
5933          DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5934        if (auto *ES = D->getASTContext().getExternalSource())
5935          if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5936            DI->completeUnusedClass(*CRD);
5937      }
5938      // Emit any static data members, they may be definitions.
5939      for (auto *I : CRD->decls())
5940        if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5941          EmitTopLevelDecl(I);
5942      break;
5943    }
5944      // No code generation needed.
5945    case Decl::UsingShadow:
5946    case Decl::ClassTemplate:
5947    case Decl::VarTemplate:
5948    case Decl::Concept:
5949    case Decl::VarTemplatePartialSpecialization:
5950    case Decl::FunctionTemplate:
5951    case Decl::TypeAliasTemplate:
5952    case Decl::Block:
5953    case Decl::Empty:
5954    case Decl::Binding:
5955      break;
5956    case Decl::Using:          // using X; [C++]
5957      if (CGDebugInfo *DI = getModuleDebugInfo())
5958          DI->EmitUsingDecl(cast<UsingDecl>(*D));
5959      break;
5960    case Decl::UsingEnum: // using enum X; [C++]
5961      if (CGDebugInfo *DI = getModuleDebugInfo())
5962        DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5963      break;
5964    case Decl::NamespaceAlias:
5965      if (CGDebugInfo *DI = getModuleDebugInfo())
5966          DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5967      break;
5968    case Decl::UsingDirective: // using namespace X; [C++]
5969      if (CGDebugInfo *DI = getModuleDebugInfo())
5970        DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5971      break;
5972    case Decl::CXXConstructor:
5973      getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5974      break;
5975    case Decl::CXXDestructor:
5976      getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5977      break;
5978  
5979    case Decl::StaticAssert:
5980      // Nothing to do.
5981      break;
5982  
5983    // Objective-C Decls
5984  
5985    // Forward declarations, no (immediate) code generation.
5986    case Decl::ObjCInterface:
5987    case Decl::ObjCCategory:
5988      break;
5989  
5990    case Decl::ObjCProtocol: {
5991      auto *Proto = cast<ObjCProtocolDecl>(D);
5992      if (Proto->isThisDeclarationADefinition())
5993        ObjCRuntime->GenerateProtocol(Proto);
5994      break;
5995    }
5996  
5997    case Decl::ObjCCategoryImpl:
5998      // Categories have properties but don't support synthesize so we
5999      // can ignore them here.
6000      ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6001      break;
6002  
6003    case Decl::ObjCImplementation: {
6004      auto *OMD = cast<ObjCImplementationDecl>(D);
6005      EmitObjCPropertyImplementations(OMD);
6006      EmitObjCIvarInitializations(OMD);
6007      ObjCRuntime->GenerateClass(OMD);
6008      // Emit global variable debug information.
6009      if (CGDebugInfo *DI = getModuleDebugInfo())
6010        if (getCodeGenOpts().hasReducedDebugInfo())
6011          DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6012              OMD->getClassInterface()), OMD->getLocation());
6013      break;
6014    }
6015    case Decl::ObjCMethod: {
6016      auto *OMD = cast<ObjCMethodDecl>(D);
6017      // If this is not a prototype, emit the body.
6018      if (OMD->getBody())
6019        CodeGenFunction(*this).GenerateObjCMethod(OMD);
6020      break;
6021    }
6022    case Decl::ObjCCompatibleAlias:
6023      ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6024      break;
6025  
6026    case Decl::PragmaComment: {
6027      const auto *PCD = cast<PragmaCommentDecl>(D);
6028      switch (PCD->getCommentKind()) {
6029      case PCK_Unknown:
6030        llvm_unreachable("unexpected pragma comment kind");
6031      case PCK_Linker:
6032        AppendLinkerOptions(PCD->getArg());
6033        break;
6034      case PCK_Lib:
6035          AddDependentLib(PCD->getArg());
6036        break;
6037      case PCK_Compiler:
6038      case PCK_ExeStr:
6039      case PCK_User:
6040        break; // We ignore all of these.
6041      }
6042      break;
6043    }
6044  
6045    case Decl::PragmaDetectMismatch: {
6046      const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6047      AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6048      break;
6049    }
6050  
6051    case Decl::LinkageSpec:
6052      EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6053      break;
6054  
6055    case Decl::FileScopeAsm: {
6056      // File-scope asm is ignored during device-side CUDA compilation.
6057      if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6058        break;
6059      // File-scope asm is ignored during device-side OpenMP compilation.
6060      if (LangOpts.OpenMPIsDevice)
6061        break;
6062      // File-scope asm is ignored during device-side SYCL compilation.
6063      if (LangOpts.SYCLIsDevice)
6064        break;
6065      auto *AD = cast<FileScopeAsmDecl>(D);
6066      getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6067      break;
6068    }
6069  
6070    case Decl::Import: {
6071      auto *Import = cast<ImportDecl>(D);
6072  
6073      // If we've already imported this module, we're done.
6074      if (!ImportedModules.insert(Import->getImportedModule()))
6075        break;
6076  
6077      // Emit debug information for direct imports.
6078      if (!Import->getImportedOwningModule()) {
6079        if (CGDebugInfo *DI = getModuleDebugInfo())
6080          DI->EmitImportDecl(*Import);
6081      }
6082  
6083      // Find all of the submodules and emit the module initializers.
6084      llvm::SmallPtrSet<clang::Module *, 16> Visited;
6085      SmallVector<clang::Module *, 16> Stack;
6086      Visited.insert(Import->getImportedModule());
6087      Stack.push_back(Import->getImportedModule());
6088  
6089      while (!Stack.empty()) {
6090        clang::Module *Mod = Stack.pop_back_val();
6091        if (!EmittedModuleInitializers.insert(Mod).second)
6092          continue;
6093  
6094        for (auto *D : Context.getModuleInitializers(Mod))
6095          EmitTopLevelDecl(D);
6096  
6097        // Visit the submodules of this module.
6098        for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6099                                               SubEnd = Mod->submodule_end();
6100             Sub != SubEnd; ++Sub) {
6101          // Skip explicit children; they need to be explicitly imported to emit
6102          // the initializers.
6103          if ((*Sub)->IsExplicit)
6104            continue;
6105  
6106          if (Visited.insert(*Sub).second)
6107            Stack.push_back(*Sub);
6108        }
6109      }
6110      break;
6111    }
6112  
6113    case Decl::Export:
6114      EmitDeclContext(cast<ExportDecl>(D));
6115      break;
6116  
6117    case Decl::OMPThreadPrivate:
6118      EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6119      break;
6120  
6121    case Decl::OMPAllocate:
6122      EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6123      break;
6124  
6125    case Decl::OMPDeclareReduction:
6126      EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6127      break;
6128  
6129    case Decl::OMPDeclareMapper:
6130      EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6131      break;
6132  
6133    case Decl::OMPRequires:
6134      EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6135      break;
6136  
6137    case Decl::Typedef:
6138    case Decl::TypeAlias: // using foo = bar; [C++11]
6139      if (CGDebugInfo *DI = getModuleDebugInfo())
6140        DI->EmitAndRetainType(
6141            getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6142      break;
6143  
6144    case Decl::Record:
6145      if (CGDebugInfo *DI = getModuleDebugInfo())
6146        if (cast<RecordDecl>(D)->getDefinition())
6147          DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6148      break;
6149  
6150    case Decl::Enum:
6151      if (CGDebugInfo *DI = getModuleDebugInfo())
6152        if (cast<EnumDecl>(D)->getDefinition())
6153          DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6154      break;
6155  
6156    default:
6157      // Make sure we handled everything we should, every other kind is a
6158      // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6159      // function. Need to recode Decl::Kind to do that easily.
6160      assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6161      break;
6162    }
6163  }
6164  
6165  void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6166    // Do we need to generate coverage mapping?
6167    if (!CodeGenOpts.CoverageMapping)
6168      return;
6169    switch (D->getKind()) {
6170    case Decl::CXXConversion:
6171    case Decl::CXXMethod:
6172    case Decl::Function:
6173    case Decl::ObjCMethod:
6174    case Decl::CXXConstructor:
6175    case Decl::CXXDestructor: {
6176      if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6177        break;
6178      SourceManager &SM = getContext().getSourceManager();
6179      if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6180        break;
6181      auto I = DeferredEmptyCoverageMappingDecls.find(D);
6182      if (I == DeferredEmptyCoverageMappingDecls.end())
6183        DeferredEmptyCoverageMappingDecls[D] = true;
6184      break;
6185    }
6186    default:
6187      break;
6188    };
6189  }
6190  
6191  void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6192    // Do we need to generate coverage mapping?
6193    if (!CodeGenOpts.CoverageMapping)
6194      return;
6195    if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6196      if (Fn->isTemplateInstantiation())
6197        ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6198    }
6199    auto I = DeferredEmptyCoverageMappingDecls.find(D);
6200    if (I == DeferredEmptyCoverageMappingDecls.end())
6201      DeferredEmptyCoverageMappingDecls[D] = false;
6202    else
6203      I->second = false;
6204  }
6205  
6206  void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6207    // We call takeVector() here to avoid use-after-free.
6208    // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6209    // we deserialize function bodies to emit coverage info for them, and that
6210    // deserializes more declarations. How should we handle that case?
6211    for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6212      if (!Entry.second)
6213        continue;
6214      const Decl *D = Entry.first;
6215      switch (D->getKind()) {
6216      case Decl::CXXConversion:
6217      case Decl::CXXMethod:
6218      case Decl::Function:
6219      case Decl::ObjCMethod: {
6220        CodeGenPGO PGO(*this);
6221        GlobalDecl GD(cast<FunctionDecl>(D));
6222        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6223                                    getFunctionLinkage(GD));
6224        break;
6225      }
6226      case Decl::CXXConstructor: {
6227        CodeGenPGO PGO(*this);
6228        GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6229        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6230                                    getFunctionLinkage(GD));
6231        break;
6232      }
6233      case Decl::CXXDestructor: {
6234        CodeGenPGO PGO(*this);
6235        GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6236        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6237                                    getFunctionLinkage(GD));
6238        break;
6239      }
6240      default:
6241        break;
6242      };
6243    }
6244  }
6245  
6246  void CodeGenModule::EmitMainVoidAlias() {
6247    // In order to transition away from "__original_main" gracefully, emit an
6248    // alias for "main" in the no-argument case so that libc can detect when
6249    // new-style no-argument main is in used.
6250    if (llvm::Function *F = getModule().getFunction("main")) {
6251      if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6252          F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6253        addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6254    }
6255  }
6256  
6257  /// Turns the given pointer into a constant.
6258  static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6259                                            const void *Ptr) {
6260    uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6261    llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6262    return llvm::ConstantInt::get(i64, PtrInt);
6263  }
6264  
6265  static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6266                                     llvm::NamedMDNode *&GlobalMetadata,
6267                                     GlobalDecl D,
6268                                     llvm::GlobalValue *Addr) {
6269    if (!GlobalMetadata)
6270      GlobalMetadata =
6271        CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6272  
6273    // TODO: should we report variant information for ctors/dtors?
6274    llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6275                             llvm::ConstantAsMetadata::get(GetPointerConstant(
6276                                 CGM.getLLVMContext(), D.getDecl()))};
6277    GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6278  }
6279  
6280  /// For each function which is declared within an extern "C" region and marked
6281  /// as 'used', but has internal linkage, create an alias from the unmangled
6282  /// name to the mangled name if possible. People expect to be able to refer
6283  /// to such functions with an unmangled name from inline assembly within the
6284  /// same translation unit.
6285  void CodeGenModule::EmitStaticExternCAliases() {
6286    if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6287      return;
6288    for (auto &I : StaticExternCValues) {
6289      IdentifierInfo *Name = I.first;
6290      llvm::GlobalValue *Val = I.second;
6291      if (Val && !getModule().getNamedValue(Name->getName()))
6292        addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6293    }
6294  }
6295  
6296  bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6297                                               GlobalDecl &Result) const {
6298    auto Res = Manglings.find(MangledName);
6299    if (Res == Manglings.end())
6300      return false;
6301    Result = Res->getValue();
6302    return true;
6303  }
6304  
6305  /// Emits metadata nodes associating all the global values in the
6306  /// current module with the Decls they came from.  This is useful for
6307  /// projects using IR gen as a subroutine.
6308  ///
6309  /// Since there's currently no way to associate an MDNode directly
6310  /// with an llvm::GlobalValue, we create a global named metadata
6311  /// with the name 'clang.global.decl.ptrs'.
6312  void CodeGenModule::EmitDeclMetadata() {
6313    llvm::NamedMDNode *GlobalMetadata = nullptr;
6314  
6315    for (auto &I : MangledDeclNames) {
6316      llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6317      // Some mangled names don't necessarily have an associated GlobalValue
6318      // in this module, e.g. if we mangled it for DebugInfo.
6319      if (Addr)
6320        EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6321    }
6322  }
6323  
6324  /// Emits metadata nodes for all the local variables in the current
6325  /// function.
6326  void CodeGenFunction::EmitDeclMetadata() {
6327    if (LocalDeclMap.empty()) return;
6328  
6329    llvm::LLVMContext &Context = getLLVMContext();
6330  
6331    // Find the unique metadata ID for this name.
6332    unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6333  
6334    llvm::NamedMDNode *GlobalMetadata = nullptr;
6335  
6336    for (auto &I : LocalDeclMap) {
6337      const Decl *D = I.first;
6338      llvm::Value *Addr = I.second.getPointer();
6339      if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6340        llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6341        Alloca->setMetadata(
6342            DeclPtrKind, llvm::MDNode::get(
6343                             Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6344      } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6345        GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6346        EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6347      }
6348    }
6349  }
6350  
6351  void CodeGenModule::EmitVersionIdentMetadata() {
6352    llvm::NamedMDNode *IdentMetadata =
6353      TheModule.getOrInsertNamedMetadata("llvm.ident");
6354    std::string Version = getClangFullVersion();
6355    llvm::LLVMContext &Ctx = TheModule.getContext();
6356  
6357    llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6358    IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6359  }
6360  
6361  void CodeGenModule::EmitCommandLineMetadata() {
6362    llvm::NamedMDNode *CommandLineMetadata =
6363      TheModule.getOrInsertNamedMetadata("llvm.commandline");
6364    std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6365    llvm::LLVMContext &Ctx = TheModule.getContext();
6366  
6367    llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6368    CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6369  }
6370  
6371  void CodeGenModule::EmitCoverageFile() {
6372    if (getCodeGenOpts().CoverageDataFile.empty() &&
6373        getCodeGenOpts().CoverageNotesFile.empty())
6374      return;
6375  
6376    llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6377    if (!CUNode)
6378      return;
6379  
6380    llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6381    llvm::LLVMContext &Ctx = TheModule.getContext();
6382    auto *CoverageDataFile =
6383        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6384    auto *CoverageNotesFile =
6385        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6386    for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6387      llvm::MDNode *CU = CUNode->getOperand(i);
6388      llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6389      GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6390    }
6391  }
6392  
6393  llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6394                                                         bool ForEH) {
6395    // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6396    // FIXME: should we even be calling this method if RTTI is disabled
6397    // and it's not for EH?
6398    if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6399        (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6400         getTriple().isNVPTX()))
6401      return llvm::Constant::getNullValue(Int8PtrTy);
6402  
6403    if (ForEH && Ty->isObjCObjectPointerType() &&
6404        LangOpts.ObjCRuntime.isGNUFamily())
6405      return ObjCRuntime->GetEHType(Ty);
6406  
6407    return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6408  }
6409  
6410  void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6411    // Do not emit threadprivates in simd-only mode.
6412    if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6413      return;
6414    for (auto RefExpr : D->varlists()) {
6415      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6416      bool PerformInit =
6417          VD->getAnyInitializer() &&
6418          !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6419                                                          /*ForRef=*/false);
6420  
6421      Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6422      if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6423              VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6424        CXXGlobalInits.push_back(InitFunction);
6425    }
6426  }
6427  
6428  llvm::Metadata *
6429  CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6430                                              StringRef Suffix) {
6431    if (auto *FnType = T->getAs<FunctionProtoType>())
6432      T = getContext().getFunctionType(
6433          FnType->getReturnType(), FnType->getParamTypes(),
6434          FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6435  
6436    llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6437    if (InternalId)
6438      return InternalId;
6439  
6440    if (isExternallyVisible(T->getLinkage())) {
6441      std::string OutName;
6442      llvm::raw_string_ostream Out(OutName);
6443      getCXXABI().getMangleContext().mangleTypeName(T, Out);
6444      Out << Suffix;
6445  
6446      InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6447    } else {
6448      InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6449                                             llvm::ArrayRef<llvm::Metadata *>());
6450    }
6451  
6452    return InternalId;
6453  }
6454  
6455  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6456    return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6457  }
6458  
6459  llvm::Metadata *
6460  CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6461    return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6462  }
6463  
6464  // Generalize pointer types to a void pointer with the qualifiers of the
6465  // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6466  // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6467  // 'void *'.
6468  static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6469    if (!Ty->isPointerType())
6470      return Ty;
6471  
6472    return Ctx.getPointerType(
6473        QualType(Ctx.VoidTy).withCVRQualifiers(
6474            Ty->getPointeeType().getCVRQualifiers()));
6475  }
6476  
6477  // Apply type generalization to a FunctionType's return and argument types
6478  static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6479    if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6480      SmallVector<QualType, 8> GeneralizedParams;
6481      for (auto &Param : FnType->param_types())
6482        GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6483  
6484      return Ctx.getFunctionType(
6485          GeneralizeType(Ctx, FnType->getReturnType()),
6486          GeneralizedParams, FnType->getExtProtoInfo());
6487    }
6488  
6489    if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6490      return Ctx.getFunctionNoProtoType(
6491          GeneralizeType(Ctx, FnType->getReturnType()));
6492  
6493    llvm_unreachable("Encountered unknown FunctionType");
6494  }
6495  
6496  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6497    return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6498                                        GeneralizedMetadataIdMap, ".generalized");
6499  }
6500  
6501  /// Returns whether this module needs the "all-vtables" type identifier.
6502  bool CodeGenModule::NeedAllVtablesTypeId() const {
6503    // Returns true if at least one of vtable-based CFI checkers is enabled and
6504    // is not in the trapping mode.
6505    return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6506             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6507            (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6508             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6509            (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6510             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6511            (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6512             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6513  }
6514  
6515  void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6516                                            CharUnits Offset,
6517                                            const CXXRecordDecl *RD) {
6518    llvm::Metadata *MD =
6519        CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6520    VTable->addTypeMetadata(Offset.getQuantity(), MD);
6521  
6522    if (CodeGenOpts.SanitizeCfiCrossDso)
6523      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6524        VTable->addTypeMetadata(Offset.getQuantity(),
6525                                llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6526  
6527    if (NeedAllVtablesTypeId()) {
6528      llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6529      VTable->addTypeMetadata(Offset.getQuantity(), MD);
6530    }
6531  }
6532  
6533  llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6534    if (!SanStats)
6535      SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6536  
6537    return *SanStats;
6538  }
6539  
6540  llvm::Value *
6541  CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6542                                                    CodeGenFunction &CGF) {
6543    llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6544    auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6545    auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6546    auto *Call = CGF.EmitRuntimeCall(
6547        CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6548    return Call;
6549  }
6550  
6551  CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6552      QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6553    return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6554                                   /* forPointeeType= */ true);
6555  }
6556  
6557  CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6558                                                   LValueBaseInfo *BaseInfo,
6559                                                   TBAAAccessInfo *TBAAInfo,
6560                                                   bool forPointeeType) {
6561    if (TBAAInfo)
6562      *TBAAInfo = getTBAAAccessInfo(T);
6563  
6564    // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6565    // that doesn't return the information we need to compute BaseInfo.
6566  
6567    // Honor alignment typedef attributes even on incomplete types.
6568    // We also honor them straight for C++ class types, even as pointees;
6569    // there's an expressivity gap here.
6570    if (auto TT = T->getAs<TypedefType>()) {
6571      if (auto Align = TT->getDecl()->getMaxAlignment()) {
6572        if (BaseInfo)
6573          *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6574        return getContext().toCharUnitsFromBits(Align);
6575      }
6576    }
6577  
6578    bool AlignForArray = T->isArrayType();
6579  
6580    // Analyze the base element type, so we don't get confused by incomplete
6581    // array types.
6582    T = getContext().getBaseElementType(T);
6583  
6584    if (T->isIncompleteType()) {
6585      // We could try to replicate the logic from
6586      // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6587      // type is incomplete, so it's impossible to test. We could try to reuse
6588      // getTypeAlignIfKnown, but that doesn't return the information we need
6589      // to set BaseInfo.  So just ignore the possibility that the alignment is
6590      // greater than one.
6591      if (BaseInfo)
6592        *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6593      return CharUnits::One();
6594    }
6595  
6596    if (BaseInfo)
6597      *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6598  
6599    CharUnits Alignment;
6600    const CXXRecordDecl *RD;
6601    if (T.getQualifiers().hasUnaligned()) {
6602      Alignment = CharUnits::One();
6603    } else if (forPointeeType && !AlignForArray &&
6604               (RD = T->getAsCXXRecordDecl())) {
6605      // For C++ class pointees, we don't know whether we're pointing at a
6606      // base or a complete object, so we generally need to use the
6607      // non-virtual alignment.
6608      Alignment = getClassPointerAlignment(RD);
6609    } else {
6610      Alignment = getContext().getTypeAlignInChars(T);
6611    }
6612  
6613    // Cap to the global maximum type alignment unless the alignment
6614    // was somehow explicit on the type.
6615    if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6616      if (Alignment.getQuantity() > MaxAlign &&
6617          !getContext().isAlignmentRequired(T))
6618        Alignment = CharUnits::fromQuantity(MaxAlign);
6619    }
6620    return Alignment;
6621  }
6622  
6623  bool CodeGenModule::stopAutoInit() {
6624    unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6625    if (StopAfter) {
6626      // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6627      // used
6628      if (NumAutoVarInit >= StopAfter) {
6629        return true;
6630      }
6631      if (!NumAutoVarInit) {
6632        unsigned DiagID = getDiags().getCustomDiagID(
6633            DiagnosticsEngine::Warning,
6634            "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6635            "number of times ftrivial-auto-var-init=%1 gets applied.");
6636        getDiags().Report(DiagID)
6637            << StopAfter
6638            << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6639                        LangOptions::TrivialAutoVarInitKind::Zero
6640                    ? "zero"
6641                    : "pattern");
6642      }
6643      ++NumAutoVarInit;
6644    }
6645    return false;
6646  }
6647  
6648  void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6649                                                      const Decl *D) const {
6650    StringRef Tag;
6651    // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6652    // postfix beginning with '.' since the symbol name can be demangled.
6653    if (LangOpts.HIP)
6654      Tag = (isa<VarDecl>(D) ? ".static." : ".intern.");
6655    else
6656      Tag = (isa<VarDecl>(D) ? "__static__" : "__intern__");
6657    OS << Tag << getContext().getCUIDHash();
6658  }
6659