xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision c4e61d85686098ad2be060dc3f05c9cca98e8916)
1  //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-module state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenModule.h"
14  #include "CGBlocks.h"
15  #include "CGCUDARuntime.h"
16  #include "CGCXXABI.h"
17  #include "CGCall.h"
18  #include "CGDebugInfo.h"
19  #include "CGObjCRuntime.h"
20  #include "CGOpenCLRuntime.h"
21  #include "CGOpenMPRuntime.h"
22  #include "CGOpenMPRuntimeNVPTX.h"
23  #include "CodeGenFunction.h"
24  #include "CodeGenPGO.h"
25  #include "ConstantEmitter.h"
26  #include "CoverageMappingGen.h"
27  #include "TargetInfo.h"
28  #include "clang/AST/ASTContext.h"
29  #include "clang/AST/CharUnits.h"
30  #include "clang/AST/DeclCXX.h"
31  #include "clang/AST/DeclObjC.h"
32  #include "clang/AST/DeclTemplate.h"
33  #include "clang/AST/Mangle.h"
34  #include "clang/AST/RecordLayout.h"
35  #include "clang/AST/RecursiveASTVisitor.h"
36  #include "clang/AST/StmtVisitor.h"
37  #include "clang/Basic/Builtins.h"
38  #include "clang/Basic/CharInfo.h"
39  #include "clang/Basic/CodeGenOptions.h"
40  #include "clang/Basic/Diagnostic.h"
41  #include "clang/Basic/Module.h"
42  #include "clang/Basic/SourceManager.h"
43  #include "clang/Basic/TargetInfo.h"
44  #include "clang/Basic/Version.h"
45  #include "clang/CodeGen/ConstantInitBuilder.h"
46  #include "clang/Frontend/FrontendDiagnostic.h"
47  #include "llvm/ADT/StringSwitch.h"
48  #include "llvm/ADT/Triple.h"
49  #include "llvm/Analysis/TargetLibraryInfo.h"
50  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51  #include "llvm/IR/CallingConv.h"
52  #include "llvm/IR/DataLayout.h"
53  #include "llvm/IR/Intrinsics.h"
54  #include "llvm/IR/LLVMContext.h"
55  #include "llvm/IR/Module.h"
56  #include "llvm/IR/ProfileSummary.h"
57  #include "llvm/ProfileData/InstrProfReader.h"
58  #include "llvm/Support/CodeGen.h"
59  #include "llvm/Support/CommandLine.h"
60  #include "llvm/Support/ConvertUTF.h"
61  #include "llvm/Support/ErrorHandling.h"
62  #include "llvm/Support/MD5.h"
63  #include "llvm/Support/TimeProfiler.h"
64  
65  using namespace clang;
66  using namespace CodeGen;
67  
68  static llvm::cl::opt<bool> LimitedCoverage(
69      "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70      llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71      llvm::cl::init(false));
72  
73  static const char AnnotationSection[] = "llvm.metadata";
74  
75  static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76    switch (CGM.getTarget().getCXXABI().getKind()) {
77    case TargetCXXABI::Fuchsia:
78    case TargetCXXABI::GenericAArch64:
79    case TargetCXXABI::GenericARM:
80    case TargetCXXABI::iOS:
81    case TargetCXXABI::iOS64:
82    case TargetCXXABI::WatchOS:
83    case TargetCXXABI::GenericMIPS:
84    case TargetCXXABI::GenericItanium:
85    case TargetCXXABI::WebAssembly:
86      return CreateItaniumCXXABI(CGM);
87    case TargetCXXABI::Microsoft:
88      return CreateMicrosoftCXXABI(CGM);
89    }
90  
91    llvm_unreachable("invalid C++ ABI kind");
92  }
93  
94  CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
95                               const PreprocessorOptions &PPO,
96                               const CodeGenOptions &CGO, llvm::Module &M,
97                               DiagnosticsEngine &diags,
98                               CoverageSourceInfo *CoverageInfo)
99      : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
100        PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
101        Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
102        VMContext(M.getContext()), Types(*this), VTables(*this),
103        SanitizerMD(new SanitizerMetadata(*this)) {
104  
105    // Initialize the type cache.
106    llvm::LLVMContext &LLVMContext = M.getContext();
107    VoidTy = llvm::Type::getVoidTy(LLVMContext);
108    Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
109    Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
110    Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
111    Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
112    HalfTy = llvm::Type::getHalfTy(LLVMContext);
113    FloatTy = llvm::Type::getFloatTy(LLVMContext);
114    DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
115    PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
116    PointerAlignInBytes =
117      C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
118    SizeSizeInBytes =
119      C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
120    IntAlignInBytes =
121      C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
122    IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
123    IntPtrTy = llvm::IntegerType::get(LLVMContext,
124      C.getTargetInfo().getMaxPointerWidth());
125    Int8PtrTy = Int8Ty->getPointerTo(0);
126    Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
127    AllocaInt8PtrTy = Int8Ty->getPointerTo(
128        M.getDataLayout().getAllocaAddrSpace());
129    ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
130  
131    RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
132  
133    if (LangOpts.ObjC)
134      createObjCRuntime();
135    if (LangOpts.OpenCL)
136      createOpenCLRuntime();
137    if (LangOpts.OpenMP)
138      createOpenMPRuntime();
139    if (LangOpts.CUDA)
140      createCUDARuntime();
141  
142    // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
143    if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
144        (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
145      TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
146                                 getCXXABI().getMangleContext()));
147  
148    // If debug info or coverage generation is enabled, create the CGDebugInfo
149    // object.
150    if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
151        CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
152      DebugInfo.reset(new CGDebugInfo(*this));
153  
154    Block.GlobalUniqueCount = 0;
155  
156    if (C.getLangOpts().ObjC)
157      ObjCData.reset(new ObjCEntrypoints());
158  
159    if (CodeGenOpts.hasProfileClangUse()) {
160      auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
161          CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
162      if (auto E = ReaderOrErr.takeError()) {
163        unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
164                                                "Could not read profile %0: %1");
165        llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
166          getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
167                                    << EI.message();
168        });
169      } else
170        PGOReader = std::move(ReaderOrErr.get());
171    }
172  
173    // If coverage mapping generation is enabled, create the
174    // CoverageMappingModuleGen object.
175    if (CodeGenOpts.CoverageMapping)
176      CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
177  }
178  
179  CodeGenModule::~CodeGenModule() {}
180  
181  void CodeGenModule::createObjCRuntime() {
182    // This is just isGNUFamily(), but we want to force implementors of
183    // new ABIs to decide how best to do this.
184    switch (LangOpts.ObjCRuntime.getKind()) {
185    case ObjCRuntime::GNUstep:
186    case ObjCRuntime::GCC:
187    case ObjCRuntime::ObjFW:
188      ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
189      return;
190  
191    case ObjCRuntime::FragileMacOSX:
192    case ObjCRuntime::MacOSX:
193    case ObjCRuntime::iOS:
194    case ObjCRuntime::WatchOS:
195      ObjCRuntime.reset(CreateMacObjCRuntime(*this));
196      return;
197    }
198    llvm_unreachable("bad runtime kind");
199  }
200  
201  void CodeGenModule::createOpenCLRuntime() {
202    OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
203  }
204  
205  void CodeGenModule::createOpenMPRuntime() {
206    // Select a specialized code generation class based on the target, if any.
207    // If it does not exist use the default implementation.
208    switch (getTriple().getArch()) {
209    case llvm::Triple::nvptx:
210    case llvm::Triple::nvptx64:
211      assert(getLangOpts().OpenMPIsDevice &&
212             "OpenMP NVPTX is only prepared to deal with device code.");
213      OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
214      break;
215    default:
216      if (LangOpts.OpenMPSimd)
217        OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
218      else
219        OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
220      break;
221    }
222  
223    // The OpenMP-IR-Builder should eventually replace the above runtime codegens
224    // but we are not there yet so they both reside in CGModule for now and the
225    // OpenMP-IR-Builder is opt-in only.
226    if (LangOpts.OpenMPIRBuilder) {
227      OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
228      OMPBuilder->initialize();
229    }
230  }
231  
232  void CodeGenModule::createCUDARuntime() {
233    CUDARuntime.reset(CreateNVCUDARuntime(*this));
234  }
235  
236  void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
237    Replacements[Name] = C;
238  }
239  
240  void CodeGenModule::applyReplacements() {
241    for (auto &I : Replacements) {
242      StringRef MangledName = I.first();
243      llvm::Constant *Replacement = I.second;
244      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
245      if (!Entry)
246        continue;
247      auto *OldF = cast<llvm::Function>(Entry);
248      auto *NewF = dyn_cast<llvm::Function>(Replacement);
249      if (!NewF) {
250        if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
251          NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
252        } else {
253          auto *CE = cast<llvm::ConstantExpr>(Replacement);
254          assert(CE->getOpcode() == llvm::Instruction::BitCast ||
255                 CE->getOpcode() == llvm::Instruction::GetElementPtr);
256          NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
257        }
258      }
259  
260      // Replace old with new, but keep the old order.
261      OldF->replaceAllUsesWith(Replacement);
262      if (NewF) {
263        NewF->removeFromParent();
264        OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
265                                                         NewF);
266      }
267      OldF->eraseFromParent();
268    }
269  }
270  
271  void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
272    GlobalValReplacements.push_back(std::make_pair(GV, C));
273  }
274  
275  void CodeGenModule::applyGlobalValReplacements() {
276    for (auto &I : GlobalValReplacements) {
277      llvm::GlobalValue *GV = I.first;
278      llvm::Constant *C = I.second;
279  
280      GV->replaceAllUsesWith(C);
281      GV->eraseFromParent();
282    }
283  }
284  
285  // This is only used in aliases that we created and we know they have a
286  // linear structure.
287  static const llvm::GlobalObject *getAliasedGlobal(
288      const llvm::GlobalIndirectSymbol &GIS) {
289    llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
290    const llvm::Constant *C = &GIS;
291    for (;;) {
292      C = C->stripPointerCasts();
293      if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
294        return GO;
295      // stripPointerCasts will not walk over weak aliases.
296      auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
297      if (!GIS2)
298        return nullptr;
299      if (!Visited.insert(GIS2).second)
300        return nullptr;
301      C = GIS2->getIndirectSymbol();
302    }
303  }
304  
305  void CodeGenModule::checkAliases() {
306    // Check if the constructed aliases are well formed. It is really unfortunate
307    // that we have to do this in CodeGen, but we only construct mangled names
308    // and aliases during codegen.
309    bool Error = false;
310    DiagnosticsEngine &Diags = getDiags();
311    for (const GlobalDecl &GD : Aliases) {
312      const auto *D = cast<ValueDecl>(GD.getDecl());
313      SourceLocation Location;
314      bool IsIFunc = D->hasAttr<IFuncAttr>();
315      if (const Attr *A = D->getDefiningAttr())
316        Location = A->getLocation();
317      else
318        llvm_unreachable("Not an alias or ifunc?");
319      StringRef MangledName = getMangledName(GD);
320      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
321      auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
322      const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
323      if (!GV) {
324        Error = true;
325        Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
326      } else if (GV->isDeclaration()) {
327        Error = true;
328        Diags.Report(Location, diag::err_alias_to_undefined)
329            << IsIFunc << IsIFunc;
330      } else if (IsIFunc) {
331        // Check resolver function type.
332        llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
333            GV->getType()->getPointerElementType());
334        assert(FTy);
335        if (!FTy->getReturnType()->isPointerTy())
336          Diags.Report(Location, diag::err_ifunc_resolver_return);
337      }
338  
339      llvm::Constant *Aliasee = Alias->getIndirectSymbol();
340      llvm::GlobalValue *AliaseeGV;
341      if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
342        AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
343      else
344        AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
345  
346      if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
347        StringRef AliasSection = SA->getName();
348        if (AliasSection != AliaseeGV->getSection())
349          Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
350              << AliasSection << IsIFunc << IsIFunc;
351      }
352  
353      // We have to handle alias to weak aliases in here. LLVM itself disallows
354      // this since the object semantics would not match the IL one. For
355      // compatibility with gcc we implement it by just pointing the alias
356      // to its aliasee's aliasee. We also warn, since the user is probably
357      // expecting the link to be weak.
358      if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
359        if (GA->isInterposable()) {
360          Diags.Report(Location, diag::warn_alias_to_weak_alias)
361              << GV->getName() << GA->getName() << IsIFunc;
362          Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
363              GA->getIndirectSymbol(), Alias->getType());
364          Alias->setIndirectSymbol(Aliasee);
365        }
366      }
367    }
368    if (!Error)
369      return;
370  
371    for (const GlobalDecl &GD : Aliases) {
372      StringRef MangledName = getMangledName(GD);
373      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
374      auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
375      Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
376      Alias->eraseFromParent();
377    }
378  }
379  
380  void CodeGenModule::clear() {
381    DeferredDeclsToEmit.clear();
382    if (OpenMPRuntime)
383      OpenMPRuntime->clear();
384  }
385  
386  void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
387                                         StringRef MainFile) {
388    if (!hasDiagnostics())
389      return;
390    if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
391      if (MainFile.empty())
392        MainFile = "<stdin>";
393      Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
394    } else {
395      if (Mismatched > 0)
396        Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
397  
398      if (Missing > 0)
399        Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
400    }
401  }
402  
403  void CodeGenModule::Release() {
404    EmitDeferred();
405    EmitVTablesOpportunistically();
406    applyGlobalValReplacements();
407    applyReplacements();
408    checkAliases();
409    emitMultiVersionFunctions();
410    EmitCXXGlobalInitFunc();
411    EmitCXXGlobalDtorFunc();
412    registerGlobalDtorsWithAtExit();
413    EmitCXXThreadLocalInitFunc();
414    if (ObjCRuntime)
415      if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
416        AddGlobalCtor(ObjCInitFunction);
417    if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
418        CUDARuntime) {
419      if (llvm::Function *CudaCtorFunction =
420              CUDARuntime->makeModuleCtorFunction())
421        AddGlobalCtor(CudaCtorFunction);
422    }
423    if (OpenMPRuntime) {
424      if (llvm::Function *OpenMPRequiresDirectiveRegFun =
425              OpenMPRuntime->emitRequiresDirectiveRegFun()) {
426        AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
427      }
428      OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
429      OpenMPRuntime->clear();
430    }
431    if (PGOReader) {
432      getModule().setProfileSummary(
433          PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
434          llvm::ProfileSummary::PSK_Instr);
435      if (PGOStats.hasDiagnostics())
436        PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
437    }
438    EmitCtorList(GlobalCtors, "llvm.global_ctors");
439    EmitCtorList(GlobalDtors, "llvm.global_dtors");
440    EmitGlobalAnnotations();
441    EmitStaticExternCAliases();
442    EmitDeferredUnusedCoverageMappings();
443    if (CoverageMapping)
444      CoverageMapping->emit();
445    if (CodeGenOpts.SanitizeCfiCrossDso) {
446      CodeGenFunction(*this).EmitCfiCheckFail();
447      CodeGenFunction(*this).EmitCfiCheckStub();
448    }
449    emitAtAvailableLinkGuard();
450    emitLLVMUsed();
451    if (SanStats)
452      SanStats->finish();
453  
454    if (CodeGenOpts.Autolink &&
455        (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
456      EmitModuleLinkOptions();
457    }
458  
459    // On ELF we pass the dependent library specifiers directly to the linker
460    // without manipulating them. This is in contrast to other platforms where
461    // they are mapped to a specific linker option by the compiler. This
462    // difference is a result of the greater variety of ELF linkers and the fact
463    // that ELF linkers tend to handle libraries in a more complicated fashion
464    // than on other platforms. This forces us to defer handling the dependent
465    // libs to the linker.
466    //
467    // CUDA/HIP device and host libraries are different. Currently there is no
468    // way to differentiate dependent libraries for host or device. Existing
469    // usage of #pragma comment(lib, *) is intended for host libraries on
470    // Windows. Therefore emit llvm.dependent-libraries only for host.
471    if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
472      auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
473      for (auto *MD : ELFDependentLibraries)
474        NMD->addOperand(MD);
475    }
476  
477    // Record mregparm value now so it is visible through rest of codegen.
478    if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
479      getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
480                                CodeGenOpts.NumRegisterParameters);
481  
482    if (CodeGenOpts.DwarfVersion) {
483      getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
484                                CodeGenOpts.DwarfVersion);
485    }
486    if (CodeGenOpts.EmitCodeView) {
487      // Indicate that we want CodeView in the metadata.
488      getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
489    }
490    if (CodeGenOpts.CodeViewGHash) {
491      getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
492    }
493    if (CodeGenOpts.ControlFlowGuard) {
494      // Function ID tables and checks for Control Flow Guard (cfguard=2).
495      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
496    } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
497      // Function ID tables for Control Flow Guard (cfguard=1).
498      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
499    }
500    if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
501      // We don't support LTO with 2 with different StrictVTablePointers
502      // FIXME: we could support it by stripping all the information introduced
503      // by StrictVTablePointers.
504  
505      getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
506  
507      llvm::Metadata *Ops[2] = {
508                llvm::MDString::get(VMContext, "StrictVTablePointers"),
509                llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
510                    llvm::Type::getInt32Ty(VMContext), 1))};
511  
512      getModule().addModuleFlag(llvm::Module::Require,
513                                "StrictVTablePointersRequirement",
514                                llvm::MDNode::get(VMContext, Ops));
515    }
516    if (DebugInfo)
517      // We support a single version in the linked module. The LLVM
518      // parser will drop debug info with a different version number
519      // (and warn about it, too).
520      getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
521                                llvm::DEBUG_METADATA_VERSION);
522  
523    // We need to record the widths of enums and wchar_t, so that we can generate
524    // the correct build attributes in the ARM backend. wchar_size is also used by
525    // TargetLibraryInfo.
526    uint64_t WCharWidth =
527        Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
528    getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
529  
530    llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
531    if (   Arch == llvm::Triple::arm
532        || Arch == llvm::Triple::armeb
533        || Arch == llvm::Triple::thumb
534        || Arch == llvm::Triple::thumbeb) {
535      // The minimum width of an enum in bytes
536      uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
537      getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
538    }
539  
540    if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
541      StringRef ABIStr = Target.getABI();
542      llvm::LLVMContext &Ctx = TheModule.getContext();
543      getModule().addModuleFlag(llvm::Module::Error, "target-abi",
544                                llvm::MDString::get(Ctx, ABIStr));
545    }
546  
547    if (CodeGenOpts.SanitizeCfiCrossDso) {
548      // Indicate that we want cross-DSO control flow integrity checks.
549      getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
550    }
551  
552    if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
553      getModule().addModuleFlag(llvm::Module::Override,
554                                "CFI Canonical Jump Tables",
555                                CodeGenOpts.SanitizeCfiCanonicalJumpTables);
556    }
557  
558    if (CodeGenOpts.CFProtectionReturn &&
559        Target.checkCFProtectionReturnSupported(getDiags())) {
560      // Indicate that we want to instrument return control flow protection.
561      getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
562                                1);
563    }
564  
565    if (CodeGenOpts.CFProtectionBranch &&
566        Target.checkCFProtectionBranchSupported(getDiags())) {
567      // Indicate that we want to instrument branch control flow protection.
568      getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
569                                1);
570    }
571  
572    if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
573      // Indicate whether __nvvm_reflect should be configured to flush denormal
574      // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
575      // property.)
576      getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
577                                CodeGenOpts.FlushDenorm ? 1 : 0);
578    }
579  
580    // Emit OpenCL specific module metadata: OpenCL/SPIR version.
581    if (LangOpts.OpenCL) {
582      EmitOpenCLMetadata();
583      // Emit SPIR version.
584      if (getTriple().isSPIR()) {
585        // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
586        // opencl.spir.version named metadata.
587        // C++ is backwards compatible with OpenCL v2.0.
588        auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
589        llvm::Metadata *SPIRVerElts[] = {
590            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
591                Int32Ty, Version / 100)),
592            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
593                Int32Ty, (Version / 100 > 1) ? 0 : 2))};
594        llvm::NamedMDNode *SPIRVerMD =
595            TheModule.getOrInsertNamedMetadata("opencl.spir.version");
596        llvm::LLVMContext &Ctx = TheModule.getContext();
597        SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
598      }
599    }
600  
601    if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
602      assert(PLevel < 3 && "Invalid PIC Level");
603      getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
604      if (Context.getLangOpts().PIE)
605        getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
606    }
607  
608    if (getCodeGenOpts().CodeModel.size() > 0) {
609      unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
610                    .Case("tiny", llvm::CodeModel::Tiny)
611                    .Case("small", llvm::CodeModel::Small)
612                    .Case("kernel", llvm::CodeModel::Kernel)
613                    .Case("medium", llvm::CodeModel::Medium)
614                    .Case("large", llvm::CodeModel::Large)
615                    .Default(~0u);
616      if (CM != ~0u) {
617        llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
618        getModule().setCodeModel(codeModel);
619      }
620    }
621  
622    if (CodeGenOpts.NoPLT)
623      getModule().setRtLibUseGOT();
624  
625    SimplifyPersonality();
626  
627    if (getCodeGenOpts().EmitDeclMetadata)
628      EmitDeclMetadata();
629  
630    if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
631      EmitCoverageFile();
632  
633    if (DebugInfo)
634      DebugInfo->finalize();
635  
636    if (getCodeGenOpts().EmitVersionIdentMetadata)
637      EmitVersionIdentMetadata();
638  
639    if (!getCodeGenOpts().RecordCommandLine.empty())
640      EmitCommandLineMetadata();
641  
642    EmitTargetMetadata();
643  }
644  
645  void CodeGenModule::EmitOpenCLMetadata() {
646    // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
647    // opencl.ocl.version named metadata node.
648    // C++ is backwards compatible with OpenCL v2.0.
649    // FIXME: We might need to add CXX version at some point too?
650    auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
651    llvm::Metadata *OCLVerElts[] = {
652        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
653            Int32Ty, Version / 100)),
654        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
655            Int32Ty, (Version % 100) / 10))};
656    llvm::NamedMDNode *OCLVerMD =
657        TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
658    llvm::LLVMContext &Ctx = TheModule.getContext();
659    OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
660  }
661  
662  void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
663    // Make sure that this type is translated.
664    Types.UpdateCompletedType(TD);
665  }
666  
667  void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
668    // Make sure that this type is translated.
669    Types.RefreshTypeCacheForClass(RD);
670  }
671  
672  llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
673    if (!TBAA)
674      return nullptr;
675    return TBAA->getTypeInfo(QTy);
676  }
677  
678  TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
679    if (!TBAA)
680      return TBAAAccessInfo();
681    return TBAA->getAccessInfo(AccessType);
682  }
683  
684  TBAAAccessInfo
685  CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
686    if (!TBAA)
687      return TBAAAccessInfo();
688    return TBAA->getVTablePtrAccessInfo(VTablePtrType);
689  }
690  
691  llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
692    if (!TBAA)
693      return nullptr;
694    return TBAA->getTBAAStructInfo(QTy);
695  }
696  
697  llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
698    if (!TBAA)
699      return nullptr;
700    return TBAA->getBaseTypeInfo(QTy);
701  }
702  
703  llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
704    if (!TBAA)
705      return nullptr;
706    return TBAA->getAccessTagInfo(Info);
707  }
708  
709  TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
710                                                     TBAAAccessInfo TargetInfo) {
711    if (!TBAA)
712      return TBAAAccessInfo();
713    return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
714  }
715  
716  TBAAAccessInfo
717  CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
718                                                     TBAAAccessInfo InfoB) {
719    if (!TBAA)
720      return TBAAAccessInfo();
721    return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
722  }
723  
724  TBAAAccessInfo
725  CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
726                                                TBAAAccessInfo SrcInfo) {
727    if (!TBAA)
728      return TBAAAccessInfo();
729    return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
730  }
731  
732  void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
733                                                  TBAAAccessInfo TBAAInfo) {
734    if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
735      Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
736  }
737  
738  void CodeGenModule::DecorateInstructionWithInvariantGroup(
739      llvm::Instruction *I, const CXXRecordDecl *RD) {
740    I->setMetadata(llvm::LLVMContext::MD_invariant_group,
741                   llvm::MDNode::get(getLLVMContext(), {}));
742  }
743  
744  void CodeGenModule::Error(SourceLocation loc, StringRef message) {
745    unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
746    getDiags().Report(Context.getFullLoc(loc), diagID) << message;
747  }
748  
749  /// ErrorUnsupported - Print out an error that codegen doesn't support the
750  /// specified stmt yet.
751  void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
752    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
753                                                 "cannot compile this %0 yet");
754    std::string Msg = Type;
755    getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
756        << Msg << S->getSourceRange();
757  }
758  
759  /// ErrorUnsupported - Print out an error that codegen doesn't support the
760  /// specified decl yet.
761  void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
762    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
763                                                 "cannot compile this %0 yet");
764    std::string Msg = Type;
765    getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
766  }
767  
768  llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
769    return llvm::ConstantInt::get(SizeTy, size.getQuantity());
770  }
771  
772  void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
773                                          const NamedDecl *D) const {
774    if (GV->hasDLLImportStorageClass())
775      return;
776    // Internal definitions always have default visibility.
777    if (GV->hasLocalLinkage()) {
778      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
779      return;
780    }
781    if (!D)
782      return;
783    // Set visibility for definitions, and for declarations if requested globally
784    // or set explicitly.
785    LinkageInfo LV = D->getLinkageAndVisibility();
786    if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
787        !GV->isDeclarationForLinker())
788      GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
789  }
790  
791  static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
792                                   llvm::GlobalValue *GV) {
793    if (GV->hasLocalLinkage())
794      return true;
795  
796    if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
797      return true;
798  
799    // DLLImport explicitly marks the GV as external.
800    if (GV->hasDLLImportStorageClass())
801      return false;
802  
803    const llvm::Triple &TT = CGM.getTriple();
804    if (TT.isWindowsGNUEnvironment()) {
805      // In MinGW, variables without DLLImport can still be automatically
806      // imported from a DLL by the linker; don't mark variables that
807      // potentially could come from another DLL as DSO local.
808      if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
809          !GV->isThreadLocal())
810        return false;
811    }
812  
813    // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
814    // remain unresolved in the link, they can be resolved to zero, which is
815    // outside the current DSO.
816    if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
817      return false;
818  
819    // Every other GV is local on COFF.
820    // Make an exception for windows OS in the triple: Some firmware builds use
821    // *-win32-macho triples. This (accidentally?) produced windows relocations
822    // without GOT tables in older clang versions; Keep this behaviour.
823    // FIXME: even thread local variables?
824    if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
825      return true;
826  
827    // Only handle COFF and ELF for now.
828    if (!TT.isOSBinFormatELF())
829      return false;
830  
831    // If this is not an executable, don't assume anything is local.
832    const auto &CGOpts = CGM.getCodeGenOpts();
833    llvm::Reloc::Model RM = CGOpts.RelocationModel;
834    const auto &LOpts = CGM.getLangOpts();
835    if (RM != llvm::Reloc::Static && !LOpts.PIE)
836      return false;
837  
838    // A definition cannot be preempted from an executable.
839    if (!GV->isDeclarationForLinker())
840      return true;
841  
842    // Most PIC code sequences that assume that a symbol is local cannot produce a
843    // 0 if it turns out the symbol is undefined. While this is ABI and relocation
844    // depended, it seems worth it to handle it here.
845    if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
846      return false;
847  
848    // PPC has no copy relocations and cannot use a plt entry as a symbol address.
849    llvm::Triple::ArchType Arch = TT.getArch();
850    if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
851        Arch == llvm::Triple::ppc64le)
852      return false;
853  
854    // If we can use copy relocations we can assume it is local.
855    if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
856      if (!Var->isThreadLocal() &&
857          (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
858        return true;
859  
860    // If we can use a plt entry as the symbol address we can assume it
861    // is local.
862    // FIXME: This should work for PIE, but the gold linker doesn't support it.
863    if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
864      return true;
865  
866    // Otherwise don't assue it is local.
867    return false;
868  }
869  
870  void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
871    GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
872  }
873  
874  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
875                                            GlobalDecl GD) const {
876    const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
877    // C++ destructors have a few C++ ABI specific special cases.
878    if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
879      getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
880      return;
881    }
882    setDLLImportDLLExport(GV, D);
883  }
884  
885  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
886                                            const NamedDecl *D) const {
887    if (D && D->isExternallyVisible()) {
888      if (D->hasAttr<DLLImportAttr>())
889        GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
890      else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
891        GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
892    }
893  }
894  
895  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
896                                      GlobalDecl GD) const {
897    setDLLImportDLLExport(GV, GD);
898    setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
899  }
900  
901  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
902                                      const NamedDecl *D) const {
903    setDLLImportDLLExport(GV, D);
904    setGVPropertiesAux(GV, D);
905  }
906  
907  void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
908                                         const NamedDecl *D) const {
909    setGlobalVisibility(GV, D);
910    setDSOLocal(GV);
911    GV->setPartition(CodeGenOpts.SymbolPartition);
912  }
913  
914  static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
915    return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
916        .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
917        .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
918        .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
919        .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
920  }
921  
922  static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
923      CodeGenOptions::TLSModel M) {
924    switch (M) {
925    case CodeGenOptions::GeneralDynamicTLSModel:
926      return llvm::GlobalVariable::GeneralDynamicTLSModel;
927    case CodeGenOptions::LocalDynamicTLSModel:
928      return llvm::GlobalVariable::LocalDynamicTLSModel;
929    case CodeGenOptions::InitialExecTLSModel:
930      return llvm::GlobalVariable::InitialExecTLSModel;
931    case CodeGenOptions::LocalExecTLSModel:
932      return llvm::GlobalVariable::LocalExecTLSModel;
933    }
934    llvm_unreachable("Invalid TLS model!");
935  }
936  
937  void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
938    assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
939  
940    llvm::GlobalValue::ThreadLocalMode TLM;
941    TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
942  
943    // Override the TLS model if it is explicitly specified.
944    if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
945      TLM = GetLLVMTLSModel(Attr->getModel());
946    }
947  
948    GV->setThreadLocalMode(TLM);
949  }
950  
951  static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
952                                            StringRef Name) {
953    const TargetInfo &Target = CGM.getTarget();
954    return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
955  }
956  
957  static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
958                                                   const CPUSpecificAttr *Attr,
959                                                   unsigned CPUIndex,
960                                                   raw_ostream &Out) {
961    // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
962    // supported.
963    if (Attr)
964      Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
965    else if (CGM.getTarget().supportsIFunc())
966      Out << ".resolver";
967  }
968  
969  static void AppendTargetMangling(const CodeGenModule &CGM,
970                                   const TargetAttr *Attr, raw_ostream &Out) {
971    if (Attr->isDefaultVersion())
972      return;
973  
974    Out << '.';
975    const TargetInfo &Target = CGM.getTarget();
976    ParsedTargetAttr Info =
977        Attr->parse([&Target](StringRef LHS, StringRef RHS) {
978          // Multiversioning doesn't allow "no-${feature}", so we can
979          // only have "+" prefixes here.
980          assert(LHS.startswith("+") && RHS.startswith("+") &&
981                 "Features should always have a prefix.");
982          return Target.multiVersionSortPriority(LHS.substr(1)) >
983                 Target.multiVersionSortPriority(RHS.substr(1));
984        });
985  
986    bool IsFirst = true;
987  
988    if (!Info.Architecture.empty()) {
989      IsFirst = false;
990      Out << "arch_" << Info.Architecture;
991    }
992  
993    for (StringRef Feat : Info.Features) {
994      if (!IsFirst)
995        Out << '_';
996      IsFirst = false;
997      Out << Feat.substr(1);
998    }
999  }
1000  
1001  static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1002                                        const NamedDecl *ND,
1003                                        bool OmitMultiVersionMangling = false) {
1004    SmallString<256> Buffer;
1005    llvm::raw_svector_ostream Out(Buffer);
1006    MangleContext &MC = CGM.getCXXABI().getMangleContext();
1007    if (MC.shouldMangleDeclName(ND)) {
1008      llvm::raw_svector_ostream Out(Buffer);
1009      if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
1010        MC.mangleCXXCtor(D, GD.getCtorType(), Out);
1011      else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
1012        MC.mangleCXXDtor(D, GD.getDtorType(), Out);
1013      else
1014        MC.mangleName(ND, Out);
1015    } else {
1016      IdentifierInfo *II = ND->getIdentifier();
1017      assert(II && "Attempt to mangle unnamed decl.");
1018      const auto *FD = dyn_cast<FunctionDecl>(ND);
1019  
1020      if (FD &&
1021          FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1022        llvm::raw_svector_ostream Out(Buffer);
1023        Out << "__regcall3__" << II->getName();
1024      } else {
1025        Out << II->getName();
1026      }
1027    }
1028  
1029    if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1030      if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1031        switch (FD->getMultiVersionKind()) {
1032        case MultiVersionKind::CPUDispatch:
1033        case MultiVersionKind::CPUSpecific:
1034          AppendCPUSpecificCPUDispatchMangling(CGM,
1035                                               FD->getAttr<CPUSpecificAttr>(),
1036                                               GD.getMultiVersionIndex(), Out);
1037          break;
1038        case MultiVersionKind::Target:
1039          AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1040          break;
1041        case MultiVersionKind::None:
1042          llvm_unreachable("None multiversion type isn't valid here");
1043        }
1044      }
1045  
1046    return Out.str();
1047  }
1048  
1049  void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1050                                              const FunctionDecl *FD) {
1051    if (!FD->isMultiVersion())
1052      return;
1053  
1054    // Get the name of what this would be without the 'target' attribute.  This
1055    // allows us to lookup the version that was emitted when this wasn't a
1056    // multiversion function.
1057    std::string NonTargetName =
1058        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1059    GlobalDecl OtherGD;
1060    if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1061      assert(OtherGD.getCanonicalDecl()
1062                 .getDecl()
1063                 ->getAsFunction()
1064                 ->isMultiVersion() &&
1065             "Other GD should now be a multiversioned function");
1066      // OtherFD is the version of this function that was mangled BEFORE
1067      // becoming a MultiVersion function.  It potentially needs to be updated.
1068      const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1069                                        .getDecl()
1070                                        ->getAsFunction()
1071                                        ->getMostRecentDecl();
1072      std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1073      // This is so that if the initial version was already the 'default'
1074      // version, we don't try to update it.
1075      if (OtherName != NonTargetName) {
1076        // Remove instead of erase, since others may have stored the StringRef
1077        // to this.
1078        const auto ExistingRecord = Manglings.find(NonTargetName);
1079        if (ExistingRecord != std::end(Manglings))
1080          Manglings.remove(&(*ExistingRecord));
1081        auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1082        MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1083        if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1084          Entry->setName(OtherName);
1085      }
1086    }
1087  }
1088  
1089  StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1090    GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1091  
1092    // Some ABIs don't have constructor variants.  Make sure that base and
1093    // complete constructors get mangled the same.
1094    if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1095      if (!getTarget().getCXXABI().hasConstructorVariants()) {
1096        CXXCtorType OrigCtorType = GD.getCtorType();
1097        assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1098        if (OrigCtorType == Ctor_Base)
1099          CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1100      }
1101    }
1102  
1103    auto FoundName = MangledDeclNames.find(CanonicalGD);
1104    if (FoundName != MangledDeclNames.end())
1105      return FoundName->second;
1106  
1107    // Keep the first result in the case of a mangling collision.
1108    const auto *ND = cast<NamedDecl>(GD.getDecl());
1109    std::string MangledName = getMangledNameImpl(*this, GD, ND);
1110  
1111    // Adjust kernel stub mangling as we may need to be able to differentiate
1112    // them from the kernel itself (e.g., for HIP).
1113    if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1114      if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1115        MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1116  
1117    auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1118    return MangledDeclNames[CanonicalGD] = Result.first->first();
1119  }
1120  
1121  StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1122                                               const BlockDecl *BD) {
1123    MangleContext &MangleCtx = getCXXABI().getMangleContext();
1124    const Decl *D = GD.getDecl();
1125  
1126    SmallString<256> Buffer;
1127    llvm::raw_svector_ostream Out(Buffer);
1128    if (!D)
1129      MangleCtx.mangleGlobalBlock(BD,
1130        dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1131    else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1132      MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1133    else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1134      MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1135    else
1136      MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1137  
1138    auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1139    return Result.first->first();
1140  }
1141  
1142  llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1143    return getModule().getNamedValue(Name);
1144  }
1145  
1146  /// AddGlobalCtor - Add a function to the list that will be called before
1147  /// main() runs.
1148  void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1149                                    llvm::Constant *AssociatedData) {
1150    // FIXME: Type coercion of void()* types.
1151    GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1152  }
1153  
1154  /// AddGlobalDtor - Add a function to the list that will be called
1155  /// when the module is unloaded.
1156  void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1157    if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1158      DtorsUsingAtExit[Priority].push_back(Dtor);
1159      return;
1160    }
1161  
1162    // FIXME: Type coercion of void()* types.
1163    GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1164  }
1165  
1166  void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1167    if (Fns.empty()) return;
1168  
1169    // Ctor function type is void()*.
1170    llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1171    llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1172        TheModule.getDataLayout().getProgramAddressSpace());
1173  
1174    // Get the type of a ctor entry, { i32, void ()*, i8* }.
1175    llvm::StructType *CtorStructTy = llvm::StructType::get(
1176        Int32Ty, CtorPFTy, VoidPtrTy);
1177  
1178    // Construct the constructor and destructor arrays.
1179    ConstantInitBuilder builder(*this);
1180    auto ctors = builder.beginArray(CtorStructTy);
1181    for (const auto &I : Fns) {
1182      auto ctor = ctors.beginStruct(CtorStructTy);
1183      ctor.addInt(Int32Ty, I.Priority);
1184      ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1185      if (I.AssociatedData)
1186        ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1187      else
1188        ctor.addNullPointer(VoidPtrTy);
1189      ctor.finishAndAddTo(ctors);
1190    }
1191  
1192    auto list =
1193      ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1194                                  /*constant*/ false,
1195                                  llvm::GlobalValue::AppendingLinkage);
1196  
1197    // The LTO linker doesn't seem to like it when we set an alignment
1198    // on appending variables.  Take it off as a workaround.
1199    list->setAlignment(llvm::None);
1200  
1201    Fns.clear();
1202  }
1203  
1204  llvm::GlobalValue::LinkageTypes
1205  CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1206    const auto *D = cast<FunctionDecl>(GD.getDecl());
1207  
1208    GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1209  
1210    if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1211      return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1212  
1213    if (isa<CXXConstructorDecl>(D) &&
1214        cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1215        Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1216      // Our approach to inheriting constructors is fundamentally different from
1217      // that used by the MS ABI, so keep our inheriting constructor thunks
1218      // internal rather than trying to pick an unambiguous mangling for them.
1219      return llvm::GlobalValue::InternalLinkage;
1220    }
1221  
1222    return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1223  }
1224  
1225  llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1226    llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1227    if (!MDS) return nullptr;
1228  
1229    return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1230  }
1231  
1232  void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1233                                                const CGFunctionInfo &Info,
1234                                                llvm::Function *F) {
1235    unsigned CallingConv;
1236    llvm::AttributeList PAL;
1237    ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1238    F->setAttributes(PAL);
1239    F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1240  }
1241  
1242  static void removeImageAccessQualifier(std::string& TyName) {
1243    std::string ReadOnlyQual("__read_only");
1244    std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1245    if (ReadOnlyPos != std::string::npos)
1246      // "+ 1" for the space after access qualifier.
1247      TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1248    else {
1249      std::string WriteOnlyQual("__write_only");
1250      std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1251      if (WriteOnlyPos != std::string::npos)
1252        TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1253      else {
1254        std::string ReadWriteQual("__read_write");
1255        std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1256        if (ReadWritePos != std::string::npos)
1257          TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1258      }
1259    }
1260  }
1261  
1262  // Returns the address space id that should be produced to the
1263  // kernel_arg_addr_space metadata. This is always fixed to the ids
1264  // as specified in the SPIR 2.0 specification in order to differentiate
1265  // for example in clGetKernelArgInfo() implementation between the address
1266  // spaces with targets without unique mapping to the OpenCL address spaces
1267  // (basically all single AS CPUs).
1268  static unsigned ArgInfoAddressSpace(LangAS AS) {
1269    switch (AS) {
1270    case LangAS::opencl_global:   return 1;
1271    case LangAS::opencl_constant: return 2;
1272    case LangAS::opencl_local:    return 3;
1273    case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1274    default:
1275      return 0; // Assume private.
1276    }
1277  }
1278  
1279  void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1280                                           const FunctionDecl *FD,
1281                                           CodeGenFunction *CGF) {
1282    assert(((FD && CGF) || (!FD && !CGF)) &&
1283           "Incorrect use - FD and CGF should either be both null or not!");
1284    // Create MDNodes that represent the kernel arg metadata.
1285    // Each MDNode is a list in the form of "key", N number of values which is
1286    // the same number of values as their are kernel arguments.
1287  
1288    const PrintingPolicy &Policy = Context.getPrintingPolicy();
1289  
1290    // MDNode for the kernel argument address space qualifiers.
1291    SmallVector<llvm::Metadata *, 8> addressQuals;
1292  
1293    // MDNode for the kernel argument access qualifiers (images only).
1294    SmallVector<llvm::Metadata *, 8> accessQuals;
1295  
1296    // MDNode for the kernel argument type names.
1297    SmallVector<llvm::Metadata *, 8> argTypeNames;
1298  
1299    // MDNode for the kernel argument base type names.
1300    SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1301  
1302    // MDNode for the kernel argument type qualifiers.
1303    SmallVector<llvm::Metadata *, 8> argTypeQuals;
1304  
1305    // MDNode for the kernel argument names.
1306    SmallVector<llvm::Metadata *, 8> argNames;
1307  
1308    if (FD && CGF)
1309      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1310        const ParmVarDecl *parm = FD->getParamDecl(i);
1311        QualType ty = parm->getType();
1312        std::string typeQuals;
1313  
1314        if (ty->isPointerType()) {
1315          QualType pointeeTy = ty->getPointeeType();
1316  
1317          // Get address qualifier.
1318          addressQuals.push_back(
1319              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1320                  ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1321  
1322          // Get argument type name.
1323          std::string typeName =
1324              pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1325  
1326          // Turn "unsigned type" to "utype"
1327          std::string::size_type pos = typeName.find("unsigned");
1328          if (pointeeTy.isCanonical() && pos != std::string::npos)
1329            typeName.erase(pos + 1, 8);
1330  
1331          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1332  
1333          std::string baseTypeName =
1334              pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1335                  Policy) +
1336              "*";
1337  
1338          // Turn "unsigned type" to "utype"
1339          pos = baseTypeName.find("unsigned");
1340          if (pos != std::string::npos)
1341            baseTypeName.erase(pos + 1, 8);
1342  
1343          argBaseTypeNames.push_back(
1344              llvm::MDString::get(VMContext, baseTypeName));
1345  
1346          // Get argument type qualifiers:
1347          if (ty.isRestrictQualified())
1348            typeQuals = "restrict";
1349          if (pointeeTy.isConstQualified() ||
1350              (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1351            typeQuals += typeQuals.empty() ? "const" : " const";
1352          if (pointeeTy.isVolatileQualified())
1353            typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1354        } else {
1355          uint32_t AddrSpc = 0;
1356          bool isPipe = ty->isPipeType();
1357          if (ty->isImageType() || isPipe)
1358            AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1359  
1360          addressQuals.push_back(
1361              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1362  
1363          // Get argument type name.
1364          std::string typeName;
1365          if (isPipe)
1366            typeName = ty.getCanonicalType()
1367                           ->getAs<PipeType>()
1368                           ->getElementType()
1369                           .getAsString(Policy);
1370          else
1371            typeName = ty.getUnqualifiedType().getAsString(Policy);
1372  
1373          // Turn "unsigned type" to "utype"
1374          std::string::size_type pos = typeName.find("unsigned");
1375          if (ty.isCanonical() && pos != std::string::npos)
1376            typeName.erase(pos + 1, 8);
1377  
1378          std::string baseTypeName;
1379          if (isPipe)
1380            baseTypeName = ty.getCanonicalType()
1381                               ->getAs<PipeType>()
1382                               ->getElementType()
1383                               .getCanonicalType()
1384                               .getAsString(Policy);
1385          else
1386            baseTypeName =
1387                ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1388  
1389          // Remove access qualifiers on images
1390          // (as they are inseparable from type in clang implementation,
1391          // but OpenCL spec provides a special query to get access qualifier
1392          // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1393          if (ty->isImageType()) {
1394            removeImageAccessQualifier(typeName);
1395            removeImageAccessQualifier(baseTypeName);
1396          }
1397  
1398          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1399  
1400          // Turn "unsigned type" to "utype"
1401          pos = baseTypeName.find("unsigned");
1402          if (pos != std::string::npos)
1403            baseTypeName.erase(pos + 1, 8);
1404  
1405          argBaseTypeNames.push_back(
1406              llvm::MDString::get(VMContext, baseTypeName));
1407  
1408          if (isPipe)
1409            typeQuals = "pipe";
1410        }
1411  
1412        argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1413  
1414        // Get image and pipe access qualifier:
1415        if (ty->isImageType() || ty->isPipeType()) {
1416          const Decl *PDecl = parm;
1417          if (auto *TD = dyn_cast<TypedefType>(ty))
1418            PDecl = TD->getDecl();
1419          const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1420          if (A && A->isWriteOnly())
1421            accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1422          else if (A && A->isReadWrite())
1423            accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1424          else
1425            accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1426        } else
1427          accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1428  
1429        // Get argument name.
1430        argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1431      }
1432  
1433    Fn->setMetadata("kernel_arg_addr_space",
1434                    llvm::MDNode::get(VMContext, addressQuals));
1435    Fn->setMetadata("kernel_arg_access_qual",
1436                    llvm::MDNode::get(VMContext, accessQuals));
1437    Fn->setMetadata("kernel_arg_type",
1438                    llvm::MDNode::get(VMContext, argTypeNames));
1439    Fn->setMetadata("kernel_arg_base_type",
1440                    llvm::MDNode::get(VMContext, argBaseTypeNames));
1441    Fn->setMetadata("kernel_arg_type_qual",
1442                    llvm::MDNode::get(VMContext, argTypeQuals));
1443    if (getCodeGenOpts().EmitOpenCLArgMetadata)
1444      Fn->setMetadata("kernel_arg_name",
1445                      llvm::MDNode::get(VMContext, argNames));
1446  }
1447  
1448  /// Determines whether the language options require us to model
1449  /// unwind exceptions.  We treat -fexceptions as mandating this
1450  /// except under the fragile ObjC ABI with only ObjC exceptions
1451  /// enabled.  This means, for example, that C with -fexceptions
1452  /// enables this.
1453  static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1454    // If exceptions are completely disabled, obviously this is false.
1455    if (!LangOpts.Exceptions) return false;
1456  
1457    // If C++ exceptions are enabled, this is true.
1458    if (LangOpts.CXXExceptions) return true;
1459  
1460    // If ObjC exceptions are enabled, this depends on the ABI.
1461    if (LangOpts.ObjCExceptions) {
1462      return LangOpts.ObjCRuntime.hasUnwindExceptions();
1463    }
1464  
1465    return true;
1466  }
1467  
1468  static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1469                                                        const CXXMethodDecl *MD) {
1470    // Check that the type metadata can ever actually be used by a call.
1471    if (!CGM.getCodeGenOpts().LTOUnit ||
1472        !CGM.HasHiddenLTOVisibility(MD->getParent()))
1473      return false;
1474  
1475    // Only functions whose address can be taken with a member function pointer
1476    // need this sort of type metadata.
1477    return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1478           !isa<CXXDestructorDecl>(MD);
1479  }
1480  
1481  std::vector<const CXXRecordDecl *>
1482  CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1483    llvm::SetVector<const CXXRecordDecl *> MostBases;
1484  
1485    std::function<void (const CXXRecordDecl *)> CollectMostBases;
1486    CollectMostBases = [&](const CXXRecordDecl *RD) {
1487      if (RD->getNumBases() == 0)
1488        MostBases.insert(RD);
1489      for (const CXXBaseSpecifier &B : RD->bases())
1490        CollectMostBases(B.getType()->getAsCXXRecordDecl());
1491    };
1492    CollectMostBases(RD);
1493    return MostBases.takeVector();
1494  }
1495  
1496  void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1497                                                             llvm::Function *F) {
1498    llvm::AttrBuilder B;
1499  
1500    if (CodeGenOpts.UnwindTables)
1501      B.addAttribute(llvm::Attribute::UWTable);
1502  
1503    if (!hasUnwindExceptions(LangOpts))
1504      B.addAttribute(llvm::Attribute::NoUnwind);
1505  
1506    if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1507      if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1508        B.addAttribute(llvm::Attribute::StackProtect);
1509      else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1510        B.addAttribute(llvm::Attribute::StackProtectStrong);
1511      else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1512        B.addAttribute(llvm::Attribute::StackProtectReq);
1513    }
1514  
1515    if (!D) {
1516      // If we don't have a declaration to control inlining, the function isn't
1517      // explicitly marked as alwaysinline for semantic reasons, and inlining is
1518      // disabled, mark the function as noinline.
1519      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1520          CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1521        B.addAttribute(llvm::Attribute::NoInline);
1522  
1523      F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1524      return;
1525    }
1526  
1527    // Track whether we need to add the optnone LLVM attribute,
1528    // starting with the default for this optimization level.
1529    bool ShouldAddOptNone =
1530        !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1531    // We can't add optnone in the following cases, it won't pass the verifier.
1532    ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1533    ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1534  
1535    // Add optnone, but do so only if the function isn't always_inline.
1536    if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1537        !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1538      B.addAttribute(llvm::Attribute::OptimizeNone);
1539  
1540      // OptimizeNone implies noinline; we should not be inlining such functions.
1541      B.addAttribute(llvm::Attribute::NoInline);
1542  
1543      // We still need to handle naked functions even though optnone subsumes
1544      // much of their semantics.
1545      if (D->hasAttr<NakedAttr>())
1546        B.addAttribute(llvm::Attribute::Naked);
1547  
1548      // OptimizeNone wins over OptimizeForSize and MinSize.
1549      F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1550      F->removeFnAttr(llvm::Attribute::MinSize);
1551    } else if (D->hasAttr<NakedAttr>()) {
1552      // Naked implies noinline: we should not be inlining such functions.
1553      B.addAttribute(llvm::Attribute::Naked);
1554      B.addAttribute(llvm::Attribute::NoInline);
1555    } else if (D->hasAttr<NoDuplicateAttr>()) {
1556      B.addAttribute(llvm::Attribute::NoDuplicate);
1557    } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1558      // Add noinline if the function isn't always_inline.
1559      B.addAttribute(llvm::Attribute::NoInline);
1560    } else if (D->hasAttr<AlwaysInlineAttr>() &&
1561               !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1562      // (noinline wins over always_inline, and we can't specify both in IR)
1563      B.addAttribute(llvm::Attribute::AlwaysInline);
1564    } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1565      // If we're not inlining, then force everything that isn't always_inline to
1566      // carry an explicit noinline attribute.
1567      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1568        B.addAttribute(llvm::Attribute::NoInline);
1569    } else {
1570      // Otherwise, propagate the inline hint attribute and potentially use its
1571      // absence to mark things as noinline.
1572      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1573        // Search function and template pattern redeclarations for inline.
1574        auto CheckForInline = [](const FunctionDecl *FD) {
1575          auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1576            return Redecl->isInlineSpecified();
1577          };
1578          if (any_of(FD->redecls(), CheckRedeclForInline))
1579            return true;
1580          const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1581          if (!Pattern)
1582            return false;
1583          return any_of(Pattern->redecls(), CheckRedeclForInline);
1584        };
1585        if (CheckForInline(FD)) {
1586          B.addAttribute(llvm::Attribute::InlineHint);
1587        } else if (CodeGenOpts.getInlining() ==
1588                       CodeGenOptions::OnlyHintInlining &&
1589                   !FD->isInlined() &&
1590                   !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1591          B.addAttribute(llvm::Attribute::NoInline);
1592        }
1593      }
1594    }
1595  
1596    // Add other optimization related attributes if we are optimizing this
1597    // function.
1598    if (!D->hasAttr<OptimizeNoneAttr>()) {
1599      if (D->hasAttr<ColdAttr>()) {
1600        if (!ShouldAddOptNone)
1601          B.addAttribute(llvm::Attribute::OptimizeForSize);
1602        B.addAttribute(llvm::Attribute::Cold);
1603      }
1604  
1605      if (D->hasAttr<MinSizeAttr>())
1606        B.addAttribute(llvm::Attribute::MinSize);
1607    }
1608  
1609    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1610  
1611    unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1612    if (alignment)
1613      F->setAlignment(llvm::Align(alignment));
1614  
1615    if (!D->hasAttr<AlignedAttr>())
1616      if (LangOpts.FunctionAlignment)
1617        F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1618  
1619    // Some C++ ABIs require 2-byte alignment for member functions, in order to
1620    // reserve a bit for differentiating between virtual and non-virtual member
1621    // functions. If the current target's C++ ABI requires this and this is a
1622    // member function, set its alignment accordingly.
1623    if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1624      if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1625        F->setAlignment(llvm::Align(2));
1626    }
1627  
1628    // In the cross-dso CFI mode with canonical jump tables, we want !type
1629    // attributes on definitions only.
1630    if (CodeGenOpts.SanitizeCfiCrossDso &&
1631        CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1632      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1633        // Skip available_externally functions. They won't be codegen'ed in the
1634        // current module anyway.
1635        if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1636          CreateFunctionTypeMetadataForIcall(FD, F);
1637      }
1638    }
1639  
1640    // Emit type metadata on member functions for member function pointer checks.
1641    // These are only ever necessary on definitions; we're guaranteed that the
1642    // definition will be present in the LTO unit as a result of LTO visibility.
1643    auto *MD = dyn_cast<CXXMethodDecl>(D);
1644    if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1645      for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1646        llvm::Metadata *Id =
1647            CreateMetadataIdentifierForType(Context.getMemberPointerType(
1648                MD->getType(), Context.getRecordType(Base).getTypePtr()));
1649        F->addTypeMetadata(0, Id);
1650      }
1651    }
1652  }
1653  
1654  void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1655    const Decl *D = GD.getDecl();
1656    if (dyn_cast_or_null<NamedDecl>(D))
1657      setGVProperties(GV, GD);
1658    else
1659      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1660  
1661    if (D && D->hasAttr<UsedAttr>())
1662      addUsedGlobal(GV);
1663  
1664    if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1665      const auto *VD = cast<VarDecl>(D);
1666      if (VD->getType().isConstQualified() &&
1667          VD->getStorageDuration() == SD_Static)
1668        addUsedGlobal(GV);
1669    }
1670  }
1671  
1672  bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1673                                                  llvm::AttrBuilder &Attrs) {
1674    // Add target-cpu and target-features attributes to functions. If
1675    // we have a decl for the function and it has a target attribute then
1676    // parse that and add it to the feature set.
1677    StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1678    std::vector<std::string> Features;
1679    const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1680    FD = FD ? FD->getMostRecentDecl() : FD;
1681    const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1682    const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1683    bool AddedAttr = false;
1684    if (TD || SD) {
1685      llvm::StringMap<bool> FeatureMap;
1686      getContext().getFunctionFeatureMap(FeatureMap, GD);
1687  
1688      // Produce the canonical string for this set of features.
1689      for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1690        Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1691  
1692      // Now add the target-cpu and target-features to the function.
1693      // While we populated the feature map above, we still need to
1694      // get and parse the target attribute so we can get the cpu for
1695      // the function.
1696      if (TD) {
1697        ParsedTargetAttr ParsedAttr = TD->parse();
1698        if (ParsedAttr.Architecture != "" &&
1699            getTarget().isValidCPUName(ParsedAttr.Architecture))
1700          TargetCPU = ParsedAttr.Architecture;
1701      }
1702    } else {
1703      // Otherwise just add the existing target cpu and target features to the
1704      // function.
1705      Features = getTarget().getTargetOpts().Features;
1706    }
1707  
1708    if (TargetCPU != "") {
1709      Attrs.addAttribute("target-cpu", TargetCPU);
1710      AddedAttr = true;
1711    }
1712    if (!Features.empty()) {
1713      llvm::sort(Features);
1714      Attrs.addAttribute("target-features", llvm::join(Features, ","));
1715      AddedAttr = true;
1716    }
1717  
1718    return AddedAttr;
1719  }
1720  
1721  void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1722                                            llvm::GlobalObject *GO) {
1723    const Decl *D = GD.getDecl();
1724    SetCommonAttributes(GD, GO);
1725  
1726    if (D) {
1727      if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1728        if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1729          GV->addAttribute("bss-section", SA->getName());
1730        if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1731          GV->addAttribute("data-section", SA->getName());
1732        if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1733          GV->addAttribute("rodata-section", SA->getName());
1734        if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1735          GV->addAttribute("relro-section", SA->getName());
1736      }
1737  
1738      if (auto *F = dyn_cast<llvm::Function>(GO)) {
1739        if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1740          if (!D->getAttr<SectionAttr>())
1741            F->addFnAttr("implicit-section-name", SA->getName());
1742  
1743        llvm::AttrBuilder Attrs;
1744        if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1745          // We know that GetCPUAndFeaturesAttributes will always have the
1746          // newest set, since it has the newest possible FunctionDecl, so the
1747          // new ones should replace the old.
1748          F->removeFnAttr("target-cpu");
1749          F->removeFnAttr("target-features");
1750          F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1751        }
1752      }
1753  
1754      if (const auto *CSA = D->getAttr<CodeSegAttr>())
1755        GO->setSection(CSA->getName());
1756      else if (const auto *SA = D->getAttr<SectionAttr>())
1757        GO->setSection(SA->getName());
1758    }
1759  
1760    getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1761  }
1762  
1763  void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1764                                                    llvm::Function *F,
1765                                                    const CGFunctionInfo &FI) {
1766    const Decl *D = GD.getDecl();
1767    SetLLVMFunctionAttributes(GD, FI, F);
1768    SetLLVMFunctionAttributesForDefinition(D, F);
1769  
1770    F->setLinkage(llvm::Function::InternalLinkage);
1771  
1772    setNonAliasAttributes(GD, F);
1773  }
1774  
1775  static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1776    // Set linkage and visibility in case we never see a definition.
1777    LinkageInfo LV = ND->getLinkageAndVisibility();
1778    // Don't set internal linkage on declarations.
1779    // "extern_weak" is overloaded in LLVM; we probably should have
1780    // separate linkage types for this.
1781    if (isExternallyVisible(LV.getLinkage()) &&
1782        (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1783      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1784  }
1785  
1786  void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1787                                                         llvm::Function *F) {
1788    // Only if we are checking indirect calls.
1789    if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1790      return;
1791  
1792    // Non-static class methods are handled via vtable or member function pointer
1793    // checks elsewhere.
1794    if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1795      return;
1796  
1797    llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1798    F->addTypeMetadata(0, MD);
1799    F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1800  
1801    // Emit a hash-based bit set entry for cross-DSO calls.
1802    if (CodeGenOpts.SanitizeCfiCrossDso)
1803      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1804        F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1805  }
1806  
1807  void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1808                                            bool IsIncompleteFunction,
1809                                            bool IsThunk) {
1810  
1811    if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1812      // If this is an intrinsic function, set the function's attributes
1813      // to the intrinsic's attributes.
1814      F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1815      return;
1816    }
1817  
1818    const auto *FD = cast<FunctionDecl>(GD.getDecl());
1819  
1820    if (!IsIncompleteFunction)
1821      SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1822  
1823    // Add the Returned attribute for "this", except for iOS 5 and earlier
1824    // where substantial code, including the libstdc++ dylib, was compiled with
1825    // GCC and does not actually return "this".
1826    if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1827        !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1828      assert(!F->arg_empty() &&
1829             F->arg_begin()->getType()
1830               ->canLosslesslyBitCastTo(F->getReturnType()) &&
1831             "unexpected this return");
1832      F->addAttribute(1, llvm::Attribute::Returned);
1833    }
1834  
1835    // Only a few attributes are set on declarations; these may later be
1836    // overridden by a definition.
1837  
1838    setLinkageForGV(F, FD);
1839    setGVProperties(F, FD);
1840  
1841    // Setup target-specific attributes.
1842    if (!IsIncompleteFunction && F->isDeclaration())
1843      getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1844  
1845    if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1846      F->setSection(CSA->getName());
1847    else if (const auto *SA = FD->getAttr<SectionAttr>())
1848       F->setSection(SA->getName());
1849  
1850    // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1851    if (FD->isInlineBuiltinDeclaration()) {
1852      const FunctionDecl *FDBody;
1853      bool HasBody = FD->hasBody(FDBody);
1854      (void)HasBody;
1855      assert(HasBody && "Inline builtin declarations should always have an "
1856                        "available body!");
1857      if (shouldEmitFunction(FDBody))
1858        F->addAttribute(llvm::AttributeList::FunctionIndex,
1859                        llvm::Attribute::NoBuiltin);
1860    }
1861  
1862    if (FD->isReplaceableGlobalAllocationFunction()) {
1863      // A replaceable global allocation function does not act like a builtin by
1864      // default, only if it is invoked by a new-expression or delete-expression.
1865      F->addAttribute(llvm::AttributeList::FunctionIndex,
1866                      llvm::Attribute::NoBuiltin);
1867  
1868      // A sane operator new returns a non-aliasing pointer.
1869      // FIXME: Also add NonNull attribute to the return value
1870      // for the non-nothrow forms?
1871      auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1872      if (getCodeGenOpts().AssumeSaneOperatorNew &&
1873          (Kind == OO_New || Kind == OO_Array_New))
1874        F->addAttribute(llvm::AttributeList::ReturnIndex,
1875                        llvm::Attribute::NoAlias);
1876    }
1877  
1878    if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1879      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1880    else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1881      if (MD->isVirtual())
1882        F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1883  
1884    // Don't emit entries for function declarations in the cross-DSO mode. This
1885    // is handled with better precision by the receiving DSO. But if jump tables
1886    // are non-canonical then we need type metadata in order to produce the local
1887    // jump table.
1888    if (!CodeGenOpts.SanitizeCfiCrossDso ||
1889        !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1890      CreateFunctionTypeMetadataForIcall(FD, F);
1891  
1892    if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1893      getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1894  
1895    if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1896      // Annotate the callback behavior as metadata:
1897      //  - The callback callee (as argument number).
1898      //  - The callback payloads (as argument numbers).
1899      llvm::LLVMContext &Ctx = F->getContext();
1900      llvm::MDBuilder MDB(Ctx);
1901  
1902      // The payload indices are all but the first one in the encoding. The first
1903      // identifies the callback callee.
1904      int CalleeIdx = *CB->encoding_begin();
1905      ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1906      F->addMetadata(llvm::LLVMContext::MD_callback,
1907                     *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1908                                                 CalleeIdx, PayloadIndices,
1909                                                 /* VarArgsArePassed */ false)}));
1910    }
1911  }
1912  
1913  void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1914    assert(!GV->isDeclaration() &&
1915           "Only globals with definition can force usage.");
1916    LLVMUsed.emplace_back(GV);
1917  }
1918  
1919  void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1920    assert(!GV->isDeclaration() &&
1921           "Only globals with definition can force usage.");
1922    LLVMCompilerUsed.emplace_back(GV);
1923  }
1924  
1925  static void emitUsed(CodeGenModule &CGM, StringRef Name,
1926                       std::vector<llvm::WeakTrackingVH> &List) {
1927    // Don't create llvm.used if there is no need.
1928    if (List.empty())
1929      return;
1930  
1931    // Convert List to what ConstantArray needs.
1932    SmallVector<llvm::Constant*, 8> UsedArray;
1933    UsedArray.resize(List.size());
1934    for (unsigned i = 0, e = List.size(); i != e; ++i) {
1935      UsedArray[i] =
1936          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1937              cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1938    }
1939  
1940    if (UsedArray.empty())
1941      return;
1942    llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1943  
1944    auto *GV = new llvm::GlobalVariable(
1945        CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1946        llvm::ConstantArray::get(ATy, UsedArray), Name);
1947  
1948    GV->setSection("llvm.metadata");
1949  }
1950  
1951  void CodeGenModule::emitLLVMUsed() {
1952    emitUsed(*this, "llvm.used", LLVMUsed);
1953    emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1954  }
1955  
1956  void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1957    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1958    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1959  }
1960  
1961  void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1962    llvm::SmallString<32> Opt;
1963    getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1964    if (Opt.empty())
1965      return;
1966    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1967    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1968  }
1969  
1970  void CodeGenModule::AddDependentLib(StringRef Lib) {
1971    auto &C = getLLVMContext();
1972    if (getTarget().getTriple().isOSBinFormatELF()) {
1973        ELFDependentLibraries.push_back(
1974          llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1975      return;
1976    }
1977  
1978    llvm::SmallString<24> Opt;
1979    getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1980    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1981    LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1982  }
1983  
1984  /// Add link options implied by the given module, including modules
1985  /// it depends on, using a postorder walk.
1986  static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1987                                      SmallVectorImpl<llvm::MDNode *> &Metadata,
1988                                      llvm::SmallPtrSet<Module *, 16> &Visited) {
1989    // Import this module's parent.
1990    if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1991      addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1992    }
1993  
1994    // Import this module's dependencies.
1995    for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1996      if (Visited.insert(Mod->Imports[I - 1]).second)
1997        addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1998    }
1999  
2000    // Add linker options to link against the libraries/frameworks
2001    // described by this module.
2002    llvm::LLVMContext &Context = CGM.getLLVMContext();
2003    bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2004  
2005    // For modules that use export_as for linking, use that module
2006    // name instead.
2007    if (Mod->UseExportAsModuleLinkName)
2008      return;
2009  
2010    for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2011      // Link against a framework.  Frameworks are currently Darwin only, so we
2012      // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2013      if (Mod->LinkLibraries[I-1].IsFramework) {
2014        llvm::Metadata *Args[2] = {
2015            llvm::MDString::get(Context, "-framework"),
2016            llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2017  
2018        Metadata.push_back(llvm::MDNode::get(Context, Args));
2019        continue;
2020      }
2021  
2022      // Link against a library.
2023      if (IsELF) {
2024        llvm::Metadata *Args[2] = {
2025            llvm::MDString::get(Context, "lib"),
2026            llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2027        };
2028        Metadata.push_back(llvm::MDNode::get(Context, Args));
2029      } else {
2030        llvm::SmallString<24> Opt;
2031        CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2032            Mod->LinkLibraries[I - 1].Library, Opt);
2033        auto *OptString = llvm::MDString::get(Context, Opt);
2034        Metadata.push_back(llvm::MDNode::get(Context, OptString));
2035      }
2036    }
2037  }
2038  
2039  void CodeGenModule::EmitModuleLinkOptions() {
2040    // Collect the set of all of the modules we want to visit to emit link
2041    // options, which is essentially the imported modules and all of their
2042    // non-explicit child modules.
2043    llvm::SetVector<clang::Module *> LinkModules;
2044    llvm::SmallPtrSet<clang::Module *, 16> Visited;
2045    SmallVector<clang::Module *, 16> Stack;
2046  
2047    // Seed the stack with imported modules.
2048    for (Module *M : ImportedModules) {
2049      // Do not add any link flags when an implementation TU of a module imports
2050      // a header of that same module.
2051      if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2052          !getLangOpts().isCompilingModule())
2053        continue;
2054      if (Visited.insert(M).second)
2055        Stack.push_back(M);
2056    }
2057  
2058    // Find all of the modules to import, making a little effort to prune
2059    // non-leaf modules.
2060    while (!Stack.empty()) {
2061      clang::Module *Mod = Stack.pop_back_val();
2062  
2063      bool AnyChildren = false;
2064  
2065      // Visit the submodules of this module.
2066      for (const auto &SM : Mod->submodules()) {
2067        // Skip explicit children; they need to be explicitly imported to be
2068        // linked against.
2069        if (SM->IsExplicit)
2070          continue;
2071  
2072        if (Visited.insert(SM).second) {
2073          Stack.push_back(SM);
2074          AnyChildren = true;
2075        }
2076      }
2077  
2078      // We didn't find any children, so add this module to the list of
2079      // modules to link against.
2080      if (!AnyChildren) {
2081        LinkModules.insert(Mod);
2082      }
2083    }
2084  
2085    // Add link options for all of the imported modules in reverse topological
2086    // order.  We don't do anything to try to order import link flags with respect
2087    // to linker options inserted by things like #pragma comment().
2088    SmallVector<llvm::MDNode *, 16> MetadataArgs;
2089    Visited.clear();
2090    for (Module *M : LinkModules)
2091      if (Visited.insert(M).second)
2092        addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2093    std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2094    LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2095  
2096    // Add the linker options metadata flag.
2097    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2098    for (auto *MD : LinkerOptionsMetadata)
2099      NMD->addOperand(MD);
2100  }
2101  
2102  void CodeGenModule::EmitDeferred() {
2103    // Emit deferred declare target declarations.
2104    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2105      getOpenMPRuntime().emitDeferredTargetDecls();
2106  
2107    // Emit code for any potentially referenced deferred decls.  Since a
2108    // previously unused static decl may become used during the generation of code
2109    // for a static function, iterate until no changes are made.
2110  
2111    if (!DeferredVTables.empty()) {
2112      EmitDeferredVTables();
2113  
2114      // Emitting a vtable doesn't directly cause more vtables to
2115      // become deferred, although it can cause functions to be
2116      // emitted that then need those vtables.
2117      assert(DeferredVTables.empty());
2118    }
2119  
2120    // Stop if we're out of both deferred vtables and deferred declarations.
2121    if (DeferredDeclsToEmit.empty())
2122      return;
2123  
2124    // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2125    // work, it will not interfere with this.
2126    std::vector<GlobalDecl> CurDeclsToEmit;
2127    CurDeclsToEmit.swap(DeferredDeclsToEmit);
2128  
2129    for (GlobalDecl &D : CurDeclsToEmit) {
2130      // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2131      // to get GlobalValue with exactly the type we need, not something that
2132      // might had been created for another decl with the same mangled name but
2133      // different type.
2134      llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2135          GetAddrOfGlobal(D, ForDefinition));
2136  
2137      // In case of different address spaces, we may still get a cast, even with
2138      // IsForDefinition equal to true. Query mangled names table to get
2139      // GlobalValue.
2140      if (!GV)
2141        GV = GetGlobalValue(getMangledName(D));
2142  
2143      // Make sure GetGlobalValue returned non-null.
2144      assert(GV);
2145  
2146      // Check to see if we've already emitted this.  This is necessary
2147      // for a couple of reasons: first, decls can end up in the
2148      // deferred-decls queue multiple times, and second, decls can end
2149      // up with definitions in unusual ways (e.g. by an extern inline
2150      // function acquiring a strong function redefinition).  Just
2151      // ignore these cases.
2152      if (!GV->isDeclaration())
2153        continue;
2154  
2155      // If this is OpenMP, check if it is legal to emit this global normally.
2156      if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2157        continue;
2158  
2159      // Otherwise, emit the definition and move on to the next one.
2160      EmitGlobalDefinition(D, GV);
2161  
2162      // If we found out that we need to emit more decls, do that recursively.
2163      // This has the advantage that the decls are emitted in a DFS and related
2164      // ones are close together, which is convenient for testing.
2165      if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2166        EmitDeferred();
2167        assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2168      }
2169    }
2170  }
2171  
2172  void CodeGenModule::EmitVTablesOpportunistically() {
2173    // Try to emit external vtables as available_externally if they have emitted
2174    // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2175    // is not allowed to create new references to things that need to be emitted
2176    // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2177  
2178    assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2179           && "Only emit opportunistic vtables with optimizations");
2180  
2181    for (const CXXRecordDecl *RD : OpportunisticVTables) {
2182      assert(getVTables().isVTableExternal(RD) &&
2183             "This queue should only contain external vtables");
2184      if (getCXXABI().canSpeculativelyEmitVTable(RD))
2185        VTables.GenerateClassData(RD);
2186    }
2187    OpportunisticVTables.clear();
2188  }
2189  
2190  void CodeGenModule::EmitGlobalAnnotations() {
2191    if (Annotations.empty())
2192      return;
2193  
2194    // Create a new global variable for the ConstantStruct in the Module.
2195    llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2196      Annotations[0]->getType(), Annotations.size()), Annotations);
2197    auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2198                                        llvm::GlobalValue::AppendingLinkage,
2199                                        Array, "llvm.global.annotations");
2200    gv->setSection(AnnotationSection);
2201  }
2202  
2203  llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2204    llvm::Constant *&AStr = AnnotationStrings[Str];
2205    if (AStr)
2206      return AStr;
2207  
2208    // Not found yet, create a new global.
2209    llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2210    auto *gv =
2211        new llvm::GlobalVariable(getModule(), s->getType(), true,
2212                                 llvm::GlobalValue::PrivateLinkage, s, ".str");
2213    gv->setSection(AnnotationSection);
2214    gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2215    AStr = gv;
2216    return gv;
2217  }
2218  
2219  llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2220    SourceManager &SM = getContext().getSourceManager();
2221    PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2222    if (PLoc.isValid())
2223      return EmitAnnotationString(PLoc.getFilename());
2224    return EmitAnnotationString(SM.getBufferName(Loc));
2225  }
2226  
2227  llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2228    SourceManager &SM = getContext().getSourceManager();
2229    PresumedLoc PLoc = SM.getPresumedLoc(L);
2230    unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2231      SM.getExpansionLineNumber(L);
2232    return llvm::ConstantInt::get(Int32Ty, LineNo);
2233  }
2234  
2235  llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2236                                                  const AnnotateAttr *AA,
2237                                                  SourceLocation L) {
2238    // Get the globals for file name, annotation, and the line number.
2239    llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2240                   *UnitGV = EmitAnnotationUnit(L),
2241                   *LineNoCst = EmitAnnotationLineNo(L);
2242  
2243    llvm::Constant *ASZeroGV = GV;
2244    if (GV->getAddressSpace() != 0) {
2245      ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2246                     GV, GV->getValueType()->getPointerTo(0));
2247    }
2248  
2249    // Create the ConstantStruct for the global annotation.
2250    llvm::Constant *Fields[4] = {
2251      llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2252      llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2253      llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2254      LineNoCst
2255    };
2256    return llvm::ConstantStruct::getAnon(Fields);
2257  }
2258  
2259  void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2260                                           llvm::GlobalValue *GV) {
2261    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2262    // Get the struct elements for these annotations.
2263    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2264      Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2265  }
2266  
2267  bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2268                                             llvm::Function *Fn,
2269                                             SourceLocation Loc) const {
2270    const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2271    // Blacklist by function name.
2272    if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2273      return true;
2274    // Blacklist by location.
2275    if (Loc.isValid())
2276      return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2277    // If location is unknown, this may be a compiler-generated function. Assume
2278    // it's located in the main file.
2279    auto &SM = Context.getSourceManager();
2280    if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2281      return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2282    }
2283    return false;
2284  }
2285  
2286  bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2287                                             SourceLocation Loc, QualType Ty,
2288                                             StringRef Category) const {
2289    // For now globals can be blacklisted only in ASan and KASan.
2290    const SanitizerMask EnabledAsanMask =
2291        LangOpts.Sanitize.Mask &
2292        (SanitizerKind::Address | SanitizerKind::KernelAddress |
2293         SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2294         SanitizerKind::MemTag);
2295    if (!EnabledAsanMask)
2296      return false;
2297    const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2298    if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2299      return true;
2300    if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2301      return true;
2302    // Check global type.
2303    if (!Ty.isNull()) {
2304      // Drill down the array types: if global variable of a fixed type is
2305      // blacklisted, we also don't instrument arrays of them.
2306      while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2307        Ty = AT->getElementType();
2308      Ty = Ty.getCanonicalType().getUnqualifiedType();
2309      // We allow to blacklist only record types (classes, structs etc.)
2310      if (Ty->isRecordType()) {
2311        std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2312        if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2313          return true;
2314      }
2315    }
2316    return false;
2317  }
2318  
2319  bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2320                                     StringRef Category) const {
2321    const auto &XRayFilter = getContext().getXRayFilter();
2322    using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2323    auto Attr = ImbueAttr::NONE;
2324    if (Loc.isValid())
2325      Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2326    if (Attr == ImbueAttr::NONE)
2327      Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2328    switch (Attr) {
2329    case ImbueAttr::NONE:
2330      return false;
2331    case ImbueAttr::ALWAYS:
2332      Fn->addFnAttr("function-instrument", "xray-always");
2333      break;
2334    case ImbueAttr::ALWAYS_ARG1:
2335      Fn->addFnAttr("function-instrument", "xray-always");
2336      Fn->addFnAttr("xray-log-args", "1");
2337      break;
2338    case ImbueAttr::NEVER:
2339      Fn->addFnAttr("function-instrument", "xray-never");
2340      break;
2341    }
2342    return true;
2343  }
2344  
2345  bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2346    // Never defer when EmitAllDecls is specified.
2347    if (LangOpts.EmitAllDecls)
2348      return true;
2349  
2350    if (CodeGenOpts.KeepStaticConsts) {
2351      const auto *VD = dyn_cast<VarDecl>(Global);
2352      if (VD && VD->getType().isConstQualified() &&
2353          VD->getStorageDuration() == SD_Static)
2354        return true;
2355    }
2356  
2357    return getContext().DeclMustBeEmitted(Global);
2358  }
2359  
2360  bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2361    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2362      if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2363        // Implicit template instantiations may change linkage if they are later
2364        // explicitly instantiated, so they should not be emitted eagerly.
2365        return false;
2366      // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2367      // not emit them eagerly unless we sure that the function must be emitted on
2368      // the host.
2369      if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2370          !LangOpts.OpenMPIsDevice &&
2371          !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2372          !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2373        return false;
2374    }
2375    if (const auto *VD = dyn_cast<VarDecl>(Global))
2376      if (Context.getInlineVariableDefinitionKind(VD) ==
2377          ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2378        // A definition of an inline constexpr static data member may change
2379        // linkage later if it's redeclared outside the class.
2380        return false;
2381    // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2382    // codegen for global variables, because they may be marked as threadprivate.
2383    if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2384        getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2385        !isTypeConstant(Global->getType(), false) &&
2386        !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2387      return false;
2388  
2389    return true;
2390  }
2391  
2392  ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2393      const CXXUuidofExpr* E) {
2394    // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2395    // well-formed.
2396    StringRef Uuid = E->getUuidStr();
2397    std::string Name = "_GUID_" + Uuid.lower();
2398    std::replace(Name.begin(), Name.end(), '-', '_');
2399  
2400    // The UUID descriptor should be pointer aligned.
2401    CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2402  
2403    // Look for an existing global.
2404    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2405      return ConstantAddress(GV, Alignment);
2406  
2407    llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2408    assert(Init && "failed to initialize as constant");
2409  
2410    auto *GV = new llvm::GlobalVariable(
2411        getModule(), Init->getType(),
2412        /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2413    if (supportsCOMDAT())
2414      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2415    setDSOLocal(GV);
2416    return ConstantAddress(GV, Alignment);
2417  }
2418  
2419  ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2420    const AliasAttr *AA = VD->getAttr<AliasAttr>();
2421    assert(AA && "No alias?");
2422  
2423    CharUnits Alignment = getContext().getDeclAlign(VD);
2424    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2425  
2426    // See if there is already something with the target's name in the module.
2427    llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2428    if (Entry) {
2429      unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2430      auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2431      return ConstantAddress(Ptr, Alignment);
2432    }
2433  
2434    llvm::Constant *Aliasee;
2435    if (isa<llvm::FunctionType>(DeclTy))
2436      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2437                                        GlobalDecl(cast<FunctionDecl>(VD)),
2438                                        /*ForVTable=*/false);
2439    else
2440      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2441                                      llvm::PointerType::getUnqual(DeclTy),
2442                                      nullptr);
2443  
2444    auto *F = cast<llvm::GlobalValue>(Aliasee);
2445    F->setLinkage(llvm::Function::ExternalWeakLinkage);
2446    WeakRefReferences.insert(F);
2447  
2448    return ConstantAddress(Aliasee, Alignment);
2449  }
2450  
2451  void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2452    const auto *Global = cast<ValueDecl>(GD.getDecl());
2453  
2454    // Weak references don't produce any output by themselves.
2455    if (Global->hasAttr<WeakRefAttr>())
2456      return;
2457  
2458    // If this is an alias definition (which otherwise looks like a declaration)
2459    // emit it now.
2460    if (Global->hasAttr<AliasAttr>())
2461      return EmitAliasDefinition(GD);
2462  
2463    // IFunc like an alias whose value is resolved at runtime by calling resolver.
2464    if (Global->hasAttr<IFuncAttr>())
2465      return emitIFuncDefinition(GD);
2466  
2467    // If this is a cpu_dispatch multiversion function, emit the resolver.
2468    if (Global->hasAttr<CPUDispatchAttr>())
2469      return emitCPUDispatchDefinition(GD);
2470  
2471    // If this is CUDA, be selective about which declarations we emit.
2472    if (LangOpts.CUDA) {
2473      if (LangOpts.CUDAIsDevice) {
2474        if (!Global->hasAttr<CUDADeviceAttr>() &&
2475            !Global->hasAttr<CUDAGlobalAttr>() &&
2476            !Global->hasAttr<CUDAConstantAttr>() &&
2477            !Global->hasAttr<CUDASharedAttr>() &&
2478            !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2479          return;
2480      } else {
2481        // We need to emit host-side 'shadows' for all global
2482        // device-side variables because the CUDA runtime needs their
2483        // size and host-side address in order to provide access to
2484        // their device-side incarnations.
2485  
2486        // So device-only functions are the only things we skip.
2487        if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2488            Global->hasAttr<CUDADeviceAttr>())
2489          return;
2490  
2491        assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2492               "Expected Variable or Function");
2493      }
2494    }
2495  
2496    if (LangOpts.OpenMP) {
2497      // If this is OpenMP, check if it is legal to emit this global normally.
2498      if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2499        return;
2500      if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2501        if (MustBeEmitted(Global))
2502          EmitOMPDeclareReduction(DRD);
2503        return;
2504      } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2505        if (MustBeEmitted(Global))
2506          EmitOMPDeclareMapper(DMD);
2507        return;
2508      }
2509    }
2510  
2511    // Ignore declarations, they will be emitted on their first use.
2512    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2513      // Forward declarations are emitted lazily on first use.
2514      if (!FD->doesThisDeclarationHaveABody()) {
2515        if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2516          return;
2517  
2518        StringRef MangledName = getMangledName(GD);
2519  
2520        // Compute the function info and LLVM type.
2521        const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2522        llvm::Type *Ty = getTypes().GetFunctionType(FI);
2523  
2524        GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2525                                /*DontDefer=*/false);
2526        return;
2527      }
2528    } else {
2529      const auto *VD = cast<VarDecl>(Global);
2530      assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2531      if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2532          !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2533        if (LangOpts.OpenMP) {
2534          // Emit declaration of the must-be-emitted declare target variable.
2535          if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2536                  OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2537            bool UnifiedMemoryEnabled =
2538                getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2539            if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2540                !UnifiedMemoryEnabled) {
2541              (void)GetAddrOfGlobalVar(VD);
2542            } else {
2543              assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2544                      (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2545                       UnifiedMemoryEnabled)) &&
2546                     "Link clause or to clause with unified memory expected.");
2547              (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2548            }
2549  
2550            return;
2551          }
2552        }
2553        // If this declaration may have caused an inline variable definition to
2554        // change linkage, make sure that it's emitted.
2555        if (Context.getInlineVariableDefinitionKind(VD) ==
2556            ASTContext::InlineVariableDefinitionKind::Strong)
2557          GetAddrOfGlobalVar(VD);
2558        return;
2559      }
2560    }
2561  
2562    // Defer code generation to first use when possible, e.g. if this is an inline
2563    // function. If the global must always be emitted, do it eagerly if possible
2564    // to benefit from cache locality.
2565    if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2566      // Emit the definition if it can't be deferred.
2567      EmitGlobalDefinition(GD);
2568      return;
2569    }
2570  
2571      // Check if this must be emitted as declare variant.
2572    if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2573        OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2574      return;
2575  
2576    // If we're deferring emission of a C++ variable with an
2577    // initializer, remember the order in which it appeared in the file.
2578    if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2579        cast<VarDecl>(Global)->hasInit()) {
2580      DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2581      CXXGlobalInits.push_back(nullptr);
2582    }
2583  
2584    StringRef MangledName = getMangledName(GD);
2585    if (GetGlobalValue(MangledName) != nullptr) {
2586      // The value has already been used and should therefore be emitted.
2587      addDeferredDeclToEmit(GD);
2588    } else if (MustBeEmitted(Global)) {
2589      // The value must be emitted, but cannot be emitted eagerly.
2590      assert(!MayBeEmittedEagerly(Global));
2591      addDeferredDeclToEmit(GD);
2592    } else {
2593      // Otherwise, remember that we saw a deferred decl with this name.  The
2594      // first use of the mangled name will cause it to move into
2595      // DeferredDeclsToEmit.
2596      DeferredDecls[MangledName] = GD;
2597    }
2598  }
2599  
2600  // Check if T is a class type with a destructor that's not dllimport.
2601  static bool HasNonDllImportDtor(QualType T) {
2602    if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2603      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2604        if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2605          return true;
2606  
2607    return false;
2608  }
2609  
2610  namespace {
2611    struct FunctionIsDirectlyRecursive
2612        : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2613      const StringRef Name;
2614      const Builtin::Context &BI;
2615      FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2616          : Name(N), BI(C) {}
2617  
2618      bool VisitCallExpr(const CallExpr *E) {
2619        const FunctionDecl *FD = E->getDirectCallee();
2620        if (!FD)
2621          return false;
2622        AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2623        if (Attr && Name == Attr->getLabel())
2624          return true;
2625        unsigned BuiltinID = FD->getBuiltinID();
2626        if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2627          return false;
2628        StringRef BuiltinName = BI.getName(BuiltinID);
2629        if (BuiltinName.startswith("__builtin_") &&
2630            Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2631          return true;
2632        }
2633        return false;
2634      }
2635  
2636      bool VisitStmt(const Stmt *S) {
2637        for (const Stmt *Child : S->children())
2638          if (Child && this->Visit(Child))
2639            return true;
2640        return false;
2641      }
2642    };
2643  
2644    // Make sure we're not referencing non-imported vars or functions.
2645    struct DLLImportFunctionVisitor
2646        : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2647      bool SafeToInline = true;
2648  
2649      bool shouldVisitImplicitCode() const { return true; }
2650  
2651      bool VisitVarDecl(VarDecl *VD) {
2652        if (VD->getTLSKind()) {
2653          // A thread-local variable cannot be imported.
2654          SafeToInline = false;
2655          return SafeToInline;
2656        }
2657  
2658        // A variable definition might imply a destructor call.
2659        if (VD->isThisDeclarationADefinition())
2660          SafeToInline = !HasNonDllImportDtor(VD->getType());
2661  
2662        return SafeToInline;
2663      }
2664  
2665      bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2666        if (const auto *D = E->getTemporary()->getDestructor())
2667          SafeToInline = D->hasAttr<DLLImportAttr>();
2668        return SafeToInline;
2669      }
2670  
2671      bool VisitDeclRefExpr(DeclRefExpr *E) {
2672        ValueDecl *VD = E->getDecl();
2673        if (isa<FunctionDecl>(VD))
2674          SafeToInline = VD->hasAttr<DLLImportAttr>();
2675        else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2676          SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2677        return SafeToInline;
2678      }
2679  
2680      bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2681        SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2682        return SafeToInline;
2683      }
2684  
2685      bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2686        CXXMethodDecl *M = E->getMethodDecl();
2687        if (!M) {
2688          // Call through a pointer to member function. This is safe to inline.
2689          SafeToInline = true;
2690        } else {
2691          SafeToInline = M->hasAttr<DLLImportAttr>();
2692        }
2693        return SafeToInline;
2694      }
2695  
2696      bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2697        SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2698        return SafeToInline;
2699      }
2700  
2701      bool VisitCXXNewExpr(CXXNewExpr *E) {
2702        SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2703        return SafeToInline;
2704      }
2705    };
2706  }
2707  
2708  // isTriviallyRecursive - Check if this function calls another
2709  // decl that, because of the asm attribute or the other decl being a builtin,
2710  // ends up pointing to itself.
2711  bool
2712  CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2713    StringRef Name;
2714    if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2715      // asm labels are a special kind of mangling we have to support.
2716      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2717      if (!Attr)
2718        return false;
2719      Name = Attr->getLabel();
2720    } else {
2721      Name = FD->getName();
2722    }
2723  
2724    FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2725    const Stmt *Body = FD->getBody();
2726    return Body ? Walker.Visit(Body) : false;
2727  }
2728  
2729  bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2730    if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2731      return true;
2732    const auto *F = cast<FunctionDecl>(GD.getDecl());
2733    if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2734      return false;
2735  
2736    if (F->hasAttr<DLLImportAttr>()) {
2737      // Check whether it would be safe to inline this dllimport function.
2738      DLLImportFunctionVisitor Visitor;
2739      Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2740      if (!Visitor.SafeToInline)
2741        return false;
2742  
2743      if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2744        // Implicit destructor invocations aren't captured in the AST, so the
2745        // check above can't see them. Check for them manually here.
2746        for (const Decl *Member : Dtor->getParent()->decls())
2747          if (isa<FieldDecl>(Member))
2748            if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2749              return false;
2750        for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2751          if (HasNonDllImportDtor(B.getType()))
2752            return false;
2753      }
2754    }
2755  
2756    // PR9614. Avoid cases where the source code is lying to us. An available
2757    // externally function should have an equivalent function somewhere else,
2758    // but a function that calls itself is clearly not equivalent to the real
2759    // implementation.
2760    // This happens in glibc's btowc and in some configure checks.
2761    return !isTriviallyRecursive(F);
2762  }
2763  
2764  bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2765    return CodeGenOpts.OptimizationLevel > 0;
2766  }
2767  
2768  void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2769                                                         llvm::GlobalValue *GV) {
2770    const auto *FD = cast<FunctionDecl>(GD.getDecl());
2771  
2772    if (FD->isCPUSpecificMultiVersion()) {
2773      auto *Spec = FD->getAttr<CPUSpecificAttr>();
2774      for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2775        EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2776      // Requires multiple emits.
2777    } else
2778      EmitGlobalFunctionDefinition(GD, GV);
2779  }
2780  
2781  void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2782      GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2783    assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2784           OpenMPRuntime && "Expected OpenMP device mode.");
2785    const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2786  
2787    // Compute the function info and LLVM type.
2788    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2789    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2790  
2791    // Get or create the prototype for the function.
2792    if (!GV || (GV->getType()->getElementType() != Ty)) {
2793      GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2794          getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2795          /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2796          ForDefinition));
2797      SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2798                            /*IsIncompleteFunction=*/false,
2799                            /*IsThunk=*/false);
2800    }
2801    // We need to set linkage and visibility on the function before
2802    // generating code for it because various parts of IR generation
2803    // want to propagate this information down (e.g. to local static
2804    // declarations).
2805    auto *Fn = cast<llvm::Function>(GV);
2806    setFunctionLinkage(OldGD, Fn);
2807  
2808    // FIXME: this is redundant with part of
2809    // setFunctionDefinitionAttributes
2810    setGVProperties(Fn, OldGD);
2811  
2812    MaybeHandleStaticInExternC(D, Fn);
2813  
2814    maybeSetTrivialComdat(*D, *Fn);
2815  
2816    CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2817  
2818    setNonAliasAttributes(OldGD, Fn);
2819    SetLLVMFunctionAttributesForDefinition(D, Fn);
2820  
2821    if (D->hasAttr<AnnotateAttr>())
2822      AddGlobalAnnotations(D, Fn);
2823  }
2824  
2825  void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2826    const auto *D = cast<ValueDecl>(GD.getDecl());
2827  
2828    PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2829                                   Context.getSourceManager(),
2830                                   "Generating code for declaration");
2831  
2832    if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2833      // At -O0, don't generate IR for functions with available_externally
2834      // linkage.
2835      if (!shouldEmitFunction(GD))
2836        return;
2837  
2838      llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2839        std::string Name;
2840        llvm::raw_string_ostream OS(Name);
2841        FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2842                                 /*Qualified=*/true);
2843        return Name;
2844      });
2845  
2846      if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2847        // Make sure to emit the definition(s) before we emit the thunks.
2848        // This is necessary for the generation of certain thunks.
2849        if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2850          ABI->emitCXXStructor(GD);
2851        else if (FD->isMultiVersion())
2852          EmitMultiVersionFunctionDefinition(GD, GV);
2853        else
2854          EmitGlobalFunctionDefinition(GD, GV);
2855  
2856        if (Method->isVirtual())
2857          getVTables().EmitThunks(GD);
2858  
2859        return;
2860      }
2861  
2862      if (FD->isMultiVersion())
2863        return EmitMultiVersionFunctionDefinition(GD, GV);
2864      return EmitGlobalFunctionDefinition(GD, GV);
2865    }
2866  
2867    if (const auto *VD = dyn_cast<VarDecl>(D))
2868      return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2869  
2870    llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2871  }
2872  
2873  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2874                                                        llvm::Function *NewFn);
2875  
2876  static unsigned
2877  TargetMVPriority(const TargetInfo &TI,
2878                   const CodeGenFunction::MultiVersionResolverOption &RO) {
2879    unsigned Priority = 0;
2880    for (StringRef Feat : RO.Conditions.Features)
2881      Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2882  
2883    if (!RO.Conditions.Architecture.empty())
2884      Priority = std::max(
2885          Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2886    return Priority;
2887  }
2888  
2889  void CodeGenModule::emitMultiVersionFunctions() {
2890    for (GlobalDecl GD : MultiVersionFuncs) {
2891      SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2892      const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2893      getContext().forEachMultiversionedFunctionVersion(
2894          FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2895            GlobalDecl CurGD{
2896                (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2897            StringRef MangledName = getMangledName(CurGD);
2898            llvm::Constant *Func = GetGlobalValue(MangledName);
2899            if (!Func) {
2900              if (CurFD->isDefined()) {
2901                EmitGlobalFunctionDefinition(CurGD, nullptr);
2902                Func = GetGlobalValue(MangledName);
2903              } else {
2904                const CGFunctionInfo &FI =
2905                    getTypes().arrangeGlobalDeclaration(GD);
2906                llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2907                Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2908                                         /*DontDefer=*/false, ForDefinition);
2909              }
2910              assert(Func && "This should have just been created");
2911            }
2912  
2913            const auto *TA = CurFD->getAttr<TargetAttr>();
2914            llvm::SmallVector<StringRef, 8> Feats;
2915            TA->getAddedFeatures(Feats);
2916  
2917            Options.emplace_back(cast<llvm::Function>(Func),
2918                                 TA->getArchitecture(), Feats);
2919          });
2920  
2921      llvm::Function *ResolverFunc;
2922      const TargetInfo &TI = getTarget();
2923  
2924      if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2925        ResolverFunc = cast<llvm::Function>(
2926            GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2927        ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2928      } else {
2929        ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2930      }
2931  
2932      if (supportsCOMDAT())
2933        ResolverFunc->setComdat(
2934            getModule().getOrInsertComdat(ResolverFunc->getName()));
2935  
2936      llvm::stable_sort(
2937          Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2938                         const CodeGenFunction::MultiVersionResolverOption &RHS) {
2939            return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2940          });
2941      CodeGenFunction CGF(*this);
2942      CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2943    }
2944  }
2945  
2946  void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2947    const auto *FD = cast<FunctionDecl>(GD.getDecl());
2948    assert(FD && "Not a FunctionDecl?");
2949    const auto *DD = FD->getAttr<CPUDispatchAttr>();
2950    assert(DD && "Not a cpu_dispatch Function?");
2951    llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2952  
2953    if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2954      const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2955      DeclTy = getTypes().GetFunctionType(FInfo);
2956    }
2957  
2958    StringRef ResolverName = getMangledName(GD);
2959  
2960    llvm::Type *ResolverType;
2961    GlobalDecl ResolverGD;
2962    if (getTarget().supportsIFunc())
2963      ResolverType = llvm::FunctionType::get(
2964          llvm::PointerType::get(DeclTy,
2965                                 Context.getTargetAddressSpace(FD->getType())),
2966          false);
2967    else {
2968      ResolverType = DeclTy;
2969      ResolverGD = GD;
2970    }
2971  
2972    auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2973        ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2974    ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2975    if (supportsCOMDAT())
2976      ResolverFunc->setComdat(
2977          getModule().getOrInsertComdat(ResolverFunc->getName()));
2978  
2979    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2980    const TargetInfo &Target = getTarget();
2981    unsigned Index = 0;
2982    for (const IdentifierInfo *II : DD->cpus()) {
2983      // Get the name of the target function so we can look it up/create it.
2984      std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2985                                getCPUSpecificMangling(*this, II->getName());
2986  
2987      llvm::Constant *Func = GetGlobalValue(MangledName);
2988  
2989      if (!Func) {
2990        GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2991        if (ExistingDecl.getDecl() &&
2992            ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2993          EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2994          Func = GetGlobalValue(MangledName);
2995        } else {
2996          if (!ExistingDecl.getDecl())
2997            ExistingDecl = GD.getWithMultiVersionIndex(Index);
2998  
2999        Func = GetOrCreateLLVMFunction(
3000            MangledName, DeclTy, ExistingDecl,
3001            /*ForVTable=*/false, /*DontDefer=*/true,
3002            /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3003        }
3004      }
3005  
3006      llvm::SmallVector<StringRef, 32> Features;
3007      Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3008      llvm::transform(Features, Features.begin(),
3009                      [](StringRef Str) { return Str.substr(1); });
3010      Features.erase(std::remove_if(
3011          Features.begin(), Features.end(), [&Target](StringRef Feat) {
3012            return !Target.validateCpuSupports(Feat);
3013          }), Features.end());
3014      Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3015      ++Index;
3016    }
3017  
3018    llvm::sort(
3019        Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3020                    const CodeGenFunction::MultiVersionResolverOption &RHS) {
3021          return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3022                 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3023        });
3024  
3025    // If the list contains multiple 'default' versions, such as when it contains
3026    // 'pentium' and 'generic', don't emit the call to the generic one (since we
3027    // always run on at least a 'pentium'). We do this by deleting the 'least
3028    // advanced' (read, lowest mangling letter).
3029    while (Options.size() > 1 &&
3030           CodeGenFunction::GetX86CpuSupportsMask(
3031               (Options.end() - 2)->Conditions.Features) == 0) {
3032      StringRef LHSName = (Options.end() - 2)->Function->getName();
3033      StringRef RHSName = (Options.end() - 1)->Function->getName();
3034      if (LHSName.compare(RHSName) < 0)
3035        Options.erase(Options.end() - 2);
3036      else
3037        Options.erase(Options.end() - 1);
3038    }
3039  
3040    CodeGenFunction CGF(*this);
3041    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3042  
3043    if (getTarget().supportsIFunc()) {
3044      std::string AliasName = getMangledNameImpl(
3045          *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3046      llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3047      if (!AliasFunc) {
3048        auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3049            AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3050            /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3051        auto *GA = llvm::GlobalAlias::create(
3052           DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3053        GA->setLinkage(llvm::Function::WeakODRLinkage);
3054        SetCommonAttributes(GD, GA);
3055      }
3056    }
3057  }
3058  
3059  /// If a dispatcher for the specified mangled name is not in the module, create
3060  /// and return an llvm Function with the specified type.
3061  llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3062      GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3063    std::string MangledName =
3064        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3065  
3066    // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3067    // a separate resolver).
3068    std::string ResolverName = MangledName;
3069    if (getTarget().supportsIFunc())
3070      ResolverName += ".ifunc";
3071    else if (FD->isTargetMultiVersion())
3072      ResolverName += ".resolver";
3073  
3074    // If this already exists, just return that one.
3075    if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3076      return ResolverGV;
3077  
3078    // Since this is the first time we've created this IFunc, make sure
3079    // that we put this multiversioned function into the list to be
3080    // replaced later if necessary (target multiversioning only).
3081    if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3082      MultiVersionFuncs.push_back(GD);
3083  
3084    if (getTarget().supportsIFunc()) {
3085      llvm::Type *ResolverType = llvm::FunctionType::get(
3086          llvm::PointerType::get(
3087              DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3088          false);
3089      llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3090          MangledName + ".resolver", ResolverType, GlobalDecl{},
3091          /*ForVTable=*/false);
3092      llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3093          DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3094      GIF->setName(ResolverName);
3095      SetCommonAttributes(FD, GIF);
3096  
3097      return GIF;
3098    }
3099  
3100    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3101        ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3102    assert(isa<llvm::GlobalValue>(Resolver) &&
3103           "Resolver should be created for the first time");
3104    SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3105    return Resolver;
3106  }
3107  
3108  /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3109  /// module, create and return an llvm Function with the specified type. If there
3110  /// is something in the module with the specified name, return it potentially
3111  /// bitcasted to the right type.
3112  ///
3113  /// If D is non-null, it specifies a decl that correspond to this.  This is used
3114  /// to set the attributes on the function when it is first created.
3115  llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3116      StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3117      bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3118      ForDefinition_t IsForDefinition) {
3119    const Decl *D = GD.getDecl();
3120  
3121    // Any attempts to use a MultiVersion function should result in retrieving
3122    // the iFunc instead. Name Mangling will handle the rest of the changes.
3123    if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3124      // For the device mark the function as one that should be emitted.
3125      if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3126          !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3127          !DontDefer && !IsForDefinition) {
3128        if (const FunctionDecl *FDDef = FD->getDefinition()) {
3129          GlobalDecl GDDef;
3130          if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3131            GDDef = GlobalDecl(CD, GD.getCtorType());
3132          else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3133            GDDef = GlobalDecl(DD, GD.getDtorType());
3134          else
3135            GDDef = GlobalDecl(FDDef);
3136          EmitGlobal(GDDef);
3137        }
3138      }
3139      // Check if this must be emitted as declare variant and emit reference to
3140      // the the declare variant function.
3141      if (LangOpts.OpenMP && OpenMPRuntime)
3142        (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3143  
3144      if (FD->isMultiVersion()) {
3145        const auto *TA = FD->getAttr<TargetAttr>();
3146        if (TA && TA->isDefaultVersion())
3147          UpdateMultiVersionNames(GD, FD);
3148        if (!IsForDefinition)
3149          return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3150      }
3151    }
3152  
3153    // Lookup the entry, lazily creating it if necessary.
3154    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3155    if (Entry) {
3156      if (WeakRefReferences.erase(Entry)) {
3157        const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3158        if (FD && !FD->hasAttr<WeakAttr>())
3159          Entry->setLinkage(llvm::Function::ExternalLinkage);
3160      }
3161  
3162      // Handle dropped DLL attributes.
3163      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3164        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3165        setDSOLocal(Entry);
3166      }
3167  
3168      // If there are two attempts to define the same mangled name, issue an
3169      // error.
3170      if (IsForDefinition && !Entry->isDeclaration()) {
3171        GlobalDecl OtherGD;
3172        // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3173        // to make sure that we issue an error only once.
3174        if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3175            (GD.getCanonicalDecl().getDecl() !=
3176             OtherGD.getCanonicalDecl().getDecl()) &&
3177            DiagnosedConflictingDefinitions.insert(GD).second) {
3178          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3179              << MangledName;
3180          getDiags().Report(OtherGD.getDecl()->getLocation(),
3181                            diag::note_previous_definition);
3182        }
3183      }
3184  
3185      if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3186          (Entry->getType()->getElementType() == Ty)) {
3187        return Entry;
3188      }
3189  
3190      // Make sure the result is of the correct type.
3191      // (If function is requested for a definition, we always need to create a new
3192      // function, not just return a bitcast.)
3193      if (!IsForDefinition)
3194        return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3195    }
3196  
3197    // This function doesn't have a complete type (for example, the return
3198    // type is an incomplete struct). Use a fake type instead, and make
3199    // sure not to try to set attributes.
3200    bool IsIncompleteFunction = false;
3201  
3202    llvm::FunctionType *FTy;
3203    if (isa<llvm::FunctionType>(Ty)) {
3204      FTy = cast<llvm::FunctionType>(Ty);
3205    } else {
3206      FTy = llvm::FunctionType::get(VoidTy, false);
3207      IsIncompleteFunction = true;
3208    }
3209  
3210    llvm::Function *F =
3211        llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3212                               Entry ? StringRef() : MangledName, &getModule());
3213  
3214    // If we already created a function with the same mangled name (but different
3215    // type) before, take its name and add it to the list of functions to be
3216    // replaced with F at the end of CodeGen.
3217    //
3218    // This happens if there is a prototype for a function (e.g. "int f()") and
3219    // then a definition of a different type (e.g. "int f(int x)").
3220    if (Entry) {
3221      F->takeName(Entry);
3222  
3223      // This might be an implementation of a function without a prototype, in
3224      // which case, try to do special replacement of calls which match the new
3225      // prototype.  The really key thing here is that we also potentially drop
3226      // arguments from the call site so as to make a direct call, which makes the
3227      // inliner happier and suppresses a number of optimizer warnings (!) about
3228      // dropping arguments.
3229      if (!Entry->use_empty()) {
3230        ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3231        Entry->removeDeadConstantUsers();
3232      }
3233  
3234      llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3235          F, Entry->getType()->getElementType()->getPointerTo());
3236      addGlobalValReplacement(Entry, BC);
3237    }
3238  
3239    assert(F->getName() == MangledName && "name was uniqued!");
3240    if (D)
3241      SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3242    if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3243      llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3244      F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3245    }
3246  
3247    if (!DontDefer) {
3248      // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3249      // each other bottoming out with the base dtor.  Therefore we emit non-base
3250      // dtors on usage, even if there is no dtor definition in the TU.
3251      if (D && isa<CXXDestructorDecl>(D) &&
3252          getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3253                                             GD.getDtorType()))
3254        addDeferredDeclToEmit(GD);
3255  
3256      // This is the first use or definition of a mangled name.  If there is a
3257      // deferred decl with this name, remember that we need to emit it at the end
3258      // of the file.
3259      auto DDI = DeferredDecls.find(MangledName);
3260      if (DDI != DeferredDecls.end()) {
3261        // Move the potentially referenced deferred decl to the
3262        // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3263        // don't need it anymore).
3264        addDeferredDeclToEmit(DDI->second);
3265        DeferredDecls.erase(DDI);
3266  
3267        // Otherwise, there are cases we have to worry about where we're
3268        // using a declaration for which we must emit a definition but where
3269        // we might not find a top-level definition:
3270        //   - member functions defined inline in their classes
3271        //   - friend functions defined inline in some class
3272        //   - special member functions with implicit definitions
3273        // If we ever change our AST traversal to walk into class methods,
3274        // this will be unnecessary.
3275        //
3276        // We also don't emit a definition for a function if it's going to be an
3277        // entry in a vtable, unless it's already marked as used.
3278      } else if (getLangOpts().CPlusPlus && D) {
3279        // Look for a declaration that's lexically in a record.
3280        for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3281             FD = FD->getPreviousDecl()) {
3282          if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3283            if (FD->doesThisDeclarationHaveABody()) {
3284              addDeferredDeclToEmit(GD.getWithDecl(FD));
3285              break;
3286            }
3287          }
3288        }
3289      }
3290    }
3291  
3292    // Make sure the result is of the requested type.
3293    if (!IsIncompleteFunction) {
3294      assert(F->getType()->getElementType() == Ty);
3295      return F;
3296    }
3297  
3298    llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3299    return llvm::ConstantExpr::getBitCast(F, PTy);
3300  }
3301  
3302  /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3303  /// non-null, then this function will use the specified type if it has to
3304  /// create it (this occurs when we see a definition of the function).
3305  llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3306                                                   llvm::Type *Ty,
3307                                                   bool ForVTable,
3308                                                   bool DontDefer,
3309                                                ForDefinition_t IsForDefinition) {
3310    // If there was no specific requested type, just convert it now.
3311    if (!Ty) {
3312      const auto *FD = cast<FunctionDecl>(GD.getDecl());
3313      Ty = getTypes().ConvertType(FD->getType());
3314    }
3315  
3316    // Devirtualized destructor calls may come through here instead of via
3317    // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3318    // of the complete destructor when necessary.
3319    if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3320      if (getTarget().getCXXABI().isMicrosoft() &&
3321          GD.getDtorType() == Dtor_Complete &&
3322          DD->getParent()->getNumVBases() == 0)
3323        GD = GlobalDecl(DD, Dtor_Base);
3324    }
3325  
3326    StringRef MangledName = getMangledName(GD);
3327    return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3328                                   /*IsThunk=*/false, llvm::AttributeList(),
3329                                   IsForDefinition);
3330  }
3331  
3332  static const FunctionDecl *
3333  GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3334    TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3335    DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3336  
3337    IdentifierInfo &CII = C.Idents.get(Name);
3338    for (const auto &Result : DC->lookup(&CII))
3339      if (const auto FD = dyn_cast<FunctionDecl>(Result))
3340        return FD;
3341  
3342    if (!C.getLangOpts().CPlusPlus)
3343      return nullptr;
3344  
3345    // Demangle the premangled name from getTerminateFn()
3346    IdentifierInfo &CXXII =
3347        (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3348            ? C.Idents.get("terminate")
3349            : C.Idents.get(Name);
3350  
3351    for (const auto &N : {"__cxxabiv1", "std"}) {
3352      IdentifierInfo &NS = C.Idents.get(N);
3353      for (const auto &Result : DC->lookup(&NS)) {
3354        NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3355        if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3356          for (const auto &Result : LSD->lookup(&NS))
3357            if ((ND = dyn_cast<NamespaceDecl>(Result)))
3358              break;
3359  
3360        if (ND)
3361          for (const auto &Result : ND->lookup(&CXXII))
3362            if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3363              return FD;
3364      }
3365    }
3366  
3367    return nullptr;
3368  }
3369  
3370  /// CreateRuntimeFunction - Create a new runtime function with the specified
3371  /// type and name.
3372  llvm::FunctionCallee
3373  CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3374                                       llvm::AttributeList ExtraAttrs, bool Local,
3375                                       bool AssumeConvergent) {
3376    if (AssumeConvergent) {
3377      ExtraAttrs =
3378          ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3379                                  llvm::Attribute::Convergent);
3380    }
3381  
3382    llvm::Constant *C =
3383        GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3384                                /*DontDefer=*/false, /*IsThunk=*/false,
3385                                ExtraAttrs);
3386  
3387    if (auto *F = dyn_cast<llvm::Function>(C)) {
3388      if (F->empty()) {
3389        F->setCallingConv(getRuntimeCC());
3390  
3391        // In Windows Itanium environments, try to mark runtime functions
3392        // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3393        // will link their standard library statically or dynamically. Marking
3394        // functions imported when they are not imported can cause linker errors
3395        // and warnings.
3396        if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3397            !getCodeGenOpts().LTOVisibilityPublicStd) {
3398          const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3399          if (!FD || FD->hasAttr<DLLImportAttr>()) {
3400            F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3401            F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3402          }
3403        }
3404        setDSOLocal(F);
3405      }
3406    }
3407  
3408    return {FTy, C};
3409  }
3410  
3411  /// isTypeConstant - Determine whether an object of this type can be emitted
3412  /// as a constant.
3413  ///
3414  /// If ExcludeCtor is true, the duration when the object's constructor runs
3415  /// will not be considered. The caller will need to verify that the object is
3416  /// not written to during its construction.
3417  bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3418    if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3419      return false;
3420  
3421    if (Context.getLangOpts().CPlusPlus) {
3422      if (const CXXRecordDecl *Record
3423            = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3424        return ExcludeCtor && !Record->hasMutableFields() &&
3425               Record->hasTrivialDestructor();
3426    }
3427  
3428    return true;
3429  }
3430  
3431  /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3432  /// create and return an llvm GlobalVariable with the specified type.  If there
3433  /// is something in the module with the specified name, return it potentially
3434  /// bitcasted to the right type.
3435  ///
3436  /// If D is non-null, it specifies a decl that correspond to this.  This is used
3437  /// to set the attributes on the global when it is first created.
3438  ///
3439  /// If IsForDefinition is true, it is guaranteed that an actual global with
3440  /// type Ty will be returned, not conversion of a variable with the same
3441  /// mangled name but some other type.
3442  llvm::Constant *
3443  CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3444                                       llvm::PointerType *Ty,
3445                                       const VarDecl *D,
3446                                       ForDefinition_t IsForDefinition) {
3447    // Lookup the entry, lazily creating it if necessary.
3448    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3449    if (Entry) {
3450      if (WeakRefReferences.erase(Entry)) {
3451        if (D && !D->hasAttr<WeakAttr>())
3452          Entry->setLinkage(llvm::Function::ExternalLinkage);
3453      }
3454  
3455      // Handle dropped DLL attributes.
3456      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3457        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3458  
3459      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3460        getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3461  
3462      if (Entry->getType() == Ty)
3463        return Entry;
3464  
3465      // If there are two attempts to define the same mangled name, issue an
3466      // error.
3467      if (IsForDefinition && !Entry->isDeclaration()) {
3468        GlobalDecl OtherGD;
3469        const VarDecl *OtherD;
3470  
3471        // Check that D is not yet in DiagnosedConflictingDefinitions is required
3472        // to make sure that we issue an error only once.
3473        if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3474            (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3475            (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3476            OtherD->hasInit() &&
3477            DiagnosedConflictingDefinitions.insert(D).second) {
3478          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3479              << MangledName;
3480          getDiags().Report(OtherGD.getDecl()->getLocation(),
3481                            diag::note_previous_definition);
3482        }
3483      }
3484  
3485      // Make sure the result is of the correct type.
3486      if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3487        return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3488  
3489      // (If global is requested for a definition, we always need to create a new
3490      // global, not just return a bitcast.)
3491      if (!IsForDefinition)
3492        return llvm::ConstantExpr::getBitCast(Entry, Ty);
3493    }
3494  
3495    auto AddrSpace = GetGlobalVarAddressSpace(D);
3496    auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3497  
3498    auto *GV = new llvm::GlobalVariable(
3499        getModule(), Ty->getElementType(), false,
3500        llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3501        llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3502  
3503    // If we already created a global with the same mangled name (but different
3504    // type) before, take its name and remove it from its parent.
3505    if (Entry) {
3506      GV->takeName(Entry);
3507  
3508      if (!Entry->use_empty()) {
3509        llvm::Constant *NewPtrForOldDecl =
3510            llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3511        Entry->replaceAllUsesWith(NewPtrForOldDecl);
3512      }
3513  
3514      Entry->eraseFromParent();
3515    }
3516  
3517    // This is the first use or definition of a mangled name.  If there is a
3518    // deferred decl with this name, remember that we need to emit it at the end
3519    // of the file.
3520    auto DDI = DeferredDecls.find(MangledName);
3521    if (DDI != DeferredDecls.end()) {
3522      // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3523      // list, and remove it from DeferredDecls (since we don't need it anymore).
3524      addDeferredDeclToEmit(DDI->second);
3525      DeferredDecls.erase(DDI);
3526    }
3527  
3528    // Handle things which are present even on external declarations.
3529    if (D) {
3530      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3531        getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3532  
3533      // FIXME: This code is overly simple and should be merged with other global
3534      // handling.
3535      GV->setConstant(isTypeConstant(D->getType(), false));
3536  
3537      GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3538  
3539      setLinkageForGV(GV, D);
3540  
3541      if (D->getTLSKind()) {
3542        if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3543          CXXThreadLocals.push_back(D);
3544        setTLSMode(GV, *D);
3545      }
3546  
3547      setGVProperties(GV, D);
3548  
3549      // If required by the ABI, treat declarations of static data members with
3550      // inline initializers as definitions.
3551      if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3552        EmitGlobalVarDefinition(D);
3553      }
3554  
3555      // Emit section information for extern variables.
3556      if (D->hasExternalStorage()) {
3557        if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3558          GV->setSection(SA->getName());
3559      }
3560  
3561      // Handle XCore specific ABI requirements.
3562      if (getTriple().getArch() == llvm::Triple::xcore &&
3563          D->getLanguageLinkage() == CLanguageLinkage &&
3564          D->getType().isConstant(Context) &&
3565          isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3566        GV->setSection(".cp.rodata");
3567  
3568      // Check if we a have a const declaration with an initializer, we may be
3569      // able to emit it as available_externally to expose it's value to the
3570      // optimizer.
3571      if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3572          D->getType().isConstQualified() && !GV->hasInitializer() &&
3573          !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3574        const auto *Record =
3575            Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3576        bool HasMutableFields = Record && Record->hasMutableFields();
3577        if (!HasMutableFields) {
3578          const VarDecl *InitDecl;
3579          const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3580          if (InitExpr) {
3581            ConstantEmitter emitter(*this);
3582            llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3583            if (Init) {
3584              auto *InitType = Init->getType();
3585              if (GV->getType()->getElementType() != InitType) {
3586                // The type of the initializer does not match the definition.
3587                // This happens when an initializer has a different type from
3588                // the type of the global (because of padding at the end of a
3589                // structure for instance).
3590                GV->setName(StringRef());
3591                // Make a new global with the correct type, this is now guaranteed
3592                // to work.
3593                auto *NewGV = cast<llvm::GlobalVariable>(
3594                    GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3595                        ->stripPointerCasts());
3596  
3597                // Erase the old global, since it is no longer used.
3598                GV->eraseFromParent();
3599                GV = NewGV;
3600              } else {
3601                GV->setInitializer(Init);
3602                GV->setConstant(true);
3603                GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3604              }
3605              emitter.finalize(GV);
3606            }
3607          }
3608        }
3609      }
3610    }
3611  
3612    if (GV->isDeclaration())
3613      getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3614  
3615    LangAS ExpectedAS =
3616        D ? D->getType().getAddressSpace()
3617          : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3618    assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3619           Ty->getPointerAddressSpace());
3620    if (AddrSpace != ExpectedAS)
3621      return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3622                                                         ExpectedAS, Ty);
3623  
3624    return GV;
3625  }
3626  
3627  llvm::Constant *
3628  CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3629                                 ForDefinition_t IsForDefinition) {
3630    const Decl *D = GD.getDecl();
3631    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3632      return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3633                                  /*DontDefer=*/false, IsForDefinition);
3634    else if (isa<CXXMethodDecl>(D)) {
3635      auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3636          cast<CXXMethodDecl>(D));
3637      auto Ty = getTypes().GetFunctionType(*FInfo);
3638      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3639                               IsForDefinition);
3640    } else if (isa<FunctionDecl>(D)) {
3641      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3642      llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3643      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3644                               IsForDefinition);
3645    } else
3646      return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3647                                IsForDefinition);
3648  }
3649  
3650  llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3651      StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3652      unsigned Alignment) {
3653    llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3654    llvm::GlobalVariable *OldGV = nullptr;
3655  
3656    if (GV) {
3657      // Check if the variable has the right type.
3658      if (GV->getType()->getElementType() == Ty)
3659        return GV;
3660  
3661      // Because C++ name mangling, the only way we can end up with an already
3662      // existing global with the same name is if it has been declared extern "C".
3663      assert(GV->isDeclaration() && "Declaration has wrong type!");
3664      OldGV = GV;
3665    }
3666  
3667    // Create a new variable.
3668    GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3669                                  Linkage, nullptr, Name);
3670  
3671    if (OldGV) {
3672      // Replace occurrences of the old variable if needed.
3673      GV->takeName(OldGV);
3674  
3675      if (!OldGV->use_empty()) {
3676        llvm::Constant *NewPtrForOldDecl =
3677        llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3678        OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3679      }
3680  
3681      OldGV->eraseFromParent();
3682    }
3683  
3684    if (supportsCOMDAT() && GV->isWeakForLinker() &&
3685        !GV->hasAvailableExternallyLinkage())
3686      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3687  
3688    GV->setAlignment(llvm::MaybeAlign(Alignment));
3689  
3690    return GV;
3691  }
3692  
3693  /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3694  /// given global variable.  If Ty is non-null and if the global doesn't exist,
3695  /// then it will be created with the specified type instead of whatever the
3696  /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3697  /// that an actual global with type Ty will be returned, not conversion of a
3698  /// variable with the same mangled name but some other type.
3699  llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3700                                                    llvm::Type *Ty,
3701                                             ForDefinition_t IsForDefinition) {
3702    assert(D->hasGlobalStorage() && "Not a global variable");
3703    QualType ASTTy = D->getType();
3704    if (!Ty)
3705      Ty = getTypes().ConvertTypeForMem(ASTTy);
3706  
3707    llvm::PointerType *PTy =
3708      llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3709  
3710    StringRef MangledName = getMangledName(D);
3711    return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3712  }
3713  
3714  /// CreateRuntimeVariable - Create a new runtime global variable with the
3715  /// specified type and name.
3716  llvm::Constant *
3717  CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3718                                       StringRef Name) {
3719    auto PtrTy =
3720        getContext().getLangOpts().OpenCL
3721            ? llvm::PointerType::get(
3722                  Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3723            : llvm::PointerType::getUnqual(Ty);
3724    auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3725    setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3726    return Ret;
3727  }
3728  
3729  void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3730    assert(!D->getInit() && "Cannot emit definite definitions here!");
3731  
3732    StringRef MangledName = getMangledName(D);
3733    llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3734  
3735    // We already have a definition, not declaration, with the same mangled name.
3736    // Emitting of declaration is not required (and actually overwrites emitted
3737    // definition).
3738    if (GV && !GV->isDeclaration())
3739      return;
3740  
3741    // If we have not seen a reference to this variable yet, place it into the
3742    // deferred declarations table to be emitted if needed later.
3743    if (!MustBeEmitted(D) && !GV) {
3744        DeferredDecls[MangledName] = D;
3745        return;
3746    }
3747  
3748    // The tentative definition is the only definition.
3749    EmitGlobalVarDefinition(D);
3750  }
3751  
3752  void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3753    EmitExternalVarDeclaration(D);
3754  }
3755  
3756  CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3757    return Context.toCharUnitsFromBits(
3758        getDataLayout().getTypeStoreSizeInBits(Ty));
3759  }
3760  
3761  LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3762    LangAS AddrSpace = LangAS::Default;
3763    if (LangOpts.OpenCL) {
3764      AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3765      assert(AddrSpace == LangAS::opencl_global ||
3766             AddrSpace == LangAS::opencl_constant ||
3767             AddrSpace == LangAS::opencl_local ||
3768             AddrSpace >= LangAS::FirstTargetAddressSpace);
3769      return AddrSpace;
3770    }
3771  
3772    if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3773      if (D && D->hasAttr<CUDAConstantAttr>())
3774        return LangAS::cuda_constant;
3775      else if (D && D->hasAttr<CUDASharedAttr>())
3776        return LangAS::cuda_shared;
3777      else if (D && D->hasAttr<CUDADeviceAttr>())
3778        return LangAS::cuda_device;
3779      else if (D && D->getType().isConstQualified())
3780        return LangAS::cuda_constant;
3781      else
3782        return LangAS::cuda_device;
3783    }
3784  
3785    if (LangOpts.OpenMP) {
3786      LangAS AS;
3787      if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3788        return AS;
3789    }
3790    return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3791  }
3792  
3793  LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3794    // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3795    if (LangOpts.OpenCL)
3796      return LangAS::opencl_constant;
3797    if (auto AS = getTarget().getConstantAddressSpace())
3798      return AS.getValue();
3799    return LangAS::Default;
3800  }
3801  
3802  // In address space agnostic languages, string literals are in default address
3803  // space in AST. However, certain targets (e.g. amdgcn) request them to be
3804  // emitted in constant address space in LLVM IR. To be consistent with other
3805  // parts of AST, string literal global variables in constant address space
3806  // need to be casted to default address space before being put into address
3807  // map and referenced by other part of CodeGen.
3808  // In OpenCL, string literals are in constant address space in AST, therefore
3809  // they should not be casted to default address space.
3810  static llvm::Constant *
3811  castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3812                                         llvm::GlobalVariable *GV) {
3813    llvm::Constant *Cast = GV;
3814    if (!CGM.getLangOpts().OpenCL) {
3815      if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3816        if (AS != LangAS::Default)
3817          Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3818              CGM, GV, AS.getValue(), LangAS::Default,
3819              GV->getValueType()->getPointerTo(
3820                  CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3821      }
3822    }
3823    return Cast;
3824  }
3825  
3826  template<typename SomeDecl>
3827  void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3828                                                 llvm::GlobalValue *GV) {
3829    if (!getLangOpts().CPlusPlus)
3830      return;
3831  
3832    // Must have 'used' attribute, or else inline assembly can't rely on
3833    // the name existing.
3834    if (!D->template hasAttr<UsedAttr>())
3835      return;
3836  
3837    // Must have internal linkage and an ordinary name.
3838    if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3839      return;
3840  
3841    // Must be in an extern "C" context. Entities declared directly within
3842    // a record are not extern "C" even if the record is in such a context.
3843    const SomeDecl *First = D->getFirstDecl();
3844    if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3845      return;
3846  
3847    // OK, this is an internal linkage entity inside an extern "C" linkage
3848    // specification. Make a note of that so we can give it the "expected"
3849    // mangled name if nothing else is using that name.
3850    std::pair<StaticExternCMap::iterator, bool> R =
3851        StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3852  
3853    // If we have multiple internal linkage entities with the same name
3854    // in extern "C" regions, none of them gets that name.
3855    if (!R.second)
3856      R.first->second = nullptr;
3857  }
3858  
3859  static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3860    if (!CGM.supportsCOMDAT())
3861      return false;
3862  
3863    // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3864    // them being "merged" by the COMDAT Folding linker optimization.
3865    if (D.hasAttr<CUDAGlobalAttr>())
3866      return false;
3867  
3868    if (D.hasAttr<SelectAnyAttr>())
3869      return true;
3870  
3871    GVALinkage Linkage;
3872    if (auto *VD = dyn_cast<VarDecl>(&D))
3873      Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3874    else
3875      Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3876  
3877    switch (Linkage) {
3878    case GVA_Internal:
3879    case GVA_AvailableExternally:
3880    case GVA_StrongExternal:
3881      return false;
3882    case GVA_DiscardableODR:
3883    case GVA_StrongODR:
3884      return true;
3885    }
3886    llvm_unreachable("No such linkage");
3887  }
3888  
3889  void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3890                                            llvm::GlobalObject &GO) {
3891    if (!shouldBeInCOMDAT(*this, D))
3892      return;
3893    GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3894  }
3895  
3896  /// Pass IsTentative as true if you want to create a tentative definition.
3897  void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3898                                              bool IsTentative) {
3899    // OpenCL global variables of sampler type are translated to function calls,
3900    // therefore no need to be translated.
3901    QualType ASTTy = D->getType();
3902    if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3903      return;
3904  
3905    // If this is OpenMP device, check if it is legal to emit this global
3906    // normally.
3907    if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3908        OpenMPRuntime->emitTargetGlobalVariable(D))
3909      return;
3910  
3911    llvm::Constant *Init = nullptr;
3912    bool NeedsGlobalCtor = false;
3913    bool NeedsGlobalDtor =
3914        D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3915  
3916    const VarDecl *InitDecl;
3917    const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3918  
3919    Optional<ConstantEmitter> emitter;
3920  
3921    // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3922    // as part of their declaration."  Sema has already checked for
3923    // error cases, so we just need to set Init to UndefValue.
3924    bool IsCUDASharedVar =
3925        getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3926    // Shadows of initialized device-side global variables are also left
3927    // undefined.
3928    bool IsCUDAShadowVar =
3929        !getLangOpts().CUDAIsDevice &&
3930        (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3931         D->hasAttr<CUDASharedAttr>());
3932    // HIP pinned shadow of initialized host-side global variables are also
3933    // left undefined.
3934    bool IsHIPPinnedShadowVar =
3935        getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3936    if (getLangOpts().CUDA &&
3937        (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3938      Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3939    else if (!InitExpr) {
3940      // This is a tentative definition; tentative definitions are
3941      // implicitly initialized with { 0 }.
3942      //
3943      // Note that tentative definitions are only emitted at the end of
3944      // a translation unit, so they should never have incomplete
3945      // type. In addition, EmitTentativeDefinition makes sure that we
3946      // never attempt to emit a tentative definition if a real one
3947      // exists. A use may still exists, however, so we still may need
3948      // to do a RAUW.
3949      assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3950      Init = EmitNullConstant(D->getType());
3951    } else {
3952      initializedGlobalDecl = GlobalDecl(D);
3953      emitter.emplace(*this);
3954      Init = emitter->tryEmitForInitializer(*InitDecl);
3955  
3956      if (!Init) {
3957        QualType T = InitExpr->getType();
3958        if (D->getType()->isReferenceType())
3959          T = D->getType();
3960  
3961        if (getLangOpts().CPlusPlus) {
3962          Init = EmitNullConstant(T);
3963          NeedsGlobalCtor = true;
3964        } else {
3965          ErrorUnsupported(D, "static initializer");
3966          Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3967        }
3968      } else {
3969        // We don't need an initializer, so remove the entry for the delayed
3970        // initializer position (just in case this entry was delayed) if we
3971        // also don't need to register a destructor.
3972        if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3973          DelayedCXXInitPosition.erase(D);
3974      }
3975    }
3976  
3977    llvm::Type* InitType = Init->getType();
3978    llvm::Constant *Entry =
3979        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3980  
3981    // Strip off pointer casts if we got them.
3982    Entry = Entry->stripPointerCasts();
3983  
3984    // Entry is now either a Function or GlobalVariable.
3985    auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3986  
3987    // We have a definition after a declaration with the wrong type.
3988    // We must make a new GlobalVariable* and update everything that used OldGV
3989    // (a declaration or tentative definition) with the new GlobalVariable*
3990    // (which will be a definition).
3991    //
3992    // This happens if there is a prototype for a global (e.g.
3993    // "extern int x[];") and then a definition of a different type (e.g.
3994    // "int x[10];"). This also happens when an initializer has a different type
3995    // from the type of the global (this happens with unions).
3996    if (!GV || GV->getType()->getElementType() != InitType ||
3997        GV->getType()->getAddressSpace() !=
3998            getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3999  
4000      // Move the old entry aside so that we'll create a new one.
4001      Entry->setName(StringRef());
4002  
4003      // Make a new global with the correct type, this is now guaranteed to work.
4004      GV = cast<llvm::GlobalVariable>(
4005          GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4006              ->stripPointerCasts());
4007  
4008      // Replace all uses of the old global with the new global
4009      llvm::Constant *NewPtrForOldDecl =
4010          llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4011      Entry->replaceAllUsesWith(NewPtrForOldDecl);
4012  
4013      // Erase the old global, since it is no longer used.
4014      cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4015    }
4016  
4017    MaybeHandleStaticInExternC(D, GV);
4018  
4019    if (D->hasAttr<AnnotateAttr>())
4020      AddGlobalAnnotations(D, GV);
4021  
4022    // Set the llvm linkage type as appropriate.
4023    llvm::GlobalValue::LinkageTypes Linkage =
4024        getLLVMLinkageVarDefinition(D, GV->isConstant());
4025  
4026    // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4027    // the device. [...]"
4028    // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4029    // __device__, declares a variable that: [...]
4030    // Is accessible from all the threads within the grid and from the host
4031    // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4032    // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4033    if (GV && LangOpts.CUDA) {
4034      if (LangOpts.CUDAIsDevice) {
4035        if (Linkage != llvm::GlobalValue::InternalLinkage &&
4036            (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4037          GV->setExternallyInitialized(true);
4038      } else {
4039        // Host-side shadows of external declarations of device-side
4040        // global variables become internal definitions. These have to
4041        // be internal in order to prevent name conflicts with global
4042        // host variables with the same name in a different TUs.
4043        if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4044            D->hasAttr<HIPPinnedShadowAttr>()) {
4045          Linkage = llvm::GlobalValue::InternalLinkage;
4046  
4047          // Shadow variables and their properties must be registered
4048          // with CUDA runtime.
4049          unsigned Flags = 0;
4050          if (!D->hasDefinition())
4051            Flags |= CGCUDARuntime::ExternDeviceVar;
4052          if (D->hasAttr<CUDAConstantAttr>())
4053            Flags |= CGCUDARuntime::ConstantDeviceVar;
4054          // Extern global variables will be registered in the TU where they are
4055          // defined.
4056          if (!D->hasExternalStorage())
4057            getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4058        } else if (D->hasAttr<CUDASharedAttr>())
4059          // __shared__ variables are odd. Shadows do get created, but
4060          // they are not registered with the CUDA runtime, so they
4061          // can't really be used to access their device-side
4062          // counterparts. It's not clear yet whether it's nvcc's bug or
4063          // a feature, but we've got to do the same for compatibility.
4064          Linkage = llvm::GlobalValue::InternalLinkage;
4065      }
4066    }
4067  
4068    if (!IsHIPPinnedShadowVar)
4069      GV->setInitializer(Init);
4070    if (emitter) emitter->finalize(GV);
4071  
4072    // If it is safe to mark the global 'constant', do so now.
4073    GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4074                    isTypeConstant(D->getType(), true));
4075  
4076    // If it is in a read-only section, mark it 'constant'.
4077    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4078      const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4079      if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4080        GV->setConstant(true);
4081    }
4082  
4083    GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4084  
4085    // On Darwin, if the normal linkage of a C++ thread_local variable is
4086    // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4087    // copies within a linkage unit; otherwise, the backing variable has
4088    // internal linkage and all accesses should just be calls to the
4089    // Itanium-specified entry point, which has the normal linkage of the
4090    // variable. This is to preserve the ability to change the implementation
4091    // behind the scenes.
4092    if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4093        Context.getTargetInfo().getTriple().isOSDarwin() &&
4094        !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4095        !llvm::GlobalVariable::isWeakLinkage(Linkage))
4096      Linkage = llvm::GlobalValue::InternalLinkage;
4097  
4098    GV->setLinkage(Linkage);
4099    if (D->hasAttr<DLLImportAttr>())
4100      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4101    else if (D->hasAttr<DLLExportAttr>())
4102      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4103    else
4104      GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4105  
4106    if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4107      // common vars aren't constant even if declared const.
4108      GV->setConstant(false);
4109      // Tentative definition of global variables may be initialized with
4110      // non-zero null pointers. In this case they should have weak linkage
4111      // since common linkage must have zero initializer and must not have
4112      // explicit section therefore cannot have non-zero initial value.
4113      if (!GV->getInitializer()->isNullValue())
4114        GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4115    }
4116  
4117    setNonAliasAttributes(D, GV);
4118  
4119    if (D->getTLSKind() && !GV->isThreadLocal()) {
4120      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4121        CXXThreadLocals.push_back(D);
4122      setTLSMode(GV, *D);
4123    }
4124  
4125    maybeSetTrivialComdat(*D, *GV);
4126  
4127    // Emit the initializer function if necessary.
4128    if (NeedsGlobalCtor || NeedsGlobalDtor)
4129      EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4130  
4131    SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4132  
4133    // Emit global variable debug information.
4134    if (CGDebugInfo *DI = getModuleDebugInfo())
4135      if (getCodeGenOpts().hasReducedDebugInfo())
4136        DI->EmitGlobalVariable(GV, D);
4137  }
4138  
4139  void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4140    if (CGDebugInfo *DI = getModuleDebugInfo())
4141      if (getCodeGenOpts().hasReducedDebugInfo()) {
4142        QualType ASTTy = D->getType();
4143        llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4144        llvm::PointerType *PTy =
4145            llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4146        llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4147        DI->EmitExternalVariable(
4148            cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4149      }
4150  }
4151  
4152  static bool isVarDeclStrongDefinition(const ASTContext &Context,
4153                                        CodeGenModule &CGM, const VarDecl *D,
4154                                        bool NoCommon) {
4155    // Don't give variables common linkage if -fno-common was specified unless it
4156    // was overridden by a NoCommon attribute.
4157    if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4158      return true;
4159  
4160    // C11 6.9.2/2:
4161    //   A declaration of an identifier for an object that has file scope without
4162    //   an initializer, and without a storage-class specifier or with the
4163    //   storage-class specifier static, constitutes a tentative definition.
4164    if (D->getInit() || D->hasExternalStorage())
4165      return true;
4166  
4167    // A variable cannot be both common and exist in a section.
4168    if (D->hasAttr<SectionAttr>())
4169      return true;
4170  
4171    // A variable cannot be both common and exist in a section.
4172    // We don't try to determine which is the right section in the front-end.
4173    // If no specialized section name is applicable, it will resort to default.
4174    if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4175        D->hasAttr<PragmaClangDataSectionAttr>() ||
4176        D->hasAttr<PragmaClangRelroSectionAttr>() ||
4177        D->hasAttr<PragmaClangRodataSectionAttr>())
4178      return true;
4179  
4180    // Thread local vars aren't considered common linkage.
4181    if (D->getTLSKind())
4182      return true;
4183  
4184    // Tentative definitions marked with WeakImportAttr are true definitions.
4185    if (D->hasAttr<WeakImportAttr>())
4186      return true;
4187  
4188    // A variable cannot be both common and exist in a comdat.
4189    if (shouldBeInCOMDAT(CGM, *D))
4190      return true;
4191  
4192    // Declarations with a required alignment do not have common linkage in MSVC
4193    // mode.
4194    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4195      if (D->hasAttr<AlignedAttr>())
4196        return true;
4197      QualType VarType = D->getType();
4198      if (Context.isAlignmentRequired(VarType))
4199        return true;
4200  
4201      if (const auto *RT = VarType->getAs<RecordType>()) {
4202        const RecordDecl *RD = RT->getDecl();
4203        for (const FieldDecl *FD : RD->fields()) {
4204          if (FD->isBitField())
4205            continue;
4206          if (FD->hasAttr<AlignedAttr>())
4207            return true;
4208          if (Context.isAlignmentRequired(FD->getType()))
4209            return true;
4210        }
4211      }
4212    }
4213  
4214    // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4215    // common symbols, so symbols with greater alignment requirements cannot be
4216    // common.
4217    // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4218    // alignments for common symbols via the aligncomm directive, so this
4219    // restriction only applies to MSVC environments.
4220    if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4221        Context.getTypeAlignIfKnown(D->getType()) >
4222            Context.toBits(CharUnits::fromQuantity(32)))
4223      return true;
4224  
4225    return false;
4226  }
4227  
4228  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4229      const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4230    if (Linkage == GVA_Internal)
4231      return llvm::Function::InternalLinkage;
4232  
4233    if (D->hasAttr<WeakAttr>()) {
4234      if (IsConstantVariable)
4235        return llvm::GlobalVariable::WeakODRLinkage;
4236      else
4237        return llvm::GlobalVariable::WeakAnyLinkage;
4238    }
4239  
4240    if (const auto *FD = D->getAsFunction())
4241      if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4242        return llvm::GlobalVariable::LinkOnceAnyLinkage;
4243  
4244    // We are guaranteed to have a strong definition somewhere else,
4245    // so we can use available_externally linkage.
4246    if (Linkage == GVA_AvailableExternally)
4247      return llvm::GlobalValue::AvailableExternallyLinkage;
4248  
4249    // Note that Apple's kernel linker doesn't support symbol
4250    // coalescing, so we need to avoid linkonce and weak linkages there.
4251    // Normally, this means we just map to internal, but for explicit
4252    // instantiations we'll map to external.
4253  
4254    // In C++, the compiler has to emit a definition in every translation unit
4255    // that references the function.  We should use linkonce_odr because
4256    // a) if all references in this translation unit are optimized away, we
4257    // don't need to codegen it.  b) if the function persists, it needs to be
4258    // merged with other definitions. c) C++ has the ODR, so we know the
4259    // definition is dependable.
4260    if (Linkage == GVA_DiscardableODR)
4261      return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4262                                              : llvm::Function::InternalLinkage;
4263  
4264    // An explicit instantiation of a template has weak linkage, since
4265    // explicit instantiations can occur in multiple translation units
4266    // and must all be equivalent. However, we are not allowed to
4267    // throw away these explicit instantiations.
4268    //
4269    // We don't currently support CUDA device code spread out across multiple TUs,
4270    // so say that CUDA templates are either external (for kernels) or internal.
4271    // This lets llvm perform aggressive inter-procedural optimizations.
4272    if (Linkage == GVA_StrongODR) {
4273      if (Context.getLangOpts().AppleKext)
4274        return llvm::Function::ExternalLinkage;
4275      if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4276        return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4277                                            : llvm::Function::InternalLinkage;
4278      return llvm::Function::WeakODRLinkage;
4279    }
4280  
4281    // C++ doesn't have tentative definitions and thus cannot have common
4282    // linkage.
4283    if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4284        !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4285                                   CodeGenOpts.NoCommon))
4286      return llvm::GlobalVariable::CommonLinkage;
4287  
4288    // selectany symbols are externally visible, so use weak instead of
4289    // linkonce.  MSVC optimizes away references to const selectany globals, so
4290    // all definitions should be the same and ODR linkage should be used.
4291    // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4292    if (D->hasAttr<SelectAnyAttr>())
4293      return llvm::GlobalVariable::WeakODRLinkage;
4294  
4295    // Otherwise, we have strong external linkage.
4296    assert(Linkage == GVA_StrongExternal);
4297    return llvm::GlobalVariable::ExternalLinkage;
4298  }
4299  
4300  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4301      const VarDecl *VD, bool IsConstant) {
4302    GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4303    return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4304  }
4305  
4306  /// Replace the uses of a function that was declared with a non-proto type.
4307  /// We want to silently drop extra arguments from call sites
4308  static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4309                                            llvm::Function *newFn) {
4310    // Fast path.
4311    if (old->use_empty()) return;
4312  
4313    llvm::Type *newRetTy = newFn->getReturnType();
4314    SmallVector<llvm::Value*, 4> newArgs;
4315    SmallVector<llvm::OperandBundleDef, 1> newBundles;
4316  
4317    for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4318           ui != ue; ) {
4319      llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4320      llvm::User *user = use->getUser();
4321  
4322      // Recognize and replace uses of bitcasts.  Most calls to
4323      // unprototyped functions will use bitcasts.
4324      if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4325        if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4326          replaceUsesOfNonProtoConstant(bitcast, newFn);
4327        continue;
4328      }
4329  
4330      // Recognize calls to the function.
4331      llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4332      if (!callSite) continue;
4333      if (!callSite->isCallee(&*use))
4334        continue;
4335  
4336      // If the return types don't match exactly, then we can't
4337      // transform this call unless it's dead.
4338      if (callSite->getType() != newRetTy && !callSite->use_empty())
4339        continue;
4340  
4341      // Get the call site's attribute list.
4342      SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4343      llvm::AttributeList oldAttrs = callSite->getAttributes();
4344  
4345      // If the function was passed too few arguments, don't transform.
4346      unsigned newNumArgs = newFn->arg_size();
4347      if (callSite->arg_size() < newNumArgs)
4348        continue;
4349  
4350      // If extra arguments were passed, we silently drop them.
4351      // If any of the types mismatch, we don't transform.
4352      unsigned argNo = 0;
4353      bool dontTransform = false;
4354      for (llvm::Argument &A : newFn->args()) {
4355        if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4356          dontTransform = true;
4357          break;
4358        }
4359  
4360        // Add any parameter attributes.
4361        newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4362        argNo++;
4363      }
4364      if (dontTransform)
4365        continue;
4366  
4367      // Okay, we can transform this.  Create the new call instruction and copy
4368      // over the required information.
4369      newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4370  
4371      // Copy over any operand bundles.
4372      callSite->getOperandBundlesAsDefs(newBundles);
4373  
4374      llvm::CallBase *newCall;
4375      if (dyn_cast<llvm::CallInst>(callSite)) {
4376        newCall =
4377            llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4378      } else {
4379        auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4380        newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4381                                           oldInvoke->getUnwindDest(), newArgs,
4382                                           newBundles, "", callSite);
4383      }
4384      newArgs.clear(); // for the next iteration
4385  
4386      if (!newCall->getType()->isVoidTy())
4387        newCall->takeName(callSite);
4388      newCall->setAttributes(llvm::AttributeList::get(
4389          newFn->getContext(), oldAttrs.getFnAttributes(),
4390          oldAttrs.getRetAttributes(), newArgAttrs));
4391      newCall->setCallingConv(callSite->getCallingConv());
4392  
4393      // Finally, remove the old call, replacing any uses with the new one.
4394      if (!callSite->use_empty())
4395        callSite->replaceAllUsesWith(newCall);
4396  
4397      // Copy debug location attached to CI.
4398      if (callSite->getDebugLoc())
4399        newCall->setDebugLoc(callSite->getDebugLoc());
4400  
4401      callSite->eraseFromParent();
4402    }
4403  }
4404  
4405  /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4406  /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4407  /// existing call uses of the old function in the module, this adjusts them to
4408  /// call the new function directly.
4409  ///
4410  /// This is not just a cleanup: the always_inline pass requires direct calls to
4411  /// functions to be able to inline them.  If there is a bitcast in the way, it
4412  /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4413  /// run at -O0.
4414  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4415                                                        llvm::Function *NewFn) {
4416    // If we're redefining a global as a function, don't transform it.
4417    if (!isa<llvm::Function>(Old)) return;
4418  
4419    replaceUsesOfNonProtoConstant(Old, NewFn);
4420  }
4421  
4422  void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4423    auto DK = VD->isThisDeclarationADefinition();
4424    if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4425      return;
4426  
4427    TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4428    // If we have a definition, this might be a deferred decl. If the
4429    // instantiation is explicit, make sure we emit it at the end.
4430    if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4431      GetAddrOfGlobalVar(VD);
4432  
4433    EmitTopLevelDecl(VD);
4434  }
4435  
4436  void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4437                                                   llvm::GlobalValue *GV) {
4438    // Check if this must be emitted as declare variant.
4439    if (LangOpts.OpenMP && OpenMPRuntime &&
4440        OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4441      return;
4442  
4443    const auto *D = cast<FunctionDecl>(GD.getDecl());
4444  
4445    // Compute the function info and LLVM type.
4446    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4447    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4448  
4449    // Get or create the prototype for the function.
4450    if (!GV || (GV->getType()->getElementType() != Ty))
4451      GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4452                                                     /*DontDefer=*/true,
4453                                                     ForDefinition));
4454  
4455    // Already emitted.
4456    if (!GV->isDeclaration())
4457      return;
4458  
4459    // We need to set linkage and visibility on the function before
4460    // generating code for it because various parts of IR generation
4461    // want to propagate this information down (e.g. to local static
4462    // declarations).
4463    auto *Fn = cast<llvm::Function>(GV);
4464    setFunctionLinkage(GD, Fn);
4465  
4466    // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4467    setGVProperties(Fn, GD);
4468  
4469    MaybeHandleStaticInExternC(D, Fn);
4470  
4471  
4472    maybeSetTrivialComdat(*D, *Fn);
4473  
4474    CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4475  
4476    setNonAliasAttributes(GD, Fn);
4477    SetLLVMFunctionAttributesForDefinition(D, Fn);
4478  
4479    if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4480      AddGlobalCtor(Fn, CA->getPriority());
4481    if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4482      AddGlobalDtor(Fn, DA->getPriority());
4483    if (D->hasAttr<AnnotateAttr>())
4484      AddGlobalAnnotations(D, Fn);
4485  }
4486  
4487  void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4488    const auto *D = cast<ValueDecl>(GD.getDecl());
4489    const AliasAttr *AA = D->getAttr<AliasAttr>();
4490    assert(AA && "Not an alias?");
4491  
4492    StringRef MangledName = getMangledName(GD);
4493  
4494    if (AA->getAliasee() == MangledName) {
4495      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4496      return;
4497    }
4498  
4499    // If there is a definition in the module, then it wins over the alias.
4500    // This is dubious, but allow it to be safe.  Just ignore the alias.
4501    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4502    if (Entry && !Entry->isDeclaration())
4503      return;
4504  
4505    Aliases.push_back(GD);
4506  
4507    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4508  
4509    // Create a reference to the named value.  This ensures that it is emitted
4510    // if a deferred decl.
4511    llvm::Constant *Aliasee;
4512    llvm::GlobalValue::LinkageTypes LT;
4513    if (isa<llvm::FunctionType>(DeclTy)) {
4514      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4515                                        /*ForVTable=*/false);
4516      LT = getFunctionLinkage(GD);
4517    } else {
4518      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4519                                      llvm::PointerType::getUnqual(DeclTy),
4520                                      /*D=*/nullptr);
4521      LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4522                                       D->getType().isConstQualified());
4523    }
4524  
4525    // Create the new alias itself, but don't set a name yet.
4526    auto *GA =
4527        llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4528  
4529    if (Entry) {
4530      if (GA->getAliasee() == Entry) {
4531        Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4532        return;
4533      }
4534  
4535      assert(Entry->isDeclaration());
4536  
4537      // If there is a declaration in the module, then we had an extern followed
4538      // by the alias, as in:
4539      //   extern int test6();
4540      //   ...
4541      //   int test6() __attribute__((alias("test7")));
4542      //
4543      // Remove it and replace uses of it with the alias.
4544      GA->takeName(Entry);
4545  
4546      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4547                                                            Entry->getType()));
4548      Entry->eraseFromParent();
4549    } else {
4550      GA->setName(MangledName);
4551    }
4552  
4553    // Set attributes which are particular to an alias; this is a
4554    // specialization of the attributes which may be set on a global
4555    // variable/function.
4556    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4557        D->isWeakImported()) {
4558      GA->setLinkage(llvm::Function::WeakAnyLinkage);
4559    }
4560  
4561    if (const auto *VD = dyn_cast<VarDecl>(D))
4562      if (VD->getTLSKind())
4563        setTLSMode(GA, *VD);
4564  
4565    SetCommonAttributes(GD, GA);
4566  }
4567  
4568  void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4569    const auto *D = cast<ValueDecl>(GD.getDecl());
4570    const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4571    assert(IFA && "Not an ifunc?");
4572  
4573    StringRef MangledName = getMangledName(GD);
4574  
4575    if (IFA->getResolver() == MangledName) {
4576      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4577      return;
4578    }
4579  
4580    // Report an error if some definition overrides ifunc.
4581    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4582    if (Entry && !Entry->isDeclaration()) {
4583      GlobalDecl OtherGD;
4584      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4585          DiagnosedConflictingDefinitions.insert(GD).second) {
4586        Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4587            << MangledName;
4588        Diags.Report(OtherGD.getDecl()->getLocation(),
4589                     diag::note_previous_definition);
4590      }
4591      return;
4592    }
4593  
4594    Aliases.push_back(GD);
4595  
4596    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4597    llvm::Constant *Resolver =
4598        GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4599                                /*ForVTable=*/false);
4600    llvm::GlobalIFunc *GIF =
4601        llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4602                                  "", Resolver, &getModule());
4603    if (Entry) {
4604      if (GIF->getResolver() == Entry) {
4605        Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4606        return;
4607      }
4608      assert(Entry->isDeclaration());
4609  
4610      // If there is a declaration in the module, then we had an extern followed
4611      // by the ifunc, as in:
4612      //   extern int test();
4613      //   ...
4614      //   int test() __attribute__((ifunc("resolver")));
4615      //
4616      // Remove it and replace uses of it with the ifunc.
4617      GIF->takeName(Entry);
4618  
4619      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4620                                                            Entry->getType()));
4621      Entry->eraseFromParent();
4622    } else
4623      GIF->setName(MangledName);
4624  
4625    SetCommonAttributes(GD, GIF);
4626  }
4627  
4628  llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4629                                              ArrayRef<llvm::Type*> Tys) {
4630    return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4631                                           Tys);
4632  }
4633  
4634  static llvm::StringMapEntry<llvm::GlobalVariable *> &
4635  GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4636                           const StringLiteral *Literal, bool TargetIsLSB,
4637                           bool &IsUTF16, unsigned &StringLength) {
4638    StringRef String = Literal->getString();
4639    unsigned NumBytes = String.size();
4640  
4641    // Check for simple case.
4642    if (!Literal->containsNonAsciiOrNull()) {
4643      StringLength = NumBytes;
4644      return *Map.insert(std::make_pair(String, nullptr)).first;
4645    }
4646  
4647    // Otherwise, convert the UTF8 literals into a string of shorts.
4648    IsUTF16 = true;
4649  
4650    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4651    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4652    llvm::UTF16 *ToPtr = &ToBuf[0];
4653  
4654    (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4655                                   ToPtr + NumBytes, llvm::strictConversion);
4656  
4657    // ConvertUTF8toUTF16 returns the length in ToPtr.
4658    StringLength = ToPtr - &ToBuf[0];
4659  
4660    // Add an explicit null.
4661    *ToPtr = 0;
4662    return *Map.insert(std::make_pair(
4663                           StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4664                                     (StringLength + 1) * 2),
4665                           nullptr)).first;
4666  }
4667  
4668  ConstantAddress
4669  CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4670    unsigned StringLength = 0;
4671    bool isUTF16 = false;
4672    llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4673        GetConstantCFStringEntry(CFConstantStringMap, Literal,
4674                                 getDataLayout().isLittleEndian(), isUTF16,
4675                                 StringLength);
4676  
4677    if (auto *C = Entry.second)
4678      return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4679  
4680    llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4681    llvm::Constant *Zeros[] = { Zero, Zero };
4682  
4683    const ASTContext &Context = getContext();
4684    const llvm::Triple &Triple = getTriple();
4685  
4686    const auto CFRuntime = getLangOpts().CFRuntime;
4687    const bool IsSwiftABI =
4688        static_cast<unsigned>(CFRuntime) >=
4689        static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4690    const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4691  
4692    // If we don't already have it, get __CFConstantStringClassReference.
4693    if (!CFConstantStringClassRef) {
4694      const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4695      llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4696      Ty = llvm::ArrayType::get(Ty, 0);
4697  
4698      switch (CFRuntime) {
4699      default: break;
4700      case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4701      case LangOptions::CoreFoundationABI::Swift5_0:
4702        CFConstantStringClassName =
4703            Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4704                                : "$s10Foundation19_NSCFConstantStringCN";
4705        Ty = IntPtrTy;
4706        break;
4707      case LangOptions::CoreFoundationABI::Swift4_2:
4708        CFConstantStringClassName =
4709            Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4710                                : "$S10Foundation19_NSCFConstantStringCN";
4711        Ty = IntPtrTy;
4712        break;
4713      case LangOptions::CoreFoundationABI::Swift4_1:
4714        CFConstantStringClassName =
4715            Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4716                                : "__T010Foundation19_NSCFConstantStringCN";
4717        Ty = IntPtrTy;
4718        break;
4719      }
4720  
4721      llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4722  
4723      if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4724        llvm::GlobalValue *GV = nullptr;
4725  
4726        if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4727          IdentifierInfo &II = Context.Idents.get(GV->getName());
4728          TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4729          DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4730  
4731          const VarDecl *VD = nullptr;
4732          for (const auto &Result : DC->lookup(&II))
4733            if ((VD = dyn_cast<VarDecl>(Result)))
4734              break;
4735  
4736          if (Triple.isOSBinFormatELF()) {
4737            if (!VD)
4738              GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4739          } else {
4740            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4741            if (!VD || !VD->hasAttr<DLLExportAttr>())
4742              GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4743            else
4744              GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4745          }
4746  
4747          setDSOLocal(GV);
4748        }
4749      }
4750  
4751      // Decay array -> ptr
4752      CFConstantStringClassRef =
4753          IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4754                     : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4755    }
4756  
4757    QualType CFTy = Context.getCFConstantStringType();
4758  
4759    auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4760  
4761    ConstantInitBuilder Builder(*this);
4762    auto Fields = Builder.beginStruct(STy);
4763  
4764    // Class pointer.
4765    Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4766  
4767    // Flags.
4768    if (IsSwiftABI) {
4769      Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4770      Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4771    } else {
4772      Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4773    }
4774  
4775    // String pointer.
4776    llvm::Constant *C = nullptr;
4777    if (isUTF16) {
4778      auto Arr = llvm::makeArrayRef(
4779          reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4780          Entry.first().size() / 2);
4781      C = llvm::ConstantDataArray::get(VMContext, Arr);
4782    } else {
4783      C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4784    }
4785  
4786    // Note: -fwritable-strings doesn't make the backing store strings of
4787    // CFStrings writable. (See <rdar://problem/10657500>)
4788    auto *GV =
4789        new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4790                                 llvm::GlobalValue::PrivateLinkage, C, ".str");
4791    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4792    // Don't enforce the target's minimum global alignment, since the only use
4793    // of the string is via this class initializer.
4794    CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4795                              : Context.getTypeAlignInChars(Context.CharTy);
4796    GV->setAlignment(Align.getAsAlign());
4797  
4798    // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4799    // Without it LLVM can merge the string with a non unnamed_addr one during
4800    // LTO.  Doing that changes the section it ends in, which surprises ld64.
4801    if (Triple.isOSBinFormatMachO())
4802      GV->setSection(isUTF16 ? "__TEXT,__ustring"
4803                             : "__TEXT,__cstring,cstring_literals");
4804    // Make sure the literal ends up in .rodata to allow for safe ICF and for
4805    // the static linker to adjust permissions to read-only later on.
4806    else if (Triple.isOSBinFormatELF())
4807      GV->setSection(".rodata");
4808  
4809    // String.
4810    llvm::Constant *Str =
4811        llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4812  
4813    if (isUTF16)
4814      // Cast the UTF16 string to the correct type.
4815      Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4816    Fields.add(Str);
4817  
4818    // String length.
4819    llvm::IntegerType *LengthTy =
4820        llvm::IntegerType::get(getModule().getContext(),
4821                               Context.getTargetInfo().getLongWidth());
4822    if (IsSwiftABI) {
4823      if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4824          CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4825        LengthTy = Int32Ty;
4826      else
4827        LengthTy = IntPtrTy;
4828    }
4829    Fields.addInt(LengthTy, StringLength);
4830  
4831    // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4832    // properly aligned on 32-bit platforms.
4833    CharUnits Alignment =
4834        IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4835  
4836    // The struct.
4837    GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4838                                      /*isConstant=*/false,
4839                                      llvm::GlobalVariable::PrivateLinkage);
4840    GV->addAttribute("objc_arc_inert");
4841    switch (Triple.getObjectFormat()) {
4842    case llvm::Triple::UnknownObjectFormat:
4843      llvm_unreachable("unknown file format");
4844    case llvm::Triple::XCOFF:
4845      llvm_unreachable("XCOFF is not yet implemented");
4846    case llvm::Triple::COFF:
4847    case llvm::Triple::ELF:
4848    case llvm::Triple::Wasm:
4849      GV->setSection("cfstring");
4850      break;
4851    case llvm::Triple::MachO:
4852      GV->setSection("__DATA,__cfstring");
4853      break;
4854    }
4855    Entry.second = GV;
4856  
4857    return ConstantAddress(GV, Alignment);
4858  }
4859  
4860  bool CodeGenModule::getExpressionLocationsEnabled() const {
4861    return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4862  }
4863  
4864  QualType CodeGenModule::getObjCFastEnumerationStateType() {
4865    if (ObjCFastEnumerationStateType.isNull()) {
4866      RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4867      D->startDefinition();
4868  
4869      QualType FieldTypes[] = {
4870        Context.UnsignedLongTy,
4871        Context.getPointerType(Context.getObjCIdType()),
4872        Context.getPointerType(Context.UnsignedLongTy),
4873        Context.getConstantArrayType(Context.UnsignedLongTy,
4874                             llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4875      };
4876  
4877      for (size_t i = 0; i < 4; ++i) {
4878        FieldDecl *Field = FieldDecl::Create(Context,
4879                                             D,
4880                                             SourceLocation(),
4881                                             SourceLocation(), nullptr,
4882                                             FieldTypes[i], /*TInfo=*/nullptr,
4883                                             /*BitWidth=*/nullptr,
4884                                             /*Mutable=*/false,
4885                                             ICIS_NoInit);
4886        Field->setAccess(AS_public);
4887        D->addDecl(Field);
4888      }
4889  
4890      D->completeDefinition();
4891      ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4892    }
4893  
4894    return ObjCFastEnumerationStateType;
4895  }
4896  
4897  llvm::Constant *
4898  CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4899    assert(!E->getType()->isPointerType() && "Strings are always arrays");
4900  
4901    // Don't emit it as the address of the string, emit the string data itself
4902    // as an inline array.
4903    if (E->getCharByteWidth() == 1) {
4904      SmallString<64> Str(E->getString());
4905  
4906      // Resize the string to the right size, which is indicated by its type.
4907      const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4908      Str.resize(CAT->getSize().getZExtValue());
4909      return llvm::ConstantDataArray::getString(VMContext, Str, false);
4910    }
4911  
4912    auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4913    llvm::Type *ElemTy = AType->getElementType();
4914    unsigned NumElements = AType->getNumElements();
4915  
4916    // Wide strings have either 2-byte or 4-byte elements.
4917    if (ElemTy->getPrimitiveSizeInBits() == 16) {
4918      SmallVector<uint16_t, 32> Elements;
4919      Elements.reserve(NumElements);
4920  
4921      for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4922        Elements.push_back(E->getCodeUnit(i));
4923      Elements.resize(NumElements);
4924      return llvm::ConstantDataArray::get(VMContext, Elements);
4925    }
4926  
4927    assert(ElemTy->getPrimitiveSizeInBits() == 32);
4928    SmallVector<uint32_t, 32> Elements;
4929    Elements.reserve(NumElements);
4930  
4931    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4932      Elements.push_back(E->getCodeUnit(i));
4933    Elements.resize(NumElements);
4934    return llvm::ConstantDataArray::get(VMContext, Elements);
4935  }
4936  
4937  static llvm::GlobalVariable *
4938  GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4939                        CodeGenModule &CGM, StringRef GlobalName,
4940                        CharUnits Alignment) {
4941    unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4942        CGM.getStringLiteralAddressSpace());
4943  
4944    llvm::Module &M = CGM.getModule();
4945    // Create a global variable for this string
4946    auto *GV = new llvm::GlobalVariable(
4947        M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4948        nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4949    GV->setAlignment(Alignment.getAsAlign());
4950    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4951    if (GV->isWeakForLinker()) {
4952      assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4953      GV->setComdat(M.getOrInsertComdat(GV->getName()));
4954    }
4955    CGM.setDSOLocal(GV);
4956  
4957    return GV;
4958  }
4959  
4960  /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4961  /// constant array for the given string literal.
4962  ConstantAddress
4963  CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4964                                                    StringRef Name) {
4965    CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4966  
4967    llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4968    llvm::GlobalVariable **Entry = nullptr;
4969    if (!LangOpts.WritableStrings) {
4970      Entry = &ConstantStringMap[C];
4971      if (auto GV = *Entry) {
4972        if (Alignment.getQuantity() > GV->getAlignment())
4973          GV->setAlignment(Alignment.getAsAlign());
4974        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4975                               Alignment);
4976      }
4977    }
4978  
4979    SmallString<256> MangledNameBuffer;
4980    StringRef GlobalVariableName;
4981    llvm::GlobalValue::LinkageTypes LT;
4982  
4983    // Mangle the string literal if that's how the ABI merges duplicate strings.
4984    // Don't do it if they are writable, since we don't want writes in one TU to
4985    // affect strings in another.
4986    if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4987        !LangOpts.WritableStrings) {
4988      llvm::raw_svector_ostream Out(MangledNameBuffer);
4989      getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4990      LT = llvm::GlobalValue::LinkOnceODRLinkage;
4991      GlobalVariableName = MangledNameBuffer;
4992    } else {
4993      LT = llvm::GlobalValue::PrivateLinkage;
4994      GlobalVariableName = Name;
4995    }
4996  
4997    auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4998    if (Entry)
4999      *Entry = GV;
5000  
5001    SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5002                                    QualType());
5003  
5004    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5005                           Alignment);
5006  }
5007  
5008  /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5009  /// array for the given ObjCEncodeExpr node.
5010  ConstantAddress
5011  CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5012    std::string Str;
5013    getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5014  
5015    return GetAddrOfConstantCString(Str);
5016  }
5017  
5018  /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5019  /// the literal and a terminating '\0' character.
5020  /// The result has pointer to array type.
5021  ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5022      const std::string &Str, const char *GlobalName) {
5023    StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5024    CharUnits Alignment =
5025      getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5026  
5027    llvm::Constant *C =
5028        llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5029  
5030    // Don't share any string literals if strings aren't constant.
5031    llvm::GlobalVariable **Entry = nullptr;
5032    if (!LangOpts.WritableStrings) {
5033      Entry = &ConstantStringMap[C];
5034      if (auto GV = *Entry) {
5035        if (Alignment.getQuantity() > GV->getAlignment())
5036          GV->setAlignment(Alignment.getAsAlign());
5037        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5038                               Alignment);
5039      }
5040    }
5041  
5042    // Get the default prefix if a name wasn't specified.
5043    if (!GlobalName)
5044      GlobalName = ".str";
5045    // Create a global variable for this.
5046    auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5047                                    GlobalName, Alignment);
5048    if (Entry)
5049      *Entry = GV;
5050  
5051    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5052                           Alignment);
5053  }
5054  
5055  ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5056      const MaterializeTemporaryExpr *E, const Expr *Init) {
5057    assert((E->getStorageDuration() == SD_Static ||
5058            E->getStorageDuration() == SD_Thread) && "not a global temporary");
5059    const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5060  
5061    // If we're not materializing a subobject of the temporary, keep the
5062    // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5063    QualType MaterializedType = Init->getType();
5064    if (Init == E->getSubExpr())
5065      MaterializedType = E->getType();
5066  
5067    CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5068  
5069    if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5070      return ConstantAddress(Slot, Align);
5071  
5072    // FIXME: If an externally-visible declaration extends multiple temporaries,
5073    // we need to give each temporary the same name in every translation unit (and
5074    // we also need to make the temporaries externally-visible).
5075    SmallString<256> Name;
5076    llvm::raw_svector_ostream Out(Name);
5077    getCXXABI().getMangleContext().mangleReferenceTemporary(
5078        VD, E->getManglingNumber(), Out);
5079  
5080    APValue *Value = nullptr;
5081    if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5082      // If the initializer of the extending declaration is a constant
5083      // initializer, we should have a cached constant initializer for this
5084      // temporary. Note that this might have a different value from the value
5085      // computed by evaluating the initializer if the surrounding constant
5086      // expression modifies the temporary.
5087      Value = E->getOrCreateValue(false);
5088    }
5089  
5090    // Try evaluating it now, it might have a constant initializer.
5091    Expr::EvalResult EvalResult;
5092    if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5093        !EvalResult.hasSideEffects())
5094      Value = &EvalResult.Val;
5095  
5096    LangAS AddrSpace =
5097        VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5098  
5099    Optional<ConstantEmitter> emitter;
5100    llvm::Constant *InitialValue = nullptr;
5101    bool Constant = false;
5102    llvm::Type *Type;
5103    if (Value) {
5104      // The temporary has a constant initializer, use it.
5105      emitter.emplace(*this);
5106      InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5107                                                 MaterializedType);
5108      Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5109      Type = InitialValue->getType();
5110    } else {
5111      // No initializer, the initialization will be provided when we
5112      // initialize the declaration which performed lifetime extension.
5113      Type = getTypes().ConvertTypeForMem(MaterializedType);
5114    }
5115  
5116    // Create a global variable for this lifetime-extended temporary.
5117    llvm::GlobalValue::LinkageTypes Linkage =
5118        getLLVMLinkageVarDefinition(VD, Constant);
5119    if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5120      const VarDecl *InitVD;
5121      if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5122          isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5123        // Temporaries defined inside a class get linkonce_odr linkage because the
5124        // class can be defined in multiple translation units.
5125        Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5126      } else {
5127        // There is no need for this temporary to have external linkage if the
5128        // VarDecl has external linkage.
5129        Linkage = llvm::GlobalVariable::InternalLinkage;
5130      }
5131    }
5132    auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5133    auto *GV = new llvm::GlobalVariable(
5134        getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5135        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5136    if (emitter) emitter->finalize(GV);
5137    setGVProperties(GV, VD);
5138    GV->setAlignment(Align.getAsAlign());
5139    if (supportsCOMDAT() && GV->isWeakForLinker())
5140      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5141    if (VD->getTLSKind())
5142      setTLSMode(GV, *VD);
5143    llvm::Constant *CV = GV;
5144    if (AddrSpace != LangAS::Default)
5145      CV = getTargetCodeGenInfo().performAddrSpaceCast(
5146          *this, GV, AddrSpace, LangAS::Default,
5147          Type->getPointerTo(
5148              getContext().getTargetAddressSpace(LangAS::Default)));
5149    MaterializedGlobalTemporaryMap[E] = CV;
5150    return ConstantAddress(CV, Align);
5151  }
5152  
5153  /// EmitObjCPropertyImplementations - Emit information for synthesized
5154  /// properties for an implementation.
5155  void CodeGenModule::EmitObjCPropertyImplementations(const
5156                                                      ObjCImplementationDecl *D) {
5157    for (const auto *PID : D->property_impls()) {
5158      // Dynamic is just for type-checking.
5159      if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5160        ObjCPropertyDecl *PD = PID->getPropertyDecl();
5161  
5162        // Determine which methods need to be implemented, some may have
5163        // been overridden. Note that ::isPropertyAccessor is not the method
5164        // we want, that just indicates if the decl came from a
5165        // property. What we want to know is if the method is defined in
5166        // this implementation.
5167        auto *Getter = PID->getGetterMethodDecl();
5168        if (!Getter || Getter->isSynthesizedAccessorStub())
5169          CodeGenFunction(*this).GenerateObjCGetter(
5170              const_cast<ObjCImplementationDecl *>(D), PID);
5171        auto *Setter = PID->getSetterMethodDecl();
5172        if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5173          CodeGenFunction(*this).GenerateObjCSetter(
5174                                   const_cast<ObjCImplementationDecl *>(D), PID);
5175      }
5176    }
5177  }
5178  
5179  static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5180    const ObjCInterfaceDecl *iface = impl->getClassInterface();
5181    for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5182         ivar; ivar = ivar->getNextIvar())
5183      if (ivar->getType().isDestructedType())
5184        return true;
5185  
5186    return false;
5187  }
5188  
5189  static bool AllTrivialInitializers(CodeGenModule &CGM,
5190                                     ObjCImplementationDecl *D) {
5191    CodeGenFunction CGF(CGM);
5192    for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5193         E = D->init_end(); B != E; ++B) {
5194      CXXCtorInitializer *CtorInitExp = *B;
5195      Expr *Init = CtorInitExp->getInit();
5196      if (!CGF.isTrivialInitializer(Init))
5197        return false;
5198    }
5199    return true;
5200  }
5201  
5202  /// EmitObjCIvarInitializations - Emit information for ivar initialization
5203  /// for an implementation.
5204  void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5205    // We might need a .cxx_destruct even if we don't have any ivar initializers.
5206    if (needsDestructMethod(D)) {
5207      IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5208      Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5209      ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5210          getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5211          getContext().VoidTy, nullptr, D,
5212          /*isInstance=*/true, /*isVariadic=*/false,
5213          /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5214          /*isImplicitlyDeclared=*/true,
5215          /*isDefined=*/false, ObjCMethodDecl::Required);
5216      D->addInstanceMethod(DTORMethod);
5217      CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5218      D->setHasDestructors(true);
5219    }
5220  
5221    // If the implementation doesn't have any ivar initializers, we don't need
5222    // a .cxx_construct.
5223    if (D->getNumIvarInitializers() == 0 ||
5224        AllTrivialInitializers(*this, D))
5225      return;
5226  
5227    IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5228    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5229    // The constructor returns 'self'.
5230    ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5231        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5232        getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5233        /*isVariadic=*/false,
5234        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5235        /*isImplicitlyDeclared=*/true,
5236        /*isDefined=*/false, ObjCMethodDecl::Required);
5237    D->addInstanceMethod(CTORMethod);
5238    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5239    D->setHasNonZeroConstructors(true);
5240  }
5241  
5242  // EmitLinkageSpec - Emit all declarations in a linkage spec.
5243  void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5244    if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5245        LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5246      ErrorUnsupported(LSD, "linkage spec");
5247      return;
5248    }
5249  
5250    EmitDeclContext(LSD);
5251  }
5252  
5253  void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5254    for (auto *I : DC->decls()) {
5255      // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5256      // are themselves considered "top-level", so EmitTopLevelDecl on an
5257      // ObjCImplDecl does not recursively visit them. We need to do that in
5258      // case they're nested inside another construct (LinkageSpecDecl /
5259      // ExportDecl) that does stop them from being considered "top-level".
5260      if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5261        for (auto *M : OID->methods())
5262          EmitTopLevelDecl(M);
5263      }
5264  
5265      EmitTopLevelDecl(I);
5266    }
5267  }
5268  
5269  /// EmitTopLevelDecl - Emit code for a single top level declaration.
5270  void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5271    // Ignore dependent declarations.
5272    if (D->isTemplated())
5273      return;
5274  
5275    switch (D->getKind()) {
5276    case Decl::CXXConversion:
5277    case Decl::CXXMethod:
5278    case Decl::Function:
5279      EmitGlobal(cast<FunctionDecl>(D));
5280      // Always provide some coverage mapping
5281      // even for the functions that aren't emitted.
5282      AddDeferredUnusedCoverageMapping(D);
5283      break;
5284  
5285    case Decl::CXXDeductionGuide:
5286      // Function-like, but does not result in code emission.
5287      break;
5288  
5289    case Decl::Var:
5290    case Decl::Decomposition:
5291    case Decl::VarTemplateSpecialization:
5292      EmitGlobal(cast<VarDecl>(D));
5293      if (auto *DD = dyn_cast<DecompositionDecl>(D))
5294        for (auto *B : DD->bindings())
5295          if (auto *HD = B->getHoldingVar())
5296            EmitGlobal(HD);
5297      break;
5298  
5299    // Indirect fields from global anonymous structs and unions can be
5300    // ignored; only the actual variable requires IR gen support.
5301    case Decl::IndirectField:
5302      break;
5303  
5304    // C++ Decls
5305    case Decl::Namespace:
5306      EmitDeclContext(cast<NamespaceDecl>(D));
5307      break;
5308    case Decl::ClassTemplateSpecialization: {
5309      const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5310      if (DebugInfo &&
5311          Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5312          Spec->hasDefinition())
5313        DebugInfo->completeTemplateDefinition(*Spec);
5314    } LLVM_FALLTHROUGH;
5315    case Decl::CXXRecord:
5316      if (DebugInfo) {
5317        if (auto *ES = D->getASTContext().getExternalSource())
5318          if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5319            DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5320      }
5321      // Emit any static data members, they may be definitions.
5322      for (auto *I : cast<CXXRecordDecl>(D)->decls())
5323        if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5324          EmitTopLevelDecl(I);
5325      break;
5326      // No code generation needed.
5327    case Decl::UsingShadow:
5328    case Decl::ClassTemplate:
5329    case Decl::VarTemplate:
5330    case Decl::Concept:
5331    case Decl::VarTemplatePartialSpecialization:
5332    case Decl::FunctionTemplate:
5333    case Decl::TypeAliasTemplate:
5334    case Decl::Block:
5335    case Decl::Empty:
5336    case Decl::Binding:
5337      break;
5338    case Decl::Using:          // using X; [C++]
5339      if (CGDebugInfo *DI = getModuleDebugInfo())
5340          DI->EmitUsingDecl(cast<UsingDecl>(*D));
5341      return;
5342    case Decl::NamespaceAlias:
5343      if (CGDebugInfo *DI = getModuleDebugInfo())
5344          DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5345      return;
5346    case Decl::UsingDirective: // using namespace X; [C++]
5347      if (CGDebugInfo *DI = getModuleDebugInfo())
5348        DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5349      return;
5350    case Decl::CXXConstructor:
5351      getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5352      break;
5353    case Decl::CXXDestructor:
5354      getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5355      break;
5356  
5357    case Decl::StaticAssert:
5358      // Nothing to do.
5359      break;
5360  
5361    // Objective-C Decls
5362  
5363    // Forward declarations, no (immediate) code generation.
5364    case Decl::ObjCInterface:
5365    case Decl::ObjCCategory:
5366      break;
5367  
5368    case Decl::ObjCProtocol: {
5369      auto *Proto = cast<ObjCProtocolDecl>(D);
5370      if (Proto->isThisDeclarationADefinition())
5371        ObjCRuntime->GenerateProtocol(Proto);
5372      break;
5373    }
5374  
5375    case Decl::ObjCCategoryImpl:
5376      // Categories have properties but don't support synthesize so we
5377      // can ignore them here.
5378      ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5379      break;
5380  
5381    case Decl::ObjCImplementation: {
5382      auto *OMD = cast<ObjCImplementationDecl>(D);
5383      EmitObjCPropertyImplementations(OMD);
5384      EmitObjCIvarInitializations(OMD);
5385      ObjCRuntime->GenerateClass(OMD);
5386      // Emit global variable debug information.
5387      if (CGDebugInfo *DI = getModuleDebugInfo())
5388        if (getCodeGenOpts().hasReducedDebugInfo())
5389          DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5390              OMD->getClassInterface()), OMD->getLocation());
5391      break;
5392    }
5393    case Decl::ObjCMethod: {
5394      auto *OMD = cast<ObjCMethodDecl>(D);
5395      // If this is not a prototype, emit the body.
5396      if (OMD->getBody())
5397        CodeGenFunction(*this).GenerateObjCMethod(OMD);
5398      break;
5399    }
5400    case Decl::ObjCCompatibleAlias:
5401      ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5402      break;
5403  
5404    case Decl::PragmaComment: {
5405      const auto *PCD = cast<PragmaCommentDecl>(D);
5406      switch (PCD->getCommentKind()) {
5407      case PCK_Unknown:
5408        llvm_unreachable("unexpected pragma comment kind");
5409      case PCK_Linker:
5410        AppendLinkerOptions(PCD->getArg());
5411        break;
5412      case PCK_Lib:
5413          AddDependentLib(PCD->getArg());
5414        break;
5415      case PCK_Compiler:
5416      case PCK_ExeStr:
5417      case PCK_User:
5418        break; // We ignore all of these.
5419      }
5420      break;
5421    }
5422  
5423    case Decl::PragmaDetectMismatch: {
5424      const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5425      AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5426      break;
5427    }
5428  
5429    case Decl::LinkageSpec:
5430      EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5431      break;
5432  
5433    case Decl::FileScopeAsm: {
5434      // File-scope asm is ignored during device-side CUDA compilation.
5435      if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5436        break;
5437      // File-scope asm is ignored during device-side OpenMP compilation.
5438      if (LangOpts.OpenMPIsDevice)
5439        break;
5440      auto *AD = cast<FileScopeAsmDecl>(D);
5441      getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5442      break;
5443    }
5444  
5445    case Decl::Import: {
5446      auto *Import = cast<ImportDecl>(D);
5447  
5448      // If we've already imported this module, we're done.
5449      if (!ImportedModules.insert(Import->getImportedModule()))
5450        break;
5451  
5452      // Emit debug information for direct imports.
5453      if (!Import->getImportedOwningModule()) {
5454        if (CGDebugInfo *DI = getModuleDebugInfo())
5455          DI->EmitImportDecl(*Import);
5456      }
5457  
5458      // Find all of the submodules and emit the module initializers.
5459      llvm::SmallPtrSet<clang::Module *, 16> Visited;
5460      SmallVector<clang::Module *, 16> Stack;
5461      Visited.insert(Import->getImportedModule());
5462      Stack.push_back(Import->getImportedModule());
5463  
5464      while (!Stack.empty()) {
5465        clang::Module *Mod = Stack.pop_back_val();
5466        if (!EmittedModuleInitializers.insert(Mod).second)
5467          continue;
5468  
5469        for (auto *D : Context.getModuleInitializers(Mod))
5470          EmitTopLevelDecl(D);
5471  
5472        // Visit the submodules of this module.
5473        for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5474                                               SubEnd = Mod->submodule_end();
5475             Sub != SubEnd; ++Sub) {
5476          // Skip explicit children; they need to be explicitly imported to emit
5477          // the initializers.
5478          if ((*Sub)->IsExplicit)
5479            continue;
5480  
5481          if (Visited.insert(*Sub).second)
5482            Stack.push_back(*Sub);
5483        }
5484      }
5485      break;
5486    }
5487  
5488    case Decl::Export:
5489      EmitDeclContext(cast<ExportDecl>(D));
5490      break;
5491  
5492    case Decl::OMPThreadPrivate:
5493      EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5494      break;
5495  
5496    case Decl::OMPAllocate:
5497      break;
5498  
5499    case Decl::OMPDeclareReduction:
5500      EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5501      break;
5502  
5503    case Decl::OMPDeclareMapper:
5504      EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5505      break;
5506  
5507    case Decl::OMPRequires:
5508      EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5509      break;
5510  
5511    default:
5512      // Make sure we handled everything we should, every other kind is a
5513      // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5514      // function. Need to recode Decl::Kind to do that easily.
5515      assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5516      break;
5517    }
5518  }
5519  
5520  void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5521    // Do we need to generate coverage mapping?
5522    if (!CodeGenOpts.CoverageMapping)
5523      return;
5524    switch (D->getKind()) {
5525    case Decl::CXXConversion:
5526    case Decl::CXXMethod:
5527    case Decl::Function:
5528    case Decl::ObjCMethod:
5529    case Decl::CXXConstructor:
5530    case Decl::CXXDestructor: {
5531      if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5532        return;
5533      SourceManager &SM = getContext().getSourceManager();
5534      if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5535        return;
5536      auto I = DeferredEmptyCoverageMappingDecls.find(D);
5537      if (I == DeferredEmptyCoverageMappingDecls.end())
5538        DeferredEmptyCoverageMappingDecls[D] = true;
5539      break;
5540    }
5541    default:
5542      break;
5543    };
5544  }
5545  
5546  void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5547    // Do we need to generate coverage mapping?
5548    if (!CodeGenOpts.CoverageMapping)
5549      return;
5550    if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5551      if (Fn->isTemplateInstantiation())
5552        ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5553    }
5554    auto I = DeferredEmptyCoverageMappingDecls.find(D);
5555    if (I == DeferredEmptyCoverageMappingDecls.end())
5556      DeferredEmptyCoverageMappingDecls[D] = false;
5557    else
5558      I->second = false;
5559  }
5560  
5561  void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5562    // We call takeVector() here to avoid use-after-free.
5563    // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5564    // we deserialize function bodies to emit coverage info for them, and that
5565    // deserializes more declarations. How should we handle that case?
5566    for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5567      if (!Entry.second)
5568        continue;
5569      const Decl *D = Entry.first;
5570      switch (D->getKind()) {
5571      case Decl::CXXConversion:
5572      case Decl::CXXMethod:
5573      case Decl::Function:
5574      case Decl::ObjCMethod: {
5575        CodeGenPGO PGO(*this);
5576        GlobalDecl GD(cast<FunctionDecl>(D));
5577        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5578                                    getFunctionLinkage(GD));
5579        break;
5580      }
5581      case Decl::CXXConstructor: {
5582        CodeGenPGO PGO(*this);
5583        GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5584        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5585                                    getFunctionLinkage(GD));
5586        break;
5587      }
5588      case Decl::CXXDestructor: {
5589        CodeGenPGO PGO(*this);
5590        GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5591        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5592                                    getFunctionLinkage(GD));
5593        break;
5594      }
5595      default:
5596        break;
5597      };
5598    }
5599  }
5600  
5601  /// Turns the given pointer into a constant.
5602  static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5603                                            const void *Ptr) {
5604    uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5605    llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5606    return llvm::ConstantInt::get(i64, PtrInt);
5607  }
5608  
5609  static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5610                                     llvm::NamedMDNode *&GlobalMetadata,
5611                                     GlobalDecl D,
5612                                     llvm::GlobalValue *Addr) {
5613    if (!GlobalMetadata)
5614      GlobalMetadata =
5615        CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5616  
5617    // TODO: should we report variant information for ctors/dtors?
5618    llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5619                             llvm::ConstantAsMetadata::get(GetPointerConstant(
5620                                 CGM.getLLVMContext(), D.getDecl()))};
5621    GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5622  }
5623  
5624  /// For each function which is declared within an extern "C" region and marked
5625  /// as 'used', but has internal linkage, create an alias from the unmangled
5626  /// name to the mangled name if possible. People expect to be able to refer
5627  /// to such functions with an unmangled name from inline assembly within the
5628  /// same translation unit.
5629  void CodeGenModule::EmitStaticExternCAliases() {
5630    if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5631      return;
5632    for (auto &I : StaticExternCValues) {
5633      IdentifierInfo *Name = I.first;
5634      llvm::GlobalValue *Val = I.second;
5635      if (Val && !getModule().getNamedValue(Name->getName()))
5636        addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5637    }
5638  }
5639  
5640  bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5641                                               GlobalDecl &Result) const {
5642    auto Res = Manglings.find(MangledName);
5643    if (Res == Manglings.end())
5644      return false;
5645    Result = Res->getValue();
5646    return true;
5647  }
5648  
5649  /// Emits metadata nodes associating all the global values in the
5650  /// current module with the Decls they came from.  This is useful for
5651  /// projects using IR gen as a subroutine.
5652  ///
5653  /// Since there's currently no way to associate an MDNode directly
5654  /// with an llvm::GlobalValue, we create a global named metadata
5655  /// with the name 'clang.global.decl.ptrs'.
5656  void CodeGenModule::EmitDeclMetadata() {
5657    llvm::NamedMDNode *GlobalMetadata = nullptr;
5658  
5659    for (auto &I : MangledDeclNames) {
5660      llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5661      // Some mangled names don't necessarily have an associated GlobalValue
5662      // in this module, e.g. if we mangled it for DebugInfo.
5663      if (Addr)
5664        EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5665    }
5666  }
5667  
5668  /// Emits metadata nodes for all the local variables in the current
5669  /// function.
5670  void CodeGenFunction::EmitDeclMetadata() {
5671    if (LocalDeclMap.empty()) return;
5672  
5673    llvm::LLVMContext &Context = getLLVMContext();
5674  
5675    // Find the unique metadata ID for this name.
5676    unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5677  
5678    llvm::NamedMDNode *GlobalMetadata = nullptr;
5679  
5680    for (auto &I : LocalDeclMap) {
5681      const Decl *D = I.first;
5682      llvm::Value *Addr = I.second.getPointer();
5683      if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5684        llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5685        Alloca->setMetadata(
5686            DeclPtrKind, llvm::MDNode::get(
5687                             Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5688      } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5689        GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5690        EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5691      }
5692    }
5693  }
5694  
5695  void CodeGenModule::EmitVersionIdentMetadata() {
5696    llvm::NamedMDNode *IdentMetadata =
5697      TheModule.getOrInsertNamedMetadata("llvm.ident");
5698    std::string Version = getClangFullVersion();
5699    llvm::LLVMContext &Ctx = TheModule.getContext();
5700  
5701    llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5702    IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5703  }
5704  
5705  void CodeGenModule::EmitCommandLineMetadata() {
5706    llvm::NamedMDNode *CommandLineMetadata =
5707      TheModule.getOrInsertNamedMetadata("llvm.commandline");
5708    std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5709    llvm::LLVMContext &Ctx = TheModule.getContext();
5710  
5711    llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5712    CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5713  }
5714  
5715  void CodeGenModule::EmitTargetMetadata() {
5716    // Warning, new MangledDeclNames may be appended within this loop.
5717    // We rely on MapVector insertions adding new elements to the end
5718    // of the container.
5719    // FIXME: Move this loop into the one target that needs it, and only
5720    // loop over those declarations for which we couldn't emit the target
5721    // metadata when we emitted the declaration.
5722    for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5723      auto Val = *(MangledDeclNames.begin() + I);
5724      const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5725      llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5726      getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5727    }
5728  }
5729  
5730  void CodeGenModule::EmitCoverageFile() {
5731    if (getCodeGenOpts().CoverageDataFile.empty() &&
5732        getCodeGenOpts().CoverageNotesFile.empty())
5733      return;
5734  
5735    llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5736    if (!CUNode)
5737      return;
5738  
5739    llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5740    llvm::LLVMContext &Ctx = TheModule.getContext();
5741    auto *CoverageDataFile =
5742        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5743    auto *CoverageNotesFile =
5744        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5745    for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5746      llvm::MDNode *CU = CUNode->getOperand(i);
5747      llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5748      GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5749    }
5750  }
5751  
5752  llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5753    // Sema has checked that all uuid strings are of the form
5754    // "12345678-1234-1234-1234-1234567890ab".
5755    assert(Uuid.size() == 36);
5756    for (unsigned i = 0; i < 36; ++i) {
5757      if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5758      else                                         assert(isHexDigit(Uuid[i]));
5759    }
5760  
5761    // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5762    const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5763  
5764    llvm::Constant *Field3[8];
5765    for (unsigned Idx = 0; Idx < 8; ++Idx)
5766      Field3[Idx] = llvm::ConstantInt::get(
5767          Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5768  
5769    llvm::Constant *Fields[4] = {
5770      llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5771      llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5772      llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5773      llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5774    };
5775  
5776    return llvm::ConstantStruct::getAnon(Fields);
5777  }
5778  
5779  llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5780                                                         bool ForEH) {
5781    // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5782    // FIXME: should we even be calling this method if RTTI is disabled
5783    // and it's not for EH?
5784    if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5785      return llvm::Constant::getNullValue(Int8PtrTy);
5786  
5787    if (ForEH && Ty->isObjCObjectPointerType() &&
5788        LangOpts.ObjCRuntime.isGNUFamily())
5789      return ObjCRuntime->GetEHType(Ty);
5790  
5791    return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5792  }
5793  
5794  void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5795    // Do not emit threadprivates in simd-only mode.
5796    if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5797      return;
5798    for (auto RefExpr : D->varlists()) {
5799      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5800      bool PerformInit =
5801          VD->getAnyInitializer() &&
5802          !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5803                                                          /*ForRef=*/false);
5804  
5805      Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5806      if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5807              VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5808        CXXGlobalInits.push_back(InitFunction);
5809    }
5810  }
5811  
5812  llvm::Metadata *
5813  CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5814                                              StringRef Suffix) {
5815    llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5816    if (InternalId)
5817      return InternalId;
5818  
5819    if (isExternallyVisible(T->getLinkage())) {
5820      std::string OutName;
5821      llvm::raw_string_ostream Out(OutName);
5822      getCXXABI().getMangleContext().mangleTypeName(T, Out);
5823      Out << Suffix;
5824  
5825      InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5826    } else {
5827      InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5828                                             llvm::ArrayRef<llvm::Metadata *>());
5829    }
5830  
5831    return InternalId;
5832  }
5833  
5834  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5835    return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5836  }
5837  
5838  llvm::Metadata *
5839  CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5840    return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5841  }
5842  
5843  // Generalize pointer types to a void pointer with the qualifiers of the
5844  // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5845  // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5846  // 'void *'.
5847  static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5848    if (!Ty->isPointerType())
5849      return Ty;
5850  
5851    return Ctx.getPointerType(
5852        QualType(Ctx.VoidTy).withCVRQualifiers(
5853            Ty->getPointeeType().getCVRQualifiers()));
5854  }
5855  
5856  // Apply type generalization to a FunctionType's return and argument types
5857  static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5858    if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5859      SmallVector<QualType, 8> GeneralizedParams;
5860      for (auto &Param : FnType->param_types())
5861        GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5862  
5863      return Ctx.getFunctionType(
5864          GeneralizeType(Ctx, FnType->getReturnType()),
5865          GeneralizedParams, FnType->getExtProtoInfo());
5866    }
5867  
5868    if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5869      return Ctx.getFunctionNoProtoType(
5870          GeneralizeType(Ctx, FnType->getReturnType()));
5871  
5872    llvm_unreachable("Encountered unknown FunctionType");
5873  }
5874  
5875  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5876    return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5877                                        GeneralizedMetadataIdMap, ".generalized");
5878  }
5879  
5880  /// Returns whether this module needs the "all-vtables" type identifier.
5881  bool CodeGenModule::NeedAllVtablesTypeId() const {
5882    // Returns true if at least one of vtable-based CFI checkers is enabled and
5883    // is not in the trapping mode.
5884    return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5885             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5886            (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5887             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5888            (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5889             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5890            (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5891             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5892  }
5893  
5894  void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5895                                            CharUnits Offset,
5896                                            const CXXRecordDecl *RD) {
5897    llvm::Metadata *MD =
5898        CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5899    VTable->addTypeMetadata(Offset.getQuantity(), MD);
5900  
5901    if (CodeGenOpts.SanitizeCfiCrossDso)
5902      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5903        VTable->addTypeMetadata(Offset.getQuantity(),
5904                                llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5905  
5906    if (NeedAllVtablesTypeId()) {
5907      llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5908      VTable->addTypeMetadata(Offset.getQuantity(), MD);
5909    }
5910  }
5911  
5912  llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5913    if (!SanStats)
5914      SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5915  
5916    return *SanStats;
5917  }
5918  llvm::Value *
5919  CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5920                                                    CodeGenFunction &CGF) {
5921    llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5922    auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5923    auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5924    return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5925                                  "__translate_sampler_initializer"),
5926                                  {C});
5927  }
5928