xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 881ec81372e0748f2869fe6c18e909afa8304e7a)
1  //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-module state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenModule.h"
14  #include "ABIInfo.h"
15  #include "CGBlocks.h"
16  #include "CGCUDARuntime.h"
17  #include "CGCXXABI.h"
18  #include "CGCall.h"
19  #include "CGDebugInfo.h"
20  #include "CGHLSLRuntime.h"
21  #include "CGObjCRuntime.h"
22  #include "CGOpenCLRuntime.h"
23  #include "CGOpenMPRuntime.h"
24  #include "CGOpenMPRuntimeGPU.h"
25  #include "CodeGenFunction.h"
26  #include "CodeGenPGO.h"
27  #include "ConstantEmitter.h"
28  #include "CoverageMappingGen.h"
29  #include "TargetInfo.h"
30  #include "clang/AST/ASTContext.h"
31  #include "clang/AST/CharUnits.h"
32  #include "clang/AST/DeclCXX.h"
33  #include "clang/AST/DeclObjC.h"
34  #include "clang/AST/DeclTemplate.h"
35  #include "clang/AST/Mangle.h"
36  #include "clang/AST/RecursiveASTVisitor.h"
37  #include "clang/AST/StmtVisitor.h"
38  #include "clang/Basic/Builtins.h"
39  #include "clang/Basic/CharInfo.h"
40  #include "clang/Basic/CodeGenOptions.h"
41  #include "clang/Basic/Diagnostic.h"
42  #include "clang/Basic/FileManager.h"
43  #include "clang/Basic/Module.h"
44  #include "clang/Basic/SourceManager.h"
45  #include "clang/Basic/TargetInfo.h"
46  #include "clang/Basic/Version.h"
47  #include "clang/CodeGen/BackendUtil.h"
48  #include "clang/CodeGen/ConstantInitBuilder.h"
49  #include "clang/Frontend/FrontendDiagnostic.h"
50  #include "llvm/ADT/STLExtras.h"
51  #include "llvm/ADT/StringExtras.h"
52  #include "llvm/ADT/StringSwitch.h"
53  #include "llvm/Analysis/TargetLibraryInfo.h"
54  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55  #include "llvm/IR/AttributeMask.h"
56  #include "llvm/IR/CallingConv.h"
57  #include "llvm/IR/DataLayout.h"
58  #include "llvm/IR/Intrinsics.h"
59  #include "llvm/IR/LLVMContext.h"
60  #include "llvm/IR/Module.h"
61  #include "llvm/IR/ProfileSummary.h"
62  #include "llvm/ProfileData/InstrProfReader.h"
63  #include "llvm/ProfileData/SampleProf.h"
64  #include "llvm/Support/CRC.h"
65  #include "llvm/Support/CodeGen.h"
66  #include "llvm/Support/CommandLine.h"
67  #include "llvm/Support/ConvertUTF.h"
68  #include "llvm/Support/ErrorHandling.h"
69  #include "llvm/Support/TimeProfiler.h"
70  #include "llvm/Support/xxhash.h"
71  #include "llvm/TargetParser/Triple.h"
72  #include "llvm/TargetParser/X86TargetParser.h"
73  #include <optional>
74  
75  using namespace clang;
76  using namespace CodeGen;
77  
78  static llvm::cl::opt<bool> LimitedCoverage(
79      "limited-coverage-experimental", llvm::cl::Hidden,
80      llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81  
82  static const char AnnotationSection[] = "llvm.metadata";
83  
84  static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85    switch (CGM.getContext().getCXXABIKind()) {
86    case TargetCXXABI::AppleARM64:
87    case TargetCXXABI::Fuchsia:
88    case TargetCXXABI::GenericAArch64:
89    case TargetCXXABI::GenericARM:
90    case TargetCXXABI::iOS:
91    case TargetCXXABI::WatchOS:
92    case TargetCXXABI::GenericMIPS:
93    case TargetCXXABI::GenericItanium:
94    case TargetCXXABI::WebAssembly:
95    case TargetCXXABI::XL:
96      return CreateItaniumCXXABI(CGM);
97    case TargetCXXABI::Microsoft:
98      return CreateMicrosoftCXXABI(CGM);
99    }
100  
101    llvm_unreachable("invalid C++ ABI kind");
102  }
103  
104  static std::unique_ptr<TargetCodeGenInfo>
105  createTargetCodeGenInfo(CodeGenModule &CGM) {
106    const TargetInfo &Target = CGM.getTarget();
107    const llvm::Triple &Triple = Target.getTriple();
108    const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109  
110    switch (Triple.getArch()) {
111    default:
112      return createDefaultTargetCodeGenInfo(CGM);
113  
114    case llvm::Triple::le32:
115      return createPNaClTargetCodeGenInfo(CGM);
116    case llvm::Triple::m68k:
117      return createM68kTargetCodeGenInfo(CGM);
118    case llvm::Triple::mips:
119    case llvm::Triple::mipsel:
120      if (Triple.getOS() == llvm::Triple::NaCl)
121        return createPNaClTargetCodeGenInfo(CGM);
122      return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123  
124    case llvm::Triple::mips64:
125    case llvm::Triple::mips64el:
126      return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127  
128    case llvm::Triple::avr: {
129      // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130      // on avrtiny. For passing return value, R18~R25 are used on avr, and
131      // R22~R25 are used on avrtiny.
132      unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133      unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134      return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135    }
136  
137    case llvm::Triple::aarch64:
138    case llvm::Triple::aarch64_32:
139    case llvm::Triple::aarch64_be: {
140      AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141      if (Target.getABI() == "darwinpcs")
142        Kind = AArch64ABIKind::DarwinPCS;
143      else if (Triple.isOSWindows())
144        return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145  
146      return createAArch64TargetCodeGenInfo(CGM, Kind);
147    }
148  
149    case llvm::Triple::wasm32:
150    case llvm::Triple::wasm64: {
151      WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152      if (Target.getABI() == "experimental-mv")
153        Kind = WebAssemblyABIKind::ExperimentalMV;
154      return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155    }
156  
157    case llvm::Triple::arm:
158    case llvm::Triple::armeb:
159    case llvm::Triple::thumb:
160    case llvm::Triple::thumbeb: {
161      if (Triple.getOS() == llvm::Triple::Win32)
162        return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163  
164      ARMABIKind Kind = ARMABIKind::AAPCS;
165      StringRef ABIStr = Target.getABI();
166      if (ABIStr == "apcs-gnu")
167        Kind = ARMABIKind::APCS;
168      else if (ABIStr == "aapcs16")
169        Kind = ARMABIKind::AAPCS16_VFP;
170      else if (CodeGenOpts.FloatABI == "hard" ||
171               (CodeGenOpts.FloatABI != "soft" &&
172                (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                 Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                 Triple.getEnvironment() == llvm::Triple::EABIHF)))
175        Kind = ARMABIKind::AAPCS_VFP;
176  
177      return createARMTargetCodeGenInfo(CGM, Kind);
178    }
179  
180    case llvm::Triple::ppc: {
181      if (Triple.isOSAIX())
182        return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183  
184      bool IsSoftFloat =
185          CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186      return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187    }
188    case llvm::Triple::ppcle: {
189      bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190      return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191    }
192    case llvm::Triple::ppc64:
193      if (Triple.isOSAIX())
194        return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195  
196      if (Triple.isOSBinFormatELF()) {
197        PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198        if (Target.getABI() == "elfv2")
199          Kind = PPC64_SVR4_ABIKind::ELFv2;
200        bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201  
202        return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203      }
204      return createPPC64TargetCodeGenInfo(CGM);
205    case llvm::Triple::ppc64le: {
206      assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207      PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208      if (Target.getABI() == "elfv1")
209        Kind = PPC64_SVR4_ABIKind::ELFv1;
210      bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211  
212      return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213    }
214  
215    case llvm::Triple::nvptx:
216    case llvm::Triple::nvptx64:
217      return createNVPTXTargetCodeGenInfo(CGM);
218  
219    case llvm::Triple::msp430:
220      return createMSP430TargetCodeGenInfo(CGM);
221  
222    case llvm::Triple::riscv32:
223    case llvm::Triple::riscv64: {
224      StringRef ABIStr = Target.getABI();
225      unsigned XLen = Target.getPointerWidth(LangAS::Default);
226      unsigned ABIFLen = 0;
227      if (ABIStr.endswith("f"))
228        ABIFLen = 32;
229      else if (ABIStr.endswith("d"))
230        ABIFLen = 64;
231      return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232    }
233  
234    case llvm::Triple::systemz: {
235      bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236      bool HasVector = !SoftFloat && Target.getABI() == "vector";
237      return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238    }
239  
240    case llvm::Triple::tce:
241    case llvm::Triple::tcele:
242      return createTCETargetCodeGenInfo(CGM);
243  
244    case llvm::Triple::x86: {
245      bool IsDarwinVectorABI = Triple.isOSDarwin();
246      bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247  
248      if (Triple.getOS() == llvm::Triple::Win32) {
249        return createWinX86_32TargetCodeGenInfo(
250            CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251            CodeGenOpts.NumRegisterParameters);
252      }
253      return createX86_32TargetCodeGenInfo(
254          CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255          CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256    }
257  
258    case llvm::Triple::x86_64: {
259      StringRef ABI = Target.getABI();
260      X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                 : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                 : X86AVXABILevel::None);
263  
264      switch (Triple.getOS()) {
265      case llvm::Triple::Win32:
266        return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267      default:
268        return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269      }
270    }
271    case llvm::Triple::hexagon:
272      return createHexagonTargetCodeGenInfo(CGM);
273    case llvm::Triple::lanai:
274      return createLanaiTargetCodeGenInfo(CGM);
275    case llvm::Triple::r600:
276      return createAMDGPUTargetCodeGenInfo(CGM);
277    case llvm::Triple::amdgcn:
278      return createAMDGPUTargetCodeGenInfo(CGM);
279    case llvm::Triple::sparc:
280      return createSparcV8TargetCodeGenInfo(CGM);
281    case llvm::Triple::sparcv9:
282      return createSparcV9TargetCodeGenInfo(CGM);
283    case llvm::Triple::xcore:
284      return createXCoreTargetCodeGenInfo(CGM);
285    case llvm::Triple::arc:
286      return createARCTargetCodeGenInfo(CGM);
287    case llvm::Triple::spir:
288    case llvm::Triple::spir64:
289      return createCommonSPIRTargetCodeGenInfo(CGM);
290    case llvm::Triple::spirv32:
291    case llvm::Triple::spirv64:
292      return createSPIRVTargetCodeGenInfo(CGM);
293    case llvm::Triple::ve:
294      return createVETargetCodeGenInfo(CGM);
295    case llvm::Triple::csky: {
296      bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297      bool hasFP64 =
298          Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299      return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                              : hasFP64   ? 64
301                                                          : 32);
302    }
303    case llvm::Triple::bpfeb:
304    case llvm::Triple::bpfel:
305      return createBPFTargetCodeGenInfo(CGM);
306    case llvm::Triple::loongarch32:
307    case llvm::Triple::loongarch64: {
308      StringRef ABIStr = Target.getABI();
309      unsigned ABIFRLen = 0;
310      if (ABIStr.endswith("f"))
311        ABIFRLen = 32;
312      else if (ABIStr.endswith("d"))
313        ABIFRLen = 64;
314      return createLoongArchTargetCodeGenInfo(
315          CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316    }
317    }
318  }
319  
320  const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321    if (!TheTargetCodeGenInfo)
322      TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323    return *TheTargetCodeGenInfo;
324  }
325  
326  CodeGenModule::CodeGenModule(ASTContext &C,
327                               IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                               const HeaderSearchOptions &HSO,
329                               const PreprocessorOptions &PPO,
330                               const CodeGenOptions &CGO, llvm::Module &M,
331                               DiagnosticsEngine &diags,
332                               CoverageSourceInfo *CoverageInfo)
333      : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334        PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335        Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336        VMContext(M.getContext()), Types(*this), VTables(*this),
337        SanitizerMD(new SanitizerMetadata(*this)) {
338  
339    // Initialize the type cache.
340    llvm::LLVMContext &LLVMContext = M.getContext();
341    VoidTy = llvm::Type::getVoidTy(LLVMContext);
342    Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343    Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344    Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345    Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346    HalfTy = llvm::Type::getHalfTy(LLVMContext);
347    BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348    FloatTy = llvm::Type::getFloatTy(LLVMContext);
349    DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350    PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351    PointerAlignInBytes =
352        C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353            .getQuantity();
354    SizeSizeInBytes =
355      C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356    IntAlignInBytes =
357      C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358    CharTy =
359      llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360    IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361    IntPtrTy = llvm::IntegerType::get(LLVMContext,
362      C.getTargetInfo().getMaxPointerWidth());
363    Int8PtrTy = Int8Ty->getPointerTo(0);
364    Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
365    const llvm::DataLayout &DL = M.getDataLayout();
366    AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
367    GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
368    ConstGlobalsPtrTy = Int8Ty->getPointerTo(
369        C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370    ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
371  
372    // Build C++20 Module initializers.
373    // TODO: Add Microsoft here once we know the mangling required for the
374    // initializers.
375    CXX20ModuleInits =
376        LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
377                                         ItaniumMangleContext::MK_Itanium;
378  
379    RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
380  
381    if (LangOpts.ObjC)
382      createObjCRuntime();
383    if (LangOpts.OpenCL)
384      createOpenCLRuntime();
385    if (LangOpts.OpenMP)
386      createOpenMPRuntime();
387    if (LangOpts.CUDA)
388      createCUDARuntime();
389    if (LangOpts.HLSL)
390      createHLSLRuntime();
391  
392    // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393    if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
394        (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
395      TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
396                                 getCXXABI().getMangleContext()));
397  
398    // If debug info or coverage generation is enabled, create the CGDebugInfo
399    // object.
400    if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
401        CodeGenOpts.CoverageNotesFile.size() ||
402        CodeGenOpts.CoverageDataFile.size())
403      DebugInfo.reset(new CGDebugInfo(*this));
404  
405    Block.GlobalUniqueCount = 0;
406  
407    if (C.getLangOpts().ObjC)
408      ObjCData.reset(new ObjCEntrypoints());
409  
410    if (CodeGenOpts.hasProfileClangUse()) {
411      auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
412          CodeGenOpts.ProfileInstrumentUsePath, *FS,
413          CodeGenOpts.ProfileRemappingFile);
414      // We're checking for profile read errors in CompilerInvocation, so if
415      // there was an error it should've already been caught. If it hasn't been
416      // somehow, trip an assertion.
417      assert(ReaderOrErr);
418      PGOReader = std::move(ReaderOrErr.get());
419    }
420  
421    // If coverage mapping generation is enabled, create the
422    // CoverageMappingModuleGen object.
423    if (CodeGenOpts.CoverageMapping)
424      CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
425  
426    // Generate the module name hash here if needed.
427    if (CodeGenOpts.UniqueInternalLinkageNames &&
428        !getModule().getSourceFileName().empty()) {
429      std::string Path = getModule().getSourceFileName();
430      // Check if a path substitution is needed from the MacroPrefixMap.
431      for (const auto &Entry : LangOpts.MacroPrefixMap)
432        if (Path.rfind(Entry.first, 0) != std::string::npos) {
433          Path = Entry.second + Path.substr(Entry.first.size());
434          break;
435        }
436      ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
437    }
438  }
439  
440  CodeGenModule::~CodeGenModule() {}
441  
442  void CodeGenModule::createObjCRuntime() {
443    // This is just isGNUFamily(), but we want to force implementors of
444    // new ABIs to decide how best to do this.
445    switch (LangOpts.ObjCRuntime.getKind()) {
446    case ObjCRuntime::GNUstep:
447    case ObjCRuntime::GCC:
448    case ObjCRuntime::ObjFW:
449      ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
450      return;
451  
452    case ObjCRuntime::FragileMacOSX:
453    case ObjCRuntime::MacOSX:
454    case ObjCRuntime::iOS:
455    case ObjCRuntime::WatchOS:
456      ObjCRuntime.reset(CreateMacObjCRuntime(*this));
457      return;
458    }
459    llvm_unreachable("bad runtime kind");
460  }
461  
462  void CodeGenModule::createOpenCLRuntime() {
463    OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
464  }
465  
466  void CodeGenModule::createOpenMPRuntime() {
467    // Select a specialized code generation class based on the target, if any.
468    // If it does not exist use the default implementation.
469    switch (getTriple().getArch()) {
470    case llvm::Triple::nvptx:
471    case llvm::Triple::nvptx64:
472    case llvm::Triple::amdgcn:
473      assert(getLangOpts().OpenMPIsTargetDevice &&
474             "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475      OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
476      break;
477    default:
478      if (LangOpts.OpenMPSimd)
479        OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
480      else
481        OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
482      break;
483    }
484  }
485  
486  void CodeGenModule::createCUDARuntime() {
487    CUDARuntime.reset(CreateNVCUDARuntime(*this));
488  }
489  
490  void CodeGenModule::createHLSLRuntime() {
491    HLSLRuntime.reset(new CGHLSLRuntime(*this));
492  }
493  
494  void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
495    Replacements[Name] = C;
496  }
497  
498  void CodeGenModule::applyReplacements() {
499    for (auto &I : Replacements) {
500      StringRef MangledName = I.first;
501      llvm::Constant *Replacement = I.second;
502      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
503      if (!Entry)
504        continue;
505      auto *OldF = cast<llvm::Function>(Entry);
506      auto *NewF = dyn_cast<llvm::Function>(Replacement);
507      if (!NewF) {
508        if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
509          NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
510        } else {
511          auto *CE = cast<llvm::ConstantExpr>(Replacement);
512          assert(CE->getOpcode() == llvm::Instruction::BitCast ||
513                 CE->getOpcode() == llvm::Instruction::GetElementPtr);
514          NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
515        }
516      }
517  
518      // Replace old with new, but keep the old order.
519      OldF->replaceAllUsesWith(Replacement);
520      if (NewF) {
521        NewF->removeFromParent();
522        OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
523                                                         NewF);
524      }
525      OldF->eraseFromParent();
526    }
527  }
528  
529  void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
530    GlobalValReplacements.push_back(std::make_pair(GV, C));
531  }
532  
533  void CodeGenModule::applyGlobalValReplacements() {
534    for (auto &I : GlobalValReplacements) {
535      llvm::GlobalValue *GV = I.first;
536      llvm::Constant *C = I.second;
537  
538      GV->replaceAllUsesWith(C);
539      GV->eraseFromParent();
540    }
541  }
542  
543  // This is only used in aliases that we created and we know they have a
544  // linear structure.
545  static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
546    const llvm::Constant *C;
547    if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
548      C = GA->getAliasee();
549    else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
550      C = GI->getResolver();
551    else
552      return GV;
553  
554    const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
555    if (!AliaseeGV)
556      return nullptr;
557  
558    const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
559    if (FinalGV == GV)
560      return nullptr;
561  
562    return FinalGV;
563  }
564  
565  static bool checkAliasedGlobal(
566      DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc,
567      const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
568      const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
569      SourceRange AliasRange) {
570    GV = getAliasedGlobal(Alias);
571    if (!GV) {
572      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
573      return false;
574    }
575  
576    if (GV->isDeclaration()) {
577      Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
578      Diags.Report(Location, diag::note_alias_requires_mangled_name)
579          << IsIFunc << IsIFunc;
580      // Provide a note if the given function is not found and exists as a
581      // mangled name.
582      for (const auto &[Decl, Name] : MangledDeclNames) {
583        if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
584          if (ND->getName() == GV->getName()) {
585            Diags.Report(Location, diag::note_alias_mangled_name_alternative)
586                << Name
587                << FixItHint::CreateReplacement(
588                       AliasRange,
589                       (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
590                           .str());
591          }
592        }
593      }
594      return false;
595    }
596  
597    if (IsIFunc) {
598      // Check resolver function type.
599      const auto *F = dyn_cast<llvm::Function>(GV);
600      if (!F) {
601        Diags.Report(Location, diag::err_alias_to_undefined)
602            << IsIFunc << IsIFunc;
603        return false;
604      }
605  
606      llvm::FunctionType *FTy = F->getFunctionType();
607      if (!FTy->getReturnType()->isPointerTy()) {
608        Diags.Report(Location, diag::err_ifunc_resolver_return);
609        return false;
610      }
611    }
612  
613    return true;
614  }
615  
616  void CodeGenModule::checkAliases() {
617    // Check if the constructed aliases are well formed. It is really unfortunate
618    // that we have to do this in CodeGen, but we only construct mangled names
619    // and aliases during codegen.
620    bool Error = false;
621    DiagnosticsEngine &Diags = getDiags();
622    for (const GlobalDecl &GD : Aliases) {
623      const auto *D = cast<ValueDecl>(GD.getDecl());
624      SourceLocation Location;
625      SourceRange Range;
626      bool IsIFunc = D->hasAttr<IFuncAttr>();
627      if (const Attr *A = D->getDefiningAttr()) {
628        Location = A->getLocation();
629        Range = A->getRange();
630      } else
631        llvm_unreachable("Not an alias or ifunc?");
632  
633      StringRef MangledName = getMangledName(GD);
634      llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
635      const llvm::GlobalValue *GV = nullptr;
636      if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV,
637                              MangledDeclNames, Range)) {
638        Error = true;
639        continue;
640      }
641  
642      llvm::Constant *Aliasee =
643          IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
644                  : cast<llvm::GlobalAlias>(Alias)->getAliasee();
645  
646      llvm::GlobalValue *AliaseeGV;
647      if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
648        AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
649      else
650        AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
651  
652      if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
653        StringRef AliasSection = SA->getName();
654        if (AliasSection != AliaseeGV->getSection())
655          Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
656              << AliasSection << IsIFunc << IsIFunc;
657      }
658  
659      // We have to handle alias to weak aliases in here. LLVM itself disallows
660      // this since the object semantics would not match the IL one. For
661      // compatibility with gcc we implement it by just pointing the alias
662      // to its aliasee's aliasee. We also warn, since the user is probably
663      // expecting the link to be weak.
664      if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
665        if (GA->isInterposable()) {
666          Diags.Report(Location, diag::warn_alias_to_weak_alias)
667              << GV->getName() << GA->getName() << IsIFunc;
668          Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
669              GA->getAliasee(), Alias->getType());
670  
671          if (IsIFunc)
672            cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
673          else
674            cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
675        }
676      }
677    }
678    if (!Error)
679      return;
680  
681    for (const GlobalDecl &GD : Aliases) {
682      StringRef MangledName = getMangledName(GD);
683      llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
684      Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
685      Alias->eraseFromParent();
686    }
687  }
688  
689  void CodeGenModule::clear() {
690    DeferredDeclsToEmit.clear();
691    EmittedDeferredDecls.clear();
692    if (OpenMPRuntime)
693      OpenMPRuntime->clear();
694  }
695  
696  void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
697                                         StringRef MainFile) {
698    if (!hasDiagnostics())
699      return;
700    if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
701      if (MainFile.empty())
702        MainFile = "<stdin>";
703      Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
704    } else {
705      if (Mismatched > 0)
706        Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
707  
708      if (Missing > 0)
709        Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
710    }
711  }
712  
713  static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
714                                               llvm::Module &M) {
715    if (!LO.VisibilityFromDLLStorageClass)
716      return;
717  
718    llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
719        CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
720    llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
721        CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
722    llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
723        CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
724    llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
725        CodeGenModule::GetLLVMVisibility(
726            LO.getExternDeclNoDLLStorageClassVisibility());
727  
728    for (llvm::GlobalValue &GV : M.global_values()) {
729      if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
730        continue;
731  
732      // Reset DSO locality before setting the visibility. This removes
733      // any effects that visibility options and annotations may have
734      // had on the DSO locality. Setting the visibility will implicitly set
735      // appropriate globals to DSO Local; however, this will be pessimistic
736      // w.r.t. to the normal compiler IRGen.
737      GV.setDSOLocal(false);
738  
739      if (GV.isDeclarationForLinker()) {
740        GV.setVisibility(GV.getDLLStorageClass() ==
741                                 llvm::GlobalValue::DLLImportStorageClass
742                             ? ExternDeclDLLImportVisibility
743                             : ExternDeclNoDLLStorageClassVisibility);
744      } else {
745        GV.setVisibility(GV.getDLLStorageClass() ==
746                                 llvm::GlobalValue::DLLExportStorageClass
747                             ? DLLExportVisibility
748                             : NoDLLStorageClassVisibility);
749      }
750  
751      GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
752    }
753  }
754  
755  void CodeGenModule::Release() {
756    Module *Primary = getContext().getCurrentNamedModule();
757    if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
758      EmitModuleInitializers(Primary);
759    EmitDeferred();
760    DeferredDecls.insert(EmittedDeferredDecls.begin(),
761                         EmittedDeferredDecls.end());
762    EmittedDeferredDecls.clear();
763    EmitVTablesOpportunistically();
764    applyGlobalValReplacements();
765    applyReplacements();
766    emitMultiVersionFunctions();
767  
768    if (Context.getLangOpts().IncrementalExtensions &&
769        GlobalTopLevelStmtBlockInFlight.first) {
770      const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
771      GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
772      GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
773    }
774  
775    // Module implementations are initialized the same way as a regular TU that
776    // imports one or more modules.
777    if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
778      EmitCXXModuleInitFunc(Primary);
779    else
780      EmitCXXGlobalInitFunc();
781    EmitCXXGlobalCleanUpFunc();
782    registerGlobalDtorsWithAtExit();
783    EmitCXXThreadLocalInitFunc();
784    if (ObjCRuntime)
785      if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
786        AddGlobalCtor(ObjCInitFunction);
787    if (Context.getLangOpts().CUDA && CUDARuntime) {
788      if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
789        AddGlobalCtor(CudaCtorFunction);
790    }
791    if (OpenMPRuntime) {
792      if (llvm::Function *OpenMPRequiresDirectiveRegFun =
793              OpenMPRuntime->emitRequiresDirectiveRegFun()) {
794        AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
795      }
796      OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
797      OpenMPRuntime->clear();
798    }
799    if (PGOReader) {
800      getModule().setProfileSummary(
801          PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
802          llvm::ProfileSummary::PSK_Instr);
803      if (PGOStats.hasDiagnostics())
804        PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
805    }
806    llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
807      return L.LexOrder < R.LexOrder;
808    });
809    EmitCtorList(GlobalCtors, "llvm.global_ctors");
810    EmitCtorList(GlobalDtors, "llvm.global_dtors");
811    EmitGlobalAnnotations();
812    EmitStaticExternCAliases();
813    checkAliases();
814    EmitDeferredUnusedCoverageMappings();
815    CodeGenPGO(*this).setValueProfilingFlag(getModule());
816    if (CoverageMapping)
817      CoverageMapping->emit();
818    if (CodeGenOpts.SanitizeCfiCrossDso) {
819      CodeGenFunction(*this).EmitCfiCheckFail();
820      CodeGenFunction(*this).EmitCfiCheckStub();
821    }
822    if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
823      finalizeKCFITypes();
824    emitAtAvailableLinkGuard();
825    if (Context.getTargetInfo().getTriple().isWasm())
826      EmitMainVoidAlias();
827  
828    if (getTriple().isAMDGPU()) {
829      // Emit amdgpu_code_object_version module flag, which is code object version
830      // times 100.
831      if (getTarget().getTargetOpts().CodeObjectVersion !=
832          TargetOptions::COV_None) {
833        getModule().addModuleFlag(llvm::Module::Error,
834                                  "amdgpu_code_object_version",
835                                  getTarget().getTargetOpts().CodeObjectVersion);
836      }
837  
838      // Currently, "-mprintf-kind" option is only supported for HIP
839      if (LangOpts.HIP) {
840        auto *MDStr = llvm::MDString::get(
841            getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
842                               TargetOptions::AMDGPUPrintfKind::Hostcall)
843                                  ? "hostcall"
844                                  : "buffered");
845        getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
846                                  MDStr);
847      }
848    }
849  
850    // Emit a global array containing all external kernels or device variables
851    // used by host functions and mark it as used for CUDA/HIP. This is necessary
852    // to get kernels or device variables in archives linked in even if these
853    // kernels or device variables are only used in host functions.
854    if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
855      SmallVector<llvm::Constant *, 8> UsedArray;
856      for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
857        GlobalDecl GD;
858        if (auto *FD = dyn_cast<FunctionDecl>(D))
859          GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
860        else
861          GD = GlobalDecl(D);
862        UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
863            GetAddrOfGlobal(GD), Int8PtrTy));
864      }
865  
866      llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
867  
868      auto *GV = new llvm::GlobalVariable(
869          getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
870          llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
871      addCompilerUsedGlobal(GV);
872    }
873  
874    emitLLVMUsed();
875    if (SanStats)
876      SanStats->finish();
877  
878    if (CodeGenOpts.Autolink &&
879        (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
880      EmitModuleLinkOptions();
881    }
882  
883    // On ELF we pass the dependent library specifiers directly to the linker
884    // without manipulating them. This is in contrast to other platforms where
885    // they are mapped to a specific linker option by the compiler. This
886    // difference is a result of the greater variety of ELF linkers and the fact
887    // that ELF linkers tend to handle libraries in a more complicated fashion
888    // than on other platforms. This forces us to defer handling the dependent
889    // libs to the linker.
890    //
891    // CUDA/HIP device and host libraries are different. Currently there is no
892    // way to differentiate dependent libraries for host or device. Existing
893    // usage of #pragma comment(lib, *) is intended for host libraries on
894    // Windows. Therefore emit llvm.dependent-libraries only for host.
895    if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
896      auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
897      for (auto *MD : ELFDependentLibraries)
898        NMD->addOperand(MD);
899    }
900  
901    // Record mregparm value now so it is visible through rest of codegen.
902    if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
903      getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
904                                CodeGenOpts.NumRegisterParameters);
905  
906    if (CodeGenOpts.DwarfVersion) {
907      getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
908                                CodeGenOpts.DwarfVersion);
909    }
910  
911    if (CodeGenOpts.Dwarf64)
912      getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
913  
914    if (Context.getLangOpts().SemanticInterposition)
915      // Require various optimization to respect semantic interposition.
916      getModule().setSemanticInterposition(true);
917  
918    if (CodeGenOpts.EmitCodeView) {
919      // Indicate that we want CodeView in the metadata.
920      getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
921    }
922    if (CodeGenOpts.CodeViewGHash) {
923      getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
924    }
925    if (CodeGenOpts.ControlFlowGuard) {
926      // Function ID tables and checks for Control Flow Guard (cfguard=2).
927      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
928    } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
929      // Function ID tables for Control Flow Guard (cfguard=1).
930      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
931    }
932    if (CodeGenOpts.EHContGuard) {
933      // Function ID tables for EH Continuation Guard.
934      getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
935    }
936    if (Context.getLangOpts().Kernel) {
937      // Note if we are compiling with /kernel.
938      getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
939    }
940    if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
941      // We don't support LTO with 2 with different StrictVTablePointers
942      // FIXME: we could support it by stripping all the information introduced
943      // by StrictVTablePointers.
944  
945      getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
946  
947      llvm::Metadata *Ops[2] = {
948                llvm::MDString::get(VMContext, "StrictVTablePointers"),
949                llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
950                    llvm::Type::getInt32Ty(VMContext), 1))};
951  
952      getModule().addModuleFlag(llvm::Module::Require,
953                                "StrictVTablePointersRequirement",
954                                llvm::MDNode::get(VMContext, Ops));
955    }
956    if (getModuleDebugInfo())
957      // We support a single version in the linked module. The LLVM
958      // parser will drop debug info with a different version number
959      // (and warn about it, too).
960      getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
961                                llvm::DEBUG_METADATA_VERSION);
962  
963    // We need to record the widths of enums and wchar_t, so that we can generate
964    // the correct build attributes in the ARM backend. wchar_size is also used by
965    // TargetLibraryInfo.
966    uint64_t WCharWidth =
967        Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
968    getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
969  
970    llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
971    if (   Arch == llvm::Triple::arm
972        || Arch == llvm::Triple::armeb
973        || Arch == llvm::Triple::thumb
974        || Arch == llvm::Triple::thumbeb) {
975      // The minimum width of an enum in bytes
976      uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
977      getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
978    }
979  
980    if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
981      StringRef ABIStr = Target.getABI();
982      llvm::LLVMContext &Ctx = TheModule.getContext();
983      getModule().addModuleFlag(llvm::Module::Error, "target-abi",
984                                llvm::MDString::get(Ctx, ABIStr));
985    }
986  
987    if (CodeGenOpts.SanitizeCfiCrossDso) {
988      // Indicate that we want cross-DSO control flow integrity checks.
989      getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
990    }
991  
992    if (CodeGenOpts.WholeProgramVTables) {
993      // Indicate whether VFE was enabled for this module, so that the
994      // vcall_visibility metadata added under whole program vtables is handled
995      // appropriately in the optimizer.
996      getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
997                                CodeGenOpts.VirtualFunctionElimination);
998    }
999  
1000    if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1001      getModule().addModuleFlag(llvm::Module::Override,
1002                                "CFI Canonical Jump Tables",
1003                                CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1004    }
1005  
1006    if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1007      getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1008      // KCFI assumes patchable-function-prefix is the same for all indirectly
1009      // called functions. Store the expected offset for code generation.
1010      if (CodeGenOpts.PatchableFunctionEntryOffset)
1011        getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1012                                  CodeGenOpts.PatchableFunctionEntryOffset);
1013    }
1014  
1015    if (CodeGenOpts.CFProtectionReturn &&
1016        Target.checkCFProtectionReturnSupported(getDiags())) {
1017      // Indicate that we want to instrument return control flow protection.
1018      getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1019                                1);
1020    }
1021  
1022    if (CodeGenOpts.CFProtectionBranch &&
1023        Target.checkCFProtectionBranchSupported(getDiags())) {
1024      // Indicate that we want to instrument branch control flow protection.
1025      getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1026                                1);
1027    }
1028  
1029    if (CodeGenOpts.FunctionReturnThunks)
1030      getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1031  
1032    if (CodeGenOpts.IndirectBranchCSPrefix)
1033      getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1034  
1035    // Add module metadata for return address signing (ignoring
1036    // non-leaf/all) and stack tagging. These are actually turned on by function
1037    // attributes, but we use module metadata to emit build attributes. This is
1038    // needed for LTO, where the function attributes are inside bitcode
1039    // serialised into a global variable by the time build attributes are
1040    // emitted, so we can't access them. LTO objects could be compiled with
1041    // different flags therefore module flags are set to "Min" behavior to achieve
1042    // the same end result of the normal build where e.g BTI is off if any object
1043    // doesn't support it.
1044    if (Context.getTargetInfo().hasFeature("ptrauth") &&
1045        LangOpts.getSignReturnAddressScope() !=
1046            LangOptions::SignReturnAddressScopeKind::None)
1047      getModule().addModuleFlag(llvm::Module::Override,
1048                                "sign-return-address-buildattr", 1);
1049    if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1050      getModule().addModuleFlag(llvm::Module::Override,
1051                                "tag-stack-memory-buildattr", 1);
1052  
1053    if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1054        Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1055        Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1056        Arch == llvm::Triple::aarch64_be) {
1057      if (LangOpts.BranchTargetEnforcement)
1058        getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1059                                  1);
1060      if (LangOpts.hasSignReturnAddress())
1061        getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1062      if (LangOpts.isSignReturnAddressScopeAll())
1063        getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1064                                  1);
1065      if (!LangOpts.isSignReturnAddressWithAKey())
1066        getModule().addModuleFlag(llvm::Module::Min,
1067                                  "sign-return-address-with-bkey", 1);
1068    }
1069  
1070    if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1071      llvm::LLVMContext &Ctx = TheModule.getContext();
1072      getModule().addModuleFlag(
1073          llvm::Module::Error, "MemProfProfileFilename",
1074          llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1075    }
1076  
1077    if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1078      // Indicate whether __nvvm_reflect should be configured to flush denormal
1079      // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1080      // property.)
1081      getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1082                                CodeGenOpts.FP32DenormalMode.Output !=
1083                                    llvm::DenormalMode::IEEE);
1084    }
1085  
1086    if (LangOpts.EHAsynch)
1087      getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1088  
1089    // Indicate whether this Module was compiled with -fopenmp
1090    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1091      getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1092    if (getLangOpts().OpenMPIsTargetDevice)
1093      getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1094                                LangOpts.OpenMP);
1095  
1096    // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1097    if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1098      EmitOpenCLMetadata();
1099      // Emit SPIR version.
1100      if (getTriple().isSPIR()) {
1101        // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1102        // opencl.spir.version named metadata.
1103        // C++ for OpenCL has a distinct mapping for version compatibility with
1104        // OpenCL.
1105        auto Version = LangOpts.getOpenCLCompatibleVersion();
1106        llvm::Metadata *SPIRVerElts[] = {
1107            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1108                Int32Ty, Version / 100)),
1109            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1110                Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1111        llvm::NamedMDNode *SPIRVerMD =
1112            TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1113        llvm::LLVMContext &Ctx = TheModule.getContext();
1114        SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1115      }
1116    }
1117  
1118    // HLSL related end of code gen work items.
1119    if (LangOpts.HLSL)
1120      getHLSLRuntime().finishCodeGen();
1121  
1122    if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1123      assert(PLevel < 3 && "Invalid PIC Level");
1124      getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1125      if (Context.getLangOpts().PIE)
1126        getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1127    }
1128  
1129    if (getCodeGenOpts().CodeModel.size() > 0) {
1130      unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1131                    .Case("tiny", llvm::CodeModel::Tiny)
1132                    .Case("small", llvm::CodeModel::Small)
1133                    .Case("kernel", llvm::CodeModel::Kernel)
1134                    .Case("medium", llvm::CodeModel::Medium)
1135                    .Case("large", llvm::CodeModel::Large)
1136                    .Default(~0u);
1137      if (CM != ~0u) {
1138        llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1139        getModule().setCodeModel(codeModel);
1140      }
1141    }
1142  
1143    if (CodeGenOpts.NoPLT)
1144      getModule().setRtLibUseGOT();
1145    if (getTriple().isOSBinFormatELF() &&
1146        CodeGenOpts.DirectAccessExternalData !=
1147            getModule().getDirectAccessExternalData()) {
1148      getModule().setDirectAccessExternalData(
1149          CodeGenOpts.DirectAccessExternalData);
1150    }
1151    if (CodeGenOpts.UnwindTables)
1152      getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1153  
1154    switch (CodeGenOpts.getFramePointer()) {
1155    case CodeGenOptions::FramePointerKind::None:
1156      // 0 ("none") is the default.
1157      break;
1158    case CodeGenOptions::FramePointerKind::NonLeaf:
1159      getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1160      break;
1161    case CodeGenOptions::FramePointerKind::All:
1162      getModule().setFramePointer(llvm::FramePointerKind::All);
1163      break;
1164    }
1165  
1166    SimplifyPersonality();
1167  
1168    if (getCodeGenOpts().EmitDeclMetadata)
1169      EmitDeclMetadata();
1170  
1171    if (getCodeGenOpts().CoverageNotesFile.size() ||
1172        getCodeGenOpts().CoverageDataFile.size())
1173      EmitCoverageFile();
1174  
1175    if (CGDebugInfo *DI = getModuleDebugInfo())
1176      DI->finalize();
1177  
1178    if (getCodeGenOpts().EmitVersionIdentMetadata)
1179      EmitVersionIdentMetadata();
1180  
1181    if (!getCodeGenOpts().RecordCommandLine.empty())
1182      EmitCommandLineMetadata();
1183  
1184    if (!getCodeGenOpts().StackProtectorGuard.empty())
1185      getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1186    if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1187      getModule().setStackProtectorGuardReg(
1188          getCodeGenOpts().StackProtectorGuardReg);
1189    if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1190      getModule().setStackProtectorGuardSymbol(
1191          getCodeGenOpts().StackProtectorGuardSymbol);
1192    if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1193      getModule().setStackProtectorGuardOffset(
1194          getCodeGenOpts().StackProtectorGuardOffset);
1195    if (getCodeGenOpts().StackAlignment)
1196      getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1197    if (getCodeGenOpts().SkipRaxSetup)
1198      getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1199  
1200    if (getContext().getTargetInfo().getMaxTLSAlign())
1201      getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1202                                getContext().getTargetInfo().getMaxTLSAlign());
1203  
1204    getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1205  
1206    EmitBackendOptionsMetadata(getCodeGenOpts());
1207  
1208    // If there is device offloading code embed it in the host now.
1209    EmbedObject(&getModule(), CodeGenOpts, getDiags());
1210  
1211    // Set visibility from DLL storage class
1212    // We do this at the end of LLVM IR generation; after any operation
1213    // that might affect the DLL storage class or the visibility, and
1214    // before anything that might act on these.
1215    setVisibilityFromDLLStorageClass(LangOpts, getModule());
1216  }
1217  
1218  void CodeGenModule::EmitOpenCLMetadata() {
1219    // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1220    // opencl.ocl.version named metadata node.
1221    // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1222    auto Version = LangOpts.getOpenCLCompatibleVersion();
1223    llvm::Metadata *OCLVerElts[] = {
1224        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1225            Int32Ty, Version / 100)),
1226        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1227            Int32Ty, (Version % 100) / 10))};
1228    llvm::NamedMDNode *OCLVerMD =
1229        TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1230    llvm::LLVMContext &Ctx = TheModule.getContext();
1231    OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1232  }
1233  
1234  void CodeGenModule::EmitBackendOptionsMetadata(
1235      const CodeGenOptions &CodeGenOpts) {
1236    if (getTriple().isRISCV()) {
1237      getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1238                                CodeGenOpts.SmallDataLimit);
1239    }
1240  }
1241  
1242  void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1243    // Make sure that this type is translated.
1244    Types.UpdateCompletedType(TD);
1245  }
1246  
1247  void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1248    // Make sure that this type is translated.
1249    Types.RefreshTypeCacheForClass(RD);
1250  }
1251  
1252  llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1253    if (!TBAA)
1254      return nullptr;
1255    return TBAA->getTypeInfo(QTy);
1256  }
1257  
1258  TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1259    if (!TBAA)
1260      return TBAAAccessInfo();
1261    if (getLangOpts().CUDAIsDevice) {
1262      // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1263      // access info.
1264      if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1265        if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1266            nullptr)
1267          return TBAAAccessInfo();
1268      } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1269        if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1270            nullptr)
1271          return TBAAAccessInfo();
1272      }
1273    }
1274    return TBAA->getAccessInfo(AccessType);
1275  }
1276  
1277  TBAAAccessInfo
1278  CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1279    if (!TBAA)
1280      return TBAAAccessInfo();
1281    return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1282  }
1283  
1284  llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1285    if (!TBAA)
1286      return nullptr;
1287    return TBAA->getTBAAStructInfo(QTy);
1288  }
1289  
1290  llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1291    if (!TBAA)
1292      return nullptr;
1293    return TBAA->getBaseTypeInfo(QTy);
1294  }
1295  
1296  llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1297    if (!TBAA)
1298      return nullptr;
1299    return TBAA->getAccessTagInfo(Info);
1300  }
1301  
1302  TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1303                                                     TBAAAccessInfo TargetInfo) {
1304    if (!TBAA)
1305      return TBAAAccessInfo();
1306    return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1307  }
1308  
1309  TBAAAccessInfo
1310  CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1311                                                     TBAAAccessInfo InfoB) {
1312    if (!TBAA)
1313      return TBAAAccessInfo();
1314    return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1315  }
1316  
1317  TBAAAccessInfo
1318  CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1319                                                TBAAAccessInfo SrcInfo) {
1320    if (!TBAA)
1321      return TBAAAccessInfo();
1322    return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1323  }
1324  
1325  void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1326                                                  TBAAAccessInfo TBAAInfo) {
1327    if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1328      Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1329  }
1330  
1331  void CodeGenModule::DecorateInstructionWithInvariantGroup(
1332      llvm::Instruction *I, const CXXRecordDecl *RD) {
1333    I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1334                   llvm::MDNode::get(getLLVMContext(), {}));
1335  }
1336  
1337  void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1338    unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1339    getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1340  }
1341  
1342  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1343  /// specified stmt yet.
1344  void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1345    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1346                                                 "cannot compile this %0 yet");
1347    std::string Msg = Type;
1348    getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1349        << Msg << S->getSourceRange();
1350  }
1351  
1352  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1353  /// specified decl yet.
1354  void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1355    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1356                                                 "cannot compile this %0 yet");
1357    std::string Msg = Type;
1358    getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1359  }
1360  
1361  llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1362    return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1363  }
1364  
1365  void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1366                                          const NamedDecl *D) const {
1367    // Internal definitions always have default visibility.
1368    if (GV->hasLocalLinkage()) {
1369      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1370      return;
1371    }
1372    if (!D)
1373      return;
1374    // Set visibility for definitions, and for declarations if requested globally
1375    // or set explicitly.
1376    LinkageInfo LV = D->getLinkageAndVisibility();
1377    if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1378      // Reject incompatible dlllstorage and visibility annotations.
1379      if (!LV.isVisibilityExplicit())
1380        return;
1381      if (GV->hasDLLExportStorageClass()) {
1382        if (LV.getVisibility() == HiddenVisibility)
1383          getDiags().Report(D->getLocation(),
1384                            diag::err_hidden_visibility_dllexport);
1385      } else if (LV.getVisibility() != DefaultVisibility) {
1386        getDiags().Report(D->getLocation(),
1387                          diag::err_non_default_visibility_dllimport);
1388      }
1389      return;
1390    }
1391  
1392    if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1393        !GV->isDeclarationForLinker())
1394      GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1395  }
1396  
1397  static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1398                                   llvm::GlobalValue *GV) {
1399    if (GV->hasLocalLinkage())
1400      return true;
1401  
1402    if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1403      return true;
1404  
1405    // DLLImport explicitly marks the GV as external.
1406    if (GV->hasDLLImportStorageClass())
1407      return false;
1408  
1409    const llvm::Triple &TT = CGM.getTriple();
1410    if (TT.isWindowsGNUEnvironment()) {
1411      // In MinGW, variables without DLLImport can still be automatically
1412      // imported from a DLL by the linker; don't mark variables that
1413      // potentially could come from another DLL as DSO local.
1414  
1415      // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1416      // (and this actually happens in the public interface of libstdc++), so
1417      // such variables can't be marked as DSO local. (Native TLS variables
1418      // can't be dllimported at all, though.)
1419      if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1420          (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1421        return false;
1422    }
1423  
1424    // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1425    // remain unresolved in the link, they can be resolved to zero, which is
1426    // outside the current DSO.
1427    if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1428      return false;
1429  
1430    // Every other GV is local on COFF.
1431    // Make an exception for windows OS in the triple: Some firmware builds use
1432    // *-win32-macho triples. This (accidentally?) produced windows relocations
1433    // without GOT tables in older clang versions; Keep this behaviour.
1434    // FIXME: even thread local variables?
1435    if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1436      return true;
1437  
1438    // Only handle COFF and ELF for now.
1439    if (!TT.isOSBinFormatELF())
1440      return false;
1441  
1442    // If this is not an executable, don't assume anything is local.
1443    const auto &CGOpts = CGM.getCodeGenOpts();
1444    llvm::Reloc::Model RM = CGOpts.RelocationModel;
1445    const auto &LOpts = CGM.getLangOpts();
1446    if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1447      // On ELF, if -fno-semantic-interposition is specified and the target
1448      // supports local aliases, there will be neither CC1
1449      // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1450      // dso_local on the function if using a local alias is preferable (can avoid
1451      // PLT indirection).
1452      if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1453        return false;
1454      return !(CGM.getLangOpts().SemanticInterposition ||
1455               CGM.getLangOpts().HalfNoSemanticInterposition);
1456    }
1457  
1458    // A definition cannot be preempted from an executable.
1459    if (!GV->isDeclarationForLinker())
1460      return true;
1461  
1462    // Most PIC code sequences that assume that a symbol is local cannot produce a
1463    // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1464    // depended, it seems worth it to handle it here.
1465    if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1466      return false;
1467  
1468    // PowerPC64 prefers TOC indirection to avoid copy relocations.
1469    if (TT.isPPC64())
1470      return false;
1471  
1472    if (CGOpts.DirectAccessExternalData) {
1473      // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1474      // for non-thread-local variables. If the symbol is not defined in the
1475      // executable, a copy relocation will be needed at link time. dso_local is
1476      // excluded for thread-local variables because they generally don't support
1477      // copy relocations.
1478      if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1479        if (!Var->isThreadLocal())
1480          return true;
1481  
1482      // -fno-pic sets dso_local on a function declaration to allow direct
1483      // accesses when taking its address (similar to a data symbol). If the
1484      // function is not defined in the executable, a canonical PLT entry will be
1485      // needed at link time. -fno-direct-access-external-data can avoid the
1486      // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1487      // it could just cause trouble without providing perceptible benefits.
1488      if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1489        return true;
1490    }
1491  
1492    // If we can use copy relocations we can assume it is local.
1493  
1494    // Otherwise don't assume it is local.
1495    return false;
1496  }
1497  
1498  void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1499    GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1500  }
1501  
1502  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1503                                            GlobalDecl GD) const {
1504    const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1505    // C++ destructors have a few C++ ABI specific special cases.
1506    if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1507      getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1508      return;
1509    }
1510    setDLLImportDLLExport(GV, D);
1511  }
1512  
1513  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1514                                            const NamedDecl *D) const {
1515    if (D && D->isExternallyVisible()) {
1516      if (D->hasAttr<DLLImportAttr>())
1517        GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1518      else if ((D->hasAttr<DLLExportAttr>() ||
1519                shouldMapVisibilityToDLLExport(D)) &&
1520               !GV->isDeclarationForLinker())
1521        GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1522    }
1523  }
1524  
1525  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1526                                      GlobalDecl GD) const {
1527    setDLLImportDLLExport(GV, GD);
1528    setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1529  }
1530  
1531  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1532                                      const NamedDecl *D) const {
1533    setDLLImportDLLExport(GV, D);
1534    setGVPropertiesAux(GV, D);
1535  }
1536  
1537  void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1538                                         const NamedDecl *D) const {
1539    setGlobalVisibility(GV, D);
1540    setDSOLocal(GV);
1541    GV->setPartition(CodeGenOpts.SymbolPartition);
1542  }
1543  
1544  static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1545    return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1546        .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1547        .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1548        .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1549        .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1550  }
1551  
1552  llvm::GlobalVariable::ThreadLocalMode
1553  CodeGenModule::GetDefaultLLVMTLSModel() const {
1554    switch (CodeGenOpts.getDefaultTLSModel()) {
1555    case CodeGenOptions::GeneralDynamicTLSModel:
1556      return llvm::GlobalVariable::GeneralDynamicTLSModel;
1557    case CodeGenOptions::LocalDynamicTLSModel:
1558      return llvm::GlobalVariable::LocalDynamicTLSModel;
1559    case CodeGenOptions::InitialExecTLSModel:
1560      return llvm::GlobalVariable::InitialExecTLSModel;
1561    case CodeGenOptions::LocalExecTLSModel:
1562      return llvm::GlobalVariable::LocalExecTLSModel;
1563    }
1564    llvm_unreachable("Invalid TLS model!");
1565  }
1566  
1567  void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1568    assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1569  
1570    llvm::GlobalValue::ThreadLocalMode TLM;
1571    TLM = GetDefaultLLVMTLSModel();
1572  
1573    // Override the TLS model if it is explicitly specified.
1574    if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1575      TLM = GetLLVMTLSModel(Attr->getModel());
1576    }
1577  
1578    GV->setThreadLocalMode(TLM);
1579  }
1580  
1581  static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1582                                            StringRef Name) {
1583    const TargetInfo &Target = CGM.getTarget();
1584    return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1585  }
1586  
1587  static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1588                                                   const CPUSpecificAttr *Attr,
1589                                                   unsigned CPUIndex,
1590                                                   raw_ostream &Out) {
1591    // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1592    // supported.
1593    if (Attr)
1594      Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1595    else if (CGM.getTarget().supportsIFunc())
1596      Out << ".resolver";
1597  }
1598  
1599  static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1600                                          const TargetVersionAttr *Attr,
1601                                          raw_ostream &Out) {
1602    if (Attr->isDefaultVersion())
1603      return;
1604    Out << "._";
1605    const TargetInfo &TI = CGM.getTarget();
1606    llvm::SmallVector<StringRef, 8> Feats;
1607    Attr->getFeatures(Feats);
1608    llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1609      return TI.multiVersionSortPriority(FeatL) <
1610             TI.multiVersionSortPriority(FeatR);
1611    });
1612    for (const auto &Feat : Feats) {
1613      Out << 'M';
1614      Out << Feat;
1615    }
1616  }
1617  
1618  static void AppendTargetMangling(const CodeGenModule &CGM,
1619                                   const TargetAttr *Attr, raw_ostream &Out) {
1620    if (Attr->isDefaultVersion())
1621      return;
1622  
1623    Out << '.';
1624    const TargetInfo &Target = CGM.getTarget();
1625    ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1626    llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1627      // Multiversioning doesn't allow "no-${feature}", so we can
1628      // only have "+" prefixes here.
1629      assert(LHS.startswith("+") && RHS.startswith("+") &&
1630             "Features should always have a prefix.");
1631      return Target.multiVersionSortPriority(LHS.substr(1)) >
1632             Target.multiVersionSortPriority(RHS.substr(1));
1633    });
1634  
1635    bool IsFirst = true;
1636  
1637    if (!Info.CPU.empty()) {
1638      IsFirst = false;
1639      Out << "arch_" << Info.CPU;
1640    }
1641  
1642    for (StringRef Feat : Info.Features) {
1643      if (!IsFirst)
1644        Out << '_';
1645      IsFirst = false;
1646      Out << Feat.substr(1);
1647    }
1648  }
1649  
1650  // Returns true if GD is a function decl with internal linkage and
1651  // needs a unique suffix after the mangled name.
1652  static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1653                                          CodeGenModule &CGM) {
1654    const Decl *D = GD.getDecl();
1655    return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1656           (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1657  }
1658  
1659  static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1660                                         const TargetClonesAttr *Attr,
1661                                         unsigned VersionIndex,
1662                                         raw_ostream &Out) {
1663    const TargetInfo &TI = CGM.getTarget();
1664    if (TI.getTriple().isAArch64()) {
1665      StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1666      if (FeatureStr == "default")
1667        return;
1668      Out << "._";
1669      SmallVector<StringRef, 8> Features;
1670      FeatureStr.split(Features, "+");
1671      llvm::stable_sort(Features,
1672                        [&TI](const StringRef FeatL, const StringRef FeatR) {
1673                          return TI.multiVersionSortPriority(FeatL) <
1674                                 TI.multiVersionSortPriority(FeatR);
1675                        });
1676      for (auto &Feat : Features) {
1677        Out << 'M';
1678        Out << Feat;
1679      }
1680    } else {
1681      Out << '.';
1682      StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1683      if (FeatureStr.startswith("arch="))
1684        Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1685      else
1686        Out << FeatureStr;
1687  
1688      Out << '.' << Attr->getMangledIndex(VersionIndex);
1689    }
1690  }
1691  
1692  static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1693                                        const NamedDecl *ND,
1694                                        bool OmitMultiVersionMangling = false) {
1695    SmallString<256> Buffer;
1696    llvm::raw_svector_ostream Out(Buffer);
1697    MangleContext &MC = CGM.getCXXABI().getMangleContext();
1698    if (!CGM.getModuleNameHash().empty())
1699      MC.needsUniqueInternalLinkageNames();
1700    bool ShouldMangle = MC.shouldMangleDeclName(ND);
1701    if (ShouldMangle)
1702      MC.mangleName(GD.getWithDecl(ND), Out);
1703    else {
1704      IdentifierInfo *II = ND->getIdentifier();
1705      assert(II && "Attempt to mangle unnamed decl.");
1706      const auto *FD = dyn_cast<FunctionDecl>(ND);
1707  
1708      if (FD &&
1709          FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1710        Out << "__regcall3__" << II->getName();
1711      } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1712                 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1713        Out << "__device_stub__" << II->getName();
1714      } else {
1715        Out << II->getName();
1716      }
1717    }
1718  
1719    // Check if the module name hash should be appended for internal linkage
1720    // symbols.   This should come before multi-version target suffixes are
1721    // appended. This is to keep the name and module hash suffix of the
1722    // internal linkage function together.  The unique suffix should only be
1723    // added when name mangling is done to make sure that the final name can
1724    // be properly demangled.  For example, for C functions without prototypes,
1725    // name mangling is not done and the unique suffix should not be appeneded
1726    // then.
1727    if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1728      assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1729             "Hash computed when not explicitly requested");
1730      Out << CGM.getModuleNameHash();
1731    }
1732  
1733    if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1734      if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1735        switch (FD->getMultiVersionKind()) {
1736        case MultiVersionKind::CPUDispatch:
1737        case MultiVersionKind::CPUSpecific:
1738          AppendCPUSpecificCPUDispatchMangling(CGM,
1739                                               FD->getAttr<CPUSpecificAttr>(),
1740                                               GD.getMultiVersionIndex(), Out);
1741          break;
1742        case MultiVersionKind::Target:
1743          AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1744          break;
1745        case MultiVersionKind::TargetVersion:
1746          AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1747          break;
1748        case MultiVersionKind::TargetClones:
1749          AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1750                                     GD.getMultiVersionIndex(), Out);
1751          break;
1752        case MultiVersionKind::None:
1753          llvm_unreachable("None multiversion type isn't valid here");
1754        }
1755      }
1756  
1757    // Make unique name for device side static file-scope variable for HIP.
1758    if (CGM.getContext().shouldExternalize(ND) &&
1759        CGM.getLangOpts().GPURelocatableDeviceCode &&
1760        CGM.getLangOpts().CUDAIsDevice)
1761      CGM.printPostfixForExternalizedDecl(Out, ND);
1762  
1763    return std::string(Out.str());
1764  }
1765  
1766  void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1767                                              const FunctionDecl *FD,
1768                                              StringRef &CurName) {
1769    if (!FD->isMultiVersion())
1770      return;
1771  
1772    // Get the name of what this would be without the 'target' attribute.  This
1773    // allows us to lookup the version that was emitted when this wasn't a
1774    // multiversion function.
1775    std::string NonTargetName =
1776        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1777    GlobalDecl OtherGD;
1778    if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1779      assert(OtherGD.getCanonicalDecl()
1780                 .getDecl()
1781                 ->getAsFunction()
1782                 ->isMultiVersion() &&
1783             "Other GD should now be a multiversioned function");
1784      // OtherFD is the version of this function that was mangled BEFORE
1785      // becoming a MultiVersion function.  It potentially needs to be updated.
1786      const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1787                                        .getDecl()
1788                                        ->getAsFunction()
1789                                        ->getMostRecentDecl();
1790      std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1791      // This is so that if the initial version was already the 'default'
1792      // version, we don't try to update it.
1793      if (OtherName != NonTargetName) {
1794        // Remove instead of erase, since others may have stored the StringRef
1795        // to this.
1796        const auto ExistingRecord = Manglings.find(NonTargetName);
1797        if (ExistingRecord != std::end(Manglings))
1798          Manglings.remove(&(*ExistingRecord));
1799        auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1800        StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1801            Result.first->first();
1802        // If this is the current decl is being created, make sure we update the name.
1803        if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1804          CurName = OtherNameRef;
1805        if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1806          Entry->setName(OtherName);
1807      }
1808    }
1809  }
1810  
1811  StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1812    GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1813  
1814    // Some ABIs don't have constructor variants.  Make sure that base and
1815    // complete constructors get mangled the same.
1816    if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1817      if (!getTarget().getCXXABI().hasConstructorVariants()) {
1818        CXXCtorType OrigCtorType = GD.getCtorType();
1819        assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1820        if (OrigCtorType == Ctor_Base)
1821          CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1822      }
1823    }
1824  
1825    // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1826    // static device variable depends on whether the variable is referenced by
1827    // a host or device host function. Therefore the mangled name cannot be
1828    // cached.
1829    if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1830      auto FoundName = MangledDeclNames.find(CanonicalGD);
1831      if (FoundName != MangledDeclNames.end())
1832        return FoundName->second;
1833    }
1834  
1835    // Keep the first result in the case of a mangling collision.
1836    const auto *ND = cast<NamedDecl>(GD.getDecl());
1837    std::string MangledName = getMangledNameImpl(*this, GD, ND);
1838  
1839    // Ensure either we have different ABIs between host and device compilations,
1840    // says host compilation following MSVC ABI but device compilation follows
1841    // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1842    // mangling should be the same after name stubbing. The later checking is
1843    // very important as the device kernel name being mangled in host-compilation
1844    // is used to resolve the device binaries to be executed. Inconsistent naming
1845    // result in undefined behavior. Even though we cannot check that naming
1846    // directly between host- and device-compilations, the host- and
1847    // device-mangling in host compilation could help catching certain ones.
1848    assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1849           getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1850           (getContext().getAuxTargetInfo() &&
1851            (getContext().getAuxTargetInfo()->getCXXABI() !=
1852             getContext().getTargetInfo().getCXXABI())) ||
1853           getCUDARuntime().getDeviceSideName(ND) ==
1854               getMangledNameImpl(
1855                   *this,
1856                   GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1857                   ND));
1858  
1859    auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1860    return MangledDeclNames[CanonicalGD] = Result.first->first();
1861  }
1862  
1863  StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1864                                               const BlockDecl *BD) {
1865    MangleContext &MangleCtx = getCXXABI().getMangleContext();
1866    const Decl *D = GD.getDecl();
1867  
1868    SmallString<256> Buffer;
1869    llvm::raw_svector_ostream Out(Buffer);
1870    if (!D)
1871      MangleCtx.mangleGlobalBlock(BD,
1872        dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1873    else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1874      MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1875    else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1876      MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1877    else
1878      MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1879  
1880    auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1881    return Result.first->first();
1882  }
1883  
1884  const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1885    auto it = MangledDeclNames.begin();
1886    while (it != MangledDeclNames.end()) {
1887      if (it->second == Name)
1888        return it->first;
1889      it++;
1890    }
1891    return GlobalDecl();
1892  }
1893  
1894  llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1895    return getModule().getNamedValue(Name);
1896  }
1897  
1898  /// AddGlobalCtor - Add a function to the list that will be called before
1899  /// main() runs.
1900  void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1901                                    unsigned LexOrder,
1902                                    llvm::Constant *AssociatedData) {
1903    // FIXME: Type coercion of void()* types.
1904    GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1905  }
1906  
1907  /// AddGlobalDtor - Add a function to the list that will be called
1908  /// when the module is unloaded.
1909  void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1910                                    bool IsDtorAttrFunc) {
1911    if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1912        (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1913      DtorsUsingAtExit[Priority].push_back(Dtor);
1914      return;
1915    }
1916  
1917    // FIXME: Type coercion of void()* types.
1918    GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1919  }
1920  
1921  void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1922    if (Fns.empty()) return;
1923  
1924    // Ctor function type is void()*.
1925    llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1926    llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1927        TheModule.getDataLayout().getProgramAddressSpace());
1928  
1929    // Get the type of a ctor entry, { i32, void ()*, i8* }.
1930    llvm::StructType *CtorStructTy = llvm::StructType::get(
1931        Int32Ty, CtorPFTy, VoidPtrTy);
1932  
1933    // Construct the constructor and destructor arrays.
1934    ConstantInitBuilder builder(*this);
1935    auto ctors = builder.beginArray(CtorStructTy);
1936    for (const auto &I : Fns) {
1937      auto ctor = ctors.beginStruct(CtorStructTy);
1938      ctor.addInt(Int32Ty, I.Priority);
1939      ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1940      if (I.AssociatedData)
1941        ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1942      else
1943        ctor.addNullPointer(VoidPtrTy);
1944      ctor.finishAndAddTo(ctors);
1945    }
1946  
1947    auto list =
1948      ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1949                                  /*constant*/ false,
1950                                  llvm::GlobalValue::AppendingLinkage);
1951  
1952    // The LTO linker doesn't seem to like it when we set an alignment
1953    // on appending variables.  Take it off as a workaround.
1954    list->setAlignment(std::nullopt);
1955  
1956    Fns.clear();
1957  }
1958  
1959  llvm::GlobalValue::LinkageTypes
1960  CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1961    const auto *D = cast<FunctionDecl>(GD.getDecl());
1962  
1963    GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1964  
1965    if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1966      return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1967  
1968    if (isa<CXXConstructorDecl>(D) &&
1969        cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1970        Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1971      // Our approach to inheriting constructors is fundamentally different from
1972      // that used by the MS ABI, so keep our inheriting constructor thunks
1973      // internal rather than trying to pick an unambiguous mangling for them.
1974      return llvm::GlobalValue::InternalLinkage;
1975    }
1976  
1977    return getLLVMLinkageForDeclarator(D, Linkage);
1978  }
1979  
1980  llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1981    llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1982    if (!MDS) return nullptr;
1983  
1984    return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1985  }
1986  
1987  llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1988    if (auto *FnType = T->getAs<FunctionProtoType>())
1989      T = getContext().getFunctionType(
1990          FnType->getReturnType(), FnType->getParamTypes(),
1991          FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1992  
1993    std::string OutName;
1994    llvm::raw_string_ostream Out(OutName);
1995    getCXXABI().getMangleContext().mangleTypeName(
1996        T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
1997  
1998    if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
1999      Out << ".normalized";
2000  
2001    return llvm::ConstantInt::get(Int32Ty,
2002                                  static_cast<uint32_t>(llvm::xxHash64(OutName)));
2003  }
2004  
2005  void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2006                                                const CGFunctionInfo &Info,
2007                                                llvm::Function *F, bool IsThunk) {
2008    unsigned CallingConv;
2009    llvm::AttributeList PAL;
2010    ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2011                           /*AttrOnCallSite=*/false, IsThunk);
2012    F->setAttributes(PAL);
2013    F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2014  }
2015  
2016  static void removeImageAccessQualifier(std::string& TyName) {
2017    std::string ReadOnlyQual("__read_only");
2018    std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2019    if (ReadOnlyPos != std::string::npos)
2020      // "+ 1" for the space after access qualifier.
2021      TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2022    else {
2023      std::string WriteOnlyQual("__write_only");
2024      std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2025      if (WriteOnlyPos != std::string::npos)
2026        TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2027      else {
2028        std::string ReadWriteQual("__read_write");
2029        std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2030        if (ReadWritePos != std::string::npos)
2031          TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2032      }
2033    }
2034  }
2035  
2036  // Returns the address space id that should be produced to the
2037  // kernel_arg_addr_space metadata. This is always fixed to the ids
2038  // as specified in the SPIR 2.0 specification in order to differentiate
2039  // for example in clGetKernelArgInfo() implementation between the address
2040  // spaces with targets without unique mapping to the OpenCL address spaces
2041  // (basically all single AS CPUs).
2042  static unsigned ArgInfoAddressSpace(LangAS AS) {
2043    switch (AS) {
2044    case LangAS::opencl_global:
2045      return 1;
2046    case LangAS::opencl_constant:
2047      return 2;
2048    case LangAS::opencl_local:
2049      return 3;
2050    case LangAS::opencl_generic:
2051      return 4; // Not in SPIR 2.0 specs.
2052    case LangAS::opencl_global_device:
2053      return 5;
2054    case LangAS::opencl_global_host:
2055      return 6;
2056    default:
2057      return 0; // Assume private.
2058    }
2059  }
2060  
2061  void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2062                                           const FunctionDecl *FD,
2063                                           CodeGenFunction *CGF) {
2064    assert(((FD && CGF) || (!FD && !CGF)) &&
2065           "Incorrect use - FD and CGF should either be both null or not!");
2066    // Create MDNodes that represent the kernel arg metadata.
2067    // Each MDNode is a list in the form of "key", N number of values which is
2068    // the same number of values as their are kernel arguments.
2069  
2070    const PrintingPolicy &Policy = Context.getPrintingPolicy();
2071  
2072    // MDNode for the kernel argument address space qualifiers.
2073    SmallVector<llvm::Metadata *, 8> addressQuals;
2074  
2075    // MDNode for the kernel argument access qualifiers (images only).
2076    SmallVector<llvm::Metadata *, 8> accessQuals;
2077  
2078    // MDNode for the kernel argument type names.
2079    SmallVector<llvm::Metadata *, 8> argTypeNames;
2080  
2081    // MDNode for the kernel argument base type names.
2082    SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2083  
2084    // MDNode for the kernel argument type qualifiers.
2085    SmallVector<llvm::Metadata *, 8> argTypeQuals;
2086  
2087    // MDNode for the kernel argument names.
2088    SmallVector<llvm::Metadata *, 8> argNames;
2089  
2090    if (FD && CGF)
2091      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2092        const ParmVarDecl *parm = FD->getParamDecl(i);
2093        // Get argument name.
2094        argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2095  
2096        if (!getLangOpts().OpenCL)
2097          continue;
2098        QualType ty = parm->getType();
2099        std::string typeQuals;
2100  
2101        // Get image and pipe access qualifier:
2102        if (ty->isImageType() || ty->isPipeType()) {
2103          const Decl *PDecl = parm;
2104          if (const auto *TD = ty->getAs<TypedefType>())
2105            PDecl = TD->getDecl();
2106          const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2107          if (A && A->isWriteOnly())
2108            accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2109          else if (A && A->isReadWrite())
2110            accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2111          else
2112            accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2113        } else
2114          accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2115  
2116        auto getTypeSpelling = [&](QualType Ty) {
2117          auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2118  
2119          if (Ty.isCanonical()) {
2120            StringRef typeNameRef = typeName;
2121            // Turn "unsigned type" to "utype"
2122            if (typeNameRef.consume_front("unsigned "))
2123              return std::string("u") + typeNameRef.str();
2124            if (typeNameRef.consume_front("signed "))
2125              return typeNameRef.str();
2126          }
2127  
2128          return typeName;
2129        };
2130  
2131        if (ty->isPointerType()) {
2132          QualType pointeeTy = ty->getPointeeType();
2133  
2134          // Get address qualifier.
2135          addressQuals.push_back(
2136              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2137                  ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2138  
2139          // Get argument type name.
2140          std::string typeName = getTypeSpelling(pointeeTy) + "*";
2141          std::string baseTypeName =
2142              getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2143          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2144          argBaseTypeNames.push_back(
2145              llvm::MDString::get(VMContext, baseTypeName));
2146  
2147          // Get argument type qualifiers:
2148          if (ty.isRestrictQualified())
2149            typeQuals = "restrict";
2150          if (pointeeTy.isConstQualified() ||
2151              (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2152            typeQuals += typeQuals.empty() ? "const" : " const";
2153          if (pointeeTy.isVolatileQualified())
2154            typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2155        } else {
2156          uint32_t AddrSpc = 0;
2157          bool isPipe = ty->isPipeType();
2158          if (ty->isImageType() || isPipe)
2159            AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2160  
2161          addressQuals.push_back(
2162              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2163  
2164          // Get argument type name.
2165          ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2166          std::string typeName = getTypeSpelling(ty);
2167          std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2168  
2169          // Remove access qualifiers on images
2170          // (as they are inseparable from type in clang implementation,
2171          // but OpenCL spec provides a special query to get access qualifier
2172          // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2173          if (ty->isImageType()) {
2174            removeImageAccessQualifier(typeName);
2175            removeImageAccessQualifier(baseTypeName);
2176          }
2177  
2178          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2179          argBaseTypeNames.push_back(
2180              llvm::MDString::get(VMContext, baseTypeName));
2181  
2182          if (isPipe)
2183            typeQuals = "pipe";
2184        }
2185        argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2186      }
2187  
2188    if (getLangOpts().OpenCL) {
2189      Fn->setMetadata("kernel_arg_addr_space",
2190                      llvm::MDNode::get(VMContext, addressQuals));
2191      Fn->setMetadata("kernel_arg_access_qual",
2192                      llvm::MDNode::get(VMContext, accessQuals));
2193      Fn->setMetadata("kernel_arg_type",
2194                      llvm::MDNode::get(VMContext, argTypeNames));
2195      Fn->setMetadata("kernel_arg_base_type",
2196                      llvm::MDNode::get(VMContext, argBaseTypeNames));
2197      Fn->setMetadata("kernel_arg_type_qual",
2198                      llvm::MDNode::get(VMContext, argTypeQuals));
2199    }
2200    if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2201        getCodeGenOpts().HIPSaveKernelArgName)
2202      Fn->setMetadata("kernel_arg_name",
2203                      llvm::MDNode::get(VMContext, argNames));
2204  }
2205  
2206  /// Determines whether the language options require us to model
2207  /// unwind exceptions.  We treat -fexceptions as mandating this
2208  /// except under the fragile ObjC ABI with only ObjC exceptions
2209  /// enabled.  This means, for example, that C with -fexceptions
2210  /// enables this.
2211  static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2212    // If exceptions are completely disabled, obviously this is false.
2213    if (!LangOpts.Exceptions) return false;
2214  
2215    // If C++ exceptions are enabled, this is true.
2216    if (LangOpts.CXXExceptions) return true;
2217  
2218    // If ObjC exceptions are enabled, this depends on the ABI.
2219    if (LangOpts.ObjCExceptions) {
2220      return LangOpts.ObjCRuntime.hasUnwindExceptions();
2221    }
2222  
2223    return true;
2224  }
2225  
2226  static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2227                                                        const CXXMethodDecl *MD) {
2228    // Check that the type metadata can ever actually be used by a call.
2229    if (!CGM.getCodeGenOpts().LTOUnit ||
2230        !CGM.HasHiddenLTOVisibility(MD->getParent()))
2231      return false;
2232  
2233    // Only functions whose address can be taken with a member function pointer
2234    // need this sort of type metadata.
2235    return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
2236           !isa<CXXDestructorDecl>(MD);
2237  }
2238  
2239  std::vector<const CXXRecordDecl *>
2240  CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2241    llvm::SetVector<const CXXRecordDecl *> MostBases;
2242  
2243    std::function<void (const CXXRecordDecl *)> CollectMostBases;
2244    CollectMostBases = [&](const CXXRecordDecl *RD) {
2245      if (RD->getNumBases() == 0)
2246        MostBases.insert(RD);
2247      for (const CXXBaseSpecifier &B : RD->bases())
2248        CollectMostBases(B.getType()->getAsCXXRecordDecl());
2249    };
2250    CollectMostBases(RD);
2251    return MostBases.takeVector();
2252  }
2253  
2254  void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2255                                                             llvm::Function *F) {
2256    llvm::AttrBuilder B(F->getContext());
2257  
2258    if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2259      B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2260  
2261    if (CodeGenOpts.StackClashProtector)
2262      B.addAttribute("probe-stack", "inline-asm");
2263  
2264    if (!hasUnwindExceptions(LangOpts))
2265      B.addAttribute(llvm::Attribute::NoUnwind);
2266  
2267    if (D && D->hasAttr<NoStackProtectorAttr>())
2268      ; // Do nothing.
2269    else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2270             LangOpts.getStackProtector() == LangOptions::SSPOn)
2271      B.addAttribute(llvm::Attribute::StackProtectStrong);
2272    else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2273      B.addAttribute(llvm::Attribute::StackProtect);
2274    else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2275      B.addAttribute(llvm::Attribute::StackProtectStrong);
2276    else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2277      B.addAttribute(llvm::Attribute::StackProtectReq);
2278  
2279    if (!D) {
2280      // If we don't have a declaration to control inlining, the function isn't
2281      // explicitly marked as alwaysinline for semantic reasons, and inlining is
2282      // disabled, mark the function as noinline.
2283      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2284          CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2285        B.addAttribute(llvm::Attribute::NoInline);
2286  
2287      F->addFnAttrs(B);
2288      return;
2289    }
2290  
2291    // Track whether we need to add the optnone LLVM attribute,
2292    // starting with the default for this optimization level.
2293    bool ShouldAddOptNone =
2294        !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2295    // We can't add optnone in the following cases, it won't pass the verifier.
2296    ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2297    ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2298  
2299    // Add optnone, but do so only if the function isn't always_inline.
2300    if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2301        !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2302      B.addAttribute(llvm::Attribute::OptimizeNone);
2303  
2304      // OptimizeNone implies noinline; we should not be inlining such functions.
2305      B.addAttribute(llvm::Attribute::NoInline);
2306  
2307      // We still need to handle naked functions even though optnone subsumes
2308      // much of their semantics.
2309      if (D->hasAttr<NakedAttr>())
2310        B.addAttribute(llvm::Attribute::Naked);
2311  
2312      // OptimizeNone wins over OptimizeForSize and MinSize.
2313      F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2314      F->removeFnAttr(llvm::Attribute::MinSize);
2315    } else if (D->hasAttr<NakedAttr>()) {
2316      // Naked implies noinline: we should not be inlining such functions.
2317      B.addAttribute(llvm::Attribute::Naked);
2318      B.addAttribute(llvm::Attribute::NoInline);
2319    } else if (D->hasAttr<NoDuplicateAttr>()) {
2320      B.addAttribute(llvm::Attribute::NoDuplicate);
2321    } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2322      // Add noinline if the function isn't always_inline.
2323      B.addAttribute(llvm::Attribute::NoInline);
2324    } else if (D->hasAttr<AlwaysInlineAttr>() &&
2325               !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2326      // (noinline wins over always_inline, and we can't specify both in IR)
2327      B.addAttribute(llvm::Attribute::AlwaysInline);
2328    } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2329      // If we're not inlining, then force everything that isn't always_inline to
2330      // carry an explicit noinline attribute.
2331      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2332        B.addAttribute(llvm::Attribute::NoInline);
2333    } else {
2334      // Otherwise, propagate the inline hint attribute and potentially use its
2335      // absence to mark things as noinline.
2336      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2337        // Search function and template pattern redeclarations for inline.
2338        auto CheckForInline = [](const FunctionDecl *FD) {
2339          auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2340            return Redecl->isInlineSpecified();
2341          };
2342          if (any_of(FD->redecls(), CheckRedeclForInline))
2343            return true;
2344          const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2345          if (!Pattern)
2346            return false;
2347          return any_of(Pattern->redecls(), CheckRedeclForInline);
2348        };
2349        if (CheckForInline(FD)) {
2350          B.addAttribute(llvm::Attribute::InlineHint);
2351        } else if (CodeGenOpts.getInlining() ==
2352                       CodeGenOptions::OnlyHintInlining &&
2353                   !FD->isInlined() &&
2354                   !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2355          B.addAttribute(llvm::Attribute::NoInline);
2356        }
2357      }
2358    }
2359  
2360    // Add other optimization related attributes if we are optimizing this
2361    // function.
2362    if (!D->hasAttr<OptimizeNoneAttr>()) {
2363      if (D->hasAttr<ColdAttr>()) {
2364        if (!ShouldAddOptNone)
2365          B.addAttribute(llvm::Attribute::OptimizeForSize);
2366        B.addAttribute(llvm::Attribute::Cold);
2367      }
2368      if (D->hasAttr<HotAttr>())
2369        B.addAttribute(llvm::Attribute::Hot);
2370      if (D->hasAttr<MinSizeAttr>())
2371        B.addAttribute(llvm::Attribute::MinSize);
2372    }
2373  
2374    F->addFnAttrs(B);
2375  
2376    unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2377    if (alignment)
2378      F->setAlignment(llvm::Align(alignment));
2379  
2380    if (!D->hasAttr<AlignedAttr>())
2381      if (LangOpts.FunctionAlignment)
2382        F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2383  
2384    // Some C++ ABIs require 2-byte alignment for member functions, in order to
2385    // reserve a bit for differentiating between virtual and non-virtual member
2386    // functions. If the current target's C++ ABI requires this and this is a
2387    // member function, set its alignment accordingly.
2388    if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2389      if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2390        F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2391    }
2392  
2393    // In the cross-dso CFI mode with canonical jump tables, we want !type
2394    // attributes on definitions only.
2395    if (CodeGenOpts.SanitizeCfiCrossDso &&
2396        CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2397      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2398        // Skip available_externally functions. They won't be codegen'ed in the
2399        // current module anyway.
2400        if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2401          CreateFunctionTypeMetadataForIcall(FD, F);
2402      }
2403    }
2404  
2405    // Emit type metadata on member functions for member function pointer checks.
2406    // These are only ever necessary on definitions; we're guaranteed that the
2407    // definition will be present in the LTO unit as a result of LTO visibility.
2408    auto *MD = dyn_cast<CXXMethodDecl>(D);
2409    if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2410      for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2411        llvm::Metadata *Id =
2412            CreateMetadataIdentifierForType(Context.getMemberPointerType(
2413                MD->getType(), Context.getRecordType(Base).getTypePtr()));
2414        F->addTypeMetadata(0, Id);
2415      }
2416    }
2417  }
2418  
2419  void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2420    const Decl *D = GD.getDecl();
2421    if (isa_and_nonnull<NamedDecl>(D))
2422      setGVProperties(GV, GD);
2423    else
2424      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2425  
2426    if (D && D->hasAttr<UsedAttr>())
2427      addUsedOrCompilerUsedGlobal(GV);
2428  
2429    if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2430        VD &&
2431        ((CodeGenOpts.KeepPersistentStorageVariables &&
2432          (VD->getStorageDuration() == SD_Static ||
2433           VD->getStorageDuration() == SD_Thread)) ||
2434         (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2435          VD->getType().isConstQualified())))
2436      addUsedOrCompilerUsedGlobal(GV);
2437  }
2438  
2439  bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2440                                                  llvm::AttrBuilder &Attrs,
2441                                                  bool SetTargetFeatures) {
2442    // Add target-cpu and target-features attributes to functions. If
2443    // we have a decl for the function and it has a target attribute then
2444    // parse that and add it to the feature set.
2445    StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2446    StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2447    std::vector<std::string> Features;
2448    const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2449    FD = FD ? FD->getMostRecentDecl() : FD;
2450    const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2451    const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2452    assert((!TD || !TV) && "both target_version and target specified");
2453    const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2454    const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2455    bool AddedAttr = false;
2456    if (TD || TV || SD || TC) {
2457      llvm::StringMap<bool> FeatureMap;
2458      getContext().getFunctionFeatureMap(FeatureMap, GD);
2459  
2460      // Produce the canonical string for this set of features.
2461      for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2462        Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2463  
2464      // Now add the target-cpu and target-features to the function.
2465      // While we populated the feature map above, we still need to
2466      // get and parse the target attribute so we can get the cpu for
2467      // the function.
2468      if (TD) {
2469        ParsedTargetAttr ParsedAttr =
2470            Target.parseTargetAttr(TD->getFeaturesStr());
2471        if (!ParsedAttr.CPU.empty() &&
2472            getTarget().isValidCPUName(ParsedAttr.CPU)) {
2473          TargetCPU = ParsedAttr.CPU;
2474          TuneCPU = ""; // Clear the tune CPU.
2475        }
2476        if (!ParsedAttr.Tune.empty() &&
2477            getTarget().isValidCPUName(ParsedAttr.Tune))
2478          TuneCPU = ParsedAttr.Tune;
2479      }
2480  
2481      if (SD) {
2482        // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2483        // favor this processor.
2484        TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2485      }
2486    } else {
2487      // Otherwise just add the existing target cpu and target features to the
2488      // function.
2489      Features = getTarget().getTargetOpts().Features;
2490    }
2491  
2492    if (!TargetCPU.empty()) {
2493      Attrs.addAttribute("target-cpu", TargetCPU);
2494      AddedAttr = true;
2495    }
2496    if (!TuneCPU.empty()) {
2497      Attrs.addAttribute("tune-cpu", TuneCPU);
2498      AddedAttr = true;
2499    }
2500    if (!Features.empty() && SetTargetFeatures) {
2501      llvm::erase_if(Features, [&](const std::string& F) {
2502         return getTarget().isReadOnlyFeature(F.substr(1));
2503      });
2504      llvm::sort(Features);
2505      Attrs.addAttribute("target-features", llvm::join(Features, ","));
2506      AddedAttr = true;
2507    }
2508  
2509    return AddedAttr;
2510  }
2511  
2512  void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2513                                            llvm::GlobalObject *GO) {
2514    const Decl *D = GD.getDecl();
2515    SetCommonAttributes(GD, GO);
2516  
2517    if (D) {
2518      if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2519        if (D->hasAttr<RetainAttr>())
2520          addUsedGlobal(GV);
2521        if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2522          GV->addAttribute("bss-section", SA->getName());
2523        if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2524          GV->addAttribute("data-section", SA->getName());
2525        if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2526          GV->addAttribute("rodata-section", SA->getName());
2527        if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2528          GV->addAttribute("relro-section", SA->getName());
2529      }
2530  
2531      if (auto *F = dyn_cast<llvm::Function>(GO)) {
2532        if (D->hasAttr<RetainAttr>())
2533          addUsedGlobal(F);
2534        if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2535          if (!D->getAttr<SectionAttr>())
2536            F->addFnAttr("implicit-section-name", SA->getName());
2537  
2538        llvm::AttrBuilder Attrs(F->getContext());
2539        if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2540          // We know that GetCPUAndFeaturesAttributes will always have the
2541          // newest set, since it has the newest possible FunctionDecl, so the
2542          // new ones should replace the old.
2543          llvm::AttributeMask RemoveAttrs;
2544          RemoveAttrs.addAttribute("target-cpu");
2545          RemoveAttrs.addAttribute("target-features");
2546          RemoveAttrs.addAttribute("tune-cpu");
2547          F->removeFnAttrs(RemoveAttrs);
2548          F->addFnAttrs(Attrs);
2549        }
2550      }
2551  
2552      if (const auto *CSA = D->getAttr<CodeSegAttr>())
2553        GO->setSection(CSA->getName());
2554      else if (const auto *SA = D->getAttr<SectionAttr>())
2555        GO->setSection(SA->getName());
2556    }
2557  
2558    getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2559  }
2560  
2561  void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2562                                                    llvm::Function *F,
2563                                                    const CGFunctionInfo &FI) {
2564    const Decl *D = GD.getDecl();
2565    SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2566    SetLLVMFunctionAttributesForDefinition(D, F);
2567  
2568    F->setLinkage(llvm::Function::InternalLinkage);
2569  
2570    setNonAliasAttributes(GD, F);
2571  }
2572  
2573  static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2574    // Set linkage and visibility in case we never see a definition.
2575    LinkageInfo LV = ND->getLinkageAndVisibility();
2576    // Don't set internal linkage on declarations.
2577    // "extern_weak" is overloaded in LLVM; we probably should have
2578    // separate linkage types for this.
2579    if (isExternallyVisible(LV.getLinkage()) &&
2580        (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2581      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2582  }
2583  
2584  void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2585                                                         llvm::Function *F) {
2586    // Only if we are checking indirect calls.
2587    if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2588      return;
2589  
2590    // Non-static class methods are handled via vtable or member function pointer
2591    // checks elsewhere.
2592    if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2593      return;
2594  
2595    llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2596    F->addTypeMetadata(0, MD);
2597    F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2598  
2599    // Emit a hash-based bit set entry for cross-DSO calls.
2600    if (CodeGenOpts.SanitizeCfiCrossDso)
2601      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2602        F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2603  }
2604  
2605  void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2606    llvm::LLVMContext &Ctx = F->getContext();
2607    llvm::MDBuilder MDB(Ctx);
2608    F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2609                   llvm::MDNode::get(
2610                       Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2611  }
2612  
2613  static bool allowKCFIIdentifier(StringRef Name) {
2614    // KCFI type identifier constants are only necessary for external assembly
2615    // functions, which means it's safe to skip unusual names. Subset of
2616    // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2617    return llvm::all_of(Name, [](const char &C) {
2618      return llvm::isAlnum(C) || C == '_' || C == '.';
2619    });
2620  }
2621  
2622  void CodeGenModule::finalizeKCFITypes() {
2623    llvm::Module &M = getModule();
2624    for (auto &F : M.functions()) {
2625      // Remove KCFI type metadata from non-address-taken local functions.
2626      bool AddressTaken = F.hasAddressTaken();
2627      if (!AddressTaken && F.hasLocalLinkage())
2628        F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2629  
2630      // Generate a constant with the expected KCFI type identifier for all
2631      // address-taken function declarations to support annotating indirectly
2632      // called assembly functions.
2633      if (!AddressTaken || !F.isDeclaration())
2634        continue;
2635  
2636      const llvm::ConstantInt *Type;
2637      if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2638        Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2639      else
2640        continue;
2641  
2642      StringRef Name = F.getName();
2643      if (!allowKCFIIdentifier(Name))
2644        continue;
2645  
2646      std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2647                         Name + ", " + Twine(Type->getZExtValue()) + "\n")
2648                            .str();
2649      M.appendModuleInlineAsm(Asm);
2650    }
2651  }
2652  
2653  void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2654                                            bool IsIncompleteFunction,
2655                                            bool IsThunk) {
2656  
2657    if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2658      // If this is an intrinsic function, set the function's attributes
2659      // to the intrinsic's attributes.
2660      F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2661      return;
2662    }
2663  
2664    const auto *FD = cast<FunctionDecl>(GD.getDecl());
2665  
2666    if (!IsIncompleteFunction)
2667      SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2668                                IsThunk);
2669  
2670    // Add the Returned attribute for "this", except for iOS 5 and earlier
2671    // where substantial code, including the libstdc++ dylib, was compiled with
2672    // GCC and does not actually return "this".
2673    if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2674        !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2675      assert(!F->arg_empty() &&
2676             F->arg_begin()->getType()
2677               ->canLosslesslyBitCastTo(F->getReturnType()) &&
2678             "unexpected this return");
2679      F->addParamAttr(0, llvm::Attribute::Returned);
2680    }
2681  
2682    // Only a few attributes are set on declarations; these may later be
2683    // overridden by a definition.
2684  
2685    setLinkageForGV(F, FD);
2686    setGVProperties(F, FD);
2687  
2688    // Setup target-specific attributes.
2689    if (!IsIncompleteFunction && F->isDeclaration())
2690      getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2691  
2692    if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2693      F->setSection(CSA->getName());
2694    else if (const auto *SA = FD->getAttr<SectionAttr>())
2695       F->setSection(SA->getName());
2696  
2697    if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2698      if (EA->isError())
2699        F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2700      else if (EA->isWarning())
2701        F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2702    }
2703  
2704    // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2705    if (FD->isInlineBuiltinDeclaration()) {
2706      const FunctionDecl *FDBody;
2707      bool HasBody = FD->hasBody(FDBody);
2708      (void)HasBody;
2709      assert(HasBody && "Inline builtin declarations should always have an "
2710                        "available body!");
2711      if (shouldEmitFunction(FDBody))
2712        F->addFnAttr(llvm::Attribute::NoBuiltin);
2713    }
2714  
2715    if (FD->isReplaceableGlobalAllocationFunction()) {
2716      // A replaceable global allocation function does not act like a builtin by
2717      // default, only if it is invoked by a new-expression or delete-expression.
2718      F->addFnAttr(llvm::Attribute::NoBuiltin);
2719    }
2720  
2721    if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2722      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2723    else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2724      if (MD->isVirtual())
2725        F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2726  
2727    // Don't emit entries for function declarations in the cross-DSO mode. This
2728    // is handled with better precision by the receiving DSO. But if jump tables
2729    // are non-canonical then we need type metadata in order to produce the local
2730    // jump table.
2731    if (!CodeGenOpts.SanitizeCfiCrossDso ||
2732        !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2733      CreateFunctionTypeMetadataForIcall(FD, F);
2734  
2735    if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2736      setKCFIType(FD, F);
2737  
2738    if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2739      getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2740  
2741    if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2742      F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2743  
2744    if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2745      // Annotate the callback behavior as metadata:
2746      //  - The callback callee (as argument number).
2747      //  - The callback payloads (as argument numbers).
2748      llvm::LLVMContext &Ctx = F->getContext();
2749      llvm::MDBuilder MDB(Ctx);
2750  
2751      // The payload indices are all but the first one in the encoding. The first
2752      // identifies the callback callee.
2753      int CalleeIdx = *CB->encoding_begin();
2754      ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2755      F->addMetadata(llvm::LLVMContext::MD_callback,
2756                     *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2757                                                 CalleeIdx, PayloadIndices,
2758                                                 /* VarArgsArePassed */ false)}));
2759    }
2760  }
2761  
2762  void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2763    assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2764           "Only globals with definition can force usage.");
2765    LLVMUsed.emplace_back(GV);
2766  }
2767  
2768  void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2769    assert(!GV->isDeclaration() &&
2770           "Only globals with definition can force usage.");
2771    LLVMCompilerUsed.emplace_back(GV);
2772  }
2773  
2774  void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2775    assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2776           "Only globals with definition can force usage.");
2777    if (getTriple().isOSBinFormatELF())
2778      LLVMCompilerUsed.emplace_back(GV);
2779    else
2780      LLVMUsed.emplace_back(GV);
2781  }
2782  
2783  static void emitUsed(CodeGenModule &CGM, StringRef Name,
2784                       std::vector<llvm::WeakTrackingVH> &List) {
2785    // Don't create llvm.used if there is no need.
2786    if (List.empty())
2787      return;
2788  
2789    // Convert List to what ConstantArray needs.
2790    SmallVector<llvm::Constant*, 8> UsedArray;
2791    UsedArray.resize(List.size());
2792    for (unsigned i = 0, e = List.size(); i != e; ++i) {
2793      UsedArray[i] =
2794          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2795              cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2796    }
2797  
2798    if (UsedArray.empty())
2799      return;
2800    llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2801  
2802    auto *GV = new llvm::GlobalVariable(
2803        CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2804        llvm::ConstantArray::get(ATy, UsedArray), Name);
2805  
2806    GV->setSection("llvm.metadata");
2807  }
2808  
2809  void CodeGenModule::emitLLVMUsed() {
2810    emitUsed(*this, "llvm.used", LLVMUsed);
2811    emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2812  }
2813  
2814  void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2815    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2816    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2817  }
2818  
2819  void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2820    llvm::SmallString<32> Opt;
2821    getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2822    if (Opt.empty())
2823      return;
2824    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2825    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2826  }
2827  
2828  void CodeGenModule::AddDependentLib(StringRef Lib) {
2829    auto &C = getLLVMContext();
2830    if (getTarget().getTriple().isOSBinFormatELF()) {
2831        ELFDependentLibraries.push_back(
2832          llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2833      return;
2834    }
2835  
2836    llvm::SmallString<24> Opt;
2837    getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2838    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2839    LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2840  }
2841  
2842  /// Add link options implied by the given module, including modules
2843  /// it depends on, using a postorder walk.
2844  static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2845                                      SmallVectorImpl<llvm::MDNode *> &Metadata,
2846                                      llvm::SmallPtrSet<Module *, 16> &Visited) {
2847    // Import this module's parent.
2848    if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2849      addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2850    }
2851  
2852    // Import this module's dependencies.
2853    for (Module *Import : llvm::reverse(Mod->Imports)) {
2854      if (Visited.insert(Import).second)
2855        addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2856    }
2857  
2858    // Add linker options to link against the libraries/frameworks
2859    // described by this module.
2860    llvm::LLVMContext &Context = CGM.getLLVMContext();
2861    bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2862  
2863    // For modules that use export_as for linking, use that module
2864    // name instead.
2865    if (Mod->UseExportAsModuleLinkName)
2866      return;
2867  
2868    for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2869      // Link against a framework.  Frameworks are currently Darwin only, so we
2870      // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2871      if (LL.IsFramework) {
2872        llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2873                                   llvm::MDString::get(Context, LL.Library)};
2874  
2875        Metadata.push_back(llvm::MDNode::get(Context, Args));
2876        continue;
2877      }
2878  
2879      // Link against a library.
2880      if (IsELF) {
2881        llvm::Metadata *Args[2] = {
2882            llvm::MDString::get(Context, "lib"),
2883            llvm::MDString::get(Context, LL.Library),
2884        };
2885        Metadata.push_back(llvm::MDNode::get(Context, Args));
2886      } else {
2887        llvm::SmallString<24> Opt;
2888        CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2889        auto *OptString = llvm::MDString::get(Context, Opt);
2890        Metadata.push_back(llvm::MDNode::get(Context, OptString));
2891      }
2892    }
2893  }
2894  
2895  void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2896    // Emit the initializers in the order that sub-modules appear in the
2897    // source, first Global Module Fragments, if present.
2898    if (auto GMF = Primary->getGlobalModuleFragment()) {
2899      for (Decl *D : getContext().getModuleInitializers(GMF)) {
2900        if (isa<ImportDecl>(D))
2901          continue;
2902        assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2903        EmitTopLevelDecl(D);
2904      }
2905    }
2906    // Second any associated with the module, itself.
2907    for (Decl *D : getContext().getModuleInitializers(Primary)) {
2908      // Skip import decls, the inits for those are called explicitly.
2909      if (isa<ImportDecl>(D))
2910        continue;
2911      EmitTopLevelDecl(D);
2912    }
2913    // Third any associated with the Privat eMOdule Fragment, if present.
2914    if (auto PMF = Primary->getPrivateModuleFragment()) {
2915      for (Decl *D : getContext().getModuleInitializers(PMF)) {
2916        assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2917        EmitTopLevelDecl(D);
2918      }
2919    }
2920  }
2921  
2922  void CodeGenModule::EmitModuleLinkOptions() {
2923    // Collect the set of all of the modules we want to visit to emit link
2924    // options, which is essentially the imported modules and all of their
2925    // non-explicit child modules.
2926    llvm::SetVector<clang::Module *> LinkModules;
2927    llvm::SmallPtrSet<clang::Module *, 16> Visited;
2928    SmallVector<clang::Module *, 16> Stack;
2929  
2930    // Seed the stack with imported modules.
2931    for (Module *M : ImportedModules) {
2932      // Do not add any link flags when an implementation TU of a module imports
2933      // a header of that same module.
2934      if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2935          !getLangOpts().isCompilingModule())
2936        continue;
2937      if (Visited.insert(M).second)
2938        Stack.push_back(M);
2939    }
2940  
2941    // Find all of the modules to import, making a little effort to prune
2942    // non-leaf modules.
2943    while (!Stack.empty()) {
2944      clang::Module *Mod = Stack.pop_back_val();
2945  
2946      bool AnyChildren = false;
2947  
2948      // Visit the submodules of this module.
2949      for (const auto &SM : Mod->submodules()) {
2950        // Skip explicit children; they need to be explicitly imported to be
2951        // linked against.
2952        if (SM->IsExplicit)
2953          continue;
2954  
2955        if (Visited.insert(SM).second) {
2956          Stack.push_back(SM);
2957          AnyChildren = true;
2958        }
2959      }
2960  
2961      // We didn't find any children, so add this module to the list of
2962      // modules to link against.
2963      if (!AnyChildren) {
2964        LinkModules.insert(Mod);
2965      }
2966    }
2967  
2968    // Add link options for all of the imported modules in reverse topological
2969    // order.  We don't do anything to try to order import link flags with respect
2970    // to linker options inserted by things like #pragma comment().
2971    SmallVector<llvm::MDNode *, 16> MetadataArgs;
2972    Visited.clear();
2973    for (Module *M : LinkModules)
2974      if (Visited.insert(M).second)
2975        addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2976    std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2977    LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2978  
2979    // Add the linker options metadata flag.
2980    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2981    for (auto *MD : LinkerOptionsMetadata)
2982      NMD->addOperand(MD);
2983  }
2984  
2985  void CodeGenModule::EmitDeferred() {
2986    // Emit deferred declare target declarations.
2987    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2988      getOpenMPRuntime().emitDeferredTargetDecls();
2989  
2990    // Emit code for any potentially referenced deferred decls.  Since a
2991    // previously unused static decl may become used during the generation of code
2992    // for a static function, iterate until no changes are made.
2993  
2994    if (!DeferredVTables.empty()) {
2995      EmitDeferredVTables();
2996  
2997      // Emitting a vtable doesn't directly cause more vtables to
2998      // become deferred, although it can cause functions to be
2999      // emitted that then need those vtables.
3000      assert(DeferredVTables.empty());
3001    }
3002  
3003    // Emit CUDA/HIP static device variables referenced by host code only.
3004    // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3005    // needed for further handling.
3006    if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3007      llvm::append_range(DeferredDeclsToEmit,
3008                         getContext().CUDADeviceVarODRUsedByHost);
3009  
3010    // Stop if we're out of both deferred vtables and deferred declarations.
3011    if (DeferredDeclsToEmit.empty())
3012      return;
3013  
3014    // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3015    // work, it will not interfere with this.
3016    std::vector<GlobalDecl> CurDeclsToEmit;
3017    CurDeclsToEmit.swap(DeferredDeclsToEmit);
3018  
3019    for (GlobalDecl &D : CurDeclsToEmit) {
3020      // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3021      // to get GlobalValue with exactly the type we need, not something that
3022      // might had been created for another decl with the same mangled name but
3023      // different type.
3024      llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3025          GetAddrOfGlobal(D, ForDefinition));
3026  
3027      // In case of different address spaces, we may still get a cast, even with
3028      // IsForDefinition equal to true. Query mangled names table to get
3029      // GlobalValue.
3030      if (!GV)
3031        GV = GetGlobalValue(getMangledName(D));
3032  
3033      // Make sure GetGlobalValue returned non-null.
3034      assert(GV);
3035  
3036      // Check to see if we've already emitted this.  This is necessary
3037      // for a couple of reasons: first, decls can end up in the
3038      // deferred-decls queue multiple times, and second, decls can end
3039      // up with definitions in unusual ways (e.g. by an extern inline
3040      // function acquiring a strong function redefinition).  Just
3041      // ignore these cases.
3042      if (!GV->isDeclaration())
3043        continue;
3044  
3045      // If this is OpenMP, check if it is legal to emit this global normally.
3046      if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3047        continue;
3048  
3049      // Otherwise, emit the definition and move on to the next one.
3050      EmitGlobalDefinition(D, GV);
3051  
3052      // If we found out that we need to emit more decls, do that recursively.
3053      // This has the advantage that the decls are emitted in a DFS and related
3054      // ones are close together, which is convenient for testing.
3055      if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3056        EmitDeferred();
3057        assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3058      }
3059    }
3060  }
3061  
3062  void CodeGenModule::EmitVTablesOpportunistically() {
3063    // Try to emit external vtables as available_externally if they have emitted
3064    // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3065    // is not allowed to create new references to things that need to be emitted
3066    // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3067  
3068    assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3069           && "Only emit opportunistic vtables with optimizations");
3070  
3071    for (const CXXRecordDecl *RD : OpportunisticVTables) {
3072      assert(getVTables().isVTableExternal(RD) &&
3073             "This queue should only contain external vtables");
3074      if (getCXXABI().canSpeculativelyEmitVTable(RD))
3075        VTables.GenerateClassData(RD);
3076    }
3077    OpportunisticVTables.clear();
3078  }
3079  
3080  void CodeGenModule::EmitGlobalAnnotations() {
3081    if (Annotations.empty())
3082      return;
3083  
3084    // Create a new global variable for the ConstantStruct in the Module.
3085    llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3086      Annotations[0]->getType(), Annotations.size()), Annotations);
3087    auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3088                                        llvm::GlobalValue::AppendingLinkage,
3089                                        Array, "llvm.global.annotations");
3090    gv->setSection(AnnotationSection);
3091  }
3092  
3093  llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3094    llvm::Constant *&AStr = AnnotationStrings[Str];
3095    if (AStr)
3096      return AStr;
3097  
3098    // Not found yet, create a new global.
3099    llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3100    auto *gv = new llvm::GlobalVariable(
3101        getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3102        ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3103        ConstGlobalsPtrTy->getAddressSpace());
3104    gv->setSection(AnnotationSection);
3105    gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3106    AStr = gv;
3107    return gv;
3108  }
3109  
3110  llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3111    SourceManager &SM = getContext().getSourceManager();
3112    PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3113    if (PLoc.isValid())
3114      return EmitAnnotationString(PLoc.getFilename());
3115    return EmitAnnotationString(SM.getBufferName(Loc));
3116  }
3117  
3118  llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3119    SourceManager &SM = getContext().getSourceManager();
3120    PresumedLoc PLoc = SM.getPresumedLoc(L);
3121    unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3122      SM.getExpansionLineNumber(L);
3123    return llvm::ConstantInt::get(Int32Ty, LineNo);
3124  }
3125  
3126  llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3127    ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3128    if (Exprs.empty())
3129      return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3130  
3131    llvm::FoldingSetNodeID ID;
3132    for (Expr *E : Exprs) {
3133      ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3134    }
3135    llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3136    if (Lookup)
3137      return Lookup;
3138  
3139    llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3140    LLVMArgs.reserve(Exprs.size());
3141    ConstantEmitter ConstEmiter(*this);
3142    llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3143      const auto *CE = cast<clang::ConstantExpr>(E);
3144      return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3145                                      CE->getType());
3146    });
3147    auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3148    auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3149                                        llvm::GlobalValue::PrivateLinkage, Struct,
3150                                        ".args");
3151    GV->setSection(AnnotationSection);
3152    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3153    auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
3154  
3155    Lookup = Bitcasted;
3156    return Bitcasted;
3157  }
3158  
3159  llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3160                                                  const AnnotateAttr *AA,
3161                                                  SourceLocation L) {
3162    // Get the globals for file name, annotation, and the line number.
3163    llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3164                   *UnitGV = EmitAnnotationUnit(L),
3165                   *LineNoCst = EmitAnnotationLineNo(L),
3166                   *Args = EmitAnnotationArgs(AA);
3167  
3168    llvm::Constant *GVInGlobalsAS = GV;
3169    if (GV->getAddressSpace() !=
3170        getDataLayout().getDefaultGlobalsAddressSpace()) {
3171      GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3172          GV, GV->getValueType()->getPointerTo(
3173                  getDataLayout().getDefaultGlobalsAddressSpace()));
3174    }
3175  
3176    // Create the ConstantStruct for the global annotation.
3177    llvm::Constant *Fields[] = {
3178        llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
3179        llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
3180        llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
3181        LineNoCst,
3182        Args,
3183    };
3184    return llvm::ConstantStruct::getAnon(Fields);
3185  }
3186  
3187  void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3188                                           llvm::GlobalValue *GV) {
3189    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3190    // Get the struct elements for these annotations.
3191    for (const auto *I : D->specific_attrs<AnnotateAttr>())
3192      Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3193  }
3194  
3195  bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3196                                         SourceLocation Loc) const {
3197    const auto &NoSanitizeL = getContext().getNoSanitizeList();
3198    // NoSanitize by function name.
3199    if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3200      return true;
3201    // NoSanitize by location. Check "mainfile" prefix.
3202    auto &SM = Context.getSourceManager();
3203    const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
3204    if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3205      return true;
3206  
3207    // Check "src" prefix.
3208    if (Loc.isValid())
3209      return NoSanitizeL.containsLocation(Kind, Loc);
3210    // If location is unknown, this may be a compiler-generated function. Assume
3211    // it's located in the main file.
3212    return NoSanitizeL.containsFile(Kind, MainFile.getName());
3213  }
3214  
3215  bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3216                                         llvm::GlobalVariable *GV,
3217                                         SourceLocation Loc, QualType Ty,
3218                                         StringRef Category) const {
3219    const auto &NoSanitizeL = getContext().getNoSanitizeList();
3220    if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3221      return true;
3222    auto &SM = Context.getSourceManager();
3223    if (NoSanitizeL.containsMainFile(
3224            Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
3225      return true;
3226    if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3227      return true;
3228  
3229    // Check global type.
3230    if (!Ty.isNull()) {
3231      // Drill down the array types: if global variable of a fixed type is
3232      // not sanitized, we also don't instrument arrays of them.
3233      while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3234        Ty = AT->getElementType();
3235      Ty = Ty.getCanonicalType().getUnqualifiedType();
3236      // Only record types (classes, structs etc.) are ignored.
3237      if (Ty->isRecordType()) {
3238        std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3239        if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3240          return true;
3241      }
3242    }
3243    return false;
3244  }
3245  
3246  bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3247                                     StringRef Category) const {
3248    const auto &XRayFilter = getContext().getXRayFilter();
3249    using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3250    auto Attr = ImbueAttr::NONE;
3251    if (Loc.isValid())
3252      Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3253    if (Attr == ImbueAttr::NONE)
3254      Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3255    switch (Attr) {
3256    case ImbueAttr::NONE:
3257      return false;
3258    case ImbueAttr::ALWAYS:
3259      Fn->addFnAttr("function-instrument", "xray-always");
3260      break;
3261    case ImbueAttr::ALWAYS_ARG1:
3262      Fn->addFnAttr("function-instrument", "xray-always");
3263      Fn->addFnAttr("xray-log-args", "1");
3264      break;
3265    case ImbueAttr::NEVER:
3266      Fn->addFnAttr("function-instrument", "xray-never");
3267      break;
3268    }
3269    return true;
3270  }
3271  
3272  ProfileList::ExclusionType
3273  CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3274                                                SourceLocation Loc) const {
3275    const auto &ProfileList = getContext().getProfileList();
3276    // If the profile list is empty, then instrument everything.
3277    if (ProfileList.isEmpty())
3278      return ProfileList::Allow;
3279    CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3280    // First, check the function name.
3281    if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3282      return *V;
3283    // Next, check the source location.
3284    if (Loc.isValid())
3285      if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3286        return *V;
3287    // If location is unknown, this may be a compiler-generated function. Assume
3288    // it's located in the main file.
3289    auto &SM = Context.getSourceManager();
3290    if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3291      if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3292        return *V;
3293    return ProfileList.getDefault(Kind);
3294  }
3295  
3296  ProfileList::ExclusionType
3297  CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3298                                                   SourceLocation Loc) const {
3299    auto V = isFunctionBlockedByProfileList(Fn, Loc);
3300    if (V != ProfileList::Allow)
3301      return V;
3302  
3303    auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3304    if (NumGroups > 1) {
3305      auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3306      if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3307        return ProfileList::Skip;
3308    }
3309    return ProfileList::Allow;
3310  }
3311  
3312  bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3313    // Never defer when EmitAllDecls is specified.
3314    if (LangOpts.EmitAllDecls)
3315      return true;
3316  
3317    const auto *VD = dyn_cast<VarDecl>(Global);
3318    if (VD &&
3319        ((CodeGenOpts.KeepPersistentStorageVariables &&
3320          (VD->getStorageDuration() == SD_Static ||
3321           VD->getStorageDuration() == SD_Thread)) ||
3322         (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3323          VD->getType().isConstQualified())))
3324      return true;
3325  
3326    return getContext().DeclMustBeEmitted(Global);
3327  }
3328  
3329  bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3330    // In OpenMP 5.0 variables and function may be marked as
3331    // device_type(host/nohost) and we should not emit them eagerly unless we sure
3332    // that they must be emitted on the host/device. To be sure we need to have
3333    // seen a declare target with an explicit mentioning of the function, we know
3334    // we have if the level of the declare target attribute is -1. Note that we
3335    // check somewhere else if we should emit this at all.
3336    if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3337      std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3338          OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3339      if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3340        return false;
3341    }
3342  
3343    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3344      if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3345        // Implicit template instantiations may change linkage if they are later
3346        // explicitly instantiated, so they should not be emitted eagerly.
3347        return false;
3348    }
3349    if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3350      if (Context.getInlineVariableDefinitionKind(VD) ==
3351          ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3352        // A definition of an inline constexpr static data member may change
3353        // linkage later if it's redeclared outside the class.
3354        return false;
3355      if (CXX20ModuleInits && VD->getOwningModule() &&
3356          !VD->getOwningModule()->isModuleMapModule()) {
3357        // For CXX20, module-owned initializers need to be deferred, since it is
3358        // not known at this point if they will be run for the current module or
3359        // as part of the initializer for an imported one.
3360        return false;
3361      }
3362    }
3363    // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3364    // codegen for global variables, because they may be marked as threadprivate.
3365    if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3366        getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3367        !isTypeConstant(Global->getType(), false, false) &&
3368        !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3369      return false;
3370  
3371    return true;
3372  }
3373  
3374  ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3375    StringRef Name = getMangledName(GD);
3376  
3377    // The UUID descriptor should be pointer aligned.
3378    CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3379  
3380    // Look for an existing global.
3381    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3382      return ConstantAddress(GV, GV->getValueType(), Alignment);
3383  
3384    ConstantEmitter Emitter(*this);
3385    llvm::Constant *Init;
3386  
3387    APValue &V = GD->getAsAPValue();
3388    if (!V.isAbsent()) {
3389      // If possible, emit the APValue version of the initializer. In particular,
3390      // this gets the type of the constant right.
3391      Init = Emitter.emitForInitializer(
3392          GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3393    } else {
3394      // As a fallback, directly construct the constant.
3395      // FIXME: This may get padding wrong under esoteric struct layout rules.
3396      // MSVC appears to create a complete type 'struct __s_GUID' that it
3397      // presumably uses to represent these constants.
3398      MSGuidDecl::Parts Parts = GD->getParts();
3399      llvm::Constant *Fields[4] = {
3400          llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3401          llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3402          llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3403          llvm::ConstantDataArray::getRaw(
3404              StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3405              Int8Ty)};
3406      Init = llvm::ConstantStruct::getAnon(Fields);
3407    }
3408  
3409    auto *GV = new llvm::GlobalVariable(
3410        getModule(), Init->getType(),
3411        /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3412    if (supportsCOMDAT())
3413      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3414    setDSOLocal(GV);
3415  
3416    if (!V.isAbsent()) {
3417      Emitter.finalize(GV);
3418      return ConstantAddress(GV, GV->getValueType(), Alignment);
3419    }
3420  
3421    llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3422    llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3423        GV, Ty->getPointerTo(GV->getAddressSpace()));
3424    return ConstantAddress(Addr, Ty, Alignment);
3425  }
3426  
3427  ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3428      const UnnamedGlobalConstantDecl *GCD) {
3429    CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3430  
3431    llvm::GlobalVariable **Entry = nullptr;
3432    Entry = &UnnamedGlobalConstantDeclMap[GCD];
3433    if (*Entry)
3434      return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3435  
3436    ConstantEmitter Emitter(*this);
3437    llvm::Constant *Init;
3438  
3439    const APValue &V = GCD->getValue();
3440  
3441    assert(!V.isAbsent());
3442    Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3443                                      GCD->getType());
3444  
3445    auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3446                                        /*isConstant=*/true,
3447                                        llvm::GlobalValue::PrivateLinkage, Init,
3448                                        ".constant");
3449    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3450    GV->setAlignment(Alignment.getAsAlign());
3451  
3452    Emitter.finalize(GV);
3453  
3454    *Entry = GV;
3455    return ConstantAddress(GV, GV->getValueType(), Alignment);
3456  }
3457  
3458  ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3459      const TemplateParamObjectDecl *TPO) {
3460    StringRef Name = getMangledName(TPO);
3461    CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3462  
3463    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3464      return ConstantAddress(GV, GV->getValueType(), Alignment);
3465  
3466    ConstantEmitter Emitter(*this);
3467    llvm::Constant *Init = Emitter.emitForInitializer(
3468          TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3469  
3470    if (!Init) {
3471      ErrorUnsupported(TPO, "template parameter object");
3472      return ConstantAddress::invalid();
3473    }
3474  
3475    llvm::GlobalValue::LinkageTypes Linkage =
3476        isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3477            ? llvm::GlobalValue::LinkOnceODRLinkage
3478            : llvm::GlobalValue::InternalLinkage;
3479    auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3480                                        /*isConstant=*/true, Linkage, Init, Name);
3481    setGVProperties(GV, TPO);
3482    if (supportsCOMDAT())
3483      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3484    Emitter.finalize(GV);
3485  
3486    return ConstantAddress(GV, GV->getValueType(), Alignment);
3487  }
3488  
3489  ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3490    const AliasAttr *AA = VD->getAttr<AliasAttr>();
3491    assert(AA && "No alias?");
3492  
3493    CharUnits Alignment = getContext().getDeclAlign(VD);
3494    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3495  
3496    // See if there is already something with the target's name in the module.
3497    llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3498    if (Entry) {
3499      unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3500      auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3501      return ConstantAddress(Ptr, DeclTy, Alignment);
3502    }
3503  
3504    llvm::Constant *Aliasee;
3505    if (isa<llvm::FunctionType>(DeclTy))
3506      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3507                                        GlobalDecl(cast<FunctionDecl>(VD)),
3508                                        /*ForVTable=*/false);
3509    else
3510      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3511                                      nullptr);
3512  
3513    auto *F = cast<llvm::GlobalValue>(Aliasee);
3514    F->setLinkage(llvm::Function::ExternalWeakLinkage);
3515    WeakRefReferences.insert(F);
3516  
3517    return ConstantAddress(Aliasee, DeclTy, Alignment);
3518  }
3519  
3520  void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3521    const auto *Global = cast<ValueDecl>(GD.getDecl());
3522  
3523    // Weak references don't produce any output by themselves.
3524    if (Global->hasAttr<WeakRefAttr>())
3525      return;
3526  
3527    // If this is an alias definition (which otherwise looks like a declaration)
3528    // emit it now.
3529    if (Global->hasAttr<AliasAttr>())
3530      return EmitAliasDefinition(GD);
3531  
3532    // IFunc like an alias whose value is resolved at runtime by calling resolver.
3533    if (Global->hasAttr<IFuncAttr>())
3534      return emitIFuncDefinition(GD);
3535  
3536    // If this is a cpu_dispatch multiversion function, emit the resolver.
3537    if (Global->hasAttr<CPUDispatchAttr>())
3538      return emitCPUDispatchDefinition(GD);
3539  
3540    // If this is CUDA, be selective about which declarations we emit.
3541    if (LangOpts.CUDA) {
3542      if (LangOpts.CUDAIsDevice) {
3543        if (!Global->hasAttr<CUDADeviceAttr>() &&
3544            !Global->hasAttr<CUDAGlobalAttr>() &&
3545            !Global->hasAttr<CUDAConstantAttr>() &&
3546            !Global->hasAttr<CUDASharedAttr>() &&
3547            !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3548            !Global->getType()->isCUDADeviceBuiltinTextureType())
3549          return;
3550      } else {
3551        // We need to emit host-side 'shadows' for all global
3552        // device-side variables because the CUDA runtime needs their
3553        // size and host-side address in order to provide access to
3554        // their device-side incarnations.
3555  
3556        // So device-only functions are the only things we skip.
3557        if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3558            Global->hasAttr<CUDADeviceAttr>())
3559          return;
3560  
3561        assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3562               "Expected Variable or Function");
3563      }
3564    }
3565  
3566    if (LangOpts.OpenMP) {
3567      // If this is OpenMP, check if it is legal to emit this global normally.
3568      if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3569        return;
3570      if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3571        if (MustBeEmitted(Global))
3572          EmitOMPDeclareReduction(DRD);
3573        return;
3574      }
3575      if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3576        if (MustBeEmitted(Global))
3577          EmitOMPDeclareMapper(DMD);
3578        return;
3579      }
3580    }
3581  
3582    // Ignore declarations, they will be emitted on their first use.
3583    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3584      // Forward declarations are emitted lazily on first use.
3585      if (!FD->doesThisDeclarationHaveABody()) {
3586        if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3587          return;
3588  
3589        StringRef MangledName = getMangledName(GD);
3590  
3591        // Compute the function info and LLVM type.
3592        const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3593        llvm::Type *Ty = getTypes().GetFunctionType(FI);
3594  
3595        GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3596                                /*DontDefer=*/false);
3597        return;
3598      }
3599    } else {
3600      const auto *VD = cast<VarDecl>(Global);
3601      assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3602      if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3603          !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3604        if (LangOpts.OpenMP) {
3605          // Emit declaration of the must-be-emitted declare target variable.
3606          if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3607                  OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3608  
3609            // If this variable has external storage and doesn't require special
3610            // link handling we defer to its canonical definition.
3611            if (VD->hasExternalStorage() &&
3612                Res != OMPDeclareTargetDeclAttr::MT_Link)
3613              return;
3614  
3615            bool UnifiedMemoryEnabled =
3616                getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3617            if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3618                 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3619                !UnifiedMemoryEnabled) {
3620              (void)GetAddrOfGlobalVar(VD);
3621            } else {
3622              assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3623                      ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3624                        *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3625                       UnifiedMemoryEnabled)) &&
3626                     "Link clause or to clause with unified memory expected.");
3627              (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3628            }
3629  
3630            return;
3631          }
3632        }
3633        // If this declaration may have caused an inline variable definition to
3634        // change linkage, make sure that it's emitted.
3635        if (Context.getInlineVariableDefinitionKind(VD) ==
3636            ASTContext::InlineVariableDefinitionKind::Strong)
3637          GetAddrOfGlobalVar(VD);
3638        return;
3639      }
3640    }
3641  
3642    // Defer code generation to first use when possible, e.g. if this is an inline
3643    // function. If the global must always be emitted, do it eagerly if possible
3644    // to benefit from cache locality.
3645    if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3646      // Emit the definition if it can't be deferred.
3647      EmitGlobalDefinition(GD);
3648      addEmittedDeferredDecl(GD);
3649      return;
3650    }
3651  
3652    // If we're deferring emission of a C++ variable with an
3653    // initializer, remember the order in which it appeared in the file.
3654    if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3655        cast<VarDecl>(Global)->hasInit()) {
3656      DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3657      CXXGlobalInits.push_back(nullptr);
3658    }
3659  
3660    StringRef MangledName = getMangledName(GD);
3661    if (GetGlobalValue(MangledName) != nullptr) {
3662      // The value has already been used and should therefore be emitted.
3663      addDeferredDeclToEmit(GD);
3664    } else if (MustBeEmitted(Global)) {
3665      // The value must be emitted, but cannot be emitted eagerly.
3666      assert(!MayBeEmittedEagerly(Global));
3667      addDeferredDeclToEmit(GD);
3668    } else {
3669      // Otherwise, remember that we saw a deferred decl with this name.  The
3670      // first use of the mangled name will cause it to move into
3671      // DeferredDeclsToEmit.
3672      DeferredDecls[MangledName] = GD;
3673    }
3674  }
3675  
3676  // Check if T is a class type with a destructor that's not dllimport.
3677  static bool HasNonDllImportDtor(QualType T) {
3678    if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3679      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3680        if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3681          return true;
3682  
3683    return false;
3684  }
3685  
3686  namespace {
3687    struct FunctionIsDirectlyRecursive
3688        : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3689      const StringRef Name;
3690      const Builtin::Context &BI;
3691      FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3692          : Name(N), BI(C) {}
3693  
3694      bool VisitCallExpr(const CallExpr *E) {
3695        const FunctionDecl *FD = E->getDirectCallee();
3696        if (!FD)
3697          return false;
3698        AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3699        if (Attr && Name == Attr->getLabel())
3700          return true;
3701        unsigned BuiltinID = FD->getBuiltinID();
3702        if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3703          return false;
3704        StringRef BuiltinName = BI.getName(BuiltinID);
3705        if (BuiltinName.startswith("__builtin_") &&
3706            Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3707          return true;
3708        }
3709        return false;
3710      }
3711  
3712      bool VisitStmt(const Stmt *S) {
3713        for (const Stmt *Child : S->children())
3714          if (Child && this->Visit(Child))
3715            return true;
3716        return false;
3717      }
3718    };
3719  
3720    // Make sure we're not referencing non-imported vars or functions.
3721    struct DLLImportFunctionVisitor
3722        : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3723      bool SafeToInline = true;
3724  
3725      bool shouldVisitImplicitCode() const { return true; }
3726  
3727      bool VisitVarDecl(VarDecl *VD) {
3728        if (VD->getTLSKind()) {
3729          // A thread-local variable cannot be imported.
3730          SafeToInline = false;
3731          return SafeToInline;
3732        }
3733  
3734        // A variable definition might imply a destructor call.
3735        if (VD->isThisDeclarationADefinition())
3736          SafeToInline = !HasNonDllImportDtor(VD->getType());
3737  
3738        return SafeToInline;
3739      }
3740  
3741      bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3742        if (const auto *D = E->getTemporary()->getDestructor())
3743          SafeToInline = D->hasAttr<DLLImportAttr>();
3744        return SafeToInline;
3745      }
3746  
3747      bool VisitDeclRefExpr(DeclRefExpr *E) {
3748        ValueDecl *VD = E->getDecl();
3749        if (isa<FunctionDecl>(VD))
3750          SafeToInline = VD->hasAttr<DLLImportAttr>();
3751        else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3752          SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3753        return SafeToInline;
3754      }
3755  
3756      bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3757        SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3758        return SafeToInline;
3759      }
3760  
3761      bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3762        CXXMethodDecl *M = E->getMethodDecl();
3763        if (!M) {
3764          // Call through a pointer to member function. This is safe to inline.
3765          SafeToInline = true;
3766        } else {
3767          SafeToInline = M->hasAttr<DLLImportAttr>();
3768        }
3769        return SafeToInline;
3770      }
3771  
3772      bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3773        SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3774        return SafeToInline;
3775      }
3776  
3777      bool VisitCXXNewExpr(CXXNewExpr *E) {
3778        SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3779        return SafeToInline;
3780      }
3781    };
3782  }
3783  
3784  // isTriviallyRecursive - Check if this function calls another
3785  // decl that, because of the asm attribute or the other decl being a builtin,
3786  // ends up pointing to itself.
3787  bool
3788  CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3789    StringRef Name;
3790    if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3791      // asm labels are a special kind of mangling we have to support.
3792      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3793      if (!Attr)
3794        return false;
3795      Name = Attr->getLabel();
3796    } else {
3797      Name = FD->getName();
3798    }
3799  
3800    FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3801    const Stmt *Body = FD->getBody();
3802    return Body ? Walker.Visit(Body) : false;
3803  }
3804  
3805  bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3806    if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3807      return true;
3808    const auto *F = cast<FunctionDecl>(GD.getDecl());
3809    if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3810      return false;
3811  
3812    if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3813      // Check whether it would be safe to inline this dllimport function.
3814      DLLImportFunctionVisitor Visitor;
3815      Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3816      if (!Visitor.SafeToInline)
3817        return false;
3818  
3819      if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3820        // Implicit destructor invocations aren't captured in the AST, so the
3821        // check above can't see them. Check for them manually here.
3822        for (const Decl *Member : Dtor->getParent()->decls())
3823          if (isa<FieldDecl>(Member))
3824            if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3825              return false;
3826        for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3827          if (HasNonDllImportDtor(B.getType()))
3828            return false;
3829      }
3830    }
3831  
3832    // Inline builtins declaration must be emitted. They often are fortified
3833    // functions.
3834    if (F->isInlineBuiltinDeclaration())
3835      return true;
3836  
3837    // PR9614. Avoid cases where the source code is lying to us. An available
3838    // externally function should have an equivalent function somewhere else,
3839    // but a function that calls itself through asm label/`__builtin_` trickery is
3840    // clearly not equivalent to the real implementation.
3841    // This happens in glibc's btowc and in some configure checks.
3842    return !isTriviallyRecursive(F);
3843  }
3844  
3845  bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3846    return CodeGenOpts.OptimizationLevel > 0;
3847  }
3848  
3849  void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3850                                                         llvm::GlobalValue *GV) {
3851    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3852  
3853    if (FD->isCPUSpecificMultiVersion()) {
3854      auto *Spec = FD->getAttr<CPUSpecificAttr>();
3855      for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3856        EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3857    } else if (FD->isTargetClonesMultiVersion()) {
3858      auto *Clone = FD->getAttr<TargetClonesAttr>();
3859      for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3860        if (Clone->isFirstOfVersion(I))
3861          EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3862      // Ensure that the resolver function is also emitted.
3863      GetOrCreateMultiVersionResolver(GD);
3864    } else
3865      EmitGlobalFunctionDefinition(GD, GV);
3866  }
3867  
3868  void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3869    const auto *D = cast<ValueDecl>(GD.getDecl());
3870  
3871    PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3872                                   Context.getSourceManager(),
3873                                   "Generating code for declaration");
3874  
3875    if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3876      // At -O0, don't generate IR for functions with available_externally
3877      // linkage.
3878      if (!shouldEmitFunction(GD))
3879        return;
3880  
3881      llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3882        std::string Name;
3883        llvm::raw_string_ostream OS(Name);
3884        FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3885                                 /*Qualified=*/true);
3886        return Name;
3887      });
3888  
3889      if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3890        // Make sure to emit the definition(s) before we emit the thunks.
3891        // This is necessary for the generation of certain thunks.
3892        if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3893          ABI->emitCXXStructor(GD);
3894        else if (FD->isMultiVersion())
3895          EmitMultiVersionFunctionDefinition(GD, GV);
3896        else
3897          EmitGlobalFunctionDefinition(GD, GV);
3898  
3899        if (Method->isVirtual())
3900          getVTables().EmitThunks(GD);
3901  
3902        return;
3903      }
3904  
3905      if (FD->isMultiVersion())
3906        return EmitMultiVersionFunctionDefinition(GD, GV);
3907      return EmitGlobalFunctionDefinition(GD, GV);
3908    }
3909  
3910    if (const auto *VD = dyn_cast<VarDecl>(D))
3911      return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3912  
3913    llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3914  }
3915  
3916  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3917                                                        llvm::Function *NewFn);
3918  
3919  static unsigned
3920  TargetMVPriority(const TargetInfo &TI,
3921                   const CodeGenFunction::MultiVersionResolverOption &RO) {
3922    unsigned Priority = 0;
3923    unsigned NumFeatures = 0;
3924    for (StringRef Feat : RO.Conditions.Features) {
3925      Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3926      NumFeatures++;
3927    }
3928  
3929    if (!RO.Conditions.Architecture.empty())
3930      Priority = std::max(
3931          Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3932  
3933    Priority += TI.multiVersionFeatureCost() * NumFeatures;
3934  
3935    return Priority;
3936  }
3937  
3938  // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3939  // TU can forward declare the function without causing problems.  Particularly
3940  // in the cases of CPUDispatch, this causes issues. This also makes sure we
3941  // work with internal linkage functions, so that the same function name can be
3942  // used with internal linkage in multiple TUs.
3943  llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3944                                                         GlobalDecl GD) {
3945    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3946    if (FD->getFormalLinkage() == InternalLinkage)
3947      return llvm::GlobalValue::InternalLinkage;
3948    return llvm::GlobalValue::WeakODRLinkage;
3949  }
3950  
3951  void CodeGenModule::emitMultiVersionFunctions() {
3952    std::vector<GlobalDecl> MVFuncsToEmit;
3953    MultiVersionFuncs.swap(MVFuncsToEmit);
3954    for (GlobalDecl GD : MVFuncsToEmit) {
3955      const auto *FD = cast<FunctionDecl>(GD.getDecl());
3956      assert(FD && "Expected a FunctionDecl");
3957  
3958      SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3959      if (FD->isTargetMultiVersion()) {
3960        getContext().forEachMultiversionedFunctionVersion(
3961            FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3962              GlobalDecl CurGD{
3963                  (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3964              StringRef MangledName = getMangledName(CurGD);
3965              llvm::Constant *Func = GetGlobalValue(MangledName);
3966              if (!Func) {
3967                if (CurFD->isDefined()) {
3968                  EmitGlobalFunctionDefinition(CurGD, nullptr);
3969                  Func = GetGlobalValue(MangledName);
3970                } else {
3971                  const CGFunctionInfo &FI =
3972                      getTypes().arrangeGlobalDeclaration(GD);
3973                  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3974                  Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3975                                           /*DontDefer=*/false, ForDefinition);
3976                }
3977                assert(Func && "This should have just been created");
3978              }
3979              if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3980                const auto *TA = CurFD->getAttr<TargetAttr>();
3981                llvm::SmallVector<StringRef, 8> Feats;
3982                TA->getAddedFeatures(Feats);
3983                Options.emplace_back(cast<llvm::Function>(Func),
3984                                     TA->getArchitecture(), Feats);
3985              } else {
3986                const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3987                llvm::SmallVector<StringRef, 8> Feats;
3988                TVA->getFeatures(Feats);
3989                Options.emplace_back(cast<llvm::Function>(Func),
3990                                     /*Architecture*/ "", Feats);
3991              }
3992            });
3993      } else if (FD->isTargetClonesMultiVersion()) {
3994        const auto *TC = FD->getAttr<TargetClonesAttr>();
3995        for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3996             ++VersionIndex) {
3997          if (!TC->isFirstOfVersion(VersionIndex))
3998            continue;
3999          GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4000                           VersionIndex};
4001          StringRef Version = TC->getFeatureStr(VersionIndex);
4002          StringRef MangledName = getMangledName(CurGD);
4003          llvm::Constant *Func = GetGlobalValue(MangledName);
4004          if (!Func) {
4005            if (FD->isDefined()) {
4006              EmitGlobalFunctionDefinition(CurGD, nullptr);
4007              Func = GetGlobalValue(MangledName);
4008            } else {
4009              const CGFunctionInfo &FI =
4010                  getTypes().arrangeGlobalDeclaration(CurGD);
4011              llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4012              Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4013                                       /*DontDefer=*/false, ForDefinition);
4014            }
4015            assert(Func && "This should have just been created");
4016          }
4017  
4018          StringRef Architecture;
4019          llvm::SmallVector<StringRef, 1> Feature;
4020  
4021          if (getTarget().getTriple().isAArch64()) {
4022            if (Version != "default") {
4023              llvm::SmallVector<StringRef, 8> VerFeats;
4024              Version.split(VerFeats, "+");
4025              for (auto &CurFeat : VerFeats)
4026                Feature.push_back(CurFeat.trim());
4027            }
4028          } else {
4029            if (Version.startswith("arch="))
4030              Architecture = Version.drop_front(sizeof("arch=") - 1);
4031            else if (Version != "default")
4032              Feature.push_back(Version);
4033          }
4034  
4035          Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4036        }
4037      } else {
4038        assert(0 && "Expected a target or target_clones multiversion function");
4039        continue;
4040      }
4041  
4042      llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4043      if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4044        ResolverConstant = IFunc->getResolver();
4045      llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4046  
4047      ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4048  
4049      if (supportsCOMDAT())
4050        ResolverFunc->setComdat(
4051            getModule().getOrInsertComdat(ResolverFunc->getName()));
4052  
4053      const TargetInfo &TI = getTarget();
4054      llvm::stable_sort(
4055          Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4056                         const CodeGenFunction::MultiVersionResolverOption &RHS) {
4057            return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4058          });
4059      CodeGenFunction CGF(*this);
4060      CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4061    }
4062  
4063    // Ensure that any additions to the deferred decls list caused by emitting a
4064    // variant are emitted.  This can happen when the variant itself is inline and
4065    // calls a function without linkage.
4066    if (!MVFuncsToEmit.empty())
4067      EmitDeferred();
4068  
4069    // Ensure that any additions to the multiversion funcs list from either the
4070    // deferred decls or the multiversion functions themselves are emitted.
4071    if (!MultiVersionFuncs.empty())
4072      emitMultiVersionFunctions();
4073  }
4074  
4075  void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4076    const auto *FD = cast<FunctionDecl>(GD.getDecl());
4077    assert(FD && "Not a FunctionDecl?");
4078    assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4079    const auto *DD = FD->getAttr<CPUDispatchAttr>();
4080    assert(DD && "Not a cpu_dispatch Function?");
4081  
4082    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4083    llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4084  
4085    StringRef ResolverName = getMangledName(GD);
4086    UpdateMultiVersionNames(GD, FD, ResolverName);
4087  
4088    llvm::Type *ResolverType;
4089    GlobalDecl ResolverGD;
4090    if (getTarget().supportsIFunc()) {
4091      ResolverType = llvm::FunctionType::get(
4092          llvm::PointerType::get(DeclTy,
4093                                 getTypes().getTargetAddressSpace(FD->getType())),
4094          false);
4095    }
4096    else {
4097      ResolverType = DeclTy;
4098      ResolverGD = GD;
4099    }
4100  
4101    auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4102        ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4103    ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4104    if (supportsCOMDAT())
4105      ResolverFunc->setComdat(
4106          getModule().getOrInsertComdat(ResolverFunc->getName()));
4107  
4108    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4109    const TargetInfo &Target = getTarget();
4110    unsigned Index = 0;
4111    for (const IdentifierInfo *II : DD->cpus()) {
4112      // Get the name of the target function so we can look it up/create it.
4113      std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4114                                getCPUSpecificMangling(*this, II->getName());
4115  
4116      llvm::Constant *Func = GetGlobalValue(MangledName);
4117  
4118      if (!Func) {
4119        GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4120        if (ExistingDecl.getDecl() &&
4121            ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4122          EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4123          Func = GetGlobalValue(MangledName);
4124        } else {
4125          if (!ExistingDecl.getDecl())
4126            ExistingDecl = GD.getWithMultiVersionIndex(Index);
4127  
4128        Func = GetOrCreateLLVMFunction(
4129            MangledName, DeclTy, ExistingDecl,
4130            /*ForVTable=*/false, /*DontDefer=*/true,
4131            /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4132        }
4133      }
4134  
4135      llvm::SmallVector<StringRef, 32> Features;
4136      Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4137      llvm::transform(Features, Features.begin(),
4138                      [](StringRef Str) { return Str.substr(1); });
4139      llvm::erase_if(Features, [&Target](StringRef Feat) {
4140        return !Target.validateCpuSupports(Feat);
4141      });
4142      Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4143      ++Index;
4144    }
4145  
4146    llvm::stable_sort(
4147        Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4148                    const CodeGenFunction::MultiVersionResolverOption &RHS) {
4149          return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4150                 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4151        });
4152  
4153    // If the list contains multiple 'default' versions, such as when it contains
4154    // 'pentium' and 'generic', don't emit the call to the generic one (since we
4155    // always run on at least a 'pentium'). We do this by deleting the 'least
4156    // advanced' (read, lowest mangling letter).
4157    while (Options.size() > 1 &&
4158           llvm::X86::getCpuSupportsMask(
4159               (Options.end() - 2)->Conditions.Features) == 0) {
4160      StringRef LHSName = (Options.end() - 2)->Function->getName();
4161      StringRef RHSName = (Options.end() - 1)->Function->getName();
4162      if (LHSName.compare(RHSName) < 0)
4163        Options.erase(Options.end() - 2);
4164      else
4165        Options.erase(Options.end() - 1);
4166    }
4167  
4168    CodeGenFunction CGF(*this);
4169    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4170  
4171    if (getTarget().supportsIFunc()) {
4172      llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4173      auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4174  
4175      // Fix up function declarations that were created for cpu_specific before
4176      // cpu_dispatch was known
4177      if (!isa<llvm::GlobalIFunc>(IFunc)) {
4178        assert(cast<llvm::Function>(IFunc)->isDeclaration());
4179        auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4180                                             &getModule());
4181        GI->takeName(IFunc);
4182        IFunc->replaceAllUsesWith(GI);
4183        IFunc->eraseFromParent();
4184        IFunc = GI;
4185      }
4186  
4187      std::string AliasName = getMangledNameImpl(
4188          *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4189      llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4190      if (!AliasFunc) {
4191        auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4192                                             &getModule());
4193        SetCommonAttributes(GD, GA);
4194      }
4195    }
4196  }
4197  
4198  /// If a dispatcher for the specified mangled name is not in the module, create
4199  /// and return an llvm Function with the specified type.
4200  llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4201    const auto *FD = cast<FunctionDecl>(GD.getDecl());
4202    assert(FD && "Not a FunctionDecl?");
4203  
4204    std::string MangledName =
4205        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4206  
4207    // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4208    // a separate resolver).
4209    std::string ResolverName = MangledName;
4210    if (getTarget().supportsIFunc())
4211      ResolverName += ".ifunc";
4212    else if (FD->isTargetMultiVersion())
4213      ResolverName += ".resolver";
4214  
4215    // If the resolver has already been created, just return it.
4216    if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4217      return ResolverGV;
4218  
4219    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4220    llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4221  
4222    // The resolver needs to be created. For target and target_clones, defer
4223    // creation until the end of the TU.
4224    if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4225      MultiVersionFuncs.push_back(GD);
4226  
4227    // For cpu_specific, don't create an ifunc yet because we don't know if the
4228    // cpu_dispatch will be emitted in this translation unit.
4229    if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4230      llvm::Type *ResolverType = llvm::FunctionType::get(
4231          llvm::PointerType::get(DeclTy,
4232                                 getTypes().getTargetAddressSpace(FD->getType())),
4233          false);
4234      llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4235          MangledName + ".resolver", ResolverType, GlobalDecl{},
4236          /*ForVTable=*/false);
4237      llvm::GlobalIFunc *GIF =
4238          llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4239                                    "", Resolver, &getModule());
4240      GIF->setName(ResolverName);
4241      SetCommonAttributes(FD, GIF);
4242  
4243      return GIF;
4244    }
4245  
4246    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4247        ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4248    assert(isa<llvm::GlobalValue>(Resolver) &&
4249           "Resolver should be created for the first time");
4250    SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4251    return Resolver;
4252  }
4253  
4254  /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4255  /// module, create and return an llvm Function with the specified type. If there
4256  /// is something in the module with the specified name, return it potentially
4257  /// bitcasted to the right type.
4258  ///
4259  /// If D is non-null, it specifies a decl that correspond to this.  This is used
4260  /// to set the attributes on the function when it is first created.
4261  llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4262      StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4263      bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4264      ForDefinition_t IsForDefinition) {
4265    const Decl *D = GD.getDecl();
4266  
4267    // Any attempts to use a MultiVersion function should result in retrieving
4268    // the iFunc instead. Name Mangling will handle the rest of the changes.
4269    if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4270      // For the device mark the function as one that should be emitted.
4271      if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4272          !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4273          !DontDefer && !IsForDefinition) {
4274        if (const FunctionDecl *FDDef = FD->getDefinition()) {
4275          GlobalDecl GDDef;
4276          if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4277            GDDef = GlobalDecl(CD, GD.getCtorType());
4278          else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4279            GDDef = GlobalDecl(DD, GD.getDtorType());
4280          else
4281            GDDef = GlobalDecl(FDDef);
4282          EmitGlobal(GDDef);
4283        }
4284      }
4285  
4286      if (FD->isMultiVersion()) {
4287        UpdateMultiVersionNames(GD, FD, MangledName);
4288        if (!IsForDefinition)
4289          return GetOrCreateMultiVersionResolver(GD);
4290      }
4291    }
4292  
4293    // Lookup the entry, lazily creating it if necessary.
4294    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4295    if (Entry) {
4296      if (WeakRefReferences.erase(Entry)) {
4297        const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4298        if (FD && !FD->hasAttr<WeakAttr>())
4299          Entry->setLinkage(llvm::Function::ExternalLinkage);
4300      }
4301  
4302      // Handle dropped DLL attributes.
4303      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4304          !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4305        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4306        setDSOLocal(Entry);
4307      }
4308  
4309      // If there are two attempts to define the same mangled name, issue an
4310      // error.
4311      if (IsForDefinition && !Entry->isDeclaration()) {
4312        GlobalDecl OtherGD;
4313        // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4314        // to make sure that we issue an error only once.
4315        if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4316            (GD.getCanonicalDecl().getDecl() !=
4317             OtherGD.getCanonicalDecl().getDecl()) &&
4318            DiagnosedConflictingDefinitions.insert(GD).second) {
4319          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4320              << MangledName;
4321          getDiags().Report(OtherGD.getDecl()->getLocation(),
4322                            diag::note_previous_definition);
4323        }
4324      }
4325  
4326      if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4327          (Entry->getValueType() == Ty)) {
4328        return Entry;
4329      }
4330  
4331      // Make sure the result is of the correct type.
4332      // (If function is requested for a definition, we always need to create a new
4333      // function, not just return a bitcast.)
4334      if (!IsForDefinition)
4335        return llvm::ConstantExpr::getBitCast(
4336            Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4337    }
4338  
4339    // This function doesn't have a complete type (for example, the return
4340    // type is an incomplete struct). Use a fake type instead, and make
4341    // sure not to try to set attributes.
4342    bool IsIncompleteFunction = false;
4343  
4344    llvm::FunctionType *FTy;
4345    if (isa<llvm::FunctionType>(Ty)) {
4346      FTy = cast<llvm::FunctionType>(Ty);
4347    } else {
4348      FTy = llvm::FunctionType::get(VoidTy, false);
4349      IsIncompleteFunction = true;
4350    }
4351  
4352    llvm::Function *F =
4353        llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4354                               Entry ? StringRef() : MangledName, &getModule());
4355  
4356    // If we already created a function with the same mangled name (but different
4357    // type) before, take its name and add it to the list of functions to be
4358    // replaced with F at the end of CodeGen.
4359    //
4360    // This happens if there is a prototype for a function (e.g. "int f()") and
4361    // then a definition of a different type (e.g. "int f(int x)").
4362    if (Entry) {
4363      F->takeName(Entry);
4364  
4365      // This might be an implementation of a function without a prototype, in
4366      // which case, try to do special replacement of calls which match the new
4367      // prototype.  The really key thing here is that we also potentially drop
4368      // arguments from the call site so as to make a direct call, which makes the
4369      // inliner happier and suppresses a number of optimizer warnings (!) about
4370      // dropping arguments.
4371      if (!Entry->use_empty()) {
4372        ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4373        Entry->removeDeadConstantUsers();
4374      }
4375  
4376      llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4377          F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4378      addGlobalValReplacement(Entry, BC);
4379    }
4380  
4381    assert(F->getName() == MangledName && "name was uniqued!");
4382    if (D)
4383      SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4384    if (ExtraAttrs.hasFnAttrs()) {
4385      llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4386      F->addFnAttrs(B);
4387    }
4388  
4389    if (!DontDefer) {
4390      // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4391      // each other bottoming out with the base dtor.  Therefore we emit non-base
4392      // dtors on usage, even if there is no dtor definition in the TU.
4393      if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4394          getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4395                                             GD.getDtorType()))
4396        addDeferredDeclToEmit(GD);
4397  
4398      // This is the first use or definition of a mangled name.  If there is a
4399      // deferred decl with this name, remember that we need to emit it at the end
4400      // of the file.
4401      auto DDI = DeferredDecls.find(MangledName);
4402      if (DDI != DeferredDecls.end()) {
4403        // Move the potentially referenced deferred decl to the
4404        // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4405        // don't need it anymore).
4406        addDeferredDeclToEmit(DDI->second);
4407        DeferredDecls.erase(DDI);
4408  
4409        // Otherwise, there are cases we have to worry about where we're
4410        // using a declaration for which we must emit a definition but where
4411        // we might not find a top-level definition:
4412        //   - member functions defined inline in their classes
4413        //   - friend functions defined inline in some class
4414        //   - special member functions with implicit definitions
4415        // If we ever change our AST traversal to walk into class methods,
4416        // this will be unnecessary.
4417        //
4418        // We also don't emit a definition for a function if it's going to be an
4419        // entry in a vtable, unless it's already marked as used.
4420      } else if (getLangOpts().CPlusPlus && D) {
4421        // Look for a declaration that's lexically in a record.
4422        for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4423             FD = FD->getPreviousDecl()) {
4424          if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4425            if (FD->doesThisDeclarationHaveABody()) {
4426              addDeferredDeclToEmit(GD.getWithDecl(FD));
4427              break;
4428            }
4429          }
4430        }
4431      }
4432    }
4433  
4434    // Make sure the result is of the requested type.
4435    if (!IsIncompleteFunction) {
4436      assert(F->getFunctionType() == Ty);
4437      return F;
4438    }
4439  
4440    return llvm::ConstantExpr::getBitCast(F,
4441                                          Ty->getPointerTo(F->getAddressSpace()));
4442  }
4443  
4444  /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4445  /// non-null, then this function will use the specified type if it has to
4446  /// create it (this occurs when we see a definition of the function).
4447  llvm::Constant *
4448  CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4449                                   bool DontDefer,
4450                                   ForDefinition_t IsForDefinition) {
4451    // If there was no specific requested type, just convert it now.
4452    if (!Ty) {
4453      const auto *FD = cast<FunctionDecl>(GD.getDecl());
4454      Ty = getTypes().ConvertType(FD->getType());
4455    }
4456  
4457    // Devirtualized destructor calls may come through here instead of via
4458    // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4459    // of the complete destructor when necessary.
4460    if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4461      if (getTarget().getCXXABI().isMicrosoft() &&
4462          GD.getDtorType() == Dtor_Complete &&
4463          DD->getParent()->getNumVBases() == 0)
4464        GD = GlobalDecl(DD, Dtor_Base);
4465    }
4466  
4467    StringRef MangledName = getMangledName(GD);
4468    auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4469                                      /*IsThunk=*/false, llvm::AttributeList(),
4470                                      IsForDefinition);
4471    // Returns kernel handle for HIP kernel stub function.
4472    if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4473        cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4474      auto *Handle = getCUDARuntime().getKernelHandle(
4475          cast<llvm::Function>(F->stripPointerCasts()), GD);
4476      if (IsForDefinition)
4477        return F;
4478      return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4479    }
4480    return F;
4481  }
4482  
4483  llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4484    llvm::GlobalValue *F =
4485        cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4486  
4487    return llvm::ConstantExpr::getBitCast(
4488        llvm::NoCFIValue::get(F),
4489        llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4490  }
4491  
4492  static const FunctionDecl *
4493  GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4494    TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4495    DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4496  
4497    IdentifierInfo &CII = C.Idents.get(Name);
4498    for (const auto *Result : DC->lookup(&CII))
4499      if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4500        return FD;
4501  
4502    if (!C.getLangOpts().CPlusPlus)
4503      return nullptr;
4504  
4505    // Demangle the premangled name from getTerminateFn()
4506    IdentifierInfo &CXXII =
4507        (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4508            ? C.Idents.get("terminate")
4509            : C.Idents.get(Name);
4510  
4511    for (const auto &N : {"__cxxabiv1", "std"}) {
4512      IdentifierInfo &NS = C.Idents.get(N);
4513      for (const auto *Result : DC->lookup(&NS)) {
4514        const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4515        if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4516          for (const auto *Result : LSD->lookup(&NS))
4517            if ((ND = dyn_cast<NamespaceDecl>(Result)))
4518              break;
4519  
4520        if (ND)
4521          for (const auto *Result : ND->lookup(&CXXII))
4522            if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4523              return FD;
4524      }
4525    }
4526  
4527    return nullptr;
4528  }
4529  
4530  /// CreateRuntimeFunction - Create a new runtime function with the specified
4531  /// type and name.
4532  llvm::FunctionCallee
4533  CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4534                                       llvm::AttributeList ExtraAttrs, bool Local,
4535                                       bool AssumeConvergent) {
4536    if (AssumeConvergent) {
4537      ExtraAttrs =
4538          ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4539    }
4540  
4541    llvm::Constant *C =
4542        GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4543                                /*DontDefer=*/false, /*IsThunk=*/false,
4544                                ExtraAttrs);
4545  
4546    if (auto *F = dyn_cast<llvm::Function>(C)) {
4547      if (F->empty()) {
4548        F->setCallingConv(getRuntimeCC());
4549  
4550        // In Windows Itanium environments, try to mark runtime functions
4551        // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4552        // will link their standard library statically or dynamically. Marking
4553        // functions imported when they are not imported can cause linker errors
4554        // and warnings.
4555        if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4556            !getCodeGenOpts().LTOVisibilityPublicStd) {
4557          const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4558          if (!FD || FD->hasAttr<DLLImportAttr>()) {
4559            F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4560            F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4561          }
4562        }
4563        setDSOLocal(F);
4564      }
4565    }
4566  
4567    return {FTy, C};
4568  }
4569  
4570  /// isTypeConstant - Determine whether an object of this type can be emitted
4571  /// as a constant.
4572  ///
4573  /// If ExcludeCtor is true, the duration when the object's constructor runs
4574  /// will not be considered. The caller will need to verify that the object is
4575  /// not written to during its construction. ExcludeDtor works similarly.
4576  bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor,
4577                                     bool ExcludeDtor) {
4578    if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4579      return false;
4580  
4581    if (Context.getLangOpts().CPlusPlus) {
4582      if (const CXXRecordDecl *Record
4583            = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4584        return ExcludeCtor && !Record->hasMutableFields() &&
4585               (Record->hasTrivialDestructor() || ExcludeDtor);
4586    }
4587  
4588    return true;
4589  }
4590  
4591  /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4592  /// create and return an llvm GlobalVariable with the specified type and address
4593  /// space. If there is something in the module with the specified name, return
4594  /// it potentially bitcasted to the right type.
4595  ///
4596  /// If D is non-null, it specifies a decl that correspond to this.  This is used
4597  /// to set the attributes on the global when it is first created.
4598  ///
4599  /// If IsForDefinition is true, it is guaranteed that an actual global with
4600  /// type Ty will be returned, not conversion of a variable with the same
4601  /// mangled name but some other type.
4602  llvm::Constant *
4603  CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4604                                       LangAS AddrSpace, const VarDecl *D,
4605                                       ForDefinition_t IsForDefinition) {
4606    // Lookup the entry, lazily creating it if necessary.
4607    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4608    unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4609    if (Entry) {
4610      if (WeakRefReferences.erase(Entry)) {
4611        if (D && !D->hasAttr<WeakAttr>())
4612          Entry->setLinkage(llvm::Function::ExternalLinkage);
4613      }
4614  
4615      // Handle dropped DLL attributes.
4616      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4617          !shouldMapVisibilityToDLLExport(D))
4618        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4619  
4620      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4621        getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4622  
4623      if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4624        return Entry;
4625  
4626      // If there are two attempts to define the same mangled name, issue an
4627      // error.
4628      if (IsForDefinition && !Entry->isDeclaration()) {
4629        GlobalDecl OtherGD;
4630        const VarDecl *OtherD;
4631  
4632        // Check that D is not yet in DiagnosedConflictingDefinitions is required
4633        // to make sure that we issue an error only once.
4634        if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4635            (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4636            (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4637            OtherD->hasInit() &&
4638            DiagnosedConflictingDefinitions.insert(D).second) {
4639          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4640              << MangledName;
4641          getDiags().Report(OtherGD.getDecl()->getLocation(),
4642                            diag::note_previous_definition);
4643        }
4644      }
4645  
4646      // Make sure the result is of the correct type.
4647      if (Entry->getType()->getAddressSpace() != TargetAS) {
4648        return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4649                                                    Ty->getPointerTo(TargetAS));
4650      }
4651  
4652      // (If global is requested for a definition, we always need to create a new
4653      // global, not just return a bitcast.)
4654      if (!IsForDefinition)
4655        return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4656    }
4657  
4658    auto DAddrSpace = GetGlobalVarAddressSpace(D);
4659  
4660    auto *GV = new llvm::GlobalVariable(
4661        getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4662        MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4663        getContext().getTargetAddressSpace(DAddrSpace));
4664  
4665    // If we already created a global with the same mangled name (but different
4666    // type) before, take its name and remove it from its parent.
4667    if (Entry) {
4668      GV->takeName(Entry);
4669  
4670      if (!Entry->use_empty()) {
4671        llvm::Constant *NewPtrForOldDecl =
4672            llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4673        Entry->replaceAllUsesWith(NewPtrForOldDecl);
4674      }
4675  
4676      Entry->eraseFromParent();
4677    }
4678  
4679    // This is the first use or definition of a mangled name.  If there is a
4680    // deferred decl with this name, remember that we need to emit it at the end
4681    // of the file.
4682    auto DDI = DeferredDecls.find(MangledName);
4683    if (DDI != DeferredDecls.end()) {
4684      // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4685      // list, and remove it from DeferredDecls (since we don't need it anymore).
4686      addDeferredDeclToEmit(DDI->second);
4687      DeferredDecls.erase(DDI);
4688    }
4689  
4690    // Handle things which are present even on external declarations.
4691    if (D) {
4692      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4693        getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4694  
4695      // FIXME: This code is overly simple and should be merged with other global
4696      // handling.
4697      GV->setConstant(isTypeConstant(D->getType(), false, false));
4698  
4699      GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4700  
4701      setLinkageForGV(GV, D);
4702  
4703      if (D->getTLSKind()) {
4704        if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4705          CXXThreadLocals.push_back(D);
4706        setTLSMode(GV, *D);
4707      }
4708  
4709      setGVProperties(GV, D);
4710  
4711      // If required by the ABI, treat declarations of static data members with
4712      // inline initializers as definitions.
4713      if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4714        EmitGlobalVarDefinition(D);
4715      }
4716  
4717      // Emit section information for extern variables.
4718      if (D->hasExternalStorage()) {
4719        if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4720          GV->setSection(SA->getName());
4721      }
4722  
4723      // Handle XCore specific ABI requirements.
4724      if (getTriple().getArch() == llvm::Triple::xcore &&
4725          D->getLanguageLinkage() == CLanguageLinkage &&
4726          D->getType().isConstant(Context) &&
4727          isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4728        GV->setSection(".cp.rodata");
4729  
4730      // Check if we a have a const declaration with an initializer, we may be
4731      // able to emit it as available_externally to expose it's value to the
4732      // optimizer.
4733      if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4734          D->getType().isConstQualified() && !GV->hasInitializer() &&
4735          !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4736        const auto *Record =
4737            Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4738        bool HasMutableFields = Record && Record->hasMutableFields();
4739        if (!HasMutableFields) {
4740          const VarDecl *InitDecl;
4741          const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4742          if (InitExpr) {
4743            ConstantEmitter emitter(*this);
4744            llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4745            if (Init) {
4746              auto *InitType = Init->getType();
4747              if (GV->getValueType() != InitType) {
4748                // The type of the initializer does not match the definition.
4749                // This happens when an initializer has a different type from
4750                // the type of the global (because of padding at the end of a
4751                // structure for instance).
4752                GV->setName(StringRef());
4753                // Make a new global with the correct type, this is now guaranteed
4754                // to work.
4755                auto *NewGV = cast<llvm::GlobalVariable>(
4756                    GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4757                        ->stripPointerCasts());
4758  
4759                // Erase the old global, since it is no longer used.
4760                GV->eraseFromParent();
4761                GV = NewGV;
4762              } else {
4763                GV->setInitializer(Init);
4764                GV->setConstant(true);
4765                GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4766              }
4767              emitter.finalize(GV);
4768            }
4769          }
4770        }
4771      }
4772    }
4773  
4774    if (D &&
4775        D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4776      getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4777      // External HIP managed variables needed to be recorded for transformation
4778      // in both device and host compilations.
4779      if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4780          D->hasExternalStorage())
4781        getCUDARuntime().handleVarRegistration(D, *GV);
4782    }
4783  
4784    if (D)
4785      SanitizerMD->reportGlobal(GV, *D);
4786  
4787    LangAS ExpectedAS =
4788        D ? D->getType().getAddressSpace()
4789          : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4790    assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4791    if (DAddrSpace != ExpectedAS) {
4792      return getTargetCodeGenInfo().performAddrSpaceCast(
4793          *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4794    }
4795  
4796    return GV;
4797  }
4798  
4799  llvm::Constant *
4800  CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4801    const Decl *D = GD.getDecl();
4802  
4803    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4804      return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4805                                  /*DontDefer=*/false, IsForDefinition);
4806  
4807    if (isa<CXXMethodDecl>(D)) {
4808      auto FInfo =
4809          &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4810      auto Ty = getTypes().GetFunctionType(*FInfo);
4811      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4812                               IsForDefinition);
4813    }
4814  
4815    if (isa<FunctionDecl>(D)) {
4816      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4817      llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4818      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4819                               IsForDefinition);
4820    }
4821  
4822    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4823  }
4824  
4825  llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4826      StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4827      llvm::Align Alignment) {
4828    llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4829    llvm::GlobalVariable *OldGV = nullptr;
4830  
4831    if (GV) {
4832      // Check if the variable has the right type.
4833      if (GV->getValueType() == Ty)
4834        return GV;
4835  
4836      // Because C++ name mangling, the only way we can end up with an already
4837      // existing global with the same name is if it has been declared extern "C".
4838      assert(GV->isDeclaration() && "Declaration has wrong type!");
4839      OldGV = GV;
4840    }
4841  
4842    // Create a new variable.
4843    GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4844                                  Linkage, nullptr, Name);
4845  
4846    if (OldGV) {
4847      // Replace occurrences of the old variable if needed.
4848      GV->takeName(OldGV);
4849  
4850      if (!OldGV->use_empty()) {
4851        llvm::Constant *NewPtrForOldDecl =
4852        llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4853        OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4854      }
4855  
4856      OldGV->eraseFromParent();
4857    }
4858  
4859    if (supportsCOMDAT() && GV->isWeakForLinker() &&
4860        !GV->hasAvailableExternallyLinkage())
4861      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4862  
4863    GV->setAlignment(Alignment);
4864  
4865    return GV;
4866  }
4867  
4868  /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4869  /// given global variable.  If Ty is non-null and if the global doesn't exist,
4870  /// then it will be created with the specified type instead of whatever the
4871  /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4872  /// that an actual global with type Ty will be returned, not conversion of a
4873  /// variable with the same mangled name but some other type.
4874  llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4875                                                    llvm::Type *Ty,
4876                                             ForDefinition_t IsForDefinition) {
4877    assert(D->hasGlobalStorage() && "Not a global variable");
4878    QualType ASTTy = D->getType();
4879    if (!Ty)
4880      Ty = getTypes().ConvertTypeForMem(ASTTy);
4881  
4882    StringRef MangledName = getMangledName(D);
4883    return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4884                                 IsForDefinition);
4885  }
4886  
4887  /// CreateRuntimeVariable - Create a new runtime global variable with the
4888  /// specified type and name.
4889  llvm::Constant *
4890  CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4891                                       StringRef Name) {
4892    LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4893                                                         : LangAS::Default;
4894    auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4895    setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4896    return Ret;
4897  }
4898  
4899  void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4900    assert(!D->getInit() && "Cannot emit definite definitions here!");
4901  
4902    StringRef MangledName = getMangledName(D);
4903    llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4904  
4905    // We already have a definition, not declaration, with the same mangled name.
4906    // Emitting of declaration is not required (and actually overwrites emitted
4907    // definition).
4908    if (GV && !GV->isDeclaration())
4909      return;
4910  
4911    // If we have not seen a reference to this variable yet, place it into the
4912    // deferred declarations table to be emitted if needed later.
4913    if (!MustBeEmitted(D) && !GV) {
4914        DeferredDecls[MangledName] = D;
4915        return;
4916    }
4917  
4918    // The tentative definition is the only definition.
4919    EmitGlobalVarDefinition(D);
4920  }
4921  
4922  void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4923    EmitExternalVarDeclaration(D);
4924  }
4925  
4926  CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4927    return Context.toCharUnitsFromBits(
4928        getDataLayout().getTypeStoreSizeInBits(Ty));
4929  }
4930  
4931  LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4932    if (LangOpts.OpenCL) {
4933      LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4934      assert(AS == LangAS::opencl_global ||
4935             AS == LangAS::opencl_global_device ||
4936             AS == LangAS::opencl_global_host ||
4937             AS == LangAS::opencl_constant ||
4938             AS == LangAS::opencl_local ||
4939             AS >= LangAS::FirstTargetAddressSpace);
4940      return AS;
4941    }
4942  
4943    if (LangOpts.SYCLIsDevice &&
4944        (!D || D->getType().getAddressSpace() == LangAS::Default))
4945      return LangAS::sycl_global;
4946  
4947    if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4948      if (D) {
4949        if (D->hasAttr<CUDAConstantAttr>())
4950          return LangAS::cuda_constant;
4951        if (D->hasAttr<CUDASharedAttr>())
4952          return LangAS::cuda_shared;
4953        if (D->hasAttr<CUDADeviceAttr>())
4954          return LangAS::cuda_device;
4955        if (D->getType().isConstQualified())
4956          return LangAS::cuda_constant;
4957      }
4958      return LangAS::cuda_device;
4959    }
4960  
4961    if (LangOpts.OpenMP) {
4962      LangAS AS;
4963      if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4964        return AS;
4965    }
4966    return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4967  }
4968  
4969  LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4970    // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4971    if (LangOpts.OpenCL)
4972      return LangAS::opencl_constant;
4973    if (LangOpts.SYCLIsDevice)
4974      return LangAS::sycl_global;
4975    if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4976      // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4977      // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4978      // with OpVariable instructions with Generic storage class which is not
4979      // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4980      // UniformConstant storage class is not viable as pointers to it may not be
4981      // casted to Generic pointers which are used to model HIP's "flat" pointers.
4982      return LangAS::cuda_device;
4983    if (auto AS = getTarget().getConstantAddressSpace())
4984      return *AS;
4985    return LangAS::Default;
4986  }
4987  
4988  // In address space agnostic languages, string literals are in default address
4989  // space in AST. However, certain targets (e.g. amdgcn) request them to be
4990  // emitted in constant address space in LLVM IR. To be consistent with other
4991  // parts of AST, string literal global variables in constant address space
4992  // need to be casted to default address space before being put into address
4993  // map and referenced by other part of CodeGen.
4994  // In OpenCL, string literals are in constant address space in AST, therefore
4995  // they should not be casted to default address space.
4996  static llvm::Constant *
4997  castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4998                                         llvm::GlobalVariable *GV) {
4999    llvm::Constant *Cast = GV;
5000    if (!CGM.getLangOpts().OpenCL) {
5001      auto AS = CGM.GetGlobalConstantAddressSpace();
5002      if (AS != LangAS::Default)
5003        Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5004            CGM, GV, AS, LangAS::Default,
5005            GV->getValueType()->getPointerTo(
5006                CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5007    }
5008    return Cast;
5009  }
5010  
5011  template<typename SomeDecl>
5012  void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5013                                                 llvm::GlobalValue *GV) {
5014    if (!getLangOpts().CPlusPlus)
5015      return;
5016  
5017    // Must have 'used' attribute, or else inline assembly can't rely on
5018    // the name existing.
5019    if (!D->template hasAttr<UsedAttr>())
5020      return;
5021  
5022    // Must have internal linkage and an ordinary name.
5023    if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
5024      return;
5025  
5026    // Must be in an extern "C" context. Entities declared directly within
5027    // a record are not extern "C" even if the record is in such a context.
5028    const SomeDecl *First = D->getFirstDecl();
5029    if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5030      return;
5031  
5032    // OK, this is an internal linkage entity inside an extern "C" linkage
5033    // specification. Make a note of that so we can give it the "expected"
5034    // mangled name if nothing else is using that name.
5035    std::pair<StaticExternCMap::iterator, bool> R =
5036        StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5037  
5038    // If we have multiple internal linkage entities with the same name
5039    // in extern "C" regions, none of them gets that name.
5040    if (!R.second)
5041      R.first->second = nullptr;
5042  }
5043  
5044  static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5045    if (!CGM.supportsCOMDAT())
5046      return false;
5047  
5048    if (D.hasAttr<SelectAnyAttr>())
5049      return true;
5050  
5051    GVALinkage Linkage;
5052    if (auto *VD = dyn_cast<VarDecl>(&D))
5053      Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5054    else
5055      Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5056  
5057    switch (Linkage) {
5058    case GVA_Internal:
5059    case GVA_AvailableExternally:
5060    case GVA_StrongExternal:
5061      return false;
5062    case GVA_DiscardableODR:
5063    case GVA_StrongODR:
5064      return true;
5065    }
5066    llvm_unreachable("No such linkage");
5067  }
5068  
5069  bool CodeGenModule::supportsCOMDAT() const {
5070    return getTriple().supportsCOMDAT();
5071  }
5072  
5073  void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5074                                            llvm::GlobalObject &GO) {
5075    if (!shouldBeInCOMDAT(*this, D))
5076      return;
5077    GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5078  }
5079  
5080  /// Pass IsTentative as true if you want to create a tentative definition.
5081  void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5082                                              bool IsTentative) {
5083    // OpenCL global variables of sampler type are translated to function calls,
5084    // therefore no need to be translated.
5085    QualType ASTTy = D->getType();
5086    if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5087      return;
5088  
5089    // If this is OpenMP device, check if it is legal to emit this global
5090    // normally.
5091    if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5092        OpenMPRuntime->emitTargetGlobalVariable(D))
5093      return;
5094  
5095    llvm::TrackingVH<llvm::Constant> Init;
5096    bool NeedsGlobalCtor = false;
5097    // Whether the definition of the variable is available externally.
5098    // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5099    // since this is the job for its original source.
5100    bool IsDefinitionAvailableExternally =
5101        getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5102    bool NeedsGlobalDtor =
5103        !IsDefinitionAvailableExternally &&
5104        D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5105  
5106    const VarDecl *InitDecl;
5107    const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5108  
5109    std::optional<ConstantEmitter> emitter;
5110  
5111    // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5112    // as part of their declaration."  Sema has already checked for
5113    // error cases, so we just need to set Init to UndefValue.
5114    bool IsCUDASharedVar =
5115        getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5116    // Shadows of initialized device-side global variables are also left
5117    // undefined.
5118    // Managed Variables should be initialized on both host side and device side.
5119    bool IsCUDAShadowVar =
5120        !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5121        (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5122         D->hasAttr<CUDASharedAttr>());
5123    bool IsCUDADeviceShadowVar =
5124        getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5125        (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5126         D->getType()->isCUDADeviceBuiltinTextureType());
5127    if (getLangOpts().CUDA &&
5128        (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5129      Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5130    else if (D->hasAttr<LoaderUninitializedAttr>())
5131      Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5132    else if (!InitExpr) {
5133      // This is a tentative definition; tentative definitions are
5134      // implicitly initialized with { 0 }.
5135      //
5136      // Note that tentative definitions are only emitted at the end of
5137      // a translation unit, so they should never have incomplete
5138      // type. In addition, EmitTentativeDefinition makes sure that we
5139      // never attempt to emit a tentative definition if a real one
5140      // exists. A use may still exists, however, so we still may need
5141      // to do a RAUW.
5142      assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5143      Init = EmitNullConstant(D->getType());
5144    } else {
5145      initializedGlobalDecl = GlobalDecl(D);
5146      emitter.emplace(*this);
5147      llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5148      if (!Initializer) {
5149        QualType T = InitExpr->getType();
5150        if (D->getType()->isReferenceType())
5151          T = D->getType();
5152  
5153        if (getLangOpts().CPlusPlus) {
5154          if (InitDecl->hasFlexibleArrayInit(getContext()))
5155            ErrorUnsupported(D, "flexible array initializer");
5156          Init = EmitNullConstant(T);
5157  
5158          if (!IsDefinitionAvailableExternally)
5159            NeedsGlobalCtor = true;
5160        } else {
5161          ErrorUnsupported(D, "static initializer");
5162          Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5163        }
5164      } else {
5165        Init = Initializer;
5166        // We don't need an initializer, so remove the entry for the delayed
5167        // initializer position (just in case this entry was delayed) if we
5168        // also don't need to register a destructor.
5169        if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5170          DelayedCXXInitPosition.erase(D);
5171  
5172  #ifndef NDEBUG
5173        CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5174                            InitDecl->getFlexibleArrayInitChars(getContext());
5175        CharUnits CstSize = CharUnits::fromQuantity(
5176            getDataLayout().getTypeAllocSize(Init->getType()));
5177        assert(VarSize == CstSize && "Emitted constant has unexpected size");
5178  #endif
5179      }
5180    }
5181  
5182    llvm::Type* InitType = Init->getType();
5183    llvm::Constant *Entry =
5184        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5185  
5186    // Strip off pointer casts if we got them.
5187    Entry = Entry->stripPointerCasts();
5188  
5189    // Entry is now either a Function or GlobalVariable.
5190    auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5191  
5192    // We have a definition after a declaration with the wrong type.
5193    // We must make a new GlobalVariable* and update everything that used OldGV
5194    // (a declaration or tentative definition) with the new GlobalVariable*
5195    // (which will be a definition).
5196    //
5197    // This happens if there is a prototype for a global (e.g.
5198    // "extern int x[];") and then a definition of a different type (e.g.
5199    // "int x[10];"). This also happens when an initializer has a different type
5200    // from the type of the global (this happens with unions).
5201    if (!GV || GV->getValueType() != InitType ||
5202        GV->getType()->getAddressSpace() !=
5203            getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5204  
5205      // Move the old entry aside so that we'll create a new one.
5206      Entry->setName(StringRef());
5207  
5208      // Make a new global with the correct type, this is now guaranteed to work.
5209      GV = cast<llvm::GlobalVariable>(
5210          GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5211              ->stripPointerCasts());
5212  
5213      // Replace all uses of the old global with the new global
5214      llvm::Constant *NewPtrForOldDecl =
5215          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5216                                                               Entry->getType());
5217      Entry->replaceAllUsesWith(NewPtrForOldDecl);
5218  
5219      // Erase the old global, since it is no longer used.
5220      cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5221    }
5222  
5223    MaybeHandleStaticInExternC(D, GV);
5224  
5225    if (D->hasAttr<AnnotateAttr>())
5226      AddGlobalAnnotations(D, GV);
5227  
5228    // Set the llvm linkage type as appropriate.
5229    llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5230  
5231    // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5232    // the device. [...]"
5233    // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5234    // __device__, declares a variable that: [...]
5235    // Is accessible from all the threads within the grid and from the host
5236    // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5237    // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5238    if (LangOpts.CUDA) {
5239      if (LangOpts.CUDAIsDevice) {
5240        if (Linkage != llvm::GlobalValue::InternalLinkage &&
5241            (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5242             D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5243             D->getType()->isCUDADeviceBuiltinTextureType()))
5244          GV->setExternallyInitialized(true);
5245      } else {
5246        getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5247      }
5248      getCUDARuntime().handleVarRegistration(D, *GV);
5249    }
5250  
5251    GV->setInitializer(Init);
5252    if (emitter)
5253      emitter->finalize(GV);
5254  
5255    // If it is safe to mark the global 'constant', do so now.
5256    GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5257                    isTypeConstant(D->getType(), true, true));
5258  
5259    // If it is in a read-only section, mark it 'constant'.
5260    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5261      const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5262      if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5263        GV->setConstant(true);
5264    }
5265  
5266    CharUnits AlignVal = getContext().getDeclAlign(D);
5267    // Check for alignment specifed in an 'omp allocate' directive.
5268    if (std::optional<CharUnits> AlignValFromAllocate =
5269            getOMPAllocateAlignment(D))
5270      AlignVal = *AlignValFromAllocate;
5271    GV->setAlignment(AlignVal.getAsAlign());
5272  
5273    // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5274    // function is only defined alongside the variable, not also alongside
5275    // callers. Normally, all accesses to a thread_local go through the
5276    // thread-wrapper in order to ensure initialization has occurred, underlying
5277    // variable will never be used other than the thread-wrapper, so it can be
5278    // converted to internal linkage.
5279    //
5280    // However, if the variable has the 'constinit' attribute, it _can_ be
5281    // referenced directly, without calling the thread-wrapper, so the linkage
5282    // must not be changed.
5283    //
5284    // Additionally, if the variable isn't plain external linkage, e.g. if it's
5285    // weak or linkonce, the de-duplication semantics are important to preserve,
5286    // so we don't change the linkage.
5287    if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5288        Linkage == llvm::GlobalValue::ExternalLinkage &&
5289        Context.getTargetInfo().getTriple().isOSDarwin() &&
5290        !D->hasAttr<ConstInitAttr>())
5291      Linkage = llvm::GlobalValue::InternalLinkage;
5292  
5293    GV->setLinkage(Linkage);
5294    if (D->hasAttr<DLLImportAttr>())
5295      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5296    else if (D->hasAttr<DLLExportAttr>())
5297      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5298    else
5299      GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5300  
5301    if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5302      // common vars aren't constant even if declared const.
5303      GV->setConstant(false);
5304      // Tentative definition of global variables may be initialized with
5305      // non-zero null pointers. In this case they should have weak linkage
5306      // since common linkage must have zero initializer and must not have
5307      // explicit section therefore cannot have non-zero initial value.
5308      if (!GV->getInitializer()->isNullValue())
5309        GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5310    }
5311  
5312    setNonAliasAttributes(D, GV);
5313  
5314    if (D->getTLSKind() && !GV->isThreadLocal()) {
5315      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5316        CXXThreadLocals.push_back(D);
5317      setTLSMode(GV, *D);
5318    }
5319  
5320    maybeSetTrivialComdat(*D, *GV);
5321  
5322    // Emit the initializer function if necessary.
5323    if (NeedsGlobalCtor || NeedsGlobalDtor)
5324      EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5325  
5326    SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5327  
5328    // Emit global variable debug information.
5329    if (CGDebugInfo *DI = getModuleDebugInfo())
5330      if (getCodeGenOpts().hasReducedDebugInfo())
5331        DI->EmitGlobalVariable(GV, D);
5332  }
5333  
5334  void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5335    if (CGDebugInfo *DI = getModuleDebugInfo())
5336      if (getCodeGenOpts().hasReducedDebugInfo()) {
5337        QualType ASTTy = D->getType();
5338        llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5339        llvm::Constant *GV =
5340            GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5341        DI->EmitExternalVariable(
5342            cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5343      }
5344  }
5345  
5346  static bool isVarDeclStrongDefinition(const ASTContext &Context,
5347                                        CodeGenModule &CGM, const VarDecl *D,
5348                                        bool NoCommon) {
5349    // Don't give variables common linkage if -fno-common was specified unless it
5350    // was overridden by a NoCommon attribute.
5351    if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5352      return true;
5353  
5354    // C11 6.9.2/2:
5355    //   A declaration of an identifier for an object that has file scope without
5356    //   an initializer, and without a storage-class specifier or with the
5357    //   storage-class specifier static, constitutes a tentative definition.
5358    if (D->getInit() || D->hasExternalStorage())
5359      return true;
5360  
5361    // A variable cannot be both common and exist in a section.
5362    if (D->hasAttr<SectionAttr>())
5363      return true;
5364  
5365    // A variable cannot be both common and exist in a section.
5366    // We don't try to determine which is the right section in the front-end.
5367    // If no specialized section name is applicable, it will resort to default.
5368    if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5369        D->hasAttr<PragmaClangDataSectionAttr>() ||
5370        D->hasAttr<PragmaClangRelroSectionAttr>() ||
5371        D->hasAttr<PragmaClangRodataSectionAttr>())
5372      return true;
5373  
5374    // Thread local vars aren't considered common linkage.
5375    if (D->getTLSKind())
5376      return true;
5377  
5378    // Tentative definitions marked with WeakImportAttr are true definitions.
5379    if (D->hasAttr<WeakImportAttr>())
5380      return true;
5381  
5382    // A variable cannot be both common and exist in a comdat.
5383    if (shouldBeInCOMDAT(CGM, *D))
5384      return true;
5385  
5386    // Declarations with a required alignment do not have common linkage in MSVC
5387    // mode.
5388    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5389      if (D->hasAttr<AlignedAttr>())
5390        return true;
5391      QualType VarType = D->getType();
5392      if (Context.isAlignmentRequired(VarType))
5393        return true;
5394  
5395      if (const auto *RT = VarType->getAs<RecordType>()) {
5396        const RecordDecl *RD = RT->getDecl();
5397        for (const FieldDecl *FD : RD->fields()) {
5398          if (FD->isBitField())
5399            continue;
5400          if (FD->hasAttr<AlignedAttr>())
5401            return true;
5402          if (Context.isAlignmentRequired(FD->getType()))
5403            return true;
5404        }
5405      }
5406    }
5407  
5408    // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5409    // common symbols, so symbols with greater alignment requirements cannot be
5410    // common.
5411    // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5412    // alignments for common symbols via the aligncomm directive, so this
5413    // restriction only applies to MSVC environments.
5414    if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5415        Context.getTypeAlignIfKnown(D->getType()) >
5416            Context.toBits(CharUnits::fromQuantity(32)))
5417      return true;
5418  
5419    return false;
5420  }
5421  
5422  llvm::GlobalValue::LinkageTypes
5423  CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5424                                             GVALinkage Linkage) {
5425    if (Linkage == GVA_Internal)
5426      return llvm::Function::InternalLinkage;
5427  
5428    if (D->hasAttr<WeakAttr>())
5429      return llvm::GlobalVariable::WeakAnyLinkage;
5430  
5431    if (const auto *FD = D->getAsFunction())
5432      if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5433        return llvm::GlobalVariable::LinkOnceAnyLinkage;
5434  
5435    // We are guaranteed to have a strong definition somewhere else,
5436    // so we can use available_externally linkage.
5437    if (Linkage == GVA_AvailableExternally)
5438      return llvm::GlobalValue::AvailableExternallyLinkage;
5439  
5440    // Note that Apple's kernel linker doesn't support symbol
5441    // coalescing, so we need to avoid linkonce and weak linkages there.
5442    // Normally, this means we just map to internal, but for explicit
5443    // instantiations we'll map to external.
5444  
5445    // In C++, the compiler has to emit a definition in every translation unit
5446    // that references the function.  We should use linkonce_odr because
5447    // a) if all references in this translation unit are optimized away, we
5448    // don't need to codegen it.  b) if the function persists, it needs to be
5449    // merged with other definitions. c) C++ has the ODR, so we know the
5450    // definition is dependable.
5451    if (Linkage == GVA_DiscardableODR)
5452      return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5453                                              : llvm::Function::InternalLinkage;
5454  
5455    // An explicit instantiation of a template has weak linkage, since
5456    // explicit instantiations can occur in multiple translation units
5457    // and must all be equivalent. However, we are not allowed to
5458    // throw away these explicit instantiations.
5459    //
5460    // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5461    // so say that CUDA templates are either external (for kernels) or internal.
5462    // This lets llvm perform aggressive inter-procedural optimizations. For
5463    // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5464    // therefore we need to follow the normal linkage paradigm.
5465    if (Linkage == GVA_StrongODR) {
5466      if (getLangOpts().AppleKext)
5467        return llvm::Function::ExternalLinkage;
5468      if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5469          !getLangOpts().GPURelocatableDeviceCode)
5470        return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5471                                            : llvm::Function::InternalLinkage;
5472      return llvm::Function::WeakODRLinkage;
5473    }
5474  
5475    // C++ doesn't have tentative definitions and thus cannot have common
5476    // linkage.
5477    if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5478        !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5479                                   CodeGenOpts.NoCommon))
5480      return llvm::GlobalVariable::CommonLinkage;
5481  
5482    // selectany symbols are externally visible, so use weak instead of
5483    // linkonce.  MSVC optimizes away references to const selectany globals, so
5484    // all definitions should be the same and ODR linkage should be used.
5485    // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5486    if (D->hasAttr<SelectAnyAttr>())
5487      return llvm::GlobalVariable::WeakODRLinkage;
5488  
5489    // Otherwise, we have strong external linkage.
5490    assert(Linkage == GVA_StrongExternal);
5491    return llvm::GlobalVariable::ExternalLinkage;
5492  }
5493  
5494  llvm::GlobalValue::LinkageTypes
5495  CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5496    GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5497    return getLLVMLinkageForDeclarator(VD, Linkage);
5498  }
5499  
5500  /// Replace the uses of a function that was declared with a non-proto type.
5501  /// We want to silently drop extra arguments from call sites
5502  static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5503                                            llvm::Function *newFn) {
5504    // Fast path.
5505    if (old->use_empty()) return;
5506  
5507    llvm::Type *newRetTy = newFn->getReturnType();
5508    SmallVector<llvm::Value*, 4> newArgs;
5509  
5510    for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5511           ui != ue; ) {
5512      llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5513      llvm::User *user = use->getUser();
5514  
5515      // Recognize and replace uses of bitcasts.  Most calls to
5516      // unprototyped functions will use bitcasts.
5517      if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5518        if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5519          replaceUsesOfNonProtoConstant(bitcast, newFn);
5520        continue;
5521      }
5522  
5523      // Recognize calls to the function.
5524      llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5525      if (!callSite) continue;
5526      if (!callSite->isCallee(&*use))
5527        continue;
5528  
5529      // If the return types don't match exactly, then we can't
5530      // transform this call unless it's dead.
5531      if (callSite->getType() != newRetTy && !callSite->use_empty())
5532        continue;
5533  
5534      // Get the call site's attribute list.
5535      SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5536      llvm::AttributeList oldAttrs = callSite->getAttributes();
5537  
5538      // If the function was passed too few arguments, don't transform.
5539      unsigned newNumArgs = newFn->arg_size();
5540      if (callSite->arg_size() < newNumArgs)
5541        continue;
5542  
5543      // If extra arguments were passed, we silently drop them.
5544      // If any of the types mismatch, we don't transform.
5545      unsigned argNo = 0;
5546      bool dontTransform = false;
5547      for (llvm::Argument &A : newFn->args()) {
5548        if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5549          dontTransform = true;
5550          break;
5551        }
5552  
5553        // Add any parameter attributes.
5554        newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5555        argNo++;
5556      }
5557      if (dontTransform)
5558        continue;
5559  
5560      // Okay, we can transform this.  Create the new call instruction and copy
5561      // over the required information.
5562      newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5563  
5564      // Copy over any operand bundles.
5565      SmallVector<llvm::OperandBundleDef, 1> newBundles;
5566      callSite->getOperandBundlesAsDefs(newBundles);
5567  
5568      llvm::CallBase *newCall;
5569      if (isa<llvm::CallInst>(callSite)) {
5570        newCall =
5571            llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5572      } else {
5573        auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5574        newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5575                                           oldInvoke->getUnwindDest(), newArgs,
5576                                           newBundles, "", callSite);
5577      }
5578      newArgs.clear(); // for the next iteration
5579  
5580      if (!newCall->getType()->isVoidTy())
5581        newCall->takeName(callSite);
5582      newCall->setAttributes(
5583          llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5584                                   oldAttrs.getRetAttrs(), newArgAttrs));
5585      newCall->setCallingConv(callSite->getCallingConv());
5586  
5587      // Finally, remove the old call, replacing any uses with the new one.
5588      if (!callSite->use_empty())
5589        callSite->replaceAllUsesWith(newCall);
5590  
5591      // Copy debug location attached to CI.
5592      if (callSite->getDebugLoc())
5593        newCall->setDebugLoc(callSite->getDebugLoc());
5594  
5595      callSite->eraseFromParent();
5596    }
5597  }
5598  
5599  /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5600  /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5601  /// existing call uses of the old function in the module, this adjusts them to
5602  /// call the new function directly.
5603  ///
5604  /// This is not just a cleanup: the always_inline pass requires direct calls to
5605  /// functions to be able to inline them.  If there is a bitcast in the way, it
5606  /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5607  /// run at -O0.
5608  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5609                                                        llvm::Function *NewFn) {
5610    // If we're redefining a global as a function, don't transform it.
5611    if (!isa<llvm::Function>(Old)) return;
5612  
5613    replaceUsesOfNonProtoConstant(Old, NewFn);
5614  }
5615  
5616  void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5617    auto DK = VD->isThisDeclarationADefinition();
5618    if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5619      return;
5620  
5621    TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5622    // If we have a definition, this might be a deferred decl. If the
5623    // instantiation is explicit, make sure we emit it at the end.
5624    if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5625      GetAddrOfGlobalVar(VD);
5626  
5627    EmitTopLevelDecl(VD);
5628  }
5629  
5630  void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5631                                                   llvm::GlobalValue *GV) {
5632    const auto *D = cast<FunctionDecl>(GD.getDecl());
5633  
5634    // Compute the function info and LLVM type.
5635    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5636    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5637  
5638    // Get or create the prototype for the function.
5639    if (!GV || (GV->getValueType() != Ty))
5640      GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5641                                                     /*DontDefer=*/true,
5642                                                     ForDefinition));
5643  
5644    // Already emitted.
5645    if (!GV->isDeclaration())
5646      return;
5647  
5648    // We need to set linkage and visibility on the function before
5649    // generating code for it because various parts of IR generation
5650    // want to propagate this information down (e.g. to local static
5651    // declarations).
5652    auto *Fn = cast<llvm::Function>(GV);
5653    setFunctionLinkage(GD, Fn);
5654  
5655    // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5656    setGVProperties(Fn, GD);
5657  
5658    MaybeHandleStaticInExternC(D, Fn);
5659  
5660    maybeSetTrivialComdat(*D, *Fn);
5661  
5662    CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5663  
5664    setNonAliasAttributes(GD, Fn);
5665    SetLLVMFunctionAttributesForDefinition(D, Fn);
5666  
5667    if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5668      AddGlobalCtor(Fn, CA->getPriority());
5669    if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5670      AddGlobalDtor(Fn, DA->getPriority(), true);
5671    if (D->hasAttr<AnnotateAttr>())
5672      AddGlobalAnnotations(D, Fn);
5673  }
5674  
5675  void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5676    const auto *D = cast<ValueDecl>(GD.getDecl());
5677    const AliasAttr *AA = D->getAttr<AliasAttr>();
5678    assert(AA && "Not an alias?");
5679  
5680    StringRef MangledName = getMangledName(GD);
5681  
5682    if (AA->getAliasee() == MangledName) {
5683      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5684      return;
5685    }
5686  
5687    // If there is a definition in the module, then it wins over the alias.
5688    // This is dubious, but allow it to be safe.  Just ignore the alias.
5689    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5690    if (Entry && !Entry->isDeclaration())
5691      return;
5692  
5693    Aliases.push_back(GD);
5694  
5695    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5696  
5697    // Create a reference to the named value.  This ensures that it is emitted
5698    // if a deferred decl.
5699    llvm::Constant *Aliasee;
5700    llvm::GlobalValue::LinkageTypes LT;
5701    if (isa<llvm::FunctionType>(DeclTy)) {
5702      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5703                                        /*ForVTable=*/false);
5704      LT = getFunctionLinkage(GD);
5705    } else {
5706      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5707                                      /*D=*/nullptr);
5708      if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5709        LT = getLLVMLinkageVarDefinition(VD);
5710      else
5711        LT = getFunctionLinkage(GD);
5712    }
5713  
5714    // Create the new alias itself, but don't set a name yet.
5715    unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5716    auto *GA =
5717        llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5718  
5719    if (Entry) {
5720      if (GA->getAliasee() == Entry) {
5721        Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5722        return;
5723      }
5724  
5725      assert(Entry->isDeclaration());
5726  
5727      // If there is a declaration in the module, then we had an extern followed
5728      // by the alias, as in:
5729      //   extern int test6();
5730      //   ...
5731      //   int test6() __attribute__((alias("test7")));
5732      //
5733      // Remove it and replace uses of it with the alias.
5734      GA->takeName(Entry);
5735  
5736      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5737                                                            Entry->getType()));
5738      Entry->eraseFromParent();
5739    } else {
5740      GA->setName(MangledName);
5741    }
5742  
5743    // Set attributes which are particular to an alias; this is a
5744    // specialization of the attributes which may be set on a global
5745    // variable/function.
5746    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5747        D->isWeakImported()) {
5748      GA->setLinkage(llvm::Function::WeakAnyLinkage);
5749    }
5750  
5751    if (const auto *VD = dyn_cast<VarDecl>(D))
5752      if (VD->getTLSKind())
5753        setTLSMode(GA, *VD);
5754  
5755    SetCommonAttributes(GD, GA);
5756  
5757    // Emit global alias debug information.
5758    if (isa<VarDecl>(D))
5759      if (CGDebugInfo *DI = getModuleDebugInfo())
5760        DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5761  }
5762  
5763  void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5764    const auto *D = cast<ValueDecl>(GD.getDecl());
5765    const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5766    assert(IFA && "Not an ifunc?");
5767  
5768    StringRef MangledName = getMangledName(GD);
5769  
5770    if (IFA->getResolver() == MangledName) {
5771      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5772      return;
5773    }
5774  
5775    // Report an error if some definition overrides ifunc.
5776    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5777    if (Entry && !Entry->isDeclaration()) {
5778      GlobalDecl OtherGD;
5779      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5780          DiagnosedConflictingDefinitions.insert(GD).second) {
5781        Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5782            << MangledName;
5783        Diags.Report(OtherGD.getDecl()->getLocation(),
5784                     diag::note_previous_definition);
5785      }
5786      return;
5787    }
5788  
5789    Aliases.push_back(GD);
5790  
5791    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5792    llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5793    llvm::Constant *Resolver =
5794        GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5795                                /*ForVTable=*/false);
5796    llvm::GlobalIFunc *GIF =
5797        llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5798                                  "", Resolver, &getModule());
5799    if (Entry) {
5800      if (GIF->getResolver() == Entry) {
5801        Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5802        return;
5803      }
5804      assert(Entry->isDeclaration());
5805  
5806      // If there is a declaration in the module, then we had an extern followed
5807      // by the ifunc, as in:
5808      //   extern int test();
5809      //   ...
5810      //   int test() __attribute__((ifunc("resolver")));
5811      //
5812      // Remove it and replace uses of it with the ifunc.
5813      GIF->takeName(Entry);
5814  
5815      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5816                                                            Entry->getType()));
5817      Entry->eraseFromParent();
5818    } else
5819      GIF->setName(MangledName);
5820  
5821    SetCommonAttributes(GD, GIF);
5822  }
5823  
5824  llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5825                                              ArrayRef<llvm::Type*> Tys) {
5826    return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5827                                           Tys);
5828  }
5829  
5830  static llvm::StringMapEntry<llvm::GlobalVariable *> &
5831  GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5832                           const StringLiteral *Literal, bool TargetIsLSB,
5833                           bool &IsUTF16, unsigned &StringLength) {
5834    StringRef String = Literal->getString();
5835    unsigned NumBytes = String.size();
5836  
5837    // Check for simple case.
5838    if (!Literal->containsNonAsciiOrNull()) {
5839      StringLength = NumBytes;
5840      return *Map.insert(std::make_pair(String, nullptr)).first;
5841    }
5842  
5843    // Otherwise, convert the UTF8 literals into a string of shorts.
5844    IsUTF16 = true;
5845  
5846    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5847    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5848    llvm::UTF16 *ToPtr = &ToBuf[0];
5849  
5850    (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5851                                   ToPtr + NumBytes, llvm::strictConversion);
5852  
5853    // ConvertUTF8toUTF16 returns the length in ToPtr.
5854    StringLength = ToPtr - &ToBuf[0];
5855  
5856    // Add an explicit null.
5857    *ToPtr = 0;
5858    return *Map.insert(std::make_pair(
5859                           StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5860                                     (StringLength + 1) * 2),
5861                           nullptr)).first;
5862  }
5863  
5864  ConstantAddress
5865  CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5866    unsigned StringLength = 0;
5867    bool isUTF16 = false;
5868    llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5869        GetConstantCFStringEntry(CFConstantStringMap, Literal,
5870                                 getDataLayout().isLittleEndian(), isUTF16,
5871                                 StringLength);
5872  
5873    if (auto *C = Entry.second)
5874      return ConstantAddress(
5875          C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5876  
5877    llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5878    llvm::Constant *Zeros[] = { Zero, Zero };
5879  
5880    const ASTContext &Context = getContext();
5881    const llvm::Triple &Triple = getTriple();
5882  
5883    const auto CFRuntime = getLangOpts().CFRuntime;
5884    const bool IsSwiftABI =
5885        static_cast<unsigned>(CFRuntime) >=
5886        static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5887    const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5888  
5889    // If we don't already have it, get __CFConstantStringClassReference.
5890    if (!CFConstantStringClassRef) {
5891      const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5892      llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5893      Ty = llvm::ArrayType::get(Ty, 0);
5894  
5895      switch (CFRuntime) {
5896      default: break;
5897      case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5898      case LangOptions::CoreFoundationABI::Swift5_0:
5899        CFConstantStringClassName =
5900            Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5901                                : "$s10Foundation19_NSCFConstantStringCN";
5902        Ty = IntPtrTy;
5903        break;
5904      case LangOptions::CoreFoundationABI::Swift4_2:
5905        CFConstantStringClassName =
5906            Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5907                                : "$S10Foundation19_NSCFConstantStringCN";
5908        Ty = IntPtrTy;
5909        break;
5910      case LangOptions::CoreFoundationABI::Swift4_1:
5911        CFConstantStringClassName =
5912            Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5913                                : "__T010Foundation19_NSCFConstantStringCN";
5914        Ty = IntPtrTy;
5915        break;
5916      }
5917  
5918      llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5919  
5920      if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5921        llvm::GlobalValue *GV = nullptr;
5922  
5923        if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5924          IdentifierInfo &II = Context.Idents.get(GV->getName());
5925          TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5926          DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5927  
5928          const VarDecl *VD = nullptr;
5929          for (const auto *Result : DC->lookup(&II))
5930            if ((VD = dyn_cast<VarDecl>(Result)))
5931              break;
5932  
5933          if (Triple.isOSBinFormatELF()) {
5934            if (!VD)
5935              GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5936          } else {
5937            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5938            if (!VD || !VD->hasAttr<DLLExportAttr>())
5939              GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5940            else
5941              GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5942          }
5943  
5944          setDSOLocal(GV);
5945        }
5946      }
5947  
5948      // Decay array -> ptr
5949      CFConstantStringClassRef =
5950          IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5951                     : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5952    }
5953  
5954    QualType CFTy = Context.getCFConstantStringType();
5955  
5956    auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5957  
5958    ConstantInitBuilder Builder(*this);
5959    auto Fields = Builder.beginStruct(STy);
5960  
5961    // Class pointer.
5962    Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5963  
5964    // Flags.
5965    if (IsSwiftABI) {
5966      Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5967      Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5968    } else {
5969      Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5970    }
5971  
5972    // String pointer.
5973    llvm::Constant *C = nullptr;
5974    if (isUTF16) {
5975      auto Arr = llvm::ArrayRef(
5976          reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5977          Entry.first().size() / 2);
5978      C = llvm::ConstantDataArray::get(VMContext, Arr);
5979    } else {
5980      C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5981    }
5982  
5983    // Note: -fwritable-strings doesn't make the backing store strings of
5984    // CFStrings writable. (See <rdar://problem/10657500>)
5985    auto *GV =
5986        new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5987                                 llvm::GlobalValue::PrivateLinkage, C, ".str");
5988    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5989    // Don't enforce the target's minimum global alignment, since the only use
5990    // of the string is via this class initializer.
5991    CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5992                              : Context.getTypeAlignInChars(Context.CharTy);
5993    GV->setAlignment(Align.getAsAlign());
5994  
5995    // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5996    // Without it LLVM can merge the string with a non unnamed_addr one during
5997    // LTO.  Doing that changes the section it ends in, which surprises ld64.
5998    if (Triple.isOSBinFormatMachO())
5999      GV->setSection(isUTF16 ? "__TEXT,__ustring"
6000                             : "__TEXT,__cstring,cstring_literals");
6001    // Make sure the literal ends up in .rodata to allow for safe ICF and for
6002    // the static linker to adjust permissions to read-only later on.
6003    else if (Triple.isOSBinFormatELF())
6004      GV->setSection(".rodata");
6005  
6006    // String.
6007    llvm::Constant *Str =
6008        llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6009  
6010    if (isUTF16)
6011      // Cast the UTF16 string to the correct type.
6012      Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
6013    Fields.add(Str);
6014  
6015    // String length.
6016    llvm::IntegerType *LengthTy =
6017        llvm::IntegerType::get(getModule().getContext(),
6018                               Context.getTargetInfo().getLongWidth());
6019    if (IsSwiftABI) {
6020      if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6021          CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6022        LengthTy = Int32Ty;
6023      else
6024        LengthTy = IntPtrTy;
6025    }
6026    Fields.addInt(LengthTy, StringLength);
6027  
6028    // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6029    // properly aligned on 32-bit platforms.
6030    CharUnits Alignment =
6031        IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6032  
6033    // The struct.
6034    GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6035                                      /*isConstant=*/false,
6036                                      llvm::GlobalVariable::PrivateLinkage);
6037    GV->addAttribute("objc_arc_inert");
6038    switch (Triple.getObjectFormat()) {
6039    case llvm::Triple::UnknownObjectFormat:
6040      llvm_unreachable("unknown file format");
6041    case llvm::Triple::DXContainer:
6042    case llvm::Triple::GOFF:
6043    case llvm::Triple::SPIRV:
6044    case llvm::Triple::XCOFF:
6045      llvm_unreachable("unimplemented");
6046    case llvm::Triple::COFF:
6047    case llvm::Triple::ELF:
6048    case llvm::Triple::Wasm:
6049      GV->setSection("cfstring");
6050      break;
6051    case llvm::Triple::MachO:
6052      GV->setSection("__DATA,__cfstring");
6053      break;
6054    }
6055    Entry.second = GV;
6056  
6057    return ConstantAddress(GV, GV->getValueType(), Alignment);
6058  }
6059  
6060  bool CodeGenModule::getExpressionLocationsEnabled() const {
6061    return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6062  }
6063  
6064  QualType CodeGenModule::getObjCFastEnumerationStateType() {
6065    if (ObjCFastEnumerationStateType.isNull()) {
6066      RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6067      D->startDefinition();
6068  
6069      QualType FieldTypes[] = {
6070        Context.UnsignedLongTy,
6071        Context.getPointerType(Context.getObjCIdType()),
6072        Context.getPointerType(Context.UnsignedLongTy),
6073        Context.getConstantArrayType(Context.UnsignedLongTy,
6074                             llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
6075      };
6076  
6077      for (size_t i = 0; i < 4; ++i) {
6078        FieldDecl *Field = FieldDecl::Create(Context,
6079                                             D,
6080                                             SourceLocation(),
6081                                             SourceLocation(), nullptr,
6082                                             FieldTypes[i], /*TInfo=*/nullptr,
6083                                             /*BitWidth=*/nullptr,
6084                                             /*Mutable=*/false,
6085                                             ICIS_NoInit);
6086        Field->setAccess(AS_public);
6087        D->addDecl(Field);
6088      }
6089  
6090      D->completeDefinition();
6091      ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6092    }
6093  
6094    return ObjCFastEnumerationStateType;
6095  }
6096  
6097  llvm::Constant *
6098  CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6099    assert(!E->getType()->isPointerType() && "Strings are always arrays");
6100  
6101    // Don't emit it as the address of the string, emit the string data itself
6102    // as an inline array.
6103    if (E->getCharByteWidth() == 1) {
6104      SmallString<64> Str(E->getString());
6105  
6106      // Resize the string to the right size, which is indicated by its type.
6107      const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6108      assert(CAT && "String literal not of constant array type!");
6109      Str.resize(CAT->getSize().getZExtValue());
6110      return llvm::ConstantDataArray::getString(VMContext, Str, false);
6111    }
6112  
6113    auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6114    llvm::Type *ElemTy = AType->getElementType();
6115    unsigned NumElements = AType->getNumElements();
6116  
6117    // Wide strings have either 2-byte or 4-byte elements.
6118    if (ElemTy->getPrimitiveSizeInBits() == 16) {
6119      SmallVector<uint16_t, 32> Elements;
6120      Elements.reserve(NumElements);
6121  
6122      for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6123        Elements.push_back(E->getCodeUnit(i));
6124      Elements.resize(NumElements);
6125      return llvm::ConstantDataArray::get(VMContext, Elements);
6126    }
6127  
6128    assert(ElemTy->getPrimitiveSizeInBits() == 32);
6129    SmallVector<uint32_t, 32> Elements;
6130    Elements.reserve(NumElements);
6131  
6132    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6133      Elements.push_back(E->getCodeUnit(i));
6134    Elements.resize(NumElements);
6135    return llvm::ConstantDataArray::get(VMContext, Elements);
6136  }
6137  
6138  static llvm::GlobalVariable *
6139  GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6140                        CodeGenModule &CGM, StringRef GlobalName,
6141                        CharUnits Alignment) {
6142    unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6143        CGM.GetGlobalConstantAddressSpace());
6144  
6145    llvm::Module &M = CGM.getModule();
6146    // Create a global variable for this string
6147    auto *GV = new llvm::GlobalVariable(
6148        M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6149        nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6150    GV->setAlignment(Alignment.getAsAlign());
6151    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6152    if (GV->isWeakForLinker()) {
6153      assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6154      GV->setComdat(M.getOrInsertComdat(GV->getName()));
6155    }
6156    CGM.setDSOLocal(GV);
6157  
6158    return GV;
6159  }
6160  
6161  /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6162  /// constant array for the given string literal.
6163  ConstantAddress
6164  CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6165                                                    StringRef Name) {
6166    CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6167  
6168    llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6169    llvm::GlobalVariable **Entry = nullptr;
6170    if (!LangOpts.WritableStrings) {
6171      Entry = &ConstantStringMap[C];
6172      if (auto GV = *Entry) {
6173        if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6174          GV->setAlignment(Alignment.getAsAlign());
6175        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6176                               GV->getValueType(), Alignment);
6177      }
6178    }
6179  
6180    SmallString<256> MangledNameBuffer;
6181    StringRef GlobalVariableName;
6182    llvm::GlobalValue::LinkageTypes LT;
6183  
6184    // Mangle the string literal if that's how the ABI merges duplicate strings.
6185    // Don't do it if they are writable, since we don't want writes in one TU to
6186    // affect strings in another.
6187    if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6188        !LangOpts.WritableStrings) {
6189      llvm::raw_svector_ostream Out(MangledNameBuffer);
6190      getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6191      LT = llvm::GlobalValue::LinkOnceODRLinkage;
6192      GlobalVariableName = MangledNameBuffer;
6193    } else {
6194      LT = llvm::GlobalValue::PrivateLinkage;
6195      GlobalVariableName = Name;
6196    }
6197  
6198    auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6199  
6200    CGDebugInfo *DI = getModuleDebugInfo();
6201    if (DI && getCodeGenOpts().hasReducedDebugInfo())
6202      DI->AddStringLiteralDebugInfo(GV, S);
6203  
6204    if (Entry)
6205      *Entry = GV;
6206  
6207    SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6208  
6209    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6210                           GV->getValueType(), Alignment);
6211  }
6212  
6213  /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6214  /// array for the given ObjCEncodeExpr node.
6215  ConstantAddress
6216  CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6217    std::string Str;
6218    getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6219  
6220    return GetAddrOfConstantCString(Str);
6221  }
6222  
6223  /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6224  /// the literal and a terminating '\0' character.
6225  /// The result has pointer to array type.
6226  ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6227      const std::string &Str, const char *GlobalName) {
6228    StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6229    CharUnits Alignment =
6230      getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6231  
6232    llvm::Constant *C =
6233        llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6234  
6235    // Don't share any string literals if strings aren't constant.
6236    llvm::GlobalVariable **Entry = nullptr;
6237    if (!LangOpts.WritableStrings) {
6238      Entry = &ConstantStringMap[C];
6239      if (auto GV = *Entry) {
6240        if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6241          GV->setAlignment(Alignment.getAsAlign());
6242        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6243                               GV->getValueType(), Alignment);
6244      }
6245    }
6246  
6247    // Get the default prefix if a name wasn't specified.
6248    if (!GlobalName)
6249      GlobalName = ".str";
6250    // Create a global variable for this.
6251    auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6252                                    GlobalName, Alignment);
6253    if (Entry)
6254      *Entry = GV;
6255  
6256    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6257                           GV->getValueType(), Alignment);
6258  }
6259  
6260  ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6261      const MaterializeTemporaryExpr *E, const Expr *Init) {
6262    assert((E->getStorageDuration() == SD_Static ||
6263            E->getStorageDuration() == SD_Thread) && "not a global temporary");
6264    const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6265  
6266    // If we're not materializing a subobject of the temporary, keep the
6267    // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6268    QualType MaterializedType = Init->getType();
6269    if (Init == E->getSubExpr())
6270      MaterializedType = E->getType();
6271  
6272    CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6273  
6274    auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6275    if (!InsertResult.second) {
6276      // We've seen this before: either we already created it or we're in the
6277      // process of doing so.
6278      if (!InsertResult.first->second) {
6279        // We recursively re-entered this function, probably during emission of
6280        // the initializer. Create a placeholder. We'll clean this up in the
6281        // outer call, at the end of this function.
6282        llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6283        InsertResult.first->second = new llvm::GlobalVariable(
6284            getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6285            nullptr);
6286      }
6287      return ConstantAddress(InsertResult.first->second,
6288                             llvm::cast<llvm::GlobalVariable>(
6289                                 InsertResult.first->second->stripPointerCasts())
6290                                 ->getValueType(),
6291                             Align);
6292    }
6293  
6294    // FIXME: If an externally-visible declaration extends multiple temporaries,
6295    // we need to give each temporary the same name in every translation unit (and
6296    // we also need to make the temporaries externally-visible).
6297    SmallString<256> Name;
6298    llvm::raw_svector_ostream Out(Name);
6299    getCXXABI().getMangleContext().mangleReferenceTemporary(
6300        VD, E->getManglingNumber(), Out);
6301  
6302    APValue *Value = nullptr;
6303    if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6304      // If the initializer of the extending declaration is a constant
6305      // initializer, we should have a cached constant initializer for this
6306      // temporary. Note that this might have a different value from the value
6307      // computed by evaluating the initializer if the surrounding constant
6308      // expression modifies the temporary.
6309      Value = E->getOrCreateValue(false);
6310    }
6311  
6312    // Try evaluating it now, it might have a constant initializer.
6313    Expr::EvalResult EvalResult;
6314    if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6315        !EvalResult.hasSideEffects())
6316      Value = &EvalResult.Val;
6317  
6318    LangAS AddrSpace =
6319        VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6320  
6321    std::optional<ConstantEmitter> emitter;
6322    llvm::Constant *InitialValue = nullptr;
6323    bool Constant = false;
6324    llvm::Type *Type;
6325    if (Value) {
6326      // The temporary has a constant initializer, use it.
6327      emitter.emplace(*this);
6328      InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6329                                                 MaterializedType);
6330      Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value,
6331                                /*ExcludeDtor*/ false);
6332      Type = InitialValue->getType();
6333    } else {
6334      // No initializer, the initialization will be provided when we
6335      // initialize the declaration which performed lifetime extension.
6336      Type = getTypes().ConvertTypeForMem(MaterializedType);
6337    }
6338  
6339    // Create a global variable for this lifetime-extended temporary.
6340    llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6341    if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6342      const VarDecl *InitVD;
6343      if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6344          isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6345        // Temporaries defined inside a class get linkonce_odr linkage because the
6346        // class can be defined in multiple translation units.
6347        Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6348      } else {
6349        // There is no need for this temporary to have external linkage if the
6350        // VarDecl has external linkage.
6351        Linkage = llvm::GlobalVariable::InternalLinkage;
6352      }
6353    }
6354    auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6355    auto *GV = new llvm::GlobalVariable(
6356        getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6357        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6358    if (emitter) emitter->finalize(GV);
6359    // Don't assign dllimport or dllexport to local linkage globals.
6360    if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6361      setGVProperties(GV, VD);
6362      if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6363        // The reference temporary should never be dllexport.
6364        GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6365    }
6366    GV->setAlignment(Align.getAsAlign());
6367    if (supportsCOMDAT() && GV->isWeakForLinker())
6368      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6369    if (VD->getTLSKind())
6370      setTLSMode(GV, *VD);
6371    llvm::Constant *CV = GV;
6372    if (AddrSpace != LangAS::Default)
6373      CV = getTargetCodeGenInfo().performAddrSpaceCast(
6374          *this, GV, AddrSpace, LangAS::Default,
6375          Type->getPointerTo(
6376              getContext().getTargetAddressSpace(LangAS::Default)));
6377  
6378    // Update the map with the new temporary. If we created a placeholder above,
6379    // replace it with the new global now.
6380    llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6381    if (Entry) {
6382      Entry->replaceAllUsesWith(
6383          llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6384      llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6385    }
6386    Entry = CV;
6387  
6388    return ConstantAddress(CV, Type, Align);
6389  }
6390  
6391  /// EmitObjCPropertyImplementations - Emit information for synthesized
6392  /// properties for an implementation.
6393  void CodeGenModule::EmitObjCPropertyImplementations(const
6394                                                      ObjCImplementationDecl *D) {
6395    for (const auto *PID : D->property_impls()) {
6396      // Dynamic is just for type-checking.
6397      if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6398        ObjCPropertyDecl *PD = PID->getPropertyDecl();
6399  
6400        // Determine which methods need to be implemented, some may have
6401        // been overridden. Note that ::isPropertyAccessor is not the method
6402        // we want, that just indicates if the decl came from a
6403        // property. What we want to know is if the method is defined in
6404        // this implementation.
6405        auto *Getter = PID->getGetterMethodDecl();
6406        if (!Getter || Getter->isSynthesizedAccessorStub())
6407          CodeGenFunction(*this).GenerateObjCGetter(
6408              const_cast<ObjCImplementationDecl *>(D), PID);
6409        auto *Setter = PID->getSetterMethodDecl();
6410        if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6411          CodeGenFunction(*this).GenerateObjCSetter(
6412                                   const_cast<ObjCImplementationDecl *>(D), PID);
6413      }
6414    }
6415  }
6416  
6417  static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6418    const ObjCInterfaceDecl *iface = impl->getClassInterface();
6419    for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6420         ivar; ivar = ivar->getNextIvar())
6421      if (ivar->getType().isDestructedType())
6422        return true;
6423  
6424    return false;
6425  }
6426  
6427  static bool AllTrivialInitializers(CodeGenModule &CGM,
6428                                     ObjCImplementationDecl *D) {
6429    CodeGenFunction CGF(CGM);
6430    for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6431         E = D->init_end(); B != E; ++B) {
6432      CXXCtorInitializer *CtorInitExp = *B;
6433      Expr *Init = CtorInitExp->getInit();
6434      if (!CGF.isTrivialInitializer(Init))
6435        return false;
6436    }
6437    return true;
6438  }
6439  
6440  /// EmitObjCIvarInitializations - Emit information for ivar initialization
6441  /// for an implementation.
6442  void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6443    // We might need a .cxx_destruct even if we don't have any ivar initializers.
6444    if (needsDestructMethod(D)) {
6445      IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6446      Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6447      ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6448          getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6449          getContext().VoidTy, nullptr, D,
6450          /*isInstance=*/true, /*isVariadic=*/false,
6451          /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6452          /*isImplicitlyDeclared=*/true,
6453          /*isDefined=*/false, ObjCMethodDecl::Required);
6454      D->addInstanceMethod(DTORMethod);
6455      CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6456      D->setHasDestructors(true);
6457    }
6458  
6459    // If the implementation doesn't have any ivar initializers, we don't need
6460    // a .cxx_construct.
6461    if (D->getNumIvarInitializers() == 0 ||
6462        AllTrivialInitializers(*this, D))
6463      return;
6464  
6465    IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6466    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6467    // The constructor returns 'self'.
6468    ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6469        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6470        getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6471        /*isVariadic=*/false,
6472        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6473        /*isImplicitlyDeclared=*/true,
6474        /*isDefined=*/false, ObjCMethodDecl::Required);
6475    D->addInstanceMethod(CTORMethod);
6476    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6477    D->setHasNonZeroConstructors(true);
6478  }
6479  
6480  // EmitLinkageSpec - Emit all declarations in a linkage spec.
6481  void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6482    if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6483        LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6484      ErrorUnsupported(LSD, "linkage spec");
6485      return;
6486    }
6487  
6488    EmitDeclContext(LSD);
6489  }
6490  
6491  void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6492    // Device code should not be at top level.
6493    if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6494      return;
6495  
6496    std::unique_ptr<CodeGenFunction> &CurCGF =
6497        GlobalTopLevelStmtBlockInFlight.first;
6498  
6499    // We emitted a top-level stmt but after it there is initialization.
6500    // Stop squashing the top-level stmts into a single function.
6501    if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6502      CurCGF->FinishFunction(D->getEndLoc());
6503      CurCGF = nullptr;
6504    }
6505  
6506    if (!CurCGF) {
6507      // void __stmts__N(void)
6508      // FIXME: Ask the ABI name mangler to pick a name.
6509      std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6510      FunctionArgList Args;
6511      QualType RetTy = getContext().VoidTy;
6512      const CGFunctionInfo &FnInfo =
6513          getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6514      llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6515      llvm::Function *Fn = llvm::Function::Create(
6516          FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6517  
6518      CurCGF.reset(new CodeGenFunction(*this));
6519      GlobalTopLevelStmtBlockInFlight.second = D;
6520      CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6521                            D->getBeginLoc(), D->getBeginLoc());
6522      CXXGlobalInits.push_back(Fn);
6523    }
6524  
6525    CurCGF->EmitStmt(D->getStmt());
6526  }
6527  
6528  void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6529    for (auto *I : DC->decls()) {
6530      // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6531      // are themselves considered "top-level", so EmitTopLevelDecl on an
6532      // ObjCImplDecl does not recursively visit them. We need to do that in
6533      // case they're nested inside another construct (LinkageSpecDecl /
6534      // ExportDecl) that does stop them from being considered "top-level".
6535      if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6536        for (auto *M : OID->methods())
6537          EmitTopLevelDecl(M);
6538      }
6539  
6540      EmitTopLevelDecl(I);
6541    }
6542  }
6543  
6544  /// EmitTopLevelDecl - Emit code for a single top level declaration.
6545  void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6546    // Ignore dependent declarations.
6547    if (D->isTemplated())
6548      return;
6549  
6550    // Consteval function shouldn't be emitted.
6551    if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6552      return;
6553  
6554    switch (D->getKind()) {
6555    case Decl::CXXConversion:
6556    case Decl::CXXMethod:
6557    case Decl::Function:
6558      EmitGlobal(cast<FunctionDecl>(D));
6559      // Always provide some coverage mapping
6560      // even for the functions that aren't emitted.
6561      AddDeferredUnusedCoverageMapping(D);
6562      break;
6563  
6564    case Decl::CXXDeductionGuide:
6565      // Function-like, but does not result in code emission.
6566      break;
6567  
6568    case Decl::Var:
6569    case Decl::Decomposition:
6570    case Decl::VarTemplateSpecialization:
6571      EmitGlobal(cast<VarDecl>(D));
6572      if (auto *DD = dyn_cast<DecompositionDecl>(D))
6573        for (auto *B : DD->bindings())
6574          if (auto *HD = B->getHoldingVar())
6575            EmitGlobal(HD);
6576      break;
6577  
6578    // Indirect fields from global anonymous structs and unions can be
6579    // ignored; only the actual variable requires IR gen support.
6580    case Decl::IndirectField:
6581      break;
6582  
6583    // C++ Decls
6584    case Decl::Namespace:
6585      EmitDeclContext(cast<NamespaceDecl>(D));
6586      break;
6587    case Decl::ClassTemplateSpecialization: {
6588      const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6589      if (CGDebugInfo *DI = getModuleDebugInfo())
6590        if (Spec->getSpecializationKind() ==
6591                TSK_ExplicitInstantiationDefinition &&
6592            Spec->hasDefinition())
6593          DI->completeTemplateDefinition(*Spec);
6594    } [[fallthrough]];
6595    case Decl::CXXRecord: {
6596      CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6597      if (CGDebugInfo *DI = getModuleDebugInfo()) {
6598        if (CRD->hasDefinition())
6599          DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6600        if (auto *ES = D->getASTContext().getExternalSource())
6601          if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6602            DI->completeUnusedClass(*CRD);
6603      }
6604      // Emit any static data members, they may be definitions.
6605      for (auto *I : CRD->decls())
6606        if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6607          EmitTopLevelDecl(I);
6608      break;
6609    }
6610      // No code generation needed.
6611    case Decl::UsingShadow:
6612    case Decl::ClassTemplate:
6613    case Decl::VarTemplate:
6614    case Decl::Concept:
6615    case Decl::VarTemplatePartialSpecialization:
6616    case Decl::FunctionTemplate:
6617    case Decl::TypeAliasTemplate:
6618    case Decl::Block:
6619    case Decl::Empty:
6620    case Decl::Binding:
6621      break;
6622    case Decl::Using:          // using X; [C++]
6623      if (CGDebugInfo *DI = getModuleDebugInfo())
6624          DI->EmitUsingDecl(cast<UsingDecl>(*D));
6625      break;
6626    case Decl::UsingEnum: // using enum X; [C++]
6627      if (CGDebugInfo *DI = getModuleDebugInfo())
6628        DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6629      break;
6630    case Decl::NamespaceAlias:
6631      if (CGDebugInfo *DI = getModuleDebugInfo())
6632          DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6633      break;
6634    case Decl::UsingDirective: // using namespace X; [C++]
6635      if (CGDebugInfo *DI = getModuleDebugInfo())
6636        DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6637      break;
6638    case Decl::CXXConstructor:
6639      getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6640      break;
6641    case Decl::CXXDestructor:
6642      getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6643      break;
6644  
6645    case Decl::StaticAssert:
6646      // Nothing to do.
6647      break;
6648  
6649    // Objective-C Decls
6650  
6651    // Forward declarations, no (immediate) code generation.
6652    case Decl::ObjCInterface:
6653    case Decl::ObjCCategory:
6654      break;
6655  
6656    case Decl::ObjCProtocol: {
6657      auto *Proto = cast<ObjCProtocolDecl>(D);
6658      if (Proto->isThisDeclarationADefinition())
6659        ObjCRuntime->GenerateProtocol(Proto);
6660      break;
6661    }
6662  
6663    case Decl::ObjCCategoryImpl:
6664      // Categories have properties but don't support synthesize so we
6665      // can ignore them here.
6666      ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6667      break;
6668  
6669    case Decl::ObjCImplementation: {
6670      auto *OMD = cast<ObjCImplementationDecl>(D);
6671      EmitObjCPropertyImplementations(OMD);
6672      EmitObjCIvarInitializations(OMD);
6673      ObjCRuntime->GenerateClass(OMD);
6674      // Emit global variable debug information.
6675      if (CGDebugInfo *DI = getModuleDebugInfo())
6676        if (getCodeGenOpts().hasReducedDebugInfo())
6677          DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6678              OMD->getClassInterface()), OMD->getLocation());
6679      break;
6680    }
6681    case Decl::ObjCMethod: {
6682      auto *OMD = cast<ObjCMethodDecl>(D);
6683      // If this is not a prototype, emit the body.
6684      if (OMD->getBody())
6685        CodeGenFunction(*this).GenerateObjCMethod(OMD);
6686      break;
6687    }
6688    case Decl::ObjCCompatibleAlias:
6689      ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6690      break;
6691  
6692    case Decl::PragmaComment: {
6693      const auto *PCD = cast<PragmaCommentDecl>(D);
6694      switch (PCD->getCommentKind()) {
6695      case PCK_Unknown:
6696        llvm_unreachable("unexpected pragma comment kind");
6697      case PCK_Linker:
6698        AppendLinkerOptions(PCD->getArg());
6699        break;
6700      case PCK_Lib:
6701          AddDependentLib(PCD->getArg());
6702        break;
6703      case PCK_Compiler:
6704      case PCK_ExeStr:
6705      case PCK_User:
6706        break; // We ignore all of these.
6707      }
6708      break;
6709    }
6710  
6711    case Decl::PragmaDetectMismatch: {
6712      const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6713      AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6714      break;
6715    }
6716  
6717    case Decl::LinkageSpec:
6718      EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6719      break;
6720  
6721    case Decl::FileScopeAsm: {
6722      // File-scope asm is ignored during device-side CUDA compilation.
6723      if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6724        break;
6725      // File-scope asm is ignored during device-side OpenMP compilation.
6726      if (LangOpts.OpenMPIsTargetDevice)
6727        break;
6728      // File-scope asm is ignored during device-side SYCL compilation.
6729      if (LangOpts.SYCLIsDevice)
6730        break;
6731      auto *AD = cast<FileScopeAsmDecl>(D);
6732      getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6733      break;
6734    }
6735  
6736    case Decl::TopLevelStmt:
6737      EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6738      break;
6739  
6740    case Decl::Import: {
6741      auto *Import = cast<ImportDecl>(D);
6742  
6743      // If we've already imported this module, we're done.
6744      if (!ImportedModules.insert(Import->getImportedModule()))
6745        break;
6746  
6747      // Emit debug information for direct imports.
6748      if (!Import->getImportedOwningModule()) {
6749        if (CGDebugInfo *DI = getModuleDebugInfo())
6750          DI->EmitImportDecl(*Import);
6751      }
6752  
6753      // For C++ standard modules we are done - we will call the module
6754      // initializer for imported modules, and that will likewise call those for
6755      // any imports it has.
6756      if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6757          !Import->getImportedOwningModule()->isModuleMapModule())
6758        break;
6759  
6760      // For clang C++ module map modules the initializers for sub-modules are
6761      // emitted here.
6762  
6763      // Find all of the submodules and emit the module initializers.
6764      llvm::SmallPtrSet<clang::Module *, 16> Visited;
6765      SmallVector<clang::Module *, 16> Stack;
6766      Visited.insert(Import->getImportedModule());
6767      Stack.push_back(Import->getImportedModule());
6768  
6769      while (!Stack.empty()) {
6770        clang::Module *Mod = Stack.pop_back_val();
6771        if (!EmittedModuleInitializers.insert(Mod).second)
6772          continue;
6773  
6774        for (auto *D : Context.getModuleInitializers(Mod))
6775          EmitTopLevelDecl(D);
6776  
6777        // Visit the submodules of this module.
6778        for (auto *Submodule : Mod->submodules()) {
6779          // Skip explicit children; they need to be explicitly imported to emit
6780          // the initializers.
6781          if (Submodule->IsExplicit)
6782            continue;
6783  
6784          if (Visited.insert(Submodule).second)
6785            Stack.push_back(Submodule);
6786        }
6787      }
6788      break;
6789    }
6790  
6791    case Decl::Export:
6792      EmitDeclContext(cast<ExportDecl>(D));
6793      break;
6794  
6795    case Decl::OMPThreadPrivate:
6796      EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6797      break;
6798  
6799    case Decl::OMPAllocate:
6800      EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6801      break;
6802  
6803    case Decl::OMPDeclareReduction:
6804      EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6805      break;
6806  
6807    case Decl::OMPDeclareMapper:
6808      EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6809      break;
6810  
6811    case Decl::OMPRequires:
6812      EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6813      break;
6814  
6815    case Decl::Typedef:
6816    case Decl::TypeAlias: // using foo = bar; [C++11]
6817      if (CGDebugInfo *DI = getModuleDebugInfo())
6818        DI->EmitAndRetainType(
6819            getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6820      break;
6821  
6822    case Decl::Record:
6823      if (CGDebugInfo *DI = getModuleDebugInfo())
6824        if (cast<RecordDecl>(D)->getDefinition())
6825          DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6826      break;
6827  
6828    case Decl::Enum:
6829      if (CGDebugInfo *DI = getModuleDebugInfo())
6830        if (cast<EnumDecl>(D)->getDefinition())
6831          DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6832      break;
6833  
6834    case Decl::HLSLBuffer:
6835      getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6836      break;
6837  
6838    default:
6839      // Make sure we handled everything we should, every other kind is a
6840      // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6841      // function. Need to recode Decl::Kind to do that easily.
6842      assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6843      break;
6844    }
6845  }
6846  
6847  void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6848    // Do we need to generate coverage mapping?
6849    if (!CodeGenOpts.CoverageMapping)
6850      return;
6851    switch (D->getKind()) {
6852    case Decl::CXXConversion:
6853    case Decl::CXXMethod:
6854    case Decl::Function:
6855    case Decl::ObjCMethod:
6856    case Decl::CXXConstructor:
6857    case Decl::CXXDestructor: {
6858      if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6859        break;
6860      SourceManager &SM = getContext().getSourceManager();
6861      if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6862        break;
6863      auto I = DeferredEmptyCoverageMappingDecls.find(D);
6864      if (I == DeferredEmptyCoverageMappingDecls.end())
6865        DeferredEmptyCoverageMappingDecls[D] = true;
6866      break;
6867    }
6868    default:
6869      break;
6870    };
6871  }
6872  
6873  void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6874    // Do we need to generate coverage mapping?
6875    if (!CodeGenOpts.CoverageMapping)
6876      return;
6877    if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6878      if (Fn->isTemplateInstantiation())
6879        ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6880    }
6881    auto I = DeferredEmptyCoverageMappingDecls.find(D);
6882    if (I == DeferredEmptyCoverageMappingDecls.end())
6883      DeferredEmptyCoverageMappingDecls[D] = false;
6884    else
6885      I->second = false;
6886  }
6887  
6888  void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6889    // We call takeVector() here to avoid use-after-free.
6890    // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6891    // we deserialize function bodies to emit coverage info for them, and that
6892    // deserializes more declarations. How should we handle that case?
6893    for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6894      if (!Entry.second)
6895        continue;
6896      const Decl *D = Entry.first;
6897      switch (D->getKind()) {
6898      case Decl::CXXConversion:
6899      case Decl::CXXMethod:
6900      case Decl::Function:
6901      case Decl::ObjCMethod: {
6902        CodeGenPGO PGO(*this);
6903        GlobalDecl GD(cast<FunctionDecl>(D));
6904        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6905                                    getFunctionLinkage(GD));
6906        break;
6907      }
6908      case Decl::CXXConstructor: {
6909        CodeGenPGO PGO(*this);
6910        GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6911        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6912                                    getFunctionLinkage(GD));
6913        break;
6914      }
6915      case Decl::CXXDestructor: {
6916        CodeGenPGO PGO(*this);
6917        GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6918        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6919                                    getFunctionLinkage(GD));
6920        break;
6921      }
6922      default:
6923        break;
6924      };
6925    }
6926  }
6927  
6928  void CodeGenModule::EmitMainVoidAlias() {
6929    // In order to transition away from "__original_main" gracefully, emit an
6930    // alias for "main" in the no-argument case so that libc can detect when
6931    // new-style no-argument main is in used.
6932    if (llvm::Function *F = getModule().getFunction("main")) {
6933      if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6934          F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6935        auto *GA = llvm::GlobalAlias::create("__main_void", F);
6936        GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6937      }
6938    }
6939  }
6940  
6941  /// Turns the given pointer into a constant.
6942  static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6943                                            const void *Ptr) {
6944    uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6945    llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6946    return llvm::ConstantInt::get(i64, PtrInt);
6947  }
6948  
6949  static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6950                                     llvm::NamedMDNode *&GlobalMetadata,
6951                                     GlobalDecl D,
6952                                     llvm::GlobalValue *Addr) {
6953    if (!GlobalMetadata)
6954      GlobalMetadata =
6955        CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6956  
6957    // TODO: should we report variant information for ctors/dtors?
6958    llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6959                             llvm::ConstantAsMetadata::get(GetPointerConstant(
6960                                 CGM.getLLVMContext(), D.getDecl()))};
6961    GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6962  }
6963  
6964  bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6965                                                   llvm::GlobalValue *CppFunc) {
6966    // Store the list of ifuncs we need to replace uses in.
6967    llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6968    // List of ConstantExprs that we should be able to delete when we're done
6969    // here.
6970    llvm::SmallVector<llvm::ConstantExpr *> CEs;
6971  
6972    // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6973    if (Elem == CppFunc)
6974      return false;
6975  
6976    // First make sure that all users of this are ifuncs (or ifuncs via a
6977    // bitcast), and collect the list of ifuncs and CEs so we can work on them
6978    // later.
6979    for (llvm::User *User : Elem->users()) {
6980      // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6981      // ifunc directly. In any other case, just give up, as we don't know what we
6982      // could break by changing those.
6983      if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6984        if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6985          return false;
6986  
6987        for (llvm::User *CEUser : ConstExpr->users()) {
6988          if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6989            IFuncs.push_back(IFunc);
6990          } else {
6991            return false;
6992          }
6993        }
6994        CEs.push_back(ConstExpr);
6995      } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6996        IFuncs.push_back(IFunc);
6997      } else {
6998        // This user is one we don't know how to handle, so fail redirection. This
6999        // will result in an ifunc retaining a resolver name that will ultimately
7000        // fail to be resolved to a defined function.
7001        return false;
7002      }
7003    }
7004  
7005    // Now we know this is a valid case where we can do this alias replacement, we
7006    // need to remove all of the references to Elem (and the bitcasts!) so we can
7007    // delete it.
7008    for (llvm::GlobalIFunc *IFunc : IFuncs)
7009      IFunc->setResolver(nullptr);
7010    for (llvm::ConstantExpr *ConstExpr : CEs)
7011      ConstExpr->destroyConstant();
7012  
7013    // We should now be out of uses for the 'old' version of this function, so we
7014    // can erase it as well.
7015    Elem->eraseFromParent();
7016  
7017    for (llvm::GlobalIFunc *IFunc : IFuncs) {
7018      // The type of the resolver is always just a function-type that returns the
7019      // type of the IFunc, so create that here. If the type of the actual
7020      // resolver doesn't match, it just gets bitcast to the right thing.
7021      auto *ResolverTy =
7022          llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7023      llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7024          CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7025      IFunc->setResolver(Resolver);
7026    }
7027    return true;
7028  }
7029  
7030  /// For each function which is declared within an extern "C" region and marked
7031  /// as 'used', but has internal linkage, create an alias from the unmangled
7032  /// name to the mangled name if possible. People expect to be able to refer
7033  /// to such functions with an unmangled name from inline assembly within the
7034  /// same translation unit.
7035  void CodeGenModule::EmitStaticExternCAliases() {
7036    if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7037      return;
7038    for (auto &I : StaticExternCValues) {
7039      IdentifierInfo *Name = I.first;
7040      llvm::GlobalValue *Val = I.second;
7041  
7042      // If Val is null, that implies there were multiple declarations that each
7043      // had a claim to the unmangled name. In this case, generation of the alias
7044      // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7045      if (!Val)
7046        break;
7047  
7048      llvm::GlobalValue *ExistingElem =
7049          getModule().getNamedValue(Name->getName());
7050  
7051      // If there is either not something already by this name, or we were able to
7052      // replace all uses from IFuncs, create the alias.
7053      if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7054        addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7055    }
7056  }
7057  
7058  bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7059                                               GlobalDecl &Result) const {
7060    auto Res = Manglings.find(MangledName);
7061    if (Res == Manglings.end())
7062      return false;
7063    Result = Res->getValue();
7064    return true;
7065  }
7066  
7067  /// Emits metadata nodes associating all the global values in the
7068  /// current module with the Decls they came from.  This is useful for
7069  /// projects using IR gen as a subroutine.
7070  ///
7071  /// Since there's currently no way to associate an MDNode directly
7072  /// with an llvm::GlobalValue, we create a global named metadata
7073  /// with the name 'clang.global.decl.ptrs'.
7074  void CodeGenModule::EmitDeclMetadata() {
7075    llvm::NamedMDNode *GlobalMetadata = nullptr;
7076  
7077    for (auto &I : MangledDeclNames) {
7078      llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7079      // Some mangled names don't necessarily have an associated GlobalValue
7080      // in this module, e.g. if we mangled it for DebugInfo.
7081      if (Addr)
7082        EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7083    }
7084  }
7085  
7086  /// Emits metadata nodes for all the local variables in the current
7087  /// function.
7088  void CodeGenFunction::EmitDeclMetadata() {
7089    if (LocalDeclMap.empty()) return;
7090  
7091    llvm::LLVMContext &Context = getLLVMContext();
7092  
7093    // Find the unique metadata ID for this name.
7094    unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7095  
7096    llvm::NamedMDNode *GlobalMetadata = nullptr;
7097  
7098    for (auto &I : LocalDeclMap) {
7099      const Decl *D = I.first;
7100      llvm::Value *Addr = I.second.getPointer();
7101      if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7102        llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7103        Alloca->setMetadata(
7104            DeclPtrKind, llvm::MDNode::get(
7105                             Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7106      } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7107        GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7108        EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7109      }
7110    }
7111  }
7112  
7113  void CodeGenModule::EmitVersionIdentMetadata() {
7114    llvm::NamedMDNode *IdentMetadata =
7115      TheModule.getOrInsertNamedMetadata("llvm.ident");
7116    std::string Version = getClangFullVersion();
7117    llvm::LLVMContext &Ctx = TheModule.getContext();
7118  
7119    llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7120    IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7121  }
7122  
7123  void CodeGenModule::EmitCommandLineMetadata() {
7124    llvm::NamedMDNode *CommandLineMetadata =
7125      TheModule.getOrInsertNamedMetadata("llvm.commandline");
7126    std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7127    llvm::LLVMContext &Ctx = TheModule.getContext();
7128  
7129    llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7130    CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7131  }
7132  
7133  void CodeGenModule::EmitCoverageFile() {
7134    llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7135    if (!CUNode)
7136      return;
7137  
7138    llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7139    llvm::LLVMContext &Ctx = TheModule.getContext();
7140    auto *CoverageDataFile =
7141        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7142    auto *CoverageNotesFile =
7143        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7144    for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7145      llvm::MDNode *CU = CUNode->getOperand(i);
7146      llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7147      GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7148    }
7149  }
7150  
7151  llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7152                                                         bool ForEH) {
7153    // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7154    // FIXME: should we even be calling this method if RTTI is disabled
7155    // and it's not for EH?
7156    if (!shouldEmitRTTI(ForEH))
7157      return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7158  
7159    if (ForEH && Ty->isObjCObjectPointerType() &&
7160        LangOpts.ObjCRuntime.isGNUFamily())
7161      return ObjCRuntime->GetEHType(Ty);
7162  
7163    return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7164  }
7165  
7166  void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7167    // Do not emit threadprivates in simd-only mode.
7168    if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7169      return;
7170    for (auto RefExpr : D->varlists()) {
7171      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7172      bool PerformInit =
7173          VD->getAnyInitializer() &&
7174          !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7175                                                          /*ForRef=*/false);
7176  
7177      Address Addr(GetAddrOfGlobalVar(VD),
7178                   getTypes().ConvertTypeForMem(VD->getType()),
7179                   getContext().getDeclAlign(VD));
7180      if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7181              VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7182        CXXGlobalInits.push_back(InitFunction);
7183    }
7184  }
7185  
7186  llvm::Metadata *
7187  CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7188                                              StringRef Suffix) {
7189    if (auto *FnType = T->getAs<FunctionProtoType>())
7190      T = getContext().getFunctionType(
7191          FnType->getReturnType(), FnType->getParamTypes(),
7192          FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7193  
7194    llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7195    if (InternalId)
7196      return InternalId;
7197  
7198    if (isExternallyVisible(T->getLinkage())) {
7199      std::string OutName;
7200      llvm::raw_string_ostream Out(OutName);
7201      getCXXABI().getMangleContext().mangleTypeName(
7202          T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7203  
7204      if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7205        Out << ".normalized";
7206  
7207      Out << Suffix;
7208  
7209      InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7210    } else {
7211      InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7212                                             llvm::ArrayRef<llvm::Metadata *>());
7213    }
7214  
7215    return InternalId;
7216  }
7217  
7218  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7219    return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7220  }
7221  
7222  llvm::Metadata *
7223  CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7224    return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7225  }
7226  
7227  // Generalize pointer types to a void pointer with the qualifiers of the
7228  // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7229  // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7230  // 'void *'.
7231  static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7232    if (!Ty->isPointerType())
7233      return Ty;
7234  
7235    return Ctx.getPointerType(
7236        QualType(Ctx.VoidTy).withCVRQualifiers(
7237            Ty->getPointeeType().getCVRQualifiers()));
7238  }
7239  
7240  // Apply type generalization to a FunctionType's return and argument types
7241  static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7242    if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7243      SmallVector<QualType, 8> GeneralizedParams;
7244      for (auto &Param : FnType->param_types())
7245        GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7246  
7247      return Ctx.getFunctionType(
7248          GeneralizeType(Ctx, FnType->getReturnType()),
7249          GeneralizedParams, FnType->getExtProtoInfo());
7250    }
7251  
7252    if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7253      return Ctx.getFunctionNoProtoType(
7254          GeneralizeType(Ctx, FnType->getReturnType()));
7255  
7256    llvm_unreachable("Encountered unknown FunctionType");
7257  }
7258  
7259  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7260    return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7261                                        GeneralizedMetadataIdMap, ".generalized");
7262  }
7263  
7264  /// Returns whether this module needs the "all-vtables" type identifier.
7265  bool CodeGenModule::NeedAllVtablesTypeId() const {
7266    // Returns true if at least one of vtable-based CFI checkers is enabled and
7267    // is not in the trapping mode.
7268    return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7269             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7270            (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7271             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7272            (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7273             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7274            (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7275             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7276  }
7277  
7278  void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7279                                            CharUnits Offset,
7280                                            const CXXRecordDecl *RD) {
7281    llvm::Metadata *MD =
7282        CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7283    VTable->addTypeMetadata(Offset.getQuantity(), MD);
7284  
7285    if (CodeGenOpts.SanitizeCfiCrossDso)
7286      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7287        VTable->addTypeMetadata(Offset.getQuantity(),
7288                                llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7289  
7290    if (NeedAllVtablesTypeId()) {
7291      llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7292      VTable->addTypeMetadata(Offset.getQuantity(), MD);
7293    }
7294  }
7295  
7296  llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7297    if (!SanStats)
7298      SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7299  
7300    return *SanStats;
7301  }
7302  
7303  llvm::Value *
7304  CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7305                                                    CodeGenFunction &CGF) {
7306    llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7307    auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7308    auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7309    auto *Call = CGF.EmitRuntimeCall(
7310        CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7311    return Call;
7312  }
7313  
7314  CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7315      QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7316    return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7317                                   /* forPointeeType= */ true);
7318  }
7319  
7320  CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7321                                                   LValueBaseInfo *BaseInfo,
7322                                                   TBAAAccessInfo *TBAAInfo,
7323                                                   bool forPointeeType) {
7324    if (TBAAInfo)
7325      *TBAAInfo = getTBAAAccessInfo(T);
7326  
7327    // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7328    // that doesn't return the information we need to compute BaseInfo.
7329  
7330    // Honor alignment typedef attributes even on incomplete types.
7331    // We also honor them straight for C++ class types, even as pointees;
7332    // there's an expressivity gap here.
7333    if (auto TT = T->getAs<TypedefType>()) {
7334      if (auto Align = TT->getDecl()->getMaxAlignment()) {
7335        if (BaseInfo)
7336          *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7337        return getContext().toCharUnitsFromBits(Align);
7338      }
7339    }
7340  
7341    bool AlignForArray = T->isArrayType();
7342  
7343    // Analyze the base element type, so we don't get confused by incomplete
7344    // array types.
7345    T = getContext().getBaseElementType(T);
7346  
7347    if (T->isIncompleteType()) {
7348      // We could try to replicate the logic from
7349      // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7350      // type is incomplete, so it's impossible to test. We could try to reuse
7351      // getTypeAlignIfKnown, but that doesn't return the information we need
7352      // to set BaseInfo.  So just ignore the possibility that the alignment is
7353      // greater than one.
7354      if (BaseInfo)
7355        *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7356      return CharUnits::One();
7357    }
7358  
7359    if (BaseInfo)
7360      *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7361  
7362    CharUnits Alignment;
7363    const CXXRecordDecl *RD;
7364    if (T.getQualifiers().hasUnaligned()) {
7365      Alignment = CharUnits::One();
7366    } else if (forPointeeType && !AlignForArray &&
7367               (RD = T->getAsCXXRecordDecl())) {
7368      // For C++ class pointees, we don't know whether we're pointing at a
7369      // base or a complete object, so we generally need to use the
7370      // non-virtual alignment.
7371      Alignment = getClassPointerAlignment(RD);
7372    } else {
7373      Alignment = getContext().getTypeAlignInChars(T);
7374    }
7375  
7376    // Cap to the global maximum type alignment unless the alignment
7377    // was somehow explicit on the type.
7378    if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7379      if (Alignment.getQuantity() > MaxAlign &&
7380          !getContext().isAlignmentRequired(T))
7381        Alignment = CharUnits::fromQuantity(MaxAlign);
7382    }
7383    return Alignment;
7384  }
7385  
7386  bool CodeGenModule::stopAutoInit() {
7387    unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7388    if (StopAfter) {
7389      // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7390      // used
7391      if (NumAutoVarInit >= StopAfter) {
7392        return true;
7393      }
7394      if (!NumAutoVarInit) {
7395        unsigned DiagID = getDiags().getCustomDiagID(
7396            DiagnosticsEngine::Warning,
7397            "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7398            "number of times ftrivial-auto-var-init=%1 gets applied.");
7399        getDiags().Report(DiagID)
7400            << StopAfter
7401            << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7402                        LangOptions::TrivialAutoVarInitKind::Zero
7403                    ? "zero"
7404                    : "pattern");
7405      }
7406      ++NumAutoVarInit;
7407    }
7408    return false;
7409  }
7410  
7411  void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7412                                                      const Decl *D) const {
7413    // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7414    // postfix beginning with '.' since the symbol name can be demangled.
7415    if (LangOpts.HIP)
7416      OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7417    else
7418      OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7419  
7420    // If the CUID is not specified we try to generate a unique postfix.
7421    if (getLangOpts().CUID.empty()) {
7422      SourceManager &SM = getContext().getSourceManager();
7423      PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7424      assert(PLoc.isValid() && "Source location is expected to be valid.");
7425  
7426      // Get the hash of the user defined macros.
7427      llvm::MD5 Hash;
7428      llvm::MD5::MD5Result Result;
7429      for (const auto &Arg : PreprocessorOpts.Macros)
7430        Hash.update(Arg.first);
7431      Hash.final(Result);
7432  
7433      // Get the UniqueID for the file containing the decl.
7434      llvm::sys::fs::UniqueID ID;
7435      if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7436        PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7437        assert(PLoc.isValid() && "Source location is expected to be valid.");
7438        if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7439          SM.getDiagnostics().Report(diag::err_cannot_open_file)
7440              << PLoc.getFilename() << EC.message();
7441      }
7442      OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7443         << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7444    } else {
7445      OS << getContext().getCUIDHash();
7446    }
7447  }
7448  
7449  void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7450    assert(DeferredDeclsToEmit.empty() &&
7451           "Should have emitted all decls deferred to emit.");
7452    assert(NewBuilder->DeferredDecls.empty() &&
7453           "Newly created module should not have deferred decls");
7454    NewBuilder->DeferredDecls = std::move(DeferredDecls);
7455  
7456    assert(NewBuilder->DeferredVTables.empty() &&
7457           "Newly created module should not have deferred vtables");
7458    NewBuilder->DeferredVTables = std::move(DeferredVTables);
7459  
7460    assert(NewBuilder->MangledDeclNames.empty() &&
7461           "Newly created module should not have mangled decl names");
7462    assert(NewBuilder->Manglings.empty() &&
7463           "Newly created module should not have manglings");
7464    NewBuilder->Manglings = std::move(Manglings);
7465  
7466    NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7467  
7468    NewBuilder->TBAA = std::move(TBAA);
7469  
7470    assert(NewBuilder->EmittedDeferredDecls.empty() &&
7471           "Still have (unmerged) EmittedDeferredDecls deferred decls");
7472  
7473    NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7474  
7475    NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7476  }
7477