1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 #include <optional> 73 74 using namespace clang; 75 using namespace CodeGen; 76 77 static llvm::cl::opt<bool> LimitedCoverage( 78 "limited-coverage-experimental", llvm::cl::Hidden, 79 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 80 81 static const char AnnotationSection[] = "llvm.metadata"; 82 83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 84 switch (CGM.getContext().getCXXABIKind()) { 85 case TargetCXXABI::AppleARM64: 86 case TargetCXXABI::Fuchsia: 87 case TargetCXXABI::GenericAArch64: 88 case TargetCXXABI::GenericARM: 89 case TargetCXXABI::iOS: 90 case TargetCXXABI::WatchOS: 91 case TargetCXXABI::GenericMIPS: 92 case TargetCXXABI::GenericItanium: 93 case TargetCXXABI::WebAssembly: 94 case TargetCXXABI::XL: 95 return CreateItaniumCXXABI(CGM); 96 case TargetCXXABI::Microsoft: 97 return CreateMicrosoftCXXABI(CGM); 98 } 99 100 llvm_unreachable("invalid C++ ABI kind"); 101 } 102 103 CodeGenModule::CodeGenModule(ASTContext &C, 104 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 105 const HeaderSearchOptions &HSO, 106 const PreprocessorOptions &PPO, 107 const CodeGenOptions &CGO, llvm::Module &M, 108 DiagnosticsEngine &diags, 109 CoverageSourceInfo *CoverageInfo) 110 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), 111 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), 112 TheModule(M), Diags(diags), Target(C.getTargetInfo()), 113 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), 114 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { 115 116 // Initialize the type cache. 117 llvm::LLVMContext &LLVMContext = M.getContext(); 118 VoidTy = llvm::Type::getVoidTy(LLVMContext); 119 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 120 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 121 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 122 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 123 HalfTy = llvm::Type::getHalfTy(LLVMContext); 124 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 125 FloatTy = llvm::Type::getFloatTy(LLVMContext); 126 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 127 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 128 PointerAlignInBytes = 129 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 130 .getQuantity(); 131 SizeSizeInBytes = 132 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 133 IntAlignInBytes = 134 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 135 CharTy = 136 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 137 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 138 IntPtrTy = llvm::IntegerType::get(LLVMContext, 139 C.getTargetInfo().getMaxPointerWidth()); 140 Int8PtrTy = Int8Ty->getPointerTo(0); 141 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 142 const llvm::DataLayout &DL = M.getDataLayout(); 143 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 144 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 145 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 146 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 147 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 148 149 // Build C++20 Module initializers. 150 // TODO: Add Microsoft here once we know the mangling required for the 151 // initializers. 152 CXX20ModuleInits = 153 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 154 ItaniumMangleContext::MK_Itanium; 155 156 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 157 158 if (LangOpts.ObjC) 159 createObjCRuntime(); 160 if (LangOpts.OpenCL) 161 createOpenCLRuntime(); 162 if (LangOpts.OpenMP) 163 createOpenMPRuntime(); 164 if (LangOpts.CUDA) 165 createCUDARuntime(); 166 if (LangOpts.HLSL) 167 createHLSLRuntime(); 168 169 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 170 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 171 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 172 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 173 getCXXABI().getMangleContext())); 174 175 // If debug info or coverage generation is enabled, create the CGDebugInfo 176 // object. 177 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 178 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 179 DebugInfo.reset(new CGDebugInfo(*this)); 180 181 Block.GlobalUniqueCount = 0; 182 183 if (C.getLangOpts().ObjC) 184 ObjCData.reset(new ObjCEntrypoints()); 185 186 if (CodeGenOpts.hasProfileClangUse()) { 187 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 188 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 189 // We're checking for profile read errors in CompilerInvocation, so if 190 // there was an error it should've already been caught. If it hasn't been 191 // somehow, trip an assertion. 192 assert(ReaderOrErr); 193 PGOReader = std::move(ReaderOrErr.get()); 194 } 195 196 // If coverage mapping generation is enabled, create the 197 // CoverageMappingModuleGen object. 198 if (CodeGenOpts.CoverageMapping) 199 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 200 201 // Generate the module name hash here if needed. 202 if (CodeGenOpts.UniqueInternalLinkageNames && 203 !getModule().getSourceFileName().empty()) { 204 std::string Path = getModule().getSourceFileName(); 205 // Check if a path substitution is needed from the MacroPrefixMap. 206 for (const auto &Entry : LangOpts.MacroPrefixMap) 207 if (Path.rfind(Entry.first, 0) != std::string::npos) { 208 Path = Entry.second + Path.substr(Entry.first.size()); 209 break; 210 } 211 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 212 } 213 } 214 215 CodeGenModule::~CodeGenModule() {} 216 217 void CodeGenModule::createObjCRuntime() { 218 // This is just isGNUFamily(), but we want to force implementors of 219 // new ABIs to decide how best to do this. 220 switch (LangOpts.ObjCRuntime.getKind()) { 221 case ObjCRuntime::GNUstep: 222 case ObjCRuntime::GCC: 223 case ObjCRuntime::ObjFW: 224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 225 return; 226 227 case ObjCRuntime::FragileMacOSX: 228 case ObjCRuntime::MacOSX: 229 case ObjCRuntime::iOS: 230 case ObjCRuntime::WatchOS: 231 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 232 return; 233 } 234 llvm_unreachable("bad runtime kind"); 235 } 236 237 void CodeGenModule::createOpenCLRuntime() { 238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 239 } 240 241 void CodeGenModule::createOpenMPRuntime() { 242 // Select a specialized code generation class based on the target, if any. 243 // If it does not exist use the default implementation. 244 switch (getTriple().getArch()) { 245 case llvm::Triple::nvptx: 246 case llvm::Triple::nvptx64: 247 case llvm::Triple::amdgcn: 248 assert(getLangOpts().OpenMPIsDevice && 249 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 250 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 251 break; 252 default: 253 if (LangOpts.OpenMPSimd) 254 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 255 else 256 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 257 break; 258 } 259 } 260 261 void CodeGenModule::createCUDARuntime() { 262 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 263 } 264 265 void CodeGenModule::createHLSLRuntime() { 266 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 267 } 268 269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 270 Replacements[Name] = C; 271 } 272 273 void CodeGenModule::applyReplacements() { 274 for (auto &I : Replacements) { 275 StringRef MangledName = I.first(); 276 llvm::Constant *Replacement = I.second; 277 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 278 if (!Entry) 279 continue; 280 auto *OldF = cast<llvm::Function>(Entry); 281 auto *NewF = dyn_cast<llvm::Function>(Replacement); 282 if (!NewF) { 283 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 284 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 285 } else { 286 auto *CE = cast<llvm::ConstantExpr>(Replacement); 287 assert(CE->getOpcode() == llvm::Instruction::BitCast || 288 CE->getOpcode() == llvm::Instruction::GetElementPtr); 289 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 290 } 291 } 292 293 // Replace old with new, but keep the old order. 294 OldF->replaceAllUsesWith(Replacement); 295 if (NewF) { 296 NewF->removeFromParent(); 297 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 298 NewF); 299 } 300 OldF->eraseFromParent(); 301 } 302 } 303 304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 305 GlobalValReplacements.push_back(std::make_pair(GV, C)); 306 } 307 308 void CodeGenModule::applyGlobalValReplacements() { 309 for (auto &I : GlobalValReplacements) { 310 llvm::GlobalValue *GV = I.first; 311 llvm::Constant *C = I.second; 312 313 GV->replaceAllUsesWith(C); 314 GV->eraseFromParent(); 315 } 316 } 317 318 // This is only used in aliases that we created and we know they have a 319 // linear structure. 320 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 321 const llvm::Constant *C; 322 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 323 C = GA->getAliasee(); 324 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 325 C = GI->getResolver(); 326 else 327 return GV; 328 329 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 330 if (!AliaseeGV) 331 return nullptr; 332 333 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 334 if (FinalGV == GV) 335 return nullptr; 336 337 return FinalGV; 338 } 339 340 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 341 SourceLocation Location, bool IsIFunc, 342 const llvm::GlobalValue *Alias, 343 const llvm::GlobalValue *&GV) { 344 GV = getAliasedGlobal(Alias); 345 if (!GV) { 346 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 347 return false; 348 } 349 350 if (GV->isDeclaration()) { 351 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 352 return false; 353 } 354 355 if (IsIFunc) { 356 // Check resolver function type. 357 const auto *F = dyn_cast<llvm::Function>(GV); 358 if (!F) { 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 return false; 362 } 363 364 llvm::FunctionType *FTy = F->getFunctionType(); 365 if (!FTy->getReturnType()->isPointerTy()) { 366 Diags.Report(Location, diag::err_ifunc_resolver_return); 367 return false; 368 } 369 } 370 371 return true; 372 } 373 374 void CodeGenModule::checkAliases() { 375 // Check if the constructed aliases are well formed. It is really unfortunate 376 // that we have to do this in CodeGen, but we only construct mangled names 377 // and aliases during codegen. 378 bool Error = false; 379 DiagnosticsEngine &Diags = getDiags(); 380 for (const GlobalDecl &GD : Aliases) { 381 const auto *D = cast<ValueDecl>(GD.getDecl()); 382 SourceLocation Location; 383 bool IsIFunc = D->hasAttr<IFuncAttr>(); 384 if (const Attr *A = D->getDefiningAttr()) 385 Location = A->getLocation(); 386 else 387 llvm_unreachable("Not an alias or ifunc?"); 388 389 StringRef MangledName = getMangledName(GD); 390 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 391 const llvm::GlobalValue *GV = nullptr; 392 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 393 Error = true; 394 continue; 395 } 396 397 llvm::Constant *Aliasee = 398 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 399 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 400 401 llvm::GlobalValue *AliaseeGV; 402 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 403 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 404 else 405 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 406 407 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 408 StringRef AliasSection = SA->getName(); 409 if (AliasSection != AliaseeGV->getSection()) 410 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 411 << AliasSection << IsIFunc << IsIFunc; 412 } 413 414 // We have to handle alias to weak aliases in here. LLVM itself disallows 415 // this since the object semantics would not match the IL one. For 416 // compatibility with gcc we implement it by just pointing the alias 417 // to its aliasee's aliasee. We also warn, since the user is probably 418 // expecting the link to be weak. 419 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 420 if (GA->isInterposable()) { 421 Diags.Report(Location, diag::warn_alias_to_weak_alias) 422 << GV->getName() << GA->getName() << IsIFunc; 423 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 424 GA->getAliasee(), Alias->getType()); 425 426 if (IsIFunc) 427 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 428 else 429 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 430 } 431 } 432 } 433 if (!Error) 434 return; 435 436 for (const GlobalDecl &GD : Aliases) { 437 StringRef MangledName = getMangledName(GD); 438 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 439 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 440 Alias->eraseFromParent(); 441 } 442 } 443 444 void CodeGenModule::clear() { 445 DeferredDeclsToEmit.clear(); 446 EmittedDeferredDecls.clear(); 447 if (OpenMPRuntime) 448 OpenMPRuntime->clear(); 449 } 450 451 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 452 StringRef MainFile) { 453 if (!hasDiagnostics()) 454 return; 455 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 456 if (MainFile.empty()) 457 MainFile = "<stdin>"; 458 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 459 } else { 460 if (Mismatched > 0) 461 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 462 463 if (Missing > 0) 464 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 465 } 466 } 467 468 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 469 llvm::Module &M) { 470 if (!LO.VisibilityFromDLLStorageClass) 471 return; 472 473 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 474 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 475 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 476 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 477 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 478 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 479 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 480 CodeGenModule::GetLLVMVisibility( 481 LO.getExternDeclNoDLLStorageClassVisibility()); 482 483 for (llvm::GlobalValue &GV : M.global_values()) { 484 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 485 continue; 486 487 // Reset DSO locality before setting the visibility. This removes 488 // any effects that visibility options and annotations may have 489 // had on the DSO locality. Setting the visibility will implicitly set 490 // appropriate globals to DSO Local; however, this will be pessimistic 491 // w.r.t. to the normal compiler IRGen. 492 GV.setDSOLocal(false); 493 494 if (GV.isDeclarationForLinker()) { 495 GV.setVisibility(GV.getDLLStorageClass() == 496 llvm::GlobalValue::DLLImportStorageClass 497 ? ExternDeclDLLImportVisibility 498 : ExternDeclNoDLLStorageClassVisibility); 499 } else { 500 GV.setVisibility(GV.getDLLStorageClass() == 501 llvm::GlobalValue::DLLExportStorageClass 502 ? DLLExportVisibility 503 : NoDLLStorageClassVisibility); 504 } 505 506 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 507 } 508 } 509 510 void CodeGenModule::Release() { 511 Module *Primary = getContext().getModuleForCodeGen(); 512 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 513 EmitModuleInitializers(Primary); 514 EmitDeferred(); 515 DeferredDecls.insert(EmittedDeferredDecls.begin(), 516 EmittedDeferredDecls.end()); 517 EmittedDeferredDecls.clear(); 518 EmitVTablesOpportunistically(); 519 applyGlobalValReplacements(); 520 applyReplacements(); 521 emitMultiVersionFunctions(); 522 523 if (Context.getLangOpts().IncrementalExtensions && 524 GlobalTopLevelStmtBlockInFlight.first) { 525 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 526 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 527 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 528 } 529 530 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 531 EmitCXXModuleInitFunc(Primary); 532 else 533 EmitCXXGlobalInitFunc(); 534 EmitCXXGlobalCleanUpFunc(); 535 registerGlobalDtorsWithAtExit(); 536 EmitCXXThreadLocalInitFunc(); 537 if (ObjCRuntime) 538 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 539 AddGlobalCtor(ObjCInitFunction); 540 if (Context.getLangOpts().CUDA && CUDARuntime) { 541 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 542 AddGlobalCtor(CudaCtorFunction); 543 } 544 if (OpenMPRuntime) { 545 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 546 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 547 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 548 } 549 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 550 OpenMPRuntime->clear(); 551 } 552 if (PGOReader) { 553 getModule().setProfileSummary( 554 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 555 llvm::ProfileSummary::PSK_Instr); 556 if (PGOStats.hasDiagnostics()) 557 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 558 } 559 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 560 return L.LexOrder < R.LexOrder; 561 }); 562 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 563 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 564 EmitGlobalAnnotations(); 565 EmitStaticExternCAliases(); 566 checkAliases(); 567 EmitDeferredUnusedCoverageMappings(); 568 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 569 if (CoverageMapping) 570 CoverageMapping->emit(); 571 if (CodeGenOpts.SanitizeCfiCrossDso) { 572 CodeGenFunction(*this).EmitCfiCheckFail(); 573 CodeGenFunction(*this).EmitCfiCheckStub(); 574 } 575 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 576 finalizeKCFITypes(); 577 emitAtAvailableLinkGuard(); 578 if (Context.getTargetInfo().getTriple().isWasm()) 579 EmitMainVoidAlias(); 580 581 if (getTriple().isAMDGPU()) { 582 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 583 // preserve ASAN functions in bitcode libraries. 584 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 585 auto *FT = llvm::FunctionType::get(VoidTy, {}); 586 auto *F = llvm::Function::Create( 587 FT, llvm::GlobalValue::ExternalLinkage, 588 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 589 auto *Var = new llvm::GlobalVariable( 590 getModule(), FT->getPointerTo(), 591 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 592 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 593 llvm::GlobalVariable::NotThreadLocal); 594 addCompilerUsedGlobal(Var); 595 } 596 // Emit amdgpu_code_object_version module flag, which is code object version 597 // times 100. 598 if (getTarget().getTargetOpts().CodeObjectVersion != 599 TargetOptions::COV_None) { 600 getModule().addModuleFlag(llvm::Module::Error, 601 "amdgpu_code_object_version", 602 getTarget().getTargetOpts().CodeObjectVersion); 603 } 604 } 605 606 // Emit a global array containing all external kernels or device variables 607 // used by host functions and mark it as used for CUDA/HIP. This is necessary 608 // to get kernels or device variables in archives linked in even if these 609 // kernels or device variables are only used in host functions. 610 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 611 SmallVector<llvm::Constant *, 8> UsedArray; 612 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 613 GlobalDecl GD; 614 if (auto *FD = dyn_cast<FunctionDecl>(D)) 615 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 616 else 617 GD = GlobalDecl(D); 618 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 619 GetAddrOfGlobal(GD), Int8PtrTy)); 620 } 621 622 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 623 624 auto *GV = new llvm::GlobalVariable( 625 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 626 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 627 addCompilerUsedGlobal(GV); 628 } 629 630 emitLLVMUsed(); 631 if (SanStats) 632 SanStats->finish(); 633 634 if (CodeGenOpts.Autolink && 635 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 636 EmitModuleLinkOptions(); 637 } 638 639 // On ELF we pass the dependent library specifiers directly to the linker 640 // without manipulating them. This is in contrast to other platforms where 641 // they are mapped to a specific linker option by the compiler. This 642 // difference is a result of the greater variety of ELF linkers and the fact 643 // that ELF linkers tend to handle libraries in a more complicated fashion 644 // than on other platforms. This forces us to defer handling the dependent 645 // libs to the linker. 646 // 647 // CUDA/HIP device and host libraries are different. Currently there is no 648 // way to differentiate dependent libraries for host or device. Existing 649 // usage of #pragma comment(lib, *) is intended for host libraries on 650 // Windows. Therefore emit llvm.dependent-libraries only for host. 651 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 652 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 653 for (auto *MD : ELFDependentLibraries) 654 NMD->addOperand(MD); 655 } 656 657 // Record mregparm value now so it is visible through rest of codegen. 658 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 659 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 660 CodeGenOpts.NumRegisterParameters); 661 662 if (CodeGenOpts.DwarfVersion) { 663 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 664 CodeGenOpts.DwarfVersion); 665 } 666 667 if (CodeGenOpts.Dwarf64) 668 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 669 670 if (Context.getLangOpts().SemanticInterposition) 671 // Require various optimization to respect semantic interposition. 672 getModule().setSemanticInterposition(true); 673 674 if (CodeGenOpts.EmitCodeView) { 675 // Indicate that we want CodeView in the metadata. 676 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 677 } 678 if (CodeGenOpts.CodeViewGHash) { 679 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 680 } 681 if (CodeGenOpts.ControlFlowGuard) { 682 // Function ID tables and checks for Control Flow Guard (cfguard=2). 683 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 684 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 685 // Function ID tables for Control Flow Guard (cfguard=1). 686 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 687 } 688 if (CodeGenOpts.EHContGuard) { 689 // Function ID tables for EH Continuation Guard. 690 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 691 } 692 if (Context.getLangOpts().Kernel) { 693 // Note if we are compiling with /kernel. 694 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 695 } 696 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 697 // We don't support LTO with 2 with different StrictVTablePointers 698 // FIXME: we could support it by stripping all the information introduced 699 // by StrictVTablePointers. 700 701 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 702 703 llvm::Metadata *Ops[2] = { 704 llvm::MDString::get(VMContext, "StrictVTablePointers"), 705 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 706 llvm::Type::getInt32Ty(VMContext), 1))}; 707 708 getModule().addModuleFlag(llvm::Module::Require, 709 "StrictVTablePointersRequirement", 710 llvm::MDNode::get(VMContext, Ops)); 711 } 712 if (getModuleDebugInfo()) 713 // We support a single version in the linked module. The LLVM 714 // parser will drop debug info with a different version number 715 // (and warn about it, too). 716 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 717 llvm::DEBUG_METADATA_VERSION); 718 719 // We need to record the widths of enums and wchar_t, so that we can generate 720 // the correct build attributes in the ARM backend. wchar_size is also used by 721 // TargetLibraryInfo. 722 uint64_t WCharWidth = 723 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 724 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 725 726 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 727 if ( Arch == llvm::Triple::arm 728 || Arch == llvm::Triple::armeb 729 || Arch == llvm::Triple::thumb 730 || Arch == llvm::Triple::thumbeb) { 731 // The minimum width of an enum in bytes 732 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 733 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 734 } 735 736 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 737 StringRef ABIStr = Target.getABI(); 738 llvm::LLVMContext &Ctx = TheModule.getContext(); 739 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 740 llvm::MDString::get(Ctx, ABIStr)); 741 } 742 743 if (CodeGenOpts.SanitizeCfiCrossDso) { 744 // Indicate that we want cross-DSO control flow integrity checks. 745 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 746 } 747 748 if (CodeGenOpts.WholeProgramVTables) { 749 // Indicate whether VFE was enabled for this module, so that the 750 // vcall_visibility metadata added under whole program vtables is handled 751 // appropriately in the optimizer. 752 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 753 CodeGenOpts.VirtualFunctionElimination); 754 } 755 756 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 757 getModule().addModuleFlag(llvm::Module::Override, 758 "CFI Canonical Jump Tables", 759 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 760 } 761 762 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 763 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 764 // KCFI assumes patchable-function-prefix is the same for all indirectly 765 // called functions. Store the expected offset for code generation. 766 if (CodeGenOpts.PatchableFunctionEntryOffset) 767 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 768 CodeGenOpts.PatchableFunctionEntryOffset); 769 } 770 771 if (CodeGenOpts.CFProtectionReturn && 772 Target.checkCFProtectionReturnSupported(getDiags())) { 773 // Indicate that we want to instrument return control flow protection. 774 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 775 1); 776 } 777 778 if (CodeGenOpts.CFProtectionBranch && 779 Target.checkCFProtectionBranchSupported(getDiags())) { 780 // Indicate that we want to instrument branch control flow protection. 781 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 782 1); 783 } 784 785 if (CodeGenOpts.FunctionReturnThunks) 786 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 787 788 if (CodeGenOpts.IndirectBranchCSPrefix) 789 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 790 791 // Add module metadata for return address signing (ignoring 792 // non-leaf/all) and stack tagging. These are actually turned on by function 793 // attributes, but we use module metadata to emit build attributes. This is 794 // needed for LTO, where the function attributes are inside bitcode 795 // serialised into a global variable by the time build attributes are 796 // emitted, so we can't access them. LTO objects could be compiled with 797 // different flags therefore module flags are set to "Min" behavior to achieve 798 // the same end result of the normal build where e.g BTI is off if any object 799 // doesn't support it. 800 if (Context.getTargetInfo().hasFeature("ptrauth") && 801 LangOpts.getSignReturnAddressScope() != 802 LangOptions::SignReturnAddressScopeKind::None) 803 getModule().addModuleFlag(llvm::Module::Override, 804 "sign-return-address-buildattr", 1); 805 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 806 getModule().addModuleFlag(llvm::Module::Override, 807 "tag-stack-memory-buildattr", 1); 808 809 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 810 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 811 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 812 Arch == llvm::Triple::aarch64_be) { 813 if (LangOpts.BranchTargetEnforcement) 814 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 815 1); 816 if (LangOpts.hasSignReturnAddress()) 817 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 818 if (LangOpts.isSignReturnAddressScopeAll()) 819 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 820 1); 821 if (!LangOpts.isSignReturnAddressWithAKey()) 822 getModule().addModuleFlag(llvm::Module::Min, 823 "sign-return-address-with-bkey", 1); 824 } 825 826 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 827 llvm::LLVMContext &Ctx = TheModule.getContext(); 828 getModule().addModuleFlag( 829 llvm::Module::Error, "MemProfProfileFilename", 830 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 831 } 832 833 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 834 // Indicate whether __nvvm_reflect should be configured to flush denormal 835 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 836 // property.) 837 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 838 CodeGenOpts.FP32DenormalMode.Output != 839 llvm::DenormalMode::IEEE); 840 } 841 842 if (LangOpts.EHAsynch) 843 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 844 845 // Indicate whether this Module was compiled with -fopenmp 846 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 847 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 848 if (getLangOpts().OpenMPIsDevice) 849 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 850 LangOpts.OpenMP); 851 852 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 853 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 854 EmitOpenCLMetadata(); 855 // Emit SPIR version. 856 if (getTriple().isSPIR()) { 857 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 858 // opencl.spir.version named metadata. 859 // C++ for OpenCL has a distinct mapping for version compatibility with 860 // OpenCL. 861 auto Version = LangOpts.getOpenCLCompatibleVersion(); 862 llvm::Metadata *SPIRVerElts[] = { 863 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 864 Int32Ty, Version / 100)), 865 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 866 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 867 llvm::NamedMDNode *SPIRVerMD = 868 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 869 llvm::LLVMContext &Ctx = TheModule.getContext(); 870 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 871 } 872 } 873 874 // HLSL related end of code gen work items. 875 if (LangOpts.HLSL) 876 getHLSLRuntime().finishCodeGen(); 877 878 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 879 assert(PLevel < 3 && "Invalid PIC Level"); 880 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 881 if (Context.getLangOpts().PIE) 882 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 883 } 884 885 if (getCodeGenOpts().CodeModel.size() > 0) { 886 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 887 .Case("tiny", llvm::CodeModel::Tiny) 888 .Case("small", llvm::CodeModel::Small) 889 .Case("kernel", llvm::CodeModel::Kernel) 890 .Case("medium", llvm::CodeModel::Medium) 891 .Case("large", llvm::CodeModel::Large) 892 .Default(~0u); 893 if (CM != ~0u) { 894 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 895 getModule().setCodeModel(codeModel); 896 } 897 } 898 899 if (CodeGenOpts.NoPLT) 900 getModule().setRtLibUseGOT(); 901 if (CodeGenOpts.UnwindTables) 902 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 903 904 switch (CodeGenOpts.getFramePointer()) { 905 case CodeGenOptions::FramePointerKind::None: 906 // 0 ("none") is the default. 907 break; 908 case CodeGenOptions::FramePointerKind::NonLeaf: 909 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 910 break; 911 case CodeGenOptions::FramePointerKind::All: 912 getModule().setFramePointer(llvm::FramePointerKind::All); 913 break; 914 } 915 916 SimplifyPersonality(); 917 918 if (getCodeGenOpts().EmitDeclMetadata) 919 EmitDeclMetadata(); 920 921 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 922 EmitCoverageFile(); 923 924 if (CGDebugInfo *DI = getModuleDebugInfo()) 925 DI->finalize(); 926 927 if (getCodeGenOpts().EmitVersionIdentMetadata) 928 EmitVersionIdentMetadata(); 929 930 if (!getCodeGenOpts().RecordCommandLine.empty()) 931 EmitCommandLineMetadata(); 932 933 if (!getCodeGenOpts().StackProtectorGuard.empty()) 934 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 935 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 936 getModule().setStackProtectorGuardReg( 937 getCodeGenOpts().StackProtectorGuardReg); 938 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 939 getModule().setStackProtectorGuardSymbol( 940 getCodeGenOpts().StackProtectorGuardSymbol); 941 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 942 getModule().setStackProtectorGuardOffset( 943 getCodeGenOpts().StackProtectorGuardOffset); 944 if (getCodeGenOpts().StackAlignment) 945 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 946 if (getCodeGenOpts().SkipRaxSetup) 947 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 948 949 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 950 951 EmitBackendOptionsMetadata(getCodeGenOpts()); 952 953 // If there is device offloading code embed it in the host now. 954 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 955 956 // Set visibility from DLL storage class 957 // We do this at the end of LLVM IR generation; after any operation 958 // that might affect the DLL storage class or the visibility, and 959 // before anything that might act on these. 960 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 961 } 962 963 void CodeGenModule::EmitOpenCLMetadata() { 964 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 965 // opencl.ocl.version named metadata node. 966 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 967 auto Version = LangOpts.getOpenCLCompatibleVersion(); 968 llvm::Metadata *OCLVerElts[] = { 969 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 970 Int32Ty, Version / 100)), 971 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 972 Int32Ty, (Version % 100) / 10))}; 973 llvm::NamedMDNode *OCLVerMD = 974 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 975 llvm::LLVMContext &Ctx = TheModule.getContext(); 976 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 977 } 978 979 void CodeGenModule::EmitBackendOptionsMetadata( 980 const CodeGenOptions CodeGenOpts) { 981 if (getTriple().isRISCV()) { 982 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 983 CodeGenOpts.SmallDataLimit); 984 } 985 } 986 987 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 988 // Make sure that this type is translated. 989 Types.UpdateCompletedType(TD); 990 } 991 992 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 993 // Make sure that this type is translated. 994 Types.RefreshTypeCacheForClass(RD); 995 } 996 997 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 998 if (!TBAA) 999 return nullptr; 1000 return TBAA->getTypeInfo(QTy); 1001 } 1002 1003 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1004 if (!TBAA) 1005 return TBAAAccessInfo(); 1006 if (getLangOpts().CUDAIsDevice) { 1007 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1008 // access info. 1009 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1010 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1011 nullptr) 1012 return TBAAAccessInfo(); 1013 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1014 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1015 nullptr) 1016 return TBAAAccessInfo(); 1017 } 1018 } 1019 return TBAA->getAccessInfo(AccessType); 1020 } 1021 1022 TBAAAccessInfo 1023 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1024 if (!TBAA) 1025 return TBAAAccessInfo(); 1026 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1027 } 1028 1029 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1030 if (!TBAA) 1031 return nullptr; 1032 return TBAA->getTBAAStructInfo(QTy); 1033 } 1034 1035 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1036 if (!TBAA) 1037 return nullptr; 1038 return TBAA->getBaseTypeInfo(QTy); 1039 } 1040 1041 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1042 if (!TBAA) 1043 return nullptr; 1044 return TBAA->getAccessTagInfo(Info); 1045 } 1046 1047 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1048 TBAAAccessInfo TargetInfo) { 1049 if (!TBAA) 1050 return TBAAAccessInfo(); 1051 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1052 } 1053 1054 TBAAAccessInfo 1055 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1056 TBAAAccessInfo InfoB) { 1057 if (!TBAA) 1058 return TBAAAccessInfo(); 1059 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1060 } 1061 1062 TBAAAccessInfo 1063 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1064 TBAAAccessInfo SrcInfo) { 1065 if (!TBAA) 1066 return TBAAAccessInfo(); 1067 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1068 } 1069 1070 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1071 TBAAAccessInfo TBAAInfo) { 1072 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1073 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1074 } 1075 1076 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1077 llvm::Instruction *I, const CXXRecordDecl *RD) { 1078 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1079 llvm::MDNode::get(getLLVMContext(), {})); 1080 } 1081 1082 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1083 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1084 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1085 } 1086 1087 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1088 /// specified stmt yet. 1089 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1090 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1091 "cannot compile this %0 yet"); 1092 std::string Msg = Type; 1093 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1094 << Msg << S->getSourceRange(); 1095 } 1096 1097 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1098 /// specified decl yet. 1099 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1100 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1101 "cannot compile this %0 yet"); 1102 std::string Msg = Type; 1103 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1104 } 1105 1106 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1107 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1108 } 1109 1110 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1111 const NamedDecl *D) const { 1112 // Internal definitions always have default visibility. 1113 if (GV->hasLocalLinkage()) { 1114 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1115 return; 1116 } 1117 if (!D) 1118 return; 1119 // Set visibility for definitions, and for declarations if requested globally 1120 // or set explicitly. 1121 LinkageInfo LV = D->getLinkageAndVisibility(); 1122 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1123 // Reject incompatible dlllstorage and visibility annotations. 1124 if (!LV.isVisibilityExplicit()) 1125 return; 1126 if (GV->hasDLLExportStorageClass()) { 1127 if (LV.getVisibility() == HiddenVisibility) 1128 getDiags().Report(D->getLocation(), 1129 diag::err_hidden_visibility_dllexport); 1130 } else if (LV.getVisibility() != DefaultVisibility) { 1131 getDiags().Report(D->getLocation(), 1132 diag::err_non_default_visibility_dllimport); 1133 } 1134 return; 1135 } 1136 1137 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1138 !GV->isDeclarationForLinker()) 1139 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1140 } 1141 1142 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1143 llvm::GlobalValue *GV) { 1144 if (GV->hasLocalLinkage()) 1145 return true; 1146 1147 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1148 return true; 1149 1150 // DLLImport explicitly marks the GV as external. 1151 if (GV->hasDLLImportStorageClass()) 1152 return false; 1153 1154 const llvm::Triple &TT = CGM.getTriple(); 1155 if (TT.isWindowsGNUEnvironment()) { 1156 // In MinGW, variables without DLLImport can still be automatically 1157 // imported from a DLL by the linker; don't mark variables that 1158 // potentially could come from another DLL as DSO local. 1159 1160 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1161 // (and this actually happens in the public interface of libstdc++), so 1162 // such variables can't be marked as DSO local. (Native TLS variables 1163 // can't be dllimported at all, though.) 1164 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1165 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1166 return false; 1167 } 1168 1169 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1170 // remain unresolved in the link, they can be resolved to zero, which is 1171 // outside the current DSO. 1172 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1173 return false; 1174 1175 // Every other GV is local on COFF. 1176 // Make an exception for windows OS in the triple: Some firmware builds use 1177 // *-win32-macho triples. This (accidentally?) produced windows relocations 1178 // without GOT tables in older clang versions; Keep this behaviour. 1179 // FIXME: even thread local variables? 1180 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1181 return true; 1182 1183 // Only handle COFF and ELF for now. 1184 if (!TT.isOSBinFormatELF()) 1185 return false; 1186 1187 // If this is not an executable, don't assume anything is local. 1188 const auto &CGOpts = CGM.getCodeGenOpts(); 1189 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1190 const auto &LOpts = CGM.getLangOpts(); 1191 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1192 // On ELF, if -fno-semantic-interposition is specified and the target 1193 // supports local aliases, there will be neither CC1 1194 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1195 // dso_local on the function if using a local alias is preferable (can avoid 1196 // PLT indirection). 1197 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1198 return false; 1199 return !(CGM.getLangOpts().SemanticInterposition || 1200 CGM.getLangOpts().HalfNoSemanticInterposition); 1201 } 1202 1203 // A definition cannot be preempted from an executable. 1204 if (!GV->isDeclarationForLinker()) 1205 return true; 1206 1207 // Most PIC code sequences that assume that a symbol is local cannot produce a 1208 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1209 // depended, it seems worth it to handle it here. 1210 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1211 return false; 1212 1213 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1214 if (TT.isPPC64()) 1215 return false; 1216 1217 if (CGOpts.DirectAccessExternalData) { 1218 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1219 // for non-thread-local variables. If the symbol is not defined in the 1220 // executable, a copy relocation will be needed at link time. dso_local is 1221 // excluded for thread-local variables because they generally don't support 1222 // copy relocations. 1223 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1224 if (!Var->isThreadLocal()) 1225 return true; 1226 1227 // -fno-pic sets dso_local on a function declaration to allow direct 1228 // accesses when taking its address (similar to a data symbol). If the 1229 // function is not defined in the executable, a canonical PLT entry will be 1230 // needed at link time. -fno-direct-access-external-data can avoid the 1231 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1232 // it could just cause trouble without providing perceptible benefits. 1233 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1234 return true; 1235 } 1236 1237 // If we can use copy relocations we can assume it is local. 1238 1239 // Otherwise don't assume it is local. 1240 return false; 1241 } 1242 1243 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1244 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1245 } 1246 1247 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1248 GlobalDecl GD) const { 1249 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1250 // C++ destructors have a few C++ ABI specific special cases. 1251 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1252 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1253 return; 1254 } 1255 setDLLImportDLLExport(GV, D); 1256 } 1257 1258 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1259 const NamedDecl *D) const { 1260 if (D && D->isExternallyVisible()) { 1261 if (D->hasAttr<DLLImportAttr>()) 1262 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1263 else if ((D->hasAttr<DLLExportAttr>() || 1264 shouldMapVisibilityToDLLExport(D)) && 1265 !GV->isDeclarationForLinker()) 1266 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1267 } 1268 } 1269 1270 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1271 GlobalDecl GD) const { 1272 setDLLImportDLLExport(GV, GD); 1273 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1274 } 1275 1276 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1277 const NamedDecl *D) const { 1278 setDLLImportDLLExport(GV, D); 1279 setGVPropertiesAux(GV, D); 1280 } 1281 1282 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1283 const NamedDecl *D) const { 1284 setGlobalVisibility(GV, D); 1285 setDSOLocal(GV); 1286 GV->setPartition(CodeGenOpts.SymbolPartition); 1287 } 1288 1289 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1290 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1291 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1292 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1293 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1294 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1295 } 1296 1297 llvm::GlobalVariable::ThreadLocalMode 1298 CodeGenModule::GetDefaultLLVMTLSModel() const { 1299 switch (CodeGenOpts.getDefaultTLSModel()) { 1300 case CodeGenOptions::GeneralDynamicTLSModel: 1301 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1302 case CodeGenOptions::LocalDynamicTLSModel: 1303 return llvm::GlobalVariable::LocalDynamicTLSModel; 1304 case CodeGenOptions::InitialExecTLSModel: 1305 return llvm::GlobalVariable::InitialExecTLSModel; 1306 case CodeGenOptions::LocalExecTLSModel: 1307 return llvm::GlobalVariable::LocalExecTLSModel; 1308 } 1309 llvm_unreachable("Invalid TLS model!"); 1310 } 1311 1312 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1313 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1314 1315 llvm::GlobalValue::ThreadLocalMode TLM; 1316 TLM = GetDefaultLLVMTLSModel(); 1317 1318 // Override the TLS model if it is explicitly specified. 1319 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1320 TLM = GetLLVMTLSModel(Attr->getModel()); 1321 } 1322 1323 GV->setThreadLocalMode(TLM); 1324 } 1325 1326 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1327 StringRef Name) { 1328 const TargetInfo &Target = CGM.getTarget(); 1329 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1330 } 1331 1332 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1333 const CPUSpecificAttr *Attr, 1334 unsigned CPUIndex, 1335 raw_ostream &Out) { 1336 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1337 // supported. 1338 if (Attr) 1339 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1340 else if (CGM.getTarget().supportsIFunc()) 1341 Out << ".resolver"; 1342 } 1343 1344 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1345 const TargetVersionAttr *Attr, 1346 raw_ostream &Out) { 1347 if (Attr->isDefaultVersion()) 1348 return; 1349 Out << "._"; 1350 llvm::SmallVector<StringRef, 8> Feats; 1351 Attr->getFeatures(Feats); 1352 for (const auto &Feat : Feats) { 1353 Out << 'M'; 1354 Out << Feat; 1355 } 1356 } 1357 1358 static void AppendTargetMangling(const CodeGenModule &CGM, 1359 const TargetAttr *Attr, raw_ostream &Out) { 1360 if (Attr->isDefaultVersion()) 1361 return; 1362 1363 Out << '.'; 1364 const TargetInfo &Target = CGM.getTarget(); 1365 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1366 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1367 // Multiversioning doesn't allow "no-${feature}", so we can 1368 // only have "+" prefixes here. 1369 assert(LHS.startswith("+") && RHS.startswith("+") && 1370 "Features should always have a prefix."); 1371 return Target.multiVersionSortPriority(LHS.substr(1)) > 1372 Target.multiVersionSortPriority(RHS.substr(1)); 1373 }); 1374 1375 bool IsFirst = true; 1376 1377 if (!Info.CPU.empty()) { 1378 IsFirst = false; 1379 Out << "arch_" << Info.CPU; 1380 } 1381 1382 for (StringRef Feat : Info.Features) { 1383 if (!IsFirst) 1384 Out << '_'; 1385 IsFirst = false; 1386 Out << Feat.substr(1); 1387 } 1388 } 1389 1390 // Returns true if GD is a function decl with internal linkage and 1391 // needs a unique suffix after the mangled name. 1392 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1393 CodeGenModule &CGM) { 1394 const Decl *D = GD.getDecl(); 1395 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1396 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1397 } 1398 1399 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1400 const TargetClonesAttr *Attr, 1401 unsigned VersionIndex, 1402 raw_ostream &Out) { 1403 if (CGM.getTarget().getTriple().isAArch64()) { 1404 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1405 if (FeatureStr == "default") 1406 return; 1407 Out << "._"; 1408 SmallVector<StringRef, 8> Features; 1409 FeatureStr.split(Features, "+"); 1410 for (auto &Feat : Features) { 1411 Out << 'M'; 1412 Out << Feat; 1413 } 1414 } else { 1415 Out << '.'; 1416 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1417 if (FeatureStr.startswith("arch=")) 1418 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1419 else 1420 Out << FeatureStr; 1421 1422 Out << '.' << Attr->getMangledIndex(VersionIndex); 1423 } 1424 } 1425 1426 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1427 const NamedDecl *ND, 1428 bool OmitMultiVersionMangling = false) { 1429 SmallString<256> Buffer; 1430 llvm::raw_svector_ostream Out(Buffer); 1431 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1432 if (!CGM.getModuleNameHash().empty()) 1433 MC.needsUniqueInternalLinkageNames(); 1434 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1435 if (ShouldMangle) 1436 MC.mangleName(GD.getWithDecl(ND), Out); 1437 else { 1438 IdentifierInfo *II = ND->getIdentifier(); 1439 assert(II && "Attempt to mangle unnamed decl."); 1440 const auto *FD = dyn_cast<FunctionDecl>(ND); 1441 1442 if (FD && 1443 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1444 Out << "__regcall3__" << II->getName(); 1445 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1446 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1447 Out << "__device_stub__" << II->getName(); 1448 } else { 1449 Out << II->getName(); 1450 } 1451 } 1452 1453 // Check if the module name hash should be appended for internal linkage 1454 // symbols. This should come before multi-version target suffixes are 1455 // appended. This is to keep the name and module hash suffix of the 1456 // internal linkage function together. The unique suffix should only be 1457 // added when name mangling is done to make sure that the final name can 1458 // be properly demangled. For example, for C functions without prototypes, 1459 // name mangling is not done and the unique suffix should not be appeneded 1460 // then. 1461 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1462 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1463 "Hash computed when not explicitly requested"); 1464 Out << CGM.getModuleNameHash(); 1465 } 1466 1467 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1468 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1469 switch (FD->getMultiVersionKind()) { 1470 case MultiVersionKind::CPUDispatch: 1471 case MultiVersionKind::CPUSpecific: 1472 AppendCPUSpecificCPUDispatchMangling(CGM, 1473 FD->getAttr<CPUSpecificAttr>(), 1474 GD.getMultiVersionIndex(), Out); 1475 break; 1476 case MultiVersionKind::Target: 1477 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1478 break; 1479 case MultiVersionKind::TargetVersion: 1480 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1481 break; 1482 case MultiVersionKind::TargetClones: 1483 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1484 GD.getMultiVersionIndex(), Out); 1485 break; 1486 case MultiVersionKind::None: 1487 llvm_unreachable("None multiversion type isn't valid here"); 1488 } 1489 } 1490 1491 // Make unique name for device side static file-scope variable for HIP. 1492 if (CGM.getContext().shouldExternalize(ND) && 1493 CGM.getLangOpts().GPURelocatableDeviceCode && 1494 CGM.getLangOpts().CUDAIsDevice) 1495 CGM.printPostfixForExternalizedDecl(Out, ND); 1496 1497 return std::string(Out.str()); 1498 } 1499 1500 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1501 const FunctionDecl *FD, 1502 StringRef &CurName) { 1503 if (!FD->isMultiVersion()) 1504 return; 1505 1506 // Get the name of what this would be without the 'target' attribute. This 1507 // allows us to lookup the version that was emitted when this wasn't a 1508 // multiversion function. 1509 std::string NonTargetName = 1510 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1511 GlobalDecl OtherGD; 1512 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1513 assert(OtherGD.getCanonicalDecl() 1514 .getDecl() 1515 ->getAsFunction() 1516 ->isMultiVersion() && 1517 "Other GD should now be a multiversioned function"); 1518 // OtherFD is the version of this function that was mangled BEFORE 1519 // becoming a MultiVersion function. It potentially needs to be updated. 1520 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1521 .getDecl() 1522 ->getAsFunction() 1523 ->getMostRecentDecl(); 1524 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1525 // This is so that if the initial version was already the 'default' 1526 // version, we don't try to update it. 1527 if (OtherName != NonTargetName) { 1528 // Remove instead of erase, since others may have stored the StringRef 1529 // to this. 1530 const auto ExistingRecord = Manglings.find(NonTargetName); 1531 if (ExistingRecord != std::end(Manglings)) 1532 Manglings.remove(&(*ExistingRecord)); 1533 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1534 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1535 Result.first->first(); 1536 // If this is the current decl is being created, make sure we update the name. 1537 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1538 CurName = OtherNameRef; 1539 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1540 Entry->setName(OtherName); 1541 } 1542 } 1543 } 1544 1545 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1546 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1547 1548 // Some ABIs don't have constructor variants. Make sure that base and 1549 // complete constructors get mangled the same. 1550 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1551 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1552 CXXCtorType OrigCtorType = GD.getCtorType(); 1553 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1554 if (OrigCtorType == Ctor_Base) 1555 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1556 } 1557 } 1558 1559 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1560 // static device variable depends on whether the variable is referenced by 1561 // a host or device host function. Therefore the mangled name cannot be 1562 // cached. 1563 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1564 auto FoundName = MangledDeclNames.find(CanonicalGD); 1565 if (FoundName != MangledDeclNames.end()) 1566 return FoundName->second; 1567 } 1568 1569 // Keep the first result in the case of a mangling collision. 1570 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1571 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1572 1573 // Ensure either we have different ABIs between host and device compilations, 1574 // says host compilation following MSVC ABI but device compilation follows 1575 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1576 // mangling should be the same after name stubbing. The later checking is 1577 // very important as the device kernel name being mangled in host-compilation 1578 // is used to resolve the device binaries to be executed. Inconsistent naming 1579 // result in undefined behavior. Even though we cannot check that naming 1580 // directly between host- and device-compilations, the host- and 1581 // device-mangling in host compilation could help catching certain ones. 1582 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1583 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1584 (getContext().getAuxTargetInfo() && 1585 (getContext().getAuxTargetInfo()->getCXXABI() != 1586 getContext().getTargetInfo().getCXXABI())) || 1587 getCUDARuntime().getDeviceSideName(ND) == 1588 getMangledNameImpl( 1589 *this, 1590 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1591 ND)); 1592 1593 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1594 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1595 } 1596 1597 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1598 const BlockDecl *BD) { 1599 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1600 const Decl *D = GD.getDecl(); 1601 1602 SmallString<256> Buffer; 1603 llvm::raw_svector_ostream Out(Buffer); 1604 if (!D) 1605 MangleCtx.mangleGlobalBlock(BD, 1606 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1607 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1608 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1609 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1610 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1611 else 1612 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1613 1614 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1615 return Result.first->first(); 1616 } 1617 1618 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1619 auto it = MangledDeclNames.begin(); 1620 while (it != MangledDeclNames.end()) { 1621 if (it->second == Name) 1622 return it->first; 1623 it++; 1624 } 1625 return GlobalDecl(); 1626 } 1627 1628 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1629 return getModule().getNamedValue(Name); 1630 } 1631 1632 /// AddGlobalCtor - Add a function to the list that will be called before 1633 /// main() runs. 1634 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1635 unsigned LexOrder, 1636 llvm::Constant *AssociatedData) { 1637 // FIXME: Type coercion of void()* types. 1638 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1639 } 1640 1641 /// AddGlobalDtor - Add a function to the list that will be called 1642 /// when the module is unloaded. 1643 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1644 bool IsDtorAttrFunc) { 1645 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1646 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1647 DtorsUsingAtExit[Priority].push_back(Dtor); 1648 return; 1649 } 1650 1651 // FIXME: Type coercion of void()* types. 1652 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1653 } 1654 1655 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1656 if (Fns.empty()) return; 1657 1658 // Ctor function type is void()*. 1659 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1660 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1661 TheModule.getDataLayout().getProgramAddressSpace()); 1662 1663 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1664 llvm::StructType *CtorStructTy = llvm::StructType::get( 1665 Int32Ty, CtorPFTy, VoidPtrTy); 1666 1667 // Construct the constructor and destructor arrays. 1668 ConstantInitBuilder builder(*this); 1669 auto ctors = builder.beginArray(CtorStructTy); 1670 for (const auto &I : Fns) { 1671 auto ctor = ctors.beginStruct(CtorStructTy); 1672 ctor.addInt(Int32Ty, I.Priority); 1673 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1674 if (I.AssociatedData) 1675 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1676 else 1677 ctor.addNullPointer(VoidPtrTy); 1678 ctor.finishAndAddTo(ctors); 1679 } 1680 1681 auto list = 1682 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1683 /*constant*/ false, 1684 llvm::GlobalValue::AppendingLinkage); 1685 1686 // The LTO linker doesn't seem to like it when we set an alignment 1687 // on appending variables. Take it off as a workaround. 1688 list->setAlignment(std::nullopt); 1689 1690 Fns.clear(); 1691 } 1692 1693 llvm::GlobalValue::LinkageTypes 1694 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1695 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1696 1697 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1698 1699 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1700 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1701 1702 if (isa<CXXConstructorDecl>(D) && 1703 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1704 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1705 // Our approach to inheriting constructors is fundamentally different from 1706 // that used by the MS ABI, so keep our inheriting constructor thunks 1707 // internal rather than trying to pick an unambiguous mangling for them. 1708 return llvm::GlobalValue::InternalLinkage; 1709 } 1710 1711 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1712 } 1713 1714 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1715 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1716 if (!MDS) return nullptr; 1717 1718 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1719 } 1720 1721 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1722 if (auto *FnType = T->getAs<FunctionProtoType>()) 1723 T = getContext().getFunctionType( 1724 FnType->getReturnType(), FnType->getParamTypes(), 1725 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1726 1727 std::string OutName; 1728 llvm::raw_string_ostream Out(OutName); 1729 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1730 1731 return llvm::ConstantInt::get(Int32Ty, 1732 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1733 } 1734 1735 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1736 const CGFunctionInfo &Info, 1737 llvm::Function *F, bool IsThunk) { 1738 unsigned CallingConv; 1739 llvm::AttributeList PAL; 1740 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1741 /*AttrOnCallSite=*/false, IsThunk); 1742 F->setAttributes(PAL); 1743 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1744 } 1745 1746 static void removeImageAccessQualifier(std::string& TyName) { 1747 std::string ReadOnlyQual("__read_only"); 1748 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1749 if (ReadOnlyPos != std::string::npos) 1750 // "+ 1" for the space after access qualifier. 1751 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1752 else { 1753 std::string WriteOnlyQual("__write_only"); 1754 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1755 if (WriteOnlyPos != std::string::npos) 1756 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1757 else { 1758 std::string ReadWriteQual("__read_write"); 1759 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1760 if (ReadWritePos != std::string::npos) 1761 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1762 } 1763 } 1764 } 1765 1766 // Returns the address space id that should be produced to the 1767 // kernel_arg_addr_space metadata. This is always fixed to the ids 1768 // as specified in the SPIR 2.0 specification in order to differentiate 1769 // for example in clGetKernelArgInfo() implementation between the address 1770 // spaces with targets without unique mapping to the OpenCL address spaces 1771 // (basically all single AS CPUs). 1772 static unsigned ArgInfoAddressSpace(LangAS AS) { 1773 switch (AS) { 1774 case LangAS::opencl_global: 1775 return 1; 1776 case LangAS::opencl_constant: 1777 return 2; 1778 case LangAS::opencl_local: 1779 return 3; 1780 case LangAS::opencl_generic: 1781 return 4; // Not in SPIR 2.0 specs. 1782 case LangAS::opencl_global_device: 1783 return 5; 1784 case LangAS::opencl_global_host: 1785 return 6; 1786 default: 1787 return 0; // Assume private. 1788 } 1789 } 1790 1791 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1792 const FunctionDecl *FD, 1793 CodeGenFunction *CGF) { 1794 assert(((FD && CGF) || (!FD && !CGF)) && 1795 "Incorrect use - FD and CGF should either be both null or not!"); 1796 // Create MDNodes that represent the kernel arg metadata. 1797 // Each MDNode is a list in the form of "key", N number of values which is 1798 // the same number of values as their are kernel arguments. 1799 1800 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1801 1802 // MDNode for the kernel argument address space qualifiers. 1803 SmallVector<llvm::Metadata *, 8> addressQuals; 1804 1805 // MDNode for the kernel argument access qualifiers (images only). 1806 SmallVector<llvm::Metadata *, 8> accessQuals; 1807 1808 // MDNode for the kernel argument type names. 1809 SmallVector<llvm::Metadata *, 8> argTypeNames; 1810 1811 // MDNode for the kernel argument base type names. 1812 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1813 1814 // MDNode for the kernel argument type qualifiers. 1815 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1816 1817 // MDNode for the kernel argument names. 1818 SmallVector<llvm::Metadata *, 8> argNames; 1819 1820 if (FD && CGF) 1821 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1822 const ParmVarDecl *parm = FD->getParamDecl(i); 1823 // Get argument name. 1824 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1825 1826 if (!getLangOpts().OpenCL) 1827 continue; 1828 QualType ty = parm->getType(); 1829 std::string typeQuals; 1830 1831 // Get image and pipe access qualifier: 1832 if (ty->isImageType() || ty->isPipeType()) { 1833 const Decl *PDecl = parm; 1834 if (const auto *TD = ty->getAs<TypedefType>()) 1835 PDecl = TD->getDecl(); 1836 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1837 if (A && A->isWriteOnly()) 1838 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1839 else if (A && A->isReadWrite()) 1840 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1841 else 1842 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1843 } else 1844 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1845 1846 auto getTypeSpelling = [&](QualType Ty) { 1847 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1848 1849 if (Ty.isCanonical()) { 1850 StringRef typeNameRef = typeName; 1851 // Turn "unsigned type" to "utype" 1852 if (typeNameRef.consume_front("unsigned ")) 1853 return std::string("u") + typeNameRef.str(); 1854 if (typeNameRef.consume_front("signed ")) 1855 return typeNameRef.str(); 1856 } 1857 1858 return typeName; 1859 }; 1860 1861 if (ty->isPointerType()) { 1862 QualType pointeeTy = ty->getPointeeType(); 1863 1864 // Get address qualifier. 1865 addressQuals.push_back( 1866 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1867 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1868 1869 // Get argument type name. 1870 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1871 std::string baseTypeName = 1872 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1873 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1874 argBaseTypeNames.push_back( 1875 llvm::MDString::get(VMContext, baseTypeName)); 1876 1877 // Get argument type qualifiers: 1878 if (ty.isRestrictQualified()) 1879 typeQuals = "restrict"; 1880 if (pointeeTy.isConstQualified() || 1881 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1882 typeQuals += typeQuals.empty() ? "const" : " const"; 1883 if (pointeeTy.isVolatileQualified()) 1884 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1885 } else { 1886 uint32_t AddrSpc = 0; 1887 bool isPipe = ty->isPipeType(); 1888 if (ty->isImageType() || isPipe) 1889 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1890 1891 addressQuals.push_back( 1892 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1893 1894 // Get argument type name. 1895 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1896 std::string typeName = getTypeSpelling(ty); 1897 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1898 1899 // Remove access qualifiers on images 1900 // (as they are inseparable from type in clang implementation, 1901 // but OpenCL spec provides a special query to get access qualifier 1902 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1903 if (ty->isImageType()) { 1904 removeImageAccessQualifier(typeName); 1905 removeImageAccessQualifier(baseTypeName); 1906 } 1907 1908 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1909 argBaseTypeNames.push_back( 1910 llvm::MDString::get(VMContext, baseTypeName)); 1911 1912 if (isPipe) 1913 typeQuals = "pipe"; 1914 } 1915 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1916 } 1917 1918 if (getLangOpts().OpenCL) { 1919 Fn->setMetadata("kernel_arg_addr_space", 1920 llvm::MDNode::get(VMContext, addressQuals)); 1921 Fn->setMetadata("kernel_arg_access_qual", 1922 llvm::MDNode::get(VMContext, accessQuals)); 1923 Fn->setMetadata("kernel_arg_type", 1924 llvm::MDNode::get(VMContext, argTypeNames)); 1925 Fn->setMetadata("kernel_arg_base_type", 1926 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1927 Fn->setMetadata("kernel_arg_type_qual", 1928 llvm::MDNode::get(VMContext, argTypeQuals)); 1929 } 1930 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1931 getCodeGenOpts().HIPSaveKernelArgName) 1932 Fn->setMetadata("kernel_arg_name", 1933 llvm::MDNode::get(VMContext, argNames)); 1934 } 1935 1936 /// Determines whether the language options require us to model 1937 /// unwind exceptions. We treat -fexceptions as mandating this 1938 /// except under the fragile ObjC ABI with only ObjC exceptions 1939 /// enabled. This means, for example, that C with -fexceptions 1940 /// enables this. 1941 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1942 // If exceptions are completely disabled, obviously this is false. 1943 if (!LangOpts.Exceptions) return false; 1944 1945 // If C++ exceptions are enabled, this is true. 1946 if (LangOpts.CXXExceptions) return true; 1947 1948 // If ObjC exceptions are enabled, this depends on the ABI. 1949 if (LangOpts.ObjCExceptions) { 1950 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1951 } 1952 1953 return true; 1954 } 1955 1956 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1957 const CXXMethodDecl *MD) { 1958 // Check that the type metadata can ever actually be used by a call. 1959 if (!CGM.getCodeGenOpts().LTOUnit || 1960 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1961 return false; 1962 1963 // Only functions whose address can be taken with a member function pointer 1964 // need this sort of type metadata. 1965 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1966 !isa<CXXDestructorDecl>(MD); 1967 } 1968 1969 std::vector<const CXXRecordDecl *> 1970 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1971 llvm::SetVector<const CXXRecordDecl *> MostBases; 1972 1973 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1974 CollectMostBases = [&](const CXXRecordDecl *RD) { 1975 if (RD->getNumBases() == 0) 1976 MostBases.insert(RD); 1977 for (const CXXBaseSpecifier &B : RD->bases()) 1978 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1979 }; 1980 CollectMostBases(RD); 1981 return MostBases.takeVector(); 1982 } 1983 1984 llvm::GlobalVariable * 1985 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1986 auto It = RTTIProxyMap.find(Addr); 1987 if (It != RTTIProxyMap.end()) 1988 return It->second; 1989 1990 auto *FTRTTIProxy = new llvm::GlobalVariable( 1991 TheModule, Addr->getType(), 1992 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1993 "__llvm_rtti_proxy"); 1994 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1995 1996 RTTIProxyMap[Addr] = FTRTTIProxy; 1997 return FTRTTIProxy; 1998 } 1999 2000 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2001 llvm::Function *F) { 2002 llvm::AttrBuilder B(F->getContext()); 2003 2004 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2005 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2006 2007 if (CodeGenOpts.StackClashProtector) 2008 B.addAttribute("probe-stack", "inline-asm"); 2009 2010 if (!hasUnwindExceptions(LangOpts)) 2011 B.addAttribute(llvm::Attribute::NoUnwind); 2012 2013 if (D && D->hasAttr<NoStackProtectorAttr>()) 2014 ; // Do nothing. 2015 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2016 LangOpts.getStackProtector() == LangOptions::SSPOn) 2017 B.addAttribute(llvm::Attribute::StackProtectStrong); 2018 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2019 B.addAttribute(llvm::Attribute::StackProtect); 2020 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2021 B.addAttribute(llvm::Attribute::StackProtectStrong); 2022 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2023 B.addAttribute(llvm::Attribute::StackProtectReq); 2024 2025 if (!D) { 2026 // If we don't have a declaration to control inlining, the function isn't 2027 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2028 // disabled, mark the function as noinline. 2029 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2030 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2031 B.addAttribute(llvm::Attribute::NoInline); 2032 2033 F->addFnAttrs(B); 2034 return; 2035 } 2036 2037 // Track whether we need to add the optnone LLVM attribute, 2038 // starting with the default for this optimization level. 2039 bool ShouldAddOptNone = 2040 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2041 // We can't add optnone in the following cases, it won't pass the verifier. 2042 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2043 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2044 2045 // Add optnone, but do so only if the function isn't always_inline. 2046 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2047 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2048 B.addAttribute(llvm::Attribute::OptimizeNone); 2049 2050 // OptimizeNone implies noinline; we should not be inlining such functions. 2051 B.addAttribute(llvm::Attribute::NoInline); 2052 2053 // We still need to handle naked functions even though optnone subsumes 2054 // much of their semantics. 2055 if (D->hasAttr<NakedAttr>()) 2056 B.addAttribute(llvm::Attribute::Naked); 2057 2058 // OptimizeNone wins over OptimizeForSize and MinSize. 2059 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2060 F->removeFnAttr(llvm::Attribute::MinSize); 2061 } else if (D->hasAttr<NakedAttr>()) { 2062 // Naked implies noinline: we should not be inlining such functions. 2063 B.addAttribute(llvm::Attribute::Naked); 2064 B.addAttribute(llvm::Attribute::NoInline); 2065 } else if (D->hasAttr<NoDuplicateAttr>()) { 2066 B.addAttribute(llvm::Attribute::NoDuplicate); 2067 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2068 // Add noinline if the function isn't always_inline. 2069 B.addAttribute(llvm::Attribute::NoInline); 2070 } else if (D->hasAttr<AlwaysInlineAttr>() && 2071 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2072 // (noinline wins over always_inline, and we can't specify both in IR) 2073 B.addAttribute(llvm::Attribute::AlwaysInline); 2074 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2075 // If we're not inlining, then force everything that isn't always_inline to 2076 // carry an explicit noinline attribute. 2077 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2078 B.addAttribute(llvm::Attribute::NoInline); 2079 } else { 2080 // Otherwise, propagate the inline hint attribute and potentially use its 2081 // absence to mark things as noinline. 2082 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2083 // Search function and template pattern redeclarations for inline. 2084 auto CheckForInline = [](const FunctionDecl *FD) { 2085 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2086 return Redecl->isInlineSpecified(); 2087 }; 2088 if (any_of(FD->redecls(), CheckRedeclForInline)) 2089 return true; 2090 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2091 if (!Pattern) 2092 return false; 2093 return any_of(Pattern->redecls(), CheckRedeclForInline); 2094 }; 2095 if (CheckForInline(FD)) { 2096 B.addAttribute(llvm::Attribute::InlineHint); 2097 } else if (CodeGenOpts.getInlining() == 2098 CodeGenOptions::OnlyHintInlining && 2099 !FD->isInlined() && 2100 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2101 B.addAttribute(llvm::Attribute::NoInline); 2102 } 2103 } 2104 } 2105 2106 // Add other optimization related attributes if we are optimizing this 2107 // function. 2108 if (!D->hasAttr<OptimizeNoneAttr>()) { 2109 if (D->hasAttr<ColdAttr>()) { 2110 if (!ShouldAddOptNone) 2111 B.addAttribute(llvm::Attribute::OptimizeForSize); 2112 B.addAttribute(llvm::Attribute::Cold); 2113 } 2114 if (D->hasAttr<HotAttr>()) 2115 B.addAttribute(llvm::Attribute::Hot); 2116 if (D->hasAttr<MinSizeAttr>()) 2117 B.addAttribute(llvm::Attribute::MinSize); 2118 } 2119 2120 F->addFnAttrs(B); 2121 2122 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2123 if (alignment) 2124 F->setAlignment(llvm::Align(alignment)); 2125 2126 if (!D->hasAttr<AlignedAttr>()) 2127 if (LangOpts.FunctionAlignment) 2128 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2129 2130 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2131 // reserve a bit for differentiating between virtual and non-virtual member 2132 // functions. If the current target's C++ ABI requires this and this is a 2133 // member function, set its alignment accordingly. 2134 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2135 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2136 F->setAlignment(llvm::Align(2)); 2137 } 2138 2139 // In the cross-dso CFI mode with canonical jump tables, we want !type 2140 // attributes on definitions only. 2141 if (CodeGenOpts.SanitizeCfiCrossDso && 2142 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2143 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2144 // Skip available_externally functions. They won't be codegen'ed in the 2145 // current module anyway. 2146 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2147 CreateFunctionTypeMetadataForIcall(FD, F); 2148 } 2149 } 2150 2151 // Emit type metadata on member functions for member function pointer checks. 2152 // These are only ever necessary on definitions; we're guaranteed that the 2153 // definition will be present in the LTO unit as a result of LTO visibility. 2154 auto *MD = dyn_cast<CXXMethodDecl>(D); 2155 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2156 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2157 llvm::Metadata *Id = 2158 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2159 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2160 F->addTypeMetadata(0, Id); 2161 } 2162 } 2163 } 2164 2165 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2166 llvm::Function *F) { 2167 if (D->hasAttr<StrictFPAttr>()) { 2168 llvm::AttrBuilder FuncAttrs(F->getContext()); 2169 FuncAttrs.addAttribute("strictfp"); 2170 F->addFnAttrs(FuncAttrs); 2171 } 2172 } 2173 2174 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2175 const Decl *D = GD.getDecl(); 2176 if (isa_and_nonnull<NamedDecl>(D)) 2177 setGVProperties(GV, GD); 2178 else 2179 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2180 2181 if (D && D->hasAttr<UsedAttr>()) 2182 addUsedOrCompilerUsedGlobal(GV); 2183 2184 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2185 const auto *VD = cast<VarDecl>(D); 2186 if (VD->getType().isConstQualified() && 2187 VD->getStorageDuration() == SD_Static) 2188 addUsedOrCompilerUsedGlobal(GV); 2189 } 2190 } 2191 2192 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2193 llvm::AttrBuilder &Attrs) { 2194 // Add target-cpu and target-features attributes to functions. If 2195 // we have a decl for the function and it has a target attribute then 2196 // parse that and add it to the feature set. 2197 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2198 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2199 std::vector<std::string> Features; 2200 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2201 FD = FD ? FD->getMostRecentDecl() : FD; 2202 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2203 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2204 assert((!TD || !TV) && "both target_version and target specified"); 2205 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2206 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2207 bool AddedAttr = false; 2208 if (TD || TV || SD || TC) { 2209 llvm::StringMap<bool> FeatureMap; 2210 getContext().getFunctionFeatureMap(FeatureMap, GD); 2211 2212 // Produce the canonical string for this set of features. 2213 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2214 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2215 2216 // Now add the target-cpu and target-features to the function. 2217 // While we populated the feature map above, we still need to 2218 // get and parse the target attribute so we can get the cpu for 2219 // the function. 2220 if (TD) { 2221 ParsedTargetAttr ParsedAttr = 2222 Target.parseTargetAttr(TD->getFeaturesStr()); 2223 if (!ParsedAttr.CPU.empty() && 2224 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2225 TargetCPU = ParsedAttr.CPU; 2226 TuneCPU = ""; // Clear the tune CPU. 2227 } 2228 if (!ParsedAttr.Tune.empty() && 2229 getTarget().isValidCPUName(ParsedAttr.Tune)) 2230 TuneCPU = ParsedAttr.Tune; 2231 } 2232 2233 if (SD) { 2234 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2235 // favor this processor. 2236 TuneCPU = getTarget().getCPUSpecificTuneName( 2237 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2238 } 2239 } else { 2240 // Otherwise just add the existing target cpu and target features to the 2241 // function. 2242 Features = getTarget().getTargetOpts().Features; 2243 } 2244 2245 if (!TargetCPU.empty()) { 2246 Attrs.addAttribute("target-cpu", TargetCPU); 2247 AddedAttr = true; 2248 } 2249 if (!TuneCPU.empty()) { 2250 Attrs.addAttribute("tune-cpu", TuneCPU); 2251 AddedAttr = true; 2252 } 2253 if (!Features.empty()) { 2254 llvm::sort(Features); 2255 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2256 AddedAttr = true; 2257 } 2258 2259 return AddedAttr; 2260 } 2261 2262 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2263 llvm::GlobalObject *GO) { 2264 const Decl *D = GD.getDecl(); 2265 SetCommonAttributes(GD, GO); 2266 2267 if (D) { 2268 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2269 if (D->hasAttr<RetainAttr>()) 2270 addUsedGlobal(GV); 2271 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2272 GV->addAttribute("bss-section", SA->getName()); 2273 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2274 GV->addAttribute("data-section", SA->getName()); 2275 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2276 GV->addAttribute("rodata-section", SA->getName()); 2277 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2278 GV->addAttribute("relro-section", SA->getName()); 2279 } 2280 2281 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2282 if (D->hasAttr<RetainAttr>()) 2283 addUsedGlobal(F); 2284 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2285 if (!D->getAttr<SectionAttr>()) 2286 F->addFnAttr("implicit-section-name", SA->getName()); 2287 2288 llvm::AttrBuilder Attrs(F->getContext()); 2289 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2290 // We know that GetCPUAndFeaturesAttributes will always have the 2291 // newest set, since it has the newest possible FunctionDecl, so the 2292 // new ones should replace the old. 2293 llvm::AttributeMask RemoveAttrs; 2294 RemoveAttrs.addAttribute("target-cpu"); 2295 RemoveAttrs.addAttribute("target-features"); 2296 RemoveAttrs.addAttribute("tune-cpu"); 2297 F->removeFnAttrs(RemoveAttrs); 2298 F->addFnAttrs(Attrs); 2299 } 2300 } 2301 2302 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2303 GO->setSection(CSA->getName()); 2304 else if (const auto *SA = D->getAttr<SectionAttr>()) 2305 GO->setSection(SA->getName()); 2306 } 2307 2308 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2309 } 2310 2311 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2312 llvm::Function *F, 2313 const CGFunctionInfo &FI) { 2314 const Decl *D = GD.getDecl(); 2315 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2316 SetLLVMFunctionAttributesForDefinition(D, F); 2317 2318 F->setLinkage(llvm::Function::InternalLinkage); 2319 2320 setNonAliasAttributes(GD, F); 2321 } 2322 2323 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2324 // Set linkage and visibility in case we never see a definition. 2325 LinkageInfo LV = ND->getLinkageAndVisibility(); 2326 // Don't set internal linkage on declarations. 2327 // "extern_weak" is overloaded in LLVM; we probably should have 2328 // separate linkage types for this. 2329 if (isExternallyVisible(LV.getLinkage()) && 2330 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2331 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2332 } 2333 2334 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2335 llvm::Function *F) { 2336 // Only if we are checking indirect calls. 2337 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2338 return; 2339 2340 // Non-static class methods are handled via vtable or member function pointer 2341 // checks elsewhere. 2342 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2343 return; 2344 2345 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2346 F->addTypeMetadata(0, MD); 2347 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2348 2349 // Emit a hash-based bit set entry for cross-DSO calls. 2350 if (CodeGenOpts.SanitizeCfiCrossDso) 2351 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2352 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2353 } 2354 2355 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2356 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2357 return; 2358 2359 llvm::LLVMContext &Ctx = F->getContext(); 2360 llvm::MDBuilder MDB(Ctx); 2361 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2362 llvm::MDNode::get( 2363 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2364 } 2365 2366 static bool allowKCFIIdentifier(StringRef Name) { 2367 // KCFI type identifier constants are only necessary for external assembly 2368 // functions, which means it's safe to skip unusual names. Subset of 2369 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2370 return llvm::all_of(Name, [](const char &C) { 2371 return llvm::isAlnum(C) || C == '_' || C == '.'; 2372 }); 2373 } 2374 2375 void CodeGenModule::finalizeKCFITypes() { 2376 llvm::Module &M = getModule(); 2377 for (auto &F : M.functions()) { 2378 // Remove KCFI type metadata from non-address-taken local functions. 2379 bool AddressTaken = F.hasAddressTaken(); 2380 if (!AddressTaken && F.hasLocalLinkage()) 2381 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2382 2383 // Generate a constant with the expected KCFI type identifier for all 2384 // address-taken function declarations to support annotating indirectly 2385 // called assembly functions. 2386 if (!AddressTaken || !F.isDeclaration()) 2387 continue; 2388 2389 const llvm::ConstantInt *Type; 2390 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2391 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2392 else 2393 continue; 2394 2395 StringRef Name = F.getName(); 2396 if (!allowKCFIIdentifier(Name)) 2397 continue; 2398 2399 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2400 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2401 .str(); 2402 M.appendModuleInlineAsm(Asm); 2403 } 2404 } 2405 2406 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2407 bool IsIncompleteFunction, 2408 bool IsThunk) { 2409 2410 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2411 // If this is an intrinsic function, set the function's attributes 2412 // to the intrinsic's attributes. 2413 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2414 return; 2415 } 2416 2417 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2418 2419 if (!IsIncompleteFunction) 2420 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2421 IsThunk); 2422 2423 // Add the Returned attribute for "this", except for iOS 5 and earlier 2424 // where substantial code, including the libstdc++ dylib, was compiled with 2425 // GCC and does not actually return "this". 2426 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2427 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2428 assert(!F->arg_empty() && 2429 F->arg_begin()->getType() 2430 ->canLosslesslyBitCastTo(F->getReturnType()) && 2431 "unexpected this return"); 2432 F->addParamAttr(0, llvm::Attribute::Returned); 2433 } 2434 2435 // Only a few attributes are set on declarations; these may later be 2436 // overridden by a definition. 2437 2438 setLinkageForGV(F, FD); 2439 setGVProperties(F, FD); 2440 2441 // Setup target-specific attributes. 2442 if (!IsIncompleteFunction && F->isDeclaration()) 2443 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2444 2445 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2446 F->setSection(CSA->getName()); 2447 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2448 F->setSection(SA->getName()); 2449 2450 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2451 if (EA->isError()) 2452 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2453 else if (EA->isWarning()) 2454 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2455 } 2456 2457 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2458 if (FD->isInlineBuiltinDeclaration()) { 2459 const FunctionDecl *FDBody; 2460 bool HasBody = FD->hasBody(FDBody); 2461 (void)HasBody; 2462 assert(HasBody && "Inline builtin declarations should always have an " 2463 "available body!"); 2464 if (shouldEmitFunction(FDBody)) 2465 F->addFnAttr(llvm::Attribute::NoBuiltin); 2466 } 2467 2468 if (FD->isReplaceableGlobalAllocationFunction()) { 2469 // A replaceable global allocation function does not act like a builtin by 2470 // default, only if it is invoked by a new-expression or delete-expression. 2471 F->addFnAttr(llvm::Attribute::NoBuiltin); 2472 } 2473 2474 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2475 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2476 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2477 if (MD->isVirtual()) 2478 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2479 2480 // Don't emit entries for function declarations in the cross-DSO mode. This 2481 // is handled with better precision by the receiving DSO. But if jump tables 2482 // are non-canonical then we need type metadata in order to produce the local 2483 // jump table. 2484 if (!CodeGenOpts.SanitizeCfiCrossDso || 2485 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2486 CreateFunctionTypeMetadataForIcall(FD, F); 2487 2488 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2489 setKCFIType(FD, F); 2490 2491 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2492 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2493 2494 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2495 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2496 2497 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2498 // Annotate the callback behavior as metadata: 2499 // - The callback callee (as argument number). 2500 // - The callback payloads (as argument numbers). 2501 llvm::LLVMContext &Ctx = F->getContext(); 2502 llvm::MDBuilder MDB(Ctx); 2503 2504 // The payload indices are all but the first one in the encoding. The first 2505 // identifies the callback callee. 2506 int CalleeIdx = *CB->encoding_begin(); 2507 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2508 F->addMetadata(llvm::LLVMContext::MD_callback, 2509 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2510 CalleeIdx, PayloadIndices, 2511 /* VarArgsArePassed */ false)})); 2512 } 2513 } 2514 2515 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2516 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2517 "Only globals with definition can force usage."); 2518 LLVMUsed.emplace_back(GV); 2519 } 2520 2521 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2522 assert(!GV->isDeclaration() && 2523 "Only globals with definition can force usage."); 2524 LLVMCompilerUsed.emplace_back(GV); 2525 } 2526 2527 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2528 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2529 "Only globals with definition can force usage."); 2530 if (getTriple().isOSBinFormatELF()) 2531 LLVMCompilerUsed.emplace_back(GV); 2532 else 2533 LLVMUsed.emplace_back(GV); 2534 } 2535 2536 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2537 std::vector<llvm::WeakTrackingVH> &List) { 2538 // Don't create llvm.used if there is no need. 2539 if (List.empty()) 2540 return; 2541 2542 // Convert List to what ConstantArray needs. 2543 SmallVector<llvm::Constant*, 8> UsedArray; 2544 UsedArray.resize(List.size()); 2545 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2546 UsedArray[i] = 2547 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2548 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2549 } 2550 2551 if (UsedArray.empty()) 2552 return; 2553 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2554 2555 auto *GV = new llvm::GlobalVariable( 2556 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2557 llvm::ConstantArray::get(ATy, UsedArray), Name); 2558 2559 GV->setSection("llvm.metadata"); 2560 } 2561 2562 void CodeGenModule::emitLLVMUsed() { 2563 emitUsed(*this, "llvm.used", LLVMUsed); 2564 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2565 } 2566 2567 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2568 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2569 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2570 } 2571 2572 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2573 llvm::SmallString<32> Opt; 2574 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2575 if (Opt.empty()) 2576 return; 2577 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2578 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2579 } 2580 2581 void CodeGenModule::AddDependentLib(StringRef Lib) { 2582 auto &C = getLLVMContext(); 2583 if (getTarget().getTriple().isOSBinFormatELF()) { 2584 ELFDependentLibraries.push_back( 2585 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2586 return; 2587 } 2588 2589 llvm::SmallString<24> Opt; 2590 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2591 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2592 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2593 } 2594 2595 /// Add link options implied by the given module, including modules 2596 /// it depends on, using a postorder walk. 2597 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2598 SmallVectorImpl<llvm::MDNode *> &Metadata, 2599 llvm::SmallPtrSet<Module *, 16> &Visited) { 2600 // Import this module's parent. 2601 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2602 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2603 } 2604 2605 // Import this module's dependencies. 2606 for (Module *Import : llvm::reverse(Mod->Imports)) { 2607 if (Visited.insert(Import).second) 2608 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2609 } 2610 2611 // Add linker options to link against the libraries/frameworks 2612 // described by this module. 2613 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2614 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2615 2616 // For modules that use export_as for linking, use that module 2617 // name instead. 2618 if (Mod->UseExportAsModuleLinkName) 2619 return; 2620 2621 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2622 // Link against a framework. Frameworks are currently Darwin only, so we 2623 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2624 if (LL.IsFramework) { 2625 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2626 llvm::MDString::get(Context, LL.Library)}; 2627 2628 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2629 continue; 2630 } 2631 2632 // Link against a library. 2633 if (IsELF) { 2634 llvm::Metadata *Args[2] = { 2635 llvm::MDString::get(Context, "lib"), 2636 llvm::MDString::get(Context, LL.Library), 2637 }; 2638 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2639 } else { 2640 llvm::SmallString<24> Opt; 2641 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2642 auto *OptString = llvm::MDString::get(Context, Opt); 2643 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2644 } 2645 } 2646 } 2647 2648 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2649 // Emit the initializers in the order that sub-modules appear in the 2650 // source, first Global Module Fragments, if present. 2651 if (auto GMF = Primary->getGlobalModuleFragment()) { 2652 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2653 if (isa<ImportDecl>(D)) 2654 continue; 2655 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2656 EmitTopLevelDecl(D); 2657 } 2658 } 2659 // Second any associated with the module, itself. 2660 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2661 // Skip import decls, the inits for those are called explicitly. 2662 if (isa<ImportDecl>(D)) 2663 continue; 2664 EmitTopLevelDecl(D); 2665 } 2666 // Third any associated with the Privat eMOdule Fragment, if present. 2667 if (auto PMF = Primary->getPrivateModuleFragment()) { 2668 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2669 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2670 EmitTopLevelDecl(D); 2671 } 2672 } 2673 } 2674 2675 void CodeGenModule::EmitModuleLinkOptions() { 2676 // Collect the set of all of the modules we want to visit to emit link 2677 // options, which is essentially the imported modules and all of their 2678 // non-explicit child modules. 2679 llvm::SetVector<clang::Module *> LinkModules; 2680 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2681 SmallVector<clang::Module *, 16> Stack; 2682 2683 // Seed the stack with imported modules. 2684 for (Module *M : ImportedModules) { 2685 // Do not add any link flags when an implementation TU of a module imports 2686 // a header of that same module. 2687 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2688 !getLangOpts().isCompilingModule()) 2689 continue; 2690 if (Visited.insert(M).second) 2691 Stack.push_back(M); 2692 } 2693 2694 // Find all of the modules to import, making a little effort to prune 2695 // non-leaf modules. 2696 while (!Stack.empty()) { 2697 clang::Module *Mod = Stack.pop_back_val(); 2698 2699 bool AnyChildren = false; 2700 2701 // Visit the submodules of this module. 2702 for (const auto &SM : Mod->submodules()) { 2703 // Skip explicit children; they need to be explicitly imported to be 2704 // linked against. 2705 if (SM->IsExplicit) 2706 continue; 2707 2708 if (Visited.insert(SM).second) { 2709 Stack.push_back(SM); 2710 AnyChildren = true; 2711 } 2712 } 2713 2714 // We didn't find any children, so add this module to the list of 2715 // modules to link against. 2716 if (!AnyChildren) { 2717 LinkModules.insert(Mod); 2718 } 2719 } 2720 2721 // Add link options for all of the imported modules in reverse topological 2722 // order. We don't do anything to try to order import link flags with respect 2723 // to linker options inserted by things like #pragma comment(). 2724 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2725 Visited.clear(); 2726 for (Module *M : LinkModules) 2727 if (Visited.insert(M).second) 2728 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2729 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2730 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2731 2732 // Add the linker options metadata flag. 2733 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2734 for (auto *MD : LinkerOptionsMetadata) 2735 NMD->addOperand(MD); 2736 } 2737 2738 void CodeGenModule::EmitDeferred() { 2739 // Emit deferred declare target declarations. 2740 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2741 getOpenMPRuntime().emitDeferredTargetDecls(); 2742 2743 // Emit code for any potentially referenced deferred decls. Since a 2744 // previously unused static decl may become used during the generation of code 2745 // for a static function, iterate until no changes are made. 2746 2747 if (!DeferredVTables.empty()) { 2748 EmitDeferredVTables(); 2749 2750 // Emitting a vtable doesn't directly cause more vtables to 2751 // become deferred, although it can cause functions to be 2752 // emitted that then need those vtables. 2753 assert(DeferredVTables.empty()); 2754 } 2755 2756 // Emit CUDA/HIP static device variables referenced by host code only. 2757 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2758 // needed for further handling. 2759 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2760 llvm::append_range(DeferredDeclsToEmit, 2761 getContext().CUDADeviceVarODRUsedByHost); 2762 2763 // Stop if we're out of both deferred vtables and deferred declarations. 2764 if (DeferredDeclsToEmit.empty()) 2765 return; 2766 2767 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2768 // work, it will not interfere with this. 2769 std::vector<GlobalDecl> CurDeclsToEmit; 2770 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2771 2772 for (GlobalDecl &D : CurDeclsToEmit) { 2773 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2774 // to get GlobalValue with exactly the type we need, not something that 2775 // might had been created for another decl with the same mangled name but 2776 // different type. 2777 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2778 GetAddrOfGlobal(D, ForDefinition)); 2779 2780 // In case of different address spaces, we may still get a cast, even with 2781 // IsForDefinition equal to true. Query mangled names table to get 2782 // GlobalValue. 2783 if (!GV) 2784 GV = GetGlobalValue(getMangledName(D)); 2785 2786 // Make sure GetGlobalValue returned non-null. 2787 assert(GV); 2788 2789 // Check to see if we've already emitted this. This is necessary 2790 // for a couple of reasons: first, decls can end up in the 2791 // deferred-decls queue multiple times, and second, decls can end 2792 // up with definitions in unusual ways (e.g. by an extern inline 2793 // function acquiring a strong function redefinition). Just 2794 // ignore these cases. 2795 if (!GV->isDeclaration()) 2796 continue; 2797 2798 // If this is OpenMP, check if it is legal to emit this global normally. 2799 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2800 continue; 2801 2802 // Otherwise, emit the definition and move on to the next one. 2803 EmitGlobalDefinition(D, GV); 2804 2805 // If we found out that we need to emit more decls, do that recursively. 2806 // This has the advantage that the decls are emitted in a DFS and related 2807 // ones are close together, which is convenient for testing. 2808 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2809 EmitDeferred(); 2810 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2811 } 2812 } 2813 } 2814 2815 void CodeGenModule::EmitVTablesOpportunistically() { 2816 // Try to emit external vtables as available_externally if they have emitted 2817 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2818 // is not allowed to create new references to things that need to be emitted 2819 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2820 2821 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2822 && "Only emit opportunistic vtables with optimizations"); 2823 2824 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2825 assert(getVTables().isVTableExternal(RD) && 2826 "This queue should only contain external vtables"); 2827 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2828 VTables.GenerateClassData(RD); 2829 } 2830 OpportunisticVTables.clear(); 2831 } 2832 2833 void CodeGenModule::EmitGlobalAnnotations() { 2834 if (Annotations.empty()) 2835 return; 2836 2837 // Create a new global variable for the ConstantStruct in the Module. 2838 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2839 Annotations[0]->getType(), Annotations.size()), Annotations); 2840 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2841 llvm::GlobalValue::AppendingLinkage, 2842 Array, "llvm.global.annotations"); 2843 gv->setSection(AnnotationSection); 2844 } 2845 2846 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2847 llvm::Constant *&AStr = AnnotationStrings[Str]; 2848 if (AStr) 2849 return AStr; 2850 2851 // Not found yet, create a new global. 2852 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2853 auto *gv = new llvm::GlobalVariable( 2854 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 2855 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 2856 ConstGlobalsPtrTy->getAddressSpace()); 2857 gv->setSection(AnnotationSection); 2858 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2859 AStr = gv; 2860 return gv; 2861 } 2862 2863 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2864 SourceManager &SM = getContext().getSourceManager(); 2865 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2866 if (PLoc.isValid()) 2867 return EmitAnnotationString(PLoc.getFilename()); 2868 return EmitAnnotationString(SM.getBufferName(Loc)); 2869 } 2870 2871 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2872 SourceManager &SM = getContext().getSourceManager(); 2873 PresumedLoc PLoc = SM.getPresumedLoc(L); 2874 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2875 SM.getExpansionLineNumber(L); 2876 return llvm::ConstantInt::get(Int32Ty, LineNo); 2877 } 2878 2879 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2880 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2881 if (Exprs.empty()) 2882 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 2883 2884 llvm::FoldingSetNodeID ID; 2885 for (Expr *E : Exprs) { 2886 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2887 } 2888 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2889 if (Lookup) 2890 return Lookup; 2891 2892 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2893 LLVMArgs.reserve(Exprs.size()); 2894 ConstantEmitter ConstEmiter(*this); 2895 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2896 const auto *CE = cast<clang::ConstantExpr>(E); 2897 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2898 CE->getType()); 2899 }); 2900 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2901 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2902 llvm::GlobalValue::PrivateLinkage, Struct, 2903 ".args"); 2904 GV->setSection(AnnotationSection); 2905 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2906 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2907 2908 Lookup = Bitcasted; 2909 return Bitcasted; 2910 } 2911 2912 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2913 const AnnotateAttr *AA, 2914 SourceLocation L) { 2915 // Get the globals for file name, annotation, and the line number. 2916 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2917 *UnitGV = EmitAnnotationUnit(L), 2918 *LineNoCst = EmitAnnotationLineNo(L), 2919 *Args = EmitAnnotationArgs(AA); 2920 2921 llvm::Constant *GVInGlobalsAS = GV; 2922 if (GV->getAddressSpace() != 2923 getDataLayout().getDefaultGlobalsAddressSpace()) { 2924 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2925 GV, GV->getValueType()->getPointerTo( 2926 getDataLayout().getDefaultGlobalsAddressSpace())); 2927 } 2928 2929 // Create the ConstantStruct for the global annotation. 2930 llvm::Constant *Fields[] = { 2931 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2932 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 2933 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 2934 LineNoCst, 2935 Args, 2936 }; 2937 return llvm::ConstantStruct::getAnon(Fields); 2938 } 2939 2940 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2941 llvm::GlobalValue *GV) { 2942 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2943 // Get the struct elements for these annotations. 2944 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2945 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2946 } 2947 2948 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2949 SourceLocation Loc) const { 2950 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2951 // NoSanitize by function name. 2952 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2953 return true; 2954 // NoSanitize by location. Check "mainfile" prefix. 2955 auto &SM = Context.getSourceManager(); 2956 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2957 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2958 return true; 2959 2960 // Check "src" prefix. 2961 if (Loc.isValid()) 2962 return NoSanitizeL.containsLocation(Kind, Loc); 2963 // If location is unknown, this may be a compiler-generated function. Assume 2964 // it's located in the main file. 2965 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2966 } 2967 2968 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2969 llvm::GlobalVariable *GV, 2970 SourceLocation Loc, QualType Ty, 2971 StringRef Category) const { 2972 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2973 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2974 return true; 2975 auto &SM = Context.getSourceManager(); 2976 if (NoSanitizeL.containsMainFile( 2977 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2978 return true; 2979 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2980 return true; 2981 2982 // Check global type. 2983 if (!Ty.isNull()) { 2984 // Drill down the array types: if global variable of a fixed type is 2985 // not sanitized, we also don't instrument arrays of them. 2986 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2987 Ty = AT->getElementType(); 2988 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2989 // Only record types (classes, structs etc.) are ignored. 2990 if (Ty->isRecordType()) { 2991 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2992 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2993 return true; 2994 } 2995 } 2996 return false; 2997 } 2998 2999 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3000 StringRef Category) const { 3001 const auto &XRayFilter = getContext().getXRayFilter(); 3002 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3003 auto Attr = ImbueAttr::NONE; 3004 if (Loc.isValid()) 3005 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3006 if (Attr == ImbueAttr::NONE) 3007 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3008 switch (Attr) { 3009 case ImbueAttr::NONE: 3010 return false; 3011 case ImbueAttr::ALWAYS: 3012 Fn->addFnAttr("function-instrument", "xray-always"); 3013 break; 3014 case ImbueAttr::ALWAYS_ARG1: 3015 Fn->addFnAttr("function-instrument", "xray-always"); 3016 Fn->addFnAttr("xray-log-args", "1"); 3017 break; 3018 case ImbueAttr::NEVER: 3019 Fn->addFnAttr("function-instrument", "xray-never"); 3020 break; 3021 } 3022 return true; 3023 } 3024 3025 ProfileList::ExclusionType 3026 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3027 SourceLocation Loc) const { 3028 const auto &ProfileList = getContext().getProfileList(); 3029 // If the profile list is empty, then instrument everything. 3030 if (ProfileList.isEmpty()) 3031 return ProfileList::Allow; 3032 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3033 // First, check the function name. 3034 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3035 return *V; 3036 // Next, check the source location. 3037 if (Loc.isValid()) 3038 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3039 return *V; 3040 // If location is unknown, this may be a compiler-generated function. Assume 3041 // it's located in the main file. 3042 auto &SM = Context.getSourceManager(); 3043 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3044 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3045 return *V; 3046 return ProfileList.getDefault(Kind); 3047 } 3048 3049 ProfileList::ExclusionType 3050 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3051 SourceLocation Loc) const { 3052 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3053 if (V != ProfileList::Allow) 3054 return V; 3055 3056 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3057 if (NumGroups > 1) { 3058 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3059 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3060 return ProfileList::Skip; 3061 } 3062 return ProfileList::Allow; 3063 } 3064 3065 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3066 // Never defer when EmitAllDecls is specified. 3067 if (LangOpts.EmitAllDecls) 3068 return true; 3069 3070 if (CodeGenOpts.KeepStaticConsts) { 3071 const auto *VD = dyn_cast<VarDecl>(Global); 3072 if (VD && VD->getType().isConstQualified() && 3073 VD->getStorageDuration() == SD_Static) 3074 return true; 3075 } 3076 3077 return getContext().DeclMustBeEmitted(Global); 3078 } 3079 3080 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3081 // In OpenMP 5.0 variables and function may be marked as 3082 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3083 // that they must be emitted on the host/device. To be sure we need to have 3084 // seen a declare target with an explicit mentioning of the function, we know 3085 // we have if the level of the declare target attribute is -1. Note that we 3086 // check somewhere else if we should emit this at all. 3087 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3088 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3089 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3090 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3091 return false; 3092 } 3093 3094 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3095 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3096 // Implicit template instantiations may change linkage if they are later 3097 // explicitly instantiated, so they should not be emitted eagerly. 3098 return false; 3099 } 3100 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3101 if (Context.getInlineVariableDefinitionKind(VD) == 3102 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3103 // A definition of an inline constexpr static data member may change 3104 // linkage later if it's redeclared outside the class. 3105 return false; 3106 if (CXX20ModuleInits && VD->getOwningModule() && 3107 !VD->getOwningModule()->isModuleMapModule()) { 3108 // For CXX20, module-owned initializers need to be deferred, since it is 3109 // not known at this point if they will be run for the current module or 3110 // as part of the initializer for an imported one. 3111 return false; 3112 } 3113 } 3114 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3115 // codegen for global variables, because they may be marked as threadprivate. 3116 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3117 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3118 !isTypeConstant(Global->getType(), false) && 3119 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3120 return false; 3121 3122 return true; 3123 } 3124 3125 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3126 StringRef Name = getMangledName(GD); 3127 3128 // The UUID descriptor should be pointer aligned. 3129 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3130 3131 // Look for an existing global. 3132 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3133 return ConstantAddress(GV, GV->getValueType(), Alignment); 3134 3135 ConstantEmitter Emitter(*this); 3136 llvm::Constant *Init; 3137 3138 APValue &V = GD->getAsAPValue(); 3139 if (!V.isAbsent()) { 3140 // If possible, emit the APValue version of the initializer. In particular, 3141 // this gets the type of the constant right. 3142 Init = Emitter.emitForInitializer( 3143 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3144 } else { 3145 // As a fallback, directly construct the constant. 3146 // FIXME: This may get padding wrong under esoteric struct layout rules. 3147 // MSVC appears to create a complete type 'struct __s_GUID' that it 3148 // presumably uses to represent these constants. 3149 MSGuidDecl::Parts Parts = GD->getParts(); 3150 llvm::Constant *Fields[4] = { 3151 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3152 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3153 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3154 llvm::ConstantDataArray::getRaw( 3155 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3156 Int8Ty)}; 3157 Init = llvm::ConstantStruct::getAnon(Fields); 3158 } 3159 3160 auto *GV = new llvm::GlobalVariable( 3161 getModule(), Init->getType(), 3162 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3163 if (supportsCOMDAT()) 3164 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3165 setDSOLocal(GV); 3166 3167 if (!V.isAbsent()) { 3168 Emitter.finalize(GV); 3169 return ConstantAddress(GV, GV->getValueType(), Alignment); 3170 } 3171 3172 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3173 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3174 GV, Ty->getPointerTo(GV->getAddressSpace())); 3175 return ConstantAddress(Addr, Ty, Alignment); 3176 } 3177 3178 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3179 const UnnamedGlobalConstantDecl *GCD) { 3180 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3181 3182 llvm::GlobalVariable **Entry = nullptr; 3183 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3184 if (*Entry) 3185 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3186 3187 ConstantEmitter Emitter(*this); 3188 llvm::Constant *Init; 3189 3190 const APValue &V = GCD->getValue(); 3191 3192 assert(!V.isAbsent()); 3193 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3194 GCD->getType()); 3195 3196 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3197 /*isConstant=*/true, 3198 llvm::GlobalValue::PrivateLinkage, Init, 3199 ".constant"); 3200 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3201 GV->setAlignment(Alignment.getAsAlign()); 3202 3203 Emitter.finalize(GV); 3204 3205 *Entry = GV; 3206 return ConstantAddress(GV, GV->getValueType(), Alignment); 3207 } 3208 3209 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3210 const TemplateParamObjectDecl *TPO) { 3211 StringRef Name = getMangledName(TPO); 3212 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3213 3214 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3215 return ConstantAddress(GV, GV->getValueType(), Alignment); 3216 3217 ConstantEmitter Emitter(*this); 3218 llvm::Constant *Init = Emitter.emitForInitializer( 3219 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3220 3221 if (!Init) { 3222 ErrorUnsupported(TPO, "template parameter object"); 3223 return ConstantAddress::invalid(); 3224 } 3225 3226 auto *GV = new llvm::GlobalVariable( 3227 getModule(), Init->getType(), 3228 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3229 if (supportsCOMDAT()) 3230 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3231 Emitter.finalize(GV); 3232 3233 return ConstantAddress(GV, GV->getValueType(), Alignment); 3234 } 3235 3236 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3237 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3238 assert(AA && "No alias?"); 3239 3240 CharUnits Alignment = getContext().getDeclAlign(VD); 3241 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3242 3243 // See if there is already something with the target's name in the module. 3244 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3245 if (Entry) { 3246 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3247 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3248 return ConstantAddress(Ptr, DeclTy, Alignment); 3249 } 3250 3251 llvm::Constant *Aliasee; 3252 if (isa<llvm::FunctionType>(DeclTy)) 3253 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3254 GlobalDecl(cast<FunctionDecl>(VD)), 3255 /*ForVTable=*/false); 3256 else 3257 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3258 nullptr); 3259 3260 auto *F = cast<llvm::GlobalValue>(Aliasee); 3261 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3262 WeakRefReferences.insert(F); 3263 3264 return ConstantAddress(Aliasee, DeclTy, Alignment); 3265 } 3266 3267 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3268 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3269 3270 // Weak references don't produce any output by themselves. 3271 if (Global->hasAttr<WeakRefAttr>()) 3272 return; 3273 3274 // If this is an alias definition (which otherwise looks like a declaration) 3275 // emit it now. 3276 if (Global->hasAttr<AliasAttr>()) 3277 return EmitAliasDefinition(GD); 3278 3279 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3280 if (Global->hasAttr<IFuncAttr>()) 3281 return emitIFuncDefinition(GD); 3282 3283 // If this is a cpu_dispatch multiversion function, emit the resolver. 3284 if (Global->hasAttr<CPUDispatchAttr>()) 3285 return emitCPUDispatchDefinition(GD); 3286 3287 // If this is CUDA, be selective about which declarations we emit. 3288 if (LangOpts.CUDA) { 3289 if (LangOpts.CUDAIsDevice) { 3290 if (!Global->hasAttr<CUDADeviceAttr>() && 3291 !Global->hasAttr<CUDAGlobalAttr>() && 3292 !Global->hasAttr<CUDAConstantAttr>() && 3293 !Global->hasAttr<CUDASharedAttr>() && 3294 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3295 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3296 return; 3297 } else { 3298 // We need to emit host-side 'shadows' for all global 3299 // device-side variables because the CUDA runtime needs their 3300 // size and host-side address in order to provide access to 3301 // their device-side incarnations. 3302 3303 // So device-only functions are the only things we skip. 3304 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3305 Global->hasAttr<CUDADeviceAttr>()) 3306 return; 3307 3308 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3309 "Expected Variable or Function"); 3310 } 3311 } 3312 3313 if (LangOpts.OpenMP) { 3314 // If this is OpenMP, check if it is legal to emit this global normally. 3315 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3316 return; 3317 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3318 if (MustBeEmitted(Global)) 3319 EmitOMPDeclareReduction(DRD); 3320 return; 3321 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3322 if (MustBeEmitted(Global)) 3323 EmitOMPDeclareMapper(DMD); 3324 return; 3325 } 3326 } 3327 3328 // Ignore declarations, they will be emitted on their first use. 3329 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3330 // Forward declarations are emitted lazily on first use. 3331 if (!FD->doesThisDeclarationHaveABody()) { 3332 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3333 return; 3334 3335 StringRef MangledName = getMangledName(GD); 3336 3337 // Compute the function info and LLVM type. 3338 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3339 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3340 3341 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3342 /*DontDefer=*/false); 3343 return; 3344 } 3345 } else { 3346 const auto *VD = cast<VarDecl>(Global); 3347 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3348 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3349 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3350 if (LangOpts.OpenMP) { 3351 // Emit declaration of the must-be-emitted declare target variable. 3352 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3353 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3354 bool UnifiedMemoryEnabled = 3355 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3356 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3357 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3358 !UnifiedMemoryEnabled) { 3359 (void)GetAddrOfGlobalVar(VD); 3360 } else { 3361 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3362 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3363 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3364 UnifiedMemoryEnabled)) && 3365 "Link clause or to clause with unified memory expected."); 3366 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3367 } 3368 3369 return; 3370 } 3371 } 3372 // If this declaration may have caused an inline variable definition to 3373 // change linkage, make sure that it's emitted. 3374 if (Context.getInlineVariableDefinitionKind(VD) == 3375 ASTContext::InlineVariableDefinitionKind::Strong) 3376 GetAddrOfGlobalVar(VD); 3377 return; 3378 } 3379 } 3380 3381 // Defer code generation to first use when possible, e.g. if this is an inline 3382 // function. If the global must always be emitted, do it eagerly if possible 3383 // to benefit from cache locality. 3384 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3385 // Emit the definition if it can't be deferred. 3386 EmitGlobalDefinition(GD); 3387 return; 3388 } 3389 3390 // If we're deferring emission of a C++ variable with an 3391 // initializer, remember the order in which it appeared in the file. 3392 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3393 cast<VarDecl>(Global)->hasInit()) { 3394 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3395 CXXGlobalInits.push_back(nullptr); 3396 } 3397 3398 StringRef MangledName = getMangledName(GD); 3399 if (GetGlobalValue(MangledName) != nullptr) { 3400 // The value has already been used and should therefore be emitted. 3401 addDeferredDeclToEmit(GD); 3402 } else if (MustBeEmitted(Global)) { 3403 // The value must be emitted, but cannot be emitted eagerly. 3404 assert(!MayBeEmittedEagerly(Global)); 3405 addDeferredDeclToEmit(GD); 3406 EmittedDeferredDecls[MangledName] = GD; 3407 } else { 3408 // Otherwise, remember that we saw a deferred decl with this name. The 3409 // first use of the mangled name will cause it to move into 3410 // DeferredDeclsToEmit. 3411 DeferredDecls[MangledName] = GD; 3412 } 3413 } 3414 3415 // Check if T is a class type with a destructor that's not dllimport. 3416 static bool HasNonDllImportDtor(QualType T) { 3417 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3418 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3419 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3420 return true; 3421 3422 return false; 3423 } 3424 3425 namespace { 3426 struct FunctionIsDirectlyRecursive 3427 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3428 const StringRef Name; 3429 const Builtin::Context &BI; 3430 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3431 : Name(N), BI(C) {} 3432 3433 bool VisitCallExpr(const CallExpr *E) { 3434 const FunctionDecl *FD = E->getDirectCallee(); 3435 if (!FD) 3436 return false; 3437 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3438 if (Attr && Name == Attr->getLabel()) 3439 return true; 3440 unsigned BuiltinID = FD->getBuiltinID(); 3441 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3442 return false; 3443 StringRef BuiltinName = BI.getName(BuiltinID); 3444 if (BuiltinName.startswith("__builtin_") && 3445 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3446 return true; 3447 } 3448 return false; 3449 } 3450 3451 bool VisitStmt(const Stmt *S) { 3452 for (const Stmt *Child : S->children()) 3453 if (Child && this->Visit(Child)) 3454 return true; 3455 return false; 3456 } 3457 }; 3458 3459 // Make sure we're not referencing non-imported vars or functions. 3460 struct DLLImportFunctionVisitor 3461 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3462 bool SafeToInline = true; 3463 3464 bool shouldVisitImplicitCode() const { return true; } 3465 3466 bool VisitVarDecl(VarDecl *VD) { 3467 if (VD->getTLSKind()) { 3468 // A thread-local variable cannot be imported. 3469 SafeToInline = false; 3470 return SafeToInline; 3471 } 3472 3473 // A variable definition might imply a destructor call. 3474 if (VD->isThisDeclarationADefinition()) 3475 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3476 3477 return SafeToInline; 3478 } 3479 3480 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3481 if (const auto *D = E->getTemporary()->getDestructor()) 3482 SafeToInline = D->hasAttr<DLLImportAttr>(); 3483 return SafeToInline; 3484 } 3485 3486 bool VisitDeclRefExpr(DeclRefExpr *E) { 3487 ValueDecl *VD = E->getDecl(); 3488 if (isa<FunctionDecl>(VD)) 3489 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3490 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3491 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3492 return SafeToInline; 3493 } 3494 3495 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3496 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3497 return SafeToInline; 3498 } 3499 3500 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3501 CXXMethodDecl *M = E->getMethodDecl(); 3502 if (!M) { 3503 // Call through a pointer to member function. This is safe to inline. 3504 SafeToInline = true; 3505 } else { 3506 SafeToInline = M->hasAttr<DLLImportAttr>(); 3507 } 3508 return SafeToInline; 3509 } 3510 3511 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3512 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3513 return SafeToInline; 3514 } 3515 3516 bool VisitCXXNewExpr(CXXNewExpr *E) { 3517 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3518 return SafeToInline; 3519 } 3520 }; 3521 } 3522 3523 // isTriviallyRecursive - Check if this function calls another 3524 // decl that, because of the asm attribute or the other decl being a builtin, 3525 // ends up pointing to itself. 3526 bool 3527 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3528 StringRef Name; 3529 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3530 // asm labels are a special kind of mangling we have to support. 3531 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3532 if (!Attr) 3533 return false; 3534 Name = Attr->getLabel(); 3535 } else { 3536 Name = FD->getName(); 3537 } 3538 3539 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3540 const Stmt *Body = FD->getBody(); 3541 return Body ? Walker.Visit(Body) : false; 3542 } 3543 3544 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3545 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3546 return true; 3547 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3548 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3549 return false; 3550 3551 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3552 // Check whether it would be safe to inline this dllimport function. 3553 DLLImportFunctionVisitor Visitor; 3554 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3555 if (!Visitor.SafeToInline) 3556 return false; 3557 3558 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3559 // Implicit destructor invocations aren't captured in the AST, so the 3560 // check above can't see them. Check for them manually here. 3561 for (const Decl *Member : Dtor->getParent()->decls()) 3562 if (isa<FieldDecl>(Member)) 3563 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3564 return false; 3565 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3566 if (HasNonDllImportDtor(B.getType())) 3567 return false; 3568 } 3569 } 3570 3571 // Inline builtins declaration must be emitted. They often are fortified 3572 // functions. 3573 if (F->isInlineBuiltinDeclaration()) 3574 return true; 3575 3576 // PR9614. Avoid cases where the source code is lying to us. An available 3577 // externally function should have an equivalent function somewhere else, 3578 // but a function that calls itself through asm label/`__builtin_` trickery is 3579 // clearly not equivalent to the real implementation. 3580 // This happens in glibc's btowc and in some configure checks. 3581 return !isTriviallyRecursive(F); 3582 } 3583 3584 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3585 return CodeGenOpts.OptimizationLevel > 0; 3586 } 3587 3588 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3589 llvm::GlobalValue *GV) { 3590 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3591 3592 if (FD->isCPUSpecificMultiVersion()) { 3593 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3594 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3595 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3596 } else if (FD->isTargetClonesMultiVersion()) { 3597 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3598 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3599 if (Clone->isFirstOfVersion(I)) 3600 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3601 // Ensure that the resolver function is also emitted. 3602 GetOrCreateMultiVersionResolver(GD); 3603 } else 3604 EmitGlobalFunctionDefinition(GD, GV); 3605 } 3606 3607 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3608 const auto *D = cast<ValueDecl>(GD.getDecl()); 3609 3610 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3611 Context.getSourceManager(), 3612 "Generating code for declaration"); 3613 3614 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3615 // At -O0, don't generate IR for functions with available_externally 3616 // linkage. 3617 if (!shouldEmitFunction(GD)) 3618 return; 3619 3620 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3621 std::string Name; 3622 llvm::raw_string_ostream OS(Name); 3623 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3624 /*Qualified=*/true); 3625 return Name; 3626 }); 3627 3628 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3629 // Make sure to emit the definition(s) before we emit the thunks. 3630 // This is necessary for the generation of certain thunks. 3631 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3632 ABI->emitCXXStructor(GD); 3633 else if (FD->isMultiVersion()) 3634 EmitMultiVersionFunctionDefinition(GD, GV); 3635 else 3636 EmitGlobalFunctionDefinition(GD, GV); 3637 3638 if (Method->isVirtual()) 3639 getVTables().EmitThunks(GD); 3640 3641 return; 3642 } 3643 3644 if (FD->isMultiVersion()) 3645 return EmitMultiVersionFunctionDefinition(GD, GV); 3646 return EmitGlobalFunctionDefinition(GD, GV); 3647 } 3648 3649 if (const auto *VD = dyn_cast<VarDecl>(D)) 3650 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3651 3652 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3653 } 3654 3655 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3656 llvm::Function *NewFn); 3657 3658 static unsigned 3659 TargetMVPriority(const TargetInfo &TI, 3660 const CodeGenFunction::MultiVersionResolverOption &RO) { 3661 unsigned Priority = 0; 3662 unsigned NumFeatures = 0; 3663 for (StringRef Feat : RO.Conditions.Features) { 3664 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3665 NumFeatures++; 3666 } 3667 3668 if (!RO.Conditions.Architecture.empty()) 3669 Priority = std::max( 3670 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3671 3672 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3673 3674 return Priority; 3675 } 3676 3677 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3678 // TU can forward declare the function without causing problems. Particularly 3679 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3680 // work with internal linkage functions, so that the same function name can be 3681 // used with internal linkage in multiple TUs. 3682 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3683 GlobalDecl GD) { 3684 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3685 if (FD->getFormalLinkage() == InternalLinkage) 3686 return llvm::GlobalValue::InternalLinkage; 3687 return llvm::GlobalValue::WeakODRLinkage; 3688 } 3689 3690 void CodeGenModule::emitMultiVersionFunctions() { 3691 std::vector<GlobalDecl> MVFuncsToEmit; 3692 MultiVersionFuncs.swap(MVFuncsToEmit); 3693 for (GlobalDecl GD : MVFuncsToEmit) { 3694 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3695 assert(FD && "Expected a FunctionDecl"); 3696 3697 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3698 if (FD->isTargetMultiVersion()) { 3699 getContext().forEachMultiversionedFunctionVersion( 3700 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3701 GlobalDecl CurGD{ 3702 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3703 StringRef MangledName = getMangledName(CurGD); 3704 llvm::Constant *Func = GetGlobalValue(MangledName); 3705 if (!Func) { 3706 if (CurFD->isDefined()) { 3707 EmitGlobalFunctionDefinition(CurGD, nullptr); 3708 Func = GetGlobalValue(MangledName); 3709 } else { 3710 const CGFunctionInfo &FI = 3711 getTypes().arrangeGlobalDeclaration(GD); 3712 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3713 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3714 /*DontDefer=*/false, ForDefinition); 3715 } 3716 assert(Func && "This should have just been created"); 3717 } 3718 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3719 const auto *TA = CurFD->getAttr<TargetAttr>(); 3720 llvm::SmallVector<StringRef, 8> Feats; 3721 TA->getAddedFeatures(Feats); 3722 Options.emplace_back(cast<llvm::Function>(Func), 3723 TA->getArchitecture(), Feats); 3724 } else { 3725 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3726 llvm::SmallVector<StringRef, 8> Feats; 3727 TVA->getFeatures(Feats); 3728 Options.emplace_back(cast<llvm::Function>(Func), 3729 /*Architecture*/ "", Feats); 3730 } 3731 }); 3732 } else if (FD->isTargetClonesMultiVersion()) { 3733 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3734 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3735 ++VersionIndex) { 3736 if (!TC->isFirstOfVersion(VersionIndex)) 3737 continue; 3738 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3739 VersionIndex}; 3740 StringRef Version = TC->getFeatureStr(VersionIndex); 3741 StringRef MangledName = getMangledName(CurGD); 3742 llvm::Constant *Func = GetGlobalValue(MangledName); 3743 if (!Func) { 3744 if (FD->isDefined()) { 3745 EmitGlobalFunctionDefinition(CurGD, nullptr); 3746 Func = GetGlobalValue(MangledName); 3747 } else { 3748 const CGFunctionInfo &FI = 3749 getTypes().arrangeGlobalDeclaration(CurGD); 3750 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3751 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3752 /*DontDefer=*/false, ForDefinition); 3753 } 3754 assert(Func && "This should have just been created"); 3755 } 3756 3757 StringRef Architecture; 3758 llvm::SmallVector<StringRef, 1> Feature; 3759 3760 if (getTarget().getTriple().isAArch64()) { 3761 if (Version != "default") { 3762 llvm::SmallVector<StringRef, 8> VerFeats; 3763 Version.split(VerFeats, "+"); 3764 for (auto &CurFeat : VerFeats) 3765 Feature.push_back(CurFeat.trim()); 3766 } 3767 } else { 3768 if (Version.startswith("arch=")) 3769 Architecture = Version.drop_front(sizeof("arch=") - 1); 3770 else if (Version != "default") 3771 Feature.push_back(Version); 3772 } 3773 3774 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3775 } 3776 } else { 3777 assert(0 && "Expected a target or target_clones multiversion function"); 3778 continue; 3779 } 3780 3781 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3782 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3783 ResolverConstant = IFunc->getResolver(); 3784 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3785 3786 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3787 3788 if (supportsCOMDAT()) 3789 ResolverFunc->setComdat( 3790 getModule().getOrInsertComdat(ResolverFunc->getName())); 3791 3792 const TargetInfo &TI = getTarget(); 3793 llvm::stable_sort( 3794 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3795 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3796 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3797 }); 3798 CodeGenFunction CGF(*this); 3799 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3800 } 3801 3802 // Ensure that any additions to the deferred decls list caused by emitting a 3803 // variant are emitted. This can happen when the variant itself is inline and 3804 // calls a function without linkage. 3805 if (!MVFuncsToEmit.empty()) 3806 EmitDeferred(); 3807 3808 // Ensure that any additions to the multiversion funcs list from either the 3809 // deferred decls or the multiversion functions themselves are emitted. 3810 if (!MultiVersionFuncs.empty()) 3811 emitMultiVersionFunctions(); 3812 } 3813 3814 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3815 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3816 assert(FD && "Not a FunctionDecl?"); 3817 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3818 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3819 assert(DD && "Not a cpu_dispatch Function?"); 3820 3821 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3822 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3823 3824 StringRef ResolverName = getMangledName(GD); 3825 UpdateMultiVersionNames(GD, FD, ResolverName); 3826 3827 llvm::Type *ResolverType; 3828 GlobalDecl ResolverGD; 3829 if (getTarget().supportsIFunc()) { 3830 ResolverType = llvm::FunctionType::get( 3831 llvm::PointerType::get(DeclTy, 3832 getTypes().getTargetAddressSpace(FD->getType())), 3833 false); 3834 } 3835 else { 3836 ResolverType = DeclTy; 3837 ResolverGD = GD; 3838 } 3839 3840 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3841 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3842 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3843 if (supportsCOMDAT()) 3844 ResolverFunc->setComdat( 3845 getModule().getOrInsertComdat(ResolverFunc->getName())); 3846 3847 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3848 const TargetInfo &Target = getTarget(); 3849 unsigned Index = 0; 3850 for (const IdentifierInfo *II : DD->cpus()) { 3851 // Get the name of the target function so we can look it up/create it. 3852 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3853 getCPUSpecificMangling(*this, II->getName()); 3854 3855 llvm::Constant *Func = GetGlobalValue(MangledName); 3856 3857 if (!Func) { 3858 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3859 if (ExistingDecl.getDecl() && 3860 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3861 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3862 Func = GetGlobalValue(MangledName); 3863 } else { 3864 if (!ExistingDecl.getDecl()) 3865 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3866 3867 Func = GetOrCreateLLVMFunction( 3868 MangledName, DeclTy, ExistingDecl, 3869 /*ForVTable=*/false, /*DontDefer=*/true, 3870 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3871 } 3872 } 3873 3874 llvm::SmallVector<StringRef, 32> Features; 3875 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3876 llvm::transform(Features, Features.begin(), 3877 [](StringRef Str) { return Str.substr(1); }); 3878 llvm::erase_if(Features, [&Target](StringRef Feat) { 3879 return !Target.validateCpuSupports(Feat); 3880 }); 3881 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3882 ++Index; 3883 } 3884 3885 llvm::stable_sort( 3886 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3887 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3888 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3889 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3890 }); 3891 3892 // If the list contains multiple 'default' versions, such as when it contains 3893 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3894 // always run on at least a 'pentium'). We do this by deleting the 'least 3895 // advanced' (read, lowest mangling letter). 3896 while (Options.size() > 1 && 3897 llvm::X86::getCpuSupportsMask( 3898 (Options.end() - 2)->Conditions.Features) == 0) { 3899 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3900 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3901 if (LHSName.compare(RHSName) < 0) 3902 Options.erase(Options.end() - 2); 3903 else 3904 Options.erase(Options.end() - 1); 3905 } 3906 3907 CodeGenFunction CGF(*this); 3908 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3909 3910 if (getTarget().supportsIFunc()) { 3911 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3912 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3913 3914 // Fix up function declarations that were created for cpu_specific before 3915 // cpu_dispatch was known 3916 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3917 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3918 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3919 &getModule()); 3920 GI->takeName(IFunc); 3921 IFunc->replaceAllUsesWith(GI); 3922 IFunc->eraseFromParent(); 3923 IFunc = GI; 3924 } 3925 3926 std::string AliasName = getMangledNameImpl( 3927 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3928 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3929 if (!AliasFunc) { 3930 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3931 &getModule()); 3932 SetCommonAttributes(GD, GA); 3933 } 3934 } 3935 } 3936 3937 /// If a dispatcher for the specified mangled name is not in the module, create 3938 /// and return an llvm Function with the specified type. 3939 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3940 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3941 assert(FD && "Not a FunctionDecl?"); 3942 3943 std::string MangledName = 3944 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3945 3946 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3947 // a separate resolver). 3948 std::string ResolverName = MangledName; 3949 if (getTarget().supportsIFunc()) 3950 ResolverName += ".ifunc"; 3951 else if (FD->isTargetMultiVersion()) 3952 ResolverName += ".resolver"; 3953 3954 // If the resolver has already been created, just return it. 3955 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3956 return ResolverGV; 3957 3958 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3959 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3960 3961 // The resolver needs to be created. For target and target_clones, defer 3962 // creation until the end of the TU. 3963 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3964 MultiVersionFuncs.push_back(GD); 3965 3966 // For cpu_specific, don't create an ifunc yet because we don't know if the 3967 // cpu_dispatch will be emitted in this translation unit. 3968 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3969 llvm::Type *ResolverType = llvm::FunctionType::get( 3970 llvm::PointerType::get(DeclTy, 3971 getTypes().getTargetAddressSpace(FD->getType())), 3972 false); 3973 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3974 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3975 /*ForVTable=*/false); 3976 llvm::GlobalIFunc *GIF = 3977 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3978 "", Resolver, &getModule()); 3979 GIF->setName(ResolverName); 3980 SetCommonAttributes(FD, GIF); 3981 3982 return GIF; 3983 } 3984 3985 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3986 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3987 assert(isa<llvm::GlobalValue>(Resolver) && 3988 "Resolver should be created for the first time"); 3989 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3990 return Resolver; 3991 } 3992 3993 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3994 /// module, create and return an llvm Function with the specified type. If there 3995 /// is something in the module with the specified name, return it potentially 3996 /// bitcasted to the right type. 3997 /// 3998 /// If D is non-null, it specifies a decl that correspond to this. This is used 3999 /// to set the attributes on the function when it is first created. 4000 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4001 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4002 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4003 ForDefinition_t IsForDefinition) { 4004 const Decl *D = GD.getDecl(); 4005 4006 // Any attempts to use a MultiVersion function should result in retrieving 4007 // the iFunc instead. Name Mangling will handle the rest of the changes. 4008 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4009 // For the device mark the function as one that should be emitted. 4010 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 4011 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4012 !DontDefer && !IsForDefinition) { 4013 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4014 GlobalDecl GDDef; 4015 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4016 GDDef = GlobalDecl(CD, GD.getCtorType()); 4017 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4018 GDDef = GlobalDecl(DD, GD.getDtorType()); 4019 else 4020 GDDef = GlobalDecl(FDDef); 4021 EmitGlobal(GDDef); 4022 } 4023 } 4024 4025 if (FD->isMultiVersion()) { 4026 UpdateMultiVersionNames(GD, FD, MangledName); 4027 if (!IsForDefinition) 4028 return GetOrCreateMultiVersionResolver(GD); 4029 } 4030 } 4031 4032 // Lookup the entry, lazily creating it if necessary. 4033 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4034 if (Entry) { 4035 if (WeakRefReferences.erase(Entry)) { 4036 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4037 if (FD && !FD->hasAttr<WeakAttr>()) 4038 Entry->setLinkage(llvm::Function::ExternalLinkage); 4039 } 4040 4041 // Handle dropped DLL attributes. 4042 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4043 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4044 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4045 setDSOLocal(Entry); 4046 } 4047 4048 // If there are two attempts to define the same mangled name, issue an 4049 // error. 4050 if (IsForDefinition && !Entry->isDeclaration()) { 4051 GlobalDecl OtherGD; 4052 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4053 // to make sure that we issue an error only once. 4054 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4055 (GD.getCanonicalDecl().getDecl() != 4056 OtherGD.getCanonicalDecl().getDecl()) && 4057 DiagnosedConflictingDefinitions.insert(GD).second) { 4058 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4059 << MangledName; 4060 getDiags().Report(OtherGD.getDecl()->getLocation(), 4061 diag::note_previous_definition); 4062 } 4063 } 4064 4065 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4066 (Entry->getValueType() == Ty)) { 4067 return Entry; 4068 } 4069 4070 // Make sure the result is of the correct type. 4071 // (If function is requested for a definition, we always need to create a new 4072 // function, not just return a bitcast.) 4073 if (!IsForDefinition) 4074 return llvm::ConstantExpr::getBitCast( 4075 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4076 } 4077 4078 // This function doesn't have a complete type (for example, the return 4079 // type is an incomplete struct). Use a fake type instead, and make 4080 // sure not to try to set attributes. 4081 bool IsIncompleteFunction = false; 4082 4083 llvm::FunctionType *FTy; 4084 if (isa<llvm::FunctionType>(Ty)) { 4085 FTy = cast<llvm::FunctionType>(Ty); 4086 } else { 4087 FTy = llvm::FunctionType::get(VoidTy, false); 4088 IsIncompleteFunction = true; 4089 } 4090 4091 llvm::Function *F = 4092 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4093 Entry ? StringRef() : MangledName, &getModule()); 4094 4095 // If we already created a function with the same mangled name (but different 4096 // type) before, take its name and add it to the list of functions to be 4097 // replaced with F at the end of CodeGen. 4098 // 4099 // This happens if there is a prototype for a function (e.g. "int f()") and 4100 // then a definition of a different type (e.g. "int f(int x)"). 4101 if (Entry) { 4102 F->takeName(Entry); 4103 4104 // This might be an implementation of a function without a prototype, in 4105 // which case, try to do special replacement of calls which match the new 4106 // prototype. The really key thing here is that we also potentially drop 4107 // arguments from the call site so as to make a direct call, which makes the 4108 // inliner happier and suppresses a number of optimizer warnings (!) about 4109 // dropping arguments. 4110 if (!Entry->use_empty()) { 4111 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4112 Entry->removeDeadConstantUsers(); 4113 } 4114 4115 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4116 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4117 addGlobalValReplacement(Entry, BC); 4118 } 4119 4120 assert(F->getName() == MangledName && "name was uniqued!"); 4121 if (D) 4122 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4123 if (ExtraAttrs.hasFnAttrs()) { 4124 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4125 F->addFnAttrs(B); 4126 } 4127 4128 if (!DontDefer) { 4129 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4130 // each other bottoming out with the base dtor. Therefore we emit non-base 4131 // dtors on usage, even if there is no dtor definition in the TU. 4132 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4133 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4134 GD.getDtorType())) 4135 addDeferredDeclToEmit(GD); 4136 4137 // This is the first use or definition of a mangled name. If there is a 4138 // deferred decl with this name, remember that we need to emit it at the end 4139 // of the file. 4140 auto DDI = DeferredDecls.find(MangledName); 4141 if (DDI != DeferredDecls.end()) { 4142 // Move the potentially referenced deferred decl to the 4143 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4144 // don't need it anymore). 4145 addDeferredDeclToEmit(DDI->second); 4146 EmittedDeferredDecls[DDI->first] = DDI->second; 4147 DeferredDecls.erase(DDI); 4148 4149 // Otherwise, there are cases we have to worry about where we're 4150 // using a declaration for which we must emit a definition but where 4151 // we might not find a top-level definition: 4152 // - member functions defined inline in their classes 4153 // - friend functions defined inline in some class 4154 // - special member functions with implicit definitions 4155 // If we ever change our AST traversal to walk into class methods, 4156 // this will be unnecessary. 4157 // 4158 // We also don't emit a definition for a function if it's going to be an 4159 // entry in a vtable, unless it's already marked as used. 4160 } else if (getLangOpts().CPlusPlus && D) { 4161 // Look for a declaration that's lexically in a record. 4162 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4163 FD = FD->getPreviousDecl()) { 4164 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4165 if (FD->doesThisDeclarationHaveABody()) { 4166 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4167 break; 4168 } 4169 } 4170 } 4171 } 4172 } 4173 4174 // Make sure the result is of the requested type. 4175 if (!IsIncompleteFunction) { 4176 assert(F->getFunctionType() == Ty); 4177 return F; 4178 } 4179 4180 return llvm::ConstantExpr::getBitCast(F, 4181 Ty->getPointerTo(F->getAddressSpace())); 4182 } 4183 4184 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4185 /// non-null, then this function will use the specified type if it has to 4186 /// create it (this occurs when we see a definition of the function). 4187 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4188 llvm::Type *Ty, 4189 bool ForVTable, 4190 bool DontDefer, 4191 ForDefinition_t IsForDefinition) { 4192 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4193 "consteval function should never be emitted"); 4194 // If there was no specific requested type, just convert it now. 4195 if (!Ty) { 4196 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4197 Ty = getTypes().ConvertType(FD->getType()); 4198 } 4199 4200 // Devirtualized destructor calls may come through here instead of via 4201 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4202 // of the complete destructor when necessary. 4203 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4204 if (getTarget().getCXXABI().isMicrosoft() && 4205 GD.getDtorType() == Dtor_Complete && 4206 DD->getParent()->getNumVBases() == 0) 4207 GD = GlobalDecl(DD, Dtor_Base); 4208 } 4209 4210 StringRef MangledName = getMangledName(GD); 4211 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4212 /*IsThunk=*/false, llvm::AttributeList(), 4213 IsForDefinition); 4214 // Returns kernel handle for HIP kernel stub function. 4215 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4216 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4217 auto *Handle = getCUDARuntime().getKernelHandle( 4218 cast<llvm::Function>(F->stripPointerCasts()), GD); 4219 if (IsForDefinition) 4220 return F; 4221 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4222 } 4223 return F; 4224 } 4225 4226 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4227 llvm::GlobalValue *F = 4228 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4229 4230 return llvm::ConstantExpr::getBitCast( 4231 llvm::NoCFIValue::get(F), 4232 llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); 4233 } 4234 4235 static const FunctionDecl * 4236 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4237 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4238 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4239 4240 IdentifierInfo &CII = C.Idents.get(Name); 4241 for (const auto *Result : DC->lookup(&CII)) 4242 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4243 return FD; 4244 4245 if (!C.getLangOpts().CPlusPlus) 4246 return nullptr; 4247 4248 // Demangle the premangled name from getTerminateFn() 4249 IdentifierInfo &CXXII = 4250 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4251 ? C.Idents.get("terminate") 4252 : C.Idents.get(Name); 4253 4254 for (const auto &N : {"__cxxabiv1", "std"}) { 4255 IdentifierInfo &NS = C.Idents.get(N); 4256 for (const auto *Result : DC->lookup(&NS)) { 4257 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4258 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4259 for (const auto *Result : LSD->lookup(&NS)) 4260 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4261 break; 4262 4263 if (ND) 4264 for (const auto *Result : ND->lookup(&CXXII)) 4265 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4266 return FD; 4267 } 4268 } 4269 4270 return nullptr; 4271 } 4272 4273 /// CreateRuntimeFunction - Create a new runtime function with the specified 4274 /// type and name. 4275 llvm::FunctionCallee 4276 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4277 llvm::AttributeList ExtraAttrs, bool Local, 4278 bool AssumeConvergent) { 4279 if (AssumeConvergent) { 4280 ExtraAttrs = 4281 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4282 } 4283 4284 llvm::Constant *C = 4285 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4286 /*DontDefer=*/false, /*IsThunk=*/false, 4287 ExtraAttrs); 4288 4289 if (auto *F = dyn_cast<llvm::Function>(C)) { 4290 if (F->empty()) { 4291 F->setCallingConv(getRuntimeCC()); 4292 4293 // In Windows Itanium environments, try to mark runtime functions 4294 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4295 // will link their standard library statically or dynamically. Marking 4296 // functions imported when they are not imported can cause linker errors 4297 // and warnings. 4298 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4299 !getCodeGenOpts().LTOVisibilityPublicStd) { 4300 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4301 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4302 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4303 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4304 } 4305 } 4306 setDSOLocal(F); 4307 } 4308 } 4309 4310 return {FTy, C}; 4311 } 4312 4313 /// isTypeConstant - Determine whether an object of this type can be emitted 4314 /// as a constant. 4315 /// 4316 /// If ExcludeCtor is true, the duration when the object's constructor runs 4317 /// will not be considered. The caller will need to verify that the object is 4318 /// not written to during its construction. 4319 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4320 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4321 return false; 4322 4323 if (Context.getLangOpts().CPlusPlus) { 4324 if (const CXXRecordDecl *Record 4325 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4326 return ExcludeCtor && !Record->hasMutableFields() && 4327 Record->hasTrivialDestructor(); 4328 } 4329 4330 return true; 4331 } 4332 4333 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4334 /// create and return an llvm GlobalVariable with the specified type and address 4335 /// space. If there is something in the module with the specified name, return 4336 /// it potentially bitcasted to the right type. 4337 /// 4338 /// If D is non-null, it specifies a decl that correspond to this. This is used 4339 /// to set the attributes on the global when it is first created. 4340 /// 4341 /// If IsForDefinition is true, it is guaranteed that an actual global with 4342 /// type Ty will be returned, not conversion of a variable with the same 4343 /// mangled name but some other type. 4344 llvm::Constant * 4345 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4346 LangAS AddrSpace, const VarDecl *D, 4347 ForDefinition_t IsForDefinition) { 4348 // Lookup the entry, lazily creating it if necessary. 4349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4350 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4351 if (Entry) { 4352 if (WeakRefReferences.erase(Entry)) { 4353 if (D && !D->hasAttr<WeakAttr>()) 4354 Entry->setLinkage(llvm::Function::ExternalLinkage); 4355 } 4356 4357 // Handle dropped DLL attributes. 4358 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4359 !shouldMapVisibilityToDLLExport(D)) 4360 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4361 4362 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4363 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4364 4365 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4366 return Entry; 4367 4368 // If there are two attempts to define the same mangled name, issue an 4369 // error. 4370 if (IsForDefinition && !Entry->isDeclaration()) { 4371 GlobalDecl OtherGD; 4372 const VarDecl *OtherD; 4373 4374 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4375 // to make sure that we issue an error only once. 4376 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4377 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4378 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4379 OtherD->hasInit() && 4380 DiagnosedConflictingDefinitions.insert(D).second) { 4381 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4382 << MangledName; 4383 getDiags().Report(OtherGD.getDecl()->getLocation(), 4384 diag::note_previous_definition); 4385 } 4386 } 4387 4388 // Make sure the result is of the correct type. 4389 if (Entry->getType()->getAddressSpace() != TargetAS) { 4390 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4391 Ty->getPointerTo(TargetAS)); 4392 } 4393 4394 // (If global is requested for a definition, we always need to create a new 4395 // global, not just return a bitcast.) 4396 if (!IsForDefinition) 4397 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4398 } 4399 4400 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4401 4402 auto *GV = new llvm::GlobalVariable( 4403 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4404 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4405 getContext().getTargetAddressSpace(DAddrSpace)); 4406 4407 // If we already created a global with the same mangled name (but different 4408 // type) before, take its name and remove it from its parent. 4409 if (Entry) { 4410 GV->takeName(Entry); 4411 4412 if (!Entry->use_empty()) { 4413 llvm::Constant *NewPtrForOldDecl = 4414 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4415 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4416 } 4417 4418 Entry->eraseFromParent(); 4419 } 4420 4421 // This is the first use or definition of a mangled name. If there is a 4422 // deferred decl with this name, remember that we need to emit it at the end 4423 // of the file. 4424 auto DDI = DeferredDecls.find(MangledName); 4425 if (DDI != DeferredDecls.end()) { 4426 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4427 // list, and remove it from DeferredDecls (since we don't need it anymore). 4428 addDeferredDeclToEmit(DDI->second); 4429 EmittedDeferredDecls[DDI->first] = DDI->second; 4430 DeferredDecls.erase(DDI); 4431 } 4432 4433 // Handle things which are present even on external declarations. 4434 if (D) { 4435 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4436 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4437 4438 // FIXME: This code is overly simple and should be merged with other global 4439 // handling. 4440 GV->setConstant(isTypeConstant(D->getType(), false)); 4441 4442 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4443 4444 setLinkageForGV(GV, D); 4445 4446 if (D->getTLSKind()) { 4447 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4448 CXXThreadLocals.push_back(D); 4449 setTLSMode(GV, *D); 4450 } 4451 4452 setGVProperties(GV, D); 4453 4454 // If required by the ABI, treat declarations of static data members with 4455 // inline initializers as definitions. 4456 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4457 EmitGlobalVarDefinition(D); 4458 } 4459 4460 // Emit section information for extern variables. 4461 if (D->hasExternalStorage()) { 4462 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4463 GV->setSection(SA->getName()); 4464 } 4465 4466 // Handle XCore specific ABI requirements. 4467 if (getTriple().getArch() == llvm::Triple::xcore && 4468 D->getLanguageLinkage() == CLanguageLinkage && 4469 D->getType().isConstant(Context) && 4470 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4471 GV->setSection(".cp.rodata"); 4472 4473 // Check if we a have a const declaration with an initializer, we may be 4474 // able to emit it as available_externally to expose it's value to the 4475 // optimizer. 4476 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4477 D->getType().isConstQualified() && !GV->hasInitializer() && 4478 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4479 const auto *Record = 4480 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4481 bool HasMutableFields = Record && Record->hasMutableFields(); 4482 if (!HasMutableFields) { 4483 const VarDecl *InitDecl; 4484 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4485 if (InitExpr) { 4486 ConstantEmitter emitter(*this); 4487 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4488 if (Init) { 4489 auto *InitType = Init->getType(); 4490 if (GV->getValueType() != InitType) { 4491 // The type of the initializer does not match the definition. 4492 // This happens when an initializer has a different type from 4493 // the type of the global (because of padding at the end of a 4494 // structure for instance). 4495 GV->setName(StringRef()); 4496 // Make a new global with the correct type, this is now guaranteed 4497 // to work. 4498 auto *NewGV = cast<llvm::GlobalVariable>( 4499 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4500 ->stripPointerCasts()); 4501 4502 // Erase the old global, since it is no longer used. 4503 GV->eraseFromParent(); 4504 GV = NewGV; 4505 } else { 4506 GV->setInitializer(Init); 4507 GV->setConstant(true); 4508 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4509 } 4510 emitter.finalize(GV); 4511 } 4512 } 4513 } 4514 } 4515 } 4516 4517 if (GV->isDeclaration()) { 4518 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4519 // External HIP managed variables needed to be recorded for transformation 4520 // in both device and host compilations. 4521 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4522 D->hasExternalStorage()) 4523 getCUDARuntime().handleVarRegistration(D, *GV); 4524 } 4525 4526 if (D) 4527 SanitizerMD->reportGlobal(GV, *D); 4528 4529 LangAS ExpectedAS = 4530 D ? D->getType().getAddressSpace() 4531 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4532 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4533 if (DAddrSpace != ExpectedAS) { 4534 return getTargetCodeGenInfo().performAddrSpaceCast( 4535 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4536 } 4537 4538 return GV; 4539 } 4540 4541 llvm::Constant * 4542 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4543 const Decl *D = GD.getDecl(); 4544 4545 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4546 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4547 /*DontDefer=*/false, IsForDefinition); 4548 4549 if (isa<CXXMethodDecl>(D)) { 4550 auto FInfo = 4551 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4552 auto Ty = getTypes().GetFunctionType(*FInfo); 4553 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4554 IsForDefinition); 4555 } 4556 4557 if (isa<FunctionDecl>(D)) { 4558 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4559 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4560 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4561 IsForDefinition); 4562 } 4563 4564 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4565 } 4566 4567 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4568 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4569 llvm::Align Alignment) { 4570 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4571 llvm::GlobalVariable *OldGV = nullptr; 4572 4573 if (GV) { 4574 // Check if the variable has the right type. 4575 if (GV->getValueType() == Ty) 4576 return GV; 4577 4578 // Because C++ name mangling, the only way we can end up with an already 4579 // existing global with the same name is if it has been declared extern "C". 4580 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4581 OldGV = GV; 4582 } 4583 4584 // Create a new variable. 4585 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4586 Linkage, nullptr, Name); 4587 4588 if (OldGV) { 4589 // Replace occurrences of the old variable if needed. 4590 GV->takeName(OldGV); 4591 4592 if (!OldGV->use_empty()) { 4593 llvm::Constant *NewPtrForOldDecl = 4594 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4595 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4596 } 4597 4598 OldGV->eraseFromParent(); 4599 } 4600 4601 if (supportsCOMDAT() && GV->isWeakForLinker() && 4602 !GV->hasAvailableExternallyLinkage()) 4603 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4604 4605 GV->setAlignment(Alignment); 4606 4607 return GV; 4608 } 4609 4610 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4611 /// given global variable. If Ty is non-null and if the global doesn't exist, 4612 /// then it will be created with the specified type instead of whatever the 4613 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4614 /// that an actual global with type Ty will be returned, not conversion of a 4615 /// variable with the same mangled name but some other type. 4616 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4617 llvm::Type *Ty, 4618 ForDefinition_t IsForDefinition) { 4619 assert(D->hasGlobalStorage() && "Not a global variable"); 4620 QualType ASTTy = D->getType(); 4621 if (!Ty) 4622 Ty = getTypes().ConvertTypeForMem(ASTTy); 4623 4624 StringRef MangledName = getMangledName(D); 4625 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4626 IsForDefinition); 4627 } 4628 4629 /// CreateRuntimeVariable - Create a new runtime global variable with the 4630 /// specified type and name. 4631 llvm::Constant * 4632 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4633 StringRef Name) { 4634 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4635 : LangAS::Default; 4636 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4637 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4638 return Ret; 4639 } 4640 4641 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4642 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4643 4644 StringRef MangledName = getMangledName(D); 4645 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4646 4647 // We already have a definition, not declaration, with the same mangled name. 4648 // Emitting of declaration is not required (and actually overwrites emitted 4649 // definition). 4650 if (GV && !GV->isDeclaration()) 4651 return; 4652 4653 // If we have not seen a reference to this variable yet, place it into the 4654 // deferred declarations table to be emitted if needed later. 4655 if (!MustBeEmitted(D) && !GV) { 4656 DeferredDecls[MangledName] = D; 4657 return; 4658 } 4659 4660 // The tentative definition is the only definition. 4661 EmitGlobalVarDefinition(D); 4662 } 4663 4664 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4665 EmitExternalVarDeclaration(D); 4666 } 4667 4668 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4669 return Context.toCharUnitsFromBits( 4670 getDataLayout().getTypeStoreSizeInBits(Ty)); 4671 } 4672 4673 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4674 if (LangOpts.OpenCL) { 4675 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4676 assert(AS == LangAS::opencl_global || 4677 AS == LangAS::opencl_global_device || 4678 AS == LangAS::opencl_global_host || 4679 AS == LangAS::opencl_constant || 4680 AS == LangAS::opencl_local || 4681 AS >= LangAS::FirstTargetAddressSpace); 4682 return AS; 4683 } 4684 4685 if (LangOpts.SYCLIsDevice && 4686 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4687 return LangAS::sycl_global; 4688 4689 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4690 if (D && D->hasAttr<CUDAConstantAttr>()) 4691 return LangAS::cuda_constant; 4692 else if (D && D->hasAttr<CUDASharedAttr>()) 4693 return LangAS::cuda_shared; 4694 else if (D && D->hasAttr<CUDADeviceAttr>()) 4695 return LangAS::cuda_device; 4696 else if (D && D->getType().isConstQualified()) 4697 return LangAS::cuda_constant; 4698 else 4699 return LangAS::cuda_device; 4700 } 4701 4702 if (LangOpts.OpenMP) { 4703 LangAS AS; 4704 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4705 return AS; 4706 } 4707 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4708 } 4709 4710 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4711 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4712 if (LangOpts.OpenCL) 4713 return LangAS::opencl_constant; 4714 if (LangOpts.SYCLIsDevice) 4715 return LangAS::sycl_global; 4716 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4717 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4718 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4719 // with OpVariable instructions with Generic storage class which is not 4720 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4721 // UniformConstant storage class is not viable as pointers to it may not be 4722 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4723 return LangAS::cuda_device; 4724 if (auto AS = getTarget().getConstantAddressSpace()) 4725 return *AS; 4726 return LangAS::Default; 4727 } 4728 4729 // In address space agnostic languages, string literals are in default address 4730 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4731 // emitted in constant address space in LLVM IR. To be consistent with other 4732 // parts of AST, string literal global variables in constant address space 4733 // need to be casted to default address space before being put into address 4734 // map and referenced by other part of CodeGen. 4735 // In OpenCL, string literals are in constant address space in AST, therefore 4736 // they should not be casted to default address space. 4737 static llvm::Constant * 4738 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4739 llvm::GlobalVariable *GV) { 4740 llvm::Constant *Cast = GV; 4741 if (!CGM.getLangOpts().OpenCL) { 4742 auto AS = CGM.GetGlobalConstantAddressSpace(); 4743 if (AS != LangAS::Default) 4744 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4745 CGM, GV, AS, LangAS::Default, 4746 GV->getValueType()->getPointerTo( 4747 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4748 } 4749 return Cast; 4750 } 4751 4752 template<typename SomeDecl> 4753 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4754 llvm::GlobalValue *GV) { 4755 if (!getLangOpts().CPlusPlus) 4756 return; 4757 4758 // Must have 'used' attribute, or else inline assembly can't rely on 4759 // the name existing. 4760 if (!D->template hasAttr<UsedAttr>()) 4761 return; 4762 4763 // Must have internal linkage and an ordinary name. 4764 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4765 return; 4766 4767 // Must be in an extern "C" context. Entities declared directly within 4768 // a record are not extern "C" even if the record is in such a context. 4769 const SomeDecl *First = D->getFirstDecl(); 4770 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4771 return; 4772 4773 // OK, this is an internal linkage entity inside an extern "C" linkage 4774 // specification. Make a note of that so we can give it the "expected" 4775 // mangled name if nothing else is using that name. 4776 std::pair<StaticExternCMap::iterator, bool> R = 4777 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4778 4779 // If we have multiple internal linkage entities with the same name 4780 // in extern "C" regions, none of them gets that name. 4781 if (!R.second) 4782 R.first->second = nullptr; 4783 } 4784 4785 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4786 if (!CGM.supportsCOMDAT()) 4787 return false; 4788 4789 if (D.hasAttr<SelectAnyAttr>()) 4790 return true; 4791 4792 GVALinkage Linkage; 4793 if (auto *VD = dyn_cast<VarDecl>(&D)) 4794 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4795 else 4796 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4797 4798 switch (Linkage) { 4799 case GVA_Internal: 4800 case GVA_AvailableExternally: 4801 case GVA_StrongExternal: 4802 return false; 4803 case GVA_DiscardableODR: 4804 case GVA_StrongODR: 4805 return true; 4806 } 4807 llvm_unreachable("No such linkage"); 4808 } 4809 4810 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4811 llvm::GlobalObject &GO) { 4812 if (!shouldBeInCOMDAT(*this, D)) 4813 return; 4814 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4815 } 4816 4817 /// Pass IsTentative as true if you want to create a tentative definition. 4818 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4819 bool IsTentative) { 4820 // OpenCL global variables of sampler type are translated to function calls, 4821 // therefore no need to be translated. 4822 QualType ASTTy = D->getType(); 4823 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4824 return; 4825 4826 // If this is OpenMP device, check if it is legal to emit this global 4827 // normally. 4828 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4829 OpenMPRuntime->emitTargetGlobalVariable(D)) 4830 return; 4831 4832 llvm::TrackingVH<llvm::Constant> Init; 4833 bool NeedsGlobalCtor = false; 4834 // Whether the definition of the variable is available externally. 4835 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 4836 // since this is the job for its original source. 4837 bool IsDefinitionAvailableExternally = 4838 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 4839 bool NeedsGlobalDtor = 4840 !IsDefinitionAvailableExternally && 4841 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4842 4843 const VarDecl *InitDecl; 4844 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4845 4846 std::optional<ConstantEmitter> emitter; 4847 4848 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4849 // as part of their declaration." Sema has already checked for 4850 // error cases, so we just need to set Init to UndefValue. 4851 bool IsCUDASharedVar = 4852 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4853 // Shadows of initialized device-side global variables are also left 4854 // undefined. 4855 // Managed Variables should be initialized on both host side and device side. 4856 bool IsCUDAShadowVar = 4857 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4858 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4859 D->hasAttr<CUDASharedAttr>()); 4860 bool IsCUDADeviceShadowVar = 4861 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4862 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4863 D->getType()->isCUDADeviceBuiltinTextureType()); 4864 if (getLangOpts().CUDA && 4865 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4866 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4867 else if (D->hasAttr<LoaderUninitializedAttr>()) 4868 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4869 else if (!InitExpr) { 4870 // This is a tentative definition; tentative definitions are 4871 // implicitly initialized with { 0 }. 4872 // 4873 // Note that tentative definitions are only emitted at the end of 4874 // a translation unit, so they should never have incomplete 4875 // type. In addition, EmitTentativeDefinition makes sure that we 4876 // never attempt to emit a tentative definition if a real one 4877 // exists. A use may still exists, however, so we still may need 4878 // to do a RAUW. 4879 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4880 Init = EmitNullConstant(D->getType()); 4881 } else { 4882 initializedGlobalDecl = GlobalDecl(D); 4883 emitter.emplace(*this); 4884 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4885 if (!Initializer) { 4886 QualType T = InitExpr->getType(); 4887 if (D->getType()->isReferenceType()) 4888 T = D->getType(); 4889 4890 if (getLangOpts().CPlusPlus) { 4891 if (InitDecl->hasFlexibleArrayInit(getContext())) 4892 ErrorUnsupported(D, "flexible array initializer"); 4893 Init = EmitNullConstant(T); 4894 4895 if (!IsDefinitionAvailableExternally) 4896 NeedsGlobalCtor = true; 4897 } else { 4898 ErrorUnsupported(D, "static initializer"); 4899 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4900 } 4901 } else { 4902 Init = Initializer; 4903 // We don't need an initializer, so remove the entry for the delayed 4904 // initializer position (just in case this entry was delayed) if we 4905 // also don't need to register a destructor. 4906 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4907 DelayedCXXInitPosition.erase(D); 4908 4909 #ifndef NDEBUG 4910 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4911 InitDecl->getFlexibleArrayInitChars(getContext()); 4912 CharUnits CstSize = CharUnits::fromQuantity( 4913 getDataLayout().getTypeAllocSize(Init->getType())); 4914 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4915 #endif 4916 } 4917 } 4918 4919 llvm::Type* InitType = Init->getType(); 4920 llvm::Constant *Entry = 4921 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4922 4923 // Strip off pointer casts if we got them. 4924 Entry = Entry->stripPointerCasts(); 4925 4926 // Entry is now either a Function or GlobalVariable. 4927 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4928 4929 // We have a definition after a declaration with the wrong type. 4930 // We must make a new GlobalVariable* and update everything that used OldGV 4931 // (a declaration or tentative definition) with the new GlobalVariable* 4932 // (which will be a definition). 4933 // 4934 // This happens if there is a prototype for a global (e.g. 4935 // "extern int x[];") and then a definition of a different type (e.g. 4936 // "int x[10];"). This also happens when an initializer has a different type 4937 // from the type of the global (this happens with unions). 4938 if (!GV || GV->getValueType() != InitType || 4939 GV->getType()->getAddressSpace() != 4940 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4941 4942 // Move the old entry aside so that we'll create a new one. 4943 Entry->setName(StringRef()); 4944 4945 // Make a new global with the correct type, this is now guaranteed to work. 4946 GV = cast<llvm::GlobalVariable>( 4947 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4948 ->stripPointerCasts()); 4949 4950 // Replace all uses of the old global with the new global 4951 llvm::Constant *NewPtrForOldDecl = 4952 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4953 Entry->getType()); 4954 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4955 4956 // Erase the old global, since it is no longer used. 4957 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4958 } 4959 4960 MaybeHandleStaticInExternC(D, GV); 4961 4962 if (D->hasAttr<AnnotateAttr>()) 4963 AddGlobalAnnotations(D, GV); 4964 4965 // Set the llvm linkage type as appropriate. 4966 llvm::GlobalValue::LinkageTypes Linkage = 4967 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4968 4969 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4970 // the device. [...]" 4971 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4972 // __device__, declares a variable that: [...] 4973 // Is accessible from all the threads within the grid and from the host 4974 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4975 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4976 if (GV && LangOpts.CUDA) { 4977 if (LangOpts.CUDAIsDevice) { 4978 if (Linkage != llvm::GlobalValue::InternalLinkage && 4979 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4980 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4981 D->getType()->isCUDADeviceBuiltinTextureType())) 4982 GV->setExternallyInitialized(true); 4983 } else { 4984 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4985 } 4986 getCUDARuntime().handleVarRegistration(D, *GV); 4987 } 4988 4989 GV->setInitializer(Init); 4990 if (emitter) 4991 emitter->finalize(GV); 4992 4993 // If it is safe to mark the global 'constant', do so now. 4994 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4995 isTypeConstant(D->getType(), true)); 4996 4997 // If it is in a read-only section, mark it 'constant'. 4998 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4999 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5000 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5001 GV->setConstant(true); 5002 } 5003 5004 CharUnits AlignVal = getContext().getDeclAlign(D); 5005 // Check for alignment specifed in an 'omp allocate' directive. 5006 if (std::optional<CharUnits> AlignValFromAllocate = 5007 getOMPAllocateAlignment(D)) 5008 AlignVal = *AlignValFromAllocate; 5009 GV->setAlignment(AlignVal.getAsAlign()); 5010 5011 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5012 // function is only defined alongside the variable, not also alongside 5013 // callers. Normally, all accesses to a thread_local go through the 5014 // thread-wrapper in order to ensure initialization has occurred, underlying 5015 // variable will never be used other than the thread-wrapper, so it can be 5016 // converted to internal linkage. 5017 // 5018 // However, if the variable has the 'constinit' attribute, it _can_ be 5019 // referenced directly, without calling the thread-wrapper, so the linkage 5020 // must not be changed. 5021 // 5022 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5023 // weak or linkonce, the de-duplication semantics are important to preserve, 5024 // so we don't change the linkage. 5025 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5026 Linkage == llvm::GlobalValue::ExternalLinkage && 5027 Context.getTargetInfo().getTriple().isOSDarwin() && 5028 !D->hasAttr<ConstInitAttr>()) 5029 Linkage = llvm::GlobalValue::InternalLinkage; 5030 5031 GV->setLinkage(Linkage); 5032 if (D->hasAttr<DLLImportAttr>()) 5033 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5034 else if (D->hasAttr<DLLExportAttr>()) 5035 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5036 else 5037 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5038 5039 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5040 // common vars aren't constant even if declared const. 5041 GV->setConstant(false); 5042 // Tentative definition of global variables may be initialized with 5043 // non-zero null pointers. In this case they should have weak linkage 5044 // since common linkage must have zero initializer and must not have 5045 // explicit section therefore cannot have non-zero initial value. 5046 if (!GV->getInitializer()->isNullValue()) 5047 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5048 } 5049 5050 setNonAliasAttributes(D, GV); 5051 5052 if (D->getTLSKind() && !GV->isThreadLocal()) { 5053 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5054 CXXThreadLocals.push_back(D); 5055 setTLSMode(GV, *D); 5056 } 5057 5058 maybeSetTrivialComdat(*D, *GV); 5059 5060 // Emit the initializer function if necessary. 5061 if (NeedsGlobalCtor || NeedsGlobalDtor) 5062 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5063 5064 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5065 5066 // Emit global variable debug information. 5067 if (CGDebugInfo *DI = getModuleDebugInfo()) 5068 if (getCodeGenOpts().hasReducedDebugInfo()) 5069 DI->EmitGlobalVariable(GV, D); 5070 } 5071 5072 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5073 if (CGDebugInfo *DI = getModuleDebugInfo()) 5074 if (getCodeGenOpts().hasReducedDebugInfo()) { 5075 QualType ASTTy = D->getType(); 5076 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5077 llvm::Constant *GV = 5078 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5079 DI->EmitExternalVariable( 5080 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5081 } 5082 } 5083 5084 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5085 CodeGenModule &CGM, const VarDecl *D, 5086 bool NoCommon) { 5087 // Don't give variables common linkage if -fno-common was specified unless it 5088 // was overridden by a NoCommon attribute. 5089 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5090 return true; 5091 5092 // C11 6.9.2/2: 5093 // A declaration of an identifier for an object that has file scope without 5094 // an initializer, and without a storage-class specifier or with the 5095 // storage-class specifier static, constitutes a tentative definition. 5096 if (D->getInit() || D->hasExternalStorage()) 5097 return true; 5098 5099 // A variable cannot be both common and exist in a section. 5100 if (D->hasAttr<SectionAttr>()) 5101 return true; 5102 5103 // A variable cannot be both common and exist in a section. 5104 // We don't try to determine which is the right section in the front-end. 5105 // If no specialized section name is applicable, it will resort to default. 5106 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5107 D->hasAttr<PragmaClangDataSectionAttr>() || 5108 D->hasAttr<PragmaClangRelroSectionAttr>() || 5109 D->hasAttr<PragmaClangRodataSectionAttr>()) 5110 return true; 5111 5112 // Thread local vars aren't considered common linkage. 5113 if (D->getTLSKind()) 5114 return true; 5115 5116 // Tentative definitions marked with WeakImportAttr are true definitions. 5117 if (D->hasAttr<WeakImportAttr>()) 5118 return true; 5119 5120 // A variable cannot be both common and exist in a comdat. 5121 if (shouldBeInCOMDAT(CGM, *D)) 5122 return true; 5123 5124 // Declarations with a required alignment do not have common linkage in MSVC 5125 // mode. 5126 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5127 if (D->hasAttr<AlignedAttr>()) 5128 return true; 5129 QualType VarType = D->getType(); 5130 if (Context.isAlignmentRequired(VarType)) 5131 return true; 5132 5133 if (const auto *RT = VarType->getAs<RecordType>()) { 5134 const RecordDecl *RD = RT->getDecl(); 5135 for (const FieldDecl *FD : RD->fields()) { 5136 if (FD->isBitField()) 5137 continue; 5138 if (FD->hasAttr<AlignedAttr>()) 5139 return true; 5140 if (Context.isAlignmentRequired(FD->getType())) 5141 return true; 5142 } 5143 } 5144 } 5145 5146 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5147 // common symbols, so symbols with greater alignment requirements cannot be 5148 // common. 5149 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5150 // alignments for common symbols via the aligncomm directive, so this 5151 // restriction only applies to MSVC environments. 5152 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5153 Context.getTypeAlignIfKnown(D->getType()) > 5154 Context.toBits(CharUnits::fromQuantity(32))) 5155 return true; 5156 5157 return false; 5158 } 5159 5160 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5161 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5162 if (Linkage == GVA_Internal) 5163 return llvm::Function::InternalLinkage; 5164 5165 if (D->hasAttr<WeakAttr>()) 5166 return llvm::GlobalVariable::WeakAnyLinkage; 5167 5168 if (const auto *FD = D->getAsFunction()) 5169 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5170 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5171 5172 // We are guaranteed to have a strong definition somewhere else, 5173 // so we can use available_externally linkage. 5174 if (Linkage == GVA_AvailableExternally) 5175 return llvm::GlobalValue::AvailableExternallyLinkage; 5176 5177 // Note that Apple's kernel linker doesn't support symbol 5178 // coalescing, so we need to avoid linkonce and weak linkages there. 5179 // Normally, this means we just map to internal, but for explicit 5180 // instantiations we'll map to external. 5181 5182 // In C++, the compiler has to emit a definition in every translation unit 5183 // that references the function. We should use linkonce_odr because 5184 // a) if all references in this translation unit are optimized away, we 5185 // don't need to codegen it. b) if the function persists, it needs to be 5186 // merged with other definitions. c) C++ has the ODR, so we know the 5187 // definition is dependable. 5188 if (Linkage == GVA_DiscardableODR) 5189 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5190 : llvm::Function::InternalLinkage; 5191 5192 // An explicit instantiation of a template has weak linkage, since 5193 // explicit instantiations can occur in multiple translation units 5194 // and must all be equivalent. However, we are not allowed to 5195 // throw away these explicit instantiations. 5196 // 5197 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5198 // so say that CUDA templates are either external (for kernels) or internal. 5199 // This lets llvm perform aggressive inter-procedural optimizations. For 5200 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5201 // therefore we need to follow the normal linkage paradigm. 5202 if (Linkage == GVA_StrongODR) { 5203 if (getLangOpts().AppleKext) 5204 return llvm::Function::ExternalLinkage; 5205 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5206 !getLangOpts().GPURelocatableDeviceCode) 5207 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5208 : llvm::Function::InternalLinkage; 5209 return llvm::Function::WeakODRLinkage; 5210 } 5211 5212 // C++ doesn't have tentative definitions and thus cannot have common 5213 // linkage. 5214 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5215 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5216 CodeGenOpts.NoCommon)) 5217 return llvm::GlobalVariable::CommonLinkage; 5218 5219 // selectany symbols are externally visible, so use weak instead of 5220 // linkonce. MSVC optimizes away references to const selectany globals, so 5221 // all definitions should be the same and ODR linkage should be used. 5222 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5223 if (D->hasAttr<SelectAnyAttr>()) 5224 return llvm::GlobalVariable::WeakODRLinkage; 5225 5226 // Otherwise, we have strong external linkage. 5227 assert(Linkage == GVA_StrongExternal); 5228 return llvm::GlobalVariable::ExternalLinkage; 5229 } 5230 5231 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5232 const VarDecl *VD, bool IsConstant) { 5233 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5234 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5235 } 5236 5237 /// Replace the uses of a function that was declared with a non-proto type. 5238 /// We want to silently drop extra arguments from call sites 5239 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5240 llvm::Function *newFn) { 5241 // Fast path. 5242 if (old->use_empty()) return; 5243 5244 llvm::Type *newRetTy = newFn->getReturnType(); 5245 SmallVector<llvm::Value*, 4> newArgs; 5246 5247 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5248 ui != ue; ) { 5249 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5250 llvm::User *user = use->getUser(); 5251 5252 // Recognize and replace uses of bitcasts. Most calls to 5253 // unprototyped functions will use bitcasts. 5254 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5255 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5256 replaceUsesOfNonProtoConstant(bitcast, newFn); 5257 continue; 5258 } 5259 5260 // Recognize calls to the function. 5261 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5262 if (!callSite) continue; 5263 if (!callSite->isCallee(&*use)) 5264 continue; 5265 5266 // If the return types don't match exactly, then we can't 5267 // transform this call unless it's dead. 5268 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5269 continue; 5270 5271 // Get the call site's attribute list. 5272 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5273 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5274 5275 // If the function was passed too few arguments, don't transform. 5276 unsigned newNumArgs = newFn->arg_size(); 5277 if (callSite->arg_size() < newNumArgs) 5278 continue; 5279 5280 // If extra arguments were passed, we silently drop them. 5281 // If any of the types mismatch, we don't transform. 5282 unsigned argNo = 0; 5283 bool dontTransform = false; 5284 for (llvm::Argument &A : newFn->args()) { 5285 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5286 dontTransform = true; 5287 break; 5288 } 5289 5290 // Add any parameter attributes. 5291 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5292 argNo++; 5293 } 5294 if (dontTransform) 5295 continue; 5296 5297 // Okay, we can transform this. Create the new call instruction and copy 5298 // over the required information. 5299 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5300 5301 // Copy over any operand bundles. 5302 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5303 callSite->getOperandBundlesAsDefs(newBundles); 5304 5305 llvm::CallBase *newCall; 5306 if (isa<llvm::CallInst>(callSite)) { 5307 newCall = 5308 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5309 } else { 5310 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5311 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5312 oldInvoke->getUnwindDest(), newArgs, 5313 newBundles, "", callSite); 5314 } 5315 newArgs.clear(); // for the next iteration 5316 5317 if (!newCall->getType()->isVoidTy()) 5318 newCall->takeName(callSite); 5319 newCall->setAttributes( 5320 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5321 oldAttrs.getRetAttrs(), newArgAttrs)); 5322 newCall->setCallingConv(callSite->getCallingConv()); 5323 5324 // Finally, remove the old call, replacing any uses with the new one. 5325 if (!callSite->use_empty()) 5326 callSite->replaceAllUsesWith(newCall); 5327 5328 // Copy debug location attached to CI. 5329 if (callSite->getDebugLoc()) 5330 newCall->setDebugLoc(callSite->getDebugLoc()); 5331 5332 callSite->eraseFromParent(); 5333 } 5334 } 5335 5336 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5337 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5338 /// existing call uses of the old function in the module, this adjusts them to 5339 /// call the new function directly. 5340 /// 5341 /// This is not just a cleanup: the always_inline pass requires direct calls to 5342 /// functions to be able to inline them. If there is a bitcast in the way, it 5343 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5344 /// run at -O0. 5345 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5346 llvm::Function *NewFn) { 5347 // If we're redefining a global as a function, don't transform it. 5348 if (!isa<llvm::Function>(Old)) return; 5349 5350 replaceUsesOfNonProtoConstant(Old, NewFn); 5351 } 5352 5353 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5354 auto DK = VD->isThisDeclarationADefinition(); 5355 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5356 return; 5357 5358 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5359 // If we have a definition, this might be a deferred decl. If the 5360 // instantiation is explicit, make sure we emit it at the end. 5361 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5362 GetAddrOfGlobalVar(VD); 5363 5364 EmitTopLevelDecl(VD); 5365 } 5366 5367 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5368 llvm::GlobalValue *GV) { 5369 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5370 5371 // Compute the function info and LLVM type. 5372 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5373 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5374 5375 // Get or create the prototype for the function. 5376 if (!GV || (GV->getValueType() != Ty)) 5377 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5378 /*DontDefer=*/true, 5379 ForDefinition)); 5380 5381 // Already emitted. 5382 if (!GV->isDeclaration()) 5383 return; 5384 5385 // We need to set linkage and visibility on the function before 5386 // generating code for it because various parts of IR generation 5387 // want to propagate this information down (e.g. to local static 5388 // declarations). 5389 auto *Fn = cast<llvm::Function>(GV); 5390 setFunctionLinkage(GD, Fn); 5391 5392 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5393 setGVProperties(Fn, GD); 5394 5395 MaybeHandleStaticInExternC(D, Fn); 5396 5397 maybeSetTrivialComdat(*D, *Fn); 5398 5399 // Set CodeGen attributes that represent floating point environment. 5400 setLLVMFunctionFEnvAttributes(D, Fn); 5401 5402 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5403 5404 setNonAliasAttributes(GD, Fn); 5405 SetLLVMFunctionAttributesForDefinition(D, Fn); 5406 5407 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5408 AddGlobalCtor(Fn, CA->getPriority()); 5409 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5410 AddGlobalDtor(Fn, DA->getPriority(), true); 5411 if (D->hasAttr<AnnotateAttr>()) 5412 AddGlobalAnnotations(D, Fn); 5413 } 5414 5415 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5416 const auto *D = cast<ValueDecl>(GD.getDecl()); 5417 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5418 assert(AA && "Not an alias?"); 5419 5420 StringRef MangledName = getMangledName(GD); 5421 5422 if (AA->getAliasee() == MangledName) { 5423 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5424 return; 5425 } 5426 5427 // If there is a definition in the module, then it wins over the alias. 5428 // This is dubious, but allow it to be safe. Just ignore the alias. 5429 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5430 if (Entry && !Entry->isDeclaration()) 5431 return; 5432 5433 Aliases.push_back(GD); 5434 5435 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5436 5437 // Create a reference to the named value. This ensures that it is emitted 5438 // if a deferred decl. 5439 llvm::Constant *Aliasee; 5440 llvm::GlobalValue::LinkageTypes LT; 5441 if (isa<llvm::FunctionType>(DeclTy)) { 5442 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5443 /*ForVTable=*/false); 5444 LT = getFunctionLinkage(GD); 5445 } else { 5446 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5447 /*D=*/nullptr); 5448 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5449 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5450 else 5451 LT = getFunctionLinkage(GD); 5452 } 5453 5454 // Create the new alias itself, but don't set a name yet. 5455 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5456 auto *GA = 5457 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5458 5459 if (Entry) { 5460 if (GA->getAliasee() == Entry) { 5461 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5462 return; 5463 } 5464 5465 assert(Entry->isDeclaration()); 5466 5467 // If there is a declaration in the module, then we had an extern followed 5468 // by the alias, as in: 5469 // extern int test6(); 5470 // ... 5471 // int test6() __attribute__((alias("test7"))); 5472 // 5473 // Remove it and replace uses of it with the alias. 5474 GA->takeName(Entry); 5475 5476 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5477 Entry->getType())); 5478 Entry->eraseFromParent(); 5479 } else { 5480 GA->setName(MangledName); 5481 } 5482 5483 // Set attributes which are particular to an alias; this is a 5484 // specialization of the attributes which may be set on a global 5485 // variable/function. 5486 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5487 D->isWeakImported()) { 5488 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5489 } 5490 5491 if (const auto *VD = dyn_cast<VarDecl>(D)) 5492 if (VD->getTLSKind()) 5493 setTLSMode(GA, *VD); 5494 5495 SetCommonAttributes(GD, GA); 5496 5497 // Emit global alias debug information. 5498 if (isa<VarDecl>(D)) 5499 if (CGDebugInfo *DI = getModuleDebugInfo()) 5500 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5501 } 5502 5503 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5504 const auto *D = cast<ValueDecl>(GD.getDecl()); 5505 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5506 assert(IFA && "Not an ifunc?"); 5507 5508 StringRef MangledName = getMangledName(GD); 5509 5510 if (IFA->getResolver() == MangledName) { 5511 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5512 return; 5513 } 5514 5515 // Report an error if some definition overrides ifunc. 5516 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5517 if (Entry && !Entry->isDeclaration()) { 5518 GlobalDecl OtherGD; 5519 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5520 DiagnosedConflictingDefinitions.insert(GD).second) { 5521 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5522 << MangledName; 5523 Diags.Report(OtherGD.getDecl()->getLocation(), 5524 diag::note_previous_definition); 5525 } 5526 return; 5527 } 5528 5529 Aliases.push_back(GD); 5530 5531 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5532 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5533 llvm::Constant *Resolver = 5534 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5535 /*ForVTable=*/false); 5536 llvm::GlobalIFunc *GIF = 5537 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5538 "", Resolver, &getModule()); 5539 if (Entry) { 5540 if (GIF->getResolver() == Entry) { 5541 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5542 return; 5543 } 5544 assert(Entry->isDeclaration()); 5545 5546 // If there is a declaration in the module, then we had an extern followed 5547 // by the ifunc, as in: 5548 // extern int test(); 5549 // ... 5550 // int test() __attribute__((ifunc("resolver"))); 5551 // 5552 // Remove it and replace uses of it with the ifunc. 5553 GIF->takeName(Entry); 5554 5555 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5556 Entry->getType())); 5557 Entry->eraseFromParent(); 5558 } else 5559 GIF->setName(MangledName); 5560 5561 SetCommonAttributes(GD, GIF); 5562 } 5563 5564 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5565 ArrayRef<llvm::Type*> Tys) { 5566 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5567 Tys); 5568 } 5569 5570 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5571 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5572 const StringLiteral *Literal, bool TargetIsLSB, 5573 bool &IsUTF16, unsigned &StringLength) { 5574 StringRef String = Literal->getString(); 5575 unsigned NumBytes = String.size(); 5576 5577 // Check for simple case. 5578 if (!Literal->containsNonAsciiOrNull()) { 5579 StringLength = NumBytes; 5580 return *Map.insert(std::make_pair(String, nullptr)).first; 5581 } 5582 5583 // Otherwise, convert the UTF8 literals into a string of shorts. 5584 IsUTF16 = true; 5585 5586 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5587 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5588 llvm::UTF16 *ToPtr = &ToBuf[0]; 5589 5590 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5591 ToPtr + NumBytes, llvm::strictConversion); 5592 5593 // ConvertUTF8toUTF16 returns the length in ToPtr. 5594 StringLength = ToPtr - &ToBuf[0]; 5595 5596 // Add an explicit null. 5597 *ToPtr = 0; 5598 return *Map.insert(std::make_pair( 5599 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5600 (StringLength + 1) * 2), 5601 nullptr)).first; 5602 } 5603 5604 ConstantAddress 5605 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5606 unsigned StringLength = 0; 5607 bool isUTF16 = false; 5608 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5609 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5610 getDataLayout().isLittleEndian(), isUTF16, 5611 StringLength); 5612 5613 if (auto *C = Entry.second) 5614 return ConstantAddress( 5615 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5616 5617 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5618 llvm::Constant *Zeros[] = { Zero, Zero }; 5619 5620 const ASTContext &Context = getContext(); 5621 const llvm::Triple &Triple = getTriple(); 5622 5623 const auto CFRuntime = getLangOpts().CFRuntime; 5624 const bool IsSwiftABI = 5625 static_cast<unsigned>(CFRuntime) >= 5626 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5627 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5628 5629 // If we don't already have it, get __CFConstantStringClassReference. 5630 if (!CFConstantStringClassRef) { 5631 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5632 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5633 Ty = llvm::ArrayType::get(Ty, 0); 5634 5635 switch (CFRuntime) { 5636 default: break; 5637 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5638 case LangOptions::CoreFoundationABI::Swift5_0: 5639 CFConstantStringClassName = 5640 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5641 : "$s10Foundation19_NSCFConstantStringCN"; 5642 Ty = IntPtrTy; 5643 break; 5644 case LangOptions::CoreFoundationABI::Swift4_2: 5645 CFConstantStringClassName = 5646 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5647 : "$S10Foundation19_NSCFConstantStringCN"; 5648 Ty = IntPtrTy; 5649 break; 5650 case LangOptions::CoreFoundationABI::Swift4_1: 5651 CFConstantStringClassName = 5652 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5653 : "__T010Foundation19_NSCFConstantStringCN"; 5654 Ty = IntPtrTy; 5655 break; 5656 } 5657 5658 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5659 5660 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5661 llvm::GlobalValue *GV = nullptr; 5662 5663 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5664 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5665 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5666 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5667 5668 const VarDecl *VD = nullptr; 5669 for (const auto *Result : DC->lookup(&II)) 5670 if ((VD = dyn_cast<VarDecl>(Result))) 5671 break; 5672 5673 if (Triple.isOSBinFormatELF()) { 5674 if (!VD) 5675 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5676 } else { 5677 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5678 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5679 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5680 else 5681 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5682 } 5683 5684 setDSOLocal(GV); 5685 } 5686 } 5687 5688 // Decay array -> ptr 5689 CFConstantStringClassRef = 5690 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5691 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5692 } 5693 5694 QualType CFTy = Context.getCFConstantStringType(); 5695 5696 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5697 5698 ConstantInitBuilder Builder(*this); 5699 auto Fields = Builder.beginStruct(STy); 5700 5701 // Class pointer. 5702 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5703 5704 // Flags. 5705 if (IsSwiftABI) { 5706 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5707 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5708 } else { 5709 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5710 } 5711 5712 // String pointer. 5713 llvm::Constant *C = nullptr; 5714 if (isUTF16) { 5715 auto Arr = llvm::ArrayRef( 5716 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5717 Entry.first().size() / 2); 5718 C = llvm::ConstantDataArray::get(VMContext, Arr); 5719 } else { 5720 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5721 } 5722 5723 // Note: -fwritable-strings doesn't make the backing store strings of 5724 // CFStrings writable. (See <rdar://problem/10657500>) 5725 auto *GV = 5726 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5727 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5728 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5729 // Don't enforce the target's minimum global alignment, since the only use 5730 // of the string is via this class initializer. 5731 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5732 : Context.getTypeAlignInChars(Context.CharTy); 5733 GV->setAlignment(Align.getAsAlign()); 5734 5735 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5736 // Without it LLVM can merge the string with a non unnamed_addr one during 5737 // LTO. Doing that changes the section it ends in, which surprises ld64. 5738 if (Triple.isOSBinFormatMachO()) 5739 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5740 : "__TEXT,__cstring,cstring_literals"); 5741 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5742 // the static linker to adjust permissions to read-only later on. 5743 else if (Triple.isOSBinFormatELF()) 5744 GV->setSection(".rodata"); 5745 5746 // String. 5747 llvm::Constant *Str = 5748 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5749 5750 if (isUTF16) 5751 // Cast the UTF16 string to the correct type. 5752 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5753 Fields.add(Str); 5754 5755 // String length. 5756 llvm::IntegerType *LengthTy = 5757 llvm::IntegerType::get(getModule().getContext(), 5758 Context.getTargetInfo().getLongWidth()); 5759 if (IsSwiftABI) { 5760 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5761 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5762 LengthTy = Int32Ty; 5763 else 5764 LengthTy = IntPtrTy; 5765 } 5766 Fields.addInt(LengthTy, StringLength); 5767 5768 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5769 // properly aligned on 32-bit platforms. 5770 CharUnits Alignment = 5771 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5772 5773 // The struct. 5774 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5775 /*isConstant=*/false, 5776 llvm::GlobalVariable::PrivateLinkage); 5777 GV->addAttribute("objc_arc_inert"); 5778 switch (Triple.getObjectFormat()) { 5779 case llvm::Triple::UnknownObjectFormat: 5780 llvm_unreachable("unknown file format"); 5781 case llvm::Triple::DXContainer: 5782 case llvm::Triple::GOFF: 5783 case llvm::Triple::SPIRV: 5784 case llvm::Triple::XCOFF: 5785 llvm_unreachable("unimplemented"); 5786 case llvm::Triple::COFF: 5787 case llvm::Triple::ELF: 5788 case llvm::Triple::Wasm: 5789 GV->setSection("cfstring"); 5790 break; 5791 case llvm::Triple::MachO: 5792 GV->setSection("__DATA,__cfstring"); 5793 break; 5794 } 5795 Entry.second = GV; 5796 5797 return ConstantAddress(GV, GV->getValueType(), Alignment); 5798 } 5799 5800 bool CodeGenModule::getExpressionLocationsEnabled() const { 5801 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5802 } 5803 5804 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5805 if (ObjCFastEnumerationStateType.isNull()) { 5806 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5807 D->startDefinition(); 5808 5809 QualType FieldTypes[] = { 5810 Context.UnsignedLongTy, 5811 Context.getPointerType(Context.getObjCIdType()), 5812 Context.getPointerType(Context.UnsignedLongTy), 5813 Context.getConstantArrayType(Context.UnsignedLongTy, 5814 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5815 }; 5816 5817 for (size_t i = 0; i < 4; ++i) { 5818 FieldDecl *Field = FieldDecl::Create(Context, 5819 D, 5820 SourceLocation(), 5821 SourceLocation(), nullptr, 5822 FieldTypes[i], /*TInfo=*/nullptr, 5823 /*BitWidth=*/nullptr, 5824 /*Mutable=*/false, 5825 ICIS_NoInit); 5826 Field->setAccess(AS_public); 5827 D->addDecl(Field); 5828 } 5829 5830 D->completeDefinition(); 5831 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5832 } 5833 5834 return ObjCFastEnumerationStateType; 5835 } 5836 5837 llvm::Constant * 5838 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5839 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5840 5841 // Don't emit it as the address of the string, emit the string data itself 5842 // as an inline array. 5843 if (E->getCharByteWidth() == 1) { 5844 SmallString<64> Str(E->getString()); 5845 5846 // Resize the string to the right size, which is indicated by its type. 5847 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5848 Str.resize(CAT->getSize().getZExtValue()); 5849 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5850 } 5851 5852 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5853 llvm::Type *ElemTy = AType->getElementType(); 5854 unsigned NumElements = AType->getNumElements(); 5855 5856 // Wide strings have either 2-byte or 4-byte elements. 5857 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5858 SmallVector<uint16_t, 32> Elements; 5859 Elements.reserve(NumElements); 5860 5861 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5862 Elements.push_back(E->getCodeUnit(i)); 5863 Elements.resize(NumElements); 5864 return llvm::ConstantDataArray::get(VMContext, Elements); 5865 } 5866 5867 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5868 SmallVector<uint32_t, 32> Elements; 5869 Elements.reserve(NumElements); 5870 5871 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5872 Elements.push_back(E->getCodeUnit(i)); 5873 Elements.resize(NumElements); 5874 return llvm::ConstantDataArray::get(VMContext, Elements); 5875 } 5876 5877 static llvm::GlobalVariable * 5878 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5879 CodeGenModule &CGM, StringRef GlobalName, 5880 CharUnits Alignment) { 5881 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5882 CGM.GetGlobalConstantAddressSpace()); 5883 5884 llvm::Module &M = CGM.getModule(); 5885 // Create a global variable for this string 5886 auto *GV = new llvm::GlobalVariable( 5887 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5888 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5889 GV->setAlignment(Alignment.getAsAlign()); 5890 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5891 if (GV->isWeakForLinker()) { 5892 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5893 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5894 } 5895 CGM.setDSOLocal(GV); 5896 5897 return GV; 5898 } 5899 5900 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5901 /// constant array for the given string literal. 5902 ConstantAddress 5903 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5904 StringRef Name) { 5905 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5906 5907 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5908 llvm::GlobalVariable **Entry = nullptr; 5909 if (!LangOpts.WritableStrings) { 5910 Entry = &ConstantStringMap[C]; 5911 if (auto GV = *Entry) { 5912 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5913 GV->setAlignment(Alignment.getAsAlign()); 5914 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5915 GV->getValueType(), Alignment); 5916 } 5917 } 5918 5919 SmallString<256> MangledNameBuffer; 5920 StringRef GlobalVariableName; 5921 llvm::GlobalValue::LinkageTypes LT; 5922 5923 // Mangle the string literal if that's how the ABI merges duplicate strings. 5924 // Don't do it if they are writable, since we don't want writes in one TU to 5925 // affect strings in another. 5926 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5927 !LangOpts.WritableStrings) { 5928 llvm::raw_svector_ostream Out(MangledNameBuffer); 5929 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5930 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5931 GlobalVariableName = MangledNameBuffer; 5932 } else { 5933 LT = llvm::GlobalValue::PrivateLinkage; 5934 GlobalVariableName = Name; 5935 } 5936 5937 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5938 5939 CGDebugInfo *DI = getModuleDebugInfo(); 5940 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5941 DI->AddStringLiteralDebugInfo(GV, S); 5942 5943 if (Entry) 5944 *Entry = GV; 5945 5946 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5947 5948 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5949 GV->getValueType(), Alignment); 5950 } 5951 5952 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5953 /// array for the given ObjCEncodeExpr node. 5954 ConstantAddress 5955 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5956 std::string Str; 5957 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5958 5959 return GetAddrOfConstantCString(Str); 5960 } 5961 5962 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5963 /// the literal and a terminating '\0' character. 5964 /// The result has pointer to array type. 5965 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5966 const std::string &Str, const char *GlobalName) { 5967 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5968 CharUnits Alignment = 5969 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5970 5971 llvm::Constant *C = 5972 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5973 5974 // Don't share any string literals if strings aren't constant. 5975 llvm::GlobalVariable **Entry = nullptr; 5976 if (!LangOpts.WritableStrings) { 5977 Entry = &ConstantStringMap[C]; 5978 if (auto GV = *Entry) { 5979 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5980 GV->setAlignment(Alignment.getAsAlign()); 5981 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5982 GV->getValueType(), Alignment); 5983 } 5984 } 5985 5986 // Get the default prefix if a name wasn't specified. 5987 if (!GlobalName) 5988 GlobalName = ".str"; 5989 // Create a global variable for this. 5990 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5991 GlobalName, Alignment); 5992 if (Entry) 5993 *Entry = GV; 5994 5995 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5996 GV->getValueType(), Alignment); 5997 } 5998 5999 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6000 const MaterializeTemporaryExpr *E, const Expr *Init) { 6001 assert((E->getStorageDuration() == SD_Static || 6002 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6003 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6004 6005 // If we're not materializing a subobject of the temporary, keep the 6006 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6007 QualType MaterializedType = Init->getType(); 6008 if (Init == E->getSubExpr()) 6009 MaterializedType = E->getType(); 6010 6011 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6012 6013 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6014 if (!InsertResult.second) { 6015 // We've seen this before: either we already created it or we're in the 6016 // process of doing so. 6017 if (!InsertResult.first->second) { 6018 // We recursively re-entered this function, probably during emission of 6019 // the initializer. Create a placeholder. We'll clean this up in the 6020 // outer call, at the end of this function. 6021 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6022 InsertResult.first->second = new llvm::GlobalVariable( 6023 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6024 nullptr); 6025 } 6026 return ConstantAddress(InsertResult.first->second, 6027 llvm::cast<llvm::GlobalVariable>( 6028 InsertResult.first->second->stripPointerCasts()) 6029 ->getValueType(), 6030 Align); 6031 } 6032 6033 // FIXME: If an externally-visible declaration extends multiple temporaries, 6034 // we need to give each temporary the same name in every translation unit (and 6035 // we also need to make the temporaries externally-visible). 6036 SmallString<256> Name; 6037 llvm::raw_svector_ostream Out(Name); 6038 getCXXABI().getMangleContext().mangleReferenceTemporary( 6039 VD, E->getManglingNumber(), Out); 6040 6041 APValue *Value = nullptr; 6042 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6043 // If the initializer of the extending declaration is a constant 6044 // initializer, we should have a cached constant initializer for this 6045 // temporary. Note that this might have a different value from the value 6046 // computed by evaluating the initializer if the surrounding constant 6047 // expression modifies the temporary. 6048 Value = E->getOrCreateValue(false); 6049 } 6050 6051 // Try evaluating it now, it might have a constant initializer. 6052 Expr::EvalResult EvalResult; 6053 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6054 !EvalResult.hasSideEffects()) 6055 Value = &EvalResult.Val; 6056 6057 LangAS AddrSpace = 6058 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6059 6060 std::optional<ConstantEmitter> emitter; 6061 llvm::Constant *InitialValue = nullptr; 6062 bool Constant = false; 6063 llvm::Type *Type; 6064 if (Value) { 6065 // The temporary has a constant initializer, use it. 6066 emitter.emplace(*this); 6067 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6068 MaterializedType); 6069 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 6070 Type = InitialValue->getType(); 6071 } else { 6072 // No initializer, the initialization will be provided when we 6073 // initialize the declaration which performed lifetime extension. 6074 Type = getTypes().ConvertTypeForMem(MaterializedType); 6075 } 6076 6077 // Create a global variable for this lifetime-extended temporary. 6078 llvm::GlobalValue::LinkageTypes Linkage = 6079 getLLVMLinkageVarDefinition(VD, Constant); 6080 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6081 const VarDecl *InitVD; 6082 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6083 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6084 // Temporaries defined inside a class get linkonce_odr linkage because the 6085 // class can be defined in multiple translation units. 6086 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6087 } else { 6088 // There is no need for this temporary to have external linkage if the 6089 // VarDecl has external linkage. 6090 Linkage = llvm::GlobalVariable::InternalLinkage; 6091 } 6092 } 6093 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6094 auto *GV = new llvm::GlobalVariable( 6095 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6096 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6097 if (emitter) emitter->finalize(GV); 6098 // Don't assign dllimport or dllexport to local linkage globals. 6099 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6100 setGVProperties(GV, VD); 6101 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6102 // The reference temporary should never be dllexport. 6103 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6104 } 6105 GV->setAlignment(Align.getAsAlign()); 6106 if (supportsCOMDAT() && GV->isWeakForLinker()) 6107 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6108 if (VD->getTLSKind()) 6109 setTLSMode(GV, *VD); 6110 llvm::Constant *CV = GV; 6111 if (AddrSpace != LangAS::Default) 6112 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6113 *this, GV, AddrSpace, LangAS::Default, 6114 Type->getPointerTo( 6115 getContext().getTargetAddressSpace(LangAS::Default))); 6116 6117 // Update the map with the new temporary. If we created a placeholder above, 6118 // replace it with the new global now. 6119 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6120 if (Entry) { 6121 Entry->replaceAllUsesWith( 6122 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6123 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6124 } 6125 Entry = CV; 6126 6127 return ConstantAddress(CV, Type, Align); 6128 } 6129 6130 /// EmitObjCPropertyImplementations - Emit information for synthesized 6131 /// properties for an implementation. 6132 void CodeGenModule::EmitObjCPropertyImplementations(const 6133 ObjCImplementationDecl *D) { 6134 for (const auto *PID : D->property_impls()) { 6135 // Dynamic is just for type-checking. 6136 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6137 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6138 6139 // Determine which methods need to be implemented, some may have 6140 // been overridden. Note that ::isPropertyAccessor is not the method 6141 // we want, that just indicates if the decl came from a 6142 // property. What we want to know is if the method is defined in 6143 // this implementation. 6144 auto *Getter = PID->getGetterMethodDecl(); 6145 if (!Getter || Getter->isSynthesizedAccessorStub()) 6146 CodeGenFunction(*this).GenerateObjCGetter( 6147 const_cast<ObjCImplementationDecl *>(D), PID); 6148 auto *Setter = PID->getSetterMethodDecl(); 6149 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6150 CodeGenFunction(*this).GenerateObjCSetter( 6151 const_cast<ObjCImplementationDecl *>(D), PID); 6152 } 6153 } 6154 } 6155 6156 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6157 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6158 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6159 ivar; ivar = ivar->getNextIvar()) 6160 if (ivar->getType().isDestructedType()) 6161 return true; 6162 6163 return false; 6164 } 6165 6166 static bool AllTrivialInitializers(CodeGenModule &CGM, 6167 ObjCImplementationDecl *D) { 6168 CodeGenFunction CGF(CGM); 6169 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6170 E = D->init_end(); B != E; ++B) { 6171 CXXCtorInitializer *CtorInitExp = *B; 6172 Expr *Init = CtorInitExp->getInit(); 6173 if (!CGF.isTrivialInitializer(Init)) 6174 return false; 6175 } 6176 return true; 6177 } 6178 6179 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6180 /// for an implementation. 6181 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6182 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6183 if (needsDestructMethod(D)) { 6184 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6185 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6186 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6187 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6188 getContext().VoidTy, nullptr, D, 6189 /*isInstance=*/true, /*isVariadic=*/false, 6190 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6191 /*isImplicitlyDeclared=*/true, 6192 /*isDefined=*/false, ObjCMethodDecl::Required); 6193 D->addInstanceMethod(DTORMethod); 6194 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6195 D->setHasDestructors(true); 6196 } 6197 6198 // If the implementation doesn't have any ivar initializers, we don't need 6199 // a .cxx_construct. 6200 if (D->getNumIvarInitializers() == 0 || 6201 AllTrivialInitializers(*this, D)) 6202 return; 6203 6204 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6205 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6206 // The constructor returns 'self'. 6207 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6208 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6209 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6210 /*isVariadic=*/false, 6211 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6212 /*isImplicitlyDeclared=*/true, 6213 /*isDefined=*/false, ObjCMethodDecl::Required); 6214 D->addInstanceMethod(CTORMethod); 6215 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6216 D->setHasNonZeroConstructors(true); 6217 } 6218 6219 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6220 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6221 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6222 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6223 ErrorUnsupported(LSD, "linkage spec"); 6224 return; 6225 } 6226 6227 EmitDeclContext(LSD); 6228 } 6229 6230 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6231 std::unique_ptr<CodeGenFunction> &CurCGF = 6232 GlobalTopLevelStmtBlockInFlight.first; 6233 6234 // We emitted a top-level stmt but after it there is initialization. 6235 // Stop squashing the top-level stmts into a single function. 6236 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6237 CurCGF->FinishFunction(D->getEndLoc()); 6238 CurCGF = nullptr; 6239 } 6240 6241 if (!CurCGF) { 6242 // void __stmts__N(void) 6243 // FIXME: Ask the ABI name mangler to pick a name. 6244 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6245 FunctionArgList Args; 6246 QualType RetTy = getContext().VoidTy; 6247 const CGFunctionInfo &FnInfo = 6248 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6249 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6250 llvm::Function *Fn = llvm::Function::Create( 6251 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6252 6253 CurCGF.reset(new CodeGenFunction(*this)); 6254 GlobalTopLevelStmtBlockInFlight.second = D; 6255 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6256 D->getBeginLoc(), D->getBeginLoc()); 6257 CXXGlobalInits.push_back(Fn); 6258 } 6259 6260 CurCGF->EmitStmt(D->getStmt()); 6261 } 6262 6263 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6264 for (auto *I : DC->decls()) { 6265 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6266 // are themselves considered "top-level", so EmitTopLevelDecl on an 6267 // ObjCImplDecl does not recursively visit them. We need to do that in 6268 // case they're nested inside another construct (LinkageSpecDecl / 6269 // ExportDecl) that does stop them from being considered "top-level". 6270 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6271 for (auto *M : OID->methods()) 6272 EmitTopLevelDecl(M); 6273 } 6274 6275 EmitTopLevelDecl(I); 6276 } 6277 } 6278 6279 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6280 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6281 // Ignore dependent declarations. 6282 if (D->isTemplated()) 6283 return; 6284 6285 // Consteval function shouldn't be emitted. 6286 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6287 if (FD->isConsteval()) 6288 return; 6289 6290 switch (D->getKind()) { 6291 case Decl::CXXConversion: 6292 case Decl::CXXMethod: 6293 case Decl::Function: 6294 EmitGlobal(cast<FunctionDecl>(D)); 6295 // Always provide some coverage mapping 6296 // even for the functions that aren't emitted. 6297 AddDeferredUnusedCoverageMapping(D); 6298 break; 6299 6300 case Decl::CXXDeductionGuide: 6301 // Function-like, but does not result in code emission. 6302 break; 6303 6304 case Decl::Var: 6305 case Decl::Decomposition: 6306 case Decl::VarTemplateSpecialization: 6307 EmitGlobal(cast<VarDecl>(D)); 6308 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6309 for (auto *B : DD->bindings()) 6310 if (auto *HD = B->getHoldingVar()) 6311 EmitGlobal(HD); 6312 break; 6313 6314 // Indirect fields from global anonymous structs and unions can be 6315 // ignored; only the actual variable requires IR gen support. 6316 case Decl::IndirectField: 6317 break; 6318 6319 // C++ Decls 6320 case Decl::Namespace: 6321 EmitDeclContext(cast<NamespaceDecl>(D)); 6322 break; 6323 case Decl::ClassTemplateSpecialization: { 6324 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6325 if (CGDebugInfo *DI = getModuleDebugInfo()) 6326 if (Spec->getSpecializationKind() == 6327 TSK_ExplicitInstantiationDefinition && 6328 Spec->hasDefinition()) 6329 DI->completeTemplateDefinition(*Spec); 6330 } [[fallthrough]]; 6331 case Decl::CXXRecord: { 6332 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6333 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6334 if (CRD->hasDefinition()) 6335 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6336 if (auto *ES = D->getASTContext().getExternalSource()) 6337 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6338 DI->completeUnusedClass(*CRD); 6339 } 6340 // Emit any static data members, they may be definitions. 6341 for (auto *I : CRD->decls()) 6342 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6343 EmitTopLevelDecl(I); 6344 break; 6345 } 6346 // No code generation needed. 6347 case Decl::UsingShadow: 6348 case Decl::ClassTemplate: 6349 case Decl::VarTemplate: 6350 case Decl::Concept: 6351 case Decl::VarTemplatePartialSpecialization: 6352 case Decl::FunctionTemplate: 6353 case Decl::TypeAliasTemplate: 6354 case Decl::Block: 6355 case Decl::Empty: 6356 case Decl::Binding: 6357 break; 6358 case Decl::Using: // using X; [C++] 6359 if (CGDebugInfo *DI = getModuleDebugInfo()) 6360 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6361 break; 6362 case Decl::UsingEnum: // using enum X; [C++] 6363 if (CGDebugInfo *DI = getModuleDebugInfo()) 6364 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6365 break; 6366 case Decl::NamespaceAlias: 6367 if (CGDebugInfo *DI = getModuleDebugInfo()) 6368 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6369 break; 6370 case Decl::UsingDirective: // using namespace X; [C++] 6371 if (CGDebugInfo *DI = getModuleDebugInfo()) 6372 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6373 break; 6374 case Decl::CXXConstructor: 6375 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6376 break; 6377 case Decl::CXXDestructor: 6378 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6379 break; 6380 6381 case Decl::StaticAssert: 6382 // Nothing to do. 6383 break; 6384 6385 // Objective-C Decls 6386 6387 // Forward declarations, no (immediate) code generation. 6388 case Decl::ObjCInterface: 6389 case Decl::ObjCCategory: 6390 break; 6391 6392 case Decl::ObjCProtocol: { 6393 auto *Proto = cast<ObjCProtocolDecl>(D); 6394 if (Proto->isThisDeclarationADefinition()) 6395 ObjCRuntime->GenerateProtocol(Proto); 6396 break; 6397 } 6398 6399 case Decl::ObjCCategoryImpl: 6400 // Categories have properties but don't support synthesize so we 6401 // can ignore them here. 6402 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6403 break; 6404 6405 case Decl::ObjCImplementation: { 6406 auto *OMD = cast<ObjCImplementationDecl>(D); 6407 EmitObjCPropertyImplementations(OMD); 6408 EmitObjCIvarInitializations(OMD); 6409 ObjCRuntime->GenerateClass(OMD); 6410 // Emit global variable debug information. 6411 if (CGDebugInfo *DI = getModuleDebugInfo()) 6412 if (getCodeGenOpts().hasReducedDebugInfo()) 6413 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6414 OMD->getClassInterface()), OMD->getLocation()); 6415 break; 6416 } 6417 case Decl::ObjCMethod: { 6418 auto *OMD = cast<ObjCMethodDecl>(D); 6419 // If this is not a prototype, emit the body. 6420 if (OMD->getBody()) 6421 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6422 break; 6423 } 6424 case Decl::ObjCCompatibleAlias: 6425 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6426 break; 6427 6428 case Decl::PragmaComment: { 6429 const auto *PCD = cast<PragmaCommentDecl>(D); 6430 switch (PCD->getCommentKind()) { 6431 case PCK_Unknown: 6432 llvm_unreachable("unexpected pragma comment kind"); 6433 case PCK_Linker: 6434 AppendLinkerOptions(PCD->getArg()); 6435 break; 6436 case PCK_Lib: 6437 AddDependentLib(PCD->getArg()); 6438 break; 6439 case PCK_Compiler: 6440 case PCK_ExeStr: 6441 case PCK_User: 6442 break; // We ignore all of these. 6443 } 6444 break; 6445 } 6446 6447 case Decl::PragmaDetectMismatch: { 6448 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6449 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6450 break; 6451 } 6452 6453 case Decl::LinkageSpec: 6454 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6455 break; 6456 6457 case Decl::FileScopeAsm: { 6458 // File-scope asm is ignored during device-side CUDA compilation. 6459 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6460 break; 6461 // File-scope asm is ignored during device-side OpenMP compilation. 6462 if (LangOpts.OpenMPIsDevice) 6463 break; 6464 // File-scope asm is ignored during device-side SYCL compilation. 6465 if (LangOpts.SYCLIsDevice) 6466 break; 6467 auto *AD = cast<FileScopeAsmDecl>(D); 6468 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6469 break; 6470 } 6471 6472 case Decl::TopLevelStmt: 6473 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6474 break; 6475 6476 case Decl::Import: { 6477 auto *Import = cast<ImportDecl>(D); 6478 6479 // If we've already imported this module, we're done. 6480 if (!ImportedModules.insert(Import->getImportedModule())) 6481 break; 6482 6483 // Emit debug information for direct imports. 6484 if (!Import->getImportedOwningModule()) { 6485 if (CGDebugInfo *DI = getModuleDebugInfo()) 6486 DI->EmitImportDecl(*Import); 6487 } 6488 6489 // For C++ standard modules we are done - we will call the module 6490 // initializer for imported modules, and that will likewise call those for 6491 // any imports it has. 6492 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6493 !Import->getImportedOwningModule()->isModuleMapModule()) 6494 break; 6495 6496 // For clang C++ module map modules the initializers for sub-modules are 6497 // emitted here. 6498 6499 // Find all of the submodules and emit the module initializers. 6500 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6501 SmallVector<clang::Module *, 16> Stack; 6502 Visited.insert(Import->getImportedModule()); 6503 Stack.push_back(Import->getImportedModule()); 6504 6505 while (!Stack.empty()) { 6506 clang::Module *Mod = Stack.pop_back_val(); 6507 if (!EmittedModuleInitializers.insert(Mod).second) 6508 continue; 6509 6510 for (auto *D : Context.getModuleInitializers(Mod)) 6511 EmitTopLevelDecl(D); 6512 6513 // Visit the submodules of this module. 6514 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6515 SubEnd = Mod->submodule_end(); 6516 Sub != SubEnd; ++Sub) { 6517 // Skip explicit children; they need to be explicitly imported to emit 6518 // the initializers. 6519 if ((*Sub)->IsExplicit) 6520 continue; 6521 6522 if (Visited.insert(*Sub).second) 6523 Stack.push_back(*Sub); 6524 } 6525 } 6526 break; 6527 } 6528 6529 case Decl::Export: 6530 EmitDeclContext(cast<ExportDecl>(D)); 6531 break; 6532 6533 case Decl::OMPThreadPrivate: 6534 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6535 break; 6536 6537 case Decl::OMPAllocate: 6538 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6539 break; 6540 6541 case Decl::OMPDeclareReduction: 6542 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6543 break; 6544 6545 case Decl::OMPDeclareMapper: 6546 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6547 break; 6548 6549 case Decl::OMPRequires: 6550 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6551 break; 6552 6553 case Decl::Typedef: 6554 case Decl::TypeAlias: // using foo = bar; [C++11] 6555 if (CGDebugInfo *DI = getModuleDebugInfo()) 6556 DI->EmitAndRetainType( 6557 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6558 break; 6559 6560 case Decl::Record: 6561 if (CGDebugInfo *DI = getModuleDebugInfo()) 6562 if (cast<RecordDecl>(D)->getDefinition()) 6563 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6564 break; 6565 6566 case Decl::Enum: 6567 if (CGDebugInfo *DI = getModuleDebugInfo()) 6568 if (cast<EnumDecl>(D)->getDefinition()) 6569 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6570 break; 6571 6572 case Decl::HLSLBuffer: 6573 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6574 break; 6575 6576 default: 6577 // Make sure we handled everything we should, every other kind is a 6578 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6579 // function. Need to recode Decl::Kind to do that easily. 6580 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6581 break; 6582 } 6583 } 6584 6585 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6586 // Do we need to generate coverage mapping? 6587 if (!CodeGenOpts.CoverageMapping) 6588 return; 6589 switch (D->getKind()) { 6590 case Decl::CXXConversion: 6591 case Decl::CXXMethod: 6592 case Decl::Function: 6593 case Decl::ObjCMethod: 6594 case Decl::CXXConstructor: 6595 case Decl::CXXDestructor: { 6596 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6597 break; 6598 SourceManager &SM = getContext().getSourceManager(); 6599 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6600 break; 6601 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6602 if (I == DeferredEmptyCoverageMappingDecls.end()) 6603 DeferredEmptyCoverageMappingDecls[D] = true; 6604 break; 6605 } 6606 default: 6607 break; 6608 }; 6609 } 6610 6611 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6612 // Do we need to generate coverage mapping? 6613 if (!CodeGenOpts.CoverageMapping) 6614 return; 6615 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6616 if (Fn->isTemplateInstantiation()) 6617 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6618 } 6619 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6620 if (I == DeferredEmptyCoverageMappingDecls.end()) 6621 DeferredEmptyCoverageMappingDecls[D] = false; 6622 else 6623 I->second = false; 6624 } 6625 6626 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6627 // We call takeVector() here to avoid use-after-free. 6628 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6629 // we deserialize function bodies to emit coverage info for them, and that 6630 // deserializes more declarations. How should we handle that case? 6631 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6632 if (!Entry.second) 6633 continue; 6634 const Decl *D = Entry.first; 6635 switch (D->getKind()) { 6636 case Decl::CXXConversion: 6637 case Decl::CXXMethod: 6638 case Decl::Function: 6639 case Decl::ObjCMethod: { 6640 CodeGenPGO PGO(*this); 6641 GlobalDecl GD(cast<FunctionDecl>(D)); 6642 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6643 getFunctionLinkage(GD)); 6644 break; 6645 } 6646 case Decl::CXXConstructor: { 6647 CodeGenPGO PGO(*this); 6648 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6649 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6650 getFunctionLinkage(GD)); 6651 break; 6652 } 6653 case Decl::CXXDestructor: { 6654 CodeGenPGO PGO(*this); 6655 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6656 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6657 getFunctionLinkage(GD)); 6658 break; 6659 } 6660 default: 6661 break; 6662 }; 6663 } 6664 } 6665 6666 void CodeGenModule::EmitMainVoidAlias() { 6667 // In order to transition away from "__original_main" gracefully, emit an 6668 // alias for "main" in the no-argument case so that libc can detect when 6669 // new-style no-argument main is in used. 6670 if (llvm::Function *F = getModule().getFunction("main")) { 6671 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6672 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6673 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6674 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6675 } 6676 } 6677 } 6678 6679 /// Turns the given pointer into a constant. 6680 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6681 const void *Ptr) { 6682 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6683 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6684 return llvm::ConstantInt::get(i64, PtrInt); 6685 } 6686 6687 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6688 llvm::NamedMDNode *&GlobalMetadata, 6689 GlobalDecl D, 6690 llvm::GlobalValue *Addr) { 6691 if (!GlobalMetadata) 6692 GlobalMetadata = 6693 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6694 6695 // TODO: should we report variant information for ctors/dtors? 6696 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6697 llvm::ConstantAsMetadata::get(GetPointerConstant( 6698 CGM.getLLVMContext(), D.getDecl()))}; 6699 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6700 } 6701 6702 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6703 llvm::GlobalValue *CppFunc) { 6704 // Store the list of ifuncs we need to replace uses in. 6705 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6706 // List of ConstantExprs that we should be able to delete when we're done 6707 // here. 6708 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6709 6710 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6711 if (Elem == CppFunc) 6712 return false; 6713 6714 // First make sure that all users of this are ifuncs (or ifuncs via a 6715 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6716 // later. 6717 for (llvm::User *User : Elem->users()) { 6718 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6719 // ifunc directly. In any other case, just give up, as we don't know what we 6720 // could break by changing those. 6721 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6722 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6723 return false; 6724 6725 for (llvm::User *CEUser : ConstExpr->users()) { 6726 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6727 IFuncs.push_back(IFunc); 6728 } else { 6729 return false; 6730 } 6731 } 6732 CEs.push_back(ConstExpr); 6733 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6734 IFuncs.push_back(IFunc); 6735 } else { 6736 // This user is one we don't know how to handle, so fail redirection. This 6737 // will result in an ifunc retaining a resolver name that will ultimately 6738 // fail to be resolved to a defined function. 6739 return false; 6740 } 6741 } 6742 6743 // Now we know this is a valid case where we can do this alias replacement, we 6744 // need to remove all of the references to Elem (and the bitcasts!) so we can 6745 // delete it. 6746 for (llvm::GlobalIFunc *IFunc : IFuncs) 6747 IFunc->setResolver(nullptr); 6748 for (llvm::ConstantExpr *ConstExpr : CEs) 6749 ConstExpr->destroyConstant(); 6750 6751 // We should now be out of uses for the 'old' version of this function, so we 6752 // can erase it as well. 6753 Elem->eraseFromParent(); 6754 6755 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6756 // The type of the resolver is always just a function-type that returns the 6757 // type of the IFunc, so create that here. If the type of the actual 6758 // resolver doesn't match, it just gets bitcast to the right thing. 6759 auto *ResolverTy = 6760 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6761 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6762 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6763 IFunc->setResolver(Resolver); 6764 } 6765 return true; 6766 } 6767 6768 /// For each function which is declared within an extern "C" region and marked 6769 /// as 'used', but has internal linkage, create an alias from the unmangled 6770 /// name to the mangled name if possible. People expect to be able to refer 6771 /// to such functions with an unmangled name from inline assembly within the 6772 /// same translation unit. 6773 void CodeGenModule::EmitStaticExternCAliases() { 6774 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6775 return; 6776 for (auto &I : StaticExternCValues) { 6777 IdentifierInfo *Name = I.first; 6778 llvm::GlobalValue *Val = I.second; 6779 6780 // If Val is null, that implies there were multiple declarations that each 6781 // had a claim to the unmangled name. In this case, generation of the alias 6782 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6783 if (!Val) 6784 break; 6785 6786 llvm::GlobalValue *ExistingElem = 6787 getModule().getNamedValue(Name->getName()); 6788 6789 // If there is either not something already by this name, or we were able to 6790 // replace all uses from IFuncs, create the alias. 6791 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6792 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6793 } 6794 } 6795 6796 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6797 GlobalDecl &Result) const { 6798 auto Res = Manglings.find(MangledName); 6799 if (Res == Manglings.end()) 6800 return false; 6801 Result = Res->getValue(); 6802 return true; 6803 } 6804 6805 /// Emits metadata nodes associating all the global values in the 6806 /// current module with the Decls they came from. This is useful for 6807 /// projects using IR gen as a subroutine. 6808 /// 6809 /// Since there's currently no way to associate an MDNode directly 6810 /// with an llvm::GlobalValue, we create a global named metadata 6811 /// with the name 'clang.global.decl.ptrs'. 6812 void CodeGenModule::EmitDeclMetadata() { 6813 llvm::NamedMDNode *GlobalMetadata = nullptr; 6814 6815 for (auto &I : MangledDeclNames) { 6816 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6817 // Some mangled names don't necessarily have an associated GlobalValue 6818 // in this module, e.g. if we mangled it for DebugInfo. 6819 if (Addr) 6820 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6821 } 6822 } 6823 6824 /// Emits metadata nodes for all the local variables in the current 6825 /// function. 6826 void CodeGenFunction::EmitDeclMetadata() { 6827 if (LocalDeclMap.empty()) return; 6828 6829 llvm::LLVMContext &Context = getLLVMContext(); 6830 6831 // Find the unique metadata ID for this name. 6832 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6833 6834 llvm::NamedMDNode *GlobalMetadata = nullptr; 6835 6836 for (auto &I : LocalDeclMap) { 6837 const Decl *D = I.first; 6838 llvm::Value *Addr = I.second.getPointer(); 6839 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6840 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6841 Alloca->setMetadata( 6842 DeclPtrKind, llvm::MDNode::get( 6843 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6844 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6845 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6846 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6847 } 6848 } 6849 } 6850 6851 void CodeGenModule::EmitVersionIdentMetadata() { 6852 llvm::NamedMDNode *IdentMetadata = 6853 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6854 std::string Version = getClangFullVersion(); 6855 llvm::LLVMContext &Ctx = TheModule.getContext(); 6856 6857 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6858 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6859 } 6860 6861 void CodeGenModule::EmitCommandLineMetadata() { 6862 llvm::NamedMDNode *CommandLineMetadata = 6863 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6864 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6865 llvm::LLVMContext &Ctx = TheModule.getContext(); 6866 6867 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6868 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6869 } 6870 6871 void CodeGenModule::EmitCoverageFile() { 6872 if (getCodeGenOpts().CoverageDataFile.empty() && 6873 getCodeGenOpts().CoverageNotesFile.empty()) 6874 return; 6875 6876 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6877 if (!CUNode) 6878 return; 6879 6880 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6881 llvm::LLVMContext &Ctx = TheModule.getContext(); 6882 auto *CoverageDataFile = 6883 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6884 auto *CoverageNotesFile = 6885 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6886 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6887 llvm::MDNode *CU = CUNode->getOperand(i); 6888 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6889 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6890 } 6891 } 6892 6893 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6894 bool ForEH) { 6895 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6896 // FIXME: should we even be calling this method if RTTI is disabled 6897 // and it's not for EH? 6898 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6899 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6900 getTriple().isNVPTX())) 6901 return llvm::Constant::getNullValue(Int8PtrTy); 6902 6903 if (ForEH && Ty->isObjCObjectPointerType() && 6904 LangOpts.ObjCRuntime.isGNUFamily()) 6905 return ObjCRuntime->GetEHType(Ty); 6906 6907 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6908 } 6909 6910 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6911 // Do not emit threadprivates in simd-only mode. 6912 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6913 return; 6914 for (auto RefExpr : D->varlists()) { 6915 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6916 bool PerformInit = 6917 VD->getAnyInitializer() && 6918 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6919 /*ForRef=*/false); 6920 6921 Address Addr(GetAddrOfGlobalVar(VD), 6922 getTypes().ConvertTypeForMem(VD->getType()), 6923 getContext().getDeclAlign(VD)); 6924 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6925 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6926 CXXGlobalInits.push_back(InitFunction); 6927 } 6928 } 6929 6930 llvm::Metadata * 6931 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6932 StringRef Suffix) { 6933 if (auto *FnType = T->getAs<FunctionProtoType>()) 6934 T = getContext().getFunctionType( 6935 FnType->getReturnType(), FnType->getParamTypes(), 6936 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6937 6938 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6939 if (InternalId) 6940 return InternalId; 6941 6942 if (isExternallyVisible(T->getLinkage())) { 6943 std::string OutName; 6944 llvm::raw_string_ostream Out(OutName); 6945 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6946 Out << Suffix; 6947 6948 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6949 } else { 6950 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6951 llvm::ArrayRef<llvm::Metadata *>()); 6952 } 6953 6954 return InternalId; 6955 } 6956 6957 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6958 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6959 } 6960 6961 llvm::Metadata * 6962 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6963 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6964 } 6965 6966 // Generalize pointer types to a void pointer with the qualifiers of the 6967 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6968 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6969 // 'void *'. 6970 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6971 if (!Ty->isPointerType()) 6972 return Ty; 6973 6974 return Ctx.getPointerType( 6975 QualType(Ctx.VoidTy).withCVRQualifiers( 6976 Ty->getPointeeType().getCVRQualifiers())); 6977 } 6978 6979 // Apply type generalization to a FunctionType's return and argument types 6980 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6981 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6982 SmallVector<QualType, 8> GeneralizedParams; 6983 for (auto &Param : FnType->param_types()) 6984 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6985 6986 return Ctx.getFunctionType( 6987 GeneralizeType(Ctx, FnType->getReturnType()), 6988 GeneralizedParams, FnType->getExtProtoInfo()); 6989 } 6990 6991 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6992 return Ctx.getFunctionNoProtoType( 6993 GeneralizeType(Ctx, FnType->getReturnType())); 6994 6995 llvm_unreachable("Encountered unknown FunctionType"); 6996 } 6997 6998 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6999 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7000 GeneralizedMetadataIdMap, ".generalized"); 7001 } 7002 7003 /// Returns whether this module needs the "all-vtables" type identifier. 7004 bool CodeGenModule::NeedAllVtablesTypeId() const { 7005 // Returns true if at least one of vtable-based CFI checkers is enabled and 7006 // is not in the trapping mode. 7007 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7008 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7009 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7010 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7011 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7012 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7013 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7014 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7015 } 7016 7017 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7018 CharUnits Offset, 7019 const CXXRecordDecl *RD) { 7020 llvm::Metadata *MD = 7021 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7022 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7023 7024 if (CodeGenOpts.SanitizeCfiCrossDso) 7025 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7026 VTable->addTypeMetadata(Offset.getQuantity(), 7027 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7028 7029 if (NeedAllVtablesTypeId()) { 7030 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7031 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7032 } 7033 } 7034 7035 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7036 if (!SanStats) 7037 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7038 7039 return *SanStats; 7040 } 7041 7042 llvm::Value * 7043 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7044 CodeGenFunction &CGF) { 7045 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7046 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7047 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7048 auto *Call = CGF.EmitRuntimeCall( 7049 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7050 return Call; 7051 } 7052 7053 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7054 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7055 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7056 /* forPointeeType= */ true); 7057 } 7058 7059 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7060 LValueBaseInfo *BaseInfo, 7061 TBAAAccessInfo *TBAAInfo, 7062 bool forPointeeType) { 7063 if (TBAAInfo) 7064 *TBAAInfo = getTBAAAccessInfo(T); 7065 7066 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7067 // that doesn't return the information we need to compute BaseInfo. 7068 7069 // Honor alignment typedef attributes even on incomplete types. 7070 // We also honor them straight for C++ class types, even as pointees; 7071 // there's an expressivity gap here. 7072 if (auto TT = T->getAs<TypedefType>()) { 7073 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7074 if (BaseInfo) 7075 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7076 return getContext().toCharUnitsFromBits(Align); 7077 } 7078 } 7079 7080 bool AlignForArray = T->isArrayType(); 7081 7082 // Analyze the base element type, so we don't get confused by incomplete 7083 // array types. 7084 T = getContext().getBaseElementType(T); 7085 7086 if (T->isIncompleteType()) { 7087 // We could try to replicate the logic from 7088 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7089 // type is incomplete, so it's impossible to test. We could try to reuse 7090 // getTypeAlignIfKnown, but that doesn't return the information we need 7091 // to set BaseInfo. So just ignore the possibility that the alignment is 7092 // greater than one. 7093 if (BaseInfo) 7094 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7095 return CharUnits::One(); 7096 } 7097 7098 if (BaseInfo) 7099 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7100 7101 CharUnits Alignment; 7102 const CXXRecordDecl *RD; 7103 if (T.getQualifiers().hasUnaligned()) { 7104 Alignment = CharUnits::One(); 7105 } else if (forPointeeType && !AlignForArray && 7106 (RD = T->getAsCXXRecordDecl())) { 7107 // For C++ class pointees, we don't know whether we're pointing at a 7108 // base or a complete object, so we generally need to use the 7109 // non-virtual alignment. 7110 Alignment = getClassPointerAlignment(RD); 7111 } else { 7112 Alignment = getContext().getTypeAlignInChars(T); 7113 } 7114 7115 // Cap to the global maximum type alignment unless the alignment 7116 // was somehow explicit on the type. 7117 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7118 if (Alignment.getQuantity() > MaxAlign && 7119 !getContext().isAlignmentRequired(T)) 7120 Alignment = CharUnits::fromQuantity(MaxAlign); 7121 } 7122 return Alignment; 7123 } 7124 7125 bool CodeGenModule::stopAutoInit() { 7126 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7127 if (StopAfter) { 7128 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7129 // used 7130 if (NumAutoVarInit >= StopAfter) { 7131 return true; 7132 } 7133 if (!NumAutoVarInit) { 7134 unsigned DiagID = getDiags().getCustomDiagID( 7135 DiagnosticsEngine::Warning, 7136 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7137 "number of times ftrivial-auto-var-init=%1 gets applied."); 7138 getDiags().Report(DiagID) 7139 << StopAfter 7140 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7141 LangOptions::TrivialAutoVarInitKind::Zero 7142 ? "zero" 7143 : "pattern"); 7144 } 7145 ++NumAutoVarInit; 7146 } 7147 return false; 7148 } 7149 7150 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7151 const Decl *D) const { 7152 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7153 // postfix beginning with '.' since the symbol name can be demangled. 7154 if (LangOpts.HIP) 7155 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7156 else 7157 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7158 7159 // If the CUID is not specified we try to generate a unique postfix. 7160 if (getLangOpts().CUID.empty()) { 7161 SourceManager &SM = getContext().getSourceManager(); 7162 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7163 assert(PLoc.isValid() && "Source location is expected to be valid."); 7164 7165 // Get the hash of the user defined macros. 7166 llvm::MD5 Hash; 7167 llvm::MD5::MD5Result Result; 7168 for (const auto &Arg : PreprocessorOpts.Macros) 7169 Hash.update(Arg.first); 7170 Hash.final(Result); 7171 7172 // Get the UniqueID for the file containing the decl. 7173 llvm::sys::fs::UniqueID ID; 7174 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7175 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7176 assert(PLoc.isValid() && "Source location is expected to be valid."); 7177 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7178 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7179 << PLoc.getFilename() << EC.message(); 7180 } 7181 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7182 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7183 } else { 7184 OS << getContext().getCUIDHash(); 7185 } 7186 } 7187 7188 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7189 assert(DeferredDeclsToEmit.empty() && 7190 "Should have emitted all decls deferred to emit."); 7191 assert(NewBuilder->DeferredDecls.empty() && 7192 "Newly created module should not have deferred decls"); 7193 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7194 7195 assert(NewBuilder->DeferredVTables.empty() && 7196 "Newly created module should not have deferred vtables"); 7197 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7198 7199 assert(NewBuilder->MangledDeclNames.empty() && 7200 "Newly created module should not have mangled decl names"); 7201 assert(NewBuilder->Manglings.empty() && 7202 "Newly created module should not have manglings"); 7203 NewBuilder->Manglings = std::move(Manglings); 7204 7205 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7206 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7207 7208 NewBuilder->TBAA = std::move(TBAA); 7209 7210 assert(NewBuilder->EmittedDeferredDecls.empty() && 7211 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7212 7213 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7214 7215 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7216 } 7217