1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 } 184 185 CodeGenModule::~CodeGenModule() {} 186 187 void CodeGenModule::createObjCRuntime() { 188 // This is just isGNUFamily(), but we want to force implementors of 189 // new ABIs to decide how best to do this. 190 switch (LangOpts.ObjCRuntime.getKind()) { 191 case ObjCRuntime::GNUstep: 192 case ObjCRuntime::GCC: 193 case ObjCRuntime::ObjFW: 194 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 195 return; 196 197 case ObjCRuntime::FragileMacOSX: 198 case ObjCRuntime::MacOSX: 199 case ObjCRuntime::iOS: 200 case ObjCRuntime::WatchOS: 201 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 202 return; 203 } 204 llvm_unreachable("bad runtime kind"); 205 } 206 207 void CodeGenModule::createOpenCLRuntime() { 208 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 209 } 210 211 void CodeGenModule::createOpenMPRuntime() { 212 // Select a specialized code generation class based on the target, if any. 213 // If it does not exist use the default implementation. 214 switch (getTriple().getArch()) { 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 assert(getLangOpts().OpenMPIsDevice && 218 "OpenMP NVPTX is only prepared to deal with device code."); 219 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 220 break; 221 case llvm::Triple::amdgcn: 222 assert(getLangOpts().OpenMPIsDevice && 223 "OpenMP AMDGCN is only prepared to deal with device code."); 224 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 225 break; 226 default: 227 if (LangOpts.OpenMPSimd) 228 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 229 else 230 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 231 break; 232 } 233 } 234 235 void CodeGenModule::createCUDARuntime() { 236 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 237 } 238 239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 240 Replacements[Name] = C; 241 } 242 243 void CodeGenModule::applyReplacements() { 244 for (auto &I : Replacements) { 245 StringRef MangledName = I.first(); 246 llvm::Constant *Replacement = I.second; 247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 248 if (!Entry) 249 continue; 250 auto *OldF = cast<llvm::Function>(Entry); 251 auto *NewF = dyn_cast<llvm::Function>(Replacement); 252 if (!NewF) { 253 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 254 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 255 } else { 256 auto *CE = cast<llvm::ConstantExpr>(Replacement); 257 assert(CE->getOpcode() == llvm::Instruction::BitCast || 258 CE->getOpcode() == llvm::Instruction::GetElementPtr); 259 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 260 } 261 } 262 263 // Replace old with new, but keep the old order. 264 OldF->replaceAllUsesWith(Replacement); 265 if (NewF) { 266 NewF->removeFromParent(); 267 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 268 NewF); 269 } 270 OldF->eraseFromParent(); 271 } 272 } 273 274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 275 GlobalValReplacements.push_back(std::make_pair(GV, C)); 276 } 277 278 void CodeGenModule::applyGlobalValReplacements() { 279 for (auto &I : GlobalValReplacements) { 280 llvm::GlobalValue *GV = I.first; 281 llvm::Constant *C = I.second; 282 283 GV->replaceAllUsesWith(C); 284 GV->eraseFromParent(); 285 } 286 } 287 288 // This is only used in aliases that we created and we know they have a 289 // linear structure. 290 static const llvm::GlobalObject *getAliasedGlobal( 291 const llvm::GlobalIndirectSymbol &GIS) { 292 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 293 const llvm::Constant *C = &GIS; 294 for (;;) { 295 C = C->stripPointerCasts(); 296 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 297 return GO; 298 // stripPointerCasts will not walk over weak aliases. 299 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 300 if (!GIS2) 301 return nullptr; 302 if (!Visited.insert(GIS2).second) 303 return nullptr; 304 C = GIS2->getIndirectSymbol(); 305 } 306 } 307 308 void CodeGenModule::checkAliases() { 309 // Check if the constructed aliases are well formed. It is really unfortunate 310 // that we have to do this in CodeGen, but we only construct mangled names 311 // and aliases during codegen. 312 bool Error = false; 313 DiagnosticsEngine &Diags = getDiags(); 314 for (const GlobalDecl &GD : Aliases) { 315 const auto *D = cast<ValueDecl>(GD.getDecl()); 316 SourceLocation Location; 317 bool IsIFunc = D->hasAttr<IFuncAttr>(); 318 if (const Attr *A = D->getDefiningAttr()) 319 Location = A->getLocation(); 320 else 321 llvm_unreachable("Not an alias or ifunc?"); 322 StringRef MangledName = getMangledName(GD); 323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 324 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 325 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 326 if (!GV) { 327 Error = true; 328 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 329 } else if (GV->isDeclaration()) { 330 Error = true; 331 Diags.Report(Location, diag::err_alias_to_undefined) 332 << IsIFunc << IsIFunc; 333 } else if (IsIFunc) { 334 // Check resolver function type. 335 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 336 GV->getType()->getPointerElementType()); 337 assert(FTy); 338 if (!FTy->getReturnType()->isPointerTy()) 339 Diags.Report(Location, diag::err_ifunc_resolver_return); 340 } 341 342 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 343 llvm::GlobalValue *AliaseeGV; 344 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 345 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 346 else 347 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 348 349 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 350 StringRef AliasSection = SA->getName(); 351 if (AliasSection != AliaseeGV->getSection()) 352 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 353 << AliasSection << IsIFunc << IsIFunc; 354 } 355 356 // We have to handle alias to weak aliases in here. LLVM itself disallows 357 // this since the object semantics would not match the IL one. For 358 // compatibility with gcc we implement it by just pointing the alias 359 // to its aliasee's aliasee. We also warn, since the user is probably 360 // expecting the link to be weak. 361 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 362 if (GA->isInterposable()) { 363 Diags.Report(Location, diag::warn_alias_to_weak_alias) 364 << GV->getName() << GA->getName() << IsIFunc; 365 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 366 GA->getIndirectSymbol(), Alias->getType()); 367 Alias->setIndirectSymbol(Aliasee); 368 } 369 } 370 } 371 if (!Error) 372 return; 373 374 for (const GlobalDecl &GD : Aliases) { 375 StringRef MangledName = getMangledName(GD); 376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 377 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 378 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 379 Alias->eraseFromParent(); 380 } 381 } 382 383 void CodeGenModule::clear() { 384 DeferredDeclsToEmit.clear(); 385 if (OpenMPRuntime) 386 OpenMPRuntime->clear(); 387 } 388 389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 390 StringRef MainFile) { 391 if (!hasDiagnostics()) 392 return; 393 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 394 if (MainFile.empty()) 395 MainFile = "<stdin>"; 396 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 397 } else { 398 if (Mismatched > 0) 399 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 400 401 if (Missing > 0) 402 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 403 } 404 } 405 406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 407 llvm::Module &M) { 408 if (!LO.VisibilityFromDLLStorageClass) 409 return; 410 411 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 413 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 416 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 417 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 418 CodeGenModule::GetLLVMVisibility( 419 LO.getExternDeclNoDLLStorageClassVisibility()); 420 421 for (llvm::GlobalValue &GV : M.global_values()) { 422 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 423 continue; 424 425 // Reset DSO locality before setting the visibility. This removes 426 // any effects that visibility options and annotations may have 427 // had on the DSO locality. Setting the visibility will implicitly set 428 // appropriate globals to DSO Local; however, this will be pessimistic 429 // w.r.t. to the normal compiler IRGen. 430 GV.setDSOLocal(false); 431 432 if (GV.isDeclarationForLinker()) { 433 GV.setVisibility(GV.getDLLStorageClass() == 434 llvm::GlobalValue::DLLImportStorageClass 435 ? ExternDeclDLLImportVisibility 436 : ExternDeclNoDLLStorageClassVisibility); 437 } else { 438 GV.setVisibility(GV.getDLLStorageClass() == 439 llvm::GlobalValue::DLLExportStorageClass 440 ? DLLExportVisibility 441 : NoDLLStorageClassVisibility); 442 } 443 444 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 445 } 446 } 447 448 void CodeGenModule::Release() { 449 EmitDeferred(); 450 EmitVTablesOpportunistically(); 451 applyGlobalValReplacements(); 452 applyReplacements(); 453 checkAliases(); 454 emitMultiVersionFunctions(); 455 EmitCXXGlobalInitFunc(); 456 EmitCXXGlobalCleanUpFunc(); 457 registerGlobalDtorsWithAtExit(); 458 EmitCXXThreadLocalInitFunc(); 459 if (ObjCRuntime) 460 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 461 AddGlobalCtor(ObjCInitFunction); 462 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 463 CUDARuntime) { 464 if (llvm::Function *CudaCtorFunction = 465 CUDARuntime->makeModuleCtorFunction()) 466 AddGlobalCtor(CudaCtorFunction); 467 } 468 if (OpenMPRuntime) { 469 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 470 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 471 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 472 } 473 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 474 OpenMPRuntime->clear(); 475 } 476 if (PGOReader) { 477 getModule().setProfileSummary( 478 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 479 llvm::ProfileSummary::PSK_Instr); 480 if (PGOStats.hasDiagnostics()) 481 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 482 } 483 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 484 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 485 EmitGlobalAnnotations(); 486 EmitStaticExternCAliases(); 487 EmitDeferredUnusedCoverageMappings(); 488 if (CoverageMapping) 489 CoverageMapping->emit(); 490 if (CodeGenOpts.SanitizeCfiCrossDso) { 491 CodeGenFunction(*this).EmitCfiCheckFail(); 492 CodeGenFunction(*this).EmitCfiCheckStub(); 493 } 494 emitAtAvailableLinkGuard(); 495 if (Context.getTargetInfo().getTriple().isWasm() && 496 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 497 EmitMainVoidAlias(); 498 } 499 emitLLVMUsed(); 500 if (SanStats) 501 SanStats->finish(); 502 503 if (CodeGenOpts.Autolink && 504 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 505 EmitModuleLinkOptions(); 506 } 507 508 // On ELF we pass the dependent library specifiers directly to the linker 509 // without manipulating them. This is in contrast to other platforms where 510 // they are mapped to a specific linker option by the compiler. This 511 // difference is a result of the greater variety of ELF linkers and the fact 512 // that ELF linkers tend to handle libraries in a more complicated fashion 513 // than on other platforms. This forces us to defer handling the dependent 514 // libs to the linker. 515 // 516 // CUDA/HIP device and host libraries are different. Currently there is no 517 // way to differentiate dependent libraries for host or device. Existing 518 // usage of #pragma comment(lib, *) is intended for host libraries on 519 // Windows. Therefore emit llvm.dependent-libraries only for host. 520 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 521 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 522 for (auto *MD : ELFDependentLibraries) 523 NMD->addOperand(MD); 524 } 525 526 // Record mregparm value now so it is visible through rest of codegen. 527 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 528 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 529 CodeGenOpts.NumRegisterParameters); 530 531 if (CodeGenOpts.DwarfVersion) { 532 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 533 CodeGenOpts.DwarfVersion); 534 } 535 536 if (Context.getLangOpts().SemanticInterposition) 537 // Require various optimization to respect semantic interposition. 538 getModule().setSemanticInterposition(1); 539 540 if (CodeGenOpts.EmitCodeView) { 541 // Indicate that we want CodeView in the metadata. 542 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 543 } 544 if (CodeGenOpts.CodeViewGHash) { 545 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 546 } 547 if (CodeGenOpts.ControlFlowGuard) { 548 // Function ID tables and checks for Control Flow Guard (cfguard=2). 549 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 550 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 551 // Function ID tables for Control Flow Guard (cfguard=1). 552 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 553 } 554 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 555 // We don't support LTO with 2 with different StrictVTablePointers 556 // FIXME: we could support it by stripping all the information introduced 557 // by StrictVTablePointers. 558 559 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 560 561 llvm::Metadata *Ops[2] = { 562 llvm::MDString::get(VMContext, "StrictVTablePointers"), 563 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 564 llvm::Type::getInt32Ty(VMContext), 1))}; 565 566 getModule().addModuleFlag(llvm::Module::Require, 567 "StrictVTablePointersRequirement", 568 llvm::MDNode::get(VMContext, Ops)); 569 } 570 if (getModuleDebugInfo()) 571 // We support a single version in the linked module. The LLVM 572 // parser will drop debug info with a different version number 573 // (and warn about it, too). 574 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 575 llvm::DEBUG_METADATA_VERSION); 576 577 // We need to record the widths of enums and wchar_t, so that we can generate 578 // the correct build attributes in the ARM backend. wchar_size is also used by 579 // TargetLibraryInfo. 580 uint64_t WCharWidth = 581 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 582 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 583 584 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 585 if ( Arch == llvm::Triple::arm 586 || Arch == llvm::Triple::armeb 587 || Arch == llvm::Triple::thumb 588 || Arch == llvm::Triple::thumbeb) { 589 // The minimum width of an enum in bytes 590 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 591 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 592 } 593 594 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 595 StringRef ABIStr = Target.getABI(); 596 llvm::LLVMContext &Ctx = TheModule.getContext(); 597 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 598 llvm::MDString::get(Ctx, ABIStr)); 599 } 600 601 if (CodeGenOpts.SanitizeCfiCrossDso) { 602 // Indicate that we want cross-DSO control flow integrity checks. 603 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 604 } 605 606 if (CodeGenOpts.WholeProgramVTables) { 607 // Indicate whether VFE was enabled for this module, so that the 608 // vcall_visibility metadata added under whole program vtables is handled 609 // appropriately in the optimizer. 610 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 611 CodeGenOpts.VirtualFunctionElimination); 612 } 613 614 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 615 getModule().addModuleFlag(llvm::Module::Override, 616 "CFI Canonical Jump Tables", 617 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 618 } 619 620 if (CodeGenOpts.CFProtectionReturn && 621 Target.checkCFProtectionReturnSupported(getDiags())) { 622 // Indicate that we want to instrument return control flow protection. 623 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 624 1); 625 } 626 627 if (CodeGenOpts.CFProtectionBranch && 628 Target.checkCFProtectionBranchSupported(getDiags())) { 629 // Indicate that we want to instrument branch control flow protection. 630 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 631 1); 632 } 633 634 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 635 Arch == llvm::Triple::aarch64_be) { 636 getModule().addModuleFlag(llvm::Module::Error, 637 "branch-target-enforcement", 638 LangOpts.BranchTargetEnforcement); 639 640 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 641 LangOpts.hasSignReturnAddress()); 642 643 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 644 LangOpts.isSignReturnAddressScopeAll()); 645 646 getModule().addModuleFlag(llvm::Module::Error, 647 "sign-return-address-with-bkey", 648 !LangOpts.isSignReturnAddressWithAKey()); 649 } 650 651 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 652 llvm::LLVMContext &Ctx = TheModule.getContext(); 653 getModule().addModuleFlag( 654 llvm::Module::Error, "MemProfProfileFilename", 655 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 656 } 657 658 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 659 // Indicate whether __nvvm_reflect should be configured to flush denormal 660 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 661 // property.) 662 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 663 CodeGenOpts.FP32DenormalMode.Output != 664 llvm::DenormalMode::IEEE); 665 } 666 667 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 668 if (LangOpts.OpenCL) { 669 EmitOpenCLMetadata(); 670 // Emit SPIR version. 671 if (getTriple().isSPIR()) { 672 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 673 // opencl.spir.version named metadata. 674 // C++ is backwards compatible with OpenCL v2.0. 675 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 676 llvm::Metadata *SPIRVerElts[] = { 677 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 678 Int32Ty, Version / 100)), 679 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 680 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 681 llvm::NamedMDNode *SPIRVerMD = 682 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 683 llvm::LLVMContext &Ctx = TheModule.getContext(); 684 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 685 } 686 } 687 688 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 689 assert(PLevel < 3 && "Invalid PIC Level"); 690 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 691 if (Context.getLangOpts().PIE) 692 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 693 } 694 695 if (getCodeGenOpts().CodeModel.size() > 0) { 696 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 697 .Case("tiny", llvm::CodeModel::Tiny) 698 .Case("small", llvm::CodeModel::Small) 699 .Case("kernel", llvm::CodeModel::Kernel) 700 .Case("medium", llvm::CodeModel::Medium) 701 .Case("large", llvm::CodeModel::Large) 702 .Default(~0u); 703 if (CM != ~0u) { 704 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 705 getModule().setCodeModel(codeModel); 706 } 707 } 708 709 if (CodeGenOpts.NoPLT) 710 getModule().setRtLibUseGOT(); 711 712 SimplifyPersonality(); 713 714 if (getCodeGenOpts().EmitDeclMetadata) 715 EmitDeclMetadata(); 716 717 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 718 EmitCoverageFile(); 719 720 if (CGDebugInfo *DI = getModuleDebugInfo()) 721 DI->finalize(); 722 723 if (getCodeGenOpts().EmitVersionIdentMetadata) 724 EmitVersionIdentMetadata(); 725 726 if (!getCodeGenOpts().RecordCommandLine.empty()) 727 EmitCommandLineMetadata(); 728 729 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 730 731 EmitBackendOptionsMetadata(getCodeGenOpts()); 732 733 // Set visibility from DLL storage class 734 // We do this at the end of LLVM IR generation; after any operation 735 // that might affect the DLL storage class or the visibility, and 736 // before anything that might act on these. 737 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 738 } 739 740 void CodeGenModule::EmitOpenCLMetadata() { 741 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 742 // opencl.ocl.version named metadata node. 743 // C++ is backwards compatible with OpenCL v2.0. 744 // FIXME: We might need to add CXX version at some point too? 745 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 746 llvm::Metadata *OCLVerElts[] = { 747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 748 Int32Ty, Version / 100)), 749 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 750 Int32Ty, (Version % 100) / 10))}; 751 llvm::NamedMDNode *OCLVerMD = 752 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 753 llvm::LLVMContext &Ctx = TheModule.getContext(); 754 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 755 } 756 757 void CodeGenModule::EmitBackendOptionsMetadata( 758 const CodeGenOptions CodeGenOpts) { 759 switch (getTriple().getArch()) { 760 default: 761 break; 762 case llvm::Triple::riscv32: 763 case llvm::Triple::riscv64: 764 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 765 CodeGenOpts.SmallDataLimit); 766 break; 767 } 768 } 769 770 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 771 // Make sure that this type is translated. 772 Types.UpdateCompletedType(TD); 773 } 774 775 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 776 // Make sure that this type is translated. 777 Types.RefreshTypeCacheForClass(RD); 778 } 779 780 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 781 if (!TBAA) 782 return nullptr; 783 return TBAA->getTypeInfo(QTy); 784 } 785 786 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 787 if (!TBAA) 788 return TBAAAccessInfo(); 789 if (getLangOpts().CUDAIsDevice) { 790 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 791 // access info. 792 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 793 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 794 nullptr) 795 return TBAAAccessInfo(); 796 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 797 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 798 nullptr) 799 return TBAAAccessInfo(); 800 } 801 } 802 return TBAA->getAccessInfo(AccessType); 803 } 804 805 TBAAAccessInfo 806 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 807 if (!TBAA) 808 return TBAAAccessInfo(); 809 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 810 } 811 812 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 813 if (!TBAA) 814 return nullptr; 815 return TBAA->getTBAAStructInfo(QTy); 816 } 817 818 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 819 if (!TBAA) 820 return nullptr; 821 return TBAA->getBaseTypeInfo(QTy); 822 } 823 824 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 825 if (!TBAA) 826 return nullptr; 827 return TBAA->getAccessTagInfo(Info); 828 } 829 830 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 831 TBAAAccessInfo TargetInfo) { 832 if (!TBAA) 833 return TBAAAccessInfo(); 834 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 835 } 836 837 TBAAAccessInfo 838 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 839 TBAAAccessInfo InfoB) { 840 if (!TBAA) 841 return TBAAAccessInfo(); 842 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 843 } 844 845 TBAAAccessInfo 846 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 847 TBAAAccessInfo SrcInfo) { 848 if (!TBAA) 849 return TBAAAccessInfo(); 850 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 851 } 852 853 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 854 TBAAAccessInfo TBAAInfo) { 855 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 856 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 857 } 858 859 void CodeGenModule::DecorateInstructionWithInvariantGroup( 860 llvm::Instruction *I, const CXXRecordDecl *RD) { 861 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 862 llvm::MDNode::get(getLLVMContext(), {})); 863 } 864 865 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 866 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 867 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 868 } 869 870 /// ErrorUnsupported - Print out an error that codegen doesn't support the 871 /// specified stmt yet. 872 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 873 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 874 "cannot compile this %0 yet"); 875 std::string Msg = Type; 876 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 877 << Msg << S->getSourceRange(); 878 } 879 880 /// ErrorUnsupported - Print out an error that codegen doesn't support the 881 /// specified decl yet. 882 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 883 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 884 "cannot compile this %0 yet"); 885 std::string Msg = Type; 886 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 887 } 888 889 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 890 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 891 } 892 893 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 894 const NamedDecl *D) const { 895 if (GV->hasDLLImportStorageClass()) 896 return; 897 // Internal definitions always have default visibility. 898 if (GV->hasLocalLinkage()) { 899 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 900 return; 901 } 902 if (!D) 903 return; 904 // Set visibility for definitions, and for declarations if requested globally 905 // or set explicitly. 906 LinkageInfo LV = D->getLinkageAndVisibility(); 907 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 908 !GV->isDeclarationForLinker()) 909 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 910 } 911 912 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 913 llvm::GlobalValue *GV) { 914 if (GV->hasLocalLinkage()) 915 return true; 916 917 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 918 return true; 919 920 // DLLImport explicitly marks the GV as external. 921 if (GV->hasDLLImportStorageClass()) 922 return false; 923 924 const llvm::Triple &TT = CGM.getTriple(); 925 if (TT.isWindowsGNUEnvironment()) { 926 // In MinGW, variables without DLLImport can still be automatically 927 // imported from a DLL by the linker; don't mark variables that 928 // potentially could come from another DLL as DSO local. 929 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 930 !GV->isThreadLocal()) 931 return false; 932 } 933 934 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 935 // remain unresolved in the link, they can be resolved to zero, which is 936 // outside the current DSO. 937 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 938 return false; 939 940 // Every other GV is local on COFF. 941 // Make an exception for windows OS in the triple: Some firmware builds use 942 // *-win32-macho triples. This (accidentally?) produced windows relocations 943 // without GOT tables in older clang versions; Keep this behaviour. 944 // FIXME: even thread local variables? 945 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 946 return true; 947 948 const auto &CGOpts = CGM.getCodeGenOpts(); 949 llvm::Reloc::Model RM = CGOpts.RelocationModel; 950 const auto &LOpts = CGM.getLangOpts(); 951 952 if (TT.isOSBinFormatMachO()) { 953 if (RM == llvm::Reloc::Static) 954 return true; 955 return GV->isStrongDefinitionForLinker(); 956 } 957 958 // Only handle COFF and ELF for now. 959 if (!TT.isOSBinFormatELF()) 960 return false; 961 962 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 963 // On ELF, if -fno-semantic-interposition is specified and the target 964 // supports local aliases, there will be neither CC1 965 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 966 // dso_local if using a local alias is preferable (can avoid GOT 967 // indirection). 968 if (!GV->canBenefitFromLocalAlias()) 969 return false; 970 return !(CGM.getLangOpts().SemanticInterposition || 971 CGM.getLangOpts().HalfNoSemanticInterposition); 972 } 973 974 // A definition cannot be preempted from an executable. 975 if (!GV->isDeclarationForLinker()) 976 return true; 977 978 // Most PIC code sequences that assume that a symbol is local cannot produce a 979 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 980 // depended, it seems worth it to handle it here. 981 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 982 return false; 983 984 // PowerPC64 prefers TOC indirection to avoid copy relocations. 985 if (TT.isPPC64()) 986 return false; 987 988 if (CGOpts.DirectAccessExternalData) { 989 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 990 // for non-thread-local variables. If the symbol is not defined in the 991 // executable, a copy relocation will be needed at link time. dso_local is 992 // excluded for thread-local variables because they generally don't support 993 // copy relocations. 994 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 995 if (!Var->isThreadLocal()) 996 return true; 997 998 // -fno-pic sets dso_local on a function declaration to allow direct 999 // accesses when taking its address (similar to a data symbol). If the 1000 // function is not defined in the executable, a canonical PLT entry will be 1001 // needed at link time. -fno-direct-access-external-data can avoid the 1002 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1003 // it could just cause trouble without providing perceptible benefits. 1004 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1005 return true; 1006 } 1007 1008 // If we can use copy relocations we can assume it is local. 1009 1010 // Otherwise don't assume it is local. 1011 return false; 1012 } 1013 1014 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1015 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1016 } 1017 1018 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1019 GlobalDecl GD) const { 1020 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1021 // C++ destructors have a few C++ ABI specific special cases. 1022 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1023 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1024 return; 1025 } 1026 setDLLImportDLLExport(GV, D); 1027 } 1028 1029 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1030 const NamedDecl *D) const { 1031 if (D && D->isExternallyVisible()) { 1032 if (D->hasAttr<DLLImportAttr>()) 1033 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1034 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1035 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1036 } 1037 } 1038 1039 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1040 GlobalDecl GD) const { 1041 setDLLImportDLLExport(GV, GD); 1042 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1043 } 1044 1045 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1046 const NamedDecl *D) const { 1047 setDLLImportDLLExport(GV, D); 1048 setGVPropertiesAux(GV, D); 1049 } 1050 1051 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1052 const NamedDecl *D) const { 1053 setGlobalVisibility(GV, D); 1054 setDSOLocal(GV); 1055 GV->setPartition(CodeGenOpts.SymbolPartition); 1056 } 1057 1058 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1059 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1060 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1061 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1062 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1063 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1064 } 1065 1066 llvm::GlobalVariable::ThreadLocalMode 1067 CodeGenModule::GetDefaultLLVMTLSModel() const { 1068 switch (CodeGenOpts.getDefaultTLSModel()) { 1069 case CodeGenOptions::GeneralDynamicTLSModel: 1070 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1071 case CodeGenOptions::LocalDynamicTLSModel: 1072 return llvm::GlobalVariable::LocalDynamicTLSModel; 1073 case CodeGenOptions::InitialExecTLSModel: 1074 return llvm::GlobalVariable::InitialExecTLSModel; 1075 case CodeGenOptions::LocalExecTLSModel: 1076 return llvm::GlobalVariable::LocalExecTLSModel; 1077 } 1078 llvm_unreachable("Invalid TLS model!"); 1079 } 1080 1081 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1082 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1083 1084 llvm::GlobalValue::ThreadLocalMode TLM; 1085 TLM = GetDefaultLLVMTLSModel(); 1086 1087 // Override the TLS model if it is explicitly specified. 1088 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1089 TLM = GetLLVMTLSModel(Attr->getModel()); 1090 } 1091 1092 GV->setThreadLocalMode(TLM); 1093 } 1094 1095 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1096 StringRef Name) { 1097 const TargetInfo &Target = CGM.getTarget(); 1098 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1099 } 1100 1101 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1102 const CPUSpecificAttr *Attr, 1103 unsigned CPUIndex, 1104 raw_ostream &Out) { 1105 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1106 // supported. 1107 if (Attr) 1108 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1109 else if (CGM.getTarget().supportsIFunc()) 1110 Out << ".resolver"; 1111 } 1112 1113 static void AppendTargetMangling(const CodeGenModule &CGM, 1114 const TargetAttr *Attr, raw_ostream &Out) { 1115 if (Attr->isDefaultVersion()) 1116 return; 1117 1118 Out << '.'; 1119 const TargetInfo &Target = CGM.getTarget(); 1120 ParsedTargetAttr Info = 1121 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1122 // Multiversioning doesn't allow "no-${feature}", so we can 1123 // only have "+" prefixes here. 1124 assert(LHS.startswith("+") && RHS.startswith("+") && 1125 "Features should always have a prefix."); 1126 return Target.multiVersionSortPriority(LHS.substr(1)) > 1127 Target.multiVersionSortPriority(RHS.substr(1)); 1128 }); 1129 1130 bool IsFirst = true; 1131 1132 if (!Info.Architecture.empty()) { 1133 IsFirst = false; 1134 Out << "arch_" << Info.Architecture; 1135 } 1136 1137 for (StringRef Feat : Info.Features) { 1138 if (!IsFirst) 1139 Out << '_'; 1140 IsFirst = false; 1141 Out << Feat.substr(1); 1142 } 1143 } 1144 1145 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1146 const NamedDecl *ND, 1147 bool OmitMultiVersionMangling = false) { 1148 SmallString<256> Buffer; 1149 llvm::raw_svector_ostream Out(Buffer); 1150 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1151 if (MC.shouldMangleDeclName(ND)) 1152 MC.mangleName(GD.getWithDecl(ND), Out); 1153 else { 1154 IdentifierInfo *II = ND->getIdentifier(); 1155 assert(II && "Attempt to mangle unnamed decl."); 1156 const auto *FD = dyn_cast<FunctionDecl>(ND); 1157 1158 if (FD && 1159 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1160 Out << "__regcall3__" << II->getName(); 1161 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1162 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1163 Out << "__device_stub__" << II->getName(); 1164 } else { 1165 Out << II->getName(); 1166 } 1167 } 1168 1169 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1170 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1171 switch (FD->getMultiVersionKind()) { 1172 case MultiVersionKind::CPUDispatch: 1173 case MultiVersionKind::CPUSpecific: 1174 AppendCPUSpecificCPUDispatchMangling(CGM, 1175 FD->getAttr<CPUSpecificAttr>(), 1176 GD.getMultiVersionIndex(), Out); 1177 break; 1178 case MultiVersionKind::Target: 1179 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1180 break; 1181 case MultiVersionKind::None: 1182 llvm_unreachable("None multiversion type isn't valid here"); 1183 } 1184 } 1185 1186 return std::string(Out.str()); 1187 } 1188 1189 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1190 const FunctionDecl *FD) { 1191 if (!FD->isMultiVersion()) 1192 return; 1193 1194 // Get the name of what this would be without the 'target' attribute. This 1195 // allows us to lookup the version that was emitted when this wasn't a 1196 // multiversion function. 1197 std::string NonTargetName = 1198 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1199 GlobalDecl OtherGD; 1200 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1201 assert(OtherGD.getCanonicalDecl() 1202 .getDecl() 1203 ->getAsFunction() 1204 ->isMultiVersion() && 1205 "Other GD should now be a multiversioned function"); 1206 // OtherFD is the version of this function that was mangled BEFORE 1207 // becoming a MultiVersion function. It potentially needs to be updated. 1208 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1209 .getDecl() 1210 ->getAsFunction() 1211 ->getMostRecentDecl(); 1212 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1213 // This is so that if the initial version was already the 'default' 1214 // version, we don't try to update it. 1215 if (OtherName != NonTargetName) { 1216 // Remove instead of erase, since others may have stored the StringRef 1217 // to this. 1218 const auto ExistingRecord = Manglings.find(NonTargetName); 1219 if (ExistingRecord != std::end(Manglings)) 1220 Manglings.remove(&(*ExistingRecord)); 1221 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1222 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1223 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1224 Entry->setName(OtherName); 1225 } 1226 } 1227 } 1228 1229 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1230 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1231 1232 // Some ABIs don't have constructor variants. Make sure that base and 1233 // complete constructors get mangled the same. 1234 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1235 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1236 CXXCtorType OrigCtorType = GD.getCtorType(); 1237 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1238 if (OrigCtorType == Ctor_Base) 1239 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1240 } 1241 } 1242 1243 auto FoundName = MangledDeclNames.find(CanonicalGD); 1244 if (FoundName != MangledDeclNames.end()) 1245 return FoundName->second; 1246 1247 // Keep the first result in the case of a mangling collision. 1248 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1249 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1250 1251 // Ensure either we have different ABIs between host and device compilations, 1252 // says host compilation following MSVC ABI but device compilation follows 1253 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1254 // mangling should be the same after name stubbing. The later checking is 1255 // very important as the device kernel name being mangled in host-compilation 1256 // is used to resolve the device binaries to be executed. Inconsistent naming 1257 // result in undefined behavior. Even though we cannot check that naming 1258 // directly between host- and device-compilations, the host- and 1259 // device-mangling in host compilation could help catching certain ones. 1260 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1261 getLangOpts().CUDAIsDevice || 1262 (getContext().getAuxTargetInfo() && 1263 (getContext().getAuxTargetInfo()->getCXXABI() != 1264 getContext().getTargetInfo().getCXXABI())) || 1265 getCUDARuntime().getDeviceSideName(ND) == 1266 getMangledNameImpl( 1267 *this, 1268 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1269 ND)); 1270 1271 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1272 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1273 } 1274 1275 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1276 const BlockDecl *BD) { 1277 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1278 const Decl *D = GD.getDecl(); 1279 1280 SmallString<256> Buffer; 1281 llvm::raw_svector_ostream Out(Buffer); 1282 if (!D) 1283 MangleCtx.mangleGlobalBlock(BD, 1284 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1285 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1286 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1287 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1288 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1289 else 1290 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1291 1292 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1293 return Result.first->first(); 1294 } 1295 1296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1297 return getModule().getNamedValue(Name); 1298 } 1299 1300 /// AddGlobalCtor - Add a function to the list that will be called before 1301 /// main() runs. 1302 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1303 llvm::Constant *AssociatedData) { 1304 // FIXME: Type coercion of void()* types. 1305 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1306 } 1307 1308 /// AddGlobalDtor - Add a function to the list that will be called 1309 /// when the module is unloaded. 1310 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1311 bool IsDtorAttrFunc) { 1312 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1313 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1314 DtorsUsingAtExit[Priority].push_back(Dtor); 1315 return; 1316 } 1317 1318 // FIXME: Type coercion of void()* types. 1319 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1320 } 1321 1322 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1323 if (Fns.empty()) return; 1324 1325 // Ctor function type is void()*. 1326 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1327 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1328 TheModule.getDataLayout().getProgramAddressSpace()); 1329 1330 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1331 llvm::StructType *CtorStructTy = llvm::StructType::get( 1332 Int32Ty, CtorPFTy, VoidPtrTy); 1333 1334 // Construct the constructor and destructor arrays. 1335 ConstantInitBuilder builder(*this); 1336 auto ctors = builder.beginArray(CtorStructTy); 1337 for (const auto &I : Fns) { 1338 auto ctor = ctors.beginStruct(CtorStructTy); 1339 ctor.addInt(Int32Ty, I.Priority); 1340 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1341 if (I.AssociatedData) 1342 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1343 else 1344 ctor.addNullPointer(VoidPtrTy); 1345 ctor.finishAndAddTo(ctors); 1346 } 1347 1348 auto list = 1349 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1350 /*constant*/ false, 1351 llvm::GlobalValue::AppendingLinkage); 1352 1353 // The LTO linker doesn't seem to like it when we set an alignment 1354 // on appending variables. Take it off as a workaround. 1355 list->setAlignment(llvm::None); 1356 1357 Fns.clear(); 1358 } 1359 1360 llvm::GlobalValue::LinkageTypes 1361 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1362 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1363 1364 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1365 1366 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1367 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1368 1369 if (isa<CXXConstructorDecl>(D) && 1370 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1371 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1372 // Our approach to inheriting constructors is fundamentally different from 1373 // that used by the MS ABI, so keep our inheriting constructor thunks 1374 // internal rather than trying to pick an unambiguous mangling for them. 1375 return llvm::GlobalValue::InternalLinkage; 1376 } 1377 1378 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1379 } 1380 1381 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1382 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1383 if (!MDS) return nullptr; 1384 1385 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1386 } 1387 1388 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1389 const CGFunctionInfo &Info, 1390 llvm::Function *F) { 1391 unsigned CallingConv; 1392 llvm::AttributeList PAL; 1393 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1394 F->setAttributes(PAL); 1395 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1396 } 1397 1398 static void removeImageAccessQualifier(std::string& TyName) { 1399 std::string ReadOnlyQual("__read_only"); 1400 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1401 if (ReadOnlyPos != std::string::npos) 1402 // "+ 1" for the space after access qualifier. 1403 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1404 else { 1405 std::string WriteOnlyQual("__write_only"); 1406 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1407 if (WriteOnlyPos != std::string::npos) 1408 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1409 else { 1410 std::string ReadWriteQual("__read_write"); 1411 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1412 if (ReadWritePos != std::string::npos) 1413 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1414 } 1415 } 1416 } 1417 1418 // Returns the address space id that should be produced to the 1419 // kernel_arg_addr_space metadata. This is always fixed to the ids 1420 // as specified in the SPIR 2.0 specification in order to differentiate 1421 // for example in clGetKernelArgInfo() implementation between the address 1422 // spaces with targets without unique mapping to the OpenCL address spaces 1423 // (basically all single AS CPUs). 1424 static unsigned ArgInfoAddressSpace(LangAS AS) { 1425 switch (AS) { 1426 case LangAS::opencl_global: 1427 return 1; 1428 case LangAS::opencl_constant: 1429 return 2; 1430 case LangAS::opencl_local: 1431 return 3; 1432 case LangAS::opencl_generic: 1433 return 4; // Not in SPIR 2.0 specs. 1434 case LangAS::opencl_global_device: 1435 return 5; 1436 case LangAS::opencl_global_host: 1437 return 6; 1438 default: 1439 return 0; // Assume private. 1440 } 1441 } 1442 1443 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1444 const FunctionDecl *FD, 1445 CodeGenFunction *CGF) { 1446 assert(((FD && CGF) || (!FD && !CGF)) && 1447 "Incorrect use - FD and CGF should either be both null or not!"); 1448 // Create MDNodes that represent the kernel arg metadata. 1449 // Each MDNode is a list in the form of "key", N number of values which is 1450 // the same number of values as their are kernel arguments. 1451 1452 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1453 1454 // MDNode for the kernel argument address space qualifiers. 1455 SmallVector<llvm::Metadata *, 8> addressQuals; 1456 1457 // MDNode for the kernel argument access qualifiers (images only). 1458 SmallVector<llvm::Metadata *, 8> accessQuals; 1459 1460 // MDNode for the kernel argument type names. 1461 SmallVector<llvm::Metadata *, 8> argTypeNames; 1462 1463 // MDNode for the kernel argument base type names. 1464 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1465 1466 // MDNode for the kernel argument type qualifiers. 1467 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1468 1469 // MDNode for the kernel argument names. 1470 SmallVector<llvm::Metadata *, 8> argNames; 1471 1472 if (FD && CGF) 1473 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1474 const ParmVarDecl *parm = FD->getParamDecl(i); 1475 QualType ty = parm->getType(); 1476 std::string typeQuals; 1477 1478 if (ty->isPointerType()) { 1479 QualType pointeeTy = ty->getPointeeType(); 1480 1481 // Get address qualifier. 1482 addressQuals.push_back( 1483 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1484 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1485 1486 // Get argument type name. 1487 std::string typeName = 1488 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1489 1490 // Turn "unsigned type" to "utype" 1491 std::string::size_type pos = typeName.find("unsigned"); 1492 if (pointeeTy.isCanonical() && pos != std::string::npos) 1493 typeName.erase(pos + 1, 8); 1494 1495 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1496 1497 std::string baseTypeName = 1498 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1499 Policy) + 1500 "*"; 1501 1502 // Turn "unsigned type" to "utype" 1503 pos = baseTypeName.find("unsigned"); 1504 if (pos != std::string::npos) 1505 baseTypeName.erase(pos + 1, 8); 1506 1507 argBaseTypeNames.push_back( 1508 llvm::MDString::get(VMContext, baseTypeName)); 1509 1510 // Get argument type qualifiers: 1511 if (ty.isRestrictQualified()) 1512 typeQuals = "restrict"; 1513 if (pointeeTy.isConstQualified() || 1514 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1515 typeQuals += typeQuals.empty() ? "const" : " const"; 1516 if (pointeeTy.isVolatileQualified()) 1517 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1518 } else { 1519 uint32_t AddrSpc = 0; 1520 bool isPipe = ty->isPipeType(); 1521 if (ty->isImageType() || isPipe) 1522 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1523 1524 addressQuals.push_back( 1525 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1526 1527 // Get argument type name. 1528 std::string typeName; 1529 if (isPipe) 1530 typeName = ty.getCanonicalType() 1531 ->castAs<PipeType>() 1532 ->getElementType() 1533 .getAsString(Policy); 1534 else 1535 typeName = ty.getUnqualifiedType().getAsString(Policy); 1536 1537 // Turn "unsigned type" to "utype" 1538 std::string::size_type pos = typeName.find("unsigned"); 1539 if (ty.isCanonical() && pos != std::string::npos) 1540 typeName.erase(pos + 1, 8); 1541 1542 std::string baseTypeName; 1543 if (isPipe) 1544 baseTypeName = ty.getCanonicalType() 1545 ->castAs<PipeType>() 1546 ->getElementType() 1547 .getCanonicalType() 1548 .getAsString(Policy); 1549 else 1550 baseTypeName = 1551 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1552 1553 // Remove access qualifiers on images 1554 // (as they are inseparable from type in clang implementation, 1555 // but OpenCL spec provides a special query to get access qualifier 1556 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1557 if (ty->isImageType()) { 1558 removeImageAccessQualifier(typeName); 1559 removeImageAccessQualifier(baseTypeName); 1560 } 1561 1562 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1563 1564 // Turn "unsigned type" to "utype" 1565 pos = baseTypeName.find("unsigned"); 1566 if (pos != std::string::npos) 1567 baseTypeName.erase(pos + 1, 8); 1568 1569 argBaseTypeNames.push_back( 1570 llvm::MDString::get(VMContext, baseTypeName)); 1571 1572 if (isPipe) 1573 typeQuals = "pipe"; 1574 } 1575 1576 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1577 1578 // Get image and pipe access qualifier: 1579 if (ty->isImageType() || ty->isPipeType()) { 1580 const Decl *PDecl = parm; 1581 if (auto *TD = dyn_cast<TypedefType>(ty)) 1582 PDecl = TD->getDecl(); 1583 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1584 if (A && A->isWriteOnly()) 1585 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1586 else if (A && A->isReadWrite()) 1587 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1588 else 1589 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1590 } else 1591 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1592 1593 // Get argument name. 1594 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1595 } 1596 1597 Fn->setMetadata("kernel_arg_addr_space", 1598 llvm::MDNode::get(VMContext, addressQuals)); 1599 Fn->setMetadata("kernel_arg_access_qual", 1600 llvm::MDNode::get(VMContext, accessQuals)); 1601 Fn->setMetadata("kernel_arg_type", 1602 llvm::MDNode::get(VMContext, argTypeNames)); 1603 Fn->setMetadata("kernel_arg_base_type", 1604 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1605 Fn->setMetadata("kernel_arg_type_qual", 1606 llvm::MDNode::get(VMContext, argTypeQuals)); 1607 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1608 Fn->setMetadata("kernel_arg_name", 1609 llvm::MDNode::get(VMContext, argNames)); 1610 } 1611 1612 /// Determines whether the language options require us to model 1613 /// unwind exceptions. We treat -fexceptions as mandating this 1614 /// except under the fragile ObjC ABI with only ObjC exceptions 1615 /// enabled. This means, for example, that C with -fexceptions 1616 /// enables this. 1617 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1618 // If exceptions are completely disabled, obviously this is false. 1619 if (!LangOpts.Exceptions) return false; 1620 1621 // If C++ exceptions are enabled, this is true. 1622 if (LangOpts.CXXExceptions) return true; 1623 1624 // If ObjC exceptions are enabled, this depends on the ABI. 1625 if (LangOpts.ObjCExceptions) { 1626 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1627 } 1628 1629 return true; 1630 } 1631 1632 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1633 const CXXMethodDecl *MD) { 1634 // Check that the type metadata can ever actually be used by a call. 1635 if (!CGM.getCodeGenOpts().LTOUnit || 1636 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1637 return false; 1638 1639 // Only functions whose address can be taken with a member function pointer 1640 // need this sort of type metadata. 1641 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1642 !isa<CXXDestructorDecl>(MD); 1643 } 1644 1645 std::vector<const CXXRecordDecl *> 1646 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1647 llvm::SetVector<const CXXRecordDecl *> MostBases; 1648 1649 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1650 CollectMostBases = [&](const CXXRecordDecl *RD) { 1651 if (RD->getNumBases() == 0) 1652 MostBases.insert(RD); 1653 for (const CXXBaseSpecifier &B : RD->bases()) 1654 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1655 }; 1656 CollectMostBases(RD); 1657 return MostBases.takeVector(); 1658 } 1659 1660 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1661 llvm::Function *F) { 1662 llvm::AttrBuilder B; 1663 1664 if (CodeGenOpts.UnwindTables) 1665 B.addAttribute(llvm::Attribute::UWTable); 1666 1667 if (CodeGenOpts.StackClashProtector) 1668 B.addAttribute("probe-stack", "inline-asm"); 1669 1670 if (!hasUnwindExceptions(LangOpts)) 1671 B.addAttribute(llvm::Attribute::NoUnwind); 1672 1673 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1674 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1675 B.addAttribute(llvm::Attribute::StackProtect); 1676 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1677 B.addAttribute(llvm::Attribute::StackProtectStrong); 1678 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1679 B.addAttribute(llvm::Attribute::StackProtectReq); 1680 } 1681 1682 if (!D) { 1683 // If we don't have a declaration to control inlining, the function isn't 1684 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1685 // disabled, mark the function as noinline. 1686 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1687 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1688 B.addAttribute(llvm::Attribute::NoInline); 1689 1690 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1691 return; 1692 } 1693 1694 // Track whether we need to add the optnone LLVM attribute, 1695 // starting with the default for this optimization level. 1696 bool ShouldAddOptNone = 1697 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1698 // We can't add optnone in the following cases, it won't pass the verifier. 1699 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1700 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1701 1702 // Add optnone, but do so only if the function isn't always_inline. 1703 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1704 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1705 B.addAttribute(llvm::Attribute::OptimizeNone); 1706 1707 // OptimizeNone implies noinline; we should not be inlining such functions. 1708 B.addAttribute(llvm::Attribute::NoInline); 1709 1710 // We still need to handle naked functions even though optnone subsumes 1711 // much of their semantics. 1712 if (D->hasAttr<NakedAttr>()) 1713 B.addAttribute(llvm::Attribute::Naked); 1714 1715 // OptimizeNone wins over OptimizeForSize and MinSize. 1716 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1717 F->removeFnAttr(llvm::Attribute::MinSize); 1718 } else if (D->hasAttr<NakedAttr>()) { 1719 // Naked implies noinline: we should not be inlining such functions. 1720 B.addAttribute(llvm::Attribute::Naked); 1721 B.addAttribute(llvm::Attribute::NoInline); 1722 } else if (D->hasAttr<NoDuplicateAttr>()) { 1723 B.addAttribute(llvm::Attribute::NoDuplicate); 1724 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1725 // Add noinline if the function isn't always_inline. 1726 B.addAttribute(llvm::Attribute::NoInline); 1727 } else if (D->hasAttr<AlwaysInlineAttr>() && 1728 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1729 // (noinline wins over always_inline, and we can't specify both in IR) 1730 B.addAttribute(llvm::Attribute::AlwaysInline); 1731 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1732 // If we're not inlining, then force everything that isn't always_inline to 1733 // carry an explicit noinline attribute. 1734 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1735 B.addAttribute(llvm::Attribute::NoInline); 1736 } else { 1737 // Otherwise, propagate the inline hint attribute and potentially use its 1738 // absence to mark things as noinline. 1739 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1740 // Search function and template pattern redeclarations for inline. 1741 auto CheckForInline = [](const FunctionDecl *FD) { 1742 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1743 return Redecl->isInlineSpecified(); 1744 }; 1745 if (any_of(FD->redecls(), CheckRedeclForInline)) 1746 return true; 1747 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1748 if (!Pattern) 1749 return false; 1750 return any_of(Pattern->redecls(), CheckRedeclForInline); 1751 }; 1752 if (CheckForInline(FD)) { 1753 B.addAttribute(llvm::Attribute::InlineHint); 1754 } else if (CodeGenOpts.getInlining() == 1755 CodeGenOptions::OnlyHintInlining && 1756 !FD->isInlined() && 1757 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1758 B.addAttribute(llvm::Attribute::NoInline); 1759 } 1760 } 1761 } 1762 1763 // Add other optimization related attributes if we are optimizing this 1764 // function. 1765 if (!D->hasAttr<OptimizeNoneAttr>()) { 1766 if (D->hasAttr<ColdAttr>()) { 1767 if (!ShouldAddOptNone) 1768 B.addAttribute(llvm::Attribute::OptimizeForSize); 1769 B.addAttribute(llvm::Attribute::Cold); 1770 } 1771 if (D->hasAttr<HotAttr>()) 1772 B.addAttribute(llvm::Attribute::Hot); 1773 if (D->hasAttr<MinSizeAttr>()) 1774 B.addAttribute(llvm::Attribute::MinSize); 1775 } 1776 1777 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1778 1779 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1780 if (alignment) 1781 F->setAlignment(llvm::Align(alignment)); 1782 1783 if (!D->hasAttr<AlignedAttr>()) 1784 if (LangOpts.FunctionAlignment) 1785 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1786 1787 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1788 // reserve a bit for differentiating between virtual and non-virtual member 1789 // functions. If the current target's C++ ABI requires this and this is a 1790 // member function, set its alignment accordingly. 1791 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1792 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1793 F->setAlignment(llvm::Align(2)); 1794 } 1795 1796 // In the cross-dso CFI mode with canonical jump tables, we want !type 1797 // attributes on definitions only. 1798 if (CodeGenOpts.SanitizeCfiCrossDso && 1799 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1800 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1801 // Skip available_externally functions. They won't be codegen'ed in the 1802 // current module anyway. 1803 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1804 CreateFunctionTypeMetadataForIcall(FD, F); 1805 } 1806 } 1807 1808 // Emit type metadata on member functions for member function pointer checks. 1809 // These are only ever necessary on definitions; we're guaranteed that the 1810 // definition will be present in the LTO unit as a result of LTO visibility. 1811 auto *MD = dyn_cast<CXXMethodDecl>(D); 1812 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1813 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1814 llvm::Metadata *Id = 1815 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1816 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1817 F->addTypeMetadata(0, Id); 1818 } 1819 } 1820 } 1821 1822 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1823 llvm::Function *F) { 1824 if (D->hasAttr<StrictFPAttr>()) { 1825 llvm::AttrBuilder FuncAttrs; 1826 FuncAttrs.addAttribute("strictfp"); 1827 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1828 } 1829 } 1830 1831 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1832 const Decl *D = GD.getDecl(); 1833 if (dyn_cast_or_null<NamedDecl>(D)) 1834 setGVProperties(GV, GD); 1835 else 1836 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1837 1838 if (D && D->hasAttr<UsedAttr>()) 1839 addUsedGlobal(GV); 1840 1841 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1842 const auto *VD = cast<VarDecl>(D); 1843 if (VD->getType().isConstQualified() && 1844 VD->getStorageDuration() == SD_Static) 1845 addUsedGlobal(GV); 1846 } 1847 } 1848 1849 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1850 llvm::AttrBuilder &Attrs) { 1851 // Add target-cpu and target-features attributes to functions. If 1852 // we have a decl for the function and it has a target attribute then 1853 // parse that and add it to the feature set. 1854 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1855 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1856 std::vector<std::string> Features; 1857 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1858 FD = FD ? FD->getMostRecentDecl() : FD; 1859 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1860 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1861 bool AddedAttr = false; 1862 if (TD || SD) { 1863 llvm::StringMap<bool> FeatureMap; 1864 getContext().getFunctionFeatureMap(FeatureMap, GD); 1865 1866 // Produce the canonical string for this set of features. 1867 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1868 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1869 1870 // Now add the target-cpu and target-features to the function. 1871 // While we populated the feature map above, we still need to 1872 // get and parse the target attribute so we can get the cpu for 1873 // the function. 1874 if (TD) { 1875 ParsedTargetAttr ParsedAttr = TD->parse(); 1876 if (!ParsedAttr.Architecture.empty() && 1877 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1878 TargetCPU = ParsedAttr.Architecture; 1879 TuneCPU = ""; // Clear the tune CPU. 1880 } 1881 if (!ParsedAttr.Tune.empty() && 1882 getTarget().isValidCPUName(ParsedAttr.Tune)) 1883 TuneCPU = ParsedAttr.Tune; 1884 } 1885 } else { 1886 // Otherwise just add the existing target cpu and target features to the 1887 // function. 1888 Features = getTarget().getTargetOpts().Features; 1889 } 1890 1891 if (!TargetCPU.empty()) { 1892 Attrs.addAttribute("target-cpu", TargetCPU); 1893 AddedAttr = true; 1894 } 1895 if (!TuneCPU.empty()) { 1896 Attrs.addAttribute("tune-cpu", TuneCPU); 1897 AddedAttr = true; 1898 } 1899 if (!Features.empty()) { 1900 llvm::sort(Features); 1901 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1902 AddedAttr = true; 1903 } 1904 1905 return AddedAttr; 1906 } 1907 1908 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1909 llvm::GlobalObject *GO) { 1910 const Decl *D = GD.getDecl(); 1911 SetCommonAttributes(GD, GO); 1912 1913 if (D) { 1914 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1915 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1916 GV->addAttribute("bss-section", SA->getName()); 1917 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1918 GV->addAttribute("data-section", SA->getName()); 1919 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1920 GV->addAttribute("rodata-section", SA->getName()); 1921 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1922 GV->addAttribute("relro-section", SA->getName()); 1923 } 1924 1925 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1926 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1927 if (!D->getAttr<SectionAttr>()) 1928 F->addFnAttr("implicit-section-name", SA->getName()); 1929 1930 llvm::AttrBuilder Attrs; 1931 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1932 // We know that GetCPUAndFeaturesAttributes will always have the 1933 // newest set, since it has the newest possible FunctionDecl, so the 1934 // new ones should replace the old. 1935 llvm::AttrBuilder RemoveAttrs; 1936 RemoveAttrs.addAttribute("target-cpu"); 1937 RemoveAttrs.addAttribute("target-features"); 1938 RemoveAttrs.addAttribute("tune-cpu"); 1939 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1940 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1941 } 1942 } 1943 1944 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1945 GO->setSection(CSA->getName()); 1946 else if (const auto *SA = D->getAttr<SectionAttr>()) 1947 GO->setSection(SA->getName()); 1948 } 1949 1950 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1951 } 1952 1953 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1954 llvm::Function *F, 1955 const CGFunctionInfo &FI) { 1956 const Decl *D = GD.getDecl(); 1957 SetLLVMFunctionAttributes(GD, FI, F); 1958 SetLLVMFunctionAttributesForDefinition(D, F); 1959 1960 F->setLinkage(llvm::Function::InternalLinkage); 1961 1962 setNonAliasAttributes(GD, F); 1963 } 1964 1965 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1966 // Set linkage and visibility in case we never see a definition. 1967 LinkageInfo LV = ND->getLinkageAndVisibility(); 1968 // Don't set internal linkage on declarations. 1969 // "extern_weak" is overloaded in LLVM; we probably should have 1970 // separate linkage types for this. 1971 if (isExternallyVisible(LV.getLinkage()) && 1972 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1973 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1974 } 1975 1976 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1977 llvm::Function *F) { 1978 // Only if we are checking indirect calls. 1979 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1980 return; 1981 1982 // Non-static class methods are handled via vtable or member function pointer 1983 // checks elsewhere. 1984 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1985 return; 1986 1987 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1988 F->addTypeMetadata(0, MD); 1989 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1990 1991 // Emit a hash-based bit set entry for cross-DSO calls. 1992 if (CodeGenOpts.SanitizeCfiCrossDso) 1993 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1994 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1995 } 1996 1997 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1998 bool IsIncompleteFunction, 1999 bool IsThunk) { 2000 2001 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2002 // If this is an intrinsic function, set the function's attributes 2003 // to the intrinsic's attributes. 2004 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2005 return; 2006 } 2007 2008 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2009 2010 if (!IsIncompleteFunction) 2011 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2012 2013 // Add the Returned attribute for "this", except for iOS 5 and earlier 2014 // where substantial code, including the libstdc++ dylib, was compiled with 2015 // GCC and does not actually return "this". 2016 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2017 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2018 assert(!F->arg_empty() && 2019 F->arg_begin()->getType() 2020 ->canLosslesslyBitCastTo(F->getReturnType()) && 2021 "unexpected this return"); 2022 F->addAttribute(1, llvm::Attribute::Returned); 2023 } 2024 2025 // Only a few attributes are set on declarations; these may later be 2026 // overridden by a definition. 2027 2028 setLinkageForGV(F, FD); 2029 setGVProperties(F, FD); 2030 2031 // Setup target-specific attributes. 2032 if (!IsIncompleteFunction && F->isDeclaration()) 2033 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2034 2035 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2036 F->setSection(CSA->getName()); 2037 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2038 F->setSection(SA->getName()); 2039 2040 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2041 if (FD->isInlineBuiltinDeclaration()) { 2042 const FunctionDecl *FDBody; 2043 bool HasBody = FD->hasBody(FDBody); 2044 (void)HasBody; 2045 assert(HasBody && "Inline builtin declarations should always have an " 2046 "available body!"); 2047 if (shouldEmitFunction(FDBody)) 2048 F->addAttribute(llvm::AttributeList::FunctionIndex, 2049 llvm::Attribute::NoBuiltin); 2050 } 2051 2052 if (FD->isReplaceableGlobalAllocationFunction()) { 2053 // A replaceable global allocation function does not act like a builtin by 2054 // default, only if it is invoked by a new-expression or delete-expression. 2055 F->addAttribute(llvm::AttributeList::FunctionIndex, 2056 llvm::Attribute::NoBuiltin); 2057 } 2058 2059 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2060 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2061 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2062 if (MD->isVirtual()) 2063 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2064 2065 // Don't emit entries for function declarations in the cross-DSO mode. This 2066 // is handled with better precision by the receiving DSO. But if jump tables 2067 // are non-canonical then we need type metadata in order to produce the local 2068 // jump table. 2069 if (!CodeGenOpts.SanitizeCfiCrossDso || 2070 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2071 CreateFunctionTypeMetadataForIcall(FD, F); 2072 2073 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2074 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2075 2076 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2077 // Annotate the callback behavior as metadata: 2078 // - The callback callee (as argument number). 2079 // - The callback payloads (as argument numbers). 2080 llvm::LLVMContext &Ctx = F->getContext(); 2081 llvm::MDBuilder MDB(Ctx); 2082 2083 // The payload indices are all but the first one in the encoding. The first 2084 // identifies the callback callee. 2085 int CalleeIdx = *CB->encoding_begin(); 2086 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2087 F->addMetadata(llvm::LLVMContext::MD_callback, 2088 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2089 CalleeIdx, PayloadIndices, 2090 /* VarArgsArePassed */ false)})); 2091 } 2092 } 2093 2094 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2095 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2096 "Only globals with definition can force usage."); 2097 LLVMUsed.emplace_back(GV); 2098 } 2099 2100 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2101 assert(!GV->isDeclaration() && 2102 "Only globals with definition can force usage."); 2103 LLVMCompilerUsed.emplace_back(GV); 2104 } 2105 2106 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2107 std::vector<llvm::WeakTrackingVH> &List) { 2108 // Don't create llvm.used if there is no need. 2109 if (List.empty()) 2110 return; 2111 2112 // Convert List to what ConstantArray needs. 2113 SmallVector<llvm::Constant*, 8> UsedArray; 2114 UsedArray.resize(List.size()); 2115 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2116 UsedArray[i] = 2117 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2118 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2119 } 2120 2121 if (UsedArray.empty()) 2122 return; 2123 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2124 2125 auto *GV = new llvm::GlobalVariable( 2126 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2127 llvm::ConstantArray::get(ATy, UsedArray), Name); 2128 2129 GV->setSection("llvm.metadata"); 2130 } 2131 2132 void CodeGenModule::emitLLVMUsed() { 2133 emitUsed(*this, "llvm.used", LLVMUsed); 2134 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2135 } 2136 2137 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2138 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2139 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2140 } 2141 2142 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2143 llvm::SmallString<32> Opt; 2144 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2145 if (Opt.empty()) 2146 return; 2147 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2148 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2149 } 2150 2151 void CodeGenModule::AddDependentLib(StringRef Lib) { 2152 auto &C = getLLVMContext(); 2153 if (getTarget().getTriple().isOSBinFormatELF()) { 2154 ELFDependentLibraries.push_back( 2155 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2156 return; 2157 } 2158 2159 llvm::SmallString<24> Opt; 2160 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2161 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2162 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2163 } 2164 2165 /// Add link options implied by the given module, including modules 2166 /// it depends on, using a postorder walk. 2167 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2168 SmallVectorImpl<llvm::MDNode *> &Metadata, 2169 llvm::SmallPtrSet<Module *, 16> &Visited) { 2170 // Import this module's parent. 2171 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2172 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2173 } 2174 2175 // Import this module's dependencies. 2176 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2177 if (Visited.insert(Mod->Imports[I - 1]).second) 2178 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2179 } 2180 2181 // Add linker options to link against the libraries/frameworks 2182 // described by this module. 2183 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2184 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2185 2186 // For modules that use export_as for linking, use that module 2187 // name instead. 2188 if (Mod->UseExportAsModuleLinkName) 2189 return; 2190 2191 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2192 // Link against a framework. Frameworks are currently Darwin only, so we 2193 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2194 if (Mod->LinkLibraries[I-1].IsFramework) { 2195 llvm::Metadata *Args[2] = { 2196 llvm::MDString::get(Context, "-framework"), 2197 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2198 2199 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2200 continue; 2201 } 2202 2203 // Link against a library. 2204 if (IsELF) { 2205 llvm::Metadata *Args[2] = { 2206 llvm::MDString::get(Context, "lib"), 2207 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2208 }; 2209 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2210 } else { 2211 llvm::SmallString<24> Opt; 2212 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2213 Mod->LinkLibraries[I - 1].Library, Opt); 2214 auto *OptString = llvm::MDString::get(Context, Opt); 2215 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2216 } 2217 } 2218 } 2219 2220 void CodeGenModule::EmitModuleLinkOptions() { 2221 // Collect the set of all of the modules we want to visit to emit link 2222 // options, which is essentially the imported modules and all of their 2223 // non-explicit child modules. 2224 llvm::SetVector<clang::Module *> LinkModules; 2225 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2226 SmallVector<clang::Module *, 16> Stack; 2227 2228 // Seed the stack with imported modules. 2229 for (Module *M : ImportedModules) { 2230 // Do not add any link flags when an implementation TU of a module imports 2231 // a header of that same module. 2232 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2233 !getLangOpts().isCompilingModule()) 2234 continue; 2235 if (Visited.insert(M).second) 2236 Stack.push_back(M); 2237 } 2238 2239 // Find all of the modules to import, making a little effort to prune 2240 // non-leaf modules. 2241 while (!Stack.empty()) { 2242 clang::Module *Mod = Stack.pop_back_val(); 2243 2244 bool AnyChildren = false; 2245 2246 // Visit the submodules of this module. 2247 for (const auto &SM : Mod->submodules()) { 2248 // Skip explicit children; they need to be explicitly imported to be 2249 // linked against. 2250 if (SM->IsExplicit) 2251 continue; 2252 2253 if (Visited.insert(SM).second) { 2254 Stack.push_back(SM); 2255 AnyChildren = true; 2256 } 2257 } 2258 2259 // We didn't find any children, so add this module to the list of 2260 // modules to link against. 2261 if (!AnyChildren) { 2262 LinkModules.insert(Mod); 2263 } 2264 } 2265 2266 // Add link options for all of the imported modules in reverse topological 2267 // order. We don't do anything to try to order import link flags with respect 2268 // to linker options inserted by things like #pragma comment(). 2269 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2270 Visited.clear(); 2271 for (Module *M : LinkModules) 2272 if (Visited.insert(M).second) 2273 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2274 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2275 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2276 2277 // Add the linker options metadata flag. 2278 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2279 for (auto *MD : LinkerOptionsMetadata) 2280 NMD->addOperand(MD); 2281 } 2282 2283 void CodeGenModule::EmitDeferred() { 2284 // Emit deferred declare target declarations. 2285 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2286 getOpenMPRuntime().emitDeferredTargetDecls(); 2287 2288 // Emit code for any potentially referenced deferred decls. Since a 2289 // previously unused static decl may become used during the generation of code 2290 // for a static function, iterate until no changes are made. 2291 2292 if (!DeferredVTables.empty()) { 2293 EmitDeferredVTables(); 2294 2295 // Emitting a vtable doesn't directly cause more vtables to 2296 // become deferred, although it can cause functions to be 2297 // emitted that then need those vtables. 2298 assert(DeferredVTables.empty()); 2299 } 2300 2301 // Emit CUDA/HIP static device variables referenced by host code only. 2302 if (getLangOpts().CUDA) 2303 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2304 DeferredDeclsToEmit.push_back(V); 2305 2306 // Stop if we're out of both deferred vtables and deferred declarations. 2307 if (DeferredDeclsToEmit.empty()) 2308 return; 2309 2310 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2311 // work, it will not interfere with this. 2312 std::vector<GlobalDecl> CurDeclsToEmit; 2313 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2314 2315 for (GlobalDecl &D : CurDeclsToEmit) { 2316 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2317 // to get GlobalValue with exactly the type we need, not something that 2318 // might had been created for another decl with the same mangled name but 2319 // different type. 2320 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2321 GetAddrOfGlobal(D, ForDefinition)); 2322 2323 // In case of different address spaces, we may still get a cast, even with 2324 // IsForDefinition equal to true. Query mangled names table to get 2325 // GlobalValue. 2326 if (!GV) 2327 GV = GetGlobalValue(getMangledName(D)); 2328 2329 // Make sure GetGlobalValue returned non-null. 2330 assert(GV); 2331 2332 // Check to see if we've already emitted this. This is necessary 2333 // for a couple of reasons: first, decls can end up in the 2334 // deferred-decls queue multiple times, and second, decls can end 2335 // up with definitions in unusual ways (e.g. by an extern inline 2336 // function acquiring a strong function redefinition). Just 2337 // ignore these cases. 2338 if (!GV->isDeclaration()) 2339 continue; 2340 2341 // If this is OpenMP, check if it is legal to emit this global normally. 2342 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2343 continue; 2344 2345 // Otherwise, emit the definition and move on to the next one. 2346 EmitGlobalDefinition(D, GV); 2347 2348 // If we found out that we need to emit more decls, do that recursively. 2349 // This has the advantage that the decls are emitted in a DFS and related 2350 // ones are close together, which is convenient for testing. 2351 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2352 EmitDeferred(); 2353 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2354 } 2355 } 2356 } 2357 2358 void CodeGenModule::EmitVTablesOpportunistically() { 2359 // Try to emit external vtables as available_externally if they have emitted 2360 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2361 // is not allowed to create new references to things that need to be emitted 2362 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2363 2364 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2365 && "Only emit opportunistic vtables with optimizations"); 2366 2367 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2368 assert(getVTables().isVTableExternal(RD) && 2369 "This queue should only contain external vtables"); 2370 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2371 VTables.GenerateClassData(RD); 2372 } 2373 OpportunisticVTables.clear(); 2374 } 2375 2376 void CodeGenModule::EmitGlobalAnnotations() { 2377 if (Annotations.empty()) 2378 return; 2379 2380 // Create a new global variable for the ConstantStruct in the Module. 2381 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2382 Annotations[0]->getType(), Annotations.size()), Annotations); 2383 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2384 llvm::GlobalValue::AppendingLinkage, 2385 Array, "llvm.global.annotations"); 2386 gv->setSection(AnnotationSection); 2387 } 2388 2389 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2390 llvm::Constant *&AStr = AnnotationStrings[Str]; 2391 if (AStr) 2392 return AStr; 2393 2394 // Not found yet, create a new global. 2395 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2396 auto *gv = 2397 new llvm::GlobalVariable(getModule(), s->getType(), true, 2398 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2399 gv->setSection(AnnotationSection); 2400 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2401 AStr = gv; 2402 return gv; 2403 } 2404 2405 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2406 SourceManager &SM = getContext().getSourceManager(); 2407 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2408 if (PLoc.isValid()) 2409 return EmitAnnotationString(PLoc.getFilename()); 2410 return EmitAnnotationString(SM.getBufferName(Loc)); 2411 } 2412 2413 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2414 SourceManager &SM = getContext().getSourceManager(); 2415 PresumedLoc PLoc = SM.getPresumedLoc(L); 2416 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2417 SM.getExpansionLineNumber(L); 2418 return llvm::ConstantInt::get(Int32Ty, LineNo); 2419 } 2420 2421 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2422 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2423 if (Exprs.empty()) 2424 return llvm::ConstantPointerNull::get(Int8PtrTy); 2425 2426 llvm::FoldingSetNodeID ID; 2427 for (Expr *E : Exprs) { 2428 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2429 } 2430 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2431 if (Lookup) 2432 return Lookup; 2433 2434 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2435 LLVMArgs.reserve(Exprs.size()); 2436 ConstantEmitter ConstEmiter(*this); 2437 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2438 const auto *CE = cast<clang::ConstantExpr>(E); 2439 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2440 CE->getType()); 2441 }); 2442 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2443 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2444 llvm::GlobalValue::PrivateLinkage, Struct, 2445 ".args"); 2446 GV->setSection(AnnotationSection); 2447 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2448 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2449 2450 Lookup = Bitcasted; 2451 return Bitcasted; 2452 } 2453 2454 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2455 const AnnotateAttr *AA, 2456 SourceLocation L) { 2457 // Get the globals for file name, annotation, and the line number. 2458 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2459 *UnitGV = EmitAnnotationUnit(L), 2460 *LineNoCst = EmitAnnotationLineNo(L), 2461 *Args = EmitAnnotationArgs(AA); 2462 2463 llvm::Constant *ASZeroGV = GV; 2464 if (GV->getAddressSpace() != 0) { 2465 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2466 GV, GV->getValueType()->getPointerTo(0)); 2467 } 2468 2469 // Create the ConstantStruct for the global annotation. 2470 llvm::Constant *Fields[] = { 2471 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2472 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2473 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2474 LineNoCst, 2475 Args, 2476 }; 2477 return llvm::ConstantStruct::getAnon(Fields); 2478 } 2479 2480 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2481 llvm::GlobalValue *GV) { 2482 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2483 // Get the struct elements for these annotations. 2484 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2485 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2486 } 2487 2488 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2489 llvm::Function *Fn, 2490 SourceLocation Loc) const { 2491 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2492 // Blacklist by function name. 2493 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2494 return true; 2495 // Blacklist by location. 2496 if (Loc.isValid()) 2497 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2498 // If location is unknown, this may be a compiler-generated function. Assume 2499 // it's located in the main file. 2500 auto &SM = Context.getSourceManager(); 2501 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2502 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2503 } 2504 return false; 2505 } 2506 2507 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2508 SourceLocation Loc, QualType Ty, 2509 StringRef Category) const { 2510 // For now globals can be blacklisted only in ASan and KASan. 2511 const SanitizerMask EnabledAsanMask = 2512 LangOpts.Sanitize.Mask & 2513 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2514 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2515 SanitizerKind::MemTag); 2516 if (!EnabledAsanMask) 2517 return false; 2518 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2519 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2520 return true; 2521 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2522 return true; 2523 // Check global type. 2524 if (!Ty.isNull()) { 2525 // Drill down the array types: if global variable of a fixed type is 2526 // blacklisted, we also don't instrument arrays of them. 2527 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2528 Ty = AT->getElementType(); 2529 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2530 // We allow to blacklist only record types (classes, structs etc.) 2531 if (Ty->isRecordType()) { 2532 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2533 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2534 return true; 2535 } 2536 } 2537 return false; 2538 } 2539 2540 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2541 StringRef Category) const { 2542 const auto &XRayFilter = getContext().getXRayFilter(); 2543 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2544 auto Attr = ImbueAttr::NONE; 2545 if (Loc.isValid()) 2546 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2547 if (Attr == ImbueAttr::NONE) 2548 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2549 switch (Attr) { 2550 case ImbueAttr::NONE: 2551 return false; 2552 case ImbueAttr::ALWAYS: 2553 Fn->addFnAttr("function-instrument", "xray-always"); 2554 break; 2555 case ImbueAttr::ALWAYS_ARG1: 2556 Fn->addFnAttr("function-instrument", "xray-always"); 2557 Fn->addFnAttr("xray-log-args", "1"); 2558 break; 2559 case ImbueAttr::NEVER: 2560 Fn->addFnAttr("function-instrument", "xray-never"); 2561 break; 2562 } 2563 return true; 2564 } 2565 2566 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2567 SourceLocation Loc) const { 2568 const auto &ProfileList = getContext().getProfileList(); 2569 // If the profile list is empty, then instrument everything. 2570 if (ProfileList.isEmpty()) 2571 return false; 2572 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2573 // First, check the function name. 2574 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2575 if (V.hasValue()) 2576 return *V; 2577 // Next, check the source location. 2578 if (Loc.isValid()) { 2579 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2580 if (V.hasValue()) 2581 return *V; 2582 } 2583 // If location is unknown, this may be a compiler-generated function. Assume 2584 // it's located in the main file. 2585 auto &SM = Context.getSourceManager(); 2586 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2587 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2588 if (V.hasValue()) 2589 return *V; 2590 } 2591 return ProfileList.getDefault(); 2592 } 2593 2594 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2595 // Never defer when EmitAllDecls is specified. 2596 if (LangOpts.EmitAllDecls) 2597 return true; 2598 2599 if (CodeGenOpts.KeepStaticConsts) { 2600 const auto *VD = dyn_cast<VarDecl>(Global); 2601 if (VD && VD->getType().isConstQualified() && 2602 VD->getStorageDuration() == SD_Static) 2603 return true; 2604 } 2605 2606 return getContext().DeclMustBeEmitted(Global); 2607 } 2608 2609 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2610 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2611 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2612 // Implicit template instantiations may change linkage if they are later 2613 // explicitly instantiated, so they should not be emitted eagerly. 2614 return false; 2615 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2616 // not emit them eagerly unless we sure that the function must be emitted on 2617 // the host. 2618 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2619 !LangOpts.OpenMPIsDevice && 2620 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2621 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2622 return false; 2623 } 2624 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2625 if (Context.getInlineVariableDefinitionKind(VD) == 2626 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2627 // A definition of an inline constexpr static data member may change 2628 // linkage later if it's redeclared outside the class. 2629 return false; 2630 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2631 // codegen for global variables, because they may be marked as threadprivate. 2632 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2633 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2634 !isTypeConstant(Global->getType(), false) && 2635 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2636 return false; 2637 2638 return true; 2639 } 2640 2641 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2642 StringRef Name = getMangledName(GD); 2643 2644 // The UUID descriptor should be pointer aligned. 2645 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2646 2647 // Look for an existing global. 2648 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2649 return ConstantAddress(GV, Alignment); 2650 2651 ConstantEmitter Emitter(*this); 2652 llvm::Constant *Init; 2653 2654 APValue &V = GD->getAsAPValue(); 2655 if (!V.isAbsent()) { 2656 // If possible, emit the APValue version of the initializer. In particular, 2657 // this gets the type of the constant right. 2658 Init = Emitter.emitForInitializer( 2659 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2660 } else { 2661 // As a fallback, directly construct the constant. 2662 // FIXME: This may get padding wrong under esoteric struct layout rules. 2663 // MSVC appears to create a complete type 'struct __s_GUID' that it 2664 // presumably uses to represent these constants. 2665 MSGuidDecl::Parts Parts = GD->getParts(); 2666 llvm::Constant *Fields[4] = { 2667 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2668 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2669 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2670 llvm::ConstantDataArray::getRaw( 2671 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2672 Int8Ty)}; 2673 Init = llvm::ConstantStruct::getAnon(Fields); 2674 } 2675 2676 auto *GV = new llvm::GlobalVariable( 2677 getModule(), Init->getType(), 2678 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2679 if (supportsCOMDAT()) 2680 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2681 setDSOLocal(GV); 2682 2683 llvm::Constant *Addr = GV; 2684 if (!V.isAbsent()) { 2685 Emitter.finalize(GV); 2686 } else { 2687 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2688 Addr = llvm::ConstantExpr::getBitCast( 2689 GV, Ty->getPointerTo(GV->getAddressSpace())); 2690 } 2691 return ConstantAddress(Addr, Alignment); 2692 } 2693 2694 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2695 const TemplateParamObjectDecl *TPO) { 2696 StringRef Name = getMangledName(TPO); 2697 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2698 2699 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2700 return ConstantAddress(GV, Alignment); 2701 2702 ConstantEmitter Emitter(*this); 2703 llvm::Constant *Init = Emitter.emitForInitializer( 2704 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2705 2706 if (!Init) { 2707 ErrorUnsupported(TPO, "template parameter object"); 2708 return ConstantAddress::invalid(); 2709 } 2710 2711 auto *GV = new llvm::GlobalVariable( 2712 getModule(), Init->getType(), 2713 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2714 if (supportsCOMDAT()) 2715 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2716 Emitter.finalize(GV); 2717 2718 return ConstantAddress(GV, Alignment); 2719 } 2720 2721 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2722 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2723 assert(AA && "No alias?"); 2724 2725 CharUnits Alignment = getContext().getDeclAlign(VD); 2726 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2727 2728 // See if there is already something with the target's name in the module. 2729 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2730 if (Entry) { 2731 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2732 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2733 return ConstantAddress(Ptr, Alignment); 2734 } 2735 2736 llvm::Constant *Aliasee; 2737 if (isa<llvm::FunctionType>(DeclTy)) 2738 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2739 GlobalDecl(cast<FunctionDecl>(VD)), 2740 /*ForVTable=*/false); 2741 else 2742 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2743 llvm::PointerType::getUnqual(DeclTy), 2744 nullptr); 2745 2746 auto *F = cast<llvm::GlobalValue>(Aliasee); 2747 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2748 WeakRefReferences.insert(F); 2749 2750 return ConstantAddress(Aliasee, Alignment); 2751 } 2752 2753 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2754 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2755 2756 // Weak references don't produce any output by themselves. 2757 if (Global->hasAttr<WeakRefAttr>()) 2758 return; 2759 2760 // If this is an alias definition (which otherwise looks like a declaration) 2761 // emit it now. 2762 if (Global->hasAttr<AliasAttr>()) 2763 return EmitAliasDefinition(GD); 2764 2765 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2766 if (Global->hasAttr<IFuncAttr>()) 2767 return emitIFuncDefinition(GD); 2768 2769 // If this is a cpu_dispatch multiversion function, emit the resolver. 2770 if (Global->hasAttr<CPUDispatchAttr>()) 2771 return emitCPUDispatchDefinition(GD); 2772 2773 // If this is CUDA, be selective about which declarations we emit. 2774 if (LangOpts.CUDA) { 2775 if (LangOpts.CUDAIsDevice) { 2776 if (!Global->hasAttr<CUDADeviceAttr>() && 2777 !Global->hasAttr<CUDAGlobalAttr>() && 2778 !Global->hasAttr<CUDAConstantAttr>() && 2779 !Global->hasAttr<CUDASharedAttr>() && 2780 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2781 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2782 return; 2783 } else { 2784 // We need to emit host-side 'shadows' for all global 2785 // device-side variables because the CUDA runtime needs their 2786 // size and host-side address in order to provide access to 2787 // their device-side incarnations. 2788 2789 // So device-only functions are the only things we skip. 2790 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2791 Global->hasAttr<CUDADeviceAttr>()) 2792 return; 2793 2794 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2795 "Expected Variable or Function"); 2796 } 2797 } 2798 2799 if (LangOpts.OpenMP) { 2800 // If this is OpenMP, check if it is legal to emit this global normally. 2801 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2802 return; 2803 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2804 if (MustBeEmitted(Global)) 2805 EmitOMPDeclareReduction(DRD); 2806 return; 2807 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2808 if (MustBeEmitted(Global)) 2809 EmitOMPDeclareMapper(DMD); 2810 return; 2811 } 2812 } 2813 2814 // Ignore declarations, they will be emitted on their first use. 2815 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2816 // Forward declarations are emitted lazily on first use. 2817 if (!FD->doesThisDeclarationHaveABody()) { 2818 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2819 return; 2820 2821 StringRef MangledName = getMangledName(GD); 2822 2823 // Compute the function info and LLVM type. 2824 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2825 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2826 2827 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2828 /*DontDefer=*/false); 2829 return; 2830 } 2831 } else { 2832 const auto *VD = cast<VarDecl>(Global); 2833 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2834 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2835 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2836 if (LangOpts.OpenMP) { 2837 // Emit declaration of the must-be-emitted declare target variable. 2838 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2839 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2840 bool UnifiedMemoryEnabled = 2841 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2842 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2843 !UnifiedMemoryEnabled) { 2844 (void)GetAddrOfGlobalVar(VD); 2845 } else { 2846 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2847 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2848 UnifiedMemoryEnabled)) && 2849 "Link clause or to clause with unified memory expected."); 2850 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2851 } 2852 2853 return; 2854 } 2855 } 2856 // If this declaration may have caused an inline variable definition to 2857 // change linkage, make sure that it's emitted. 2858 if (Context.getInlineVariableDefinitionKind(VD) == 2859 ASTContext::InlineVariableDefinitionKind::Strong) 2860 GetAddrOfGlobalVar(VD); 2861 return; 2862 } 2863 } 2864 2865 // Defer code generation to first use when possible, e.g. if this is an inline 2866 // function. If the global must always be emitted, do it eagerly if possible 2867 // to benefit from cache locality. 2868 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2869 // Emit the definition if it can't be deferred. 2870 EmitGlobalDefinition(GD); 2871 return; 2872 } 2873 2874 // If we're deferring emission of a C++ variable with an 2875 // initializer, remember the order in which it appeared in the file. 2876 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2877 cast<VarDecl>(Global)->hasInit()) { 2878 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2879 CXXGlobalInits.push_back(nullptr); 2880 } 2881 2882 StringRef MangledName = getMangledName(GD); 2883 if (GetGlobalValue(MangledName) != nullptr) { 2884 // The value has already been used and should therefore be emitted. 2885 addDeferredDeclToEmit(GD); 2886 } else if (MustBeEmitted(Global)) { 2887 // The value must be emitted, but cannot be emitted eagerly. 2888 assert(!MayBeEmittedEagerly(Global)); 2889 addDeferredDeclToEmit(GD); 2890 } else { 2891 // Otherwise, remember that we saw a deferred decl with this name. The 2892 // first use of the mangled name will cause it to move into 2893 // DeferredDeclsToEmit. 2894 DeferredDecls[MangledName] = GD; 2895 } 2896 } 2897 2898 // Check if T is a class type with a destructor that's not dllimport. 2899 static bool HasNonDllImportDtor(QualType T) { 2900 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2901 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2902 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2903 return true; 2904 2905 return false; 2906 } 2907 2908 namespace { 2909 struct FunctionIsDirectlyRecursive 2910 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2911 const StringRef Name; 2912 const Builtin::Context &BI; 2913 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2914 : Name(N), BI(C) {} 2915 2916 bool VisitCallExpr(const CallExpr *E) { 2917 const FunctionDecl *FD = E->getDirectCallee(); 2918 if (!FD) 2919 return false; 2920 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2921 if (Attr && Name == Attr->getLabel()) 2922 return true; 2923 unsigned BuiltinID = FD->getBuiltinID(); 2924 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2925 return false; 2926 StringRef BuiltinName = BI.getName(BuiltinID); 2927 if (BuiltinName.startswith("__builtin_") && 2928 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2929 return true; 2930 } 2931 return false; 2932 } 2933 2934 bool VisitStmt(const Stmt *S) { 2935 for (const Stmt *Child : S->children()) 2936 if (Child && this->Visit(Child)) 2937 return true; 2938 return false; 2939 } 2940 }; 2941 2942 // Make sure we're not referencing non-imported vars or functions. 2943 struct DLLImportFunctionVisitor 2944 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2945 bool SafeToInline = true; 2946 2947 bool shouldVisitImplicitCode() const { return true; } 2948 2949 bool VisitVarDecl(VarDecl *VD) { 2950 if (VD->getTLSKind()) { 2951 // A thread-local variable cannot be imported. 2952 SafeToInline = false; 2953 return SafeToInline; 2954 } 2955 2956 // A variable definition might imply a destructor call. 2957 if (VD->isThisDeclarationADefinition()) 2958 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2959 2960 return SafeToInline; 2961 } 2962 2963 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2964 if (const auto *D = E->getTemporary()->getDestructor()) 2965 SafeToInline = D->hasAttr<DLLImportAttr>(); 2966 return SafeToInline; 2967 } 2968 2969 bool VisitDeclRefExpr(DeclRefExpr *E) { 2970 ValueDecl *VD = E->getDecl(); 2971 if (isa<FunctionDecl>(VD)) 2972 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2973 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2974 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2975 return SafeToInline; 2976 } 2977 2978 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2979 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2980 return SafeToInline; 2981 } 2982 2983 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2984 CXXMethodDecl *M = E->getMethodDecl(); 2985 if (!M) { 2986 // Call through a pointer to member function. This is safe to inline. 2987 SafeToInline = true; 2988 } else { 2989 SafeToInline = M->hasAttr<DLLImportAttr>(); 2990 } 2991 return SafeToInline; 2992 } 2993 2994 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2995 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2996 return SafeToInline; 2997 } 2998 2999 bool VisitCXXNewExpr(CXXNewExpr *E) { 3000 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3001 return SafeToInline; 3002 } 3003 }; 3004 } 3005 3006 // isTriviallyRecursive - Check if this function calls another 3007 // decl that, because of the asm attribute or the other decl being a builtin, 3008 // ends up pointing to itself. 3009 bool 3010 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3011 StringRef Name; 3012 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3013 // asm labels are a special kind of mangling we have to support. 3014 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3015 if (!Attr) 3016 return false; 3017 Name = Attr->getLabel(); 3018 } else { 3019 Name = FD->getName(); 3020 } 3021 3022 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3023 const Stmt *Body = FD->getBody(); 3024 return Body ? Walker.Visit(Body) : false; 3025 } 3026 3027 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3028 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3029 return true; 3030 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3031 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3032 return false; 3033 3034 if (F->hasAttr<DLLImportAttr>()) { 3035 // Check whether it would be safe to inline this dllimport function. 3036 DLLImportFunctionVisitor Visitor; 3037 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3038 if (!Visitor.SafeToInline) 3039 return false; 3040 3041 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3042 // Implicit destructor invocations aren't captured in the AST, so the 3043 // check above can't see them. Check for them manually here. 3044 for (const Decl *Member : Dtor->getParent()->decls()) 3045 if (isa<FieldDecl>(Member)) 3046 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3047 return false; 3048 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3049 if (HasNonDllImportDtor(B.getType())) 3050 return false; 3051 } 3052 } 3053 3054 // PR9614. Avoid cases where the source code is lying to us. An available 3055 // externally function should have an equivalent function somewhere else, 3056 // but a function that calls itself through asm label/`__builtin_` trickery is 3057 // clearly not equivalent to the real implementation. 3058 // This happens in glibc's btowc and in some configure checks. 3059 return !isTriviallyRecursive(F); 3060 } 3061 3062 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3063 return CodeGenOpts.OptimizationLevel > 0; 3064 } 3065 3066 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3067 llvm::GlobalValue *GV) { 3068 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3069 3070 if (FD->isCPUSpecificMultiVersion()) { 3071 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3072 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3073 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3074 // Requires multiple emits. 3075 } else 3076 EmitGlobalFunctionDefinition(GD, GV); 3077 } 3078 3079 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3080 const auto *D = cast<ValueDecl>(GD.getDecl()); 3081 3082 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3083 Context.getSourceManager(), 3084 "Generating code for declaration"); 3085 3086 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3087 // At -O0, don't generate IR for functions with available_externally 3088 // linkage. 3089 if (!shouldEmitFunction(GD)) 3090 return; 3091 3092 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3093 std::string Name; 3094 llvm::raw_string_ostream OS(Name); 3095 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3096 /*Qualified=*/true); 3097 return Name; 3098 }); 3099 3100 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3101 // Make sure to emit the definition(s) before we emit the thunks. 3102 // This is necessary for the generation of certain thunks. 3103 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3104 ABI->emitCXXStructor(GD); 3105 else if (FD->isMultiVersion()) 3106 EmitMultiVersionFunctionDefinition(GD, GV); 3107 else 3108 EmitGlobalFunctionDefinition(GD, GV); 3109 3110 if (Method->isVirtual()) 3111 getVTables().EmitThunks(GD); 3112 3113 return; 3114 } 3115 3116 if (FD->isMultiVersion()) 3117 return EmitMultiVersionFunctionDefinition(GD, GV); 3118 return EmitGlobalFunctionDefinition(GD, GV); 3119 } 3120 3121 if (const auto *VD = dyn_cast<VarDecl>(D)) 3122 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3123 3124 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3125 } 3126 3127 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3128 llvm::Function *NewFn); 3129 3130 static unsigned 3131 TargetMVPriority(const TargetInfo &TI, 3132 const CodeGenFunction::MultiVersionResolverOption &RO) { 3133 unsigned Priority = 0; 3134 for (StringRef Feat : RO.Conditions.Features) 3135 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3136 3137 if (!RO.Conditions.Architecture.empty()) 3138 Priority = std::max( 3139 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3140 return Priority; 3141 } 3142 3143 void CodeGenModule::emitMultiVersionFunctions() { 3144 for (GlobalDecl GD : MultiVersionFuncs) { 3145 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3146 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3147 getContext().forEachMultiversionedFunctionVersion( 3148 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3149 GlobalDecl CurGD{ 3150 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3151 StringRef MangledName = getMangledName(CurGD); 3152 llvm::Constant *Func = GetGlobalValue(MangledName); 3153 if (!Func) { 3154 if (CurFD->isDefined()) { 3155 EmitGlobalFunctionDefinition(CurGD, nullptr); 3156 Func = GetGlobalValue(MangledName); 3157 } else { 3158 const CGFunctionInfo &FI = 3159 getTypes().arrangeGlobalDeclaration(GD); 3160 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3161 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3162 /*DontDefer=*/false, ForDefinition); 3163 } 3164 assert(Func && "This should have just been created"); 3165 } 3166 3167 const auto *TA = CurFD->getAttr<TargetAttr>(); 3168 llvm::SmallVector<StringRef, 8> Feats; 3169 TA->getAddedFeatures(Feats); 3170 3171 Options.emplace_back(cast<llvm::Function>(Func), 3172 TA->getArchitecture(), Feats); 3173 }); 3174 3175 llvm::Function *ResolverFunc; 3176 const TargetInfo &TI = getTarget(); 3177 3178 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3179 ResolverFunc = cast<llvm::Function>( 3180 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3181 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3182 } else { 3183 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3184 } 3185 3186 if (supportsCOMDAT()) 3187 ResolverFunc->setComdat( 3188 getModule().getOrInsertComdat(ResolverFunc->getName())); 3189 3190 llvm::stable_sort( 3191 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3192 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3193 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3194 }); 3195 CodeGenFunction CGF(*this); 3196 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3197 } 3198 } 3199 3200 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3201 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3202 assert(FD && "Not a FunctionDecl?"); 3203 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3204 assert(DD && "Not a cpu_dispatch Function?"); 3205 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3206 3207 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3208 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3209 DeclTy = getTypes().GetFunctionType(FInfo); 3210 } 3211 3212 StringRef ResolverName = getMangledName(GD); 3213 3214 llvm::Type *ResolverType; 3215 GlobalDecl ResolverGD; 3216 if (getTarget().supportsIFunc()) 3217 ResolverType = llvm::FunctionType::get( 3218 llvm::PointerType::get(DeclTy, 3219 Context.getTargetAddressSpace(FD->getType())), 3220 false); 3221 else { 3222 ResolverType = DeclTy; 3223 ResolverGD = GD; 3224 } 3225 3226 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3227 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3228 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3229 if (supportsCOMDAT()) 3230 ResolverFunc->setComdat( 3231 getModule().getOrInsertComdat(ResolverFunc->getName())); 3232 3233 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3234 const TargetInfo &Target = getTarget(); 3235 unsigned Index = 0; 3236 for (const IdentifierInfo *II : DD->cpus()) { 3237 // Get the name of the target function so we can look it up/create it. 3238 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3239 getCPUSpecificMangling(*this, II->getName()); 3240 3241 llvm::Constant *Func = GetGlobalValue(MangledName); 3242 3243 if (!Func) { 3244 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3245 if (ExistingDecl.getDecl() && 3246 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3247 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3248 Func = GetGlobalValue(MangledName); 3249 } else { 3250 if (!ExistingDecl.getDecl()) 3251 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3252 3253 Func = GetOrCreateLLVMFunction( 3254 MangledName, DeclTy, ExistingDecl, 3255 /*ForVTable=*/false, /*DontDefer=*/true, 3256 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3257 } 3258 } 3259 3260 llvm::SmallVector<StringRef, 32> Features; 3261 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3262 llvm::transform(Features, Features.begin(), 3263 [](StringRef Str) { return Str.substr(1); }); 3264 Features.erase(std::remove_if( 3265 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3266 return !Target.validateCpuSupports(Feat); 3267 }), Features.end()); 3268 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3269 ++Index; 3270 } 3271 3272 llvm::sort( 3273 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3274 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3275 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3276 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3277 }); 3278 3279 // If the list contains multiple 'default' versions, such as when it contains 3280 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3281 // always run on at least a 'pentium'). We do this by deleting the 'least 3282 // advanced' (read, lowest mangling letter). 3283 while (Options.size() > 1 && 3284 CodeGenFunction::GetX86CpuSupportsMask( 3285 (Options.end() - 2)->Conditions.Features) == 0) { 3286 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3287 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3288 if (LHSName.compare(RHSName) < 0) 3289 Options.erase(Options.end() - 2); 3290 else 3291 Options.erase(Options.end() - 1); 3292 } 3293 3294 CodeGenFunction CGF(*this); 3295 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3296 3297 if (getTarget().supportsIFunc()) { 3298 std::string AliasName = getMangledNameImpl( 3299 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3300 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3301 if (!AliasFunc) { 3302 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3303 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3304 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3305 auto *GA = llvm::GlobalAlias::create( 3306 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3307 GA->setLinkage(llvm::Function::WeakODRLinkage); 3308 SetCommonAttributes(GD, GA); 3309 } 3310 } 3311 } 3312 3313 /// If a dispatcher for the specified mangled name is not in the module, create 3314 /// and return an llvm Function with the specified type. 3315 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3316 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3317 std::string MangledName = 3318 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3319 3320 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3321 // a separate resolver). 3322 std::string ResolverName = MangledName; 3323 if (getTarget().supportsIFunc()) 3324 ResolverName += ".ifunc"; 3325 else if (FD->isTargetMultiVersion()) 3326 ResolverName += ".resolver"; 3327 3328 // If this already exists, just return that one. 3329 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3330 return ResolverGV; 3331 3332 // Since this is the first time we've created this IFunc, make sure 3333 // that we put this multiversioned function into the list to be 3334 // replaced later if necessary (target multiversioning only). 3335 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3336 MultiVersionFuncs.push_back(GD); 3337 3338 if (getTarget().supportsIFunc()) { 3339 llvm::Type *ResolverType = llvm::FunctionType::get( 3340 llvm::PointerType::get( 3341 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3342 false); 3343 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3344 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3345 /*ForVTable=*/false); 3346 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3347 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3348 GIF->setName(ResolverName); 3349 SetCommonAttributes(FD, GIF); 3350 3351 return GIF; 3352 } 3353 3354 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3355 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3356 assert(isa<llvm::GlobalValue>(Resolver) && 3357 "Resolver should be created for the first time"); 3358 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3359 return Resolver; 3360 } 3361 3362 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3363 /// module, create and return an llvm Function with the specified type. If there 3364 /// is something in the module with the specified name, return it potentially 3365 /// bitcasted to the right type. 3366 /// 3367 /// If D is non-null, it specifies a decl that correspond to this. This is used 3368 /// to set the attributes on the function when it is first created. 3369 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3370 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3371 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3372 ForDefinition_t IsForDefinition) { 3373 const Decl *D = GD.getDecl(); 3374 3375 // Any attempts to use a MultiVersion function should result in retrieving 3376 // the iFunc instead. Name Mangling will handle the rest of the changes. 3377 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3378 // For the device mark the function as one that should be emitted. 3379 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3380 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3381 !DontDefer && !IsForDefinition) { 3382 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3383 GlobalDecl GDDef; 3384 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3385 GDDef = GlobalDecl(CD, GD.getCtorType()); 3386 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3387 GDDef = GlobalDecl(DD, GD.getDtorType()); 3388 else 3389 GDDef = GlobalDecl(FDDef); 3390 EmitGlobal(GDDef); 3391 } 3392 } 3393 3394 if (FD->isMultiVersion()) { 3395 if (FD->hasAttr<TargetAttr>()) 3396 UpdateMultiVersionNames(GD, FD); 3397 if (!IsForDefinition) 3398 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3399 } 3400 } 3401 3402 // Lookup the entry, lazily creating it if necessary. 3403 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3404 if (Entry) { 3405 if (WeakRefReferences.erase(Entry)) { 3406 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3407 if (FD && !FD->hasAttr<WeakAttr>()) 3408 Entry->setLinkage(llvm::Function::ExternalLinkage); 3409 } 3410 3411 // Handle dropped DLL attributes. 3412 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3413 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3414 setDSOLocal(Entry); 3415 } 3416 3417 // If there are two attempts to define the same mangled name, issue an 3418 // error. 3419 if (IsForDefinition && !Entry->isDeclaration()) { 3420 GlobalDecl OtherGD; 3421 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3422 // to make sure that we issue an error only once. 3423 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3424 (GD.getCanonicalDecl().getDecl() != 3425 OtherGD.getCanonicalDecl().getDecl()) && 3426 DiagnosedConflictingDefinitions.insert(GD).second) { 3427 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3428 << MangledName; 3429 getDiags().Report(OtherGD.getDecl()->getLocation(), 3430 diag::note_previous_definition); 3431 } 3432 } 3433 3434 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3435 (Entry->getValueType() == Ty)) { 3436 return Entry; 3437 } 3438 3439 // Make sure the result is of the correct type. 3440 // (If function is requested for a definition, we always need to create a new 3441 // function, not just return a bitcast.) 3442 if (!IsForDefinition) 3443 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3444 } 3445 3446 // This function doesn't have a complete type (for example, the return 3447 // type is an incomplete struct). Use a fake type instead, and make 3448 // sure not to try to set attributes. 3449 bool IsIncompleteFunction = false; 3450 3451 llvm::FunctionType *FTy; 3452 if (isa<llvm::FunctionType>(Ty)) { 3453 FTy = cast<llvm::FunctionType>(Ty); 3454 } else { 3455 FTy = llvm::FunctionType::get(VoidTy, false); 3456 IsIncompleteFunction = true; 3457 } 3458 3459 llvm::Function *F = 3460 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3461 Entry ? StringRef() : MangledName, &getModule()); 3462 3463 // If we already created a function with the same mangled name (but different 3464 // type) before, take its name and add it to the list of functions to be 3465 // replaced with F at the end of CodeGen. 3466 // 3467 // This happens if there is a prototype for a function (e.g. "int f()") and 3468 // then a definition of a different type (e.g. "int f(int x)"). 3469 if (Entry) { 3470 F->takeName(Entry); 3471 3472 // This might be an implementation of a function without a prototype, in 3473 // which case, try to do special replacement of calls which match the new 3474 // prototype. The really key thing here is that we also potentially drop 3475 // arguments from the call site so as to make a direct call, which makes the 3476 // inliner happier and suppresses a number of optimizer warnings (!) about 3477 // dropping arguments. 3478 if (!Entry->use_empty()) { 3479 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3480 Entry->removeDeadConstantUsers(); 3481 } 3482 3483 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3484 F, Entry->getValueType()->getPointerTo()); 3485 addGlobalValReplacement(Entry, BC); 3486 } 3487 3488 assert(F->getName() == MangledName && "name was uniqued!"); 3489 if (D) 3490 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3491 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3492 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3493 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3494 } 3495 3496 if (!DontDefer) { 3497 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3498 // each other bottoming out with the base dtor. Therefore we emit non-base 3499 // dtors on usage, even if there is no dtor definition in the TU. 3500 if (D && isa<CXXDestructorDecl>(D) && 3501 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3502 GD.getDtorType())) 3503 addDeferredDeclToEmit(GD); 3504 3505 // This is the first use or definition of a mangled name. If there is a 3506 // deferred decl with this name, remember that we need to emit it at the end 3507 // of the file. 3508 auto DDI = DeferredDecls.find(MangledName); 3509 if (DDI != DeferredDecls.end()) { 3510 // Move the potentially referenced deferred decl to the 3511 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3512 // don't need it anymore). 3513 addDeferredDeclToEmit(DDI->second); 3514 DeferredDecls.erase(DDI); 3515 3516 // Otherwise, there are cases we have to worry about where we're 3517 // using a declaration for which we must emit a definition but where 3518 // we might not find a top-level definition: 3519 // - member functions defined inline in their classes 3520 // - friend functions defined inline in some class 3521 // - special member functions with implicit definitions 3522 // If we ever change our AST traversal to walk into class methods, 3523 // this will be unnecessary. 3524 // 3525 // We also don't emit a definition for a function if it's going to be an 3526 // entry in a vtable, unless it's already marked as used. 3527 } else if (getLangOpts().CPlusPlus && D) { 3528 // Look for a declaration that's lexically in a record. 3529 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3530 FD = FD->getPreviousDecl()) { 3531 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3532 if (FD->doesThisDeclarationHaveABody()) { 3533 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3534 break; 3535 } 3536 } 3537 } 3538 } 3539 } 3540 3541 // Make sure the result is of the requested type. 3542 if (!IsIncompleteFunction) { 3543 assert(F->getFunctionType() == Ty); 3544 return F; 3545 } 3546 3547 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3548 return llvm::ConstantExpr::getBitCast(F, PTy); 3549 } 3550 3551 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3552 /// non-null, then this function will use the specified type if it has to 3553 /// create it (this occurs when we see a definition of the function). 3554 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3555 llvm::Type *Ty, 3556 bool ForVTable, 3557 bool DontDefer, 3558 ForDefinition_t IsForDefinition) { 3559 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3560 "consteval function should never be emitted"); 3561 // If there was no specific requested type, just convert it now. 3562 if (!Ty) { 3563 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3564 Ty = getTypes().ConvertType(FD->getType()); 3565 } 3566 3567 // Devirtualized destructor calls may come through here instead of via 3568 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3569 // of the complete destructor when necessary. 3570 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3571 if (getTarget().getCXXABI().isMicrosoft() && 3572 GD.getDtorType() == Dtor_Complete && 3573 DD->getParent()->getNumVBases() == 0) 3574 GD = GlobalDecl(DD, Dtor_Base); 3575 } 3576 3577 StringRef MangledName = getMangledName(GD); 3578 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3579 /*IsThunk=*/false, llvm::AttributeList(), 3580 IsForDefinition); 3581 } 3582 3583 static const FunctionDecl * 3584 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3585 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3586 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3587 3588 IdentifierInfo &CII = C.Idents.get(Name); 3589 for (const auto &Result : DC->lookup(&CII)) 3590 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3591 return FD; 3592 3593 if (!C.getLangOpts().CPlusPlus) 3594 return nullptr; 3595 3596 // Demangle the premangled name from getTerminateFn() 3597 IdentifierInfo &CXXII = 3598 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3599 ? C.Idents.get("terminate") 3600 : C.Idents.get(Name); 3601 3602 for (const auto &N : {"__cxxabiv1", "std"}) { 3603 IdentifierInfo &NS = C.Idents.get(N); 3604 for (const auto &Result : DC->lookup(&NS)) { 3605 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3606 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3607 for (const auto &Result : LSD->lookup(&NS)) 3608 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3609 break; 3610 3611 if (ND) 3612 for (const auto &Result : ND->lookup(&CXXII)) 3613 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3614 return FD; 3615 } 3616 } 3617 3618 return nullptr; 3619 } 3620 3621 /// CreateRuntimeFunction - Create a new runtime function with the specified 3622 /// type and name. 3623 llvm::FunctionCallee 3624 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3625 llvm::AttributeList ExtraAttrs, bool Local, 3626 bool AssumeConvergent) { 3627 if (AssumeConvergent) { 3628 ExtraAttrs = 3629 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3630 llvm::Attribute::Convergent); 3631 } 3632 3633 llvm::Constant *C = 3634 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3635 /*DontDefer=*/false, /*IsThunk=*/false, 3636 ExtraAttrs); 3637 3638 if (auto *F = dyn_cast<llvm::Function>(C)) { 3639 if (F->empty()) { 3640 F->setCallingConv(getRuntimeCC()); 3641 3642 // In Windows Itanium environments, try to mark runtime functions 3643 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3644 // will link their standard library statically or dynamically. Marking 3645 // functions imported when they are not imported can cause linker errors 3646 // and warnings. 3647 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3648 !getCodeGenOpts().LTOVisibilityPublicStd) { 3649 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3650 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3651 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3652 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3653 } 3654 } 3655 setDSOLocal(F); 3656 } 3657 } 3658 3659 return {FTy, C}; 3660 } 3661 3662 /// isTypeConstant - Determine whether an object of this type can be emitted 3663 /// as a constant. 3664 /// 3665 /// If ExcludeCtor is true, the duration when the object's constructor runs 3666 /// will not be considered. The caller will need to verify that the object is 3667 /// not written to during its construction. 3668 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3669 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3670 return false; 3671 3672 if (Context.getLangOpts().CPlusPlus) { 3673 if (const CXXRecordDecl *Record 3674 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3675 return ExcludeCtor && !Record->hasMutableFields() && 3676 Record->hasTrivialDestructor(); 3677 } 3678 3679 return true; 3680 } 3681 3682 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3683 /// create and return an llvm GlobalVariable with the specified type. If there 3684 /// is something in the module with the specified name, return it potentially 3685 /// bitcasted to the right type. 3686 /// 3687 /// If D is non-null, it specifies a decl that correspond to this. This is used 3688 /// to set the attributes on the global when it is first created. 3689 /// 3690 /// If IsForDefinition is true, it is guaranteed that an actual global with 3691 /// type Ty will be returned, not conversion of a variable with the same 3692 /// mangled name but some other type. 3693 llvm::Constant * 3694 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3695 llvm::PointerType *Ty, 3696 const VarDecl *D, 3697 ForDefinition_t IsForDefinition) { 3698 // Lookup the entry, lazily creating it if necessary. 3699 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3700 if (Entry) { 3701 if (WeakRefReferences.erase(Entry)) { 3702 if (D && !D->hasAttr<WeakAttr>()) 3703 Entry->setLinkage(llvm::Function::ExternalLinkage); 3704 } 3705 3706 // Handle dropped DLL attributes. 3707 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3708 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3709 3710 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3711 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3712 3713 if (Entry->getType() == Ty) 3714 return Entry; 3715 3716 // If there are two attempts to define the same mangled name, issue an 3717 // error. 3718 if (IsForDefinition && !Entry->isDeclaration()) { 3719 GlobalDecl OtherGD; 3720 const VarDecl *OtherD; 3721 3722 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3723 // to make sure that we issue an error only once. 3724 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3725 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3726 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3727 OtherD->hasInit() && 3728 DiagnosedConflictingDefinitions.insert(D).second) { 3729 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3730 << MangledName; 3731 getDiags().Report(OtherGD.getDecl()->getLocation(), 3732 diag::note_previous_definition); 3733 } 3734 } 3735 3736 // Make sure the result is of the correct type. 3737 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3738 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3739 3740 // (If global is requested for a definition, we always need to create a new 3741 // global, not just return a bitcast.) 3742 if (!IsForDefinition) 3743 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3744 } 3745 3746 auto AddrSpace = GetGlobalVarAddressSpace(D); 3747 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3748 3749 auto *GV = new llvm::GlobalVariable( 3750 getModule(), Ty->getElementType(), false, 3751 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3752 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3753 3754 // If we already created a global with the same mangled name (but different 3755 // type) before, take its name and remove it from its parent. 3756 if (Entry) { 3757 GV->takeName(Entry); 3758 3759 if (!Entry->use_empty()) { 3760 llvm::Constant *NewPtrForOldDecl = 3761 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3762 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3763 } 3764 3765 Entry->eraseFromParent(); 3766 } 3767 3768 // This is the first use or definition of a mangled name. If there is a 3769 // deferred decl with this name, remember that we need to emit it at the end 3770 // of the file. 3771 auto DDI = DeferredDecls.find(MangledName); 3772 if (DDI != DeferredDecls.end()) { 3773 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3774 // list, and remove it from DeferredDecls (since we don't need it anymore). 3775 addDeferredDeclToEmit(DDI->second); 3776 DeferredDecls.erase(DDI); 3777 } 3778 3779 // Handle things which are present even on external declarations. 3780 if (D) { 3781 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3782 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3783 3784 // FIXME: This code is overly simple and should be merged with other global 3785 // handling. 3786 GV->setConstant(isTypeConstant(D->getType(), false)); 3787 3788 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3789 3790 setLinkageForGV(GV, D); 3791 3792 if (D->getTLSKind()) { 3793 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3794 CXXThreadLocals.push_back(D); 3795 setTLSMode(GV, *D); 3796 } 3797 3798 setGVProperties(GV, D); 3799 3800 // If required by the ABI, treat declarations of static data members with 3801 // inline initializers as definitions. 3802 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3803 EmitGlobalVarDefinition(D); 3804 } 3805 3806 // Emit section information for extern variables. 3807 if (D->hasExternalStorage()) { 3808 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3809 GV->setSection(SA->getName()); 3810 } 3811 3812 // Handle XCore specific ABI requirements. 3813 if (getTriple().getArch() == llvm::Triple::xcore && 3814 D->getLanguageLinkage() == CLanguageLinkage && 3815 D->getType().isConstant(Context) && 3816 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3817 GV->setSection(".cp.rodata"); 3818 3819 // Check if we a have a const declaration with an initializer, we may be 3820 // able to emit it as available_externally to expose it's value to the 3821 // optimizer. 3822 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3823 D->getType().isConstQualified() && !GV->hasInitializer() && 3824 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3825 const auto *Record = 3826 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3827 bool HasMutableFields = Record && Record->hasMutableFields(); 3828 if (!HasMutableFields) { 3829 const VarDecl *InitDecl; 3830 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3831 if (InitExpr) { 3832 ConstantEmitter emitter(*this); 3833 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3834 if (Init) { 3835 auto *InitType = Init->getType(); 3836 if (GV->getValueType() != InitType) { 3837 // The type of the initializer does not match the definition. 3838 // This happens when an initializer has a different type from 3839 // the type of the global (because of padding at the end of a 3840 // structure for instance). 3841 GV->setName(StringRef()); 3842 // Make a new global with the correct type, this is now guaranteed 3843 // to work. 3844 auto *NewGV = cast<llvm::GlobalVariable>( 3845 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3846 ->stripPointerCasts()); 3847 3848 // Erase the old global, since it is no longer used. 3849 GV->eraseFromParent(); 3850 GV = NewGV; 3851 } else { 3852 GV->setInitializer(Init); 3853 GV->setConstant(true); 3854 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3855 } 3856 emitter.finalize(GV); 3857 } 3858 } 3859 } 3860 } 3861 } 3862 3863 if (GV->isDeclaration()) 3864 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3865 3866 LangAS ExpectedAS = 3867 D ? D->getType().getAddressSpace() 3868 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3869 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3870 Ty->getPointerAddressSpace()); 3871 if (AddrSpace != ExpectedAS) 3872 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3873 ExpectedAS, Ty); 3874 3875 return GV; 3876 } 3877 3878 llvm::Constant * 3879 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3880 const Decl *D = GD.getDecl(); 3881 3882 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3883 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3884 /*DontDefer=*/false, IsForDefinition); 3885 3886 if (isa<CXXMethodDecl>(D)) { 3887 auto FInfo = 3888 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3889 auto Ty = getTypes().GetFunctionType(*FInfo); 3890 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3891 IsForDefinition); 3892 } 3893 3894 if (isa<FunctionDecl>(D)) { 3895 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3896 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3897 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3898 IsForDefinition); 3899 } 3900 3901 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3902 } 3903 3904 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3905 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3906 unsigned Alignment) { 3907 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3908 llvm::GlobalVariable *OldGV = nullptr; 3909 3910 if (GV) { 3911 // Check if the variable has the right type. 3912 if (GV->getValueType() == Ty) 3913 return GV; 3914 3915 // Because C++ name mangling, the only way we can end up with an already 3916 // existing global with the same name is if it has been declared extern "C". 3917 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3918 OldGV = GV; 3919 } 3920 3921 // Create a new variable. 3922 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3923 Linkage, nullptr, Name); 3924 3925 if (OldGV) { 3926 // Replace occurrences of the old variable if needed. 3927 GV->takeName(OldGV); 3928 3929 if (!OldGV->use_empty()) { 3930 llvm::Constant *NewPtrForOldDecl = 3931 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3932 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3933 } 3934 3935 OldGV->eraseFromParent(); 3936 } 3937 3938 if (supportsCOMDAT() && GV->isWeakForLinker() && 3939 !GV->hasAvailableExternallyLinkage()) 3940 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3941 3942 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3943 3944 return GV; 3945 } 3946 3947 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3948 /// given global variable. If Ty is non-null and if the global doesn't exist, 3949 /// then it will be created with the specified type instead of whatever the 3950 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3951 /// that an actual global with type Ty will be returned, not conversion of a 3952 /// variable with the same mangled name but some other type. 3953 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3954 llvm::Type *Ty, 3955 ForDefinition_t IsForDefinition) { 3956 assert(D->hasGlobalStorage() && "Not a global variable"); 3957 QualType ASTTy = D->getType(); 3958 if (!Ty) 3959 Ty = getTypes().ConvertTypeForMem(ASTTy); 3960 3961 llvm::PointerType *PTy = 3962 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3963 3964 StringRef MangledName = getMangledName(D); 3965 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3966 } 3967 3968 /// CreateRuntimeVariable - Create a new runtime global variable with the 3969 /// specified type and name. 3970 llvm::Constant * 3971 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3972 StringRef Name) { 3973 auto PtrTy = 3974 getContext().getLangOpts().OpenCL 3975 ? llvm::PointerType::get( 3976 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3977 : llvm::PointerType::getUnqual(Ty); 3978 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3979 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3980 return Ret; 3981 } 3982 3983 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3984 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3985 3986 StringRef MangledName = getMangledName(D); 3987 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3988 3989 // We already have a definition, not declaration, with the same mangled name. 3990 // Emitting of declaration is not required (and actually overwrites emitted 3991 // definition). 3992 if (GV && !GV->isDeclaration()) 3993 return; 3994 3995 // If we have not seen a reference to this variable yet, place it into the 3996 // deferred declarations table to be emitted if needed later. 3997 if (!MustBeEmitted(D) && !GV) { 3998 DeferredDecls[MangledName] = D; 3999 return; 4000 } 4001 4002 // The tentative definition is the only definition. 4003 EmitGlobalVarDefinition(D); 4004 } 4005 4006 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4007 EmitExternalVarDeclaration(D); 4008 } 4009 4010 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4011 return Context.toCharUnitsFromBits( 4012 getDataLayout().getTypeStoreSizeInBits(Ty)); 4013 } 4014 4015 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4016 LangAS AddrSpace = LangAS::Default; 4017 if (LangOpts.OpenCL) { 4018 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4019 assert(AddrSpace == LangAS::opencl_global || 4020 AddrSpace == LangAS::opencl_global_device || 4021 AddrSpace == LangAS::opencl_global_host || 4022 AddrSpace == LangAS::opencl_constant || 4023 AddrSpace == LangAS::opencl_local || 4024 AddrSpace >= LangAS::FirstTargetAddressSpace); 4025 return AddrSpace; 4026 } 4027 4028 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4029 if (D && D->hasAttr<CUDAConstantAttr>()) 4030 return LangAS::cuda_constant; 4031 else if (D && D->hasAttr<CUDASharedAttr>()) 4032 return LangAS::cuda_shared; 4033 else if (D && D->hasAttr<CUDADeviceAttr>()) 4034 return LangAS::cuda_device; 4035 else if (D && D->getType().isConstQualified()) 4036 return LangAS::cuda_constant; 4037 else 4038 return LangAS::cuda_device; 4039 } 4040 4041 if (LangOpts.OpenMP) { 4042 LangAS AS; 4043 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4044 return AS; 4045 } 4046 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4047 } 4048 4049 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4050 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4051 if (LangOpts.OpenCL) 4052 return LangAS::opencl_constant; 4053 if (auto AS = getTarget().getConstantAddressSpace()) 4054 return AS.getValue(); 4055 return LangAS::Default; 4056 } 4057 4058 // In address space agnostic languages, string literals are in default address 4059 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4060 // emitted in constant address space in LLVM IR. To be consistent with other 4061 // parts of AST, string literal global variables in constant address space 4062 // need to be casted to default address space before being put into address 4063 // map and referenced by other part of CodeGen. 4064 // In OpenCL, string literals are in constant address space in AST, therefore 4065 // they should not be casted to default address space. 4066 static llvm::Constant * 4067 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4068 llvm::GlobalVariable *GV) { 4069 llvm::Constant *Cast = GV; 4070 if (!CGM.getLangOpts().OpenCL) { 4071 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4072 if (AS != LangAS::Default) 4073 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4074 CGM, GV, AS.getValue(), LangAS::Default, 4075 GV->getValueType()->getPointerTo( 4076 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4077 } 4078 } 4079 return Cast; 4080 } 4081 4082 template<typename SomeDecl> 4083 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4084 llvm::GlobalValue *GV) { 4085 if (!getLangOpts().CPlusPlus) 4086 return; 4087 4088 // Must have 'used' attribute, or else inline assembly can't rely on 4089 // the name existing. 4090 if (!D->template hasAttr<UsedAttr>()) 4091 return; 4092 4093 // Must have internal linkage and an ordinary name. 4094 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4095 return; 4096 4097 // Must be in an extern "C" context. Entities declared directly within 4098 // a record are not extern "C" even if the record is in such a context. 4099 const SomeDecl *First = D->getFirstDecl(); 4100 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4101 return; 4102 4103 // OK, this is an internal linkage entity inside an extern "C" linkage 4104 // specification. Make a note of that so we can give it the "expected" 4105 // mangled name if nothing else is using that name. 4106 std::pair<StaticExternCMap::iterator, bool> R = 4107 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4108 4109 // If we have multiple internal linkage entities with the same name 4110 // in extern "C" regions, none of them gets that name. 4111 if (!R.second) 4112 R.first->second = nullptr; 4113 } 4114 4115 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4116 if (!CGM.supportsCOMDAT()) 4117 return false; 4118 4119 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4120 // them being "merged" by the COMDAT Folding linker optimization. 4121 if (D.hasAttr<CUDAGlobalAttr>()) 4122 return false; 4123 4124 if (D.hasAttr<SelectAnyAttr>()) 4125 return true; 4126 4127 GVALinkage Linkage; 4128 if (auto *VD = dyn_cast<VarDecl>(&D)) 4129 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4130 else 4131 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4132 4133 switch (Linkage) { 4134 case GVA_Internal: 4135 case GVA_AvailableExternally: 4136 case GVA_StrongExternal: 4137 return false; 4138 case GVA_DiscardableODR: 4139 case GVA_StrongODR: 4140 return true; 4141 } 4142 llvm_unreachable("No such linkage"); 4143 } 4144 4145 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4146 llvm::GlobalObject &GO) { 4147 if (!shouldBeInCOMDAT(*this, D)) 4148 return; 4149 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4150 } 4151 4152 /// Pass IsTentative as true if you want to create a tentative definition. 4153 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4154 bool IsTentative) { 4155 // OpenCL global variables of sampler type are translated to function calls, 4156 // therefore no need to be translated. 4157 QualType ASTTy = D->getType(); 4158 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4159 return; 4160 4161 // If this is OpenMP device, check if it is legal to emit this global 4162 // normally. 4163 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4164 OpenMPRuntime->emitTargetGlobalVariable(D)) 4165 return; 4166 4167 llvm::Constant *Init = nullptr; 4168 bool NeedsGlobalCtor = false; 4169 bool NeedsGlobalDtor = 4170 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4171 4172 const VarDecl *InitDecl; 4173 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4174 4175 Optional<ConstantEmitter> emitter; 4176 4177 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4178 // as part of their declaration." Sema has already checked for 4179 // error cases, so we just need to set Init to UndefValue. 4180 bool IsCUDASharedVar = 4181 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4182 // Shadows of initialized device-side global variables are also left 4183 // undefined. 4184 bool IsCUDAShadowVar = 4185 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4186 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4187 D->hasAttr<CUDASharedAttr>()); 4188 bool IsCUDADeviceShadowVar = 4189 getLangOpts().CUDAIsDevice && 4190 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4191 D->getType()->isCUDADeviceBuiltinTextureType() || 4192 D->hasAttr<HIPManagedAttr>()); 4193 // HIP pinned shadow of initialized host-side global variables are also 4194 // left undefined. 4195 if (getLangOpts().CUDA && 4196 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4197 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4198 else if (D->hasAttr<LoaderUninitializedAttr>()) 4199 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4200 else if (!InitExpr) { 4201 // This is a tentative definition; tentative definitions are 4202 // implicitly initialized with { 0 }. 4203 // 4204 // Note that tentative definitions are only emitted at the end of 4205 // a translation unit, so they should never have incomplete 4206 // type. In addition, EmitTentativeDefinition makes sure that we 4207 // never attempt to emit a tentative definition if a real one 4208 // exists. A use may still exists, however, so we still may need 4209 // to do a RAUW. 4210 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4211 Init = EmitNullConstant(D->getType()); 4212 } else { 4213 initializedGlobalDecl = GlobalDecl(D); 4214 emitter.emplace(*this); 4215 Init = emitter->tryEmitForInitializer(*InitDecl); 4216 4217 if (!Init) { 4218 QualType T = InitExpr->getType(); 4219 if (D->getType()->isReferenceType()) 4220 T = D->getType(); 4221 4222 if (getLangOpts().CPlusPlus) { 4223 Init = EmitNullConstant(T); 4224 NeedsGlobalCtor = true; 4225 } else { 4226 ErrorUnsupported(D, "static initializer"); 4227 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4228 } 4229 } else { 4230 // We don't need an initializer, so remove the entry for the delayed 4231 // initializer position (just in case this entry was delayed) if we 4232 // also don't need to register a destructor. 4233 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4234 DelayedCXXInitPosition.erase(D); 4235 } 4236 } 4237 4238 llvm::Type* InitType = Init->getType(); 4239 llvm::Constant *Entry = 4240 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4241 4242 // Strip off pointer casts if we got them. 4243 Entry = Entry->stripPointerCasts(); 4244 4245 // Entry is now either a Function or GlobalVariable. 4246 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4247 4248 // We have a definition after a declaration with the wrong type. 4249 // We must make a new GlobalVariable* and update everything that used OldGV 4250 // (a declaration or tentative definition) with the new GlobalVariable* 4251 // (which will be a definition). 4252 // 4253 // This happens if there is a prototype for a global (e.g. 4254 // "extern int x[];") and then a definition of a different type (e.g. 4255 // "int x[10];"). This also happens when an initializer has a different type 4256 // from the type of the global (this happens with unions). 4257 if (!GV || GV->getValueType() != InitType || 4258 GV->getType()->getAddressSpace() != 4259 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4260 4261 // Move the old entry aside so that we'll create a new one. 4262 Entry->setName(StringRef()); 4263 4264 // Make a new global with the correct type, this is now guaranteed to work. 4265 GV = cast<llvm::GlobalVariable>( 4266 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4267 ->stripPointerCasts()); 4268 4269 // Replace all uses of the old global with the new global 4270 llvm::Constant *NewPtrForOldDecl = 4271 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4272 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4273 4274 // Erase the old global, since it is no longer used. 4275 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4276 } 4277 4278 MaybeHandleStaticInExternC(D, GV); 4279 4280 if (D->hasAttr<AnnotateAttr>()) 4281 AddGlobalAnnotations(D, GV); 4282 4283 // Set the llvm linkage type as appropriate. 4284 llvm::GlobalValue::LinkageTypes Linkage = 4285 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4286 4287 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4288 // the device. [...]" 4289 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4290 // __device__, declares a variable that: [...] 4291 // Is accessible from all the threads within the grid and from the host 4292 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4293 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4294 if (GV && LangOpts.CUDA) { 4295 if (LangOpts.CUDAIsDevice) { 4296 if (Linkage != llvm::GlobalValue::InternalLinkage && 4297 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4298 GV->setExternallyInitialized(true); 4299 } else { 4300 // Host-side shadows of external declarations of device-side 4301 // global variables become internal definitions. These have to 4302 // be internal in order to prevent name conflicts with global 4303 // host variables with the same name in a different TUs. 4304 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4305 Linkage = llvm::GlobalValue::InternalLinkage; 4306 // Shadow variables and their properties must be registered with CUDA 4307 // runtime. Skip Extern global variables, which will be registered in 4308 // the TU where they are defined. 4309 // 4310 // Don't register a C++17 inline variable. The local symbol can be 4311 // discarded and referencing a discarded local symbol from outside the 4312 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4313 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4314 if (!D->hasExternalStorage() && !D->isInline()) 4315 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4316 D->hasAttr<CUDAConstantAttr>()); 4317 } else if (D->hasAttr<CUDASharedAttr>()) { 4318 // __shared__ variables are odd. Shadows do get created, but 4319 // they are not registered with the CUDA runtime, so they 4320 // can't really be used to access their device-side 4321 // counterparts. It's not clear yet whether it's nvcc's bug or 4322 // a feature, but we've got to do the same for compatibility. 4323 Linkage = llvm::GlobalValue::InternalLinkage; 4324 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4325 D->getType()->isCUDADeviceBuiltinTextureType()) { 4326 // Builtin surfaces and textures and their template arguments are 4327 // also registered with CUDA runtime. 4328 Linkage = llvm::GlobalValue::InternalLinkage; 4329 const ClassTemplateSpecializationDecl *TD = 4330 cast<ClassTemplateSpecializationDecl>( 4331 D->getType()->getAs<RecordType>()->getDecl()); 4332 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4333 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4334 assert(Args.size() == 2 && 4335 "Unexpected number of template arguments of CUDA device " 4336 "builtin surface type."); 4337 auto SurfType = Args[1].getAsIntegral(); 4338 if (!D->hasExternalStorage()) 4339 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4340 SurfType.getSExtValue()); 4341 } else { 4342 assert(Args.size() == 3 && 4343 "Unexpected number of template arguments of CUDA device " 4344 "builtin texture type."); 4345 auto TexType = Args[1].getAsIntegral(); 4346 auto Normalized = Args[2].getAsIntegral(); 4347 if (!D->hasExternalStorage()) 4348 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4349 TexType.getSExtValue(), 4350 Normalized.getZExtValue()); 4351 } 4352 } 4353 } 4354 } 4355 4356 GV->setInitializer(Init); 4357 if (emitter) 4358 emitter->finalize(GV); 4359 4360 // If it is safe to mark the global 'constant', do so now. 4361 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4362 isTypeConstant(D->getType(), true)); 4363 4364 // If it is in a read-only section, mark it 'constant'. 4365 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4366 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4367 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4368 GV->setConstant(true); 4369 } 4370 4371 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4372 4373 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4374 // function is only defined alongside the variable, not also alongside 4375 // callers. Normally, all accesses to a thread_local go through the 4376 // thread-wrapper in order to ensure initialization has occurred, underlying 4377 // variable will never be used other than the thread-wrapper, so it can be 4378 // converted to internal linkage. 4379 // 4380 // However, if the variable has the 'constinit' attribute, it _can_ be 4381 // referenced directly, without calling the thread-wrapper, so the linkage 4382 // must not be changed. 4383 // 4384 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4385 // weak or linkonce, the de-duplication semantics are important to preserve, 4386 // so we don't change the linkage. 4387 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4388 Linkage == llvm::GlobalValue::ExternalLinkage && 4389 Context.getTargetInfo().getTriple().isOSDarwin() && 4390 !D->hasAttr<ConstInitAttr>()) 4391 Linkage = llvm::GlobalValue::InternalLinkage; 4392 4393 GV->setLinkage(Linkage); 4394 if (D->hasAttr<DLLImportAttr>()) 4395 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4396 else if (D->hasAttr<DLLExportAttr>()) 4397 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4398 else 4399 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4400 4401 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4402 // common vars aren't constant even if declared const. 4403 GV->setConstant(false); 4404 // Tentative definition of global variables may be initialized with 4405 // non-zero null pointers. In this case they should have weak linkage 4406 // since common linkage must have zero initializer and must not have 4407 // explicit section therefore cannot have non-zero initial value. 4408 if (!GV->getInitializer()->isNullValue()) 4409 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4410 } 4411 4412 setNonAliasAttributes(D, GV); 4413 4414 if (D->getTLSKind() && !GV->isThreadLocal()) { 4415 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4416 CXXThreadLocals.push_back(D); 4417 setTLSMode(GV, *D); 4418 } 4419 4420 maybeSetTrivialComdat(*D, *GV); 4421 4422 // Emit the initializer function if necessary. 4423 if (NeedsGlobalCtor || NeedsGlobalDtor) 4424 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4425 4426 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4427 4428 // Emit global variable debug information. 4429 if (CGDebugInfo *DI = getModuleDebugInfo()) 4430 if (getCodeGenOpts().hasReducedDebugInfo()) 4431 DI->EmitGlobalVariable(GV, D); 4432 } 4433 4434 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4435 if (CGDebugInfo *DI = getModuleDebugInfo()) 4436 if (getCodeGenOpts().hasReducedDebugInfo()) { 4437 QualType ASTTy = D->getType(); 4438 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4439 llvm::PointerType *PTy = 4440 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4441 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4442 DI->EmitExternalVariable( 4443 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4444 } 4445 } 4446 4447 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4448 CodeGenModule &CGM, const VarDecl *D, 4449 bool NoCommon) { 4450 // Don't give variables common linkage if -fno-common was specified unless it 4451 // was overridden by a NoCommon attribute. 4452 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4453 return true; 4454 4455 // C11 6.9.2/2: 4456 // A declaration of an identifier for an object that has file scope without 4457 // an initializer, and without a storage-class specifier or with the 4458 // storage-class specifier static, constitutes a tentative definition. 4459 if (D->getInit() || D->hasExternalStorage()) 4460 return true; 4461 4462 // A variable cannot be both common and exist in a section. 4463 if (D->hasAttr<SectionAttr>()) 4464 return true; 4465 4466 // A variable cannot be both common and exist in a section. 4467 // We don't try to determine which is the right section in the front-end. 4468 // If no specialized section name is applicable, it will resort to default. 4469 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4470 D->hasAttr<PragmaClangDataSectionAttr>() || 4471 D->hasAttr<PragmaClangRelroSectionAttr>() || 4472 D->hasAttr<PragmaClangRodataSectionAttr>()) 4473 return true; 4474 4475 // Thread local vars aren't considered common linkage. 4476 if (D->getTLSKind()) 4477 return true; 4478 4479 // Tentative definitions marked with WeakImportAttr are true definitions. 4480 if (D->hasAttr<WeakImportAttr>()) 4481 return true; 4482 4483 // A variable cannot be both common and exist in a comdat. 4484 if (shouldBeInCOMDAT(CGM, *D)) 4485 return true; 4486 4487 // Declarations with a required alignment do not have common linkage in MSVC 4488 // mode. 4489 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4490 if (D->hasAttr<AlignedAttr>()) 4491 return true; 4492 QualType VarType = D->getType(); 4493 if (Context.isAlignmentRequired(VarType)) 4494 return true; 4495 4496 if (const auto *RT = VarType->getAs<RecordType>()) { 4497 const RecordDecl *RD = RT->getDecl(); 4498 for (const FieldDecl *FD : RD->fields()) { 4499 if (FD->isBitField()) 4500 continue; 4501 if (FD->hasAttr<AlignedAttr>()) 4502 return true; 4503 if (Context.isAlignmentRequired(FD->getType())) 4504 return true; 4505 } 4506 } 4507 } 4508 4509 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4510 // common symbols, so symbols with greater alignment requirements cannot be 4511 // common. 4512 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4513 // alignments for common symbols via the aligncomm directive, so this 4514 // restriction only applies to MSVC environments. 4515 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4516 Context.getTypeAlignIfKnown(D->getType()) > 4517 Context.toBits(CharUnits::fromQuantity(32))) 4518 return true; 4519 4520 return false; 4521 } 4522 4523 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4524 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4525 if (Linkage == GVA_Internal) 4526 return llvm::Function::InternalLinkage; 4527 4528 if (D->hasAttr<WeakAttr>()) { 4529 if (IsConstantVariable) 4530 return llvm::GlobalVariable::WeakODRLinkage; 4531 else 4532 return llvm::GlobalVariable::WeakAnyLinkage; 4533 } 4534 4535 if (const auto *FD = D->getAsFunction()) 4536 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4537 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4538 4539 // We are guaranteed to have a strong definition somewhere else, 4540 // so we can use available_externally linkage. 4541 if (Linkage == GVA_AvailableExternally) 4542 return llvm::GlobalValue::AvailableExternallyLinkage; 4543 4544 // Note that Apple's kernel linker doesn't support symbol 4545 // coalescing, so we need to avoid linkonce and weak linkages there. 4546 // Normally, this means we just map to internal, but for explicit 4547 // instantiations we'll map to external. 4548 4549 // In C++, the compiler has to emit a definition in every translation unit 4550 // that references the function. We should use linkonce_odr because 4551 // a) if all references in this translation unit are optimized away, we 4552 // don't need to codegen it. b) if the function persists, it needs to be 4553 // merged with other definitions. c) C++ has the ODR, so we know the 4554 // definition is dependable. 4555 if (Linkage == GVA_DiscardableODR) 4556 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4557 : llvm::Function::InternalLinkage; 4558 4559 // An explicit instantiation of a template has weak linkage, since 4560 // explicit instantiations can occur in multiple translation units 4561 // and must all be equivalent. However, we are not allowed to 4562 // throw away these explicit instantiations. 4563 // 4564 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4565 // so say that CUDA templates are either external (for kernels) or internal. 4566 // This lets llvm perform aggressive inter-procedural optimizations. For 4567 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4568 // therefore we need to follow the normal linkage paradigm. 4569 if (Linkage == GVA_StrongODR) { 4570 if (getLangOpts().AppleKext) 4571 return llvm::Function::ExternalLinkage; 4572 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4573 !getLangOpts().GPURelocatableDeviceCode) 4574 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4575 : llvm::Function::InternalLinkage; 4576 return llvm::Function::WeakODRLinkage; 4577 } 4578 4579 // C++ doesn't have tentative definitions and thus cannot have common 4580 // linkage. 4581 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4582 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4583 CodeGenOpts.NoCommon)) 4584 return llvm::GlobalVariable::CommonLinkage; 4585 4586 // selectany symbols are externally visible, so use weak instead of 4587 // linkonce. MSVC optimizes away references to const selectany globals, so 4588 // all definitions should be the same and ODR linkage should be used. 4589 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4590 if (D->hasAttr<SelectAnyAttr>()) 4591 return llvm::GlobalVariable::WeakODRLinkage; 4592 4593 // Otherwise, we have strong external linkage. 4594 assert(Linkage == GVA_StrongExternal); 4595 return llvm::GlobalVariable::ExternalLinkage; 4596 } 4597 4598 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4599 const VarDecl *VD, bool IsConstant) { 4600 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4601 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4602 } 4603 4604 /// Replace the uses of a function that was declared with a non-proto type. 4605 /// We want to silently drop extra arguments from call sites 4606 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4607 llvm::Function *newFn) { 4608 // Fast path. 4609 if (old->use_empty()) return; 4610 4611 llvm::Type *newRetTy = newFn->getReturnType(); 4612 SmallVector<llvm::Value*, 4> newArgs; 4613 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4614 4615 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4616 ui != ue; ) { 4617 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4618 llvm::User *user = use->getUser(); 4619 4620 // Recognize and replace uses of bitcasts. Most calls to 4621 // unprototyped functions will use bitcasts. 4622 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4623 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4624 replaceUsesOfNonProtoConstant(bitcast, newFn); 4625 continue; 4626 } 4627 4628 // Recognize calls to the function. 4629 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4630 if (!callSite) continue; 4631 if (!callSite->isCallee(&*use)) 4632 continue; 4633 4634 // If the return types don't match exactly, then we can't 4635 // transform this call unless it's dead. 4636 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4637 continue; 4638 4639 // Get the call site's attribute list. 4640 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4641 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4642 4643 // If the function was passed too few arguments, don't transform. 4644 unsigned newNumArgs = newFn->arg_size(); 4645 if (callSite->arg_size() < newNumArgs) 4646 continue; 4647 4648 // If extra arguments were passed, we silently drop them. 4649 // If any of the types mismatch, we don't transform. 4650 unsigned argNo = 0; 4651 bool dontTransform = false; 4652 for (llvm::Argument &A : newFn->args()) { 4653 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4654 dontTransform = true; 4655 break; 4656 } 4657 4658 // Add any parameter attributes. 4659 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4660 argNo++; 4661 } 4662 if (dontTransform) 4663 continue; 4664 4665 // Okay, we can transform this. Create the new call instruction and copy 4666 // over the required information. 4667 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4668 4669 // Copy over any operand bundles. 4670 callSite->getOperandBundlesAsDefs(newBundles); 4671 4672 llvm::CallBase *newCall; 4673 if (dyn_cast<llvm::CallInst>(callSite)) { 4674 newCall = 4675 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4676 } else { 4677 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4678 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4679 oldInvoke->getUnwindDest(), newArgs, 4680 newBundles, "", callSite); 4681 } 4682 newArgs.clear(); // for the next iteration 4683 4684 if (!newCall->getType()->isVoidTy()) 4685 newCall->takeName(callSite); 4686 newCall->setAttributes(llvm::AttributeList::get( 4687 newFn->getContext(), oldAttrs.getFnAttributes(), 4688 oldAttrs.getRetAttributes(), newArgAttrs)); 4689 newCall->setCallingConv(callSite->getCallingConv()); 4690 4691 // Finally, remove the old call, replacing any uses with the new one. 4692 if (!callSite->use_empty()) 4693 callSite->replaceAllUsesWith(newCall); 4694 4695 // Copy debug location attached to CI. 4696 if (callSite->getDebugLoc()) 4697 newCall->setDebugLoc(callSite->getDebugLoc()); 4698 4699 callSite->eraseFromParent(); 4700 } 4701 } 4702 4703 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4704 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4705 /// existing call uses of the old function in the module, this adjusts them to 4706 /// call the new function directly. 4707 /// 4708 /// This is not just a cleanup: the always_inline pass requires direct calls to 4709 /// functions to be able to inline them. If there is a bitcast in the way, it 4710 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4711 /// run at -O0. 4712 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4713 llvm::Function *NewFn) { 4714 // If we're redefining a global as a function, don't transform it. 4715 if (!isa<llvm::Function>(Old)) return; 4716 4717 replaceUsesOfNonProtoConstant(Old, NewFn); 4718 } 4719 4720 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4721 auto DK = VD->isThisDeclarationADefinition(); 4722 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4723 return; 4724 4725 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4726 // If we have a definition, this might be a deferred decl. If the 4727 // instantiation is explicit, make sure we emit it at the end. 4728 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4729 GetAddrOfGlobalVar(VD); 4730 4731 EmitTopLevelDecl(VD); 4732 } 4733 4734 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4735 llvm::GlobalValue *GV) { 4736 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4737 4738 // Compute the function info and LLVM type. 4739 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4740 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4741 4742 // Get or create the prototype for the function. 4743 if (!GV || (GV->getValueType() != Ty)) 4744 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4745 /*DontDefer=*/true, 4746 ForDefinition)); 4747 4748 // Already emitted. 4749 if (!GV->isDeclaration()) 4750 return; 4751 4752 // We need to set linkage and visibility on the function before 4753 // generating code for it because various parts of IR generation 4754 // want to propagate this information down (e.g. to local static 4755 // declarations). 4756 auto *Fn = cast<llvm::Function>(GV); 4757 setFunctionLinkage(GD, Fn); 4758 4759 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4760 setGVProperties(Fn, GD); 4761 4762 MaybeHandleStaticInExternC(D, Fn); 4763 4764 maybeSetTrivialComdat(*D, *Fn); 4765 4766 // Set CodeGen attributes that represent floating point environment. 4767 setLLVMFunctionFEnvAttributes(D, Fn); 4768 4769 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4770 4771 setNonAliasAttributes(GD, Fn); 4772 SetLLVMFunctionAttributesForDefinition(D, Fn); 4773 4774 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4775 AddGlobalCtor(Fn, CA->getPriority()); 4776 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4777 AddGlobalDtor(Fn, DA->getPriority(), true); 4778 if (D->hasAttr<AnnotateAttr>()) 4779 AddGlobalAnnotations(D, Fn); 4780 } 4781 4782 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4783 const auto *D = cast<ValueDecl>(GD.getDecl()); 4784 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4785 assert(AA && "Not an alias?"); 4786 4787 StringRef MangledName = getMangledName(GD); 4788 4789 if (AA->getAliasee() == MangledName) { 4790 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4791 return; 4792 } 4793 4794 // If there is a definition in the module, then it wins over the alias. 4795 // This is dubious, but allow it to be safe. Just ignore the alias. 4796 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4797 if (Entry && !Entry->isDeclaration()) 4798 return; 4799 4800 Aliases.push_back(GD); 4801 4802 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4803 4804 // Create a reference to the named value. This ensures that it is emitted 4805 // if a deferred decl. 4806 llvm::Constant *Aliasee; 4807 llvm::GlobalValue::LinkageTypes LT; 4808 if (isa<llvm::FunctionType>(DeclTy)) { 4809 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4810 /*ForVTable=*/false); 4811 LT = getFunctionLinkage(GD); 4812 } else { 4813 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4814 llvm::PointerType::getUnqual(DeclTy), 4815 /*D=*/nullptr); 4816 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4817 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4818 else 4819 LT = getFunctionLinkage(GD); 4820 } 4821 4822 // Create the new alias itself, but don't set a name yet. 4823 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4824 auto *GA = 4825 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4826 4827 if (Entry) { 4828 if (GA->getAliasee() == Entry) { 4829 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4830 return; 4831 } 4832 4833 assert(Entry->isDeclaration()); 4834 4835 // If there is a declaration in the module, then we had an extern followed 4836 // by the alias, as in: 4837 // extern int test6(); 4838 // ... 4839 // int test6() __attribute__((alias("test7"))); 4840 // 4841 // Remove it and replace uses of it with the alias. 4842 GA->takeName(Entry); 4843 4844 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4845 Entry->getType())); 4846 Entry->eraseFromParent(); 4847 } else { 4848 GA->setName(MangledName); 4849 } 4850 4851 // Set attributes which are particular to an alias; this is a 4852 // specialization of the attributes which may be set on a global 4853 // variable/function. 4854 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4855 D->isWeakImported()) { 4856 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4857 } 4858 4859 if (const auto *VD = dyn_cast<VarDecl>(D)) 4860 if (VD->getTLSKind()) 4861 setTLSMode(GA, *VD); 4862 4863 SetCommonAttributes(GD, GA); 4864 } 4865 4866 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4867 const auto *D = cast<ValueDecl>(GD.getDecl()); 4868 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4869 assert(IFA && "Not an ifunc?"); 4870 4871 StringRef MangledName = getMangledName(GD); 4872 4873 if (IFA->getResolver() == MangledName) { 4874 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4875 return; 4876 } 4877 4878 // Report an error if some definition overrides ifunc. 4879 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4880 if (Entry && !Entry->isDeclaration()) { 4881 GlobalDecl OtherGD; 4882 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4883 DiagnosedConflictingDefinitions.insert(GD).second) { 4884 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4885 << MangledName; 4886 Diags.Report(OtherGD.getDecl()->getLocation(), 4887 diag::note_previous_definition); 4888 } 4889 return; 4890 } 4891 4892 Aliases.push_back(GD); 4893 4894 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4895 llvm::Constant *Resolver = 4896 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4897 /*ForVTable=*/false); 4898 llvm::GlobalIFunc *GIF = 4899 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4900 "", Resolver, &getModule()); 4901 if (Entry) { 4902 if (GIF->getResolver() == Entry) { 4903 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4904 return; 4905 } 4906 assert(Entry->isDeclaration()); 4907 4908 // If there is a declaration in the module, then we had an extern followed 4909 // by the ifunc, as in: 4910 // extern int test(); 4911 // ... 4912 // int test() __attribute__((ifunc("resolver"))); 4913 // 4914 // Remove it and replace uses of it with the ifunc. 4915 GIF->takeName(Entry); 4916 4917 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4918 Entry->getType())); 4919 Entry->eraseFromParent(); 4920 } else 4921 GIF->setName(MangledName); 4922 4923 SetCommonAttributes(GD, GIF); 4924 } 4925 4926 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4927 ArrayRef<llvm::Type*> Tys) { 4928 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4929 Tys); 4930 } 4931 4932 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4933 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4934 const StringLiteral *Literal, bool TargetIsLSB, 4935 bool &IsUTF16, unsigned &StringLength) { 4936 StringRef String = Literal->getString(); 4937 unsigned NumBytes = String.size(); 4938 4939 // Check for simple case. 4940 if (!Literal->containsNonAsciiOrNull()) { 4941 StringLength = NumBytes; 4942 return *Map.insert(std::make_pair(String, nullptr)).first; 4943 } 4944 4945 // Otherwise, convert the UTF8 literals into a string of shorts. 4946 IsUTF16 = true; 4947 4948 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4949 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4950 llvm::UTF16 *ToPtr = &ToBuf[0]; 4951 4952 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4953 ToPtr + NumBytes, llvm::strictConversion); 4954 4955 // ConvertUTF8toUTF16 returns the length in ToPtr. 4956 StringLength = ToPtr - &ToBuf[0]; 4957 4958 // Add an explicit null. 4959 *ToPtr = 0; 4960 return *Map.insert(std::make_pair( 4961 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4962 (StringLength + 1) * 2), 4963 nullptr)).first; 4964 } 4965 4966 ConstantAddress 4967 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4968 unsigned StringLength = 0; 4969 bool isUTF16 = false; 4970 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4971 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4972 getDataLayout().isLittleEndian(), isUTF16, 4973 StringLength); 4974 4975 if (auto *C = Entry.second) 4976 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4977 4978 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4979 llvm::Constant *Zeros[] = { Zero, Zero }; 4980 4981 const ASTContext &Context = getContext(); 4982 const llvm::Triple &Triple = getTriple(); 4983 4984 const auto CFRuntime = getLangOpts().CFRuntime; 4985 const bool IsSwiftABI = 4986 static_cast<unsigned>(CFRuntime) >= 4987 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4988 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4989 4990 // If we don't already have it, get __CFConstantStringClassReference. 4991 if (!CFConstantStringClassRef) { 4992 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4993 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4994 Ty = llvm::ArrayType::get(Ty, 0); 4995 4996 switch (CFRuntime) { 4997 default: break; 4998 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4999 case LangOptions::CoreFoundationABI::Swift5_0: 5000 CFConstantStringClassName = 5001 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5002 : "$s10Foundation19_NSCFConstantStringCN"; 5003 Ty = IntPtrTy; 5004 break; 5005 case LangOptions::CoreFoundationABI::Swift4_2: 5006 CFConstantStringClassName = 5007 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5008 : "$S10Foundation19_NSCFConstantStringCN"; 5009 Ty = IntPtrTy; 5010 break; 5011 case LangOptions::CoreFoundationABI::Swift4_1: 5012 CFConstantStringClassName = 5013 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5014 : "__T010Foundation19_NSCFConstantStringCN"; 5015 Ty = IntPtrTy; 5016 break; 5017 } 5018 5019 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5020 5021 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5022 llvm::GlobalValue *GV = nullptr; 5023 5024 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5025 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5026 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5027 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5028 5029 const VarDecl *VD = nullptr; 5030 for (const auto &Result : DC->lookup(&II)) 5031 if ((VD = dyn_cast<VarDecl>(Result))) 5032 break; 5033 5034 if (Triple.isOSBinFormatELF()) { 5035 if (!VD) 5036 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5037 } else { 5038 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5039 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5040 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5041 else 5042 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5043 } 5044 5045 setDSOLocal(GV); 5046 } 5047 } 5048 5049 // Decay array -> ptr 5050 CFConstantStringClassRef = 5051 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5052 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5053 } 5054 5055 QualType CFTy = Context.getCFConstantStringType(); 5056 5057 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5058 5059 ConstantInitBuilder Builder(*this); 5060 auto Fields = Builder.beginStruct(STy); 5061 5062 // Class pointer. 5063 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5064 5065 // Flags. 5066 if (IsSwiftABI) { 5067 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5068 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5069 } else { 5070 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5071 } 5072 5073 // String pointer. 5074 llvm::Constant *C = nullptr; 5075 if (isUTF16) { 5076 auto Arr = llvm::makeArrayRef( 5077 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5078 Entry.first().size() / 2); 5079 C = llvm::ConstantDataArray::get(VMContext, Arr); 5080 } else { 5081 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5082 } 5083 5084 // Note: -fwritable-strings doesn't make the backing store strings of 5085 // CFStrings writable. (See <rdar://problem/10657500>) 5086 auto *GV = 5087 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5088 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5089 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5090 // Don't enforce the target's minimum global alignment, since the only use 5091 // of the string is via this class initializer. 5092 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5093 : Context.getTypeAlignInChars(Context.CharTy); 5094 GV->setAlignment(Align.getAsAlign()); 5095 5096 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5097 // Without it LLVM can merge the string with a non unnamed_addr one during 5098 // LTO. Doing that changes the section it ends in, which surprises ld64. 5099 if (Triple.isOSBinFormatMachO()) 5100 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5101 : "__TEXT,__cstring,cstring_literals"); 5102 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5103 // the static linker to adjust permissions to read-only later on. 5104 else if (Triple.isOSBinFormatELF()) 5105 GV->setSection(".rodata"); 5106 5107 // String. 5108 llvm::Constant *Str = 5109 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5110 5111 if (isUTF16) 5112 // Cast the UTF16 string to the correct type. 5113 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5114 Fields.add(Str); 5115 5116 // String length. 5117 llvm::IntegerType *LengthTy = 5118 llvm::IntegerType::get(getModule().getContext(), 5119 Context.getTargetInfo().getLongWidth()); 5120 if (IsSwiftABI) { 5121 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5122 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5123 LengthTy = Int32Ty; 5124 else 5125 LengthTy = IntPtrTy; 5126 } 5127 Fields.addInt(LengthTy, StringLength); 5128 5129 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5130 // properly aligned on 32-bit platforms. 5131 CharUnits Alignment = 5132 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5133 5134 // The struct. 5135 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5136 /*isConstant=*/false, 5137 llvm::GlobalVariable::PrivateLinkage); 5138 GV->addAttribute("objc_arc_inert"); 5139 switch (Triple.getObjectFormat()) { 5140 case llvm::Triple::UnknownObjectFormat: 5141 llvm_unreachable("unknown file format"); 5142 case llvm::Triple::GOFF: 5143 llvm_unreachable("GOFF is not yet implemented"); 5144 case llvm::Triple::XCOFF: 5145 llvm_unreachable("XCOFF is not yet implemented"); 5146 case llvm::Triple::COFF: 5147 case llvm::Triple::ELF: 5148 case llvm::Triple::Wasm: 5149 GV->setSection("cfstring"); 5150 break; 5151 case llvm::Triple::MachO: 5152 GV->setSection("__DATA,__cfstring"); 5153 break; 5154 } 5155 Entry.second = GV; 5156 5157 return ConstantAddress(GV, Alignment); 5158 } 5159 5160 bool CodeGenModule::getExpressionLocationsEnabled() const { 5161 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5162 } 5163 5164 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5165 if (ObjCFastEnumerationStateType.isNull()) { 5166 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5167 D->startDefinition(); 5168 5169 QualType FieldTypes[] = { 5170 Context.UnsignedLongTy, 5171 Context.getPointerType(Context.getObjCIdType()), 5172 Context.getPointerType(Context.UnsignedLongTy), 5173 Context.getConstantArrayType(Context.UnsignedLongTy, 5174 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5175 }; 5176 5177 for (size_t i = 0; i < 4; ++i) { 5178 FieldDecl *Field = FieldDecl::Create(Context, 5179 D, 5180 SourceLocation(), 5181 SourceLocation(), nullptr, 5182 FieldTypes[i], /*TInfo=*/nullptr, 5183 /*BitWidth=*/nullptr, 5184 /*Mutable=*/false, 5185 ICIS_NoInit); 5186 Field->setAccess(AS_public); 5187 D->addDecl(Field); 5188 } 5189 5190 D->completeDefinition(); 5191 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5192 } 5193 5194 return ObjCFastEnumerationStateType; 5195 } 5196 5197 llvm::Constant * 5198 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5199 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5200 5201 // Don't emit it as the address of the string, emit the string data itself 5202 // as an inline array. 5203 if (E->getCharByteWidth() == 1) { 5204 SmallString<64> Str(E->getString()); 5205 5206 // Resize the string to the right size, which is indicated by its type. 5207 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5208 Str.resize(CAT->getSize().getZExtValue()); 5209 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5210 } 5211 5212 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5213 llvm::Type *ElemTy = AType->getElementType(); 5214 unsigned NumElements = AType->getNumElements(); 5215 5216 // Wide strings have either 2-byte or 4-byte elements. 5217 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5218 SmallVector<uint16_t, 32> Elements; 5219 Elements.reserve(NumElements); 5220 5221 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5222 Elements.push_back(E->getCodeUnit(i)); 5223 Elements.resize(NumElements); 5224 return llvm::ConstantDataArray::get(VMContext, Elements); 5225 } 5226 5227 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5228 SmallVector<uint32_t, 32> Elements; 5229 Elements.reserve(NumElements); 5230 5231 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5232 Elements.push_back(E->getCodeUnit(i)); 5233 Elements.resize(NumElements); 5234 return llvm::ConstantDataArray::get(VMContext, Elements); 5235 } 5236 5237 static llvm::GlobalVariable * 5238 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5239 CodeGenModule &CGM, StringRef GlobalName, 5240 CharUnits Alignment) { 5241 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5242 CGM.getStringLiteralAddressSpace()); 5243 5244 llvm::Module &M = CGM.getModule(); 5245 // Create a global variable for this string 5246 auto *GV = new llvm::GlobalVariable( 5247 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5248 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5249 GV->setAlignment(Alignment.getAsAlign()); 5250 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5251 if (GV->isWeakForLinker()) { 5252 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5253 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5254 } 5255 CGM.setDSOLocal(GV); 5256 5257 return GV; 5258 } 5259 5260 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5261 /// constant array for the given string literal. 5262 ConstantAddress 5263 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5264 StringRef Name) { 5265 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5266 5267 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5268 llvm::GlobalVariable **Entry = nullptr; 5269 if (!LangOpts.WritableStrings) { 5270 Entry = &ConstantStringMap[C]; 5271 if (auto GV = *Entry) { 5272 if (Alignment.getQuantity() > GV->getAlignment()) 5273 GV->setAlignment(Alignment.getAsAlign()); 5274 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5275 Alignment); 5276 } 5277 } 5278 5279 SmallString<256> MangledNameBuffer; 5280 StringRef GlobalVariableName; 5281 llvm::GlobalValue::LinkageTypes LT; 5282 5283 // Mangle the string literal if that's how the ABI merges duplicate strings. 5284 // Don't do it if they are writable, since we don't want writes in one TU to 5285 // affect strings in another. 5286 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5287 !LangOpts.WritableStrings) { 5288 llvm::raw_svector_ostream Out(MangledNameBuffer); 5289 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5290 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5291 GlobalVariableName = MangledNameBuffer; 5292 } else { 5293 LT = llvm::GlobalValue::PrivateLinkage; 5294 GlobalVariableName = Name; 5295 } 5296 5297 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5298 if (Entry) 5299 *Entry = GV; 5300 5301 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5302 QualType()); 5303 5304 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5305 Alignment); 5306 } 5307 5308 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5309 /// array for the given ObjCEncodeExpr node. 5310 ConstantAddress 5311 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5312 std::string Str; 5313 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5314 5315 return GetAddrOfConstantCString(Str); 5316 } 5317 5318 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5319 /// the literal and a terminating '\0' character. 5320 /// The result has pointer to array type. 5321 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5322 const std::string &Str, const char *GlobalName) { 5323 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5324 CharUnits Alignment = 5325 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5326 5327 llvm::Constant *C = 5328 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5329 5330 // Don't share any string literals if strings aren't constant. 5331 llvm::GlobalVariable **Entry = nullptr; 5332 if (!LangOpts.WritableStrings) { 5333 Entry = &ConstantStringMap[C]; 5334 if (auto GV = *Entry) { 5335 if (Alignment.getQuantity() > GV->getAlignment()) 5336 GV->setAlignment(Alignment.getAsAlign()); 5337 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5338 Alignment); 5339 } 5340 } 5341 5342 // Get the default prefix if a name wasn't specified. 5343 if (!GlobalName) 5344 GlobalName = ".str"; 5345 // Create a global variable for this. 5346 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5347 GlobalName, Alignment); 5348 if (Entry) 5349 *Entry = GV; 5350 5351 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5352 Alignment); 5353 } 5354 5355 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5356 const MaterializeTemporaryExpr *E, const Expr *Init) { 5357 assert((E->getStorageDuration() == SD_Static || 5358 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5359 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5360 5361 // If we're not materializing a subobject of the temporary, keep the 5362 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5363 QualType MaterializedType = Init->getType(); 5364 if (Init == E->getSubExpr()) 5365 MaterializedType = E->getType(); 5366 5367 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5368 5369 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5370 return ConstantAddress(Slot, Align); 5371 5372 // FIXME: If an externally-visible declaration extends multiple temporaries, 5373 // we need to give each temporary the same name in every translation unit (and 5374 // we also need to make the temporaries externally-visible). 5375 SmallString<256> Name; 5376 llvm::raw_svector_ostream Out(Name); 5377 getCXXABI().getMangleContext().mangleReferenceTemporary( 5378 VD, E->getManglingNumber(), Out); 5379 5380 APValue *Value = nullptr; 5381 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5382 // If the initializer of the extending declaration is a constant 5383 // initializer, we should have a cached constant initializer for this 5384 // temporary. Note that this might have a different value from the value 5385 // computed by evaluating the initializer if the surrounding constant 5386 // expression modifies the temporary. 5387 Value = E->getOrCreateValue(false); 5388 } 5389 5390 // Try evaluating it now, it might have a constant initializer. 5391 Expr::EvalResult EvalResult; 5392 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5393 !EvalResult.hasSideEffects()) 5394 Value = &EvalResult.Val; 5395 5396 LangAS AddrSpace = 5397 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5398 5399 Optional<ConstantEmitter> emitter; 5400 llvm::Constant *InitialValue = nullptr; 5401 bool Constant = false; 5402 llvm::Type *Type; 5403 if (Value) { 5404 // The temporary has a constant initializer, use it. 5405 emitter.emplace(*this); 5406 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5407 MaterializedType); 5408 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5409 Type = InitialValue->getType(); 5410 } else { 5411 // No initializer, the initialization will be provided when we 5412 // initialize the declaration which performed lifetime extension. 5413 Type = getTypes().ConvertTypeForMem(MaterializedType); 5414 } 5415 5416 // Create a global variable for this lifetime-extended temporary. 5417 llvm::GlobalValue::LinkageTypes Linkage = 5418 getLLVMLinkageVarDefinition(VD, Constant); 5419 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5420 const VarDecl *InitVD; 5421 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5422 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5423 // Temporaries defined inside a class get linkonce_odr linkage because the 5424 // class can be defined in multiple translation units. 5425 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5426 } else { 5427 // There is no need for this temporary to have external linkage if the 5428 // VarDecl has external linkage. 5429 Linkage = llvm::GlobalVariable::InternalLinkage; 5430 } 5431 } 5432 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5433 auto *GV = new llvm::GlobalVariable( 5434 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5435 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5436 if (emitter) emitter->finalize(GV); 5437 setGVProperties(GV, VD); 5438 GV->setAlignment(Align.getAsAlign()); 5439 if (supportsCOMDAT() && GV->isWeakForLinker()) 5440 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5441 if (VD->getTLSKind()) 5442 setTLSMode(GV, *VD); 5443 llvm::Constant *CV = GV; 5444 if (AddrSpace != LangAS::Default) 5445 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5446 *this, GV, AddrSpace, LangAS::Default, 5447 Type->getPointerTo( 5448 getContext().getTargetAddressSpace(LangAS::Default))); 5449 MaterializedGlobalTemporaryMap[E] = CV; 5450 return ConstantAddress(CV, Align); 5451 } 5452 5453 /// EmitObjCPropertyImplementations - Emit information for synthesized 5454 /// properties for an implementation. 5455 void CodeGenModule::EmitObjCPropertyImplementations(const 5456 ObjCImplementationDecl *D) { 5457 for (const auto *PID : D->property_impls()) { 5458 // Dynamic is just for type-checking. 5459 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5460 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5461 5462 // Determine which methods need to be implemented, some may have 5463 // been overridden. Note that ::isPropertyAccessor is not the method 5464 // we want, that just indicates if the decl came from a 5465 // property. What we want to know is if the method is defined in 5466 // this implementation. 5467 auto *Getter = PID->getGetterMethodDecl(); 5468 if (!Getter || Getter->isSynthesizedAccessorStub()) 5469 CodeGenFunction(*this).GenerateObjCGetter( 5470 const_cast<ObjCImplementationDecl *>(D), PID); 5471 auto *Setter = PID->getSetterMethodDecl(); 5472 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5473 CodeGenFunction(*this).GenerateObjCSetter( 5474 const_cast<ObjCImplementationDecl *>(D), PID); 5475 } 5476 } 5477 } 5478 5479 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5480 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5481 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5482 ivar; ivar = ivar->getNextIvar()) 5483 if (ivar->getType().isDestructedType()) 5484 return true; 5485 5486 return false; 5487 } 5488 5489 static bool AllTrivialInitializers(CodeGenModule &CGM, 5490 ObjCImplementationDecl *D) { 5491 CodeGenFunction CGF(CGM); 5492 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5493 E = D->init_end(); B != E; ++B) { 5494 CXXCtorInitializer *CtorInitExp = *B; 5495 Expr *Init = CtorInitExp->getInit(); 5496 if (!CGF.isTrivialInitializer(Init)) 5497 return false; 5498 } 5499 return true; 5500 } 5501 5502 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5503 /// for an implementation. 5504 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5505 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5506 if (needsDestructMethod(D)) { 5507 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5508 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5509 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5510 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5511 getContext().VoidTy, nullptr, D, 5512 /*isInstance=*/true, /*isVariadic=*/false, 5513 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5514 /*isImplicitlyDeclared=*/true, 5515 /*isDefined=*/false, ObjCMethodDecl::Required); 5516 D->addInstanceMethod(DTORMethod); 5517 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5518 D->setHasDestructors(true); 5519 } 5520 5521 // If the implementation doesn't have any ivar initializers, we don't need 5522 // a .cxx_construct. 5523 if (D->getNumIvarInitializers() == 0 || 5524 AllTrivialInitializers(*this, D)) 5525 return; 5526 5527 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5528 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5529 // The constructor returns 'self'. 5530 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5531 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5532 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5533 /*isVariadic=*/false, 5534 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5535 /*isImplicitlyDeclared=*/true, 5536 /*isDefined=*/false, ObjCMethodDecl::Required); 5537 D->addInstanceMethod(CTORMethod); 5538 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5539 D->setHasNonZeroConstructors(true); 5540 } 5541 5542 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5543 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5544 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5545 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5546 ErrorUnsupported(LSD, "linkage spec"); 5547 return; 5548 } 5549 5550 EmitDeclContext(LSD); 5551 } 5552 5553 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5554 for (auto *I : DC->decls()) { 5555 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5556 // are themselves considered "top-level", so EmitTopLevelDecl on an 5557 // ObjCImplDecl does not recursively visit them. We need to do that in 5558 // case they're nested inside another construct (LinkageSpecDecl / 5559 // ExportDecl) that does stop them from being considered "top-level". 5560 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5561 for (auto *M : OID->methods()) 5562 EmitTopLevelDecl(M); 5563 } 5564 5565 EmitTopLevelDecl(I); 5566 } 5567 } 5568 5569 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5570 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5571 // Ignore dependent declarations. 5572 if (D->isTemplated()) 5573 return; 5574 5575 // Consteval function shouldn't be emitted. 5576 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5577 if (FD->isConsteval()) 5578 return; 5579 5580 switch (D->getKind()) { 5581 case Decl::CXXConversion: 5582 case Decl::CXXMethod: 5583 case Decl::Function: 5584 EmitGlobal(cast<FunctionDecl>(D)); 5585 // Always provide some coverage mapping 5586 // even for the functions that aren't emitted. 5587 AddDeferredUnusedCoverageMapping(D); 5588 break; 5589 5590 case Decl::CXXDeductionGuide: 5591 // Function-like, but does not result in code emission. 5592 break; 5593 5594 case Decl::Var: 5595 case Decl::Decomposition: 5596 case Decl::VarTemplateSpecialization: 5597 EmitGlobal(cast<VarDecl>(D)); 5598 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5599 for (auto *B : DD->bindings()) 5600 if (auto *HD = B->getHoldingVar()) 5601 EmitGlobal(HD); 5602 break; 5603 5604 // Indirect fields from global anonymous structs and unions can be 5605 // ignored; only the actual variable requires IR gen support. 5606 case Decl::IndirectField: 5607 break; 5608 5609 // C++ Decls 5610 case Decl::Namespace: 5611 EmitDeclContext(cast<NamespaceDecl>(D)); 5612 break; 5613 case Decl::ClassTemplateSpecialization: { 5614 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5615 if (CGDebugInfo *DI = getModuleDebugInfo()) 5616 if (Spec->getSpecializationKind() == 5617 TSK_ExplicitInstantiationDefinition && 5618 Spec->hasDefinition()) 5619 DI->completeTemplateDefinition(*Spec); 5620 } LLVM_FALLTHROUGH; 5621 case Decl::CXXRecord: { 5622 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5623 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5624 if (CRD->hasDefinition()) 5625 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5626 if (auto *ES = D->getASTContext().getExternalSource()) 5627 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5628 DI->completeUnusedClass(*CRD); 5629 } 5630 // Emit any static data members, they may be definitions. 5631 for (auto *I : CRD->decls()) 5632 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5633 EmitTopLevelDecl(I); 5634 break; 5635 } 5636 // No code generation needed. 5637 case Decl::UsingShadow: 5638 case Decl::ClassTemplate: 5639 case Decl::VarTemplate: 5640 case Decl::Concept: 5641 case Decl::VarTemplatePartialSpecialization: 5642 case Decl::FunctionTemplate: 5643 case Decl::TypeAliasTemplate: 5644 case Decl::Block: 5645 case Decl::Empty: 5646 case Decl::Binding: 5647 break; 5648 case Decl::Using: // using X; [C++] 5649 if (CGDebugInfo *DI = getModuleDebugInfo()) 5650 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5651 break; 5652 case Decl::NamespaceAlias: 5653 if (CGDebugInfo *DI = getModuleDebugInfo()) 5654 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5655 break; 5656 case Decl::UsingDirective: // using namespace X; [C++] 5657 if (CGDebugInfo *DI = getModuleDebugInfo()) 5658 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5659 break; 5660 case Decl::CXXConstructor: 5661 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5662 break; 5663 case Decl::CXXDestructor: 5664 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5665 break; 5666 5667 case Decl::StaticAssert: 5668 // Nothing to do. 5669 break; 5670 5671 // Objective-C Decls 5672 5673 // Forward declarations, no (immediate) code generation. 5674 case Decl::ObjCInterface: 5675 case Decl::ObjCCategory: 5676 break; 5677 5678 case Decl::ObjCProtocol: { 5679 auto *Proto = cast<ObjCProtocolDecl>(D); 5680 if (Proto->isThisDeclarationADefinition()) 5681 ObjCRuntime->GenerateProtocol(Proto); 5682 break; 5683 } 5684 5685 case Decl::ObjCCategoryImpl: 5686 // Categories have properties but don't support synthesize so we 5687 // can ignore them here. 5688 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5689 break; 5690 5691 case Decl::ObjCImplementation: { 5692 auto *OMD = cast<ObjCImplementationDecl>(D); 5693 EmitObjCPropertyImplementations(OMD); 5694 EmitObjCIvarInitializations(OMD); 5695 ObjCRuntime->GenerateClass(OMD); 5696 // Emit global variable debug information. 5697 if (CGDebugInfo *DI = getModuleDebugInfo()) 5698 if (getCodeGenOpts().hasReducedDebugInfo()) 5699 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5700 OMD->getClassInterface()), OMD->getLocation()); 5701 break; 5702 } 5703 case Decl::ObjCMethod: { 5704 auto *OMD = cast<ObjCMethodDecl>(D); 5705 // If this is not a prototype, emit the body. 5706 if (OMD->getBody()) 5707 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5708 break; 5709 } 5710 case Decl::ObjCCompatibleAlias: 5711 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5712 break; 5713 5714 case Decl::PragmaComment: { 5715 const auto *PCD = cast<PragmaCommentDecl>(D); 5716 switch (PCD->getCommentKind()) { 5717 case PCK_Unknown: 5718 llvm_unreachable("unexpected pragma comment kind"); 5719 case PCK_Linker: 5720 AppendLinkerOptions(PCD->getArg()); 5721 break; 5722 case PCK_Lib: 5723 AddDependentLib(PCD->getArg()); 5724 break; 5725 case PCK_Compiler: 5726 case PCK_ExeStr: 5727 case PCK_User: 5728 break; // We ignore all of these. 5729 } 5730 break; 5731 } 5732 5733 case Decl::PragmaDetectMismatch: { 5734 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5735 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5736 break; 5737 } 5738 5739 case Decl::LinkageSpec: 5740 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5741 break; 5742 5743 case Decl::FileScopeAsm: { 5744 // File-scope asm is ignored during device-side CUDA compilation. 5745 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5746 break; 5747 // File-scope asm is ignored during device-side OpenMP compilation. 5748 if (LangOpts.OpenMPIsDevice) 5749 break; 5750 auto *AD = cast<FileScopeAsmDecl>(D); 5751 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5752 break; 5753 } 5754 5755 case Decl::Import: { 5756 auto *Import = cast<ImportDecl>(D); 5757 5758 // If we've already imported this module, we're done. 5759 if (!ImportedModules.insert(Import->getImportedModule())) 5760 break; 5761 5762 // Emit debug information for direct imports. 5763 if (!Import->getImportedOwningModule()) { 5764 if (CGDebugInfo *DI = getModuleDebugInfo()) 5765 DI->EmitImportDecl(*Import); 5766 } 5767 5768 // Find all of the submodules and emit the module initializers. 5769 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5770 SmallVector<clang::Module *, 16> Stack; 5771 Visited.insert(Import->getImportedModule()); 5772 Stack.push_back(Import->getImportedModule()); 5773 5774 while (!Stack.empty()) { 5775 clang::Module *Mod = Stack.pop_back_val(); 5776 if (!EmittedModuleInitializers.insert(Mod).second) 5777 continue; 5778 5779 for (auto *D : Context.getModuleInitializers(Mod)) 5780 EmitTopLevelDecl(D); 5781 5782 // Visit the submodules of this module. 5783 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5784 SubEnd = Mod->submodule_end(); 5785 Sub != SubEnd; ++Sub) { 5786 // Skip explicit children; they need to be explicitly imported to emit 5787 // the initializers. 5788 if ((*Sub)->IsExplicit) 5789 continue; 5790 5791 if (Visited.insert(*Sub).second) 5792 Stack.push_back(*Sub); 5793 } 5794 } 5795 break; 5796 } 5797 5798 case Decl::Export: 5799 EmitDeclContext(cast<ExportDecl>(D)); 5800 break; 5801 5802 case Decl::OMPThreadPrivate: 5803 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5804 break; 5805 5806 case Decl::OMPAllocate: 5807 break; 5808 5809 case Decl::OMPDeclareReduction: 5810 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5811 break; 5812 5813 case Decl::OMPDeclareMapper: 5814 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5815 break; 5816 5817 case Decl::OMPRequires: 5818 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5819 break; 5820 5821 case Decl::Typedef: 5822 case Decl::TypeAlias: // using foo = bar; [C++11] 5823 if (CGDebugInfo *DI = getModuleDebugInfo()) 5824 DI->EmitAndRetainType( 5825 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5826 break; 5827 5828 case Decl::Record: 5829 if (CGDebugInfo *DI = getModuleDebugInfo()) 5830 if (cast<RecordDecl>(D)->getDefinition()) 5831 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5832 break; 5833 5834 case Decl::Enum: 5835 if (CGDebugInfo *DI = getModuleDebugInfo()) 5836 if (cast<EnumDecl>(D)->getDefinition()) 5837 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5838 break; 5839 5840 default: 5841 // Make sure we handled everything we should, every other kind is a 5842 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5843 // function. Need to recode Decl::Kind to do that easily. 5844 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5845 break; 5846 } 5847 } 5848 5849 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5850 // Do we need to generate coverage mapping? 5851 if (!CodeGenOpts.CoverageMapping) 5852 return; 5853 switch (D->getKind()) { 5854 case Decl::CXXConversion: 5855 case Decl::CXXMethod: 5856 case Decl::Function: 5857 case Decl::ObjCMethod: 5858 case Decl::CXXConstructor: 5859 case Decl::CXXDestructor: { 5860 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5861 break; 5862 SourceManager &SM = getContext().getSourceManager(); 5863 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5864 break; 5865 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5866 if (I == DeferredEmptyCoverageMappingDecls.end()) 5867 DeferredEmptyCoverageMappingDecls[D] = true; 5868 break; 5869 } 5870 default: 5871 break; 5872 }; 5873 } 5874 5875 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5876 // Do we need to generate coverage mapping? 5877 if (!CodeGenOpts.CoverageMapping) 5878 return; 5879 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5880 if (Fn->isTemplateInstantiation()) 5881 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5882 } 5883 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5884 if (I == DeferredEmptyCoverageMappingDecls.end()) 5885 DeferredEmptyCoverageMappingDecls[D] = false; 5886 else 5887 I->second = false; 5888 } 5889 5890 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5891 // We call takeVector() here to avoid use-after-free. 5892 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5893 // we deserialize function bodies to emit coverage info for them, and that 5894 // deserializes more declarations. How should we handle that case? 5895 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5896 if (!Entry.second) 5897 continue; 5898 const Decl *D = Entry.first; 5899 switch (D->getKind()) { 5900 case Decl::CXXConversion: 5901 case Decl::CXXMethod: 5902 case Decl::Function: 5903 case Decl::ObjCMethod: { 5904 CodeGenPGO PGO(*this); 5905 GlobalDecl GD(cast<FunctionDecl>(D)); 5906 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5907 getFunctionLinkage(GD)); 5908 break; 5909 } 5910 case Decl::CXXConstructor: { 5911 CodeGenPGO PGO(*this); 5912 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5913 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5914 getFunctionLinkage(GD)); 5915 break; 5916 } 5917 case Decl::CXXDestructor: { 5918 CodeGenPGO PGO(*this); 5919 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5920 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5921 getFunctionLinkage(GD)); 5922 break; 5923 } 5924 default: 5925 break; 5926 }; 5927 } 5928 } 5929 5930 void CodeGenModule::EmitMainVoidAlias() { 5931 // In order to transition away from "__original_main" gracefully, emit an 5932 // alias for "main" in the no-argument case so that libc can detect when 5933 // new-style no-argument main is in used. 5934 if (llvm::Function *F = getModule().getFunction("main")) { 5935 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5936 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5937 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5938 } 5939 } 5940 5941 /// Turns the given pointer into a constant. 5942 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5943 const void *Ptr) { 5944 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5945 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5946 return llvm::ConstantInt::get(i64, PtrInt); 5947 } 5948 5949 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5950 llvm::NamedMDNode *&GlobalMetadata, 5951 GlobalDecl D, 5952 llvm::GlobalValue *Addr) { 5953 if (!GlobalMetadata) 5954 GlobalMetadata = 5955 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5956 5957 // TODO: should we report variant information for ctors/dtors? 5958 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5959 llvm::ConstantAsMetadata::get(GetPointerConstant( 5960 CGM.getLLVMContext(), D.getDecl()))}; 5961 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5962 } 5963 5964 /// For each function which is declared within an extern "C" region and marked 5965 /// as 'used', but has internal linkage, create an alias from the unmangled 5966 /// name to the mangled name if possible. People expect to be able to refer 5967 /// to such functions with an unmangled name from inline assembly within the 5968 /// same translation unit. 5969 void CodeGenModule::EmitStaticExternCAliases() { 5970 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5971 return; 5972 for (auto &I : StaticExternCValues) { 5973 IdentifierInfo *Name = I.first; 5974 llvm::GlobalValue *Val = I.second; 5975 if (Val && !getModule().getNamedValue(Name->getName())) 5976 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5977 } 5978 } 5979 5980 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5981 GlobalDecl &Result) const { 5982 auto Res = Manglings.find(MangledName); 5983 if (Res == Manglings.end()) 5984 return false; 5985 Result = Res->getValue(); 5986 return true; 5987 } 5988 5989 /// Emits metadata nodes associating all the global values in the 5990 /// current module with the Decls they came from. This is useful for 5991 /// projects using IR gen as a subroutine. 5992 /// 5993 /// Since there's currently no way to associate an MDNode directly 5994 /// with an llvm::GlobalValue, we create a global named metadata 5995 /// with the name 'clang.global.decl.ptrs'. 5996 void CodeGenModule::EmitDeclMetadata() { 5997 llvm::NamedMDNode *GlobalMetadata = nullptr; 5998 5999 for (auto &I : MangledDeclNames) { 6000 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6001 // Some mangled names don't necessarily have an associated GlobalValue 6002 // in this module, e.g. if we mangled it for DebugInfo. 6003 if (Addr) 6004 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6005 } 6006 } 6007 6008 /// Emits metadata nodes for all the local variables in the current 6009 /// function. 6010 void CodeGenFunction::EmitDeclMetadata() { 6011 if (LocalDeclMap.empty()) return; 6012 6013 llvm::LLVMContext &Context = getLLVMContext(); 6014 6015 // Find the unique metadata ID for this name. 6016 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6017 6018 llvm::NamedMDNode *GlobalMetadata = nullptr; 6019 6020 for (auto &I : LocalDeclMap) { 6021 const Decl *D = I.first; 6022 llvm::Value *Addr = I.second.getPointer(); 6023 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6024 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6025 Alloca->setMetadata( 6026 DeclPtrKind, llvm::MDNode::get( 6027 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6028 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6029 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6030 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6031 } 6032 } 6033 } 6034 6035 void CodeGenModule::EmitVersionIdentMetadata() { 6036 llvm::NamedMDNode *IdentMetadata = 6037 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6038 std::string Version = getClangFullVersion(); 6039 llvm::LLVMContext &Ctx = TheModule.getContext(); 6040 6041 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6042 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6043 } 6044 6045 void CodeGenModule::EmitCommandLineMetadata() { 6046 llvm::NamedMDNode *CommandLineMetadata = 6047 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6048 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6049 llvm::LLVMContext &Ctx = TheModule.getContext(); 6050 6051 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6052 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6053 } 6054 6055 void CodeGenModule::EmitCoverageFile() { 6056 if (getCodeGenOpts().CoverageDataFile.empty() && 6057 getCodeGenOpts().CoverageNotesFile.empty()) 6058 return; 6059 6060 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6061 if (!CUNode) 6062 return; 6063 6064 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6065 llvm::LLVMContext &Ctx = TheModule.getContext(); 6066 auto *CoverageDataFile = 6067 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6068 auto *CoverageNotesFile = 6069 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6070 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6071 llvm::MDNode *CU = CUNode->getOperand(i); 6072 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6073 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6074 } 6075 } 6076 6077 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6078 bool ForEH) { 6079 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6080 // FIXME: should we even be calling this method if RTTI is disabled 6081 // and it's not for EH? 6082 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6083 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6084 getTriple().isNVPTX())) 6085 return llvm::Constant::getNullValue(Int8PtrTy); 6086 6087 if (ForEH && Ty->isObjCObjectPointerType() && 6088 LangOpts.ObjCRuntime.isGNUFamily()) 6089 return ObjCRuntime->GetEHType(Ty); 6090 6091 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6092 } 6093 6094 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6095 // Do not emit threadprivates in simd-only mode. 6096 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6097 return; 6098 for (auto RefExpr : D->varlists()) { 6099 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6100 bool PerformInit = 6101 VD->getAnyInitializer() && 6102 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6103 /*ForRef=*/false); 6104 6105 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6106 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6107 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6108 CXXGlobalInits.push_back(InitFunction); 6109 } 6110 } 6111 6112 llvm::Metadata * 6113 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6114 StringRef Suffix) { 6115 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6116 if (InternalId) 6117 return InternalId; 6118 6119 if (isExternallyVisible(T->getLinkage())) { 6120 std::string OutName; 6121 llvm::raw_string_ostream Out(OutName); 6122 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6123 Out << Suffix; 6124 6125 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6126 } else { 6127 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6128 llvm::ArrayRef<llvm::Metadata *>()); 6129 } 6130 6131 return InternalId; 6132 } 6133 6134 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6135 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6136 } 6137 6138 llvm::Metadata * 6139 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6140 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6141 } 6142 6143 // Generalize pointer types to a void pointer with the qualifiers of the 6144 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6145 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6146 // 'void *'. 6147 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6148 if (!Ty->isPointerType()) 6149 return Ty; 6150 6151 return Ctx.getPointerType( 6152 QualType(Ctx.VoidTy).withCVRQualifiers( 6153 Ty->getPointeeType().getCVRQualifiers())); 6154 } 6155 6156 // Apply type generalization to a FunctionType's return and argument types 6157 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6158 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6159 SmallVector<QualType, 8> GeneralizedParams; 6160 for (auto &Param : FnType->param_types()) 6161 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6162 6163 return Ctx.getFunctionType( 6164 GeneralizeType(Ctx, FnType->getReturnType()), 6165 GeneralizedParams, FnType->getExtProtoInfo()); 6166 } 6167 6168 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6169 return Ctx.getFunctionNoProtoType( 6170 GeneralizeType(Ctx, FnType->getReturnType())); 6171 6172 llvm_unreachable("Encountered unknown FunctionType"); 6173 } 6174 6175 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6176 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6177 GeneralizedMetadataIdMap, ".generalized"); 6178 } 6179 6180 /// Returns whether this module needs the "all-vtables" type identifier. 6181 bool CodeGenModule::NeedAllVtablesTypeId() const { 6182 // Returns true if at least one of vtable-based CFI checkers is enabled and 6183 // is not in the trapping mode. 6184 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6185 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6186 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6187 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6188 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6189 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6190 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6191 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6192 } 6193 6194 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6195 CharUnits Offset, 6196 const CXXRecordDecl *RD) { 6197 llvm::Metadata *MD = 6198 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6199 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6200 6201 if (CodeGenOpts.SanitizeCfiCrossDso) 6202 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6203 VTable->addTypeMetadata(Offset.getQuantity(), 6204 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6205 6206 if (NeedAllVtablesTypeId()) { 6207 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6208 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6209 } 6210 } 6211 6212 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6213 if (!SanStats) 6214 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6215 6216 return *SanStats; 6217 } 6218 6219 llvm::Value * 6220 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6221 CodeGenFunction &CGF) { 6222 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6223 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6224 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6225 auto *Call = CGF.Builder.CreateCall( 6226 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6227 Call->setCallingConv(Call->getCalledFunction()->getCallingConv()); 6228 return Call; 6229 } 6230 6231 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6232 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6233 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6234 /* forPointeeType= */ true); 6235 } 6236 6237 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6238 LValueBaseInfo *BaseInfo, 6239 TBAAAccessInfo *TBAAInfo, 6240 bool forPointeeType) { 6241 if (TBAAInfo) 6242 *TBAAInfo = getTBAAAccessInfo(T); 6243 6244 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6245 // that doesn't return the information we need to compute BaseInfo. 6246 6247 // Honor alignment typedef attributes even on incomplete types. 6248 // We also honor them straight for C++ class types, even as pointees; 6249 // there's an expressivity gap here. 6250 if (auto TT = T->getAs<TypedefType>()) { 6251 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6252 if (BaseInfo) 6253 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6254 return getContext().toCharUnitsFromBits(Align); 6255 } 6256 } 6257 6258 bool AlignForArray = T->isArrayType(); 6259 6260 // Analyze the base element type, so we don't get confused by incomplete 6261 // array types. 6262 T = getContext().getBaseElementType(T); 6263 6264 if (T->isIncompleteType()) { 6265 // We could try to replicate the logic from 6266 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6267 // type is incomplete, so it's impossible to test. We could try to reuse 6268 // getTypeAlignIfKnown, but that doesn't return the information we need 6269 // to set BaseInfo. So just ignore the possibility that the alignment is 6270 // greater than one. 6271 if (BaseInfo) 6272 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6273 return CharUnits::One(); 6274 } 6275 6276 if (BaseInfo) 6277 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6278 6279 CharUnits Alignment; 6280 const CXXRecordDecl *RD; 6281 if (T.getQualifiers().hasUnaligned()) { 6282 Alignment = CharUnits::One(); 6283 } else if (forPointeeType && !AlignForArray && 6284 (RD = T->getAsCXXRecordDecl())) { 6285 // For C++ class pointees, we don't know whether we're pointing at a 6286 // base or a complete object, so we generally need to use the 6287 // non-virtual alignment. 6288 Alignment = getClassPointerAlignment(RD); 6289 } else { 6290 Alignment = getContext().getTypeAlignInChars(T); 6291 } 6292 6293 // Cap to the global maximum type alignment unless the alignment 6294 // was somehow explicit on the type. 6295 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6296 if (Alignment.getQuantity() > MaxAlign && 6297 !getContext().isAlignmentRequired(T)) 6298 Alignment = CharUnits::fromQuantity(MaxAlign); 6299 } 6300 return Alignment; 6301 } 6302 6303 bool CodeGenModule::stopAutoInit() { 6304 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6305 if (StopAfter) { 6306 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6307 // used 6308 if (NumAutoVarInit >= StopAfter) { 6309 return true; 6310 } 6311 if (!NumAutoVarInit) { 6312 unsigned DiagID = getDiags().getCustomDiagID( 6313 DiagnosticsEngine::Warning, 6314 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6315 "number of times ftrivial-auto-var-init=%1 gets applied."); 6316 getDiags().Report(DiagID) 6317 << StopAfter 6318 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6319 LangOptions::TrivialAutoVarInitKind::Zero 6320 ? "zero" 6321 : "pattern"); 6322 } 6323 ++NumAutoVarInit; 6324 } 6325 return false; 6326 } 6327