xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeGPU.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 #include "llvm/Support/X86TargetParser.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   const llvm::DataLayout &DL = M.getDataLayout();
134   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137 
138   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139 
140   if (LangOpts.ObjC)
141     createObjCRuntime();
142   if (LangOpts.OpenCL)
143     createOpenCLRuntime();
144   if (LangOpts.OpenMP)
145     createOpenMPRuntime();
146   if (LangOpts.CUDA)
147     createCUDARuntime();
148 
149   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                getCXXABI().getMangleContext()));
154 
155   // If debug info or coverage generation is enabled, create the CGDebugInfo
156   // object.
157   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159     DebugInfo.reset(new CGDebugInfo(*this));
160 
161   Block.GlobalUniqueCount = 0;
162 
163   if (C.getLangOpts().ObjC)
164     ObjCData.reset(new ObjCEntrypoints());
165 
166   if (CodeGenOpts.hasProfileClangUse()) {
167     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169     if (auto E = ReaderOrErr.takeError()) {
170       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                               "Could not read profile %0: %1");
172       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                   << EI.message();
175       });
176     } else
177       PGOReader = std::move(ReaderOrErr.get());
178   }
179 
180   // If coverage mapping generation is enabled, create the
181   // CoverageMappingModuleGen object.
182   if (CodeGenOpts.CoverageMapping)
183     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184 
185   // Generate the module name hash here if needed.
186   if (CodeGenOpts.UniqueInternalLinkageNames &&
187       !getModule().getSourceFileName().empty()) {
188     std::string Path = getModule().getSourceFileName();
189     // Check if a path substitution is needed from the MacroPrefixMap.
190     for (const auto &Entry : LangOpts.MacroPrefixMap)
191       if (Path.rfind(Entry.first, 0) != std::string::npos) {
192         Path = Entry.second + Path.substr(Entry.first.size());
193         break;
194       }
195     llvm::MD5 Md5;
196     Md5.update(Path);
197     llvm::MD5::MD5Result R;
198     Md5.final(R);
199     SmallString<32> Str;
200     llvm::MD5::stringifyResult(R, Str);
201     // Convert MD5hash to Decimal. Demangler suffixes can either contain
202     // numbers or characters but not both.
203     llvm::APInt IntHash(128, Str.str(), 16);
204     // Prepend "__uniq" before the hash for tools like profilers to understand
205     // that this symbol is of internal linkage type.  The "__uniq" is the
206     // pre-determined prefix that is used to tell tools that this symbol was
207     // created with -funique-internal-linakge-symbols and the tools can strip or
208     // keep the prefix as needed.
209     ModuleNameHash = (Twine(".__uniq.") +
210         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
265   Replacements[Name] = C;
266 }
267 
268 void CodeGenModule::applyReplacements() {
269   for (auto &I : Replacements) {
270     StringRef MangledName = I.first();
271     llvm::Constant *Replacement = I.second;
272     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273     if (!Entry)
274       continue;
275     auto *OldF = cast<llvm::Function>(Entry);
276     auto *NewF = dyn_cast<llvm::Function>(Replacement);
277     if (!NewF) {
278       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
279         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
280       } else {
281         auto *CE = cast<llvm::ConstantExpr>(Replacement);
282         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
283                CE->getOpcode() == llvm::Instruction::GetElementPtr);
284         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
285       }
286     }
287 
288     // Replace old with new, but keep the old order.
289     OldF->replaceAllUsesWith(Replacement);
290     if (NewF) {
291       NewF->removeFromParent();
292       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
293                                                        NewF);
294     }
295     OldF->eraseFromParent();
296   }
297 }
298 
299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
300   GlobalValReplacements.push_back(std::make_pair(GV, C));
301 }
302 
303 void CodeGenModule::applyGlobalValReplacements() {
304   for (auto &I : GlobalValReplacements) {
305     llvm::GlobalValue *GV = I.first;
306     llvm::Constant *C = I.second;
307 
308     GV->replaceAllUsesWith(C);
309     GV->eraseFromParent();
310   }
311 }
312 
313 // This is only used in aliases that we created and we know they have a
314 // linear structure.
315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
316   const llvm::Constant *C;
317   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
318     C = GA->getAliasee();
319   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
320     C = GI->getResolver();
321   else
322     return GV;
323 
324   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
325   if (!AliaseeGV)
326     return nullptr;
327 
328   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
329   if (FinalGV == GV)
330     return nullptr;
331 
332   return FinalGV;
333 }
334 
335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
336                                SourceLocation Location, bool IsIFunc,
337                                const llvm::GlobalValue *Alias,
338                                const llvm::GlobalValue *&GV) {
339   GV = getAliasedGlobal(Alias);
340   if (!GV) {
341     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
342     return false;
343   }
344 
345   if (GV->isDeclaration()) {
346     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
347     return false;
348   }
349 
350   if (IsIFunc) {
351     // Check resolver function type.
352     const auto *F = dyn_cast<llvm::Function>(GV);
353     if (!F) {
354       Diags.Report(Location, diag::err_alias_to_undefined)
355           << IsIFunc << IsIFunc;
356       return false;
357     }
358 
359     llvm::FunctionType *FTy = F->getFunctionType();
360     if (!FTy->getReturnType()->isPointerTy()) {
361       Diags.Report(Location, diag::err_ifunc_resolver_return);
362       return false;
363     }
364   }
365 
366   return true;
367 }
368 
369 void CodeGenModule::checkAliases() {
370   // Check if the constructed aliases are well formed. It is really unfortunate
371   // that we have to do this in CodeGen, but we only construct mangled names
372   // and aliases during codegen.
373   bool Error = false;
374   DiagnosticsEngine &Diags = getDiags();
375   for (const GlobalDecl &GD : Aliases) {
376     const auto *D = cast<ValueDecl>(GD.getDecl());
377     SourceLocation Location;
378     bool IsIFunc = D->hasAttr<IFuncAttr>();
379     if (const Attr *A = D->getDefiningAttr())
380       Location = A->getLocation();
381     else
382       llvm_unreachable("Not an alias or ifunc?");
383 
384     StringRef MangledName = getMangledName(GD);
385     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
386     const llvm::GlobalValue *GV = nullptr;
387     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
388       Error = true;
389       continue;
390     }
391 
392     llvm::Constant *Aliasee =
393         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
394                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
395 
396     llvm::GlobalValue *AliaseeGV;
397     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
398       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
399     else
400       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
401 
402     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
403       StringRef AliasSection = SA->getName();
404       if (AliasSection != AliaseeGV->getSection())
405         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
406             << AliasSection << IsIFunc << IsIFunc;
407     }
408 
409     // We have to handle alias to weak aliases in here. LLVM itself disallows
410     // this since the object semantics would not match the IL one. For
411     // compatibility with gcc we implement it by just pointing the alias
412     // to its aliasee's aliasee. We also warn, since the user is probably
413     // expecting the link to be weak.
414     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
415       if (GA->isInterposable()) {
416         Diags.Report(Location, diag::warn_alias_to_weak_alias)
417             << GV->getName() << GA->getName() << IsIFunc;
418         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
419             GA->getAliasee(), Alias->getType());
420 
421         if (IsIFunc)
422           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
423         else
424           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
425       }
426     }
427   }
428   if (!Error)
429     return;
430 
431   for (const GlobalDecl &GD : Aliases) {
432     StringRef MangledName = getMangledName(GD);
433     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
434     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
435     Alias->eraseFromParent();
436   }
437 }
438 
439 void CodeGenModule::clear() {
440   DeferredDeclsToEmit.clear();
441   if (OpenMPRuntime)
442     OpenMPRuntime->clear();
443 }
444 
445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
446                                        StringRef MainFile) {
447   if (!hasDiagnostics())
448     return;
449   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
450     if (MainFile.empty())
451       MainFile = "<stdin>";
452     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
453   } else {
454     if (Mismatched > 0)
455       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
456 
457     if (Missing > 0)
458       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
459   }
460 }
461 
462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
463                                              llvm::Module &M) {
464   if (!LO.VisibilityFromDLLStorageClass)
465     return;
466 
467   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
468       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
469   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
471   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
474       CodeGenModule::GetLLVMVisibility(
475           LO.getExternDeclNoDLLStorageClassVisibility());
476 
477   for (llvm::GlobalValue &GV : M.global_values()) {
478     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
479       continue;
480 
481     // Reset DSO locality before setting the visibility. This removes
482     // any effects that visibility options and annotations may have
483     // had on the DSO locality. Setting the visibility will implicitly set
484     // appropriate globals to DSO Local; however, this will be pessimistic
485     // w.r.t. to the normal compiler IRGen.
486     GV.setDSOLocal(false);
487 
488     if (GV.isDeclarationForLinker()) {
489       GV.setVisibility(GV.getDLLStorageClass() ==
490                                llvm::GlobalValue::DLLImportStorageClass
491                            ? ExternDeclDLLImportVisibility
492                            : ExternDeclNoDLLStorageClassVisibility);
493     } else {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLExportStorageClass
496                            ? DLLExportVisibility
497                            : NoDLLStorageClassVisibility);
498     }
499 
500     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
501   }
502 }
503 
504 void CodeGenModule::Release() {
505   EmitDeferred();
506   EmitVTablesOpportunistically();
507   applyGlobalValReplacements();
508   applyReplacements();
509   checkAliases();
510   emitMultiVersionFunctions();
511   EmitCXXGlobalInitFunc();
512   EmitCXXGlobalCleanUpFunc();
513   registerGlobalDtorsWithAtExit();
514   EmitCXXThreadLocalInitFunc();
515   if (ObjCRuntime)
516     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517       AddGlobalCtor(ObjCInitFunction);
518   if (Context.getLangOpts().CUDA && CUDARuntime) {
519     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520       AddGlobalCtor(CudaCtorFunction);
521   }
522   if (OpenMPRuntime) {
523     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526     }
527     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528     OpenMPRuntime->clear();
529   }
530   if (PGOReader) {
531     getModule().setProfileSummary(
532         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533         llvm::ProfileSummary::PSK_Instr);
534     if (PGOStats.hasDiagnostics())
535       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536   }
537   EmitCtorList(GlobalCtors, "llvm.global_ctors");
538   EmitCtorList(GlobalDtors, "llvm.global_dtors");
539   EmitGlobalAnnotations();
540   EmitStaticExternCAliases();
541   EmitDeferredUnusedCoverageMappings();
542   CodeGenPGO(*this).setValueProfilingFlag(getModule());
543   if (CoverageMapping)
544     CoverageMapping->emit();
545   if (CodeGenOpts.SanitizeCfiCrossDso) {
546     CodeGenFunction(*this).EmitCfiCheckFail();
547     CodeGenFunction(*this).EmitCfiCheckStub();
548   }
549   emitAtAvailableLinkGuard();
550   if (Context.getTargetInfo().getTriple().isWasm() &&
551       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
552     EmitMainVoidAlias();
553   }
554 
555   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
556   // preserve ASAN functions in bitcode libraries.
557   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
558     auto *FT = llvm::FunctionType::get(VoidTy, {});
559     auto *F = llvm::Function::Create(
560         FT, llvm::GlobalValue::ExternalLinkage,
561         "__amdgpu_device_library_preserve_asan_functions", &getModule());
562     auto *Var = new llvm::GlobalVariable(
563         getModule(), FT->getPointerTo(),
564         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
565         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
566         llvm::GlobalVariable::NotThreadLocal);
567     addCompilerUsedGlobal(Var);
568     if (!getModule().getModuleFlag("amdgpu_hostcall")) {
569       getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1);
570     }
571   }
572 
573   emitLLVMUsed();
574   if (SanStats)
575     SanStats->finish();
576 
577   if (CodeGenOpts.Autolink &&
578       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
579     EmitModuleLinkOptions();
580   }
581 
582   // On ELF we pass the dependent library specifiers directly to the linker
583   // without manipulating them. This is in contrast to other platforms where
584   // they are mapped to a specific linker option by the compiler. This
585   // difference is a result of the greater variety of ELF linkers and the fact
586   // that ELF linkers tend to handle libraries in a more complicated fashion
587   // than on other platforms. This forces us to defer handling the dependent
588   // libs to the linker.
589   //
590   // CUDA/HIP device and host libraries are different. Currently there is no
591   // way to differentiate dependent libraries for host or device. Existing
592   // usage of #pragma comment(lib, *) is intended for host libraries on
593   // Windows. Therefore emit llvm.dependent-libraries only for host.
594   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
595     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
596     for (auto *MD : ELFDependentLibraries)
597       NMD->addOperand(MD);
598   }
599 
600   // Record mregparm value now so it is visible through rest of codegen.
601   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
602     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
603                               CodeGenOpts.NumRegisterParameters);
604 
605   if (CodeGenOpts.DwarfVersion) {
606     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
607                               CodeGenOpts.DwarfVersion);
608   }
609 
610   if (CodeGenOpts.Dwarf64)
611     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
612 
613   if (Context.getLangOpts().SemanticInterposition)
614     // Require various optimization to respect semantic interposition.
615     getModule().setSemanticInterposition(true);
616 
617   if (CodeGenOpts.EmitCodeView) {
618     // Indicate that we want CodeView in the metadata.
619     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
620   }
621   if (CodeGenOpts.CodeViewGHash) {
622     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
623   }
624   if (CodeGenOpts.ControlFlowGuard) {
625     // Function ID tables and checks for Control Flow Guard (cfguard=2).
626     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
627   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
628     // Function ID tables for Control Flow Guard (cfguard=1).
629     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
630   }
631   if (CodeGenOpts.EHContGuard) {
632     // Function ID tables for EH Continuation Guard.
633     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
634   }
635   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
636     // We don't support LTO with 2 with different StrictVTablePointers
637     // FIXME: we could support it by stripping all the information introduced
638     // by StrictVTablePointers.
639 
640     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
641 
642     llvm::Metadata *Ops[2] = {
643               llvm::MDString::get(VMContext, "StrictVTablePointers"),
644               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
645                   llvm::Type::getInt32Ty(VMContext), 1))};
646 
647     getModule().addModuleFlag(llvm::Module::Require,
648                               "StrictVTablePointersRequirement",
649                               llvm::MDNode::get(VMContext, Ops));
650   }
651   if (getModuleDebugInfo())
652     // We support a single version in the linked module. The LLVM
653     // parser will drop debug info with a different version number
654     // (and warn about it, too).
655     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
656                               llvm::DEBUG_METADATA_VERSION);
657 
658   // We need to record the widths of enums and wchar_t, so that we can generate
659   // the correct build attributes in the ARM backend. wchar_size is also used by
660   // TargetLibraryInfo.
661   uint64_t WCharWidth =
662       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
663   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
664 
665   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
666   if (   Arch == llvm::Triple::arm
667       || Arch == llvm::Triple::armeb
668       || Arch == llvm::Triple::thumb
669       || Arch == llvm::Triple::thumbeb) {
670     // The minimum width of an enum in bytes
671     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
672     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
673   }
674 
675   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
676     StringRef ABIStr = Target.getABI();
677     llvm::LLVMContext &Ctx = TheModule.getContext();
678     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
679                               llvm::MDString::get(Ctx, ABIStr));
680   }
681 
682   if (CodeGenOpts.SanitizeCfiCrossDso) {
683     // Indicate that we want cross-DSO control flow integrity checks.
684     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
685   }
686 
687   if (CodeGenOpts.WholeProgramVTables) {
688     // Indicate whether VFE was enabled for this module, so that the
689     // vcall_visibility metadata added under whole program vtables is handled
690     // appropriately in the optimizer.
691     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
692                               CodeGenOpts.VirtualFunctionElimination);
693   }
694 
695   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
696     getModule().addModuleFlag(llvm::Module::Override,
697                               "CFI Canonical Jump Tables",
698                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
699   }
700 
701   if (CodeGenOpts.CFProtectionReturn &&
702       Target.checkCFProtectionReturnSupported(getDiags())) {
703     // Indicate that we want to instrument return control flow protection.
704     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
705                               1);
706   }
707 
708   if (CodeGenOpts.CFProtectionBranch &&
709       Target.checkCFProtectionBranchSupported(getDiags())) {
710     // Indicate that we want to instrument branch control flow protection.
711     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
712                               1);
713   }
714 
715   if (CodeGenOpts.IBTSeal)
716     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
717 
718   // Add module metadata for return address signing (ignoring
719   // non-leaf/all) and stack tagging. These are actually turned on by function
720   // attributes, but we use module metadata to emit build attributes. This is
721   // needed for LTO, where the function attributes are inside bitcode
722   // serialised into a global variable by the time build attributes are
723   // emitted, so we can't access them.
724   if (Context.getTargetInfo().hasFeature("ptrauth") &&
725       LangOpts.getSignReturnAddressScope() !=
726           LangOptions::SignReturnAddressScopeKind::None)
727     getModule().addModuleFlag(llvm::Module::Override,
728                               "sign-return-address-buildattr", 1);
729   if (LangOpts.Sanitize.has(SanitizerKind::MemTag))
730     getModule().addModuleFlag(llvm::Module::Override,
731                               "tag-stack-memory-buildattr", 1);
732 
733   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
734       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
735       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
736       Arch == llvm::Triple::aarch64_be) {
737     getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement",
738                               LangOpts.BranchTargetEnforcement);
739 
740     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
741                               LangOpts.hasSignReturnAddress());
742 
743     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
744                               LangOpts.isSignReturnAddressScopeAll());
745 
746     getModule().addModuleFlag(llvm::Module::Error,
747                               "sign-return-address-with-bkey",
748                               !LangOpts.isSignReturnAddressWithAKey());
749   }
750 
751   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
752     llvm::LLVMContext &Ctx = TheModule.getContext();
753     getModule().addModuleFlag(
754         llvm::Module::Error, "MemProfProfileFilename",
755         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
756   }
757 
758   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
759     // Indicate whether __nvvm_reflect should be configured to flush denormal
760     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
761     // property.)
762     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
763                               CodeGenOpts.FP32DenormalMode.Output !=
764                                   llvm::DenormalMode::IEEE);
765   }
766 
767   if (LangOpts.EHAsynch)
768     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
769 
770   // Indicate whether this Module was compiled with -fopenmp
771   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
772     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
773   if (getLangOpts().OpenMPIsDevice)
774     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
775                               LangOpts.OpenMP);
776 
777   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
778   if (LangOpts.OpenCL) {
779     EmitOpenCLMetadata();
780     // Emit SPIR version.
781     if (getTriple().isSPIR()) {
782       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
783       // opencl.spir.version named metadata.
784       // C++ for OpenCL has a distinct mapping for version compatibility with
785       // OpenCL.
786       auto Version = LangOpts.getOpenCLCompatibleVersion();
787       llvm::Metadata *SPIRVerElts[] = {
788           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
789               Int32Ty, Version / 100)),
790           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
791               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
792       llvm::NamedMDNode *SPIRVerMD =
793           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
794       llvm::LLVMContext &Ctx = TheModule.getContext();
795       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
796     }
797   }
798 
799   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
800     assert(PLevel < 3 && "Invalid PIC Level");
801     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
802     if (Context.getLangOpts().PIE)
803       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
804   }
805 
806   if (getCodeGenOpts().CodeModel.size() > 0) {
807     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
808                   .Case("tiny", llvm::CodeModel::Tiny)
809                   .Case("small", llvm::CodeModel::Small)
810                   .Case("kernel", llvm::CodeModel::Kernel)
811                   .Case("medium", llvm::CodeModel::Medium)
812                   .Case("large", llvm::CodeModel::Large)
813                   .Default(~0u);
814     if (CM != ~0u) {
815       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
816       getModule().setCodeModel(codeModel);
817     }
818   }
819 
820   if (CodeGenOpts.NoPLT)
821     getModule().setRtLibUseGOT();
822   if (CodeGenOpts.UnwindTables)
823     getModule().setUwtable();
824 
825   switch (CodeGenOpts.getFramePointer()) {
826   case CodeGenOptions::FramePointerKind::None:
827     // 0 ("none") is the default.
828     break;
829   case CodeGenOptions::FramePointerKind::NonLeaf:
830     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
831     break;
832   case CodeGenOptions::FramePointerKind::All:
833     getModule().setFramePointer(llvm::FramePointerKind::All);
834     break;
835   }
836 
837   SimplifyPersonality();
838 
839   if (getCodeGenOpts().EmitDeclMetadata)
840     EmitDeclMetadata();
841 
842   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
843     EmitCoverageFile();
844 
845   if (CGDebugInfo *DI = getModuleDebugInfo())
846     DI->finalize();
847 
848   if (getCodeGenOpts().EmitVersionIdentMetadata)
849     EmitVersionIdentMetadata();
850 
851   if (!getCodeGenOpts().RecordCommandLine.empty())
852     EmitCommandLineMetadata();
853 
854   if (!getCodeGenOpts().StackProtectorGuard.empty())
855     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
856   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
857     getModule().setStackProtectorGuardReg(
858         getCodeGenOpts().StackProtectorGuardReg);
859   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
860     getModule().setStackProtectorGuardOffset(
861         getCodeGenOpts().StackProtectorGuardOffset);
862   if (getCodeGenOpts().StackAlignment)
863     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
864   if (getCodeGenOpts().SkipRaxSetup)
865     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
866 
867   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
868 
869   EmitBackendOptionsMetadata(getCodeGenOpts());
870 
871   // Set visibility from DLL storage class
872   // We do this at the end of LLVM IR generation; after any operation
873   // that might affect the DLL storage class or the visibility, and
874   // before anything that might act on these.
875   setVisibilityFromDLLStorageClass(LangOpts, getModule());
876 }
877 
878 void CodeGenModule::EmitOpenCLMetadata() {
879   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
880   // opencl.ocl.version named metadata node.
881   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
882   auto Version = LangOpts.getOpenCLCompatibleVersion();
883   llvm::Metadata *OCLVerElts[] = {
884       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
885           Int32Ty, Version / 100)),
886       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
887           Int32Ty, (Version % 100) / 10))};
888   llvm::NamedMDNode *OCLVerMD =
889       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
890   llvm::LLVMContext &Ctx = TheModule.getContext();
891   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
892 }
893 
894 void CodeGenModule::EmitBackendOptionsMetadata(
895     const CodeGenOptions CodeGenOpts) {
896   switch (getTriple().getArch()) {
897   default:
898     break;
899   case llvm::Triple::riscv32:
900   case llvm::Triple::riscv64:
901     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
902                               CodeGenOpts.SmallDataLimit);
903     break;
904   }
905 }
906 
907 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
908   // Make sure that this type is translated.
909   Types.UpdateCompletedType(TD);
910 }
911 
912 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
913   // Make sure that this type is translated.
914   Types.RefreshTypeCacheForClass(RD);
915 }
916 
917 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
918   if (!TBAA)
919     return nullptr;
920   return TBAA->getTypeInfo(QTy);
921 }
922 
923 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
924   if (!TBAA)
925     return TBAAAccessInfo();
926   if (getLangOpts().CUDAIsDevice) {
927     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
928     // access info.
929     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
930       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
931           nullptr)
932         return TBAAAccessInfo();
933     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
934       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
935           nullptr)
936         return TBAAAccessInfo();
937     }
938   }
939   return TBAA->getAccessInfo(AccessType);
940 }
941 
942 TBAAAccessInfo
943 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
944   if (!TBAA)
945     return TBAAAccessInfo();
946   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
947 }
948 
949 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
950   if (!TBAA)
951     return nullptr;
952   return TBAA->getTBAAStructInfo(QTy);
953 }
954 
955 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
956   if (!TBAA)
957     return nullptr;
958   return TBAA->getBaseTypeInfo(QTy);
959 }
960 
961 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
962   if (!TBAA)
963     return nullptr;
964   return TBAA->getAccessTagInfo(Info);
965 }
966 
967 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
968                                                    TBAAAccessInfo TargetInfo) {
969   if (!TBAA)
970     return TBAAAccessInfo();
971   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
972 }
973 
974 TBAAAccessInfo
975 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
976                                                    TBAAAccessInfo InfoB) {
977   if (!TBAA)
978     return TBAAAccessInfo();
979   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
980 }
981 
982 TBAAAccessInfo
983 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
984                                               TBAAAccessInfo SrcInfo) {
985   if (!TBAA)
986     return TBAAAccessInfo();
987   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
988 }
989 
990 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
991                                                 TBAAAccessInfo TBAAInfo) {
992   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
993     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
994 }
995 
996 void CodeGenModule::DecorateInstructionWithInvariantGroup(
997     llvm::Instruction *I, const CXXRecordDecl *RD) {
998   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
999                  llvm::MDNode::get(getLLVMContext(), {}));
1000 }
1001 
1002 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1003   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1004   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1005 }
1006 
1007 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1008 /// specified stmt yet.
1009 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1010   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1011                                                "cannot compile this %0 yet");
1012   std::string Msg = Type;
1013   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1014       << Msg << S->getSourceRange();
1015 }
1016 
1017 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1018 /// specified decl yet.
1019 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1020   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1021                                                "cannot compile this %0 yet");
1022   std::string Msg = Type;
1023   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1024 }
1025 
1026 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1027   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1028 }
1029 
1030 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1031                                         const NamedDecl *D) const {
1032   if (GV->hasDLLImportStorageClass())
1033     return;
1034   // Internal definitions always have default visibility.
1035   if (GV->hasLocalLinkage()) {
1036     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1037     return;
1038   }
1039   if (!D)
1040     return;
1041   // Set visibility for definitions, and for declarations if requested globally
1042   // or set explicitly.
1043   LinkageInfo LV = D->getLinkageAndVisibility();
1044   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1045       !GV->isDeclarationForLinker())
1046     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1047 }
1048 
1049 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1050                                  llvm::GlobalValue *GV) {
1051   if (GV->hasLocalLinkage())
1052     return true;
1053 
1054   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1055     return true;
1056 
1057   // DLLImport explicitly marks the GV as external.
1058   if (GV->hasDLLImportStorageClass())
1059     return false;
1060 
1061   const llvm::Triple &TT = CGM.getTriple();
1062   if (TT.isWindowsGNUEnvironment()) {
1063     // In MinGW, variables without DLLImport can still be automatically
1064     // imported from a DLL by the linker; don't mark variables that
1065     // potentially could come from another DLL as DSO local.
1066 
1067     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1068     // (and this actually happens in the public interface of libstdc++), so
1069     // such variables can't be marked as DSO local. (Native TLS variables
1070     // can't be dllimported at all, though.)
1071     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1072         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1073       return false;
1074   }
1075 
1076   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1077   // remain unresolved in the link, they can be resolved to zero, which is
1078   // outside the current DSO.
1079   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1080     return false;
1081 
1082   // Every other GV is local on COFF.
1083   // Make an exception for windows OS in the triple: Some firmware builds use
1084   // *-win32-macho triples. This (accidentally?) produced windows relocations
1085   // without GOT tables in older clang versions; Keep this behaviour.
1086   // FIXME: even thread local variables?
1087   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1088     return true;
1089 
1090   // Only handle COFF and ELF for now.
1091   if (!TT.isOSBinFormatELF())
1092     return false;
1093 
1094   // If this is not an executable, don't assume anything is local.
1095   const auto &CGOpts = CGM.getCodeGenOpts();
1096   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1097   const auto &LOpts = CGM.getLangOpts();
1098   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1099     // On ELF, if -fno-semantic-interposition is specified and the target
1100     // supports local aliases, there will be neither CC1
1101     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1102     // dso_local on the function if using a local alias is preferable (can avoid
1103     // PLT indirection).
1104     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1105       return false;
1106     return !(CGM.getLangOpts().SemanticInterposition ||
1107              CGM.getLangOpts().HalfNoSemanticInterposition);
1108   }
1109 
1110   // A definition cannot be preempted from an executable.
1111   if (!GV->isDeclarationForLinker())
1112     return true;
1113 
1114   // Most PIC code sequences that assume that a symbol is local cannot produce a
1115   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1116   // depended, it seems worth it to handle it here.
1117   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1118     return false;
1119 
1120   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1121   if (TT.isPPC64())
1122     return false;
1123 
1124   if (CGOpts.DirectAccessExternalData) {
1125     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1126     // for non-thread-local variables. If the symbol is not defined in the
1127     // executable, a copy relocation will be needed at link time. dso_local is
1128     // excluded for thread-local variables because they generally don't support
1129     // copy relocations.
1130     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1131       if (!Var->isThreadLocal())
1132         return true;
1133 
1134     // -fno-pic sets dso_local on a function declaration to allow direct
1135     // accesses when taking its address (similar to a data symbol). If the
1136     // function is not defined in the executable, a canonical PLT entry will be
1137     // needed at link time. -fno-direct-access-external-data can avoid the
1138     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1139     // it could just cause trouble without providing perceptible benefits.
1140     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1141       return true;
1142   }
1143 
1144   // If we can use copy relocations we can assume it is local.
1145 
1146   // Otherwise don't assume it is local.
1147   return false;
1148 }
1149 
1150 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1151   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1152 }
1153 
1154 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1155                                           GlobalDecl GD) const {
1156   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1157   // C++ destructors have a few C++ ABI specific special cases.
1158   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1159     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1160     return;
1161   }
1162   setDLLImportDLLExport(GV, D);
1163 }
1164 
1165 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1166                                           const NamedDecl *D) const {
1167   if (D && D->isExternallyVisible()) {
1168     if (D->hasAttr<DLLImportAttr>())
1169       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1170     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1171       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1172   }
1173 }
1174 
1175 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1176                                     GlobalDecl GD) const {
1177   setDLLImportDLLExport(GV, GD);
1178   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1179 }
1180 
1181 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1182                                     const NamedDecl *D) const {
1183   setDLLImportDLLExport(GV, D);
1184   setGVPropertiesAux(GV, D);
1185 }
1186 
1187 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1188                                        const NamedDecl *D) const {
1189   setGlobalVisibility(GV, D);
1190   setDSOLocal(GV);
1191   GV->setPartition(CodeGenOpts.SymbolPartition);
1192 }
1193 
1194 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1195   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1196       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1197       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1198       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1199       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1200 }
1201 
1202 llvm::GlobalVariable::ThreadLocalMode
1203 CodeGenModule::GetDefaultLLVMTLSModel() const {
1204   switch (CodeGenOpts.getDefaultTLSModel()) {
1205   case CodeGenOptions::GeneralDynamicTLSModel:
1206     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1207   case CodeGenOptions::LocalDynamicTLSModel:
1208     return llvm::GlobalVariable::LocalDynamicTLSModel;
1209   case CodeGenOptions::InitialExecTLSModel:
1210     return llvm::GlobalVariable::InitialExecTLSModel;
1211   case CodeGenOptions::LocalExecTLSModel:
1212     return llvm::GlobalVariable::LocalExecTLSModel;
1213   }
1214   llvm_unreachable("Invalid TLS model!");
1215 }
1216 
1217 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1218   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1219 
1220   llvm::GlobalValue::ThreadLocalMode TLM;
1221   TLM = GetDefaultLLVMTLSModel();
1222 
1223   // Override the TLS model if it is explicitly specified.
1224   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1225     TLM = GetLLVMTLSModel(Attr->getModel());
1226   }
1227 
1228   GV->setThreadLocalMode(TLM);
1229 }
1230 
1231 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1232                                           StringRef Name) {
1233   const TargetInfo &Target = CGM.getTarget();
1234   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1235 }
1236 
1237 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1238                                                  const CPUSpecificAttr *Attr,
1239                                                  unsigned CPUIndex,
1240                                                  raw_ostream &Out) {
1241   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1242   // supported.
1243   if (Attr)
1244     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1245   else if (CGM.getTarget().supportsIFunc())
1246     Out << ".resolver";
1247 }
1248 
1249 static void AppendTargetMangling(const CodeGenModule &CGM,
1250                                  const TargetAttr *Attr, raw_ostream &Out) {
1251   if (Attr->isDefaultVersion())
1252     return;
1253 
1254   Out << '.';
1255   const TargetInfo &Target = CGM.getTarget();
1256   ParsedTargetAttr Info =
1257       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1258         // Multiversioning doesn't allow "no-${feature}", so we can
1259         // only have "+" prefixes here.
1260         assert(LHS.startswith("+") && RHS.startswith("+") &&
1261                "Features should always have a prefix.");
1262         return Target.multiVersionSortPriority(LHS.substr(1)) >
1263                Target.multiVersionSortPriority(RHS.substr(1));
1264       });
1265 
1266   bool IsFirst = true;
1267 
1268   if (!Info.Architecture.empty()) {
1269     IsFirst = false;
1270     Out << "arch_" << Info.Architecture;
1271   }
1272 
1273   for (StringRef Feat : Info.Features) {
1274     if (!IsFirst)
1275       Out << '_';
1276     IsFirst = false;
1277     Out << Feat.substr(1);
1278   }
1279 }
1280 
1281 // Returns true if GD is a function decl with internal linkage and
1282 // needs a unique suffix after the mangled name.
1283 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1284                                         CodeGenModule &CGM) {
1285   const Decl *D = GD.getDecl();
1286   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1287          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1288 }
1289 
1290 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1291                                        const TargetClonesAttr *Attr,
1292                                        unsigned VersionIndex,
1293                                        raw_ostream &Out) {
1294   Out << '.';
1295   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1296   if (FeatureStr.startswith("arch="))
1297     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1298   else
1299     Out << FeatureStr;
1300 
1301   Out << '.' << Attr->getMangledIndex(VersionIndex);
1302 }
1303 
1304 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1305                                       const NamedDecl *ND,
1306                                       bool OmitMultiVersionMangling = false) {
1307   SmallString<256> Buffer;
1308   llvm::raw_svector_ostream Out(Buffer);
1309   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1310   if (!CGM.getModuleNameHash().empty())
1311     MC.needsUniqueInternalLinkageNames();
1312   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1313   if (ShouldMangle)
1314     MC.mangleName(GD.getWithDecl(ND), Out);
1315   else {
1316     IdentifierInfo *II = ND->getIdentifier();
1317     assert(II && "Attempt to mangle unnamed decl.");
1318     const auto *FD = dyn_cast<FunctionDecl>(ND);
1319 
1320     if (FD &&
1321         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1322       Out << "__regcall3__" << II->getName();
1323     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1324                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1325       Out << "__device_stub__" << II->getName();
1326     } else {
1327       Out << II->getName();
1328     }
1329   }
1330 
1331   // Check if the module name hash should be appended for internal linkage
1332   // symbols.   This should come before multi-version target suffixes are
1333   // appended. This is to keep the name and module hash suffix of the
1334   // internal linkage function together.  The unique suffix should only be
1335   // added when name mangling is done to make sure that the final name can
1336   // be properly demangled.  For example, for C functions without prototypes,
1337   // name mangling is not done and the unique suffix should not be appeneded
1338   // then.
1339   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1340     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1341            "Hash computed when not explicitly requested");
1342     Out << CGM.getModuleNameHash();
1343   }
1344 
1345   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1346     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1347       switch (FD->getMultiVersionKind()) {
1348       case MultiVersionKind::CPUDispatch:
1349       case MultiVersionKind::CPUSpecific:
1350         AppendCPUSpecificCPUDispatchMangling(CGM,
1351                                              FD->getAttr<CPUSpecificAttr>(),
1352                                              GD.getMultiVersionIndex(), Out);
1353         break;
1354       case MultiVersionKind::Target:
1355         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1356         break;
1357       case MultiVersionKind::TargetClones:
1358         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1359                                    GD.getMultiVersionIndex(), Out);
1360         break;
1361       case MultiVersionKind::None:
1362         llvm_unreachable("None multiversion type isn't valid here");
1363       }
1364     }
1365 
1366   // Make unique name for device side static file-scope variable for HIP.
1367   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1368       CGM.getLangOpts().GPURelocatableDeviceCode &&
1369       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1370     CGM.printPostfixForExternalizedStaticVar(Out);
1371   return std::string(Out.str());
1372 }
1373 
1374 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1375                                             const FunctionDecl *FD,
1376                                             StringRef &CurName) {
1377   if (!FD->isMultiVersion())
1378     return;
1379 
1380   // Get the name of what this would be without the 'target' attribute.  This
1381   // allows us to lookup the version that was emitted when this wasn't a
1382   // multiversion function.
1383   std::string NonTargetName =
1384       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1385   GlobalDecl OtherGD;
1386   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1387     assert(OtherGD.getCanonicalDecl()
1388                .getDecl()
1389                ->getAsFunction()
1390                ->isMultiVersion() &&
1391            "Other GD should now be a multiversioned function");
1392     // OtherFD is the version of this function that was mangled BEFORE
1393     // becoming a MultiVersion function.  It potentially needs to be updated.
1394     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1395                                       .getDecl()
1396                                       ->getAsFunction()
1397                                       ->getMostRecentDecl();
1398     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1399     // This is so that if the initial version was already the 'default'
1400     // version, we don't try to update it.
1401     if (OtherName != NonTargetName) {
1402       // Remove instead of erase, since others may have stored the StringRef
1403       // to this.
1404       const auto ExistingRecord = Manglings.find(NonTargetName);
1405       if (ExistingRecord != std::end(Manglings))
1406         Manglings.remove(&(*ExistingRecord));
1407       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1408       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1409           Result.first->first();
1410       // If this is the current decl is being created, make sure we update the name.
1411       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1412         CurName = OtherNameRef;
1413       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1414         Entry->setName(OtherName);
1415     }
1416   }
1417 }
1418 
1419 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1420   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1421 
1422   // Some ABIs don't have constructor variants.  Make sure that base and
1423   // complete constructors get mangled the same.
1424   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1425     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1426       CXXCtorType OrigCtorType = GD.getCtorType();
1427       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1428       if (OrigCtorType == Ctor_Base)
1429         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1430     }
1431   }
1432 
1433   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1434   // static device variable depends on whether the variable is referenced by
1435   // a host or device host function. Therefore the mangled name cannot be
1436   // cached.
1437   if (!LangOpts.CUDAIsDevice ||
1438       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1439     auto FoundName = MangledDeclNames.find(CanonicalGD);
1440     if (FoundName != MangledDeclNames.end())
1441       return FoundName->second;
1442   }
1443 
1444   // Keep the first result in the case of a mangling collision.
1445   const auto *ND = cast<NamedDecl>(GD.getDecl());
1446   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1447 
1448   // Ensure either we have different ABIs between host and device compilations,
1449   // says host compilation following MSVC ABI but device compilation follows
1450   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1451   // mangling should be the same after name stubbing. The later checking is
1452   // very important as the device kernel name being mangled in host-compilation
1453   // is used to resolve the device binaries to be executed. Inconsistent naming
1454   // result in undefined behavior. Even though we cannot check that naming
1455   // directly between host- and device-compilations, the host- and
1456   // device-mangling in host compilation could help catching certain ones.
1457   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1458          getLangOpts().CUDAIsDevice ||
1459          (getContext().getAuxTargetInfo() &&
1460           (getContext().getAuxTargetInfo()->getCXXABI() !=
1461            getContext().getTargetInfo().getCXXABI())) ||
1462          getCUDARuntime().getDeviceSideName(ND) ==
1463              getMangledNameImpl(
1464                  *this,
1465                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1466                  ND));
1467 
1468   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1469   return MangledDeclNames[CanonicalGD] = Result.first->first();
1470 }
1471 
1472 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1473                                              const BlockDecl *BD) {
1474   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1475   const Decl *D = GD.getDecl();
1476 
1477   SmallString<256> Buffer;
1478   llvm::raw_svector_ostream Out(Buffer);
1479   if (!D)
1480     MangleCtx.mangleGlobalBlock(BD,
1481       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1482   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1483     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1484   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1485     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1486   else
1487     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1488 
1489   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1490   return Result.first->first();
1491 }
1492 
1493 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1494   return getModule().getNamedValue(Name);
1495 }
1496 
1497 /// AddGlobalCtor - Add a function to the list that will be called before
1498 /// main() runs.
1499 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1500                                   llvm::Constant *AssociatedData) {
1501   // FIXME: Type coercion of void()* types.
1502   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1503 }
1504 
1505 /// AddGlobalDtor - Add a function to the list that will be called
1506 /// when the module is unloaded.
1507 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1508                                   bool IsDtorAttrFunc) {
1509   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1510       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1511     DtorsUsingAtExit[Priority].push_back(Dtor);
1512     return;
1513   }
1514 
1515   // FIXME: Type coercion of void()* types.
1516   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1517 }
1518 
1519 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1520   if (Fns.empty()) return;
1521 
1522   // Ctor function type is void()*.
1523   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1524   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1525       TheModule.getDataLayout().getProgramAddressSpace());
1526 
1527   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1528   llvm::StructType *CtorStructTy = llvm::StructType::get(
1529       Int32Ty, CtorPFTy, VoidPtrTy);
1530 
1531   // Construct the constructor and destructor arrays.
1532   ConstantInitBuilder builder(*this);
1533   auto ctors = builder.beginArray(CtorStructTy);
1534   for (const auto &I : Fns) {
1535     auto ctor = ctors.beginStruct(CtorStructTy);
1536     ctor.addInt(Int32Ty, I.Priority);
1537     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1538     if (I.AssociatedData)
1539       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1540     else
1541       ctor.addNullPointer(VoidPtrTy);
1542     ctor.finishAndAddTo(ctors);
1543   }
1544 
1545   auto list =
1546     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1547                                 /*constant*/ false,
1548                                 llvm::GlobalValue::AppendingLinkage);
1549 
1550   // The LTO linker doesn't seem to like it when we set an alignment
1551   // on appending variables.  Take it off as a workaround.
1552   list->setAlignment(llvm::None);
1553 
1554   Fns.clear();
1555 }
1556 
1557 llvm::GlobalValue::LinkageTypes
1558 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1559   const auto *D = cast<FunctionDecl>(GD.getDecl());
1560 
1561   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1562 
1563   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1564     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1565 
1566   if (isa<CXXConstructorDecl>(D) &&
1567       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1568       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1569     // Our approach to inheriting constructors is fundamentally different from
1570     // that used by the MS ABI, so keep our inheriting constructor thunks
1571     // internal rather than trying to pick an unambiguous mangling for them.
1572     return llvm::GlobalValue::InternalLinkage;
1573   }
1574 
1575   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1576 }
1577 
1578 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1579   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1580   if (!MDS) return nullptr;
1581 
1582   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1583 }
1584 
1585 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1586                                               const CGFunctionInfo &Info,
1587                                               llvm::Function *F, bool IsThunk) {
1588   unsigned CallingConv;
1589   llvm::AttributeList PAL;
1590   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1591                          /*AttrOnCallSite=*/false, IsThunk);
1592   F->setAttributes(PAL);
1593   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1594 }
1595 
1596 static void removeImageAccessQualifier(std::string& TyName) {
1597   std::string ReadOnlyQual("__read_only");
1598   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1599   if (ReadOnlyPos != std::string::npos)
1600     // "+ 1" for the space after access qualifier.
1601     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1602   else {
1603     std::string WriteOnlyQual("__write_only");
1604     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1605     if (WriteOnlyPos != std::string::npos)
1606       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1607     else {
1608       std::string ReadWriteQual("__read_write");
1609       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1610       if (ReadWritePos != std::string::npos)
1611         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1612     }
1613   }
1614 }
1615 
1616 // Returns the address space id that should be produced to the
1617 // kernel_arg_addr_space metadata. This is always fixed to the ids
1618 // as specified in the SPIR 2.0 specification in order to differentiate
1619 // for example in clGetKernelArgInfo() implementation between the address
1620 // spaces with targets without unique mapping to the OpenCL address spaces
1621 // (basically all single AS CPUs).
1622 static unsigned ArgInfoAddressSpace(LangAS AS) {
1623   switch (AS) {
1624   case LangAS::opencl_global:
1625     return 1;
1626   case LangAS::opencl_constant:
1627     return 2;
1628   case LangAS::opencl_local:
1629     return 3;
1630   case LangAS::opencl_generic:
1631     return 4; // Not in SPIR 2.0 specs.
1632   case LangAS::opencl_global_device:
1633     return 5;
1634   case LangAS::opencl_global_host:
1635     return 6;
1636   default:
1637     return 0; // Assume private.
1638   }
1639 }
1640 
1641 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1642                                          const FunctionDecl *FD,
1643                                          CodeGenFunction *CGF) {
1644   assert(((FD && CGF) || (!FD && !CGF)) &&
1645          "Incorrect use - FD and CGF should either be both null or not!");
1646   // Create MDNodes that represent the kernel arg metadata.
1647   // Each MDNode is a list in the form of "key", N number of values which is
1648   // the same number of values as their are kernel arguments.
1649 
1650   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1651 
1652   // MDNode for the kernel argument address space qualifiers.
1653   SmallVector<llvm::Metadata *, 8> addressQuals;
1654 
1655   // MDNode for the kernel argument access qualifiers (images only).
1656   SmallVector<llvm::Metadata *, 8> accessQuals;
1657 
1658   // MDNode for the kernel argument type names.
1659   SmallVector<llvm::Metadata *, 8> argTypeNames;
1660 
1661   // MDNode for the kernel argument base type names.
1662   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1663 
1664   // MDNode for the kernel argument type qualifiers.
1665   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1666 
1667   // MDNode for the kernel argument names.
1668   SmallVector<llvm::Metadata *, 8> argNames;
1669 
1670   if (FD && CGF)
1671     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1672       const ParmVarDecl *parm = FD->getParamDecl(i);
1673       QualType ty = parm->getType();
1674       std::string typeQuals;
1675 
1676       // Get image and pipe access qualifier:
1677       if (ty->isImageType() || ty->isPipeType()) {
1678         const Decl *PDecl = parm;
1679         if (auto *TD = dyn_cast<TypedefType>(ty))
1680           PDecl = TD->getDecl();
1681         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1682         if (A && A->isWriteOnly())
1683           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1684         else if (A && A->isReadWrite())
1685           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1686         else
1687           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1688       } else
1689         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1690 
1691       // Get argument name.
1692       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1693 
1694       auto getTypeSpelling = [&](QualType Ty) {
1695         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1696 
1697         if (Ty.isCanonical()) {
1698           StringRef typeNameRef = typeName;
1699           // Turn "unsigned type" to "utype"
1700           if (typeNameRef.consume_front("unsigned "))
1701             return std::string("u") + typeNameRef.str();
1702           if (typeNameRef.consume_front("signed "))
1703             return typeNameRef.str();
1704         }
1705 
1706         return typeName;
1707       };
1708 
1709       if (ty->isPointerType()) {
1710         QualType pointeeTy = ty->getPointeeType();
1711 
1712         // Get address qualifier.
1713         addressQuals.push_back(
1714             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1715                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1716 
1717         // Get argument type name.
1718         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1719         std::string baseTypeName =
1720             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1721         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1722         argBaseTypeNames.push_back(
1723             llvm::MDString::get(VMContext, baseTypeName));
1724 
1725         // Get argument type qualifiers:
1726         if (ty.isRestrictQualified())
1727           typeQuals = "restrict";
1728         if (pointeeTy.isConstQualified() ||
1729             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1730           typeQuals += typeQuals.empty() ? "const" : " const";
1731         if (pointeeTy.isVolatileQualified())
1732           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1733       } else {
1734         uint32_t AddrSpc = 0;
1735         bool isPipe = ty->isPipeType();
1736         if (ty->isImageType() || isPipe)
1737           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1738 
1739         addressQuals.push_back(
1740             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1741 
1742         // Get argument type name.
1743         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1744         std::string typeName = getTypeSpelling(ty);
1745         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1746 
1747         // Remove access qualifiers on images
1748         // (as they are inseparable from type in clang implementation,
1749         // but OpenCL spec provides a special query to get access qualifier
1750         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1751         if (ty->isImageType()) {
1752           removeImageAccessQualifier(typeName);
1753           removeImageAccessQualifier(baseTypeName);
1754         }
1755 
1756         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1757         argBaseTypeNames.push_back(
1758             llvm::MDString::get(VMContext, baseTypeName));
1759 
1760         if (isPipe)
1761           typeQuals = "pipe";
1762       }
1763       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1764     }
1765 
1766   Fn->setMetadata("kernel_arg_addr_space",
1767                   llvm::MDNode::get(VMContext, addressQuals));
1768   Fn->setMetadata("kernel_arg_access_qual",
1769                   llvm::MDNode::get(VMContext, accessQuals));
1770   Fn->setMetadata("kernel_arg_type",
1771                   llvm::MDNode::get(VMContext, argTypeNames));
1772   Fn->setMetadata("kernel_arg_base_type",
1773                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1774   Fn->setMetadata("kernel_arg_type_qual",
1775                   llvm::MDNode::get(VMContext, argTypeQuals));
1776   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1777     Fn->setMetadata("kernel_arg_name",
1778                     llvm::MDNode::get(VMContext, argNames));
1779 }
1780 
1781 /// Determines whether the language options require us to model
1782 /// unwind exceptions.  We treat -fexceptions as mandating this
1783 /// except under the fragile ObjC ABI with only ObjC exceptions
1784 /// enabled.  This means, for example, that C with -fexceptions
1785 /// enables this.
1786 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1787   // If exceptions are completely disabled, obviously this is false.
1788   if (!LangOpts.Exceptions) return false;
1789 
1790   // If C++ exceptions are enabled, this is true.
1791   if (LangOpts.CXXExceptions) return true;
1792 
1793   // If ObjC exceptions are enabled, this depends on the ABI.
1794   if (LangOpts.ObjCExceptions) {
1795     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1796   }
1797 
1798   return true;
1799 }
1800 
1801 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1802                                                       const CXXMethodDecl *MD) {
1803   // Check that the type metadata can ever actually be used by a call.
1804   if (!CGM.getCodeGenOpts().LTOUnit ||
1805       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1806     return false;
1807 
1808   // Only functions whose address can be taken with a member function pointer
1809   // need this sort of type metadata.
1810   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1811          !isa<CXXDestructorDecl>(MD);
1812 }
1813 
1814 std::vector<const CXXRecordDecl *>
1815 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1816   llvm::SetVector<const CXXRecordDecl *> MostBases;
1817 
1818   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1819   CollectMostBases = [&](const CXXRecordDecl *RD) {
1820     if (RD->getNumBases() == 0)
1821       MostBases.insert(RD);
1822     for (const CXXBaseSpecifier &B : RD->bases())
1823       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1824   };
1825   CollectMostBases(RD);
1826   return MostBases.takeVector();
1827 }
1828 
1829 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1830                                                            llvm::Function *F) {
1831   llvm::AttrBuilder B(F->getContext());
1832 
1833   if (CodeGenOpts.UnwindTables)
1834     B.addAttribute(llvm::Attribute::UWTable);
1835 
1836   if (CodeGenOpts.StackClashProtector)
1837     B.addAttribute("probe-stack", "inline-asm");
1838 
1839   if (!hasUnwindExceptions(LangOpts))
1840     B.addAttribute(llvm::Attribute::NoUnwind);
1841 
1842   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1843     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1844       B.addAttribute(llvm::Attribute::StackProtect);
1845     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1846       B.addAttribute(llvm::Attribute::StackProtectStrong);
1847     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1848       B.addAttribute(llvm::Attribute::StackProtectReq);
1849   }
1850 
1851   if (!D) {
1852     // If we don't have a declaration to control inlining, the function isn't
1853     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1854     // disabled, mark the function as noinline.
1855     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1856         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1857       B.addAttribute(llvm::Attribute::NoInline);
1858 
1859     F->addFnAttrs(B);
1860     return;
1861   }
1862 
1863   // Track whether we need to add the optnone LLVM attribute,
1864   // starting with the default for this optimization level.
1865   bool ShouldAddOptNone =
1866       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1867   // We can't add optnone in the following cases, it won't pass the verifier.
1868   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1869   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1870 
1871   // Add optnone, but do so only if the function isn't always_inline.
1872   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1873       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1874     B.addAttribute(llvm::Attribute::OptimizeNone);
1875 
1876     // OptimizeNone implies noinline; we should not be inlining such functions.
1877     B.addAttribute(llvm::Attribute::NoInline);
1878 
1879     // We still need to handle naked functions even though optnone subsumes
1880     // much of their semantics.
1881     if (D->hasAttr<NakedAttr>())
1882       B.addAttribute(llvm::Attribute::Naked);
1883 
1884     // OptimizeNone wins over OptimizeForSize and MinSize.
1885     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1886     F->removeFnAttr(llvm::Attribute::MinSize);
1887   } else if (D->hasAttr<NakedAttr>()) {
1888     // Naked implies noinline: we should not be inlining such functions.
1889     B.addAttribute(llvm::Attribute::Naked);
1890     B.addAttribute(llvm::Attribute::NoInline);
1891   } else if (D->hasAttr<NoDuplicateAttr>()) {
1892     B.addAttribute(llvm::Attribute::NoDuplicate);
1893   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1894     // Add noinline if the function isn't always_inline.
1895     B.addAttribute(llvm::Attribute::NoInline);
1896   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1897              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1898     // (noinline wins over always_inline, and we can't specify both in IR)
1899     B.addAttribute(llvm::Attribute::AlwaysInline);
1900   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1901     // If we're not inlining, then force everything that isn't always_inline to
1902     // carry an explicit noinline attribute.
1903     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1904       B.addAttribute(llvm::Attribute::NoInline);
1905   } else {
1906     // Otherwise, propagate the inline hint attribute and potentially use its
1907     // absence to mark things as noinline.
1908     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1909       // Search function and template pattern redeclarations for inline.
1910       auto CheckForInline = [](const FunctionDecl *FD) {
1911         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1912           return Redecl->isInlineSpecified();
1913         };
1914         if (any_of(FD->redecls(), CheckRedeclForInline))
1915           return true;
1916         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1917         if (!Pattern)
1918           return false;
1919         return any_of(Pattern->redecls(), CheckRedeclForInline);
1920       };
1921       if (CheckForInline(FD)) {
1922         B.addAttribute(llvm::Attribute::InlineHint);
1923       } else if (CodeGenOpts.getInlining() ==
1924                      CodeGenOptions::OnlyHintInlining &&
1925                  !FD->isInlined() &&
1926                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1927         B.addAttribute(llvm::Attribute::NoInline);
1928       }
1929     }
1930   }
1931 
1932   // Add other optimization related attributes if we are optimizing this
1933   // function.
1934   if (!D->hasAttr<OptimizeNoneAttr>()) {
1935     if (D->hasAttr<ColdAttr>()) {
1936       if (!ShouldAddOptNone)
1937         B.addAttribute(llvm::Attribute::OptimizeForSize);
1938       B.addAttribute(llvm::Attribute::Cold);
1939     }
1940     if (D->hasAttr<HotAttr>())
1941       B.addAttribute(llvm::Attribute::Hot);
1942     if (D->hasAttr<MinSizeAttr>())
1943       B.addAttribute(llvm::Attribute::MinSize);
1944   }
1945 
1946   F->addFnAttrs(B);
1947 
1948   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1949   if (alignment)
1950     F->setAlignment(llvm::Align(alignment));
1951 
1952   if (!D->hasAttr<AlignedAttr>())
1953     if (LangOpts.FunctionAlignment)
1954       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1955 
1956   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1957   // reserve a bit for differentiating between virtual and non-virtual member
1958   // functions. If the current target's C++ ABI requires this and this is a
1959   // member function, set its alignment accordingly.
1960   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1961     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1962       F->setAlignment(llvm::Align(2));
1963   }
1964 
1965   // In the cross-dso CFI mode with canonical jump tables, we want !type
1966   // attributes on definitions only.
1967   if (CodeGenOpts.SanitizeCfiCrossDso &&
1968       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1969     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1970       // Skip available_externally functions. They won't be codegen'ed in the
1971       // current module anyway.
1972       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1973         CreateFunctionTypeMetadataForIcall(FD, F);
1974     }
1975   }
1976 
1977   // Emit type metadata on member functions for member function pointer checks.
1978   // These are only ever necessary on definitions; we're guaranteed that the
1979   // definition will be present in the LTO unit as a result of LTO visibility.
1980   auto *MD = dyn_cast<CXXMethodDecl>(D);
1981   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1982     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1983       llvm::Metadata *Id =
1984           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1985               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1986       F->addTypeMetadata(0, Id);
1987     }
1988   }
1989 }
1990 
1991 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1992                                                   llvm::Function *F) {
1993   if (D->hasAttr<StrictFPAttr>()) {
1994     llvm::AttrBuilder FuncAttrs(F->getContext());
1995     FuncAttrs.addAttribute("strictfp");
1996     F->addFnAttrs(FuncAttrs);
1997   }
1998 }
1999 
2000 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2001   const Decl *D = GD.getDecl();
2002   if (isa_and_nonnull<NamedDecl>(D))
2003     setGVProperties(GV, GD);
2004   else
2005     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2006 
2007   if (D && D->hasAttr<UsedAttr>())
2008     addUsedOrCompilerUsedGlobal(GV);
2009 
2010   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2011     const auto *VD = cast<VarDecl>(D);
2012     if (VD->getType().isConstQualified() &&
2013         VD->getStorageDuration() == SD_Static)
2014       addUsedOrCompilerUsedGlobal(GV);
2015   }
2016 }
2017 
2018 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2019                                                 llvm::AttrBuilder &Attrs) {
2020   // Add target-cpu and target-features attributes to functions. If
2021   // we have a decl for the function and it has a target attribute then
2022   // parse that and add it to the feature set.
2023   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2024   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2025   std::vector<std::string> Features;
2026   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2027   FD = FD ? FD->getMostRecentDecl() : FD;
2028   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2029   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2030   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2031   bool AddedAttr = false;
2032   if (TD || SD || TC) {
2033     llvm::StringMap<bool> FeatureMap;
2034     getContext().getFunctionFeatureMap(FeatureMap, GD);
2035 
2036     // Produce the canonical string for this set of features.
2037     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2038       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2039 
2040     // Now add the target-cpu and target-features to the function.
2041     // While we populated the feature map above, we still need to
2042     // get and parse the target attribute so we can get the cpu for
2043     // the function.
2044     if (TD) {
2045       ParsedTargetAttr ParsedAttr = TD->parse();
2046       if (!ParsedAttr.Architecture.empty() &&
2047           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2048         TargetCPU = ParsedAttr.Architecture;
2049         TuneCPU = ""; // Clear the tune CPU.
2050       }
2051       if (!ParsedAttr.Tune.empty() &&
2052           getTarget().isValidCPUName(ParsedAttr.Tune))
2053         TuneCPU = ParsedAttr.Tune;
2054     }
2055   } else {
2056     // Otherwise just add the existing target cpu and target features to the
2057     // function.
2058     Features = getTarget().getTargetOpts().Features;
2059   }
2060 
2061   if (!TargetCPU.empty()) {
2062     Attrs.addAttribute("target-cpu", TargetCPU);
2063     AddedAttr = true;
2064   }
2065   if (!TuneCPU.empty()) {
2066     Attrs.addAttribute("tune-cpu", TuneCPU);
2067     AddedAttr = true;
2068   }
2069   if (!Features.empty()) {
2070     llvm::sort(Features);
2071     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2072     AddedAttr = true;
2073   }
2074 
2075   return AddedAttr;
2076 }
2077 
2078 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2079                                           llvm::GlobalObject *GO) {
2080   const Decl *D = GD.getDecl();
2081   SetCommonAttributes(GD, GO);
2082 
2083   if (D) {
2084     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2085       if (D->hasAttr<RetainAttr>())
2086         addUsedGlobal(GV);
2087       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2088         GV->addAttribute("bss-section", SA->getName());
2089       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2090         GV->addAttribute("data-section", SA->getName());
2091       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2092         GV->addAttribute("rodata-section", SA->getName());
2093       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2094         GV->addAttribute("relro-section", SA->getName());
2095     }
2096 
2097     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2098       if (D->hasAttr<RetainAttr>())
2099         addUsedGlobal(F);
2100       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2101         if (!D->getAttr<SectionAttr>())
2102           F->addFnAttr("implicit-section-name", SA->getName());
2103 
2104       llvm::AttrBuilder Attrs(F->getContext());
2105       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2106         // We know that GetCPUAndFeaturesAttributes will always have the
2107         // newest set, since it has the newest possible FunctionDecl, so the
2108         // new ones should replace the old.
2109         llvm::AttributeMask RemoveAttrs;
2110         RemoveAttrs.addAttribute("target-cpu");
2111         RemoveAttrs.addAttribute("target-features");
2112         RemoveAttrs.addAttribute("tune-cpu");
2113         F->removeFnAttrs(RemoveAttrs);
2114         F->addFnAttrs(Attrs);
2115       }
2116     }
2117 
2118     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2119       GO->setSection(CSA->getName());
2120     else if (const auto *SA = D->getAttr<SectionAttr>())
2121       GO->setSection(SA->getName());
2122   }
2123 
2124   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2125 }
2126 
2127 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2128                                                   llvm::Function *F,
2129                                                   const CGFunctionInfo &FI) {
2130   const Decl *D = GD.getDecl();
2131   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2132   SetLLVMFunctionAttributesForDefinition(D, F);
2133 
2134   F->setLinkage(llvm::Function::InternalLinkage);
2135 
2136   setNonAliasAttributes(GD, F);
2137 }
2138 
2139 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2140   // Set linkage and visibility in case we never see a definition.
2141   LinkageInfo LV = ND->getLinkageAndVisibility();
2142   // Don't set internal linkage on declarations.
2143   // "extern_weak" is overloaded in LLVM; we probably should have
2144   // separate linkage types for this.
2145   if (isExternallyVisible(LV.getLinkage()) &&
2146       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2147     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2148 }
2149 
2150 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2151                                                        llvm::Function *F) {
2152   // Only if we are checking indirect calls.
2153   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2154     return;
2155 
2156   // Non-static class methods are handled via vtable or member function pointer
2157   // checks elsewhere.
2158   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2159     return;
2160 
2161   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2162   F->addTypeMetadata(0, MD);
2163   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2164 
2165   // Emit a hash-based bit set entry for cross-DSO calls.
2166   if (CodeGenOpts.SanitizeCfiCrossDso)
2167     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2168       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2169 }
2170 
2171 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2172                                           bool IsIncompleteFunction,
2173                                           bool IsThunk) {
2174 
2175   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2176     // If this is an intrinsic function, set the function's attributes
2177     // to the intrinsic's attributes.
2178     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2179     return;
2180   }
2181 
2182   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2183 
2184   if (!IsIncompleteFunction)
2185     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2186                               IsThunk);
2187 
2188   // Add the Returned attribute for "this", except for iOS 5 and earlier
2189   // where substantial code, including the libstdc++ dylib, was compiled with
2190   // GCC and does not actually return "this".
2191   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2192       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2193     assert(!F->arg_empty() &&
2194            F->arg_begin()->getType()
2195              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2196            "unexpected this return");
2197     F->addParamAttr(0, llvm::Attribute::Returned);
2198   }
2199 
2200   // Only a few attributes are set on declarations; these may later be
2201   // overridden by a definition.
2202 
2203   setLinkageForGV(F, FD);
2204   setGVProperties(F, FD);
2205 
2206   // Setup target-specific attributes.
2207   if (!IsIncompleteFunction && F->isDeclaration())
2208     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2209 
2210   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2211     F->setSection(CSA->getName());
2212   else if (const auto *SA = FD->getAttr<SectionAttr>())
2213      F->setSection(SA->getName());
2214 
2215   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2216     if (EA->isError())
2217       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2218     else if (EA->isWarning())
2219       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2220   }
2221 
2222   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2223   if (FD->isInlineBuiltinDeclaration()) {
2224     const FunctionDecl *FDBody;
2225     bool HasBody = FD->hasBody(FDBody);
2226     (void)HasBody;
2227     assert(HasBody && "Inline builtin declarations should always have an "
2228                       "available body!");
2229     if (shouldEmitFunction(FDBody))
2230       F->addFnAttr(llvm::Attribute::NoBuiltin);
2231   }
2232 
2233   if (FD->isReplaceableGlobalAllocationFunction()) {
2234     // A replaceable global allocation function does not act like a builtin by
2235     // default, only if it is invoked by a new-expression or delete-expression.
2236     F->addFnAttr(llvm::Attribute::NoBuiltin);
2237   }
2238 
2239   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2240     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2241   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2242     if (MD->isVirtual())
2243       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2244 
2245   // Don't emit entries for function declarations in the cross-DSO mode. This
2246   // is handled with better precision by the receiving DSO. But if jump tables
2247   // are non-canonical then we need type metadata in order to produce the local
2248   // jump table.
2249   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2250       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2251     CreateFunctionTypeMetadataForIcall(FD, F);
2252 
2253   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2254     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2255 
2256   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2257     // Annotate the callback behavior as metadata:
2258     //  - The callback callee (as argument number).
2259     //  - The callback payloads (as argument numbers).
2260     llvm::LLVMContext &Ctx = F->getContext();
2261     llvm::MDBuilder MDB(Ctx);
2262 
2263     // The payload indices are all but the first one in the encoding. The first
2264     // identifies the callback callee.
2265     int CalleeIdx = *CB->encoding_begin();
2266     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2267     F->addMetadata(llvm::LLVMContext::MD_callback,
2268                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2269                                                CalleeIdx, PayloadIndices,
2270                                                /* VarArgsArePassed */ false)}));
2271   }
2272 }
2273 
2274 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2275   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2276          "Only globals with definition can force usage.");
2277   LLVMUsed.emplace_back(GV);
2278 }
2279 
2280 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2281   assert(!GV->isDeclaration() &&
2282          "Only globals with definition can force usage.");
2283   LLVMCompilerUsed.emplace_back(GV);
2284 }
2285 
2286 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2287   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2288          "Only globals with definition can force usage.");
2289   if (getTriple().isOSBinFormatELF())
2290     LLVMCompilerUsed.emplace_back(GV);
2291   else
2292     LLVMUsed.emplace_back(GV);
2293 }
2294 
2295 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2296                      std::vector<llvm::WeakTrackingVH> &List) {
2297   // Don't create llvm.used if there is no need.
2298   if (List.empty())
2299     return;
2300 
2301   // Convert List to what ConstantArray needs.
2302   SmallVector<llvm::Constant*, 8> UsedArray;
2303   UsedArray.resize(List.size());
2304   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2305     UsedArray[i] =
2306         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2307             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2308   }
2309 
2310   if (UsedArray.empty())
2311     return;
2312   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2313 
2314   auto *GV = new llvm::GlobalVariable(
2315       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2316       llvm::ConstantArray::get(ATy, UsedArray), Name);
2317 
2318   GV->setSection("llvm.metadata");
2319 }
2320 
2321 void CodeGenModule::emitLLVMUsed() {
2322   emitUsed(*this, "llvm.used", LLVMUsed);
2323   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2324 }
2325 
2326 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2327   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2328   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2329 }
2330 
2331 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2332   llvm::SmallString<32> Opt;
2333   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2334   if (Opt.empty())
2335     return;
2336   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2337   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2338 }
2339 
2340 void CodeGenModule::AddDependentLib(StringRef Lib) {
2341   auto &C = getLLVMContext();
2342   if (getTarget().getTriple().isOSBinFormatELF()) {
2343       ELFDependentLibraries.push_back(
2344         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2345     return;
2346   }
2347 
2348   llvm::SmallString<24> Opt;
2349   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2350   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2351   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2352 }
2353 
2354 /// Add link options implied by the given module, including modules
2355 /// it depends on, using a postorder walk.
2356 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2357                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2358                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2359   // Import this module's parent.
2360   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2361     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2362   }
2363 
2364   // Import this module's dependencies.
2365   for (Module *Import : llvm::reverse(Mod->Imports)) {
2366     if (Visited.insert(Import).second)
2367       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2368   }
2369 
2370   // Add linker options to link against the libraries/frameworks
2371   // described by this module.
2372   llvm::LLVMContext &Context = CGM.getLLVMContext();
2373   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2374 
2375   // For modules that use export_as for linking, use that module
2376   // name instead.
2377   if (Mod->UseExportAsModuleLinkName)
2378     return;
2379 
2380   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2381     // Link against a framework.  Frameworks are currently Darwin only, so we
2382     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2383     if (LL.IsFramework) {
2384       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2385                                  llvm::MDString::get(Context, LL.Library)};
2386 
2387       Metadata.push_back(llvm::MDNode::get(Context, Args));
2388       continue;
2389     }
2390 
2391     // Link against a library.
2392     if (IsELF) {
2393       llvm::Metadata *Args[2] = {
2394           llvm::MDString::get(Context, "lib"),
2395           llvm::MDString::get(Context, LL.Library),
2396       };
2397       Metadata.push_back(llvm::MDNode::get(Context, Args));
2398     } else {
2399       llvm::SmallString<24> Opt;
2400       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2401       auto *OptString = llvm::MDString::get(Context, Opt);
2402       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2403     }
2404   }
2405 }
2406 
2407 void CodeGenModule::EmitModuleLinkOptions() {
2408   // Collect the set of all of the modules we want to visit to emit link
2409   // options, which is essentially the imported modules and all of their
2410   // non-explicit child modules.
2411   llvm::SetVector<clang::Module *> LinkModules;
2412   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2413   SmallVector<clang::Module *, 16> Stack;
2414 
2415   // Seed the stack with imported modules.
2416   for (Module *M : ImportedModules) {
2417     // Do not add any link flags when an implementation TU of a module imports
2418     // a header of that same module.
2419     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2420         !getLangOpts().isCompilingModule())
2421       continue;
2422     if (Visited.insert(M).second)
2423       Stack.push_back(M);
2424   }
2425 
2426   // Find all of the modules to import, making a little effort to prune
2427   // non-leaf modules.
2428   while (!Stack.empty()) {
2429     clang::Module *Mod = Stack.pop_back_val();
2430 
2431     bool AnyChildren = false;
2432 
2433     // Visit the submodules of this module.
2434     for (const auto &SM : Mod->submodules()) {
2435       // Skip explicit children; they need to be explicitly imported to be
2436       // linked against.
2437       if (SM->IsExplicit)
2438         continue;
2439 
2440       if (Visited.insert(SM).second) {
2441         Stack.push_back(SM);
2442         AnyChildren = true;
2443       }
2444     }
2445 
2446     // We didn't find any children, so add this module to the list of
2447     // modules to link against.
2448     if (!AnyChildren) {
2449       LinkModules.insert(Mod);
2450     }
2451   }
2452 
2453   // Add link options for all of the imported modules in reverse topological
2454   // order.  We don't do anything to try to order import link flags with respect
2455   // to linker options inserted by things like #pragma comment().
2456   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2457   Visited.clear();
2458   for (Module *M : LinkModules)
2459     if (Visited.insert(M).second)
2460       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2461   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2462   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2463 
2464   // Add the linker options metadata flag.
2465   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2466   for (auto *MD : LinkerOptionsMetadata)
2467     NMD->addOperand(MD);
2468 }
2469 
2470 void CodeGenModule::EmitDeferred() {
2471   // Emit deferred declare target declarations.
2472   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2473     getOpenMPRuntime().emitDeferredTargetDecls();
2474 
2475   // Emit code for any potentially referenced deferred decls.  Since a
2476   // previously unused static decl may become used during the generation of code
2477   // for a static function, iterate until no changes are made.
2478 
2479   if (!DeferredVTables.empty()) {
2480     EmitDeferredVTables();
2481 
2482     // Emitting a vtable doesn't directly cause more vtables to
2483     // become deferred, although it can cause functions to be
2484     // emitted that then need those vtables.
2485     assert(DeferredVTables.empty());
2486   }
2487 
2488   // Emit CUDA/HIP static device variables referenced by host code only.
2489   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2490   // needed for further handling.
2491   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2492     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2493       DeferredDeclsToEmit.push_back(V);
2494 
2495   // Stop if we're out of both deferred vtables and deferred declarations.
2496   if (DeferredDeclsToEmit.empty())
2497     return;
2498 
2499   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2500   // work, it will not interfere with this.
2501   std::vector<GlobalDecl> CurDeclsToEmit;
2502   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2503 
2504   for (GlobalDecl &D : CurDeclsToEmit) {
2505     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2506     // to get GlobalValue with exactly the type we need, not something that
2507     // might had been created for another decl with the same mangled name but
2508     // different type.
2509     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2510         GetAddrOfGlobal(D, ForDefinition));
2511 
2512     // In case of different address spaces, we may still get a cast, even with
2513     // IsForDefinition equal to true. Query mangled names table to get
2514     // GlobalValue.
2515     if (!GV)
2516       GV = GetGlobalValue(getMangledName(D));
2517 
2518     // Make sure GetGlobalValue returned non-null.
2519     assert(GV);
2520 
2521     // Check to see if we've already emitted this.  This is necessary
2522     // for a couple of reasons: first, decls can end up in the
2523     // deferred-decls queue multiple times, and second, decls can end
2524     // up with definitions in unusual ways (e.g. by an extern inline
2525     // function acquiring a strong function redefinition).  Just
2526     // ignore these cases.
2527     if (!GV->isDeclaration())
2528       continue;
2529 
2530     // If this is OpenMP, check if it is legal to emit this global normally.
2531     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2532       continue;
2533 
2534     // Otherwise, emit the definition and move on to the next one.
2535     EmitGlobalDefinition(D, GV);
2536 
2537     // If we found out that we need to emit more decls, do that recursively.
2538     // This has the advantage that the decls are emitted in a DFS and related
2539     // ones are close together, which is convenient for testing.
2540     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2541       EmitDeferred();
2542       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2543     }
2544   }
2545 }
2546 
2547 void CodeGenModule::EmitVTablesOpportunistically() {
2548   // Try to emit external vtables as available_externally if they have emitted
2549   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2550   // is not allowed to create new references to things that need to be emitted
2551   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2552 
2553   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2554          && "Only emit opportunistic vtables with optimizations");
2555 
2556   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2557     assert(getVTables().isVTableExternal(RD) &&
2558            "This queue should only contain external vtables");
2559     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2560       VTables.GenerateClassData(RD);
2561   }
2562   OpportunisticVTables.clear();
2563 }
2564 
2565 void CodeGenModule::EmitGlobalAnnotations() {
2566   if (Annotations.empty())
2567     return;
2568 
2569   // Create a new global variable for the ConstantStruct in the Module.
2570   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2571     Annotations[0]->getType(), Annotations.size()), Annotations);
2572   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2573                                       llvm::GlobalValue::AppendingLinkage,
2574                                       Array, "llvm.global.annotations");
2575   gv->setSection(AnnotationSection);
2576 }
2577 
2578 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2579   llvm::Constant *&AStr = AnnotationStrings[Str];
2580   if (AStr)
2581     return AStr;
2582 
2583   // Not found yet, create a new global.
2584   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2585   auto *gv =
2586       new llvm::GlobalVariable(getModule(), s->getType(), true,
2587                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2588   gv->setSection(AnnotationSection);
2589   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2590   AStr = gv;
2591   return gv;
2592 }
2593 
2594 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2595   SourceManager &SM = getContext().getSourceManager();
2596   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2597   if (PLoc.isValid())
2598     return EmitAnnotationString(PLoc.getFilename());
2599   return EmitAnnotationString(SM.getBufferName(Loc));
2600 }
2601 
2602 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2603   SourceManager &SM = getContext().getSourceManager();
2604   PresumedLoc PLoc = SM.getPresumedLoc(L);
2605   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2606     SM.getExpansionLineNumber(L);
2607   return llvm::ConstantInt::get(Int32Ty, LineNo);
2608 }
2609 
2610 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2611   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2612   if (Exprs.empty())
2613     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2614 
2615   llvm::FoldingSetNodeID ID;
2616   for (Expr *E : Exprs) {
2617     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2618   }
2619   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2620   if (Lookup)
2621     return Lookup;
2622 
2623   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2624   LLVMArgs.reserve(Exprs.size());
2625   ConstantEmitter ConstEmiter(*this);
2626   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2627     const auto *CE = cast<clang::ConstantExpr>(E);
2628     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2629                                     CE->getType());
2630   });
2631   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2632   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2633                                       llvm::GlobalValue::PrivateLinkage, Struct,
2634                                       ".args");
2635   GV->setSection(AnnotationSection);
2636   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2637   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2638 
2639   Lookup = Bitcasted;
2640   return Bitcasted;
2641 }
2642 
2643 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2644                                                 const AnnotateAttr *AA,
2645                                                 SourceLocation L) {
2646   // Get the globals for file name, annotation, and the line number.
2647   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2648                  *UnitGV = EmitAnnotationUnit(L),
2649                  *LineNoCst = EmitAnnotationLineNo(L),
2650                  *Args = EmitAnnotationArgs(AA);
2651 
2652   llvm::Constant *GVInGlobalsAS = GV;
2653   if (GV->getAddressSpace() !=
2654       getDataLayout().getDefaultGlobalsAddressSpace()) {
2655     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2656         GV, GV->getValueType()->getPointerTo(
2657                 getDataLayout().getDefaultGlobalsAddressSpace()));
2658   }
2659 
2660   // Create the ConstantStruct for the global annotation.
2661   llvm::Constant *Fields[] = {
2662       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2663       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2664       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2665       LineNoCst,
2666       Args,
2667   };
2668   return llvm::ConstantStruct::getAnon(Fields);
2669 }
2670 
2671 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2672                                          llvm::GlobalValue *GV) {
2673   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2674   // Get the struct elements for these annotations.
2675   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2676     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2677 }
2678 
2679 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2680                                        SourceLocation Loc) const {
2681   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2682   // NoSanitize by function name.
2683   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2684     return true;
2685   // NoSanitize by location.
2686   if (Loc.isValid())
2687     return NoSanitizeL.containsLocation(Kind, Loc);
2688   // If location is unknown, this may be a compiler-generated function. Assume
2689   // it's located in the main file.
2690   auto &SM = Context.getSourceManager();
2691   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2692     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2693   }
2694   return false;
2695 }
2696 
2697 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2698                                        SourceLocation Loc, QualType Ty,
2699                                        StringRef Category) const {
2700   // For now globals can be ignored only in ASan and KASan.
2701   const SanitizerMask EnabledAsanMask =
2702       LangOpts.Sanitize.Mask &
2703       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2704        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2705        SanitizerKind::MemTag);
2706   if (!EnabledAsanMask)
2707     return false;
2708   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2709   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2710     return true;
2711   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2712     return true;
2713   // Check global type.
2714   if (!Ty.isNull()) {
2715     // Drill down the array types: if global variable of a fixed type is
2716     // not sanitized, we also don't instrument arrays of them.
2717     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2718       Ty = AT->getElementType();
2719     Ty = Ty.getCanonicalType().getUnqualifiedType();
2720     // Only record types (classes, structs etc.) are ignored.
2721     if (Ty->isRecordType()) {
2722       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2723       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2724         return true;
2725     }
2726   }
2727   return false;
2728 }
2729 
2730 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2731                                    StringRef Category) const {
2732   const auto &XRayFilter = getContext().getXRayFilter();
2733   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2734   auto Attr = ImbueAttr::NONE;
2735   if (Loc.isValid())
2736     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2737   if (Attr == ImbueAttr::NONE)
2738     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2739   switch (Attr) {
2740   case ImbueAttr::NONE:
2741     return false;
2742   case ImbueAttr::ALWAYS:
2743     Fn->addFnAttr("function-instrument", "xray-always");
2744     break;
2745   case ImbueAttr::ALWAYS_ARG1:
2746     Fn->addFnAttr("function-instrument", "xray-always");
2747     Fn->addFnAttr("xray-log-args", "1");
2748     break;
2749   case ImbueAttr::NEVER:
2750     Fn->addFnAttr("function-instrument", "xray-never");
2751     break;
2752   }
2753   return true;
2754 }
2755 
2756 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2757                                            SourceLocation Loc) const {
2758   const auto &ProfileList = getContext().getProfileList();
2759   // If the profile list is empty, then instrument everything.
2760   if (ProfileList.isEmpty())
2761     return false;
2762   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2763   // First, check the function name.
2764   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2765   if (V.hasValue())
2766     return *V;
2767   // Next, check the source location.
2768   if (Loc.isValid()) {
2769     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2770     if (V.hasValue())
2771       return *V;
2772   }
2773   // If location is unknown, this may be a compiler-generated function. Assume
2774   // it's located in the main file.
2775   auto &SM = Context.getSourceManager();
2776   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2777     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2778     if (V.hasValue())
2779       return *V;
2780   }
2781   return ProfileList.getDefault();
2782 }
2783 
2784 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2785   // Never defer when EmitAllDecls is specified.
2786   if (LangOpts.EmitAllDecls)
2787     return true;
2788 
2789   if (CodeGenOpts.KeepStaticConsts) {
2790     const auto *VD = dyn_cast<VarDecl>(Global);
2791     if (VD && VD->getType().isConstQualified() &&
2792         VD->getStorageDuration() == SD_Static)
2793       return true;
2794   }
2795 
2796   return getContext().DeclMustBeEmitted(Global);
2797 }
2798 
2799 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2800   // In OpenMP 5.0 variables and function may be marked as
2801   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2802   // that they must be emitted on the host/device. To be sure we need to have
2803   // seen a declare target with an explicit mentioning of the function, we know
2804   // we have if the level of the declare target attribute is -1. Note that we
2805   // check somewhere else if we should emit this at all.
2806   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2807     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2808         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2809     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2810       return false;
2811   }
2812 
2813   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2814     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2815       // Implicit template instantiations may change linkage if they are later
2816       // explicitly instantiated, so they should not be emitted eagerly.
2817       return false;
2818   }
2819   if (const auto *VD = dyn_cast<VarDecl>(Global))
2820     if (Context.getInlineVariableDefinitionKind(VD) ==
2821         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2822       // A definition of an inline constexpr static data member may change
2823       // linkage later if it's redeclared outside the class.
2824       return false;
2825   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2826   // codegen for global variables, because they may be marked as threadprivate.
2827   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2828       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2829       !isTypeConstant(Global->getType(), false) &&
2830       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2831     return false;
2832 
2833   return true;
2834 }
2835 
2836 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2837   StringRef Name = getMangledName(GD);
2838 
2839   // The UUID descriptor should be pointer aligned.
2840   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2841 
2842   // Look for an existing global.
2843   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2844     return ConstantAddress(GV, GV->getValueType(), Alignment);
2845 
2846   ConstantEmitter Emitter(*this);
2847   llvm::Constant *Init;
2848 
2849   APValue &V = GD->getAsAPValue();
2850   if (!V.isAbsent()) {
2851     // If possible, emit the APValue version of the initializer. In particular,
2852     // this gets the type of the constant right.
2853     Init = Emitter.emitForInitializer(
2854         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2855   } else {
2856     // As a fallback, directly construct the constant.
2857     // FIXME: This may get padding wrong under esoteric struct layout rules.
2858     // MSVC appears to create a complete type 'struct __s_GUID' that it
2859     // presumably uses to represent these constants.
2860     MSGuidDecl::Parts Parts = GD->getParts();
2861     llvm::Constant *Fields[4] = {
2862         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2863         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2864         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2865         llvm::ConstantDataArray::getRaw(
2866             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2867             Int8Ty)};
2868     Init = llvm::ConstantStruct::getAnon(Fields);
2869   }
2870 
2871   auto *GV = new llvm::GlobalVariable(
2872       getModule(), Init->getType(),
2873       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2874   if (supportsCOMDAT())
2875     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2876   setDSOLocal(GV);
2877 
2878   if (!V.isAbsent()) {
2879     Emitter.finalize(GV);
2880     return ConstantAddress(GV, GV->getValueType(), Alignment);
2881   }
2882 
2883   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2884   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2885       GV, Ty->getPointerTo(GV->getAddressSpace()));
2886   return ConstantAddress(Addr, Ty, Alignment);
2887 }
2888 
2889 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2890     const TemplateParamObjectDecl *TPO) {
2891   StringRef Name = getMangledName(TPO);
2892   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2893 
2894   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2895     return ConstantAddress(GV, GV->getValueType(), Alignment);
2896 
2897   ConstantEmitter Emitter(*this);
2898   llvm::Constant *Init = Emitter.emitForInitializer(
2899         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2900 
2901   if (!Init) {
2902     ErrorUnsupported(TPO, "template parameter object");
2903     return ConstantAddress::invalid();
2904   }
2905 
2906   auto *GV = new llvm::GlobalVariable(
2907       getModule(), Init->getType(),
2908       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2909   if (supportsCOMDAT())
2910     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2911   Emitter.finalize(GV);
2912 
2913   return ConstantAddress(GV, GV->getValueType(), Alignment);
2914 }
2915 
2916 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2917   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2918   assert(AA && "No alias?");
2919 
2920   CharUnits Alignment = getContext().getDeclAlign(VD);
2921   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2922 
2923   // See if there is already something with the target's name in the module.
2924   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2925   if (Entry) {
2926     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2927     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2928     return ConstantAddress(Ptr, DeclTy, Alignment);
2929   }
2930 
2931   llvm::Constant *Aliasee;
2932   if (isa<llvm::FunctionType>(DeclTy))
2933     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2934                                       GlobalDecl(cast<FunctionDecl>(VD)),
2935                                       /*ForVTable=*/false);
2936   else
2937     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2938                                     nullptr);
2939 
2940   auto *F = cast<llvm::GlobalValue>(Aliasee);
2941   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2942   WeakRefReferences.insert(F);
2943 
2944   return ConstantAddress(Aliasee, DeclTy, Alignment);
2945 }
2946 
2947 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2948   const auto *Global = cast<ValueDecl>(GD.getDecl());
2949 
2950   // Weak references don't produce any output by themselves.
2951   if (Global->hasAttr<WeakRefAttr>())
2952     return;
2953 
2954   // If this is an alias definition (which otherwise looks like a declaration)
2955   // emit it now.
2956   if (Global->hasAttr<AliasAttr>())
2957     return EmitAliasDefinition(GD);
2958 
2959   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2960   if (Global->hasAttr<IFuncAttr>())
2961     return emitIFuncDefinition(GD);
2962 
2963   // If this is a cpu_dispatch multiversion function, emit the resolver.
2964   if (Global->hasAttr<CPUDispatchAttr>())
2965     return emitCPUDispatchDefinition(GD);
2966 
2967   // If this is CUDA, be selective about which declarations we emit.
2968   if (LangOpts.CUDA) {
2969     if (LangOpts.CUDAIsDevice) {
2970       if (!Global->hasAttr<CUDADeviceAttr>() &&
2971           !Global->hasAttr<CUDAGlobalAttr>() &&
2972           !Global->hasAttr<CUDAConstantAttr>() &&
2973           !Global->hasAttr<CUDASharedAttr>() &&
2974           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2975           !Global->getType()->isCUDADeviceBuiltinTextureType())
2976         return;
2977     } else {
2978       // We need to emit host-side 'shadows' for all global
2979       // device-side variables because the CUDA runtime needs their
2980       // size and host-side address in order to provide access to
2981       // their device-side incarnations.
2982 
2983       // So device-only functions are the only things we skip.
2984       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2985           Global->hasAttr<CUDADeviceAttr>())
2986         return;
2987 
2988       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2989              "Expected Variable or Function");
2990     }
2991   }
2992 
2993   if (LangOpts.OpenMP) {
2994     // If this is OpenMP, check if it is legal to emit this global normally.
2995     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2996       return;
2997     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2998       if (MustBeEmitted(Global))
2999         EmitOMPDeclareReduction(DRD);
3000       return;
3001     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3002       if (MustBeEmitted(Global))
3003         EmitOMPDeclareMapper(DMD);
3004       return;
3005     }
3006   }
3007 
3008   // Ignore declarations, they will be emitted on their first use.
3009   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3010     // Forward declarations are emitted lazily on first use.
3011     if (!FD->doesThisDeclarationHaveABody()) {
3012       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3013         return;
3014 
3015       StringRef MangledName = getMangledName(GD);
3016 
3017       // Compute the function info and LLVM type.
3018       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3019       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3020 
3021       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3022                               /*DontDefer=*/false);
3023       return;
3024     }
3025   } else {
3026     const auto *VD = cast<VarDecl>(Global);
3027     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3028     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3029         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3030       if (LangOpts.OpenMP) {
3031         // Emit declaration of the must-be-emitted declare target variable.
3032         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3033                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3034           bool UnifiedMemoryEnabled =
3035               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3036           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3037               !UnifiedMemoryEnabled) {
3038             (void)GetAddrOfGlobalVar(VD);
3039           } else {
3040             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3041                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3042                      UnifiedMemoryEnabled)) &&
3043                    "Link clause or to clause with unified memory expected.");
3044             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3045           }
3046 
3047           return;
3048         }
3049       }
3050       // If this declaration may have caused an inline variable definition to
3051       // change linkage, make sure that it's emitted.
3052       if (Context.getInlineVariableDefinitionKind(VD) ==
3053           ASTContext::InlineVariableDefinitionKind::Strong)
3054         GetAddrOfGlobalVar(VD);
3055       return;
3056     }
3057   }
3058 
3059   // Defer code generation to first use when possible, e.g. if this is an inline
3060   // function. If the global must always be emitted, do it eagerly if possible
3061   // to benefit from cache locality.
3062   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3063     // Emit the definition if it can't be deferred.
3064     EmitGlobalDefinition(GD);
3065     return;
3066   }
3067 
3068   // If we're deferring emission of a C++ variable with an
3069   // initializer, remember the order in which it appeared in the file.
3070   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3071       cast<VarDecl>(Global)->hasInit()) {
3072     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3073     CXXGlobalInits.push_back(nullptr);
3074   }
3075 
3076   StringRef MangledName = getMangledName(GD);
3077   if (GetGlobalValue(MangledName) != nullptr) {
3078     // The value has already been used and should therefore be emitted.
3079     addDeferredDeclToEmit(GD);
3080   } else if (MustBeEmitted(Global)) {
3081     // The value must be emitted, but cannot be emitted eagerly.
3082     assert(!MayBeEmittedEagerly(Global));
3083     addDeferredDeclToEmit(GD);
3084   } else {
3085     // Otherwise, remember that we saw a deferred decl with this name.  The
3086     // first use of the mangled name will cause it to move into
3087     // DeferredDeclsToEmit.
3088     DeferredDecls[MangledName] = GD;
3089   }
3090 }
3091 
3092 // Check if T is a class type with a destructor that's not dllimport.
3093 static bool HasNonDllImportDtor(QualType T) {
3094   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3095     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3096       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3097         return true;
3098 
3099   return false;
3100 }
3101 
3102 namespace {
3103   struct FunctionIsDirectlyRecursive
3104       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3105     const StringRef Name;
3106     const Builtin::Context &BI;
3107     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3108         : Name(N), BI(C) {}
3109 
3110     bool VisitCallExpr(const CallExpr *E) {
3111       const FunctionDecl *FD = E->getDirectCallee();
3112       if (!FD)
3113         return false;
3114       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3115       if (Attr && Name == Attr->getLabel())
3116         return true;
3117       unsigned BuiltinID = FD->getBuiltinID();
3118       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3119         return false;
3120       StringRef BuiltinName = BI.getName(BuiltinID);
3121       if (BuiltinName.startswith("__builtin_") &&
3122           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3123         return true;
3124       }
3125       return false;
3126     }
3127 
3128     bool VisitStmt(const Stmt *S) {
3129       for (const Stmt *Child : S->children())
3130         if (Child && this->Visit(Child))
3131           return true;
3132       return false;
3133     }
3134   };
3135 
3136   // Make sure we're not referencing non-imported vars or functions.
3137   struct DLLImportFunctionVisitor
3138       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3139     bool SafeToInline = true;
3140 
3141     bool shouldVisitImplicitCode() const { return true; }
3142 
3143     bool VisitVarDecl(VarDecl *VD) {
3144       if (VD->getTLSKind()) {
3145         // A thread-local variable cannot be imported.
3146         SafeToInline = false;
3147         return SafeToInline;
3148       }
3149 
3150       // A variable definition might imply a destructor call.
3151       if (VD->isThisDeclarationADefinition())
3152         SafeToInline = !HasNonDllImportDtor(VD->getType());
3153 
3154       return SafeToInline;
3155     }
3156 
3157     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3158       if (const auto *D = E->getTemporary()->getDestructor())
3159         SafeToInline = D->hasAttr<DLLImportAttr>();
3160       return SafeToInline;
3161     }
3162 
3163     bool VisitDeclRefExpr(DeclRefExpr *E) {
3164       ValueDecl *VD = E->getDecl();
3165       if (isa<FunctionDecl>(VD))
3166         SafeToInline = VD->hasAttr<DLLImportAttr>();
3167       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3168         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3169       return SafeToInline;
3170     }
3171 
3172     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3173       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3174       return SafeToInline;
3175     }
3176 
3177     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3178       CXXMethodDecl *M = E->getMethodDecl();
3179       if (!M) {
3180         // Call through a pointer to member function. This is safe to inline.
3181         SafeToInline = true;
3182       } else {
3183         SafeToInline = M->hasAttr<DLLImportAttr>();
3184       }
3185       return SafeToInline;
3186     }
3187 
3188     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3189       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3190       return SafeToInline;
3191     }
3192 
3193     bool VisitCXXNewExpr(CXXNewExpr *E) {
3194       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3195       return SafeToInline;
3196     }
3197   };
3198 }
3199 
3200 // isTriviallyRecursive - Check if this function calls another
3201 // decl that, because of the asm attribute or the other decl being a builtin,
3202 // ends up pointing to itself.
3203 bool
3204 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3205   StringRef Name;
3206   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3207     // asm labels are a special kind of mangling we have to support.
3208     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3209     if (!Attr)
3210       return false;
3211     Name = Attr->getLabel();
3212   } else {
3213     Name = FD->getName();
3214   }
3215 
3216   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3217   const Stmt *Body = FD->getBody();
3218   return Body ? Walker.Visit(Body) : false;
3219 }
3220 
3221 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3222   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3223     return true;
3224   const auto *F = cast<FunctionDecl>(GD.getDecl());
3225   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3226     return false;
3227 
3228   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3229     // Check whether it would be safe to inline this dllimport function.
3230     DLLImportFunctionVisitor Visitor;
3231     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3232     if (!Visitor.SafeToInline)
3233       return false;
3234 
3235     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3236       // Implicit destructor invocations aren't captured in the AST, so the
3237       // check above can't see them. Check for them manually here.
3238       for (const Decl *Member : Dtor->getParent()->decls())
3239         if (isa<FieldDecl>(Member))
3240           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3241             return false;
3242       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3243         if (HasNonDllImportDtor(B.getType()))
3244           return false;
3245     }
3246   }
3247 
3248   // Inline builtins declaration must be emitted. They often are fortified
3249   // functions.
3250   if (F->isInlineBuiltinDeclaration())
3251     return true;
3252 
3253   // PR9614. Avoid cases where the source code is lying to us. An available
3254   // externally function should have an equivalent function somewhere else,
3255   // but a function that calls itself through asm label/`__builtin_` trickery is
3256   // clearly not equivalent to the real implementation.
3257   // This happens in glibc's btowc and in some configure checks.
3258   return !isTriviallyRecursive(F);
3259 }
3260 
3261 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3262   return CodeGenOpts.OptimizationLevel > 0;
3263 }
3264 
3265 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3266                                                        llvm::GlobalValue *GV) {
3267   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3268 
3269   if (FD->isCPUSpecificMultiVersion()) {
3270     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3271     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3272       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3273     // Requires multiple emits.
3274   } else if (FD->isTargetClonesMultiVersion()) {
3275     auto *Clone = FD->getAttr<TargetClonesAttr>();
3276     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3277       if (Clone->isFirstOfVersion(I))
3278         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3279     EmitTargetClonesResolver(GD);
3280   } else
3281     EmitGlobalFunctionDefinition(GD, GV);
3282 }
3283 
3284 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3285   const auto *D = cast<ValueDecl>(GD.getDecl());
3286 
3287   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3288                                  Context.getSourceManager(),
3289                                  "Generating code for declaration");
3290 
3291   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3292     // At -O0, don't generate IR for functions with available_externally
3293     // linkage.
3294     if (!shouldEmitFunction(GD))
3295       return;
3296 
3297     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3298       std::string Name;
3299       llvm::raw_string_ostream OS(Name);
3300       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3301                                /*Qualified=*/true);
3302       return Name;
3303     });
3304 
3305     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3306       // Make sure to emit the definition(s) before we emit the thunks.
3307       // This is necessary for the generation of certain thunks.
3308       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3309         ABI->emitCXXStructor(GD);
3310       else if (FD->isMultiVersion())
3311         EmitMultiVersionFunctionDefinition(GD, GV);
3312       else
3313         EmitGlobalFunctionDefinition(GD, GV);
3314 
3315       if (Method->isVirtual())
3316         getVTables().EmitThunks(GD);
3317 
3318       return;
3319     }
3320 
3321     if (FD->isMultiVersion())
3322       return EmitMultiVersionFunctionDefinition(GD, GV);
3323     return EmitGlobalFunctionDefinition(GD, GV);
3324   }
3325 
3326   if (const auto *VD = dyn_cast<VarDecl>(D))
3327     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3328 
3329   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3330 }
3331 
3332 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3333                                                       llvm::Function *NewFn);
3334 
3335 static unsigned
3336 TargetMVPriority(const TargetInfo &TI,
3337                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3338   unsigned Priority = 0;
3339   for (StringRef Feat : RO.Conditions.Features)
3340     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3341 
3342   if (!RO.Conditions.Architecture.empty())
3343     Priority = std::max(
3344         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3345   return Priority;
3346 }
3347 
3348 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3349 // TU can forward declare the function without causing problems.  Particularly
3350 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3351 // work with internal linkage functions, so that the same function name can be
3352 // used with internal linkage in multiple TUs.
3353 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3354                                                        GlobalDecl GD) {
3355   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3356   if (FD->getFormalLinkage() == InternalLinkage)
3357     return llvm::GlobalValue::InternalLinkage;
3358   return llvm::GlobalValue::WeakODRLinkage;
3359 }
3360 
3361 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) {
3362   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3363   assert(FD && "Not a FunctionDecl?");
3364   const auto *TC = FD->getAttr<TargetClonesAttr>();
3365   assert(TC && "Not a target_clones Function?");
3366 
3367   QualType CanonTy = Context.getCanonicalType(FD->getType());
3368   llvm::Type *DeclTy = getTypes().ConvertType(CanonTy);
3369 
3370   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3371     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3372     DeclTy = getTypes().GetFunctionType(FInfo);
3373   }
3374 
3375   llvm::Function *ResolverFunc;
3376   if (getTarget().supportsIFunc()) {
3377     auto *IFunc = cast<llvm::GlobalIFunc>(
3378         GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3379     ResolverFunc = cast<llvm::Function>(IFunc->getResolver());
3380   } else
3381     ResolverFunc =
3382         cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3383 
3384   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3385   for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3386        ++VersionIndex) {
3387     if (!TC->isFirstOfVersion(VersionIndex))
3388       continue;
3389     StringRef Version = TC->getFeatureStr(VersionIndex);
3390     StringRef MangledName =
3391         getMangledName(GD.getWithMultiVersionIndex(VersionIndex));
3392     llvm::Constant *Func = GetGlobalValue(MangledName);
3393     assert(Func &&
3394            "Should have already been created before calling resolver emit");
3395 
3396     StringRef Architecture;
3397     llvm::SmallVector<StringRef, 1> Feature;
3398 
3399     if (Version.startswith("arch="))
3400       Architecture = Version.drop_front(sizeof("arch=") - 1);
3401     else if (Version != "default")
3402       Feature.push_back(Version);
3403 
3404     Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3405   }
3406 
3407   const TargetInfo &TI = getTarget();
3408   std::stable_sort(
3409       Options.begin(), Options.end(),
3410       [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3411             const CodeGenFunction::MultiVersionResolverOption &RHS) {
3412         return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3413       });
3414   CodeGenFunction CGF(*this);
3415   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3416 }
3417 
3418 void CodeGenModule::emitMultiVersionFunctions() {
3419   std::vector<GlobalDecl> MVFuncsToEmit;
3420   MultiVersionFuncs.swap(MVFuncsToEmit);
3421   for (GlobalDecl GD : MVFuncsToEmit) {
3422     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3423     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3424     getContext().forEachMultiversionedFunctionVersion(
3425         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3426           GlobalDecl CurGD{
3427               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3428           StringRef MangledName = getMangledName(CurGD);
3429           llvm::Constant *Func = GetGlobalValue(MangledName);
3430           if (!Func) {
3431             if (CurFD->isDefined()) {
3432               EmitGlobalFunctionDefinition(CurGD, nullptr);
3433               Func = GetGlobalValue(MangledName);
3434             } else {
3435               const CGFunctionInfo &FI =
3436                   getTypes().arrangeGlobalDeclaration(GD);
3437               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3438               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3439                                        /*DontDefer=*/false, ForDefinition);
3440             }
3441             assert(Func && "This should have just been created");
3442           }
3443 
3444           const auto *TA = CurFD->getAttr<TargetAttr>();
3445           llvm::SmallVector<StringRef, 8> Feats;
3446           TA->getAddedFeatures(Feats);
3447 
3448           Options.emplace_back(cast<llvm::Function>(Func),
3449                                TA->getArchitecture(), Feats);
3450         });
3451 
3452     llvm::Function *ResolverFunc;
3453     const TargetInfo &TI = getTarget();
3454 
3455     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3456       ResolverFunc = cast<llvm::Function>(
3457           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3458       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3459     } else {
3460       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3461     }
3462 
3463     if (supportsCOMDAT())
3464       ResolverFunc->setComdat(
3465           getModule().getOrInsertComdat(ResolverFunc->getName()));
3466 
3467     llvm::stable_sort(
3468         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3469                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3470           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3471         });
3472     CodeGenFunction CGF(*this);
3473     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3474   }
3475 
3476   // Ensure that any additions to the deferred decls list caused by emitting a
3477   // variant are emitted.  This can happen when the variant itself is inline and
3478   // calls a function without linkage.
3479   if (!MVFuncsToEmit.empty())
3480     EmitDeferred();
3481 
3482   // Ensure that any additions to the multiversion funcs list from either the
3483   // deferred decls or the multiversion functions themselves are emitted.
3484   if (!MultiVersionFuncs.empty())
3485     emitMultiVersionFunctions();
3486 }
3487 
3488 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3489   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3490   assert(FD && "Not a FunctionDecl?");
3491   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3492   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3493   assert(DD && "Not a cpu_dispatch Function?");
3494   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3495 
3496   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3497     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3498     DeclTy = getTypes().GetFunctionType(FInfo);
3499   }
3500 
3501   StringRef ResolverName = getMangledName(GD);
3502   UpdateMultiVersionNames(GD, FD, ResolverName);
3503 
3504   llvm::Type *ResolverType;
3505   GlobalDecl ResolverGD;
3506   if (getTarget().supportsIFunc()) {
3507     ResolverType = llvm::FunctionType::get(
3508         llvm::PointerType::get(DeclTy,
3509                                Context.getTargetAddressSpace(FD->getType())),
3510         false);
3511   }
3512   else {
3513     ResolverType = DeclTy;
3514     ResolverGD = GD;
3515   }
3516 
3517   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3518       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3519   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3520   if (supportsCOMDAT())
3521     ResolverFunc->setComdat(
3522         getModule().getOrInsertComdat(ResolverFunc->getName()));
3523 
3524   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3525   const TargetInfo &Target = getTarget();
3526   unsigned Index = 0;
3527   for (const IdentifierInfo *II : DD->cpus()) {
3528     // Get the name of the target function so we can look it up/create it.
3529     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3530                               getCPUSpecificMangling(*this, II->getName());
3531 
3532     llvm::Constant *Func = GetGlobalValue(MangledName);
3533 
3534     if (!Func) {
3535       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3536       if (ExistingDecl.getDecl() &&
3537           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3538         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3539         Func = GetGlobalValue(MangledName);
3540       } else {
3541         if (!ExistingDecl.getDecl())
3542           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3543 
3544       Func = GetOrCreateLLVMFunction(
3545           MangledName, DeclTy, ExistingDecl,
3546           /*ForVTable=*/false, /*DontDefer=*/true,
3547           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3548       }
3549     }
3550 
3551     llvm::SmallVector<StringRef, 32> Features;
3552     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3553     llvm::transform(Features, Features.begin(),
3554                     [](StringRef Str) { return Str.substr(1); });
3555     llvm::erase_if(Features, [&Target](StringRef Feat) {
3556       return !Target.validateCpuSupports(Feat);
3557     });
3558     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3559     ++Index;
3560   }
3561 
3562   llvm::stable_sort(
3563       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3564                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3565         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3566                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3567       });
3568 
3569   // If the list contains multiple 'default' versions, such as when it contains
3570   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3571   // always run on at least a 'pentium'). We do this by deleting the 'least
3572   // advanced' (read, lowest mangling letter).
3573   while (Options.size() > 1 &&
3574          llvm::X86::getCpuSupportsMask(
3575              (Options.end() - 2)->Conditions.Features) == 0) {
3576     StringRef LHSName = (Options.end() - 2)->Function->getName();
3577     StringRef RHSName = (Options.end() - 1)->Function->getName();
3578     if (LHSName.compare(RHSName) < 0)
3579       Options.erase(Options.end() - 2);
3580     else
3581       Options.erase(Options.end() - 1);
3582   }
3583 
3584   CodeGenFunction CGF(*this);
3585   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3586 
3587   if (getTarget().supportsIFunc()) {
3588     std::string AliasName = getMangledNameImpl(
3589         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3590     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3591     if (!AliasFunc) {
3592       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3593           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3594           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3595       auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3596                                            getMultiversionLinkage(*this, GD),
3597                                            AliasName, IFunc, &getModule());
3598       SetCommonAttributes(GD, GA);
3599     }
3600   }
3601 }
3602 
3603 /// If a dispatcher for the specified mangled name is not in the module, create
3604 /// and return an llvm Function with the specified type.
3605 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3606     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3607   std::string MangledName =
3608       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3609 
3610   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3611   // a separate resolver).
3612   std::string ResolverName = MangledName;
3613   if (getTarget().supportsIFunc())
3614     ResolverName += ".ifunc";
3615   else if (FD->isTargetMultiVersion())
3616     ResolverName += ".resolver";
3617 
3618   // If this already exists, just return that one.
3619   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3620     return ResolverGV;
3621 
3622   // Since this is the first time we've created this IFunc, make sure
3623   // that we put this multiversioned function into the list to be
3624   // replaced later if necessary (target multiversioning only).
3625   if (FD->isTargetMultiVersion())
3626     MultiVersionFuncs.push_back(GD);
3627   else if (FD->isTargetClonesMultiVersion()) {
3628     // In target_clones multiversioning, make sure we emit this if used.
3629     auto DDI =
3630         DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0)));
3631     if (DDI != DeferredDecls.end()) {
3632       addDeferredDeclToEmit(GD);
3633       DeferredDecls.erase(DDI);
3634     } else {
3635       // Emit the symbol of the 1st variant, so that the deferred decls know we
3636       // need it, otherwise the only global value will be the resolver/ifunc,
3637       // which end up getting broken if we search for them with GetGlobalValue'.
3638       GetOrCreateLLVMFunction(
3639           getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD,
3640           /*ForVTable=*/false, /*DontDefer=*/true,
3641           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3642     }
3643   }
3644 
3645   if (getTarget().supportsIFunc()) {
3646     llvm::Type *ResolverType = llvm::FunctionType::get(
3647         llvm::PointerType::get(
3648             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3649         false);
3650     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3651         MangledName + ".resolver", ResolverType, GlobalDecl{},
3652         /*ForVTable=*/false);
3653     llvm::GlobalIFunc *GIF =
3654         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3655                                   "", Resolver, &getModule());
3656     GIF->setName(ResolverName);
3657     SetCommonAttributes(FD, GIF);
3658 
3659     return GIF;
3660   }
3661 
3662   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3663       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3664   assert(isa<llvm::GlobalValue>(Resolver) &&
3665          "Resolver should be created for the first time");
3666   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3667   return Resolver;
3668 }
3669 
3670 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3671 /// module, create and return an llvm Function with the specified type. If there
3672 /// is something in the module with the specified name, return it potentially
3673 /// bitcasted to the right type.
3674 ///
3675 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3676 /// to set the attributes on the function when it is first created.
3677 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3678     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3679     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3680     ForDefinition_t IsForDefinition) {
3681   const Decl *D = GD.getDecl();
3682 
3683   // Any attempts to use a MultiVersion function should result in retrieving
3684   // the iFunc instead. Name Mangling will handle the rest of the changes.
3685   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3686     // For the device mark the function as one that should be emitted.
3687     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3688         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3689         !DontDefer && !IsForDefinition) {
3690       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3691         GlobalDecl GDDef;
3692         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3693           GDDef = GlobalDecl(CD, GD.getCtorType());
3694         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3695           GDDef = GlobalDecl(DD, GD.getDtorType());
3696         else
3697           GDDef = GlobalDecl(FDDef);
3698         EmitGlobal(GDDef);
3699       }
3700     }
3701 
3702     if (FD->isMultiVersion()) {
3703         UpdateMultiVersionNames(GD, FD, MangledName);
3704       if (!IsForDefinition)
3705         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3706     }
3707   }
3708 
3709   // Lookup the entry, lazily creating it if necessary.
3710   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3711   if (Entry) {
3712     if (WeakRefReferences.erase(Entry)) {
3713       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3714       if (FD && !FD->hasAttr<WeakAttr>())
3715         Entry->setLinkage(llvm::Function::ExternalLinkage);
3716     }
3717 
3718     // Handle dropped DLL attributes.
3719     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3720       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3721       setDSOLocal(Entry);
3722     }
3723 
3724     // If there are two attempts to define the same mangled name, issue an
3725     // error.
3726     if (IsForDefinition && !Entry->isDeclaration()) {
3727       GlobalDecl OtherGD;
3728       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3729       // to make sure that we issue an error only once.
3730       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3731           (GD.getCanonicalDecl().getDecl() !=
3732            OtherGD.getCanonicalDecl().getDecl()) &&
3733           DiagnosedConflictingDefinitions.insert(GD).second) {
3734         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3735             << MangledName;
3736         getDiags().Report(OtherGD.getDecl()->getLocation(),
3737                           diag::note_previous_definition);
3738       }
3739     }
3740 
3741     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3742         (Entry->getValueType() == Ty)) {
3743       return Entry;
3744     }
3745 
3746     // Make sure the result is of the correct type.
3747     // (If function is requested for a definition, we always need to create a new
3748     // function, not just return a bitcast.)
3749     if (!IsForDefinition)
3750       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3751   }
3752 
3753   // This function doesn't have a complete type (for example, the return
3754   // type is an incomplete struct). Use a fake type instead, and make
3755   // sure not to try to set attributes.
3756   bool IsIncompleteFunction = false;
3757 
3758   llvm::FunctionType *FTy;
3759   if (isa<llvm::FunctionType>(Ty)) {
3760     FTy = cast<llvm::FunctionType>(Ty);
3761   } else {
3762     FTy = llvm::FunctionType::get(VoidTy, false);
3763     IsIncompleteFunction = true;
3764   }
3765 
3766   llvm::Function *F =
3767       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3768                              Entry ? StringRef() : MangledName, &getModule());
3769 
3770   // If we already created a function with the same mangled name (but different
3771   // type) before, take its name and add it to the list of functions to be
3772   // replaced with F at the end of CodeGen.
3773   //
3774   // This happens if there is a prototype for a function (e.g. "int f()") and
3775   // then a definition of a different type (e.g. "int f(int x)").
3776   if (Entry) {
3777     F->takeName(Entry);
3778 
3779     // This might be an implementation of a function without a prototype, in
3780     // which case, try to do special replacement of calls which match the new
3781     // prototype.  The really key thing here is that we also potentially drop
3782     // arguments from the call site so as to make a direct call, which makes the
3783     // inliner happier and suppresses a number of optimizer warnings (!) about
3784     // dropping arguments.
3785     if (!Entry->use_empty()) {
3786       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3787       Entry->removeDeadConstantUsers();
3788     }
3789 
3790     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3791         F, Entry->getValueType()->getPointerTo());
3792     addGlobalValReplacement(Entry, BC);
3793   }
3794 
3795   assert(F->getName() == MangledName && "name was uniqued!");
3796   if (D)
3797     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3798   if (ExtraAttrs.hasFnAttrs()) {
3799     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3800     F->addFnAttrs(B);
3801   }
3802 
3803   if (!DontDefer) {
3804     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3805     // each other bottoming out with the base dtor.  Therefore we emit non-base
3806     // dtors on usage, even if there is no dtor definition in the TU.
3807     if (D && isa<CXXDestructorDecl>(D) &&
3808         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3809                                            GD.getDtorType()))
3810       addDeferredDeclToEmit(GD);
3811 
3812     // This is the first use or definition of a mangled name.  If there is a
3813     // deferred decl with this name, remember that we need to emit it at the end
3814     // of the file.
3815     auto DDI = DeferredDecls.find(MangledName);
3816     if (DDI != DeferredDecls.end()) {
3817       // Move the potentially referenced deferred decl to the
3818       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3819       // don't need it anymore).
3820       addDeferredDeclToEmit(DDI->second);
3821       DeferredDecls.erase(DDI);
3822 
3823       // Otherwise, there are cases we have to worry about where we're
3824       // using a declaration for which we must emit a definition but where
3825       // we might not find a top-level definition:
3826       //   - member functions defined inline in their classes
3827       //   - friend functions defined inline in some class
3828       //   - special member functions with implicit definitions
3829       // If we ever change our AST traversal to walk into class methods,
3830       // this will be unnecessary.
3831       //
3832       // We also don't emit a definition for a function if it's going to be an
3833       // entry in a vtable, unless it's already marked as used.
3834     } else if (getLangOpts().CPlusPlus && D) {
3835       // Look for a declaration that's lexically in a record.
3836       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3837            FD = FD->getPreviousDecl()) {
3838         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3839           if (FD->doesThisDeclarationHaveABody()) {
3840             addDeferredDeclToEmit(GD.getWithDecl(FD));
3841             break;
3842           }
3843         }
3844       }
3845     }
3846   }
3847 
3848   // Make sure the result is of the requested type.
3849   if (!IsIncompleteFunction) {
3850     assert(F->getFunctionType() == Ty);
3851     return F;
3852   }
3853 
3854   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3855   return llvm::ConstantExpr::getBitCast(F, PTy);
3856 }
3857 
3858 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3859 /// non-null, then this function will use the specified type if it has to
3860 /// create it (this occurs when we see a definition of the function).
3861 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3862                                                  llvm::Type *Ty,
3863                                                  bool ForVTable,
3864                                                  bool DontDefer,
3865                                               ForDefinition_t IsForDefinition) {
3866   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3867          "consteval function should never be emitted");
3868   // If there was no specific requested type, just convert it now.
3869   if (!Ty) {
3870     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3871     Ty = getTypes().ConvertType(FD->getType());
3872   }
3873 
3874   // Devirtualized destructor calls may come through here instead of via
3875   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3876   // of the complete destructor when necessary.
3877   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3878     if (getTarget().getCXXABI().isMicrosoft() &&
3879         GD.getDtorType() == Dtor_Complete &&
3880         DD->getParent()->getNumVBases() == 0)
3881       GD = GlobalDecl(DD, Dtor_Base);
3882   }
3883 
3884   StringRef MangledName = getMangledName(GD);
3885   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3886                                     /*IsThunk=*/false, llvm::AttributeList(),
3887                                     IsForDefinition);
3888   // Returns kernel handle for HIP kernel stub function.
3889   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3890       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3891     auto *Handle = getCUDARuntime().getKernelHandle(
3892         cast<llvm::Function>(F->stripPointerCasts()), GD);
3893     if (IsForDefinition)
3894       return F;
3895     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3896   }
3897   return F;
3898 }
3899 
3900 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3901   llvm::GlobalValue *F =
3902       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3903 
3904   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3905                                         llvm::Type::getInt8PtrTy(VMContext));
3906 }
3907 
3908 static const FunctionDecl *
3909 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3910   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3911   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3912 
3913   IdentifierInfo &CII = C.Idents.get(Name);
3914   for (const auto *Result : DC->lookup(&CII))
3915     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3916       return FD;
3917 
3918   if (!C.getLangOpts().CPlusPlus)
3919     return nullptr;
3920 
3921   // Demangle the premangled name from getTerminateFn()
3922   IdentifierInfo &CXXII =
3923       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3924           ? C.Idents.get("terminate")
3925           : C.Idents.get(Name);
3926 
3927   for (const auto &N : {"__cxxabiv1", "std"}) {
3928     IdentifierInfo &NS = C.Idents.get(N);
3929     for (const auto *Result : DC->lookup(&NS)) {
3930       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3931       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3932         for (const auto *Result : LSD->lookup(&NS))
3933           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3934             break;
3935 
3936       if (ND)
3937         for (const auto *Result : ND->lookup(&CXXII))
3938           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3939             return FD;
3940     }
3941   }
3942 
3943   return nullptr;
3944 }
3945 
3946 /// CreateRuntimeFunction - Create a new runtime function with the specified
3947 /// type and name.
3948 llvm::FunctionCallee
3949 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3950                                      llvm::AttributeList ExtraAttrs, bool Local,
3951                                      bool AssumeConvergent) {
3952   if (AssumeConvergent) {
3953     ExtraAttrs =
3954         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3955   }
3956 
3957   llvm::Constant *C =
3958       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3959                               /*DontDefer=*/false, /*IsThunk=*/false,
3960                               ExtraAttrs);
3961 
3962   if (auto *F = dyn_cast<llvm::Function>(C)) {
3963     if (F->empty()) {
3964       F->setCallingConv(getRuntimeCC());
3965 
3966       // In Windows Itanium environments, try to mark runtime functions
3967       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3968       // will link their standard library statically or dynamically. Marking
3969       // functions imported when they are not imported can cause linker errors
3970       // and warnings.
3971       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3972           !getCodeGenOpts().LTOVisibilityPublicStd) {
3973         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3974         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3975           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3976           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3977         }
3978       }
3979       setDSOLocal(F);
3980     }
3981   }
3982 
3983   return {FTy, C};
3984 }
3985 
3986 /// isTypeConstant - Determine whether an object of this type can be emitted
3987 /// as a constant.
3988 ///
3989 /// If ExcludeCtor is true, the duration when the object's constructor runs
3990 /// will not be considered. The caller will need to verify that the object is
3991 /// not written to during its construction.
3992 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3993   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3994     return false;
3995 
3996   if (Context.getLangOpts().CPlusPlus) {
3997     if (const CXXRecordDecl *Record
3998           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3999       return ExcludeCtor && !Record->hasMutableFields() &&
4000              Record->hasTrivialDestructor();
4001   }
4002 
4003   return true;
4004 }
4005 
4006 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4007 /// create and return an llvm GlobalVariable with the specified type and address
4008 /// space. If there is something in the module with the specified name, return
4009 /// it potentially bitcasted to the right type.
4010 ///
4011 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4012 /// to set the attributes on the global when it is first created.
4013 ///
4014 /// If IsForDefinition is true, it is guaranteed that an actual global with
4015 /// type Ty will be returned, not conversion of a variable with the same
4016 /// mangled name but some other type.
4017 llvm::Constant *
4018 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4019                                      LangAS AddrSpace, const VarDecl *D,
4020                                      ForDefinition_t IsForDefinition) {
4021   // Lookup the entry, lazily creating it if necessary.
4022   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4023   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4024   if (Entry) {
4025     if (WeakRefReferences.erase(Entry)) {
4026       if (D && !D->hasAttr<WeakAttr>())
4027         Entry->setLinkage(llvm::Function::ExternalLinkage);
4028     }
4029 
4030     // Handle dropped DLL attributes.
4031     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
4032       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4033 
4034     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4035       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4036 
4037     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4038       return Entry;
4039 
4040     // If there are two attempts to define the same mangled name, issue an
4041     // error.
4042     if (IsForDefinition && !Entry->isDeclaration()) {
4043       GlobalDecl OtherGD;
4044       const VarDecl *OtherD;
4045 
4046       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4047       // to make sure that we issue an error only once.
4048       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4049           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4050           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4051           OtherD->hasInit() &&
4052           DiagnosedConflictingDefinitions.insert(D).second) {
4053         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4054             << MangledName;
4055         getDiags().Report(OtherGD.getDecl()->getLocation(),
4056                           diag::note_previous_definition);
4057       }
4058     }
4059 
4060     // Make sure the result is of the correct type.
4061     if (Entry->getType()->getAddressSpace() != TargetAS) {
4062       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4063                                                   Ty->getPointerTo(TargetAS));
4064     }
4065 
4066     // (If global is requested for a definition, we always need to create a new
4067     // global, not just return a bitcast.)
4068     if (!IsForDefinition)
4069       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4070   }
4071 
4072   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4073 
4074   auto *GV = new llvm::GlobalVariable(
4075       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4076       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4077       getContext().getTargetAddressSpace(DAddrSpace));
4078 
4079   // If we already created a global with the same mangled name (but different
4080   // type) before, take its name and remove it from its parent.
4081   if (Entry) {
4082     GV->takeName(Entry);
4083 
4084     if (!Entry->use_empty()) {
4085       llvm::Constant *NewPtrForOldDecl =
4086           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4087       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4088     }
4089 
4090     Entry->eraseFromParent();
4091   }
4092 
4093   // This is the first use or definition of a mangled name.  If there is a
4094   // deferred decl with this name, remember that we need to emit it at the end
4095   // of the file.
4096   auto DDI = DeferredDecls.find(MangledName);
4097   if (DDI != DeferredDecls.end()) {
4098     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4099     // list, and remove it from DeferredDecls (since we don't need it anymore).
4100     addDeferredDeclToEmit(DDI->second);
4101     DeferredDecls.erase(DDI);
4102   }
4103 
4104   // Handle things which are present even on external declarations.
4105   if (D) {
4106     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4107       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4108 
4109     // FIXME: This code is overly simple and should be merged with other global
4110     // handling.
4111     GV->setConstant(isTypeConstant(D->getType(), false));
4112 
4113     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4114 
4115     setLinkageForGV(GV, D);
4116 
4117     if (D->getTLSKind()) {
4118       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4119         CXXThreadLocals.push_back(D);
4120       setTLSMode(GV, *D);
4121     }
4122 
4123     setGVProperties(GV, D);
4124 
4125     // If required by the ABI, treat declarations of static data members with
4126     // inline initializers as definitions.
4127     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4128       EmitGlobalVarDefinition(D);
4129     }
4130 
4131     // Emit section information for extern variables.
4132     if (D->hasExternalStorage()) {
4133       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4134         GV->setSection(SA->getName());
4135     }
4136 
4137     // Handle XCore specific ABI requirements.
4138     if (getTriple().getArch() == llvm::Triple::xcore &&
4139         D->getLanguageLinkage() == CLanguageLinkage &&
4140         D->getType().isConstant(Context) &&
4141         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4142       GV->setSection(".cp.rodata");
4143 
4144     // Check if we a have a const declaration with an initializer, we may be
4145     // able to emit it as available_externally to expose it's value to the
4146     // optimizer.
4147     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4148         D->getType().isConstQualified() && !GV->hasInitializer() &&
4149         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4150       const auto *Record =
4151           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4152       bool HasMutableFields = Record && Record->hasMutableFields();
4153       if (!HasMutableFields) {
4154         const VarDecl *InitDecl;
4155         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4156         if (InitExpr) {
4157           ConstantEmitter emitter(*this);
4158           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4159           if (Init) {
4160             auto *InitType = Init->getType();
4161             if (GV->getValueType() != InitType) {
4162               // The type of the initializer does not match the definition.
4163               // This happens when an initializer has a different type from
4164               // the type of the global (because of padding at the end of a
4165               // structure for instance).
4166               GV->setName(StringRef());
4167               // Make a new global with the correct type, this is now guaranteed
4168               // to work.
4169               auto *NewGV = cast<llvm::GlobalVariable>(
4170                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4171                       ->stripPointerCasts());
4172 
4173               // Erase the old global, since it is no longer used.
4174               GV->eraseFromParent();
4175               GV = NewGV;
4176             } else {
4177               GV->setInitializer(Init);
4178               GV->setConstant(true);
4179               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4180             }
4181             emitter.finalize(GV);
4182           }
4183         }
4184       }
4185     }
4186   }
4187 
4188   if (GV->isDeclaration()) {
4189     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4190     // External HIP managed variables needed to be recorded for transformation
4191     // in both device and host compilations.
4192     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4193         D->hasExternalStorage())
4194       getCUDARuntime().handleVarRegistration(D, *GV);
4195   }
4196 
4197   LangAS ExpectedAS =
4198       D ? D->getType().getAddressSpace()
4199         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4200   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4201   if (DAddrSpace != ExpectedAS) {
4202     return getTargetCodeGenInfo().performAddrSpaceCast(
4203         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4204   }
4205 
4206   return GV;
4207 }
4208 
4209 llvm::Constant *
4210 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4211   const Decl *D = GD.getDecl();
4212 
4213   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4214     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4215                                 /*DontDefer=*/false, IsForDefinition);
4216 
4217   if (isa<CXXMethodDecl>(D)) {
4218     auto FInfo =
4219         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4220     auto Ty = getTypes().GetFunctionType(*FInfo);
4221     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4222                              IsForDefinition);
4223   }
4224 
4225   if (isa<FunctionDecl>(D)) {
4226     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4227     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4228     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4229                              IsForDefinition);
4230   }
4231 
4232   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4233 }
4234 
4235 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4236     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4237     unsigned Alignment) {
4238   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4239   llvm::GlobalVariable *OldGV = nullptr;
4240 
4241   if (GV) {
4242     // Check if the variable has the right type.
4243     if (GV->getValueType() == Ty)
4244       return GV;
4245 
4246     // Because C++ name mangling, the only way we can end up with an already
4247     // existing global with the same name is if it has been declared extern "C".
4248     assert(GV->isDeclaration() && "Declaration has wrong type!");
4249     OldGV = GV;
4250   }
4251 
4252   // Create a new variable.
4253   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4254                                 Linkage, nullptr, Name);
4255 
4256   if (OldGV) {
4257     // Replace occurrences of the old variable if needed.
4258     GV->takeName(OldGV);
4259 
4260     if (!OldGV->use_empty()) {
4261       llvm::Constant *NewPtrForOldDecl =
4262       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4263       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4264     }
4265 
4266     OldGV->eraseFromParent();
4267   }
4268 
4269   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4270       !GV->hasAvailableExternallyLinkage())
4271     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4272 
4273   GV->setAlignment(llvm::MaybeAlign(Alignment));
4274 
4275   return GV;
4276 }
4277 
4278 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4279 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4280 /// then it will be created with the specified type instead of whatever the
4281 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4282 /// that an actual global with type Ty will be returned, not conversion of a
4283 /// variable with the same mangled name but some other type.
4284 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4285                                                   llvm::Type *Ty,
4286                                            ForDefinition_t IsForDefinition) {
4287   assert(D->hasGlobalStorage() && "Not a global variable");
4288   QualType ASTTy = D->getType();
4289   if (!Ty)
4290     Ty = getTypes().ConvertTypeForMem(ASTTy);
4291 
4292   StringRef MangledName = getMangledName(D);
4293   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4294                                IsForDefinition);
4295 }
4296 
4297 /// CreateRuntimeVariable - Create a new runtime global variable with the
4298 /// specified type and name.
4299 llvm::Constant *
4300 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4301                                      StringRef Name) {
4302   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4303                                                        : LangAS::Default;
4304   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4305   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4306   return Ret;
4307 }
4308 
4309 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4310   assert(!D->getInit() && "Cannot emit definite definitions here!");
4311 
4312   StringRef MangledName = getMangledName(D);
4313   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4314 
4315   // We already have a definition, not declaration, with the same mangled name.
4316   // Emitting of declaration is not required (and actually overwrites emitted
4317   // definition).
4318   if (GV && !GV->isDeclaration())
4319     return;
4320 
4321   // If we have not seen a reference to this variable yet, place it into the
4322   // deferred declarations table to be emitted if needed later.
4323   if (!MustBeEmitted(D) && !GV) {
4324       DeferredDecls[MangledName] = D;
4325       return;
4326   }
4327 
4328   // The tentative definition is the only definition.
4329   EmitGlobalVarDefinition(D);
4330 }
4331 
4332 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4333   EmitExternalVarDeclaration(D);
4334 }
4335 
4336 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4337   return Context.toCharUnitsFromBits(
4338       getDataLayout().getTypeStoreSizeInBits(Ty));
4339 }
4340 
4341 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4342   if (LangOpts.OpenCL) {
4343     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4344     assert(AS == LangAS::opencl_global ||
4345            AS == LangAS::opencl_global_device ||
4346            AS == LangAS::opencl_global_host ||
4347            AS == LangAS::opencl_constant ||
4348            AS == LangAS::opencl_local ||
4349            AS >= LangAS::FirstTargetAddressSpace);
4350     return AS;
4351   }
4352 
4353   if (LangOpts.SYCLIsDevice &&
4354       (!D || D->getType().getAddressSpace() == LangAS::Default))
4355     return LangAS::sycl_global;
4356 
4357   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4358     if (D && D->hasAttr<CUDAConstantAttr>())
4359       return LangAS::cuda_constant;
4360     else if (D && D->hasAttr<CUDASharedAttr>())
4361       return LangAS::cuda_shared;
4362     else if (D && D->hasAttr<CUDADeviceAttr>())
4363       return LangAS::cuda_device;
4364     else if (D && D->getType().isConstQualified())
4365       return LangAS::cuda_constant;
4366     else
4367       return LangAS::cuda_device;
4368   }
4369 
4370   if (LangOpts.OpenMP) {
4371     LangAS AS;
4372     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4373       return AS;
4374   }
4375   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4376 }
4377 
4378 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4379   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4380   if (LangOpts.OpenCL)
4381     return LangAS::opencl_constant;
4382   if (LangOpts.SYCLIsDevice)
4383     return LangAS::sycl_global;
4384   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4385     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4386     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4387     // with OpVariable instructions with Generic storage class which is not
4388     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4389     // UniformConstant storage class is not viable as pointers to it may not be
4390     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4391     return LangAS::cuda_device;
4392   if (auto AS = getTarget().getConstantAddressSpace())
4393     return AS.getValue();
4394   return LangAS::Default;
4395 }
4396 
4397 // In address space agnostic languages, string literals are in default address
4398 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4399 // emitted in constant address space in LLVM IR. To be consistent with other
4400 // parts of AST, string literal global variables in constant address space
4401 // need to be casted to default address space before being put into address
4402 // map and referenced by other part of CodeGen.
4403 // In OpenCL, string literals are in constant address space in AST, therefore
4404 // they should not be casted to default address space.
4405 static llvm::Constant *
4406 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4407                                        llvm::GlobalVariable *GV) {
4408   llvm::Constant *Cast = GV;
4409   if (!CGM.getLangOpts().OpenCL) {
4410     auto AS = CGM.GetGlobalConstantAddressSpace();
4411     if (AS != LangAS::Default)
4412       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4413           CGM, GV, AS, LangAS::Default,
4414           GV->getValueType()->getPointerTo(
4415               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4416   }
4417   return Cast;
4418 }
4419 
4420 template<typename SomeDecl>
4421 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4422                                                llvm::GlobalValue *GV) {
4423   if (!getLangOpts().CPlusPlus)
4424     return;
4425 
4426   // Must have 'used' attribute, or else inline assembly can't rely on
4427   // the name existing.
4428   if (!D->template hasAttr<UsedAttr>())
4429     return;
4430 
4431   // Must have internal linkage and an ordinary name.
4432   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4433     return;
4434 
4435   // Must be in an extern "C" context. Entities declared directly within
4436   // a record are not extern "C" even if the record is in such a context.
4437   const SomeDecl *First = D->getFirstDecl();
4438   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4439     return;
4440 
4441   // OK, this is an internal linkage entity inside an extern "C" linkage
4442   // specification. Make a note of that so we can give it the "expected"
4443   // mangled name if nothing else is using that name.
4444   std::pair<StaticExternCMap::iterator, bool> R =
4445       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4446 
4447   // If we have multiple internal linkage entities with the same name
4448   // in extern "C" regions, none of them gets that name.
4449   if (!R.second)
4450     R.first->second = nullptr;
4451 }
4452 
4453 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4454   if (!CGM.supportsCOMDAT())
4455     return false;
4456 
4457   if (D.hasAttr<SelectAnyAttr>())
4458     return true;
4459 
4460   GVALinkage Linkage;
4461   if (auto *VD = dyn_cast<VarDecl>(&D))
4462     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4463   else
4464     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4465 
4466   switch (Linkage) {
4467   case GVA_Internal:
4468   case GVA_AvailableExternally:
4469   case GVA_StrongExternal:
4470     return false;
4471   case GVA_DiscardableODR:
4472   case GVA_StrongODR:
4473     return true;
4474   }
4475   llvm_unreachable("No such linkage");
4476 }
4477 
4478 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4479                                           llvm::GlobalObject &GO) {
4480   if (!shouldBeInCOMDAT(*this, D))
4481     return;
4482   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4483 }
4484 
4485 /// Pass IsTentative as true if you want to create a tentative definition.
4486 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4487                                             bool IsTentative) {
4488   // OpenCL global variables of sampler type are translated to function calls,
4489   // therefore no need to be translated.
4490   QualType ASTTy = D->getType();
4491   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4492     return;
4493 
4494   // If this is OpenMP device, check if it is legal to emit this global
4495   // normally.
4496   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4497       OpenMPRuntime->emitTargetGlobalVariable(D))
4498     return;
4499 
4500   llvm::TrackingVH<llvm::Constant> Init;
4501   bool NeedsGlobalCtor = false;
4502   bool NeedsGlobalDtor =
4503       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4504 
4505   const VarDecl *InitDecl;
4506   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4507 
4508   Optional<ConstantEmitter> emitter;
4509 
4510   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4511   // as part of their declaration."  Sema has already checked for
4512   // error cases, so we just need to set Init to UndefValue.
4513   bool IsCUDASharedVar =
4514       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4515   // Shadows of initialized device-side global variables are also left
4516   // undefined.
4517   // Managed Variables should be initialized on both host side and device side.
4518   bool IsCUDAShadowVar =
4519       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4520       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4521        D->hasAttr<CUDASharedAttr>());
4522   bool IsCUDADeviceShadowVar =
4523       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4524       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4525        D->getType()->isCUDADeviceBuiltinTextureType());
4526   if (getLangOpts().CUDA &&
4527       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4528     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4529   else if (D->hasAttr<LoaderUninitializedAttr>())
4530     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4531   else if (!InitExpr) {
4532     // This is a tentative definition; tentative definitions are
4533     // implicitly initialized with { 0 }.
4534     //
4535     // Note that tentative definitions are only emitted at the end of
4536     // a translation unit, so they should never have incomplete
4537     // type. In addition, EmitTentativeDefinition makes sure that we
4538     // never attempt to emit a tentative definition if a real one
4539     // exists. A use may still exists, however, so we still may need
4540     // to do a RAUW.
4541     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4542     Init = EmitNullConstant(D->getType());
4543   } else {
4544     initializedGlobalDecl = GlobalDecl(D);
4545     emitter.emplace(*this);
4546     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4547     if (!Initializer) {
4548       QualType T = InitExpr->getType();
4549       if (D->getType()->isReferenceType())
4550         T = D->getType();
4551 
4552       if (getLangOpts().CPlusPlus) {
4553         Init = EmitNullConstant(T);
4554         NeedsGlobalCtor = true;
4555       } else {
4556         ErrorUnsupported(D, "static initializer");
4557         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4558       }
4559     } else {
4560       Init = Initializer;
4561       // We don't need an initializer, so remove the entry for the delayed
4562       // initializer position (just in case this entry was delayed) if we
4563       // also don't need to register a destructor.
4564       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4565         DelayedCXXInitPosition.erase(D);
4566     }
4567   }
4568 
4569   llvm::Type* InitType = Init->getType();
4570   llvm::Constant *Entry =
4571       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4572 
4573   // Strip off pointer casts if we got them.
4574   Entry = Entry->stripPointerCasts();
4575 
4576   // Entry is now either a Function or GlobalVariable.
4577   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4578 
4579   // We have a definition after a declaration with the wrong type.
4580   // We must make a new GlobalVariable* and update everything that used OldGV
4581   // (a declaration or tentative definition) with the new GlobalVariable*
4582   // (which will be a definition).
4583   //
4584   // This happens if there is a prototype for a global (e.g.
4585   // "extern int x[];") and then a definition of a different type (e.g.
4586   // "int x[10];"). This also happens when an initializer has a different type
4587   // from the type of the global (this happens with unions).
4588   if (!GV || GV->getValueType() != InitType ||
4589       GV->getType()->getAddressSpace() !=
4590           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4591 
4592     // Move the old entry aside so that we'll create a new one.
4593     Entry->setName(StringRef());
4594 
4595     // Make a new global with the correct type, this is now guaranteed to work.
4596     GV = cast<llvm::GlobalVariable>(
4597         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4598             ->stripPointerCasts());
4599 
4600     // Replace all uses of the old global with the new global
4601     llvm::Constant *NewPtrForOldDecl =
4602         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4603                                                              Entry->getType());
4604     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4605 
4606     // Erase the old global, since it is no longer used.
4607     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4608   }
4609 
4610   MaybeHandleStaticInExternC(D, GV);
4611 
4612   if (D->hasAttr<AnnotateAttr>())
4613     AddGlobalAnnotations(D, GV);
4614 
4615   // Set the llvm linkage type as appropriate.
4616   llvm::GlobalValue::LinkageTypes Linkage =
4617       getLLVMLinkageVarDefinition(D, GV->isConstant());
4618 
4619   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4620   // the device. [...]"
4621   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4622   // __device__, declares a variable that: [...]
4623   // Is accessible from all the threads within the grid and from the host
4624   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4625   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4626   if (GV && LangOpts.CUDA) {
4627     if (LangOpts.CUDAIsDevice) {
4628       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4629           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4630            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4631            D->getType()->isCUDADeviceBuiltinTextureType()))
4632         GV->setExternallyInitialized(true);
4633     } else {
4634       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4635     }
4636     getCUDARuntime().handleVarRegistration(D, *GV);
4637   }
4638 
4639   GV->setInitializer(Init);
4640   if (emitter)
4641     emitter->finalize(GV);
4642 
4643   // If it is safe to mark the global 'constant', do so now.
4644   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4645                   isTypeConstant(D->getType(), true));
4646 
4647   // If it is in a read-only section, mark it 'constant'.
4648   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4649     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4650     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4651       GV->setConstant(true);
4652   }
4653 
4654   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4655 
4656   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4657   // function is only defined alongside the variable, not also alongside
4658   // callers. Normally, all accesses to a thread_local go through the
4659   // thread-wrapper in order to ensure initialization has occurred, underlying
4660   // variable will never be used other than the thread-wrapper, so it can be
4661   // converted to internal linkage.
4662   //
4663   // However, if the variable has the 'constinit' attribute, it _can_ be
4664   // referenced directly, without calling the thread-wrapper, so the linkage
4665   // must not be changed.
4666   //
4667   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4668   // weak or linkonce, the de-duplication semantics are important to preserve,
4669   // so we don't change the linkage.
4670   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4671       Linkage == llvm::GlobalValue::ExternalLinkage &&
4672       Context.getTargetInfo().getTriple().isOSDarwin() &&
4673       !D->hasAttr<ConstInitAttr>())
4674     Linkage = llvm::GlobalValue::InternalLinkage;
4675 
4676   GV->setLinkage(Linkage);
4677   if (D->hasAttr<DLLImportAttr>())
4678     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4679   else if (D->hasAttr<DLLExportAttr>())
4680     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4681   else
4682     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4683 
4684   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4685     // common vars aren't constant even if declared const.
4686     GV->setConstant(false);
4687     // Tentative definition of global variables may be initialized with
4688     // non-zero null pointers. In this case they should have weak linkage
4689     // since common linkage must have zero initializer and must not have
4690     // explicit section therefore cannot have non-zero initial value.
4691     if (!GV->getInitializer()->isNullValue())
4692       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4693   }
4694 
4695   setNonAliasAttributes(D, GV);
4696 
4697   if (D->getTLSKind() && !GV->isThreadLocal()) {
4698     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4699       CXXThreadLocals.push_back(D);
4700     setTLSMode(GV, *D);
4701   }
4702 
4703   maybeSetTrivialComdat(*D, *GV);
4704 
4705   // Emit the initializer function if necessary.
4706   if (NeedsGlobalCtor || NeedsGlobalDtor)
4707     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4708 
4709   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4710 
4711   // Emit global variable debug information.
4712   if (CGDebugInfo *DI = getModuleDebugInfo())
4713     if (getCodeGenOpts().hasReducedDebugInfo())
4714       DI->EmitGlobalVariable(GV, D);
4715 }
4716 
4717 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4718   if (CGDebugInfo *DI = getModuleDebugInfo())
4719     if (getCodeGenOpts().hasReducedDebugInfo()) {
4720       QualType ASTTy = D->getType();
4721       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4722       llvm::Constant *GV =
4723           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4724       DI->EmitExternalVariable(
4725           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4726     }
4727 }
4728 
4729 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4730                                       CodeGenModule &CGM, const VarDecl *D,
4731                                       bool NoCommon) {
4732   // Don't give variables common linkage if -fno-common was specified unless it
4733   // was overridden by a NoCommon attribute.
4734   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4735     return true;
4736 
4737   // C11 6.9.2/2:
4738   //   A declaration of an identifier for an object that has file scope without
4739   //   an initializer, and without a storage-class specifier or with the
4740   //   storage-class specifier static, constitutes a tentative definition.
4741   if (D->getInit() || D->hasExternalStorage())
4742     return true;
4743 
4744   // A variable cannot be both common and exist in a section.
4745   if (D->hasAttr<SectionAttr>())
4746     return true;
4747 
4748   // A variable cannot be both common and exist in a section.
4749   // We don't try to determine which is the right section in the front-end.
4750   // If no specialized section name is applicable, it will resort to default.
4751   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4752       D->hasAttr<PragmaClangDataSectionAttr>() ||
4753       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4754       D->hasAttr<PragmaClangRodataSectionAttr>())
4755     return true;
4756 
4757   // Thread local vars aren't considered common linkage.
4758   if (D->getTLSKind())
4759     return true;
4760 
4761   // Tentative definitions marked with WeakImportAttr are true definitions.
4762   if (D->hasAttr<WeakImportAttr>())
4763     return true;
4764 
4765   // A variable cannot be both common and exist in a comdat.
4766   if (shouldBeInCOMDAT(CGM, *D))
4767     return true;
4768 
4769   // Declarations with a required alignment do not have common linkage in MSVC
4770   // mode.
4771   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4772     if (D->hasAttr<AlignedAttr>())
4773       return true;
4774     QualType VarType = D->getType();
4775     if (Context.isAlignmentRequired(VarType))
4776       return true;
4777 
4778     if (const auto *RT = VarType->getAs<RecordType>()) {
4779       const RecordDecl *RD = RT->getDecl();
4780       for (const FieldDecl *FD : RD->fields()) {
4781         if (FD->isBitField())
4782           continue;
4783         if (FD->hasAttr<AlignedAttr>())
4784           return true;
4785         if (Context.isAlignmentRequired(FD->getType()))
4786           return true;
4787       }
4788     }
4789   }
4790 
4791   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4792   // common symbols, so symbols with greater alignment requirements cannot be
4793   // common.
4794   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4795   // alignments for common symbols via the aligncomm directive, so this
4796   // restriction only applies to MSVC environments.
4797   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4798       Context.getTypeAlignIfKnown(D->getType()) >
4799           Context.toBits(CharUnits::fromQuantity(32)))
4800     return true;
4801 
4802   return false;
4803 }
4804 
4805 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4806     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4807   if (Linkage == GVA_Internal)
4808     return llvm::Function::InternalLinkage;
4809 
4810   if (D->hasAttr<WeakAttr>()) {
4811     if (IsConstantVariable)
4812       return llvm::GlobalVariable::WeakODRLinkage;
4813     else
4814       return llvm::GlobalVariable::WeakAnyLinkage;
4815   }
4816 
4817   if (const auto *FD = D->getAsFunction())
4818     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4819       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4820 
4821   // We are guaranteed to have a strong definition somewhere else,
4822   // so we can use available_externally linkage.
4823   if (Linkage == GVA_AvailableExternally)
4824     return llvm::GlobalValue::AvailableExternallyLinkage;
4825 
4826   // Note that Apple's kernel linker doesn't support symbol
4827   // coalescing, so we need to avoid linkonce and weak linkages there.
4828   // Normally, this means we just map to internal, but for explicit
4829   // instantiations we'll map to external.
4830 
4831   // In C++, the compiler has to emit a definition in every translation unit
4832   // that references the function.  We should use linkonce_odr because
4833   // a) if all references in this translation unit are optimized away, we
4834   // don't need to codegen it.  b) if the function persists, it needs to be
4835   // merged with other definitions. c) C++ has the ODR, so we know the
4836   // definition is dependable.
4837   if (Linkage == GVA_DiscardableODR)
4838     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4839                                             : llvm::Function::InternalLinkage;
4840 
4841   // An explicit instantiation of a template has weak linkage, since
4842   // explicit instantiations can occur in multiple translation units
4843   // and must all be equivalent. However, we are not allowed to
4844   // throw away these explicit instantiations.
4845   //
4846   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4847   // so say that CUDA templates are either external (for kernels) or internal.
4848   // This lets llvm perform aggressive inter-procedural optimizations. For
4849   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4850   // therefore we need to follow the normal linkage paradigm.
4851   if (Linkage == GVA_StrongODR) {
4852     if (getLangOpts().AppleKext)
4853       return llvm::Function::ExternalLinkage;
4854     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4855         !getLangOpts().GPURelocatableDeviceCode)
4856       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4857                                           : llvm::Function::InternalLinkage;
4858     return llvm::Function::WeakODRLinkage;
4859   }
4860 
4861   // C++ doesn't have tentative definitions and thus cannot have common
4862   // linkage.
4863   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4864       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4865                                  CodeGenOpts.NoCommon))
4866     return llvm::GlobalVariable::CommonLinkage;
4867 
4868   // selectany symbols are externally visible, so use weak instead of
4869   // linkonce.  MSVC optimizes away references to const selectany globals, so
4870   // all definitions should be the same and ODR linkage should be used.
4871   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4872   if (D->hasAttr<SelectAnyAttr>())
4873     return llvm::GlobalVariable::WeakODRLinkage;
4874 
4875   // Otherwise, we have strong external linkage.
4876   assert(Linkage == GVA_StrongExternal);
4877   return llvm::GlobalVariable::ExternalLinkage;
4878 }
4879 
4880 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4881     const VarDecl *VD, bool IsConstant) {
4882   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4883   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4884 }
4885 
4886 /// Replace the uses of a function that was declared with a non-proto type.
4887 /// We want to silently drop extra arguments from call sites
4888 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4889                                           llvm::Function *newFn) {
4890   // Fast path.
4891   if (old->use_empty()) return;
4892 
4893   llvm::Type *newRetTy = newFn->getReturnType();
4894   SmallVector<llvm::Value*, 4> newArgs;
4895 
4896   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4897          ui != ue; ) {
4898     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4899     llvm::User *user = use->getUser();
4900 
4901     // Recognize and replace uses of bitcasts.  Most calls to
4902     // unprototyped functions will use bitcasts.
4903     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4904       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4905         replaceUsesOfNonProtoConstant(bitcast, newFn);
4906       continue;
4907     }
4908 
4909     // Recognize calls to the function.
4910     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4911     if (!callSite) continue;
4912     if (!callSite->isCallee(&*use))
4913       continue;
4914 
4915     // If the return types don't match exactly, then we can't
4916     // transform this call unless it's dead.
4917     if (callSite->getType() != newRetTy && !callSite->use_empty())
4918       continue;
4919 
4920     // Get the call site's attribute list.
4921     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4922     llvm::AttributeList oldAttrs = callSite->getAttributes();
4923 
4924     // If the function was passed too few arguments, don't transform.
4925     unsigned newNumArgs = newFn->arg_size();
4926     if (callSite->arg_size() < newNumArgs)
4927       continue;
4928 
4929     // If extra arguments were passed, we silently drop them.
4930     // If any of the types mismatch, we don't transform.
4931     unsigned argNo = 0;
4932     bool dontTransform = false;
4933     for (llvm::Argument &A : newFn->args()) {
4934       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4935         dontTransform = true;
4936         break;
4937       }
4938 
4939       // Add any parameter attributes.
4940       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4941       argNo++;
4942     }
4943     if (dontTransform)
4944       continue;
4945 
4946     // Okay, we can transform this.  Create the new call instruction and copy
4947     // over the required information.
4948     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4949 
4950     // Copy over any operand bundles.
4951     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4952     callSite->getOperandBundlesAsDefs(newBundles);
4953 
4954     llvm::CallBase *newCall;
4955     if (isa<llvm::CallInst>(callSite)) {
4956       newCall =
4957           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4958     } else {
4959       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4960       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4961                                          oldInvoke->getUnwindDest(), newArgs,
4962                                          newBundles, "", callSite);
4963     }
4964     newArgs.clear(); // for the next iteration
4965 
4966     if (!newCall->getType()->isVoidTy())
4967       newCall->takeName(callSite);
4968     newCall->setAttributes(
4969         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4970                                  oldAttrs.getRetAttrs(), newArgAttrs));
4971     newCall->setCallingConv(callSite->getCallingConv());
4972 
4973     // Finally, remove the old call, replacing any uses with the new one.
4974     if (!callSite->use_empty())
4975       callSite->replaceAllUsesWith(newCall);
4976 
4977     // Copy debug location attached to CI.
4978     if (callSite->getDebugLoc())
4979       newCall->setDebugLoc(callSite->getDebugLoc());
4980 
4981     callSite->eraseFromParent();
4982   }
4983 }
4984 
4985 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4986 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4987 /// existing call uses of the old function in the module, this adjusts them to
4988 /// call the new function directly.
4989 ///
4990 /// This is not just a cleanup: the always_inline pass requires direct calls to
4991 /// functions to be able to inline them.  If there is a bitcast in the way, it
4992 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4993 /// run at -O0.
4994 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4995                                                       llvm::Function *NewFn) {
4996   // If we're redefining a global as a function, don't transform it.
4997   if (!isa<llvm::Function>(Old)) return;
4998 
4999   replaceUsesOfNonProtoConstant(Old, NewFn);
5000 }
5001 
5002 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5003   auto DK = VD->isThisDeclarationADefinition();
5004   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5005     return;
5006 
5007   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5008   // If we have a definition, this might be a deferred decl. If the
5009   // instantiation is explicit, make sure we emit it at the end.
5010   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5011     GetAddrOfGlobalVar(VD);
5012 
5013   EmitTopLevelDecl(VD);
5014 }
5015 
5016 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5017                                                  llvm::GlobalValue *GV) {
5018   const auto *D = cast<FunctionDecl>(GD.getDecl());
5019 
5020   // Compute the function info and LLVM type.
5021   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5022   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5023 
5024   // Get or create the prototype for the function.
5025   if (!GV || (GV->getValueType() != Ty))
5026     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5027                                                    /*DontDefer=*/true,
5028                                                    ForDefinition));
5029 
5030   // Already emitted.
5031   if (!GV->isDeclaration())
5032     return;
5033 
5034   // We need to set linkage and visibility on the function before
5035   // generating code for it because various parts of IR generation
5036   // want to propagate this information down (e.g. to local static
5037   // declarations).
5038   auto *Fn = cast<llvm::Function>(GV);
5039   setFunctionLinkage(GD, Fn);
5040 
5041   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5042   setGVProperties(Fn, GD);
5043 
5044   MaybeHandleStaticInExternC(D, Fn);
5045 
5046   maybeSetTrivialComdat(*D, *Fn);
5047 
5048   // Set CodeGen attributes that represent floating point environment.
5049   setLLVMFunctionFEnvAttributes(D, Fn);
5050 
5051   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5052 
5053   setNonAliasAttributes(GD, Fn);
5054   SetLLVMFunctionAttributesForDefinition(D, Fn);
5055 
5056   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5057     AddGlobalCtor(Fn, CA->getPriority());
5058   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5059     AddGlobalDtor(Fn, DA->getPriority(), true);
5060   if (D->hasAttr<AnnotateAttr>())
5061     AddGlobalAnnotations(D, Fn);
5062 }
5063 
5064 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5065   const auto *D = cast<ValueDecl>(GD.getDecl());
5066   const AliasAttr *AA = D->getAttr<AliasAttr>();
5067   assert(AA && "Not an alias?");
5068 
5069   StringRef MangledName = getMangledName(GD);
5070 
5071   if (AA->getAliasee() == MangledName) {
5072     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5073     return;
5074   }
5075 
5076   // If there is a definition in the module, then it wins over the alias.
5077   // This is dubious, but allow it to be safe.  Just ignore the alias.
5078   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5079   if (Entry && !Entry->isDeclaration())
5080     return;
5081 
5082   Aliases.push_back(GD);
5083 
5084   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5085 
5086   // Create a reference to the named value.  This ensures that it is emitted
5087   // if a deferred decl.
5088   llvm::Constant *Aliasee;
5089   llvm::GlobalValue::LinkageTypes LT;
5090   if (isa<llvm::FunctionType>(DeclTy)) {
5091     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5092                                       /*ForVTable=*/false);
5093     LT = getFunctionLinkage(GD);
5094   } else {
5095     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5096                                     /*D=*/nullptr);
5097     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5098       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5099     else
5100       LT = getFunctionLinkage(GD);
5101   }
5102 
5103   // Create the new alias itself, but don't set a name yet.
5104   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5105   auto *GA =
5106       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5107 
5108   if (Entry) {
5109     if (GA->getAliasee() == Entry) {
5110       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5111       return;
5112     }
5113 
5114     assert(Entry->isDeclaration());
5115 
5116     // If there is a declaration in the module, then we had an extern followed
5117     // by the alias, as in:
5118     //   extern int test6();
5119     //   ...
5120     //   int test6() __attribute__((alias("test7")));
5121     //
5122     // Remove it and replace uses of it with the alias.
5123     GA->takeName(Entry);
5124 
5125     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5126                                                           Entry->getType()));
5127     Entry->eraseFromParent();
5128   } else {
5129     GA->setName(MangledName);
5130   }
5131 
5132   // Set attributes which are particular to an alias; this is a
5133   // specialization of the attributes which may be set on a global
5134   // variable/function.
5135   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5136       D->isWeakImported()) {
5137     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5138   }
5139 
5140   if (const auto *VD = dyn_cast<VarDecl>(D))
5141     if (VD->getTLSKind())
5142       setTLSMode(GA, *VD);
5143 
5144   SetCommonAttributes(GD, GA);
5145 }
5146 
5147 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5148   const auto *D = cast<ValueDecl>(GD.getDecl());
5149   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5150   assert(IFA && "Not an ifunc?");
5151 
5152   StringRef MangledName = getMangledName(GD);
5153 
5154   if (IFA->getResolver() == MangledName) {
5155     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5156     return;
5157   }
5158 
5159   // Report an error if some definition overrides ifunc.
5160   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5161   if (Entry && !Entry->isDeclaration()) {
5162     GlobalDecl OtherGD;
5163     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5164         DiagnosedConflictingDefinitions.insert(GD).second) {
5165       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5166           << MangledName;
5167       Diags.Report(OtherGD.getDecl()->getLocation(),
5168                    diag::note_previous_definition);
5169     }
5170     return;
5171   }
5172 
5173   Aliases.push_back(GD);
5174 
5175   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5176   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5177   llvm::Constant *Resolver =
5178       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5179                               /*ForVTable=*/false);
5180   llvm::GlobalIFunc *GIF =
5181       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5182                                 "", Resolver, &getModule());
5183   if (Entry) {
5184     if (GIF->getResolver() == Entry) {
5185       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5186       return;
5187     }
5188     assert(Entry->isDeclaration());
5189 
5190     // If there is a declaration in the module, then we had an extern followed
5191     // by the ifunc, as in:
5192     //   extern int test();
5193     //   ...
5194     //   int test() __attribute__((ifunc("resolver")));
5195     //
5196     // Remove it and replace uses of it with the ifunc.
5197     GIF->takeName(Entry);
5198 
5199     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5200                                                           Entry->getType()));
5201     Entry->eraseFromParent();
5202   } else
5203     GIF->setName(MangledName);
5204 
5205   SetCommonAttributes(GD, GIF);
5206 }
5207 
5208 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5209                                             ArrayRef<llvm::Type*> Tys) {
5210   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5211                                          Tys);
5212 }
5213 
5214 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5215 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5216                          const StringLiteral *Literal, bool TargetIsLSB,
5217                          bool &IsUTF16, unsigned &StringLength) {
5218   StringRef String = Literal->getString();
5219   unsigned NumBytes = String.size();
5220 
5221   // Check for simple case.
5222   if (!Literal->containsNonAsciiOrNull()) {
5223     StringLength = NumBytes;
5224     return *Map.insert(std::make_pair(String, nullptr)).first;
5225   }
5226 
5227   // Otherwise, convert the UTF8 literals into a string of shorts.
5228   IsUTF16 = true;
5229 
5230   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5231   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5232   llvm::UTF16 *ToPtr = &ToBuf[0];
5233 
5234   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5235                                  ToPtr + NumBytes, llvm::strictConversion);
5236 
5237   // ConvertUTF8toUTF16 returns the length in ToPtr.
5238   StringLength = ToPtr - &ToBuf[0];
5239 
5240   // Add an explicit null.
5241   *ToPtr = 0;
5242   return *Map.insert(std::make_pair(
5243                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5244                                    (StringLength + 1) * 2),
5245                          nullptr)).first;
5246 }
5247 
5248 ConstantAddress
5249 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5250   unsigned StringLength = 0;
5251   bool isUTF16 = false;
5252   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5253       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5254                                getDataLayout().isLittleEndian(), isUTF16,
5255                                StringLength);
5256 
5257   if (auto *C = Entry.second)
5258     return ConstantAddress(
5259         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5260 
5261   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5262   llvm::Constant *Zeros[] = { Zero, Zero };
5263 
5264   const ASTContext &Context = getContext();
5265   const llvm::Triple &Triple = getTriple();
5266 
5267   const auto CFRuntime = getLangOpts().CFRuntime;
5268   const bool IsSwiftABI =
5269       static_cast<unsigned>(CFRuntime) >=
5270       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5271   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5272 
5273   // If we don't already have it, get __CFConstantStringClassReference.
5274   if (!CFConstantStringClassRef) {
5275     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5276     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5277     Ty = llvm::ArrayType::get(Ty, 0);
5278 
5279     switch (CFRuntime) {
5280     default: break;
5281     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5282     case LangOptions::CoreFoundationABI::Swift5_0:
5283       CFConstantStringClassName =
5284           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5285                               : "$s10Foundation19_NSCFConstantStringCN";
5286       Ty = IntPtrTy;
5287       break;
5288     case LangOptions::CoreFoundationABI::Swift4_2:
5289       CFConstantStringClassName =
5290           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5291                               : "$S10Foundation19_NSCFConstantStringCN";
5292       Ty = IntPtrTy;
5293       break;
5294     case LangOptions::CoreFoundationABI::Swift4_1:
5295       CFConstantStringClassName =
5296           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5297                               : "__T010Foundation19_NSCFConstantStringCN";
5298       Ty = IntPtrTy;
5299       break;
5300     }
5301 
5302     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5303 
5304     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5305       llvm::GlobalValue *GV = nullptr;
5306 
5307       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5308         IdentifierInfo &II = Context.Idents.get(GV->getName());
5309         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5310         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5311 
5312         const VarDecl *VD = nullptr;
5313         for (const auto *Result : DC->lookup(&II))
5314           if ((VD = dyn_cast<VarDecl>(Result)))
5315             break;
5316 
5317         if (Triple.isOSBinFormatELF()) {
5318           if (!VD)
5319             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5320         } else {
5321           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5322           if (!VD || !VD->hasAttr<DLLExportAttr>())
5323             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5324           else
5325             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5326         }
5327 
5328         setDSOLocal(GV);
5329       }
5330     }
5331 
5332     // Decay array -> ptr
5333     CFConstantStringClassRef =
5334         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5335                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5336   }
5337 
5338   QualType CFTy = Context.getCFConstantStringType();
5339 
5340   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5341 
5342   ConstantInitBuilder Builder(*this);
5343   auto Fields = Builder.beginStruct(STy);
5344 
5345   // Class pointer.
5346   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5347 
5348   // Flags.
5349   if (IsSwiftABI) {
5350     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5351     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5352   } else {
5353     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5354   }
5355 
5356   // String pointer.
5357   llvm::Constant *C = nullptr;
5358   if (isUTF16) {
5359     auto Arr = llvm::makeArrayRef(
5360         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5361         Entry.first().size() / 2);
5362     C = llvm::ConstantDataArray::get(VMContext, Arr);
5363   } else {
5364     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5365   }
5366 
5367   // Note: -fwritable-strings doesn't make the backing store strings of
5368   // CFStrings writable. (See <rdar://problem/10657500>)
5369   auto *GV =
5370       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5371                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5372   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5373   // Don't enforce the target's minimum global alignment, since the only use
5374   // of the string is via this class initializer.
5375   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5376                             : Context.getTypeAlignInChars(Context.CharTy);
5377   GV->setAlignment(Align.getAsAlign());
5378 
5379   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5380   // Without it LLVM can merge the string with a non unnamed_addr one during
5381   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5382   if (Triple.isOSBinFormatMachO())
5383     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5384                            : "__TEXT,__cstring,cstring_literals");
5385   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5386   // the static linker to adjust permissions to read-only later on.
5387   else if (Triple.isOSBinFormatELF())
5388     GV->setSection(".rodata");
5389 
5390   // String.
5391   llvm::Constant *Str =
5392       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5393 
5394   if (isUTF16)
5395     // Cast the UTF16 string to the correct type.
5396     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5397   Fields.add(Str);
5398 
5399   // String length.
5400   llvm::IntegerType *LengthTy =
5401       llvm::IntegerType::get(getModule().getContext(),
5402                              Context.getTargetInfo().getLongWidth());
5403   if (IsSwiftABI) {
5404     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5405         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5406       LengthTy = Int32Ty;
5407     else
5408       LengthTy = IntPtrTy;
5409   }
5410   Fields.addInt(LengthTy, StringLength);
5411 
5412   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5413   // properly aligned on 32-bit platforms.
5414   CharUnits Alignment =
5415       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5416 
5417   // The struct.
5418   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5419                                     /*isConstant=*/false,
5420                                     llvm::GlobalVariable::PrivateLinkage);
5421   GV->addAttribute("objc_arc_inert");
5422   switch (Triple.getObjectFormat()) {
5423   case llvm::Triple::UnknownObjectFormat:
5424     llvm_unreachable("unknown file format");
5425   case llvm::Triple::GOFF:
5426     llvm_unreachable("GOFF is not yet implemented");
5427   case llvm::Triple::XCOFF:
5428     llvm_unreachable("XCOFF is not yet implemented");
5429   case llvm::Triple::COFF:
5430   case llvm::Triple::ELF:
5431   case llvm::Triple::Wasm:
5432     GV->setSection("cfstring");
5433     break;
5434   case llvm::Triple::MachO:
5435     GV->setSection("__DATA,__cfstring");
5436     break;
5437   }
5438   Entry.second = GV;
5439 
5440   return ConstantAddress(GV, GV->getValueType(), Alignment);
5441 }
5442 
5443 bool CodeGenModule::getExpressionLocationsEnabled() const {
5444   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5445 }
5446 
5447 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5448   if (ObjCFastEnumerationStateType.isNull()) {
5449     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5450     D->startDefinition();
5451 
5452     QualType FieldTypes[] = {
5453       Context.UnsignedLongTy,
5454       Context.getPointerType(Context.getObjCIdType()),
5455       Context.getPointerType(Context.UnsignedLongTy),
5456       Context.getConstantArrayType(Context.UnsignedLongTy,
5457                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5458     };
5459 
5460     for (size_t i = 0; i < 4; ++i) {
5461       FieldDecl *Field = FieldDecl::Create(Context,
5462                                            D,
5463                                            SourceLocation(),
5464                                            SourceLocation(), nullptr,
5465                                            FieldTypes[i], /*TInfo=*/nullptr,
5466                                            /*BitWidth=*/nullptr,
5467                                            /*Mutable=*/false,
5468                                            ICIS_NoInit);
5469       Field->setAccess(AS_public);
5470       D->addDecl(Field);
5471     }
5472 
5473     D->completeDefinition();
5474     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5475   }
5476 
5477   return ObjCFastEnumerationStateType;
5478 }
5479 
5480 llvm::Constant *
5481 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5482   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5483 
5484   // Don't emit it as the address of the string, emit the string data itself
5485   // as an inline array.
5486   if (E->getCharByteWidth() == 1) {
5487     SmallString<64> Str(E->getString());
5488 
5489     // Resize the string to the right size, which is indicated by its type.
5490     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5491     Str.resize(CAT->getSize().getZExtValue());
5492     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5493   }
5494 
5495   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5496   llvm::Type *ElemTy = AType->getElementType();
5497   unsigned NumElements = AType->getNumElements();
5498 
5499   // Wide strings have either 2-byte or 4-byte elements.
5500   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5501     SmallVector<uint16_t, 32> Elements;
5502     Elements.reserve(NumElements);
5503 
5504     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5505       Elements.push_back(E->getCodeUnit(i));
5506     Elements.resize(NumElements);
5507     return llvm::ConstantDataArray::get(VMContext, Elements);
5508   }
5509 
5510   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5511   SmallVector<uint32_t, 32> Elements;
5512   Elements.reserve(NumElements);
5513 
5514   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5515     Elements.push_back(E->getCodeUnit(i));
5516   Elements.resize(NumElements);
5517   return llvm::ConstantDataArray::get(VMContext, Elements);
5518 }
5519 
5520 static llvm::GlobalVariable *
5521 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5522                       CodeGenModule &CGM, StringRef GlobalName,
5523                       CharUnits Alignment) {
5524   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5525       CGM.GetGlobalConstantAddressSpace());
5526 
5527   llvm::Module &M = CGM.getModule();
5528   // Create a global variable for this string
5529   auto *GV = new llvm::GlobalVariable(
5530       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5531       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5532   GV->setAlignment(Alignment.getAsAlign());
5533   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5534   if (GV->isWeakForLinker()) {
5535     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5536     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5537   }
5538   CGM.setDSOLocal(GV);
5539 
5540   return GV;
5541 }
5542 
5543 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5544 /// constant array for the given string literal.
5545 ConstantAddress
5546 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5547                                                   StringRef Name) {
5548   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5549 
5550   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5551   llvm::GlobalVariable **Entry = nullptr;
5552   if (!LangOpts.WritableStrings) {
5553     Entry = &ConstantStringMap[C];
5554     if (auto GV = *Entry) {
5555       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5556         GV->setAlignment(Alignment.getAsAlign());
5557       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5558                              GV->getValueType(), Alignment);
5559     }
5560   }
5561 
5562   SmallString<256> MangledNameBuffer;
5563   StringRef GlobalVariableName;
5564   llvm::GlobalValue::LinkageTypes LT;
5565 
5566   // Mangle the string literal if that's how the ABI merges duplicate strings.
5567   // Don't do it if they are writable, since we don't want writes in one TU to
5568   // affect strings in another.
5569   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5570       !LangOpts.WritableStrings) {
5571     llvm::raw_svector_ostream Out(MangledNameBuffer);
5572     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5573     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5574     GlobalVariableName = MangledNameBuffer;
5575   } else {
5576     LT = llvm::GlobalValue::PrivateLinkage;
5577     GlobalVariableName = Name;
5578   }
5579 
5580   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5581   if (Entry)
5582     *Entry = GV;
5583 
5584   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5585                                   QualType());
5586 
5587   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5588                          GV->getValueType(), Alignment);
5589 }
5590 
5591 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5592 /// array for the given ObjCEncodeExpr node.
5593 ConstantAddress
5594 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5595   std::string Str;
5596   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5597 
5598   return GetAddrOfConstantCString(Str);
5599 }
5600 
5601 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5602 /// the literal and a terminating '\0' character.
5603 /// The result has pointer to array type.
5604 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5605     const std::string &Str, const char *GlobalName) {
5606   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5607   CharUnits Alignment =
5608     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5609 
5610   llvm::Constant *C =
5611       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5612 
5613   // Don't share any string literals if strings aren't constant.
5614   llvm::GlobalVariable **Entry = nullptr;
5615   if (!LangOpts.WritableStrings) {
5616     Entry = &ConstantStringMap[C];
5617     if (auto GV = *Entry) {
5618       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5619         GV->setAlignment(Alignment.getAsAlign());
5620       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5621                              GV->getValueType(), Alignment);
5622     }
5623   }
5624 
5625   // Get the default prefix if a name wasn't specified.
5626   if (!GlobalName)
5627     GlobalName = ".str";
5628   // Create a global variable for this.
5629   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5630                                   GlobalName, Alignment);
5631   if (Entry)
5632     *Entry = GV;
5633 
5634   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5635                          GV->getValueType(), Alignment);
5636 }
5637 
5638 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5639     const MaterializeTemporaryExpr *E, const Expr *Init) {
5640   assert((E->getStorageDuration() == SD_Static ||
5641           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5642   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5643 
5644   // If we're not materializing a subobject of the temporary, keep the
5645   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5646   QualType MaterializedType = Init->getType();
5647   if (Init == E->getSubExpr())
5648     MaterializedType = E->getType();
5649 
5650   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5651 
5652   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5653   if (!InsertResult.second) {
5654     // We've seen this before: either we already created it or we're in the
5655     // process of doing so.
5656     if (!InsertResult.first->second) {
5657       // We recursively re-entered this function, probably during emission of
5658       // the initializer. Create a placeholder. We'll clean this up in the
5659       // outer call, at the end of this function.
5660       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5661       InsertResult.first->second = new llvm::GlobalVariable(
5662           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5663           nullptr);
5664     }
5665     return ConstantAddress(
5666         InsertResult.first->second,
5667         InsertResult.first->second->getType()->getPointerElementType(), Align);
5668   }
5669 
5670   // FIXME: If an externally-visible declaration extends multiple temporaries,
5671   // we need to give each temporary the same name in every translation unit (and
5672   // we also need to make the temporaries externally-visible).
5673   SmallString<256> Name;
5674   llvm::raw_svector_ostream Out(Name);
5675   getCXXABI().getMangleContext().mangleReferenceTemporary(
5676       VD, E->getManglingNumber(), Out);
5677 
5678   APValue *Value = nullptr;
5679   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5680     // If the initializer of the extending declaration is a constant
5681     // initializer, we should have a cached constant initializer for this
5682     // temporary. Note that this might have a different value from the value
5683     // computed by evaluating the initializer if the surrounding constant
5684     // expression modifies the temporary.
5685     Value = E->getOrCreateValue(false);
5686   }
5687 
5688   // Try evaluating it now, it might have a constant initializer.
5689   Expr::EvalResult EvalResult;
5690   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5691       !EvalResult.hasSideEffects())
5692     Value = &EvalResult.Val;
5693 
5694   LangAS AddrSpace =
5695       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5696 
5697   Optional<ConstantEmitter> emitter;
5698   llvm::Constant *InitialValue = nullptr;
5699   bool Constant = false;
5700   llvm::Type *Type;
5701   if (Value) {
5702     // The temporary has a constant initializer, use it.
5703     emitter.emplace(*this);
5704     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5705                                                MaterializedType);
5706     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5707     Type = InitialValue->getType();
5708   } else {
5709     // No initializer, the initialization will be provided when we
5710     // initialize the declaration which performed lifetime extension.
5711     Type = getTypes().ConvertTypeForMem(MaterializedType);
5712   }
5713 
5714   // Create a global variable for this lifetime-extended temporary.
5715   llvm::GlobalValue::LinkageTypes Linkage =
5716       getLLVMLinkageVarDefinition(VD, Constant);
5717   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5718     const VarDecl *InitVD;
5719     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5720         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5721       // Temporaries defined inside a class get linkonce_odr linkage because the
5722       // class can be defined in multiple translation units.
5723       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5724     } else {
5725       // There is no need for this temporary to have external linkage if the
5726       // VarDecl has external linkage.
5727       Linkage = llvm::GlobalVariable::InternalLinkage;
5728     }
5729   }
5730   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5731   auto *GV = new llvm::GlobalVariable(
5732       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5733       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5734   if (emitter) emitter->finalize(GV);
5735   setGVProperties(GV, VD);
5736   GV->setAlignment(Align.getAsAlign());
5737   if (supportsCOMDAT() && GV->isWeakForLinker())
5738     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5739   if (VD->getTLSKind())
5740     setTLSMode(GV, *VD);
5741   llvm::Constant *CV = GV;
5742   if (AddrSpace != LangAS::Default)
5743     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5744         *this, GV, AddrSpace, LangAS::Default,
5745         Type->getPointerTo(
5746             getContext().getTargetAddressSpace(LangAS::Default)));
5747 
5748   // Update the map with the new temporary. If we created a placeholder above,
5749   // replace it with the new global now.
5750   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5751   if (Entry) {
5752     Entry->replaceAllUsesWith(
5753         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5754     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5755   }
5756   Entry = CV;
5757 
5758   return ConstantAddress(CV, Type, Align);
5759 }
5760 
5761 /// EmitObjCPropertyImplementations - Emit information for synthesized
5762 /// properties for an implementation.
5763 void CodeGenModule::EmitObjCPropertyImplementations(const
5764                                                     ObjCImplementationDecl *D) {
5765   for (const auto *PID : D->property_impls()) {
5766     // Dynamic is just for type-checking.
5767     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5768       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5769 
5770       // Determine which methods need to be implemented, some may have
5771       // been overridden. Note that ::isPropertyAccessor is not the method
5772       // we want, that just indicates if the decl came from a
5773       // property. What we want to know is if the method is defined in
5774       // this implementation.
5775       auto *Getter = PID->getGetterMethodDecl();
5776       if (!Getter || Getter->isSynthesizedAccessorStub())
5777         CodeGenFunction(*this).GenerateObjCGetter(
5778             const_cast<ObjCImplementationDecl *>(D), PID);
5779       auto *Setter = PID->getSetterMethodDecl();
5780       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5781         CodeGenFunction(*this).GenerateObjCSetter(
5782                                  const_cast<ObjCImplementationDecl *>(D), PID);
5783     }
5784   }
5785 }
5786 
5787 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5788   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5789   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5790        ivar; ivar = ivar->getNextIvar())
5791     if (ivar->getType().isDestructedType())
5792       return true;
5793 
5794   return false;
5795 }
5796 
5797 static bool AllTrivialInitializers(CodeGenModule &CGM,
5798                                    ObjCImplementationDecl *D) {
5799   CodeGenFunction CGF(CGM);
5800   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5801        E = D->init_end(); B != E; ++B) {
5802     CXXCtorInitializer *CtorInitExp = *B;
5803     Expr *Init = CtorInitExp->getInit();
5804     if (!CGF.isTrivialInitializer(Init))
5805       return false;
5806   }
5807   return true;
5808 }
5809 
5810 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5811 /// for an implementation.
5812 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5813   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5814   if (needsDestructMethod(D)) {
5815     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5816     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5817     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5818         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5819         getContext().VoidTy, nullptr, D,
5820         /*isInstance=*/true, /*isVariadic=*/false,
5821         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5822         /*isImplicitlyDeclared=*/true,
5823         /*isDefined=*/false, ObjCMethodDecl::Required);
5824     D->addInstanceMethod(DTORMethod);
5825     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5826     D->setHasDestructors(true);
5827   }
5828 
5829   // If the implementation doesn't have any ivar initializers, we don't need
5830   // a .cxx_construct.
5831   if (D->getNumIvarInitializers() == 0 ||
5832       AllTrivialInitializers(*this, D))
5833     return;
5834 
5835   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5836   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5837   // The constructor returns 'self'.
5838   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5839       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5840       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5841       /*isVariadic=*/false,
5842       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5843       /*isImplicitlyDeclared=*/true,
5844       /*isDefined=*/false, ObjCMethodDecl::Required);
5845   D->addInstanceMethod(CTORMethod);
5846   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5847   D->setHasNonZeroConstructors(true);
5848 }
5849 
5850 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5851 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5852   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5853       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5854     ErrorUnsupported(LSD, "linkage spec");
5855     return;
5856   }
5857 
5858   EmitDeclContext(LSD);
5859 }
5860 
5861 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5862   for (auto *I : DC->decls()) {
5863     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5864     // are themselves considered "top-level", so EmitTopLevelDecl on an
5865     // ObjCImplDecl does not recursively visit them. We need to do that in
5866     // case they're nested inside another construct (LinkageSpecDecl /
5867     // ExportDecl) that does stop them from being considered "top-level".
5868     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5869       for (auto *M : OID->methods())
5870         EmitTopLevelDecl(M);
5871     }
5872 
5873     EmitTopLevelDecl(I);
5874   }
5875 }
5876 
5877 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5878 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5879   // Ignore dependent declarations.
5880   if (D->isTemplated())
5881     return;
5882 
5883   // Consteval function shouldn't be emitted.
5884   if (auto *FD = dyn_cast<FunctionDecl>(D))
5885     if (FD->isConsteval())
5886       return;
5887 
5888   switch (D->getKind()) {
5889   case Decl::CXXConversion:
5890   case Decl::CXXMethod:
5891   case Decl::Function:
5892     EmitGlobal(cast<FunctionDecl>(D));
5893     // Always provide some coverage mapping
5894     // even for the functions that aren't emitted.
5895     AddDeferredUnusedCoverageMapping(D);
5896     break;
5897 
5898   case Decl::CXXDeductionGuide:
5899     // Function-like, but does not result in code emission.
5900     break;
5901 
5902   case Decl::Var:
5903   case Decl::Decomposition:
5904   case Decl::VarTemplateSpecialization:
5905     EmitGlobal(cast<VarDecl>(D));
5906     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5907       for (auto *B : DD->bindings())
5908         if (auto *HD = B->getHoldingVar())
5909           EmitGlobal(HD);
5910     break;
5911 
5912   // Indirect fields from global anonymous structs and unions can be
5913   // ignored; only the actual variable requires IR gen support.
5914   case Decl::IndirectField:
5915     break;
5916 
5917   // C++ Decls
5918   case Decl::Namespace:
5919     EmitDeclContext(cast<NamespaceDecl>(D));
5920     break;
5921   case Decl::ClassTemplateSpecialization: {
5922     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5923     if (CGDebugInfo *DI = getModuleDebugInfo())
5924       if (Spec->getSpecializationKind() ==
5925               TSK_ExplicitInstantiationDefinition &&
5926           Spec->hasDefinition())
5927         DI->completeTemplateDefinition(*Spec);
5928   } LLVM_FALLTHROUGH;
5929   case Decl::CXXRecord: {
5930     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5931     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5932       if (CRD->hasDefinition())
5933         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5934       if (auto *ES = D->getASTContext().getExternalSource())
5935         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5936           DI->completeUnusedClass(*CRD);
5937     }
5938     // Emit any static data members, they may be definitions.
5939     for (auto *I : CRD->decls())
5940       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5941         EmitTopLevelDecl(I);
5942     break;
5943   }
5944     // No code generation needed.
5945   case Decl::UsingShadow:
5946   case Decl::ClassTemplate:
5947   case Decl::VarTemplate:
5948   case Decl::Concept:
5949   case Decl::VarTemplatePartialSpecialization:
5950   case Decl::FunctionTemplate:
5951   case Decl::TypeAliasTemplate:
5952   case Decl::Block:
5953   case Decl::Empty:
5954   case Decl::Binding:
5955     break;
5956   case Decl::Using:          // using X; [C++]
5957     if (CGDebugInfo *DI = getModuleDebugInfo())
5958         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5959     break;
5960   case Decl::UsingEnum: // using enum X; [C++]
5961     if (CGDebugInfo *DI = getModuleDebugInfo())
5962       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5963     break;
5964   case Decl::NamespaceAlias:
5965     if (CGDebugInfo *DI = getModuleDebugInfo())
5966         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5967     break;
5968   case Decl::UsingDirective: // using namespace X; [C++]
5969     if (CGDebugInfo *DI = getModuleDebugInfo())
5970       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5971     break;
5972   case Decl::CXXConstructor:
5973     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5974     break;
5975   case Decl::CXXDestructor:
5976     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5977     break;
5978 
5979   case Decl::StaticAssert:
5980     // Nothing to do.
5981     break;
5982 
5983   // Objective-C Decls
5984 
5985   // Forward declarations, no (immediate) code generation.
5986   case Decl::ObjCInterface:
5987   case Decl::ObjCCategory:
5988     break;
5989 
5990   case Decl::ObjCProtocol: {
5991     auto *Proto = cast<ObjCProtocolDecl>(D);
5992     if (Proto->isThisDeclarationADefinition())
5993       ObjCRuntime->GenerateProtocol(Proto);
5994     break;
5995   }
5996 
5997   case Decl::ObjCCategoryImpl:
5998     // Categories have properties but don't support synthesize so we
5999     // can ignore them here.
6000     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6001     break;
6002 
6003   case Decl::ObjCImplementation: {
6004     auto *OMD = cast<ObjCImplementationDecl>(D);
6005     EmitObjCPropertyImplementations(OMD);
6006     EmitObjCIvarInitializations(OMD);
6007     ObjCRuntime->GenerateClass(OMD);
6008     // Emit global variable debug information.
6009     if (CGDebugInfo *DI = getModuleDebugInfo())
6010       if (getCodeGenOpts().hasReducedDebugInfo())
6011         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6012             OMD->getClassInterface()), OMD->getLocation());
6013     break;
6014   }
6015   case Decl::ObjCMethod: {
6016     auto *OMD = cast<ObjCMethodDecl>(D);
6017     // If this is not a prototype, emit the body.
6018     if (OMD->getBody())
6019       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6020     break;
6021   }
6022   case Decl::ObjCCompatibleAlias:
6023     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6024     break;
6025 
6026   case Decl::PragmaComment: {
6027     const auto *PCD = cast<PragmaCommentDecl>(D);
6028     switch (PCD->getCommentKind()) {
6029     case PCK_Unknown:
6030       llvm_unreachable("unexpected pragma comment kind");
6031     case PCK_Linker:
6032       AppendLinkerOptions(PCD->getArg());
6033       break;
6034     case PCK_Lib:
6035         AddDependentLib(PCD->getArg());
6036       break;
6037     case PCK_Compiler:
6038     case PCK_ExeStr:
6039     case PCK_User:
6040       break; // We ignore all of these.
6041     }
6042     break;
6043   }
6044 
6045   case Decl::PragmaDetectMismatch: {
6046     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6047     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6048     break;
6049   }
6050 
6051   case Decl::LinkageSpec:
6052     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6053     break;
6054 
6055   case Decl::FileScopeAsm: {
6056     // File-scope asm is ignored during device-side CUDA compilation.
6057     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6058       break;
6059     // File-scope asm is ignored during device-side OpenMP compilation.
6060     if (LangOpts.OpenMPIsDevice)
6061       break;
6062     // File-scope asm is ignored during device-side SYCL compilation.
6063     if (LangOpts.SYCLIsDevice)
6064       break;
6065     auto *AD = cast<FileScopeAsmDecl>(D);
6066     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6067     break;
6068   }
6069 
6070   case Decl::Import: {
6071     auto *Import = cast<ImportDecl>(D);
6072 
6073     // If we've already imported this module, we're done.
6074     if (!ImportedModules.insert(Import->getImportedModule()))
6075       break;
6076 
6077     // Emit debug information for direct imports.
6078     if (!Import->getImportedOwningModule()) {
6079       if (CGDebugInfo *DI = getModuleDebugInfo())
6080         DI->EmitImportDecl(*Import);
6081     }
6082 
6083     // Find all of the submodules and emit the module initializers.
6084     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6085     SmallVector<clang::Module *, 16> Stack;
6086     Visited.insert(Import->getImportedModule());
6087     Stack.push_back(Import->getImportedModule());
6088 
6089     while (!Stack.empty()) {
6090       clang::Module *Mod = Stack.pop_back_val();
6091       if (!EmittedModuleInitializers.insert(Mod).second)
6092         continue;
6093 
6094       for (auto *D : Context.getModuleInitializers(Mod))
6095         EmitTopLevelDecl(D);
6096 
6097       // Visit the submodules of this module.
6098       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6099                                              SubEnd = Mod->submodule_end();
6100            Sub != SubEnd; ++Sub) {
6101         // Skip explicit children; they need to be explicitly imported to emit
6102         // the initializers.
6103         if ((*Sub)->IsExplicit)
6104           continue;
6105 
6106         if (Visited.insert(*Sub).second)
6107           Stack.push_back(*Sub);
6108       }
6109     }
6110     break;
6111   }
6112 
6113   case Decl::Export:
6114     EmitDeclContext(cast<ExportDecl>(D));
6115     break;
6116 
6117   case Decl::OMPThreadPrivate:
6118     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6119     break;
6120 
6121   case Decl::OMPAllocate:
6122     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6123     break;
6124 
6125   case Decl::OMPDeclareReduction:
6126     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6127     break;
6128 
6129   case Decl::OMPDeclareMapper:
6130     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6131     break;
6132 
6133   case Decl::OMPRequires:
6134     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6135     break;
6136 
6137   case Decl::Typedef:
6138   case Decl::TypeAlias: // using foo = bar; [C++11]
6139     if (CGDebugInfo *DI = getModuleDebugInfo())
6140       DI->EmitAndRetainType(
6141           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6142     break;
6143 
6144   case Decl::Record:
6145     if (CGDebugInfo *DI = getModuleDebugInfo())
6146       if (cast<RecordDecl>(D)->getDefinition())
6147         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6148     break;
6149 
6150   case Decl::Enum:
6151     if (CGDebugInfo *DI = getModuleDebugInfo())
6152       if (cast<EnumDecl>(D)->getDefinition())
6153         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6154     break;
6155 
6156   default:
6157     // Make sure we handled everything we should, every other kind is a
6158     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6159     // function. Need to recode Decl::Kind to do that easily.
6160     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6161     break;
6162   }
6163 }
6164 
6165 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6166   // Do we need to generate coverage mapping?
6167   if (!CodeGenOpts.CoverageMapping)
6168     return;
6169   switch (D->getKind()) {
6170   case Decl::CXXConversion:
6171   case Decl::CXXMethod:
6172   case Decl::Function:
6173   case Decl::ObjCMethod:
6174   case Decl::CXXConstructor:
6175   case Decl::CXXDestructor: {
6176     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6177       break;
6178     SourceManager &SM = getContext().getSourceManager();
6179     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6180       break;
6181     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6182     if (I == DeferredEmptyCoverageMappingDecls.end())
6183       DeferredEmptyCoverageMappingDecls[D] = true;
6184     break;
6185   }
6186   default:
6187     break;
6188   };
6189 }
6190 
6191 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6192   // Do we need to generate coverage mapping?
6193   if (!CodeGenOpts.CoverageMapping)
6194     return;
6195   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6196     if (Fn->isTemplateInstantiation())
6197       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6198   }
6199   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6200   if (I == DeferredEmptyCoverageMappingDecls.end())
6201     DeferredEmptyCoverageMappingDecls[D] = false;
6202   else
6203     I->second = false;
6204 }
6205 
6206 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6207   // We call takeVector() here to avoid use-after-free.
6208   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6209   // we deserialize function bodies to emit coverage info for them, and that
6210   // deserializes more declarations. How should we handle that case?
6211   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6212     if (!Entry.second)
6213       continue;
6214     const Decl *D = Entry.first;
6215     switch (D->getKind()) {
6216     case Decl::CXXConversion:
6217     case Decl::CXXMethod:
6218     case Decl::Function:
6219     case Decl::ObjCMethod: {
6220       CodeGenPGO PGO(*this);
6221       GlobalDecl GD(cast<FunctionDecl>(D));
6222       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6223                                   getFunctionLinkage(GD));
6224       break;
6225     }
6226     case Decl::CXXConstructor: {
6227       CodeGenPGO PGO(*this);
6228       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6229       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6230                                   getFunctionLinkage(GD));
6231       break;
6232     }
6233     case Decl::CXXDestructor: {
6234       CodeGenPGO PGO(*this);
6235       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6236       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6237                                   getFunctionLinkage(GD));
6238       break;
6239     }
6240     default:
6241       break;
6242     };
6243   }
6244 }
6245 
6246 void CodeGenModule::EmitMainVoidAlias() {
6247   // In order to transition away from "__original_main" gracefully, emit an
6248   // alias for "main" in the no-argument case so that libc can detect when
6249   // new-style no-argument main is in used.
6250   if (llvm::Function *F = getModule().getFunction("main")) {
6251     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6252         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6253       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6254   }
6255 }
6256 
6257 /// Turns the given pointer into a constant.
6258 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6259                                           const void *Ptr) {
6260   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6261   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6262   return llvm::ConstantInt::get(i64, PtrInt);
6263 }
6264 
6265 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6266                                    llvm::NamedMDNode *&GlobalMetadata,
6267                                    GlobalDecl D,
6268                                    llvm::GlobalValue *Addr) {
6269   if (!GlobalMetadata)
6270     GlobalMetadata =
6271       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6272 
6273   // TODO: should we report variant information for ctors/dtors?
6274   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6275                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6276                                CGM.getLLVMContext(), D.getDecl()))};
6277   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6278 }
6279 
6280 /// For each function which is declared within an extern "C" region and marked
6281 /// as 'used', but has internal linkage, create an alias from the unmangled
6282 /// name to the mangled name if possible. People expect to be able to refer
6283 /// to such functions with an unmangled name from inline assembly within the
6284 /// same translation unit.
6285 void CodeGenModule::EmitStaticExternCAliases() {
6286   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6287     return;
6288   for (auto &I : StaticExternCValues) {
6289     IdentifierInfo *Name = I.first;
6290     llvm::GlobalValue *Val = I.second;
6291     if (Val && !getModule().getNamedValue(Name->getName()))
6292       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6293   }
6294 }
6295 
6296 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6297                                              GlobalDecl &Result) const {
6298   auto Res = Manglings.find(MangledName);
6299   if (Res == Manglings.end())
6300     return false;
6301   Result = Res->getValue();
6302   return true;
6303 }
6304 
6305 /// Emits metadata nodes associating all the global values in the
6306 /// current module with the Decls they came from.  This is useful for
6307 /// projects using IR gen as a subroutine.
6308 ///
6309 /// Since there's currently no way to associate an MDNode directly
6310 /// with an llvm::GlobalValue, we create a global named metadata
6311 /// with the name 'clang.global.decl.ptrs'.
6312 void CodeGenModule::EmitDeclMetadata() {
6313   llvm::NamedMDNode *GlobalMetadata = nullptr;
6314 
6315   for (auto &I : MangledDeclNames) {
6316     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6317     // Some mangled names don't necessarily have an associated GlobalValue
6318     // in this module, e.g. if we mangled it for DebugInfo.
6319     if (Addr)
6320       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6321   }
6322 }
6323 
6324 /// Emits metadata nodes for all the local variables in the current
6325 /// function.
6326 void CodeGenFunction::EmitDeclMetadata() {
6327   if (LocalDeclMap.empty()) return;
6328 
6329   llvm::LLVMContext &Context = getLLVMContext();
6330 
6331   // Find the unique metadata ID for this name.
6332   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6333 
6334   llvm::NamedMDNode *GlobalMetadata = nullptr;
6335 
6336   for (auto &I : LocalDeclMap) {
6337     const Decl *D = I.first;
6338     llvm::Value *Addr = I.second.getPointer();
6339     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6340       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6341       Alloca->setMetadata(
6342           DeclPtrKind, llvm::MDNode::get(
6343                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6344     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6345       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6346       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6347     }
6348   }
6349 }
6350 
6351 void CodeGenModule::EmitVersionIdentMetadata() {
6352   llvm::NamedMDNode *IdentMetadata =
6353     TheModule.getOrInsertNamedMetadata("llvm.ident");
6354   std::string Version = getClangFullVersion();
6355   llvm::LLVMContext &Ctx = TheModule.getContext();
6356 
6357   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6358   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6359 }
6360 
6361 void CodeGenModule::EmitCommandLineMetadata() {
6362   llvm::NamedMDNode *CommandLineMetadata =
6363     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6364   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6365   llvm::LLVMContext &Ctx = TheModule.getContext();
6366 
6367   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6368   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6369 }
6370 
6371 void CodeGenModule::EmitCoverageFile() {
6372   if (getCodeGenOpts().CoverageDataFile.empty() &&
6373       getCodeGenOpts().CoverageNotesFile.empty())
6374     return;
6375 
6376   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6377   if (!CUNode)
6378     return;
6379 
6380   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6381   llvm::LLVMContext &Ctx = TheModule.getContext();
6382   auto *CoverageDataFile =
6383       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6384   auto *CoverageNotesFile =
6385       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6386   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6387     llvm::MDNode *CU = CUNode->getOperand(i);
6388     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6389     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6390   }
6391 }
6392 
6393 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6394                                                        bool ForEH) {
6395   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6396   // FIXME: should we even be calling this method if RTTI is disabled
6397   // and it's not for EH?
6398   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6399       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6400        getTriple().isNVPTX()))
6401     return llvm::Constant::getNullValue(Int8PtrTy);
6402 
6403   if (ForEH && Ty->isObjCObjectPointerType() &&
6404       LangOpts.ObjCRuntime.isGNUFamily())
6405     return ObjCRuntime->GetEHType(Ty);
6406 
6407   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6408 }
6409 
6410 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6411   // Do not emit threadprivates in simd-only mode.
6412   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6413     return;
6414   for (auto RefExpr : D->varlists()) {
6415     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6416     bool PerformInit =
6417         VD->getAnyInitializer() &&
6418         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6419                                                         /*ForRef=*/false);
6420 
6421     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6422     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6423             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6424       CXXGlobalInits.push_back(InitFunction);
6425   }
6426 }
6427 
6428 llvm::Metadata *
6429 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6430                                             StringRef Suffix) {
6431   if (auto *FnType = T->getAs<FunctionProtoType>())
6432     T = getContext().getFunctionType(
6433         FnType->getReturnType(), FnType->getParamTypes(),
6434         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6435 
6436   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6437   if (InternalId)
6438     return InternalId;
6439 
6440   if (isExternallyVisible(T->getLinkage())) {
6441     std::string OutName;
6442     llvm::raw_string_ostream Out(OutName);
6443     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6444     Out << Suffix;
6445 
6446     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6447   } else {
6448     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6449                                            llvm::ArrayRef<llvm::Metadata *>());
6450   }
6451 
6452   return InternalId;
6453 }
6454 
6455 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6456   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6457 }
6458 
6459 llvm::Metadata *
6460 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6461   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6462 }
6463 
6464 // Generalize pointer types to a void pointer with the qualifiers of the
6465 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6466 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6467 // 'void *'.
6468 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6469   if (!Ty->isPointerType())
6470     return Ty;
6471 
6472   return Ctx.getPointerType(
6473       QualType(Ctx.VoidTy).withCVRQualifiers(
6474           Ty->getPointeeType().getCVRQualifiers()));
6475 }
6476 
6477 // Apply type generalization to a FunctionType's return and argument types
6478 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6479   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6480     SmallVector<QualType, 8> GeneralizedParams;
6481     for (auto &Param : FnType->param_types())
6482       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6483 
6484     return Ctx.getFunctionType(
6485         GeneralizeType(Ctx, FnType->getReturnType()),
6486         GeneralizedParams, FnType->getExtProtoInfo());
6487   }
6488 
6489   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6490     return Ctx.getFunctionNoProtoType(
6491         GeneralizeType(Ctx, FnType->getReturnType()));
6492 
6493   llvm_unreachable("Encountered unknown FunctionType");
6494 }
6495 
6496 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6497   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6498                                       GeneralizedMetadataIdMap, ".generalized");
6499 }
6500 
6501 /// Returns whether this module needs the "all-vtables" type identifier.
6502 bool CodeGenModule::NeedAllVtablesTypeId() const {
6503   // Returns true if at least one of vtable-based CFI checkers is enabled and
6504   // is not in the trapping mode.
6505   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6506            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6507           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6508            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6509           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6510            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6511           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6512            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6513 }
6514 
6515 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6516                                           CharUnits Offset,
6517                                           const CXXRecordDecl *RD) {
6518   llvm::Metadata *MD =
6519       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6520   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6521 
6522   if (CodeGenOpts.SanitizeCfiCrossDso)
6523     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6524       VTable->addTypeMetadata(Offset.getQuantity(),
6525                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6526 
6527   if (NeedAllVtablesTypeId()) {
6528     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6529     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6530   }
6531 }
6532 
6533 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6534   if (!SanStats)
6535     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6536 
6537   return *SanStats;
6538 }
6539 
6540 llvm::Value *
6541 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6542                                                   CodeGenFunction &CGF) {
6543   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6544   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6545   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6546   auto *Call = CGF.EmitRuntimeCall(
6547       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6548   return Call;
6549 }
6550 
6551 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6552     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6553   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6554                                  /* forPointeeType= */ true);
6555 }
6556 
6557 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6558                                                  LValueBaseInfo *BaseInfo,
6559                                                  TBAAAccessInfo *TBAAInfo,
6560                                                  bool forPointeeType) {
6561   if (TBAAInfo)
6562     *TBAAInfo = getTBAAAccessInfo(T);
6563 
6564   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6565   // that doesn't return the information we need to compute BaseInfo.
6566 
6567   // Honor alignment typedef attributes even on incomplete types.
6568   // We also honor them straight for C++ class types, even as pointees;
6569   // there's an expressivity gap here.
6570   if (auto TT = T->getAs<TypedefType>()) {
6571     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6572       if (BaseInfo)
6573         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6574       return getContext().toCharUnitsFromBits(Align);
6575     }
6576   }
6577 
6578   bool AlignForArray = T->isArrayType();
6579 
6580   // Analyze the base element type, so we don't get confused by incomplete
6581   // array types.
6582   T = getContext().getBaseElementType(T);
6583 
6584   if (T->isIncompleteType()) {
6585     // We could try to replicate the logic from
6586     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6587     // type is incomplete, so it's impossible to test. We could try to reuse
6588     // getTypeAlignIfKnown, but that doesn't return the information we need
6589     // to set BaseInfo.  So just ignore the possibility that the alignment is
6590     // greater than one.
6591     if (BaseInfo)
6592       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6593     return CharUnits::One();
6594   }
6595 
6596   if (BaseInfo)
6597     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6598 
6599   CharUnits Alignment;
6600   const CXXRecordDecl *RD;
6601   if (T.getQualifiers().hasUnaligned()) {
6602     Alignment = CharUnits::One();
6603   } else if (forPointeeType && !AlignForArray &&
6604              (RD = T->getAsCXXRecordDecl())) {
6605     // For C++ class pointees, we don't know whether we're pointing at a
6606     // base or a complete object, so we generally need to use the
6607     // non-virtual alignment.
6608     Alignment = getClassPointerAlignment(RD);
6609   } else {
6610     Alignment = getContext().getTypeAlignInChars(T);
6611   }
6612 
6613   // Cap to the global maximum type alignment unless the alignment
6614   // was somehow explicit on the type.
6615   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6616     if (Alignment.getQuantity() > MaxAlign &&
6617         !getContext().isAlignmentRequired(T))
6618       Alignment = CharUnits::fromQuantity(MaxAlign);
6619   }
6620   return Alignment;
6621 }
6622 
6623 bool CodeGenModule::stopAutoInit() {
6624   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6625   if (StopAfter) {
6626     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6627     // used
6628     if (NumAutoVarInit >= StopAfter) {
6629       return true;
6630     }
6631     if (!NumAutoVarInit) {
6632       unsigned DiagID = getDiags().getCustomDiagID(
6633           DiagnosticsEngine::Warning,
6634           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6635           "number of times ftrivial-auto-var-init=%1 gets applied.");
6636       getDiags().Report(DiagID)
6637           << StopAfter
6638           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6639                       LangOptions::TrivialAutoVarInitKind::Zero
6640                   ? "zero"
6641                   : "pattern");
6642     }
6643     ++NumAutoVarInit;
6644   }
6645   return false;
6646 }
6647 
6648 void CodeGenModule::printPostfixForExternalizedStaticVar(
6649     llvm::raw_ostream &OS) const {
6650   OS << "__static__" << getContext().getCUIDHash();
6651 }
6652