1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 414 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 415 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 416 } 417 if (llvm::Function *OpenMPRegistrationFunction = 418 OpenMPRuntime->emitRegistrationFunction()) { 419 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 420 OpenMPRegistrationFunction : nullptr; 421 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 422 } 423 OpenMPRuntime->clear(); 424 } 425 if (PGOReader) { 426 getModule().setProfileSummary( 427 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 428 llvm::ProfileSummary::PSK_Instr); 429 if (PGOStats.hasDiagnostics()) 430 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 431 } 432 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 433 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 434 EmitGlobalAnnotations(); 435 EmitStaticExternCAliases(); 436 EmitDeferredUnusedCoverageMappings(); 437 if (CoverageMapping) 438 CoverageMapping->emit(); 439 if (CodeGenOpts.SanitizeCfiCrossDso) { 440 CodeGenFunction(*this).EmitCfiCheckFail(); 441 CodeGenFunction(*this).EmitCfiCheckStub(); 442 } 443 emitAtAvailableLinkGuard(); 444 emitLLVMUsed(); 445 if (SanStats) 446 SanStats->finish(); 447 448 if (CodeGenOpts.Autolink && 449 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 450 EmitModuleLinkOptions(); 451 } 452 453 // On ELF we pass the dependent library specifiers directly to the linker 454 // without manipulating them. This is in contrast to other platforms where 455 // they are mapped to a specific linker option by the compiler. This 456 // difference is a result of the greater variety of ELF linkers and the fact 457 // that ELF linkers tend to handle libraries in a more complicated fashion 458 // than on other platforms. This forces us to defer handling the dependent 459 // libs to the linker. 460 // 461 // CUDA/HIP device and host libraries are different. Currently there is no 462 // way to differentiate dependent libraries for host or device. Existing 463 // usage of #pragma comment(lib, *) is intended for host libraries on 464 // Windows. Therefore emit llvm.dependent-libraries only for host. 465 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 466 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 467 for (auto *MD : ELFDependentLibraries) 468 NMD->addOperand(MD); 469 } 470 471 // Record mregparm value now so it is visible through rest of codegen. 472 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 473 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 474 CodeGenOpts.NumRegisterParameters); 475 476 if (CodeGenOpts.DwarfVersion) { 477 // We actually want the latest version when there are conflicts. 478 // We can change from Warning to Latest if such mode is supported. 479 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 480 CodeGenOpts.DwarfVersion); 481 } 482 if (CodeGenOpts.EmitCodeView) { 483 // Indicate that we want CodeView in the metadata. 484 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 485 } 486 if (CodeGenOpts.CodeViewGHash) { 487 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 488 } 489 if (CodeGenOpts.ControlFlowGuard) { 490 // We want function ID tables for Control Flow Guard. 491 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 492 } 493 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 494 // We don't support LTO with 2 with different StrictVTablePointers 495 // FIXME: we could support it by stripping all the information introduced 496 // by StrictVTablePointers. 497 498 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 499 500 llvm::Metadata *Ops[2] = { 501 llvm::MDString::get(VMContext, "StrictVTablePointers"), 502 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 503 llvm::Type::getInt32Ty(VMContext), 1))}; 504 505 getModule().addModuleFlag(llvm::Module::Require, 506 "StrictVTablePointersRequirement", 507 llvm::MDNode::get(VMContext, Ops)); 508 } 509 if (DebugInfo) 510 // We support a single version in the linked module. The LLVM 511 // parser will drop debug info with a different version number 512 // (and warn about it, too). 513 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 514 llvm::DEBUG_METADATA_VERSION); 515 516 // We need to record the widths of enums and wchar_t, so that we can generate 517 // the correct build attributes in the ARM backend. wchar_size is also used by 518 // TargetLibraryInfo. 519 uint64_t WCharWidth = 520 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 521 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 522 523 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 524 if ( Arch == llvm::Triple::arm 525 || Arch == llvm::Triple::armeb 526 || Arch == llvm::Triple::thumb 527 || Arch == llvm::Triple::thumbeb) { 528 // The minimum width of an enum in bytes 529 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 530 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 531 } 532 533 if (CodeGenOpts.SanitizeCfiCrossDso) { 534 // Indicate that we want cross-DSO control flow integrity checks. 535 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 536 } 537 538 if (CodeGenOpts.CFProtectionReturn && 539 Target.checkCFProtectionReturnSupported(getDiags())) { 540 // Indicate that we want to instrument return control flow protection. 541 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 542 1); 543 } 544 545 if (CodeGenOpts.CFProtectionBranch && 546 Target.checkCFProtectionBranchSupported(getDiags())) { 547 // Indicate that we want to instrument branch control flow protection. 548 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 549 1); 550 } 551 552 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 553 // Indicate whether __nvvm_reflect should be configured to flush denormal 554 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 555 // property.) 556 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 557 CodeGenOpts.FlushDenorm ? 1 : 0); 558 } 559 560 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 561 if (LangOpts.OpenCL) { 562 EmitOpenCLMetadata(); 563 // Emit SPIR version. 564 if (getTriple().isSPIR()) { 565 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 566 // opencl.spir.version named metadata. 567 // C++ is backwards compatible with OpenCL v2.0. 568 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 569 llvm::Metadata *SPIRVerElts[] = { 570 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 571 Int32Ty, Version / 100)), 572 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 573 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 574 llvm::NamedMDNode *SPIRVerMD = 575 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 576 llvm::LLVMContext &Ctx = TheModule.getContext(); 577 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 578 } 579 } 580 581 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 582 assert(PLevel < 3 && "Invalid PIC Level"); 583 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 584 if (Context.getLangOpts().PIE) 585 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 586 } 587 588 if (getCodeGenOpts().CodeModel.size() > 0) { 589 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 590 .Case("tiny", llvm::CodeModel::Tiny) 591 .Case("small", llvm::CodeModel::Small) 592 .Case("kernel", llvm::CodeModel::Kernel) 593 .Case("medium", llvm::CodeModel::Medium) 594 .Case("large", llvm::CodeModel::Large) 595 .Default(~0u); 596 if (CM != ~0u) { 597 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 598 getModule().setCodeModel(codeModel); 599 } 600 } 601 602 if (CodeGenOpts.NoPLT) 603 getModule().setRtLibUseGOT(); 604 605 SimplifyPersonality(); 606 607 if (getCodeGenOpts().EmitDeclMetadata) 608 EmitDeclMetadata(); 609 610 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 611 EmitCoverageFile(); 612 613 if (DebugInfo) 614 DebugInfo->finalize(); 615 616 if (getCodeGenOpts().EmitVersionIdentMetadata) 617 EmitVersionIdentMetadata(); 618 619 if (!getCodeGenOpts().RecordCommandLine.empty()) 620 EmitCommandLineMetadata(); 621 622 EmitTargetMetadata(); 623 } 624 625 void CodeGenModule::EmitOpenCLMetadata() { 626 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 627 // opencl.ocl.version named metadata node. 628 // C++ is backwards compatible with OpenCL v2.0. 629 // FIXME: We might need to add CXX version at some point too? 630 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 631 llvm::Metadata *OCLVerElts[] = { 632 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 633 Int32Ty, Version / 100)), 634 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 635 Int32Ty, (Version % 100) / 10))}; 636 llvm::NamedMDNode *OCLVerMD = 637 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 638 llvm::LLVMContext &Ctx = TheModule.getContext(); 639 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 640 } 641 642 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 643 // Make sure that this type is translated. 644 Types.UpdateCompletedType(TD); 645 } 646 647 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 648 // Make sure that this type is translated. 649 Types.RefreshTypeCacheForClass(RD); 650 } 651 652 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 653 if (!TBAA) 654 return nullptr; 655 return TBAA->getTypeInfo(QTy); 656 } 657 658 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 659 if (!TBAA) 660 return TBAAAccessInfo(); 661 return TBAA->getAccessInfo(AccessType); 662 } 663 664 TBAAAccessInfo 665 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 666 if (!TBAA) 667 return TBAAAccessInfo(); 668 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 669 } 670 671 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 672 if (!TBAA) 673 return nullptr; 674 return TBAA->getTBAAStructInfo(QTy); 675 } 676 677 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 678 if (!TBAA) 679 return nullptr; 680 return TBAA->getBaseTypeInfo(QTy); 681 } 682 683 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 684 if (!TBAA) 685 return nullptr; 686 return TBAA->getAccessTagInfo(Info); 687 } 688 689 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 690 TBAAAccessInfo TargetInfo) { 691 if (!TBAA) 692 return TBAAAccessInfo(); 693 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 694 } 695 696 TBAAAccessInfo 697 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 698 TBAAAccessInfo InfoB) { 699 if (!TBAA) 700 return TBAAAccessInfo(); 701 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 702 } 703 704 TBAAAccessInfo 705 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 706 TBAAAccessInfo SrcInfo) { 707 if (!TBAA) 708 return TBAAAccessInfo(); 709 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 710 } 711 712 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 713 TBAAAccessInfo TBAAInfo) { 714 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 715 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 716 } 717 718 void CodeGenModule::DecorateInstructionWithInvariantGroup( 719 llvm::Instruction *I, const CXXRecordDecl *RD) { 720 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 721 llvm::MDNode::get(getLLVMContext(), {})); 722 } 723 724 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 725 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 726 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 727 } 728 729 /// ErrorUnsupported - Print out an error that codegen doesn't support the 730 /// specified stmt yet. 731 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 732 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 733 "cannot compile this %0 yet"); 734 std::string Msg = Type; 735 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 736 << Msg << S->getSourceRange(); 737 } 738 739 /// ErrorUnsupported - Print out an error that codegen doesn't support the 740 /// specified decl yet. 741 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 742 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 743 "cannot compile this %0 yet"); 744 std::string Msg = Type; 745 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 746 } 747 748 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 749 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 750 } 751 752 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 753 const NamedDecl *D) const { 754 if (GV->hasDLLImportStorageClass()) 755 return; 756 // Internal definitions always have default visibility. 757 if (GV->hasLocalLinkage()) { 758 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 759 return; 760 } 761 if (!D) 762 return; 763 // Set visibility for definitions, and for declarations if requested globally 764 // or set explicitly. 765 LinkageInfo LV = D->getLinkageAndVisibility(); 766 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 767 !GV->isDeclarationForLinker()) 768 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 769 } 770 771 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 772 llvm::GlobalValue *GV) { 773 if (GV->hasLocalLinkage()) 774 return true; 775 776 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 777 return true; 778 779 // DLLImport explicitly marks the GV as external. 780 if (GV->hasDLLImportStorageClass()) 781 return false; 782 783 const llvm::Triple &TT = CGM.getTriple(); 784 if (TT.isWindowsGNUEnvironment()) { 785 // In MinGW, variables without DLLImport can still be automatically 786 // imported from a DLL by the linker; don't mark variables that 787 // potentially could come from another DLL as DSO local. 788 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 789 !GV->isThreadLocal()) 790 return false; 791 } 792 793 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 794 // remain unresolved in the link, they can be resolved to zero, which is 795 // outside the current DSO. 796 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 797 return false; 798 799 // Every other GV is local on COFF. 800 // Make an exception for windows OS in the triple: Some firmware builds use 801 // *-win32-macho triples. This (accidentally?) produced windows relocations 802 // without GOT tables in older clang versions; Keep this behaviour. 803 // FIXME: even thread local variables? 804 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 805 return true; 806 807 // Only handle COFF and ELF for now. 808 if (!TT.isOSBinFormatELF()) 809 return false; 810 811 // If this is not an executable, don't assume anything is local. 812 const auto &CGOpts = CGM.getCodeGenOpts(); 813 llvm::Reloc::Model RM = CGOpts.RelocationModel; 814 const auto &LOpts = CGM.getLangOpts(); 815 if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice) 816 return false; 817 818 // A definition cannot be preempted from an executable. 819 if (!GV->isDeclarationForLinker()) 820 return true; 821 822 // Most PIC code sequences that assume that a symbol is local cannot produce a 823 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 824 // depended, it seems worth it to handle it here. 825 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 826 return false; 827 828 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 829 llvm::Triple::ArchType Arch = TT.getArch(); 830 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 831 Arch == llvm::Triple::ppc64le) 832 return false; 833 834 // If we can use copy relocations we can assume it is local. 835 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 836 if (!Var->isThreadLocal() && 837 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 838 return true; 839 840 // If we can use a plt entry as the symbol address we can assume it 841 // is local. 842 // FIXME: This should work for PIE, but the gold linker doesn't support it. 843 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 844 return true; 845 846 // Otherwise don't assue it is local. 847 return false; 848 } 849 850 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 851 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 852 } 853 854 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 855 GlobalDecl GD) const { 856 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 857 // C++ destructors have a few C++ ABI specific special cases. 858 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 859 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 860 return; 861 } 862 setDLLImportDLLExport(GV, D); 863 } 864 865 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 866 const NamedDecl *D) const { 867 if (D && D->isExternallyVisible()) { 868 if (D->hasAttr<DLLImportAttr>()) 869 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 870 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 871 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 872 } 873 } 874 875 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 876 GlobalDecl GD) const { 877 setDLLImportDLLExport(GV, GD); 878 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 879 } 880 881 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 882 const NamedDecl *D) const { 883 setDLLImportDLLExport(GV, D); 884 setGVPropertiesAux(GV, D); 885 } 886 887 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 888 const NamedDecl *D) const { 889 setGlobalVisibility(GV, D); 890 setDSOLocal(GV); 891 GV->setPartition(CodeGenOpts.SymbolPartition); 892 } 893 894 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 895 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 896 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 897 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 898 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 899 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 900 } 901 902 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 903 CodeGenOptions::TLSModel M) { 904 switch (M) { 905 case CodeGenOptions::GeneralDynamicTLSModel: 906 return llvm::GlobalVariable::GeneralDynamicTLSModel; 907 case CodeGenOptions::LocalDynamicTLSModel: 908 return llvm::GlobalVariable::LocalDynamicTLSModel; 909 case CodeGenOptions::InitialExecTLSModel: 910 return llvm::GlobalVariable::InitialExecTLSModel; 911 case CodeGenOptions::LocalExecTLSModel: 912 return llvm::GlobalVariable::LocalExecTLSModel; 913 } 914 llvm_unreachable("Invalid TLS model!"); 915 } 916 917 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 918 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 919 920 llvm::GlobalValue::ThreadLocalMode TLM; 921 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 922 923 // Override the TLS model if it is explicitly specified. 924 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 925 TLM = GetLLVMTLSModel(Attr->getModel()); 926 } 927 928 GV->setThreadLocalMode(TLM); 929 } 930 931 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 932 StringRef Name) { 933 const TargetInfo &Target = CGM.getTarget(); 934 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 935 } 936 937 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 938 const CPUSpecificAttr *Attr, 939 unsigned CPUIndex, 940 raw_ostream &Out) { 941 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 942 // supported. 943 if (Attr) 944 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 945 else if (CGM.getTarget().supportsIFunc()) 946 Out << ".resolver"; 947 } 948 949 static void AppendTargetMangling(const CodeGenModule &CGM, 950 const TargetAttr *Attr, raw_ostream &Out) { 951 if (Attr->isDefaultVersion()) 952 return; 953 954 Out << '.'; 955 const TargetInfo &Target = CGM.getTarget(); 956 TargetAttr::ParsedTargetAttr Info = 957 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 958 // Multiversioning doesn't allow "no-${feature}", so we can 959 // only have "+" prefixes here. 960 assert(LHS.startswith("+") && RHS.startswith("+") && 961 "Features should always have a prefix."); 962 return Target.multiVersionSortPriority(LHS.substr(1)) > 963 Target.multiVersionSortPriority(RHS.substr(1)); 964 }); 965 966 bool IsFirst = true; 967 968 if (!Info.Architecture.empty()) { 969 IsFirst = false; 970 Out << "arch_" << Info.Architecture; 971 } 972 973 for (StringRef Feat : Info.Features) { 974 if (!IsFirst) 975 Out << '_'; 976 IsFirst = false; 977 Out << Feat.substr(1); 978 } 979 } 980 981 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 982 const NamedDecl *ND, 983 bool OmitMultiVersionMangling = false) { 984 SmallString<256> Buffer; 985 llvm::raw_svector_ostream Out(Buffer); 986 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 987 if (MC.shouldMangleDeclName(ND)) { 988 llvm::raw_svector_ostream Out(Buffer); 989 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 990 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 991 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 992 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 993 else 994 MC.mangleName(ND, Out); 995 } else { 996 IdentifierInfo *II = ND->getIdentifier(); 997 assert(II && "Attempt to mangle unnamed decl."); 998 const auto *FD = dyn_cast<FunctionDecl>(ND); 999 1000 if (FD && 1001 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1002 llvm::raw_svector_ostream Out(Buffer); 1003 Out << "__regcall3__" << II->getName(); 1004 } else { 1005 Out << II->getName(); 1006 } 1007 } 1008 1009 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1010 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1011 switch (FD->getMultiVersionKind()) { 1012 case MultiVersionKind::CPUDispatch: 1013 case MultiVersionKind::CPUSpecific: 1014 AppendCPUSpecificCPUDispatchMangling(CGM, 1015 FD->getAttr<CPUSpecificAttr>(), 1016 GD.getMultiVersionIndex(), Out); 1017 break; 1018 case MultiVersionKind::Target: 1019 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1020 break; 1021 case MultiVersionKind::None: 1022 llvm_unreachable("None multiversion type isn't valid here"); 1023 } 1024 } 1025 1026 return Out.str(); 1027 } 1028 1029 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1030 const FunctionDecl *FD) { 1031 if (!FD->isMultiVersion()) 1032 return; 1033 1034 // Get the name of what this would be without the 'target' attribute. This 1035 // allows us to lookup the version that was emitted when this wasn't a 1036 // multiversion function. 1037 std::string NonTargetName = 1038 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1039 GlobalDecl OtherGD; 1040 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1041 assert(OtherGD.getCanonicalDecl() 1042 .getDecl() 1043 ->getAsFunction() 1044 ->isMultiVersion() && 1045 "Other GD should now be a multiversioned function"); 1046 // OtherFD is the version of this function that was mangled BEFORE 1047 // becoming a MultiVersion function. It potentially needs to be updated. 1048 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1049 .getDecl() 1050 ->getAsFunction() 1051 ->getMostRecentDecl(); 1052 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1053 // This is so that if the initial version was already the 'default' 1054 // version, we don't try to update it. 1055 if (OtherName != NonTargetName) { 1056 // Remove instead of erase, since others may have stored the StringRef 1057 // to this. 1058 const auto ExistingRecord = Manglings.find(NonTargetName); 1059 if (ExistingRecord != std::end(Manglings)) 1060 Manglings.remove(&(*ExistingRecord)); 1061 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1062 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1063 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1064 Entry->setName(OtherName); 1065 } 1066 } 1067 } 1068 1069 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1070 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1071 1072 // Some ABIs don't have constructor variants. Make sure that base and 1073 // complete constructors get mangled the same. 1074 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1075 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1076 CXXCtorType OrigCtorType = GD.getCtorType(); 1077 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1078 if (OrigCtorType == Ctor_Base) 1079 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1080 } 1081 } 1082 1083 auto FoundName = MangledDeclNames.find(CanonicalGD); 1084 if (FoundName != MangledDeclNames.end()) 1085 return FoundName->second; 1086 1087 // Keep the first result in the case of a mangling collision. 1088 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1089 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1090 1091 // Adjust kernel stub mangling as we may need to be able to differentiate 1092 // them from the kernel itself (e.g., for HIP). 1093 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1094 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1095 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1096 1097 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1098 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1099 } 1100 1101 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1102 const BlockDecl *BD) { 1103 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1104 const Decl *D = GD.getDecl(); 1105 1106 SmallString<256> Buffer; 1107 llvm::raw_svector_ostream Out(Buffer); 1108 if (!D) 1109 MangleCtx.mangleGlobalBlock(BD, 1110 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1111 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1112 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1113 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1114 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1115 else 1116 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1117 1118 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1119 return Result.first->first(); 1120 } 1121 1122 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1123 return getModule().getNamedValue(Name); 1124 } 1125 1126 /// AddGlobalCtor - Add a function to the list that will be called before 1127 /// main() runs. 1128 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1129 llvm::Constant *AssociatedData) { 1130 // FIXME: Type coercion of void()* types. 1131 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1132 } 1133 1134 /// AddGlobalDtor - Add a function to the list that will be called 1135 /// when the module is unloaded. 1136 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1137 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1138 DtorsUsingAtExit[Priority].push_back(Dtor); 1139 return; 1140 } 1141 1142 // FIXME: Type coercion of void()* types. 1143 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1144 } 1145 1146 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1147 if (Fns.empty()) return; 1148 1149 // Ctor function type is void()*. 1150 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1151 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1152 TheModule.getDataLayout().getProgramAddressSpace()); 1153 1154 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1155 llvm::StructType *CtorStructTy = llvm::StructType::get( 1156 Int32Ty, CtorPFTy, VoidPtrTy); 1157 1158 // Construct the constructor and destructor arrays. 1159 ConstantInitBuilder builder(*this); 1160 auto ctors = builder.beginArray(CtorStructTy); 1161 for (const auto &I : Fns) { 1162 auto ctor = ctors.beginStruct(CtorStructTy); 1163 ctor.addInt(Int32Ty, I.Priority); 1164 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1165 if (I.AssociatedData) 1166 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1167 else 1168 ctor.addNullPointer(VoidPtrTy); 1169 ctor.finishAndAddTo(ctors); 1170 } 1171 1172 auto list = 1173 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1174 /*constant*/ false, 1175 llvm::GlobalValue::AppendingLinkage); 1176 1177 // The LTO linker doesn't seem to like it when we set an alignment 1178 // on appending variables. Take it off as a workaround. 1179 list->setAlignment(0); 1180 1181 Fns.clear(); 1182 } 1183 1184 llvm::GlobalValue::LinkageTypes 1185 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1186 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1187 1188 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1189 1190 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1191 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1192 1193 if (isa<CXXConstructorDecl>(D) && 1194 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1195 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1196 // Our approach to inheriting constructors is fundamentally different from 1197 // that used by the MS ABI, so keep our inheriting constructor thunks 1198 // internal rather than trying to pick an unambiguous mangling for them. 1199 return llvm::GlobalValue::InternalLinkage; 1200 } 1201 1202 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1203 } 1204 1205 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1206 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1207 if (!MDS) return nullptr; 1208 1209 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1210 } 1211 1212 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1213 const CGFunctionInfo &Info, 1214 llvm::Function *F) { 1215 unsigned CallingConv; 1216 llvm::AttributeList PAL; 1217 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1218 F->setAttributes(PAL); 1219 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1220 } 1221 1222 static void removeImageAccessQualifier(std::string& TyName) { 1223 std::string ReadOnlyQual("__read_only"); 1224 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1225 if (ReadOnlyPos != std::string::npos) 1226 // "+ 1" for the space after access qualifier. 1227 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1228 else { 1229 std::string WriteOnlyQual("__write_only"); 1230 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1231 if (WriteOnlyPos != std::string::npos) 1232 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1233 else { 1234 std::string ReadWriteQual("__read_write"); 1235 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1236 if (ReadWritePos != std::string::npos) 1237 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1238 } 1239 } 1240 } 1241 1242 // Returns the address space id that should be produced to the 1243 // kernel_arg_addr_space metadata. This is always fixed to the ids 1244 // as specified in the SPIR 2.0 specification in order to differentiate 1245 // for example in clGetKernelArgInfo() implementation between the address 1246 // spaces with targets without unique mapping to the OpenCL address spaces 1247 // (basically all single AS CPUs). 1248 static unsigned ArgInfoAddressSpace(LangAS AS) { 1249 switch (AS) { 1250 case LangAS::opencl_global: return 1; 1251 case LangAS::opencl_constant: return 2; 1252 case LangAS::opencl_local: return 3; 1253 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1254 default: 1255 return 0; // Assume private. 1256 } 1257 } 1258 1259 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1260 const FunctionDecl *FD, 1261 CodeGenFunction *CGF) { 1262 assert(((FD && CGF) || (!FD && !CGF)) && 1263 "Incorrect use - FD and CGF should either be both null or not!"); 1264 // Create MDNodes that represent the kernel arg metadata. 1265 // Each MDNode is a list in the form of "key", N number of values which is 1266 // the same number of values as their are kernel arguments. 1267 1268 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1269 1270 // MDNode for the kernel argument address space qualifiers. 1271 SmallVector<llvm::Metadata *, 8> addressQuals; 1272 1273 // MDNode for the kernel argument access qualifiers (images only). 1274 SmallVector<llvm::Metadata *, 8> accessQuals; 1275 1276 // MDNode for the kernel argument type names. 1277 SmallVector<llvm::Metadata *, 8> argTypeNames; 1278 1279 // MDNode for the kernel argument base type names. 1280 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1281 1282 // MDNode for the kernel argument type qualifiers. 1283 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1284 1285 // MDNode for the kernel argument names. 1286 SmallVector<llvm::Metadata *, 8> argNames; 1287 1288 if (FD && CGF) 1289 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1290 const ParmVarDecl *parm = FD->getParamDecl(i); 1291 QualType ty = parm->getType(); 1292 std::string typeQuals; 1293 1294 if (ty->isPointerType()) { 1295 QualType pointeeTy = ty->getPointeeType(); 1296 1297 // Get address qualifier. 1298 addressQuals.push_back( 1299 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1300 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1301 1302 // Get argument type name. 1303 std::string typeName = 1304 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1305 1306 // Turn "unsigned type" to "utype" 1307 std::string::size_type pos = typeName.find("unsigned"); 1308 if (pointeeTy.isCanonical() && pos != std::string::npos) 1309 typeName.erase(pos + 1, 8); 1310 1311 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1312 1313 std::string baseTypeName = 1314 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1315 Policy) + 1316 "*"; 1317 1318 // Turn "unsigned type" to "utype" 1319 pos = baseTypeName.find("unsigned"); 1320 if (pos != std::string::npos) 1321 baseTypeName.erase(pos + 1, 8); 1322 1323 argBaseTypeNames.push_back( 1324 llvm::MDString::get(VMContext, baseTypeName)); 1325 1326 // Get argument type qualifiers: 1327 if (ty.isRestrictQualified()) 1328 typeQuals = "restrict"; 1329 if (pointeeTy.isConstQualified() || 1330 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1331 typeQuals += typeQuals.empty() ? "const" : " const"; 1332 if (pointeeTy.isVolatileQualified()) 1333 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1334 } else { 1335 uint32_t AddrSpc = 0; 1336 bool isPipe = ty->isPipeType(); 1337 if (ty->isImageType() || isPipe) 1338 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1339 1340 addressQuals.push_back( 1341 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1342 1343 // Get argument type name. 1344 std::string typeName; 1345 if (isPipe) 1346 typeName = ty.getCanonicalType() 1347 ->getAs<PipeType>() 1348 ->getElementType() 1349 .getAsString(Policy); 1350 else 1351 typeName = ty.getUnqualifiedType().getAsString(Policy); 1352 1353 // Turn "unsigned type" to "utype" 1354 std::string::size_type pos = typeName.find("unsigned"); 1355 if (ty.isCanonical() && pos != std::string::npos) 1356 typeName.erase(pos + 1, 8); 1357 1358 std::string baseTypeName; 1359 if (isPipe) 1360 baseTypeName = ty.getCanonicalType() 1361 ->getAs<PipeType>() 1362 ->getElementType() 1363 .getCanonicalType() 1364 .getAsString(Policy); 1365 else 1366 baseTypeName = 1367 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1368 1369 // Remove access qualifiers on images 1370 // (as they are inseparable from type in clang implementation, 1371 // but OpenCL spec provides a special query to get access qualifier 1372 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1373 if (ty->isImageType()) { 1374 removeImageAccessQualifier(typeName); 1375 removeImageAccessQualifier(baseTypeName); 1376 } 1377 1378 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1379 1380 // Turn "unsigned type" to "utype" 1381 pos = baseTypeName.find("unsigned"); 1382 if (pos != std::string::npos) 1383 baseTypeName.erase(pos + 1, 8); 1384 1385 argBaseTypeNames.push_back( 1386 llvm::MDString::get(VMContext, baseTypeName)); 1387 1388 if (isPipe) 1389 typeQuals = "pipe"; 1390 } 1391 1392 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1393 1394 // Get image and pipe access qualifier: 1395 if (ty->isImageType() || ty->isPipeType()) { 1396 const Decl *PDecl = parm; 1397 if (auto *TD = dyn_cast<TypedefType>(ty)) 1398 PDecl = TD->getDecl(); 1399 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1400 if (A && A->isWriteOnly()) 1401 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1402 else if (A && A->isReadWrite()) 1403 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1404 else 1405 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1406 } else 1407 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1408 1409 // Get argument name. 1410 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1411 } 1412 1413 Fn->setMetadata("kernel_arg_addr_space", 1414 llvm::MDNode::get(VMContext, addressQuals)); 1415 Fn->setMetadata("kernel_arg_access_qual", 1416 llvm::MDNode::get(VMContext, accessQuals)); 1417 Fn->setMetadata("kernel_arg_type", 1418 llvm::MDNode::get(VMContext, argTypeNames)); 1419 Fn->setMetadata("kernel_arg_base_type", 1420 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1421 Fn->setMetadata("kernel_arg_type_qual", 1422 llvm::MDNode::get(VMContext, argTypeQuals)); 1423 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1424 Fn->setMetadata("kernel_arg_name", 1425 llvm::MDNode::get(VMContext, argNames)); 1426 } 1427 1428 /// Determines whether the language options require us to model 1429 /// unwind exceptions. We treat -fexceptions as mandating this 1430 /// except under the fragile ObjC ABI with only ObjC exceptions 1431 /// enabled. This means, for example, that C with -fexceptions 1432 /// enables this. 1433 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1434 // If exceptions are completely disabled, obviously this is false. 1435 if (!LangOpts.Exceptions) return false; 1436 1437 // If C++ exceptions are enabled, this is true. 1438 if (LangOpts.CXXExceptions) return true; 1439 1440 // If ObjC exceptions are enabled, this depends on the ABI. 1441 if (LangOpts.ObjCExceptions) { 1442 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1443 } 1444 1445 return true; 1446 } 1447 1448 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1449 const CXXMethodDecl *MD) { 1450 // Check that the type metadata can ever actually be used by a call. 1451 if (!CGM.getCodeGenOpts().LTOUnit || 1452 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1453 return false; 1454 1455 // Only functions whose address can be taken with a member function pointer 1456 // need this sort of type metadata. 1457 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1458 !isa<CXXDestructorDecl>(MD); 1459 } 1460 1461 std::vector<const CXXRecordDecl *> 1462 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1463 llvm::SetVector<const CXXRecordDecl *> MostBases; 1464 1465 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1466 CollectMostBases = [&](const CXXRecordDecl *RD) { 1467 if (RD->getNumBases() == 0) 1468 MostBases.insert(RD); 1469 for (const CXXBaseSpecifier &B : RD->bases()) 1470 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1471 }; 1472 CollectMostBases(RD); 1473 return MostBases.takeVector(); 1474 } 1475 1476 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1477 llvm::Function *F) { 1478 llvm::AttrBuilder B; 1479 1480 if (CodeGenOpts.UnwindTables) 1481 B.addAttribute(llvm::Attribute::UWTable); 1482 1483 if (!hasUnwindExceptions(LangOpts)) 1484 B.addAttribute(llvm::Attribute::NoUnwind); 1485 1486 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1487 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1488 B.addAttribute(llvm::Attribute::StackProtect); 1489 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1490 B.addAttribute(llvm::Attribute::StackProtectStrong); 1491 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1492 B.addAttribute(llvm::Attribute::StackProtectReq); 1493 } 1494 1495 if (!D) { 1496 // If we don't have a declaration to control inlining, the function isn't 1497 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1498 // disabled, mark the function as noinline. 1499 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1500 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1501 B.addAttribute(llvm::Attribute::NoInline); 1502 1503 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1504 return; 1505 } 1506 1507 // Track whether we need to add the optnone LLVM attribute, 1508 // starting with the default for this optimization level. 1509 bool ShouldAddOptNone = 1510 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1511 // We can't add optnone in the following cases, it won't pass the verifier. 1512 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1513 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1514 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1515 1516 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1517 B.addAttribute(llvm::Attribute::OptimizeNone); 1518 1519 // OptimizeNone implies noinline; we should not be inlining such functions. 1520 B.addAttribute(llvm::Attribute::NoInline); 1521 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1522 "OptimizeNone and AlwaysInline on same function!"); 1523 1524 // We still need to handle naked functions even though optnone subsumes 1525 // much of their semantics. 1526 if (D->hasAttr<NakedAttr>()) 1527 B.addAttribute(llvm::Attribute::Naked); 1528 1529 // OptimizeNone wins over OptimizeForSize and MinSize. 1530 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1531 F->removeFnAttr(llvm::Attribute::MinSize); 1532 } else if (D->hasAttr<NakedAttr>()) { 1533 // Naked implies noinline: we should not be inlining such functions. 1534 B.addAttribute(llvm::Attribute::Naked); 1535 B.addAttribute(llvm::Attribute::NoInline); 1536 } else if (D->hasAttr<NoDuplicateAttr>()) { 1537 B.addAttribute(llvm::Attribute::NoDuplicate); 1538 } else if (D->hasAttr<NoInlineAttr>()) { 1539 B.addAttribute(llvm::Attribute::NoInline); 1540 } else if (D->hasAttr<AlwaysInlineAttr>() && 1541 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1542 // (noinline wins over always_inline, and we can't specify both in IR) 1543 B.addAttribute(llvm::Attribute::AlwaysInline); 1544 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1545 // If we're not inlining, then force everything that isn't always_inline to 1546 // carry an explicit noinline attribute. 1547 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1548 B.addAttribute(llvm::Attribute::NoInline); 1549 } else { 1550 // Otherwise, propagate the inline hint attribute and potentially use its 1551 // absence to mark things as noinline. 1552 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1553 // Search function and template pattern redeclarations for inline. 1554 auto CheckForInline = [](const FunctionDecl *FD) { 1555 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1556 return Redecl->isInlineSpecified(); 1557 }; 1558 if (any_of(FD->redecls(), CheckRedeclForInline)) 1559 return true; 1560 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1561 if (!Pattern) 1562 return false; 1563 return any_of(Pattern->redecls(), CheckRedeclForInline); 1564 }; 1565 if (CheckForInline(FD)) { 1566 B.addAttribute(llvm::Attribute::InlineHint); 1567 } else if (CodeGenOpts.getInlining() == 1568 CodeGenOptions::OnlyHintInlining && 1569 !FD->isInlined() && 1570 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1571 B.addAttribute(llvm::Attribute::NoInline); 1572 } 1573 } 1574 } 1575 1576 // Add other optimization related attributes if we are optimizing this 1577 // function. 1578 if (!D->hasAttr<OptimizeNoneAttr>()) { 1579 if (D->hasAttr<ColdAttr>()) { 1580 if (!ShouldAddOptNone) 1581 B.addAttribute(llvm::Attribute::OptimizeForSize); 1582 B.addAttribute(llvm::Attribute::Cold); 1583 } 1584 1585 if (D->hasAttr<MinSizeAttr>()) 1586 B.addAttribute(llvm::Attribute::MinSize); 1587 } 1588 1589 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1590 1591 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1592 if (alignment) 1593 F->setAlignment(alignment); 1594 1595 if (!D->hasAttr<AlignedAttr>()) 1596 if (LangOpts.FunctionAlignment) 1597 F->setAlignment(1 << LangOpts.FunctionAlignment); 1598 1599 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1600 // reserve a bit for differentiating between virtual and non-virtual member 1601 // functions. If the current target's C++ ABI requires this and this is a 1602 // member function, set its alignment accordingly. 1603 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1604 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1605 F->setAlignment(2); 1606 } 1607 1608 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1609 if (CodeGenOpts.SanitizeCfiCrossDso) 1610 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1611 CreateFunctionTypeMetadataForIcall(FD, F); 1612 1613 // Emit type metadata on member functions for member function pointer checks. 1614 // These are only ever necessary on definitions; we're guaranteed that the 1615 // definition will be present in the LTO unit as a result of LTO visibility. 1616 auto *MD = dyn_cast<CXXMethodDecl>(D); 1617 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1618 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1619 llvm::Metadata *Id = 1620 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1621 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1622 F->addTypeMetadata(0, Id); 1623 } 1624 } 1625 } 1626 1627 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1628 const Decl *D = GD.getDecl(); 1629 if (dyn_cast_or_null<NamedDecl>(D)) 1630 setGVProperties(GV, GD); 1631 else 1632 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1633 1634 if (D && D->hasAttr<UsedAttr>()) 1635 addUsedGlobal(GV); 1636 1637 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1638 const auto *VD = cast<VarDecl>(D); 1639 if (VD->getType().isConstQualified() && 1640 VD->getStorageDuration() == SD_Static) 1641 addUsedGlobal(GV); 1642 } 1643 } 1644 1645 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1646 llvm::AttrBuilder &Attrs) { 1647 // Add target-cpu and target-features attributes to functions. If 1648 // we have a decl for the function and it has a target attribute then 1649 // parse that and add it to the feature set. 1650 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1651 std::vector<std::string> Features; 1652 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1653 FD = FD ? FD->getMostRecentDecl() : FD; 1654 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1655 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1656 bool AddedAttr = false; 1657 if (TD || SD) { 1658 llvm::StringMap<bool> FeatureMap; 1659 getFunctionFeatureMap(FeatureMap, GD); 1660 1661 // Produce the canonical string for this set of features. 1662 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1663 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1664 1665 // Now add the target-cpu and target-features to the function. 1666 // While we populated the feature map above, we still need to 1667 // get and parse the target attribute so we can get the cpu for 1668 // the function. 1669 if (TD) { 1670 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1671 if (ParsedAttr.Architecture != "" && 1672 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1673 TargetCPU = ParsedAttr.Architecture; 1674 } 1675 } else { 1676 // Otherwise just add the existing target cpu and target features to the 1677 // function. 1678 Features = getTarget().getTargetOpts().Features; 1679 } 1680 1681 if (TargetCPU != "") { 1682 Attrs.addAttribute("target-cpu", TargetCPU); 1683 AddedAttr = true; 1684 } 1685 if (!Features.empty()) { 1686 llvm::sort(Features); 1687 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1688 AddedAttr = true; 1689 } 1690 1691 return AddedAttr; 1692 } 1693 1694 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1695 llvm::GlobalObject *GO) { 1696 const Decl *D = GD.getDecl(); 1697 SetCommonAttributes(GD, GO); 1698 1699 if (D) { 1700 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1701 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1702 GV->addAttribute("bss-section", SA->getName()); 1703 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1704 GV->addAttribute("data-section", SA->getName()); 1705 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1706 GV->addAttribute("rodata-section", SA->getName()); 1707 } 1708 1709 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1710 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1711 if (!D->getAttr<SectionAttr>()) 1712 F->addFnAttr("implicit-section-name", SA->getName()); 1713 1714 llvm::AttrBuilder Attrs; 1715 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1716 // We know that GetCPUAndFeaturesAttributes will always have the 1717 // newest set, since it has the newest possible FunctionDecl, so the 1718 // new ones should replace the old. 1719 F->removeFnAttr("target-cpu"); 1720 F->removeFnAttr("target-features"); 1721 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1722 } 1723 } 1724 1725 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1726 GO->setSection(CSA->getName()); 1727 else if (const auto *SA = D->getAttr<SectionAttr>()) 1728 GO->setSection(SA->getName()); 1729 } 1730 1731 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1732 } 1733 1734 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1735 llvm::Function *F, 1736 const CGFunctionInfo &FI) { 1737 const Decl *D = GD.getDecl(); 1738 SetLLVMFunctionAttributes(GD, FI, F); 1739 SetLLVMFunctionAttributesForDefinition(D, F); 1740 1741 F->setLinkage(llvm::Function::InternalLinkage); 1742 1743 setNonAliasAttributes(GD, F); 1744 } 1745 1746 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1747 // Set linkage and visibility in case we never see a definition. 1748 LinkageInfo LV = ND->getLinkageAndVisibility(); 1749 // Don't set internal linkage on declarations. 1750 // "extern_weak" is overloaded in LLVM; we probably should have 1751 // separate linkage types for this. 1752 if (isExternallyVisible(LV.getLinkage()) && 1753 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1754 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1755 } 1756 1757 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1758 llvm::Function *F) { 1759 // Only if we are checking indirect calls. 1760 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1761 return; 1762 1763 // Non-static class methods are handled via vtable or member function pointer 1764 // checks elsewhere. 1765 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1766 return; 1767 1768 // Additionally, if building with cross-DSO support... 1769 if (CodeGenOpts.SanitizeCfiCrossDso) { 1770 // Skip available_externally functions. They won't be codegen'ed in the 1771 // current module anyway. 1772 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1773 return; 1774 } 1775 1776 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1777 F->addTypeMetadata(0, MD); 1778 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1779 1780 // Emit a hash-based bit set entry for cross-DSO calls. 1781 if (CodeGenOpts.SanitizeCfiCrossDso) 1782 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1783 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1784 } 1785 1786 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1787 bool IsIncompleteFunction, 1788 bool IsThunk) { 1789 1790 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1791 // If this is an intrinsic function, set the function's attributes 1792 // to the intrinsic's attributes. 1793 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1794 return; 1795 } 1796 1797 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1798 1799 if (!IsIncompleteFunction) 1800 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1801 1802 // Add the Returned attribute for "this", except for iOS 5 and earlier 1803 // where substantial code, including the libstdc++ dylib, was compiled with 1804 // GCC and does not actually return "this". 1805 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1806 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1807 assert(!F->arg_empty() && 1808 F->arg_begin()->getType() 1809 ->canLosslesslyBitCastTo(F->getReturnType()) && 1810 "unexpected this return"); 1811 F->addAttribute(1, llvm::Attribute::Returned); 1812 } 1813 1814 // Only a few attributes are set on declarations; these may later be 1815 // overridden by a definition. 1816 1817 setLinkageForGV(F, FD); 1818 setGVProperties(F, FD); 1819 1820 // Setup target-specific attributes. 1821 if (!IsIncompleteFunction && F->isDeclaration()) 1822 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1823 1824 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1825 F->setSection(CSA->getName()); 1826 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1827 F->setSection(SA->getName()); 1828 1829 if (FD->isReplaceableGlobalAllocationFunction()) { 1830 // A replaceable global allocation function does not act like a builtin by 1831 // default, only if it is invoked by a new-expression or delete-expression. 1832 F->addAttribute(llvm::AttributeList::FunctionIndex, 1833 llvm::Attribute::NoBuiltin); 1834 1835 // A sane operator new returns a non-aliasing pointer. 1836 // FIXME: Also add NonNull attribute to the return value 1837 // for the non-nothrow forms? 1838 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1839 if (getCodeGenOpts().AssumeSaneOperatorNew && 1840 (Kind == OO_New || Kind == OO_Array_New)) 1841 F->addAttribute(llvm::AttributeList::ReturnIndex, 1842 llvm::Attribute::NoAlias); 1843 } 1844 1845 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1846 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1847 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1848 if (MD->isVirtual()) 1849 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1850 1851 // Don't emit entries for function declarations in the cross-DSO mode. This 1852 // is handled with better precision by the receiving DSO. 1853 if (!CodeGenOpts.SanitizeCfiCrossDso) 1854 CreateFunctionTypeMetadataForIcall(FD, F); 1855 1856 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1857 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1858 1859 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1860 // Annotate the callback behavior as metadata: 1861 // - The callback callee (as argument number). 1862 // - The callback payloads (as argument numbers). 1863 llvm::LLVMContext &Ctx = F->getContext(); 1864 llvm::MDBuilder MDB(Ctx); 1865 1866 // The payload indices are all but the first one in the encoding. The first 1867 // identifies the callback callee. 1868 int CalleeIdx = *CB->encoding_begin(); 1869 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1870 F->addMetadata(llvm::LLVMContext::MD_callback, 1871 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1872 CalleeIdx, PayloadIndices, 1873 /* VarArgsArePassed */ false)})); 1874 } 1875 } 1876 1877 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1878 assert(!GV->isDeclaration() && 1879 "Only globals with definition can force usage."); 1880 LLVMUsed.emplace_back(GV); 1881 } 1882 1883 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1884 assert(!GV->isDeclaration() && 1885 "Only globals with definition can force usage."); 1886 LLVMCompilerUsed.emplace_back(GV); 1887 } 1888 1889 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1890 std::vector<llvm::WeakTrackingVH> &List) { 1891 // Don't create llvm.used if there is no need. 1892 if (List.empty()) 1893 return; 1894 1895 // Convert List to what ConstantArray needs. 1896 SmallVector<llvm::Constant*, 8> UsedArray; 1897 UsedArray.resize(List.size()); 1898 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1899 UsedArray[i] = 1900 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1901 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1902 } 1903 1904 if (UsedArray.empty()) 1905 return; 1906 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1907 1908 auto *GV = new llvm::GlobalVariable( 1909 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1910 llvm::ConstantArray::get(ATy, UsedArray), Name); 1911 1912 GV->setSection("llvm.metadata"); 1913 } 1914 1915 void CodeGenModule::emitLLVMUsed() { 1916 emitUsed(*this, "llvm.used", LLVMUsed); 1917 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1918 } 1919 1920 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1921 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1922 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1923 } 1924 1925 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1926 llvm::SmallString<32> Opt; 1927 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1928 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1929 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1930 } 1931 1932 void CodeGenModule::AddDependentLib(StringRef Lib) { 1933 auto &C = getLLVMContext(); 1934 if (getTarget().getTriple().isOSBinFormatELF()) { 1935 ELFDependentLibraries.push_back( 1936 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1937 return; 1938 } 1939 1940 llvm::SmallString<24> Opt; 1941 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1942 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1943 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1944 } 1945 1946 /// Add link options implied by the given module, including modules 1947 /// it depends on, using a postorder walk. 1948 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1949 SmallVectorImpl<llvm::MDNode *> &Metadata, 1950 llvm::SmallPtrSet<Module *, 16> &Visited) { 1951 // Import this module's parent. 1952 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1953 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1954 } 1955 1956 // Import this module's dependencies. 1957 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1958 if (Visited.insert(Mod->Imports[I - 1]).second) 1959 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1960 } 1961 1962 // Add linker options to link against the libraries/frameworks 1963 // described by this module. 1964 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1965 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1966 1967 // For modules that use export_as for linking, use that module 1968 // name instead. 1969 if (Mod->UseExportAsModuleLinkName) 1970 return; 1971 1972 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1973 // Link against a framework. Frameworks are currently Darwin only, so we 1974 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1975 if (Mod->LinkLibraries[I-1].IsFramework) { 1976 llvm::Metadata *Args[2] = { 1977 llvm::MDString::get(Context, "-framework"), 1978 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1979 1980 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1981 continue; 1982 } 1983 1984 // Link against a library. 1985 if (IsELF) { 1986 llvm::Metadata *Args[2] = { 1987 llvm::MDString::get(Context, "lib"), 1988 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1989 }; 1990 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1991 } else { 1992 llvm::SmallString<24> Opt; 1993 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1994 Mod->LinkLibraries[I - 1].Library, Opt); 1995 auto *OptString = llvm::MDString::get(Context, Opt); 1996 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1997 } 1998 } 1999 } 2000 2001 void CodeGenModule::EmitModuleLinkOptions() { 2002 // Collect the set of all of the modules we want to visit to emit link 2003 // options, which is essentially the imported modules and all of their 2004 // non-explicit child modules. 2005 llvm::SetVector<clang::Module *> LinkModules; 2006 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2007 SmallVector<clang::Module *, 16> Stack; 2008 2009 // Seed the stack with imported modules. 2010 for (Module *M : ImportedModules) { 2011 // Do not add any link flags when an implementation TU of a module imports 2012 // a header of that same module. 2013 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2014 !getLangOpts().isCompilingModule()) 2015 continue; 2016 if (Visited.insert(M).second) 2017 Stack.push_back(M); 2018 } 2019 2020 // Find all of the modules to import, making a little effort to prune 2021 // non-leaf modules. 2022 while (!Stack.empty()) { 2023 clang::Module *Mod = Stack.pop_back_val(); 2024 2025 bool AnyChildren = false; 2026 2027 // Visit the submodules of this module. 2028 for (const auto &SM : Mod->submodules()) { 2029 // Skip explicit children; they need to be explicitly imported to be 2030 // linked against. 2031 if (SM->IsExplicit) 2032 continue; 2033 2034 if (Visited.insert(SM).second) { 2035 Stack.push_back(SM); 2036 AnyChildren = true; 2037 } 2038 } 2039 2040 // We didn't find any children, so add this module to the list of 2041 // modules to link against. 2042 if (!AnyChildren) { 2043 LinkModules.insert(Mod); 2044 } 2045 } 2046 2047 // Add link options for all of the imported modules in reverse topological 2048 // order. We don't do anything to try to order import link flags with respect 2049 // to linker options inserted by things like #pragma comment(). 2050 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2051 Visited.clear(); 2052 for (Module *M : LinkModules) 2053 if (Visited.insert(M).second) 2054 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2055 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2056 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2057 2058 // Add the linker options metadata flag. 2059 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2060 for (auto *MD : LinkerOptionsMetadata) 2061 NMD->addOperand(MD); 2062 } 2063 2064 void CodeGenModule::EmitDeferred() { 2065 // Emit deferred declare target declarations. 2066 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2067 getOpenMPRuntime().emitDeferredTargetDecls(); 2068 2069 // Emit code for any potentially referenced deferred decls. Since a 2070 // previously unused static decl may become used during the generation of code 2071 // for a static function, iterate until no changes are made. 2072 2073 if (!DeferredVTables.empty()) { 2074 EmitDeferredVTables(); 2075 2076 // Emitting a vtable doesn't directly cause more vtables to 2077 // become deferred, although it can cause functions to be 2078 // emitted that then need those vtables. 2079 assert(DeferredVTables.empty()); 2080 } 2081 2082 // Stop if we're out of both deferred vtables and deferred declarations. 2083 if (DeferredDeclsToEmit.empty()) 2084 return; 2085 2086 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2087 // work, it will not interfere with this. 2088 std::vector<GlobalDecl> CurDeclsToEmit; 2089 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2090 2091 for (GlobalDecl &D : CurDeclsToEmit) { 2092 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2093 // to get GlobalValue with exactly the type we need, not something that 2094 // might had been created for another decl with the same mangled name but 2095 // different type. 2096 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2097 GetAddrOfGlobal(D, ForDefinition)); 2098 2099 // In case of different address spaces, we may still get a cast, even with 2100 // IsForDefinition equal to true. Query mangled names table to get 2101 // GlobalValue. 2102 if (!GV) 2103 GV = GetGlobalValue(getMangledName(D)); 2104 2105 // Make sure GetGlobalValue returned non-null. 2106 assert(GV); 2107 2108 // Check to see if we've already emitted this. This is necessary 2109 // for a couple of reasons: first, decls can end up in the 2110 // deferred-decls queue multiple times, and second, decls can end 2111 // up with definitions in unusual ways (e.g. by an extern inline 2112 // function acquiring a strong function redefinition). Just 2113 // ignore these cases. 2114 if (!GV->isDeclaration()) 2115 continue; 2116 2117 // Otherwise, emit the definition and move on to the next one. 2118 EmitGlobalDefinition(D, GV); 2119 2120 // If we found out that we need to emit more decls, do that recursively. 2121 // This has the advantage that the decls are emitted in a DFS and related 2122 // ones are close together, which is convenient for testing. 2123 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2124 EmitDeferred(); 2125 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2126 } 2127 } 2128 } 2129 2130 void CodeGenModule::EmitVTablesOpportunistically() { 2131 // Try to emit external vtables as available_externally if they have emitted 2132 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2133 // is not allowed to create new references to things that need to be emitted 2134 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2135 2136 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2137 && "Only emit opportunistic vtables with optimizations"); 2138 2139 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2140 assert(getVTables().isVTableExternal(RD) && 2141 "This queue should only contain external vtables"); 2142 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2143 VTables.GenerateClassData(RD); 2144 } 2145 OpportunisticVTables.clear(); 2146 } 2147 2148 void CodeGenModule::EmitGlobalAnnotations() { 2149 if (Annotations.empty()) 2150 return; 2151 2152 // Create a new global variable for the ConstantStruct in the Module. 2153 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2154 Annotations[0]->getType(), Annotations.size()), Annotations); 2155 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2156 llvm::GlobalValue::AppendingLinkage, 2157 Array, "llvm.global.annotations"); 2158 gv->setSection(AnnotationSection); 2159 } 2160 2161 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2162 llvm::Constant *&AStr = AnnotationStrings[Str]; 2163 if (AStr) 2164 return AStr; 2165 2166 // Not found yet, create a new global. 2167 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2168 auto *gv = 2169 new llvm::GlobalVariable(getModule(), s->getType(), true, 2170 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2171 gv->setSection(AnnotationSection); 2172 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2173 AStr = gv; 2174 return gv; 2175 } 2176 2177 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2178 SourceManager &SM = getContext().getSourceManager(); 2179 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2180 if (PLoc.isValid()) 2181 return EmitAnnotationString(PLoc.getFilename()); 2182 return EmitAnnotationString(SM.getBufferName(Loc)); 2183 } 2184 2185 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2186 SourceManager &SM = getContext().getSourceManager(); 2187 PresumedLoc PLoc = SM.getPresumedLoc(L); 2188 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2189 SM.getExpansionLineNumber(L); 2190 return llvm::ConstantInt::get(Int32Ty, LineNo); 2191 } 2192 2193 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2194 const AnnotateAttr *AA, 2195 SourceLocation L) { 2196 // Get the globals for file name, annotation, and the line number. 2197 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2198 *UnitGV = EmitAnnotationUnit(L), 2199 *LineNoCst = EmitAnnotationLineNo(L); 2200 2201 // Create the ConstantStruct for the global annotation. 2202 llvm::Constant *Fields[4] = { 2203 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 2204 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2205 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2206 LineNoCst 2207 }; 2208 return llvm::ConstantStruct::getAnon(Fields); 2209 } 2210 2211 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2212 llvm::GlobalValue *GV) { 2213 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2214 // Get the struct elements for these annotations. 2215 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2216 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2217 } 2218 2219 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2220 llvm::Function *Fn, 2221 SourceLocation Loc) const { 2222 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2223 // Blacklist by function name. 2224 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2225 return true; 2226 // Blacklist by location. 2227 if (Loc.isValid()) 2228 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2229 // If location is unknown, this may be a compiler-generated function. Assume 2230 // it's located in the main file. 2231 auto &SM = Context.getSourceManager(); 2232 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2233 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2234 } 2235 return false; 2236 } 2237 2238 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2239 SourceLocation Loc, QualType Ty, 2240 StringRef Category) const { 2241 // For now globals can be blacklisted only in ASan and KASan. 2242 const SanitizerMask EnabledAsanMask = 2243 LangOpts.Sanitize.Mask & 2244 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2245 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2246 SanitizerKind::MemTag); 2247 if (!EnabledAsanMask) 2248 return false; 2249 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2250 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2251 return true; 2252 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2253 return true; 2254 // Check global type. 2255 if (!Ty.isNull()) { 2256 // Drill down the array types: if global variable of a fixed type is 2257 // blacklisted, we also don't instrument arrays of them. 2258 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2259 Ty = AT->getElementType(); 2260 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2261 // We allow to blacklist only record types (classes, structs etc.) 2262 if (Ty->isRecordType()) { 2263 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2264 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2265 return true; 2266 } 2267 } 2268 return false; 2269 } 2270 2271 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2272 StringRef Category) const { 2273 const auto &XRayFilter = getContext().getXRayFilter(); 2274 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2275 auto Attr = ImbueAttr::NONE; 2276 if (Loc.isValid()) 2277 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2278 if (Attr == ImbueAttr::NONE) 2279 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2280 switch (Attr) { 2281 case ImbueAttr::NONE: 2282 return false; 2283 case ImbueAttr::ALWAYS: 2284 Fn->addFnAttr("function-instrument", "xray-always"); 2285 break; 2286 case ImbueAttr::ALWAYS_ARG1: 2287 Fn->addFnAttr("function-instrument", "xray-always"); 2288 Fn->addFnAttr("xray-log-args", "1"); 2289 break; 2290 case ImbueAttr::NEVER: 2291 Fn->addFnAttr("function-instrument", "xray-never"); 2292 break; 2293 } 2294 return true; 2295 } 2296 2297 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2298 // Never defer when EmitAllDecls is specified. 2299 if (LangOpts.EmitAllDecls) 2300 return true; 2301 2302 if (CodeGenOpts.KeepStaticConsts) { 2303 const auto *VD = dyn_cast<VarDecl>(Global); 2304 if (VD && VD->getType().isConstQualified() && 2305 VD->getStorageDuration() == SD_Static) 2306 return true; 2307 } 2308 2309 return getContext().DeclMustBeEmitted(Global); 2310 } 2311 2312 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2313 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2314 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2315 // Implicit template instantiations may change linkage if they are later 2316 // explicitly instantiated, so they should not be emitted eagerly. 2317 return false; 2318 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2319 if (Context.getInlineVariableDefinitionKind(VD) == 2320 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2321 // A definition of an inline constexpr static data member may change 2322 // linkage later if it's redeclared outside the class. 2323 return false; 2324 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2325 // codegen for global variables, because they may be marked as threadprivate. 2326 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2327 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2328 !isTypeConstant(Global->getType(), false) && 2329 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2330 return false; 2331 2332 return true; 2333 } 2334 2335 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2336 const CXXUuidofExpr* E) { 2337 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2338 // well-formed. 2339 StringRef Uuid = E->getUuidStr(); 2340 std::string Name = "_GUID_" + Uuid.lower(); 2341 std::replace(Name.begin(), Name.end(), '-', '_'); 2342 2343 // The UUID descriptor should be pointer aligned. 2344 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2345 2346 // Look for an existing global. 2347 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2348 return ConstantAddress(GV, Alignment); 2349 2350 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2351 assert(Init && "failed to initialize as constant"); 2352 2353 auto *GV = new llvm::GlobalVariable( 2354 getModule(), Init->getType(), 2355 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2356 if (supportsCOMDAT()) 2357 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2358 setDSOLocal(GV); 2359 return ConstantAddress(GV, Alignment); 2360 } 2361 2362 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2363 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2364 assert(AA && "No alias?"); 2365 2366 CharUnits Alignment = getContext().getDeclAlign(VD); 2367 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2368 2369 // See if there is already something with the target's name in the module. 2370 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2371 if (Entry) { 2372 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2373 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2374 return ConstantAddress(Ptr, Alignment); 2375 } 2376 2377 llvm::Constant *Aliasee; 2378 if (isa<llvm::FunctionType>(DeclTy)) 2379 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2380 GlobalDecl(cast<FunctionDecl>(VD)), 2381 /*ForVTable=*/false); 2382 else 2383 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2384 llvm::PointerType::getUnqual(DeclTy), 2385 nullptr); 2386 2387 auto *F = cast<llvm::GlobalValue>(Aliasee); 2388 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2389 WeakRefReferences.insert(F); 2390 2391 return ConstantAddress(Aliasee, Alignment); 2392 } 2393 2394 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2395 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2396 2397 // Weak references don't produce any output by themselves. 2398 if (Global->hasAttr<WeakRefAttr>()) 2399 return; 2400 2401 // If this is an alias definition (which otherwise looks like a declaration) 2402 // emit it now. 2403 if (Global->hasAttr<AliasAttr>()) 2404 return EmitAliasDefinition(GD); 2405 2406 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2407 if (Global->hasAttr<IFuncAttr>()) 2408 return emitIFuncDefinition(GD); 2409 2410 // If this is a cpu_dispatch multiversion function, emit the resolver. 2411 if (Global->hasAttr<CPUDispatchAttr>()) 2412 return emitCPUDispatchDefinition(GD); 2413 2414 // If this is CUDA, be selective about which declarations we emit. 2415 if (LangOpts.CUDA) { 2416 if (LangOpts.CUDAIsDevice) { 2417 if (!Global->hasAttr<CUDADeviceAttr>() && 2418 !Global->hasAttr<CUDAGlobalAttr>() && 2419 !Global->hasAttr<CUDAConstantAttr>() && 2420 !Global->hasAttr<CUDASharedAttr>() && 2421 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2422 return; 2423 } else { 2424 // We need to emit host-side 'shadows' for all global 2425 // device-side variables because the CUDA runtime needs their 2426 // size and host-side address in order to provide access to 2427 // their device-side incarnations. 2428 2429 // So device-only functions are the only things we skip. 2430 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2431 Global->hasAttr<CUDADeviceAttr>()) 2432 return; 2433 2434 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2435 "Expected Variable or Function"); 2436 } 2437 } 2438 2439 if (LangOpts.OpenMP) { 2440 // If this is OpenMP device, check if it is legal to emit this global 2441 // normally. 2442 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2443 return; 2444 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2445 if (MustBeEmitted(Global)) 2446 EmitOMPDeclareReduction(DRD); 2447 return; 2448 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2449 if (MustBeEmitted(Global)) 2450 EmitOMPDeclareMapper(DMD); 2451 return; 2452 } 2453 } 2454 2455 // Ignore declarations, they will be emitted on their first use. 2456 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2457 // Forward declarations are emitted lazily on first use. 2458 if (!FD->doesThisDeclarationHaveABody()) { 2459 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2460 return; 2461 2462 StringRef MangledName = getMangledName(GD); 2463 2464 // Compute the function info and LLVM type. 2465 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2466 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2467 2468 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2469 /*DontDefer=*/false); 2470 return; 2471 } 2472 } else { 2473 const auto *VD = cast<VarDecl>(Global); 2474 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2475 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2476 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2477 if (LangOpts.OpenMP) { 2478 // Emit declaration of the must-be-emitted declare target variable. 2479 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2480 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2481 bool UnifiedMemoryEnabled = 2482 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2483 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2484 !UnifiedMemoryEnabled) { 2485 (void)GetAddrOfGlobalVar(VD); 2486 } else { 2487 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2488 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2489 UnifiedMemoryEnabled)) && 2490 "Link clause or to clause with unified memory expected."); 2491 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2492 } 2493 2494 return; 2495 } 2496 } 2497 // If this declaration may have caused an inline variable definition to 2498 // change linkage, make sure that it's emitted. 2499 if (Context.getInlineVariableDefinitionKind(VD) == 2500 ASTContext::InlineVariableDefinitionKind::Strong) 2501 GetAddrOfGlobalVar(VD); 2502 return; 2503 } 2504 } 2505 2506 // Defer code generation to first use when possible, e.g. if this is an inline 2507 // function. If the global must always be emitted, do it eagerly if possible 2508 // to benefit from cache locality. 2509 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2510 // Emit the definition if it can't be deferred. 2511 EmitGlobalDefinition(GD); 2512 return; 2513 } 2514 2515 // If we're deferring emission of a C++ variable with an 2516 // initializer, remember the order in which it appeared in the file. 2517 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2518 cast<VarDecl>(Global)->hasInit()) { 2519 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2520 CXXGlobalInits.push_back(nullptr); 2521 } 2522 2523 StringRef MangledName = getMangledName(GD); 2524 if (GetGlobalValue(MangledName) != nullptr) { 2525 // The value has already been used and should therefore be emitted. 2526 addDeferredDeclToEmit(GD); 2527 } else if (MustBeEmitted(Global)) { 2528 // The value must be emitted, but cannot be emitted eagerly. 2529 assert(!MayBeEmittedEagerly(Global)); 2530 addDeferredDeclToEmit(GD); 2531 } else { 2532 // Otherwise, remember that we saw a deferred decl with this name. The 2533 // first use of the mangled name will cause it to move into 2534 // DeferredDeclsToEmit. 2535 DeferredDecls[MangledName] = GD; 2536 } 2537 } 2538 2539 // Check if T is a class type with a destructor that's not dllimport. 2540 static bool HasNonDllImportDtor(QualType T) { 2541 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2542 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2543 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2544 return true; 2545 2546 return false; 2547 } 2548 2549 namespace { 2550 struct FunctionIsDirectlyRecursive 2551 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2552 const StringRef Name; 2553 const Builtin::Context &BI; 2554 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2555 : Name(N), BI(C) {} 2556 2557 bool VisitCallExpr(const CallExpr *E) { 2558 const FunctionDecl *FD = E->getDirectCallee(); 2559 if (!FD) 2560 return false; 2561 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2562 if (Attr && Name == Attr->getLabel()) 2563 return true; 2564 unsigned BuiltinID = FD->getBuiltinID(); 2565 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2566 return false; 2567 StringRef BuiltinName = BI.getName(BuiltinID); 2568 if (BuiltinName.startswith("__builtin_") && 2569 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2570 return true; 2571 } 2572 return false; 2573 } 2574 2575 bool VisitStmt(const Stmt *S) { 2576 for (const Stmt *Child : S->children()) 2577 if (Child && this->Visit(Child)) 2578 return true; 2579 return false; 2580 } 2581 }; 2582 2583 // Make sure we're not referencing non-imported vars or functions. 2584 struct DLLImportFunctionVisitor 2585 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2586 bool SafeToInline = true; 2587 2588 bool shouldVisitImplicitCode() const { return true; } 2589 2590 bool VisitVarDecl(VarDecl *VD) { 2591 if (VD->getTLSKind()) { 2592 // A thread-local variable cannot be imported. 2593 SafeToInline = false; 2594 return SafeToInline; 2595 } 2596 2597 // A variable definition might imply a destructor call. 2598 if (VD->isThisDeclarationADefinition()) 2599 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2600 2601 return SafeToInline; 2602 } 2603 2604 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2605 if (const auto *D = E->getTemporary()->getDestructor()) 2606 SafeToInline = D->hasAttr<DLLImportAttr>(); 2607 return SafeToInline; 2608 } 2609 2610 bool VisitDeclRefExpr(DeclRefExpr *E) { 2611 ValueDecl *VD = E->getDecl(); 2612 if (isa<FunctionDecl>(VD)) 2613 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2614 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2615 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2616 return SafeToInline; 2617 } 2618 2619 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2620 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2621 return SafeToInline; 2622 } 2623 2624 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2625 CXXMethodDecl *M = E->getMethodDecl(); 2626 if (!M) { 2627 // Call through a pointer to member function. This is safe to inline. 2628 SafeToInline = true; 2629 } else { 2630 SafeToInline = M->hasAttr<DLLImportAttr>(); 2631 } 2632 return SafeToInline; 2633 } 2634 2635 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2636 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2637 return SafeToInline; 2638 } 2639 2640 bool VisitCXXNewExpr(CXXNewExpr *E) { 2641 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2642 return SafeToInline; 2643 } 2644 }; 2645 } 2646 2647 // isTriviallyRecursive - Check if this function calls another 2648 // decl that, because of the asm attribute or the other decl being a builtin, 2649 // ends up pointing to itself. 2650 bool 2651 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2652 StringRef Name; 2653 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2654 // asm labels are a special kind of mangling we have to support. 2655 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2656 if (!Attr) 2657 return false; 2658 Name = Attr->getLabel(); 2659 } else { 2660 Name = FD->getName(); 2661 } 2662 2663 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2664 const Stmt *Body = FD->getBody(); 2665 return Body ? Walker.Visit(Body) : false; 2666 } 2667 2668 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2669 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2670 return true; 2671 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2672 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2673 return false; 2674 2675 if (F->hasAttr<DLLImportAttr>()) { 2676 // Check whether it would be safe to inline this dllimport function. 2677 DLLImportFunctionVisitor Visitor; 2678 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2679 if (!Visitor.SafeToInline) 2680 return false; 2681 2682 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2683 // Implicit destructor invocations aren't captured in the AST, so the 2684 // check above can't see them. Check for them manually here. 2685 for (const Decl *Member : Dtor->getParent()->decls()) 2686 if (isa<FieldDecl>(Member)) 2687 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2688 return false; 2689 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2690 if (HasNonDllImportDtor(B.getType())) 2691 return false; 2692 } 2693 } 2694 2695 // PR9614. Avoid cases where the source code is lying to us. An available 2696 // externally function should have an equivalent function somewhere else, 2697 // but a function that calls itself is clearly not equivalent to the real 2698 // implementation. 2699 // This happens in glibc's btowc and in some configure checks. 2700 return !isTriviallyRecursive(F); 2701 } 2702 2703 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2704 return CodeGenOpts.OptimizationLevel > 0; 2705 } 2706 2707 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2708 llvm::GlobalValue *GV) { 2709 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2710 2711 if (FD->isCPUSpecificMultiVersion()) { 2712 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2713 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2714 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2715 // Requires multiple emits. 2716 } else 2717 EmitGlobalFunctionDefinition(GD, GV); 2718 } 2719 2720 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2721 const auto *D = cast<ValueDecl>(GD.getDecl()); 2722 2723 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2724 Context.getSourceManager(), 2725 "Generating code for declaration"); 2726 2727 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2728 // At -O0, don't generate IR for functions with available_externally 2729 // linkage. 2730 if (!shouldEmitFunction(GD)) 2731 return; 2732 2733 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2734 std::string Name; 2735 llvm::raw_string_ostream OS(Name); 2736 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2737 /*Qualified=*/true); 2738 return Name; 2739 }); 2740 2741 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2742 // Make sure to emit the definition(s) before we emit the thunks. 2743 // This is necessary for the generation of certain thunks. 2744 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2745 ABI->emitCXXStructor(GD); 2746 else if (FD->isMultiVersion()) 2747 EmitMultiVersionFunctionDefinition(GD, GV); 2748 else 2749 EmitGlobalFunctionDefinition(GD, GV); 2750 2751 if (Method->isVirtual()) 2752 getVTables().EmitThunks(GD); 2753 2754 return; 2755 } 2756 2757 if (FD->isMultiVersion()) 2758 return EmitMultiVersionFunctionDefinition(GD, GV); 2759 return EmitGlobalFunctionDefinition(GD, GV); 2760 } 2761 2762 if (const auto *VD = dyn_cast<VarDecl>(D)) 2763 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2764 2765 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2766 } 2767 2768 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2769 llvm::Function *NewFn); 2770 2771 static unsigned 2772 TargetMVPriority(const TargetInfo &TI, 2773 const CodeGenFunction::MultiVersionResolverOption &RO) { 2774 unsigned Priority = 0; 2775 for (StringRef Feat : RO.Conditions.Features) 2776 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2777 2778 if (!RO.Conditions.Architecture.empty()) 2779 Priority = std::max( 2780 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2781 return Priority; 2782 } 2783 2784 void CodeGenModule::emitMultiVersionFunctions() { 2785 for (GlobalDecl GD : MultiVersionFuncs) { 2786 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2787 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2788 getContext().forEachMultiversionedFunctionVersion( 2789 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2790 GlobalDecl CurGD{ 2791 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2792 StringRef MangledName = getMangledName(CurGD); 2793 llvm::Constant *Func = GetGlobalValue(MangledName); 2794 if (!Func) { 2795 if (CurFD->isDefined()) { 2796 EmitGlobalFunctionDefinition(CurGD, nullptr); 2797 Func = GetGlobalValue(MangledName); 2798 } else { 2799 const CGFunctionInfo &FI = 2800 getTypes().arrangeGlobalDeclaration(GD); 2801 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2802 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2803 /*DontDefer=*/false, ForDefinition); 2804 } 2805 assert(Func && "This should have just been created"); 2806 } 2807 2808 const auto *TA = CurFD->getAttr<TargetAttr>(); 2809 llvm::SmallVector<StringRef, 8> Feats; 2810 TA->getAddedFeatures(Feats); 2811 2812 Options.emplace_back(cast<llvm::Function>(Func), 2813 TA->getArchitecture(), Feats); 2814 }); 2815 2816 llvm::Function *ResolverFunc; 2817 const TargetInfo &TI = getTarget(); 2818 2819 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2820 ResolverFunc = cast<llvm::Function>( 2821 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2822 else 2823 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2824 2825 if (supportsCOMDAT()) 2826 ResolverFunc->setComdat( 2827 getModule().getOrInsertComdat(ResolverFunc->getName())); 2828 2829 llvm::stable_sort( 2830 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2831 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2832 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2833 }); 2834 CodeGenFunction CGF(*this); 2835 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2836 } 2837 } 2838 2839 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2840 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2841 assert(FD && "Not a FunctionDecl?"); 2842 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2843 assert(DD && "Not a cpu_dispatch Function?"); 2844 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2845 2846 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2847 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2848 DeclTy = getTypes().GetFunctionType(FInfo); 2849 } 2850 2851 StringRef ResolverName = getMangledName(GD); 2852 2853 llvm::Type *ResolverType; 2854 GlobalDecl ResolverGD; 2855 if (getTarget().supportsIFunc()) 2856 ResolverType = llvm::FunctionType::get( 2857 llvm::PointerType::get(DeclTy, 2858 Context.getTargetAddressSpace(FD->getType())), 2859 false); 2860 else { 2861 ResolverType = DeclTy; 2862 ResolverGD = GD; 2863 } 2864 2865 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2866 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2867 2868 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2869 const TargetInfo &Target = getTarget(); 2870 unsigned Index = 0; 2871 for (const IdentifierInfo *II : DD->cpus()) { 2872 // Get the name of the target function so we can look it up/create it. 2873 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2874 getCPUSpecificMangling(*this, II->getName()); 2875 2876 llvm::Constant *Func = GetGlobalValue(MangledName); 2877 2878 if (!Func) { 2879 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2880 if (ExistingDecl.getDecl() && 2881 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2882 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2883 Func = GetGlobalValue(MangledName); 2884 } else { 2885 if (!ExistingDecl.getDecl()) 2886 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2887 2888 Func = GetOrCreateLLVMFunction( 2889 MangledName, DeclTy, ExistingDecl, 2890 /*ForVTable=*/false, /*DontDefer=*/true, 2891 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2892 } 2893 } 2894 2895 llvm::SmallVector<StringRef, 32> Features; 2896 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2897 llvm::transform(Features, Features.begin(), 2898 [](StringRef Str) { return Str.substr(1); }); 2899 Features.erase(std::remove_if( 2900 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2901 return !Target.validateCpuSupports(Feat); 2902 }), Features.end()); 2903 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2904 ++Index; 2905 } 2906 2907 llvm::sort( 2908 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2909 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2910 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2911 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2912 }); 2913 2914 // If the list contains multiple 'default' versions, such as when it contains 2915 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2916 // always run on at least a 'pentium'). We do this by deleting the 'least 2917 // advanced' (read, lowest mangling letter). 2918 while (Options.size() > 1 && 2919 CodeGenFunction::GetX86CpuSupportsMask( 2920 (Options.end() - 2)->Conditions.Features) == 0) { 2921 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2922 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2923 if (LHSName.compare(RHSName) < 0) 2924 Options.erase(Options.end() - 2); 2925 else 2926 Options.erase(Options.end() - 1); 2927 } 2928 2929 CodeGenFunction CGF(*this); 2930 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2931 } 2932 2933 /// If a dispatcher for the specified mangled name is not in the module, create 2934 /// and return an llvm Function with the specified type. 2935 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2936 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2937 std::string MangledName = 2938 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2939 2940 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2941 // a separate resolver). 2942 std::string ResolverName = MangledName; 2943 if (getTarget().supportsIFunc()) 2944 ResolverName += ".ifunc"; 2945 else if (FD->isTargetMultiVersion()) 2946 ResolverName += ".resolver"; 2947 2948 // If this already exists, just return that one. 2949 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2950 return ResolverGV; 2951 2952 // Since this is the first time we've created this IFunc, make sure 2953 // that we put this multiversioned function into the list to be 2954 // replaced later if necessary (target multiversioning only). 2955 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2956 MultiVersionFuncs.push_back(GD); 2957 2958 if (getTarget().supportsIFunc()) { 2959 llvm::Type *ResolverType = llvm::FunctionType::get( 2960 llvm::PointerType::get( 2961 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2962 false); 2963 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2964 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2965 /*ForVTable=*/false); 2966 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2967 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2968 GIF->setName(ResolverName); 2969 SetCommonAttributes(FD, GIF); 2970 2971 return GIF; 2972 } 2973 2974 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2975 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2976 assert(isa<llvm::GlobalValue>(Resolver) && 2977 "Resolver should be created for the first time"); 2978 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2979 return Resolver; 2980 } 2981 2982 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2983 /// module, create and return an llvm Function with the specified type. If there 2984 /// is something in the module with the specified name, return it potentially 2985 /// bitcasted to the right type. 2986 /// 2987 /// If D is non-null, it specifies a decl that correspond to this. This is used 2988 /// to set the attributes on the function when it is first created. 2989 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2990 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2991 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2992 ForDefinition_t IsForDefinition) { 2993 const Decl *D = GD.getDecl(); 2994 2995 // Any attempts to use a MultiVersion function should result in retrieving 2996 // the iFunc instead. Name Mangling will handle the rest of the changes. 2997 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2998 // For the device mark the function as one that should be emitted. 2999 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3000 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3001 !DontDefer && !IsForDefinition) { 3002 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3003 GlobalDecl GDDef; 3004 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3005 GDDef = GlobalDecl(CD, GD.getCtorType()); 3006 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3007 GDDef = GlobalDecl(DD, GD.getDtorType()); 3008 else 3009 GDDef = GlobalDecl(FDDef); 3010 EmitGlobal(GDDef); 3011 } 3012 } 3013 3014 if (FD->isMultiVersion()) { 3015 const auto *TA = FD->getAttr<TargetAttr>(); 3016 if (TA && TA->isDefaultVersion()) 3017 UpdateMultiVersionNames(GD, FD); 3018 if (!IsForDefinition) 3019 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3020 } 3021 } 3022 3023 // Lookup the entry, lazily creating it if necessary. 3024 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3025 if (Entry) { 3026 if (WeakRefReferences.erase(Entry)) { 3027 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3028 if (FD && !FD->hasAttr<WeakAttr>()) 3029 Entry->setLinkage(llvm::Function::ExternalLinkage); 3030 } 3031 3032 // Handle dropped DLL attributes. 3033 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3034 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3035 setDSOLocal(Entry); 3036 } 3037 3038 // If there are two attempts to define the same mangled name, issue an 3039 // error. 3040 if (IsForDefinition && !Entry->isDeclaration()) { 3041 GlobalDecl OtherGD; 3042 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3043 // to make sure that we issue an error only once. 3044 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3045 (GD.getCanonicalDecl().getDecl() != 3046 OtherGD.getCanonicalDecl().getDecl()) && 3047 DiagnosedConflictingDefinitions.insert(GD).second) { 3048 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3049 << MangledName; 3050 getDiags().Report(OtherGD.getDecl()->getLocation(), 3051 diag::note_previous_definition); 3052 } 3053 } 3054 3055 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3056 (Entry->getType()->getElementType() == Ty)) { 3057 return Entry; 3058 } 3059 3060 // Make sure the result is of the correct type. 3061 // (If function is requested for a definition, we always need to create a new 3062 // function, not just return a bitcast.) 3063 if (!IsForDefinition) 3064 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3065 } 3066 3067 // This function doesn't have a complete type (for example, the return 3068 // type is an incomplete struct). Use a fake type instead, and make 3069 // sure not to try to set attributes. 3070 bool IsIncompleteFunction = false; 3071 3072 llvm::FunctionType *FTy; 3073 if (isa<llvm::FunctionType>(Ty)) { 3074 FTy = cast<llvm::FunctionType>(Ty); 3075 } else { 3076 FTy = llvm::FunctionType::get(VoidTy, false); 3077 IsIncompleteFunction = true; 3078 } 3079 3080 llvm::Function *F = 3081 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3082 Entry ? StringRef() : MangledName, &getModule()); 3083 3084 // If we already created a function with the same mangled name (but different 3085 // type) before, take its name and add it to the list of functions to be 3086 // replaced with F at the end of CodeGen. 3087 // 3088 // This happens if there is a prototype for a function (e.g. "int f()") and 3089 // then a definition of a different type (e.g. "int f(int x)"). 3090 if (Entry) { 3091 F->takeName(Entry); 3092 3093 // This might be an implementation of a function without a prototype, in 3094 // which case, try to do special replacement of calls which match the new 3095 // prototype. The really key thing here is that we also potentially drop 3096 // arguments from the call site so as to make a direct call, which makes the 3097 // inliner happier and suppresses a number of optimizer warnings (!) about 3098 // dropping arguments. 3099 if (!Entry->use_empty()) { 3100 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3101 Entry->removeDeadConstantUsers(); 3102 } 3103 3104 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3105 F, Entry->getType()->getElementType()->getPointerTo()); 3106 addGlobalValReplacement(Entry, BC); 3107 } 3108 3109 assert(F->getName() == MangledName && "name was uniqued!"); 3110 if (D) 3111 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3112 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3113 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3114 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3115 } 3116 3117 if (!DontDefer) { 3118 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3119 // each other bottoming out with the base dtor. Therefore we emit non-base 3120 // dtors on usage, even if there is no dtor definition in the TU. 3121 if (D && isa<CXXDestructorDecl>(D) && 3122 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3123 GD.getDtorType())) 3124 addDeferredDeclToEmit(GD); 3125 3126 // This is the first use or definition of a mangled name. If there is a 3127 // deferred decl with this name, remember that we need to emit it at the end 3128 // of the file. 3129 auto DDI = DeferredDecls.find(MangledName); 3130 if (DDI != DeferredDecls.end()) { 3131 // Move the potentially referenced deferred decl to the 3132 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3133 // don't need it anymore). 3134 addDeferredDeclToEmit(DDI->second); 3135 DeferredDecls.erase(DDI); 3136 3137 // Otherwise, there are cases we have to worry about where we're 3138 // using a declaration for which we must emit a definition but where 3139 // we might not find a top-level definition: 3140 // - member functions defined inline in their classes 3141 // - friend functions defined inline in some class 3142 // - special member functions with implicit definitions 3143 // If we ever change our AST traversal to walk into class methods, 3144 // this will be unnecessary. 3145 // 3146 // We also don't emit a definition for a function if it's going to be an 3147 // entry in a vtable, unless it's already marked as used. 3148 } else if (getLangOpts().CPlusPlus && D) { 3149 // Look for a declaration that's lexically in a record. 3150 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3151 FD = FD->getPreviousDecl()) { 3152 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3153 if (FD->doesThisDeclarationHaveABody()) { 3154 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3155 break; 3156 } 3157 } 3158 } 3159 } 3160 } 3161 3162 // Make sure the result is of the requested type. 3163 if (!IsIncompleteFunction) { 3164 assert(F->getType()->getElementType() == Ty); 3165 return F; 3166 } 3167 3168 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3169 return llvm::ConstantExpr::getBitCast(F, PTy); 3170 } 3171 3172 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3173 /// non-null, then this function will use the specified type if it has to 3174 /// create it (this occurs when we see a definition of the function). 3175 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3176 llvm::Type *Ty, 3177 bool ForVTable, 3178 bool DontDefer, 3179 ForDefinition_t IsForDefinition) { 3180 // If there was no specific requested type, just convert it now. 3181 if (!Ty) { 3182 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3183 Ty = getTypes().ConvertType(FD->getType()); 3184 } 3185 3186 // Devirtualized destructor calls may come through here instead of via 3187 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3188 // of the complete destructor when necessary. 3189 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3190 if (getTarget().getCXXABI().isMicrosoft() && 3191 GD.getDtorType() == Dtor_Complete && 3192 DD->getParent()->getNumVBases() == 0) 3193 GD = GlobalDecl(DD, Dtor_Base); 3194 } 3195 3196 StringRef MangledName = getMangledName(GD); 3197 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3198 /*IsThunk=*/false, llvm::AttributeList(), 3199 IsForDefinition); 3200 } 3201 3202 static const FunctionDecl * 3203 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3204 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3205 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3206 3207 IdentifierInfo &CII = C.Idents.get(Name); 3208 for (const auto &Result : DC->lookup(&CII)) 3209 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3210 return FD; 3211 3212 if (!C.getLangOpts().CPlusPlus) 3213 return nullptr; 3214 3215 // Demangle the premangled name from getTerminateFn() 3216 IdentifierInfo &CXXII = 3217 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3218 ? C.Idents.get("terminate") 3219 : C.Idents.get(Name); 3220 3221 for (const auto &N : {"__cxxabiv1", "std"}) { 3222 IdentifierInfo &NS = C.Idents.get(N); 3223 for (const auto &Result : DC->lookup(&NS)) { 3224 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3225 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3226 for (const auto &Result : LSD->lookup(&NS)) 3227 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3228 break; 3229 3230 if (ND) 3231 for (const auto &Result : ND->lookup(&CXXII)) 3232 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3233 return FD; 3234 } 3235 } 3236 3237 return nullptr; 3238 } 3239 3240 /// CreateRuntimeFunction - Create a new runtime function with the specified 3241 /// type and name. 3242 llvm::FunctionCallee 3243 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3244 llvm::AttributeList ExtraAttrs, 3245 bool Local) { 3246 llvm::Constant *C = 3247 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3248 /*DontDefer=*/false, /*IsThunk=*/false, 3249 ExtraAttrs); 3250 3251 if (auto *F = dyn_cast<llvm::Function>(C)) { 3252 if (F->empty()) { 3253 F->setCallingConv(getRuntimeCC()); 3254 3255 // In Windows Itanium environments, try to mark runtime functions 3256 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3257 // will link their standard library statically or dynamically. Marking 3258 // functions imported when they are not imported can cause linker errors 3259 // and warnings. 3260 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3261 !getCodeGenOpts().LTOVisibilityPublicStd) { 3262 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3263 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3264 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3265 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3266 } 3267 } 3268 setDSOLocal(F); 3269 } 3270 } 3271 3272 return {FTy, C}; 3273 } 3274 3275 /// isTypeConstant - Determine whether an object of this type can be emitted 3276 /// as a constant. 3277 /// 3278 /// If ExcludeCtor is true, the duration when the object's constructor runs 3279 /// will not be considered. The caller will need to verify that the object is 3280 /// not written to during its construction. 3281 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3282 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3283 return false; 3284 3285 if (Context.getLangOpts().CPlusPlus) { 3286 if (const CXXRecordDecl *Record 3287 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3288 return ExcludeCtor && !Record->hasMutableFields() && 3289 Record->hasTrivialDestructor(); 3290 } 3291 3292 return true; 3293 } 3294 3295 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3296 /// create and return an llvm GlobalVariable with the specified type. If there 3297 /// is something in the module with the specified name, return it potentially 3298 /// bitcasted to the right type. 3299 /// 3300 /// If D is non-null, it specifies a decl that correspond to this. This is used 3301 /// to set the attributes on the global when it is first created. 3302 /// 3303 /// If IsForDefinition is true, it is guaranteed that an actual global with 3304 /// type Ty will be returned, not conversion of a variable with the same 3305 /// mangled name but some other type. 3306 llvm::Constant * 3307 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3308 llvm::PointerType *Ty, 3309 const VarDecl *D, 3310 ForDefinition_t IsForDefinition) { 3311 // Lookup the entry, lazily creating it if necessary. 3312 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3313 if (Entry) { 3314 if (WeakRefReferences.erase(Entry)) { 3315 if (D && !D->hasAttr<WeakAttr>()) 3316 Entry->setLinkage(llvm::Function::ExternalLinkage); 3317 } 3318 3319 // Handle dropped DLL attributes. 3320 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3321 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3322 3323 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3324 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3325 3326 if (Entry->getType() == Ty) 3327 return Entry; 3328 3329 // If there are two attempts to define the same mangled name, issue an 3330 // error. 3331 if (IsForDefinition && !Entry->isDeclaration()) { 3332 GlobalDecl OtherGD; 3333 const VarDecl *OtherD; 3334 3335 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3336 // to make sure that we issue an error only once. 3337 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3338 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3339 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3340 OtherD->hasInit() && 3341 DiagnosedConflictingDefinitions.insert(D).second) { 3342 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3343 << MangledName; 3344 getDiags().Report(OtherGD.getDecl()->getLocation(), 3345 diag::note_previous_definition); 3346 } 3347 } 3348 3349 // Make sure the result is of the correct type. 3350 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3351 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3352 3353 // (If global is requested for a definition, we always need to create a new 3354 // global, not just return a bitcast.) 3355 if (!IsForDefinition) 3356 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3357 } 3358 3359 auto AddrSpace = GetGlobalVarAddressSpace(D); 3360 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3361 3362 auto *GV = new llvm::GlobalVariable( 3363 getModule(), Ty->getElementType(), false, 3364 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3365 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3366 3367 // If we already created a global with the same mangled name (but different 3368 // type) before, take its name and remove it from its parent. 3369 if (Entry) { 3370 GV->takeName(Entry); 3371 3372 if (!Entry->use_empty()) { 3373 llvm::Constant *NewPtrForOldDecl = 3374 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3375 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3376 } 3377 3378 Entry->eraseFromParent(); 3379 } 3380 3381 // This is the first use or definition of a mangled name. If there is a 3382 // deferred decl with this name, remember that we need to emit it at the end 3383 // of the file. 3384 auto DDI = DeferredDecls.find(MangledName); 3385 if (DDI != DeferredDecls.end()) { 3386 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3387 // list, and remove it from DeferredDecls (since we don't need it anymore). 3388 addDeferredDeclToEmit(DDI->second); 3389 DeferredDecls.erase(DDI); 3390 } 3391 3392 // Handle things which are present even on external declarations. 3393 if (D) { 3394 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3395 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3396 3397 // FIXME: This code is overly simple and should be merged with other global 3398 // handling. 3399 GV->setConstant(isTypeConstant(D->getType(), false)); 3400 3401 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3402 3403 setLinkageForGV(GV, D); 3404 3405 if (D->getTLSKind()) { 3406 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3407 CXXThreadLocals.push_back(D); 3408 setTLSMode(GV, *D); 3409 } 3410 3411 setGVProperties(GV, D); 3412 3413 // If required by the ABI, treat declarations of static data members with 3414 // inline initializers as definitions. 3415 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3416 EmitGlobalVarDefinition(D); 3417 } 3418 3419 // Emit section information for extern variables. 3420 if (D->hasExternalStorage()) { 3421 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3422 GV->setSection(SA->getName()); 3423 } 3424 3425 // Handle XCore specific ABI requirements. 3426 if (getTriple().getArch() == llvm::Triple::xcore && 3427 D->getLanguageLinkage() == CLanguageLinkage && 3428 D->getType().isConstant(Context) && 3429 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3430 GV->setSection(".cp.rodata"); 3431 3432 // Check if we a have a const declaration with an initializer, we may be 3433 // able to emit it as available_externally to expose it's value to the 3434 // optimizer. 3435 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3436 D->getType().isConstQualified() && !GV->hasInitializer() && 3437 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3438 const auto *Record = 3439 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3440 bool HasMutableFields = Record && Record->hasMutableFields(); 3441 if (!HasMutableFields) { 3442 const VarDecl *InitDecl; 3443 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3444 if (InitExpr) { 3445 ConstantEmitter emitter(*this); 3446 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3447 if (Init) { 3448 auto *InitType = Init->getType(); 3449 if (GV->getType()->getElementType() != InitType) { 3450 // The type of the initializer does not match the definition. 3451 // This happens when an initializer has a different type from 3452 // the type of the global (because of padding at the end of a 3453 // structure for instance). 3454 GV->setName(StringRef()); 3455 // Make a new global with the correct type, this is now guaranteed 3456 // to work. 3457 auto *NewGV = cast<llvm::GlobalVariable>( 3458 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3459 3460 // Erase the old global, since it is no longer used. 3461 GV->eraseFromParent(); 3462 GV = NewGV; 3463 } else { 3464 GV->setInitializer(Init); 3465 GV->setConstant(true); 3466 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3467 } 3468 emitter.finalize(GV); 3469 } 3470 } 3471 } 3472 } 3473 } 3474 3475 LangAS ExpectedAS = 3476 D ? D->getType().getAddressSpace() 3477 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3478 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3479 Ty->getPointerAddressSpace()); 3480 if (AddrSpace != ExpectedAS) 3481 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3482 ExpectedAS, Ty); 3483 3484 if (GV->isDeclaration()) 3485 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3486 3487 return GV; 3488 } 3489 3490 llvm::Constant * 3491 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3492 ForDefinition_t IsForDefinition) { 3493 const Decl *D = GD.getDecl(); 3494 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3495 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3496 /*DontDefer=*/false, IsForDefinition); 3497 else if (isa<CXXMethodDecl>(D)) { 3498 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3499 cast<CXXMethodDecl>(D)); 3500 auto Ty = getTypes().GetFunctionType(*FInfo); 3501 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3502 IsForDefinition); 3503 } else if (isa<FunctionDecl>(D)) { 3504 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3505 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3506 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3507 IsForDefinition); 3508 } else 3509 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3510 IsForDefinition); 3511 } 3512 3513 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3514 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3515 unsigned Alignment) { 3516 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3517 llvm::GlobalVariable *OldGV = nullptr; 3518 3519 if (GV) { 3520 // Check if the variable has the right type. 3521 if (GV->getType()->getElementType() == Ty) 3522 return GV; 3523 3524 // Because C++ name mangling, the only way we can end up with an already 3525 // existing global with the same name is if it has been declared extern "C". 3526 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3527 OldGV = GV; 3528 } 3529 3530 // Create a new variable. 3531 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3532 Linkage, nullptr, Name); 3533 3534 if (OldGV) { 3535 // Replace occurrences of the old variable if needed. 3536 GV->takeName(OldGV); 3537 3538 if (!OldGV->use_empty()) { 3539 llvm::Constant *NewPtrForOldDecl = 3540 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3541 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3542 } 3543 3544 OldGV->eraseFromParent(); 3545 } 3546 3547 if (supportsCOMDAT() && GV->isWeakForLinker() && 3548 !GV->hasAvailableExternallyLinkage()) 3549 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3550 3551 GV->setAlignment(Alignment); 3552 3553 return GV; 3554 } 3555 3556 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3557 /// given global variable. If Ty is non-null and if the global doesn't exist, 3558 /// then it will be created with the specified type instead of whatever the 3559 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3560 /// that an actual global with type Ty will be returned, not conversion of a 3561 /// variable with the same mangled name but some other type. 3562 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3563 llvm::Type *Ty, 3564 ForDefinition_t IsForDefinition) { 3565 assert(D->hasGlobalStorage() && "Not a global variable"); 3566 QualType ASTTy = D->getType(); 3567 if (!Ty) 3568 Ty = getTypes().ConvertTypeForMem(ASTTy); 3569 3570 llvm::PointerType *PTy = 3571 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3572 3573 StringRef MangledName = getMangledName(D); 3574 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3575 } 3576 3577 /// CreateRuntimeVariable - Create a new runtime global variable with the 3578 /// specified type and name. 3579 llvm::Constant * 3580 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3581 StringRef Name) { 3582 auto PtrTy = 3583 getContext().getLangOpts().OpenCL 3584 ? llvm::PointerType::get( 3585 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3586 : llvm::PointerType::getUnqual(Ty); 3587 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3588 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3589 return Ret; 3590 } 3591 3592 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3593 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3594 3595 StringRef MangledName = getMangledName(D); 3596 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3597 3598 // We already have a definition, not declaration, with the same mangled name. 3599 // Emitting of declaration is not required (and actually overwrites emitted 3600 // definition). 3601 if (GV && !GV->isDeclaration()) 3602 return; 3603 3604 // If we have not seen a reference to this variable yet, place it into the 3605 // deferred declarations table to be emitted if needed later. 3606 if (!MustBeEmitted(D) && !GV) { 3607 DeferredDecls[MangledName] = D; 3608 return; 3609 } 3610 3611 // The tentative definition is the only definition. 3612 EmitGlobalVarDefinition(D); 3613 } 3614 3615 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3616 return Context.toCharUnitsFromBits( 3617 getDataLayout().getTypeStoreSizeInBits(Ty)); 3618 } 3619 3620 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3621 LangAS AddrSpace = LangAS::Default; 3622 if (LangOpts.OpenCL) { 3623 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3624 assert(AddrSpace == LangAS::opencl_global || 3625 AddrSpace == LangAS::opencl_constant || 3626 AddrSpace == LangAS::opencl_local || 3627 AddrSpace >= LangAS::FirstTargetAddressSpace); 3628 return AddrSpace; 3629 } 3630 3631 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3632 if (D && D->hasAttr<CUDAConstantAttr>()) 3633 return LangAS::cuda_constant; 3634 else if (D && D->hasAttr<CUDASharedAttr>()) 3635 return LangAS::cuda_shared; 3636 else if (D && D->hasAttr<CUDADeviceAttr>()) 3637 return LangAS::cuda_device; 3638 else if (D && D->getType().isConstQualified()) 3639 return LangAS::cuda_constant; 3640 else 3641 return LangAS::cuda_device; 3642 } 3643 3644 if (LangOpts.OpenMP) { 3645 LangAS AS; 3646 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3647 return AS; 3648 } 3649 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3650 } 3651 3652 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3653 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3654 if (LangOpts.OpenCL) 3655 return LangAS::opencl_constant; 3656 if (auto AS = getTarget().getConstantAddressSpace()) 3657 return AS.getValue(); 3658 return LangAS::Default; 3659 } 3660 3661 // In address space agnostic languages, string literals are in default address 3662 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3663 // emitted in constant address space in LLVM IR. To be consistent with other 3664 // parts of AST, string literal global variables in constant address space 3665 // need to be casted to default address space before being put into address 3666 // map and referenced by other part of CodeGen. 3667 // In OpenCL, string literals are in constant address space in AST, therefore 3668 // they should not be casted to default address space. 3669 static llvm::Constant * 3670 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3671 llvm::GlobalVariable *GV) { 3672 llvm::Constant *Cast = GV; 3673 if (!CGM.getLangOpts().OpenCL) { 3674 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3675 if (AS != LangAS::Default) 3676 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3677 CGM, GV, AS.getValue(), LangAS::Default, 3678 GV->getValueType()->getPointerTo( 3679 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3680 } 3681 } 3682 return Cast; 3683 } 3684 3685 template<typename SomeDecl> 3686 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3687 llvm::GlobalValue *GV) { 3688 if (!getLangOpts().CPlusPlus) 3689 return; 3690 3691 // Must have 'used' attribute, or else inline assembly can't rely on 3692 // the name existing. 3693 if (!D->template hasAttr<UsedAttr>()) 3694 return; 3695 3696 // Must have internal linkage and an ordinary name. 3697 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3698 return; 3699 3700 // Must be in an extern "C" context. Entities declared directly within 3701 // a record are not extern "C" even if the record is in such a context. 3702 const SomeDecl *First = D->getFirstDecl(); 3703 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3704 return; 3705 3706 // OK, this is an internal linkage entity inside an extern "C" linkage 3707 // specification. Make a note of that so we can give it the "expected" 3708 // mangled name if nothing else is using that name. 3709 std::pair<StaticExternCMap::iterator, bool> R = 3710 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3711 3712 // If we have multiple internal linkage entities with the same name 3713 // in extern "C" regions, none of them gets that name. 3714 if (!R.second) 3715 R.first->second = nullptr; 3716 } 3717 3718 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3719 if (!CGM.supportsCOMDAT()) 3720 return false; 3721 3722 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3723 // them being "merged" by the COMDAT Folding linker optimization. 3724 if (D.hasAttr<CUDAGlobalAttr>()) 3725 return false; 3726 3727 if (D.hasAttr<SelectAnyAttr>()) 3728 return true; 3729 3730 GVALinkage Linkage; 3731 if (auto *VD = dyn_cast<VarDecl>(&D)) 3732 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3733 else 3734 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3735 3736 switch (Linkage) { 3737 case GVA_Internal: 3738 case GVA_AvailableExternally: 3739 case GVA_StrongExternal: 3740 return false; 3741 case GVA_DiscardableODR: 3742 case GVA_StrongODR: 3743 return true; 3744 } 3745 llvm_unreachable("No such linkage"); 3746 } 3747 3748 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3749 llvm::GlobalObject &GO) { 3750 if (!shouldBeInCOMDAT(*this, D)) 3751 return; 3752 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3753 } 3754 3755 /// Pass IsTentative as true if you want to create a tentative definition. 3756 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3757 bool IsTentative) { 3758 // OpenCL global variables of sampler type are translated to function calls, 3759 // therefore no need to be translated. 3760 QualType ASTTy = D->getType(); 3761 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3762 return; 3763 3764 // If this is OpenMP device, check if it is legal to emit this global 3765 // normally. 3766 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3767 OpenMPRuntime->emitTargetGlobalVariable(D)) 3768 return; 3769 3770 llvm::Constant *Init = nullptr; 3771 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3772 bool NeedsGlobalCtor = false; 3773 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3774 3775 const VarDecl *InitDecl; 3776 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3777 3778 Optional<ConstantEmitter> emitter; 3779 3780 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3781 // as part of their declaration." Sema has already checked for 3782 // error cases, so we just need to set Init to UndefValue. 3783 bool IsCUDASharedVar = 3784 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3785 // Shadows of initialized device-side global variables are also left 3786 // undefined. 3787 bool IsCUDAShadowVar = 3788 !getLangOpts().CUDAIsDevice && 3789 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3790 D->hasAttr<CUDASharedAttr>()); 3791 // HIP pinned shadow of initialized host-side global variables are also 3792 // left undefined. 3793 bool IsHIPPinnedShadowVar = 3794 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3795 if (getLangOpts().CUDA && 3796 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3797 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3798 else if (!InitExpr) { 3799 // This is a tentative definition; tentative definitions are 3800 // implicitly initialized with { 0 }. 3801 // 3802 // Note that tentative definitions are only emitted at the end of 3803 // a translation unit, so they should never have incomplete 3804 // type. In addition, EmitTentativeDefinition makes sure that we 3805 // never attempt to emit a tentative definition if a real one 3806 // exists. A use may still exists, however, so we still may need 3807 // to do a RAUW. 3808 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3809 Init = EmitNullConstant(D->getType()); 3810 } else { 3811 initializedGlobalDecl = GlobalDecl(D); 3812 emitter.emplace(*this); 3813 Init = emitter->tryEmitForInitializer(*InitDecl); 3814 3815 if (!Init) { 3816 QualType T = InitExpr->getType(); 3817 if (D->getType()->isReferenceType()) 3818 T = D->getType(); 3819 3820 if (getLangOpts().CPlusPlus) { 3821 Init = EmitNullConstant(T); 3822 NeedsGlobalCtor = true; 3823 } else { 3824 ErrorUnsupported(D, "static initializer"); 3825 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3826 } 3827 } else { 3828 // We don't need an initializer, so remove the entry for the delayed 3829 // initializer position (just in case this entry was delayed) if we 3830 // also don't need to register a destructor. 3831 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3832 DelayedCXXInitPosition.erase(D); 3833 } 3834 } 3835 3836 llvm::Type* InitType = Init->getType(); 3837 llvm::Constant *Entry = 3838 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3839 3840 // Strip off a bitcast if we got one back. 3841 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3842 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3843 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3844 // All zero index gep. 3845 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3846 Entry = CE->getOperand(0); 3847 } 3848 3849 // Entry is now either a Function or GlobalVariable. 3850 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3851 3852 // We have a definition after a declaration with the wrong type. 3853 // We must make a new GlobalVariable* and update everything that used OldGV 3854 // (a declaration or tentative definition) with the new GlobalVariable* 3855 // (which will be a definition). 3856 // 3857 // This happens if there is a prototype for a global (e.g. 3858 // "extern int x[];") and then a definition of a different type (e.g. 3859 // "int x[10];"). This also happens when an initializer has a different type 3860 // from the type of the global (this happens with unions). 3861 if (!GV || GV->getType()->getElementType() != InitType || 3862 GV->getType()->getAddressSpace() != 3863 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3864 3865 // Move the old entry aside so that we'll create a new one. 3866 Entry->setName(StringRef()); 3867 3868 // Make a new global with the correct type, this is now guaranteed to work. 3869 GV = cast<llvm::GlobalVariable>( 3870 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3871 3872 // Replace all uses of the old global with the new global 3873 llvm::Constant *NewPtrForOldDecl = 3874 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3875 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3876 3877 // Erase the old global, since it is no longer used. 3878 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3879 } 3880 3881 MaybeHandleStaticInExternC(D, GV); 3882 3883 if (D->hasAttr<AnnotateAttr>()) 3884 AddGlobalAnnotations(D, GV); 3885 3886 // Set the llvm linkage type as appropriate. 3887 llvm::GlobalValue::LinkageTypes Linkage = 3888 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3889 3890 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3891 // the device. [...]" 3892 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3893 // __device__, declares a variable that: [...] 3894 // Is accessible from all the threads within the grid and from the host 3895 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3896 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3897 if (GV && LangOpts.CUDA) { 3898 if (LangOpts.CUDAIsDevice) { 3899 if (Linkage != llvm::GlobalValue::InternalLinkage && 3900 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 3901 GV->setExternallyInitialized(true); 3902 } else { 3903 // Host-side shadows of external declarations of device-side 3904 // global variables become internal definitions. These have to 3905 // be internal in order to prevent name conflicts with global 3906 // host variables with the same name in a different TUs. 3907 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 3908 D->hasAttr<HIPPinnedShadowAttr>()) { 3909 Linkage = llvm::GlobalValue::InternalLinkage; 3910 3911 // Shadow variables and their properties must be registered 3912 // with CUDA runtime. 3913 unsigned Flags = 0; 3914 if (!D->hasDefinition()) 3915 Flags |= CGCUDARuntime::ExternDeviceVar; 3916 if (D->hasAttr<CUDAConstantAttr>()) 3917 Flags |= CGCUDARuntime::ConstantDeviceVar; 3918 // Extern global variables will be registered in the TU where they are 3919 // defined. 3920 if (!D->hasExternalStorage()) 3921 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3922 } else if (D->hasAttr<CUDASharedAttr>()) 3923 // __shared__ variables are odd. Shadows do get created, but 3924 // they are not registered with the CUDA runtime, so they 3925 // can't really be used to access their device-side 3926 // counterparts. It's not clear yet whether it's nvcc's bug or 3927 // a feature, but we've got to do the same for compatibility. 3928 Linkage = llvm::GlobalValue::InternalLinkage; 3929 } 3930 } 3931 3932 if (!IsHIPPinnedShadowVar) 3933 GV->setInitializer(Init); 3934 if (emitter) emitter->finalize(GV); 3935 3936 // If it is safe to mark the global 'constant', do so now. 3937 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3938 isTypeConstant(D->getType(), true)); 3939 3940 // If it is in a read-only section, mark it 'constant'. 3941 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3942 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3943 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3944 GV->setConstant(true); 3945 } 3946 3947 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3948 3949 3950 // On Darwin, if the normal linkage of a C++ thread_local variable is 3951 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3952 // copies within a linkage unit; otherwise, the backing variable has 3953 // internal linkage and all accesses should just be calls to the 3954 // Itanium-specified entry point, which has the normal linkage of the 3955 // variable. This is to preserve the ability to change the implementation 3956 // behind the scenes. 3957 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3958 Context.getTargetInfo().getTriple().isOSDarwin() && 3959 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3960 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3961 Linkage = llvm::GlobalValue::InternalLinkage; 3962 3963 GV->setLinkage(Linkage); 3964 if (D->hasAttr<DLLImportAttr>()) 3965 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3966 else if (D->hasAttr<DLLExportAttr>()) 3967 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3968 else 3969 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3970 3971 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3972 // common vars aren't constant even if declared const. 3973 GV->setConstant(false); 3974 // Tentative definition of global variables may be initialized with 3975 // non-zero null pointers. In this case they should have weak linkage 3976 // since common linkage must have zero initializer and must not have 3977 // explicit section therefore cannot have non-zero initial value. 3978 if (!GV->getInitializer()->isNullValue()) 3979 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3980 } 3981 3982 setNonAliasAttributes(D, GV); 3983 3984 if (D->getTLSKind() && !GV->isThreadLocal()) { 3985 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3986 CXXThreadLocals.push_back(D); 3987 setTLSMode(GV, *D); 3988 } 3989 3990 maybeSetTrivialComdat(*D, *GV); 3991 3992 // Emit the initializer function if necessary. 3993 if (NeedsGlobalCtor || NeedsGlobalDtor) 3994 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3995 3996 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3997 3998 // Emit global variable debug information. 3999 if (CGDebugInfo *DI = getModuleDebugInfo()) 4000 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4001 DI->EmitGlobalVariable(GV, D); 4002 } 4003 4004 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4005 CodeGenModule &CGM, const VarDecl *D, 4006 bool NoCommon) { 4007 // Don't give variables common linkage if -fno-common was specified unless it 4008 // was overridden by a NoCommon attribute. 4009 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4010 return true; 4011 4012 // C11 6.9.2/2: 4013 // A declaration of an identifier for an object that has file scope without 4014 // an initializer, and without a storage-class specifier or with the 4015 // storage-class specifier static, constitutes a tentative definition. 4016 if (D->getInit() || D->hasExternalStorage()) 4017 return true; 4018 4019 // A variable cannot be both common and exist in a section. 4020 if (D->hasAttr<SectionAttr>()) 4021 return true; 4022 4023 // A variable cannot be both common and exist in a section. 4024 // We don't try to determine which is the right section in the front-end. 4025 // If no specialized section name is applicable, it will resort to default. 4026 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4027 D->hasAttr<PragmaClangDataSectionAttr>() || 4028 D->hasAttr<PragmaClangRodataSectionAttr>()) 4029 return true; 4030 4031 // Thread local vars aren't considered common linkage. 4032 if (D->getTLSKind()) 4033 return true; 4034 4035 // Tentative definitions marked with WeakImportAttr are true definitions. 4036 if (D->hasAttr<WeakImportAttr>()) 4037 return true; 4038 4039 // A variable cannot be both common and exist in a comdat. 4040 if (shouldBeInCOMDAT(CGM, *D)) 4041 return true; 4042 4043 // Declarations with a required alignment do not have common linkage in MSVC 4044 // mode. 4045 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4046 if (D->hasAttr<AlignedAttr>()) 4047 return true; 4048 QualType VarType = D->getType(); 4049 if (Context.isAlignmentRequired(VarType)) 4050 return true; 4051 4052 if (const auto *RT = VarType->getAs<RecordType>()) { 4053 const RecordDecl *RD = RT->getDecl(); 4054 for (const FieldDecl *FD : RD->fields()) { 4055 if (FD->isBitField()) 4056 continue; 4057 if (FD->hasAttr<AlignedAttr>()) 4058 return true; 4059 if (Context.isAlignmentRequired(FD->getType())) 4060 return true; 4061 } 4062 } 4063 } 4064 4065 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4066 // common symbols, so symbols with greater alignment requirements cannot be 4067 // common. 4068 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4069 // alignments for common symbols via the aligncomm directive, so this 4070 // restriction only applies to MSVC environments. 4071 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4072 Context.getTypeAlignIfKnown(D->getType()) > 4073 Context.toBits(CharUnits::fromQuantity(32))) 4074 return true; 4075 4076 return false; 4077 } 4078 4079 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4080 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4081 if (Linkage == GVA_Internal) 4082 return llvm::Function::InternalLinkage; 4083 4084 if (D->hasAttr<WeakAttr>()) { 4085 if (IsConstantVariable) 4086 return llvm::GlobalVariable::WeakODRLinkage; 4087 else 4088 return llvm::GlobalVariable::WeakAnyLinkage; 4089 } 4090 4091 if (const auto *FD = D->getAsFunction()) 4092 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4093 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4094 4095 // We are guaranteed to have a strong definition somewhere else, 4096 // so we can use available_externally linkage. 4097 if (Linkage == GVA_AvailableExternally) 4098 return llvm::GlobalValue::AvailableExternallyLinkage; 4099 4100 // Note that Apple's kernel linker doesn't support symbol 4101 // coalescing, so we need to avoid linkonce and weak linkages there. 4102 // Normally, this means we just map to internal, but for explicit 4103 // instantiations we'll map to external. 4104 4105 // In C++, the compiler has to emit a definition in every translation unit 4106 // that references the function. We should use linkonce_odr because 4107 // a) if all references in this translation unit are optimized away, we 4108 // don't need to codegen it. b) if the function persists, it needs to be 4109 // merged with other definitions. c) C++ has the ODR, so we know the 4110 // definition is dependable. 4111 if (Linkage == GVA_DiscardableODR) 4112 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4113 : llvm::Function::InternalLinkage; 4114 4115 // An explicit instantiation of a template has weak linkage, since 4116 // explicit instantiations can occur in multiple translation units 4117 // and must all be equivalent. However, we are not allowed to 4118 // throw away these explicit instantiations. 4119 // 4120 // We don't currently support CUDA device code spread out across multiple TUs, 4121 // so say that CUDA templates are either external (for kernels) or internal. 4122 // This lets llvm perform aggressive inter-procedural optimizations. 4123 if (Linkage == GVA_StrongODR) { 4124 if (Context.getLangOpts().AppleKext) 4125 return llvm::Function::ExternalLinkage; 4126 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4127 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4128 : llvm::Function::InternalLinkage; 4129 return llvm::Function::WeakODRLinkage; 4130 } 4131 4132 // C++ doesn't have tentative definitions and thus cannot have common 4133 // linkage. 4134 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4135 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4136 CodeGenOpts.NoCommon)) 4137 return llvm::GlobalVariable::CommonLinkage; 4138 4139 // selectany symbols are externally visible, so use weak instead of 4140 // linkonce. MSVC optimizes away references to const selectany globals, so 4141 // all definitions should be the same and ODR linkage should be used. 4142 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4143 if (D->hasAttr<SelectAnyAttr>()) 4144 return llvm::GlobalVariable::WeakODRLinkage; 4145 4146 // Otherwise, we have strong external linkage. 4147 assert(Linkage == GVA_StrongExternal); 4148 return llvm::GlobalVariable::ExternalLinkage; 4149 } 4150 4151 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4152 const VarDecl *VD, bool IsConstant) { 4153 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4154 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4155 } 4156 4157 /// Replace the uses of a function that was declared with a non-proto type. 4158 /// We want to silently drop extra arguments from call sites 4159 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4160 llvm::Function *newFn) { 4161 // Fast path. 4162 if (old->use_empty()) return; 4163 4164 llvm::Type *newRetTy = newFn->getReturnType(); 4165 SmallVector<llvm::Value*, 4> newArgs; 4166 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4167 4168 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4169 ui != ue; ) { 4170 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4171 llvm::User *user = use->getUser(); 4172 4173 // Recognize and replace uses of bitcasts. Most calls to 4174 // unprototyped functions will use bitcasts. 4175 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4176 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4177 replaceUsesOfNonProtoConstant(bitcast, newFn); 4178 continue; 4179 } 4180 4181 // Recognize calls to the function. 4182 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4183 if (!callSite) continue; 4184 if (!callSite->isCallee(&*use)) 4185 continue; 4186 4187 // If the return types don't match exactly, then we can't 4188 // transform this call unless it's dead. 4189 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4190 continue; 4191 4192 // Get the call site's attribute list. 4193 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4194 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4195 4196 // If the function was passed too few arguments, don't transform. 4197 unsigned newNumArgs = newFn->arg_size(); 4198 if (callSite->arg_size() < newNumArgs) 4199 continue; 4200 4201 // If extra arguments were passed, we silently drop them. 4202 // If any of the types mismatch, we don't transform. 4203 unsigned argNo = 0; 4204 bool dontTransform = false; 4205 for (llvm::Argument &A : newFn->args()) { 4206 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4207 dontTransform = true; 4208 break; 4209 } 4210 4211 // Add any parameter attributes. 4212 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4213 argNo++; 4214 } 4215 if (dontTransform) 4216 continue; 4217 4218 // Okay, we can transform this. Create the new call instruction and copy 4219 // over the required information. 4220 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4221 4222 // Copy over any operand bundles. 4223 callSite->getOperandBundlesAsDefs(newBundles); 4224 4225 llvm::CallBase *newCall; 4226 if (dyn_cast<llvm::CallInst>(callSite)) { 4227 newCall = 4228 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4229 } else { 4230 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4231 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4232 oldInvoke->getUnwindDest(), newArgs, 4233 newBundles, "", callSite); 4234 } 4235 newArgs.clear(); // for the next iteration 4236 4237 if (!newCall->getType()->isVoidTy()) 4238 newCall->takeName(callSite); 4239 newCall->setAttributes(llvm::AttributeList::get( 4240 newFn->getContext(), oldAttrs.getFnAttributes(), 4241 oldAttrs.getRetAttributes(), newArgAttrs)); 4242 newCall->setCallingConv(callSite->getCallingConv()); 4243 4244 // Finally, remove the old call, replacing any uses with the new one. 4245 if (!callSite->use_empty()) 4246 callSite->replaceAllUsesWith(newCall); 4247 4248 // Copy debug location attached to CI. 4249 if (callSite->getDebugLoc()) 4250 newCall->setDebugLoc(callSite->getDebugLoc()); 4251 4252 callSite->eraseFromParent(); 4253 } 4254 } 4255 4256 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4257 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4258 /// existing call uses of the old function in the module, this adjusts them to 4259 /// call the new function directly. 4260 /// 4261 /// This is not just a cleanup: the always_inline pass requires direct calls to 4262 /// functions to be able to inline them. If there is a bitcast in the way, it 4263 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4264 /// run at -O0. 4265 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4266 llvm::Function *NewFn) { 4267 // If we're redefining a global as a function, don't transform it. 4268 if (!isa<llvm::Function>(Old)) return; 4269 4270 replaceUsesOfNonProtoConstant(Old, NewFn); 4271 } 4272 4273 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4274 auto DK = VD->isThisDeclarationADefinition(); 4275 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4276 return; 4277 4278 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4279 // If we have a definition, this might be a deferred decl. If the 4280 // instantiation is explicit, make sure we emit it at the end. 4281 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4282 GetAddrOfGlobalVar(VD); 4283 4284 EmitTopLevelDecl(VD); 4285 } 4286 4287 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4288 llvm::GlobalValue *GV) { 4289 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4290 4291 // Compute the function info and LLVM type. 4292 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4293 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4294 4295 // Get or create the prototype for the function. 4296 if (!GV || (GV->getType()->getElementType() != Ty)) 4297 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4298 /*DontDefer=*/true, 4299 ForDefinition)); 4300 4301 // Already emitted. 4302 if (!GV->isDeclaration()) 4303 return; 4304 4305 // We need to set linkage and visibility on the function before 4306 // generating code for it because various parts of IR generation 4307 // want to propagate this information down (e.g. to local static 4308 // declarations). 4309 auto *Fn = cast<llvm::Function>(GV); 4310 setFunctionLinkage(GD, Fn); 4311 4312 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4313 setGVProperties(Fn, GD); 4314 4315 MaybeHandleStaticInExternC(D, Fn); 4316 4317 4318 maybeSetTrivialComdat(*D, *Fn); 4319 4320 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4321 4322 setNonAliasAttributes(GD, Fn); 4323 SetLLVMFunctionAttributesForDefinition(D, Fn); 4324 4325 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4326 AddGlobalCtor(Fn, CA->getPriority()); 4327 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4328 AddGlobalDtor(Fn, DA->getPriority()); 4329 if (D->hasAttr<AnnotateAttr>()) 4330 AddGlobalAnnotations(D, Fn); 4331 } 4332 4333 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4334 const auto *D = cast<ValueDecl>(GD.getDecl()); 4335 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4336 assert(AA && "Not an alias?"); 4337 4338 StringRef MangledName = getMangledName(GD); 4339 4340 if (AA->getAliasee() == MangledName) { 4341 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4342 return; 4343 } 4344 4345 // If there is a definition in the module, then it wins over the alias. 4346 // This is dubious, but allow it to be safe. Just ignore the alias. 4347 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4348 if (Entry && !Entry->isDeclaration()) 4349 return; 4350 4351 Aliases.push_back(GD); 4352 4353 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4354 4355 // Create a reference to the named value. This ensures that it is emitted 4356 // if a deferred decl. 4357 llvm::Constant *Aliasee; 4358 llvm::GlobalValue::LinkageTypes LT; 4359 if (isa<llvm::FunctionType>(DeclTy)) { 4360 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4361 /*ForVTable=*/false); 4362 LT = getFunctionLinkage(GD); 4363 } else { 4364 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4365 llvm::PointerType::getUnqual(DeclTy), 4366 /*D=*/nullptr); 4367 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4368 D->getType().isConstQualified()); 4369 } 4370 4371 // Create the new alias itself, but don't set a name yet. 4372 auto *GA = 4373 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4374 4375 if (Entry) { 4376 if (GA->getAliasee() == Entry) { 4377 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4378 return; 4379 } 4380 4381 assert(Entry->isDeclaration()); 4382 4383 // If there is a declaration in the module, then we had an extern followed 4384 // by the alias, as in: 4385 // extern int test6(); 4386 // ... 4387 // int test6() __attribute__((alias("test7"))); 4388 // 4389 // Remove it and replace uses of it with the alias. 4390 GA->takeName(Entry); 4391 4392 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4393 Entry->getType())); 4394 Entry->eraseFromParent(); 4395 } else { 4396 GA->setName(MangledName); 4397 } 4398 4399 // Set attributes which are particular to an alias; this is a 4400 // specialization of the attributes which may be set on a global 4401 // variable/function. 4402 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4403 D->isWeakImported()) { 4404 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4405 } 4406 4407 if (const auto *VD = dyn_cast<VarDecl>(D)) 4408 if (VD->getTLSKind()) 4409 setTLSMode(GA, *VD); 4410 4411 SetCommonAttributes(GD, GA); 4412 } 4413 4414 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4415 const auto *D = cast<ValueDecl>(GD.getDecl()); 4416 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4417 assert(IFA && "Not an ifunc?"); 4418 4419 StringRef MangledName = getMangledName(GD); 4420 4421 if (IFA->getResolver() == MangledName) { 4422 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4423 return; 4424 } 4425 4426 // Report an error if some definition overrides ifunc. 4427 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4428 if (Entry && !Entry->isDeclaration()) { 4429 GlobalDecl OtherGD; 4430 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4431 DiagnosedConflictingDefinitions.insert(GD).second) { 4432 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4433 << MangledName; 4434 Diags.Report(OtherGD.getDecl()->getLocation(), 4435 diag::note_previous_definition); 4436 } 4437 return; 4438 } 4439 4440 Aliases.push_back(GD); 4441 4442 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4443 llvm::Constant *Resolver = 4444 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4445 /*ForVTable=*/false); 4446 llvm::GlobalIFunc *GIF = 4447 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4448 "", Resolver, &getModule()); 4449 if (Entry) { 4450 if (GIF->getResolver() == Entry) { 4451 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4452 return; 4453 } 4454 assert(Entry->isDeclaration()); 4455 4456 // If there is a declaration in the module, then we had an extern followed 4457 // by the ifunc, as in: 4458 // extern int test(); 4459 // ... 4460 // int test() __attribute__((ifunc("resolver"))); 4461 // 4462 // Remove it and replace uses of it with the ifunc. 4463 GIF->takeName(Entry); 4464 4465 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4466 Entry->getType())); 4467 Entry->eraseFromParent(); 4468 } else 4469 GIF->setName(MangledName); 4470 4471 SetCommonAttributes(GD, GIF); 4472 } 4473 4474 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4475 ArrayRef<llvm::Type*> Tys) { 4476 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4477 Tys); 4478 } 4479 4480 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4481 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4482 const StringLiteral *Literal, bool TargetIsLSB, 4483 bool &IsUTF16, unsigned &StringLength) { 4484 StringRef String = Literal->getString(); 4485 unsigned NumBytes = String.size(); 4486 4487 // Check for simple case. 4488 if (!Literal->containsNonAsciiOrNull()) { 4489 StringLength = NumBytes; 4490 return *Map.insert(std::make_pair(String, nullptr)).first; 4491 } 4492 4493 // Otherwise, convert the UTF8 literals into a string of shorts. 4494 IsUTF16 = true; 4495 4496 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4497 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4498 llvm::UTF16 *ToPtr = &ToBuf[0]; 4499 4500 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4501 ToPtr + NumBytes, llvm::strictConversion); 4502 4503 // ConvertUTF8toUTF16 returns the length in ToPtr. 4504 StringLength = ToPtr - &ToBuf[0]; 4505 4506 // Add an explicit null. 4507 *ToPtr = 0; 4508 return *Map.insert(std::make_pair( 4509 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4510 (StringLength + 1) * 2), 4511 nullptr)).first; 4512 } 4513 4514 ConstantAddress 4515 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4516 unsigned StringLength = 0; 4517 bool isUTF16 = false; 4518 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4519 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4520 getDataLayout().isLittleEndian(), isUTF16, 4521 StringLength); 4522 4523 if (auto *C = Entry.second) 4524 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4525 4526 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4527 llvm::Constant *Zeros[] = { Zero, Zero }; 4528 4529 const ASTContext &Context = getContext(); 4530 const llvm::Triple &Triple = getTriple(); 4531 4532 const auto CFRuntime = getLangOpts().CFRuntime; 4533 const bool IsSwiftABI = 4534 static_cast<unsigned>(CFRuntime) >= 4535 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4536 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4537 4538 // If we don't already have it, get __CFConstantStringClassReference. 4539 if (!CFConstantStringClassRef) { 4540 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4541 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4542 Ty = llvm::ArrayType::get(Ty, 0); 4543 4544 switch (CFRuntime) { 4545 default: break; 4546 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4547 case LangOptions::CoreFoundationABI::Swift5_0: 4548 CFConstantStringClassName = 4549 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4550 : "$s10Foundation19_NSCFConstantStringCN"; 4551 Ty = IntPtrTy; 4552 break; 4553 case LangOptions::CoreFoundationABI::Swift4_2: 4554 CFConstantStringClassName = 4555 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4556 : "$S10Foundation19_NSCFConstantStringCN"; 4557 Ty = IntPtrTy; 4558 break; 4559 case LangOptions::CoreFoundationABI::Swift4_1: 4560 CFConstantStringClassName = 4561 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4562 : "__T010Foundation19_NSCFConstantStringCN"; 4563 Ty = IntPtrTy; 4564 break; 4565 } 4566 4567 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4568 4569 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4570 llvm::GlobalValue *GV = nullptr; 4571 4572 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4573 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4574 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4575 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4576 4577 const VarDecl *VD = nullptr; 4578 for (const auto &Result : DC->lookup(&II)) 4579 if ((VD = dyn_cast<VarDecl>(Result))) 4580 break; 4581 4582 if (Triple.isOSBinFormatELF()) { 4583 if (!VD) 4584 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4585 } else { 4586 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4587 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4588 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4589 else 4590 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4591 } 4592 4593 setDSOLocal(GV); 4594 } 4595 } 4596 4597 // Decay array -> ptr 4598 CFConstantStringClassRef = 4599 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4600 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4601 } 4602 4603 QualType CFTy = Context.getCFConstantStringType(); 4604 4605 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4606 4607 ConstantInitBuilder Builder(*this); 4608 auto Fields = Builder.beginStruct(STy); 4609 4610 // Class pointer. 4611 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4612 4613 // Flags. 4614 if (IsSwiftABI) { 4615 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4616 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4617 } else { 4618 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4619 } 4620 4621 // String pointer. 4622 llvm::Constant *C = nullptr; 4623 if (isUTF16) { 4624 auto Arr = llvm::makeArrayRef( 4625 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4626 Entry.first().size() / 2); 4627 C = llvm::ConstantDataArray::get(VMContext, Arr); 4628 } else { 4629 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4630 } 4631 4632 // Note: -fwritable-strings doesn't make the backing store strings of 4633 // CFStrings writable. (See <rdar://problem/10657500>) 4634 auto *GV = 4635 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4636 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4637 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4638 // Don't enforce the target's minimum global alignment, since the only use 4639 // of the string is via this class initializer. 4640 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4641 : Context.getTypeAlignInChars(Context.CharTy); 4642 GV->setAlignment(Align.getQuantity()); 4643 4644 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4645 // Without it LLVM can merge the string with a non unnamed_addr one during 4646 // LTO. Doing that changes the section it ends in, which surprises ld64. 4647 if (Triple.isOSBinFormatMachO()) 4648 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4649 : "__TEXT,__cstring,cstring_literals"); 4650 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4651 // the static linker to adjust permissions to read-only later on. 4652 else if (Triple.isOSBinFormatELF()) 4653 GV->setSection(".rodata"); 4654 4655 // String. 4656 llvm::Constant *Str = 4657 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4658 4659 if (isUTF16) 4660 // Cast the UTF16 string to the correct type. 4661 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4662 Fields.add(Str); 4663 4664 // String length. 4665 llvm::IntegerType *LengthTy = 4666 llvm::IntegerType::get(getModule().getContext(), 4667 Context.getTargetInfo().getLongWidth()); 4668 if (IsSwiftABI) { 4669 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4670 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4671 LengthTy = Int32Ty; 4672 else 4673 LengthTy = IntPtrTy; 4674 } 4675 Fields.addInt(LengthTy, StringLength); 4676 4677 CharUnits Alignment = getPointerAlign(); 4678 4679 // The struct. 4680 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4681 /*isConstant=*/false, 4682 llvm::GlobalVariable::PrivateLinkage); 4683 GV->addAttribute("objc_arc_inert"); 4684 switch (Triple.getObjectFormat()) { 4685 case llvm::Triple::UnknownObjectFormat: 4686 llvm_unreachable("unknown file format"); 4687 case llvm::Triple::XCOFF: 4688 llvm_unreachable("XCOFF is not yet implemented"); 4689 case llvm::Triple::COFF: 4690 case llvm::Triple::ELF: 4691 case llvm::Triple::Wasm: 4692 GV->setSection("cfstring"); 4693 break; 4694 case llvm::Triple::MachO: 4695 GV->setSection("__DATA,__cfstring"); 4696 break; 4697 } 4698 Entry.second = GV; 4699 4700 return ConstantAddress(GV, Alignment); 4701 } 4702 4703 bool CodeGenModule::getExpressionLocationsEnabled() const { 4704 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4705 } 4706 4707 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4708 if (ObjCFastEnumerationStateType.isNull()) { 4709 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4710 D->startDefinition(); 4711 4712 QualType FieldTypes[] = { 4713 Context.UnsignedLongTy, 4714 Context.getPointerType(Context.getObjCIdType()), 4715 Context.getPointerType(Context.UnsignedLongTy), 4716 Context.getConstantArrayType(Context.UnsignedLongTy, 4717 llvm::APInt(32, 5), ArrayType::Normal, 0) 4718 }; 4719 4720 for (size_t i = 0; i < 4; ++i) { 4721 FieldDecl *Field = FieldDecl::Create(Context, 4722 D, 4723 SourceLocation(), 4724 SourceLocation(), nullptr, 4725 FieldTypes[i], /*TInfo=*/nullptr, 4726 /*BitWidth=*/nullptr, 4727 /*Mutable=*/false, 4728 ICIS_NoInit); 4729 Field->setAccess(AS_public); 4730 D->addDecl(Field); 4731 } 4732 4733 D->completeDefinition(); 4734 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4735 } 4736 4737 return ObjCFastEnumerationStateType; 4738 } 4739 4740 llvm::Constant * 4741 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4742 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4743 4744 // Don't emit it as the address of the string, emit the string data itself 4745 // as an inline array. 4746 if (E->getCharByteWidth() == 1) { 4747 SmallString<64> Str(E->getString()); 4748 4749 // Resize the string to the right size, which is indicated by its type. 4750 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4751 Str.resize(CAT->getSize().getZExtValue()); 4752 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4753 } 4754 4755 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4756 llvm::Type *ElemTy = AType->getElementType(); 4757 unsigned NumElements = AType->getNumElements(); 4758 4759 // Wide strings have either 2-byte or 4-byte elements. 4760 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4761 SmallVector<uint16_t, 32> Elements; 4762 Elements.reserve(NumElements); 4763 4764 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4765 Elements.push_back(E->getCodeUnit(i)); 4766 Elements.resize(NumElements); 4767 return llvm::ConstantDataArray::get(VMContext, Elements); 4768 } 4769 4770 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4771 SmallVector<uint32_t, 32> Elements; 4772 Elements.reserve(NumElements); 4773 4774 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4775 Elements.push_back(E->getCodeUnit(i)); 4776 Elements.resize(NumElements); 4777 return llvm::ConstantDataArray::get(VMContext, Elements); 4778 } 4779 4780 static llvm::GlobalVariable * 4781 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4782 CodeGenModule &CGM, StringRef GlobalName, 4783 CharUnits Alignment) { 4784 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4785 CGM.getStringLiteralAddressSpace()); 4786 4787 llvm::Module &M = CGM.getModule(); 4788 // Create a global variable for this string 4789 auto *GV = new llvm::GlobalVariable( 4790 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4791 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4792 GV->setAlignment(Alignment.getQuantity()); 4793 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4794 if (GV->isWeakForLinker()) { 4795 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4796 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4797 } 4798 CGM.setDSOLocal(GV); 4799 4800 return GV; 4801 } 4802 4803 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4804 /// constant array for the given string literal. 4805 ConstantAddress 4806 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4807 StringRef Name) { 4808 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4809 4810 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4811 llvm::GlobalVariable **Entry = nullptr; 4812 if (!LangOpts.WritableStrings) { 4813 Entry = &ConstantStringMap[C]; 4814 if (auto GV = *Entry) { 4815 if (Alignment.getQuantity() > GV->getAlignment()) 4816 GV->setAlignment(Alignment.getQuantity()); 4817 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4818 Alignment); 4819 } 4820 } 4821 4822 SmallString<256> MangledNameBuffer; 4823 StringRef GlobalVariableName; 4824 llvm::GlobalValue::LinkageTypes LT; 4825 4826 // Mangle the string literal if that's how the ABI merges duplicate strings. 4827 // Don't do it if they are writable, since we don't want writes in one TU to 4828 // affect strings in another. 4829 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4830 !LangOpts.WritableStrings) { 4831 llvm::raw_svector_ostream Out(MangledNameBuffer); 4832 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4833 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4834 GlobalVariableName = MangledNameBuffer; 4835 } else { 4836 LT = llvm::GlobalValue::PrivateLinkage; 4837 GlobalVariableName = Name; 4838 } 4839 4840 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4841 if (Entry) 4842 *Entry = GV; 4843 4844 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4845 QualType()); 4846 4847 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4848 Alignment); 4849 } 4850 4851 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4852 /// array for the given ObjCEncodeExpr node. 4853 ConstantAddress 4854 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4855 std::string Str; 4856 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4857 4858 return GetAddrOfConstantCString(Str); 4859 } 4860 4861 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4862 /// the literal and a terminating '\0' character. 4863 /// The result has pointer to array type. 4864 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4865 const std::string &Str, const char *GlobalName) { 4866 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4867 CharUnits Alignment = 4868 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4869 4870 llvm::Constant *C = 4871 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4872 4873 // Don't share any string literals if strings aren't constant. 4874 llvm::GlobalVariable **Entry = nullptr; 4875 if (!LangOpts.WritableStrings) { 4876 Entry = &ConstantStringMap[C]; 4877 if (auto GV = *Entry) { 4878 if (Alignment.getQuantity() > GV->getAlignment()) 4879 GV->setAlignment(Alignment.getQuantity()); 4880 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4881 Alignment); 4882 } 4883 } 4884 4885 // Get the default prefix if a name wasn't specified. 4886 if (!GlobalName) 4887 GlobalName = ".str"; 4888 // Create a global variable for this. 4889 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4890 GlobalName, Alignment); 4891 if (Entry) 4892 *Entry = GV; 4893 4894 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4895 Alignment); 4896 } 4897 4898 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4899 const MaterializeTemporaryExpr *E, const Expr *Init) { 4900 assert((E->getStorageDuration() == SD_Static || 4901 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4902 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4903 4904 // If we're not materializing a subobject of the temporary, keep the 4905 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4906 QualType MaterializedType = Init->getType(); 4907 if (Init == E->GetTemporaryExpr()) 4908 MaterializedType = E->getType(); 4909 4910 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4911 4912 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4913 return ConstantAddress(Slot, Align); 4914 4915 // FIXME: If an externally-visible declaration extends multiple temporaries, 4916 // we need to give each temporary the same name in every translation unit (and 4917 // we also need to make the temporaries externally-visible). 4918 SmallString<256> Name; 4919 llvm::raw_svector_ostream Out(Name); 4920 getCXXABI().getMangleContext().mangleReferenceTemporary( 4921 VD, E->getManglingNumber(), Out); 4922 4923 APValue *Value = nullptr; 4924 if (E->getStorageDuration() == SD_Static) { 4925 // We might have a cached constant initializer for this temporary. Note 4926 // that this might have a different value from the value computed by 4927 // evaluating the initializer if the surrounding constant expression 4928 // modifies the temporary. 4929 Value = getContext().getMaterializedTemporaryValue(E, false); 4930 if (Value && Value->isAbsent()) 4931 Value = nullptr; 4932 } 4933 4934 // Try evaluating it now, it might have a constant initializer. 4935 Expr::EvalResult EvalResult; 4936 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4937 !EvalResult.hasSideEffects()) 4938 Value = &EvalResult.Val; 4939 4940 LangAS AddrSpace = 4941 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4942 4943 Optional<ConstantEmitter> emitter; 4944 llvm::Constant *InitialValue = nullptr; 4945 bool Constant = false; 4946 llvm::Type *Type; 4947 if (Value) { 4948 // The temporary has a constant initializer, use it. 4949 emitter.emplace(*this); 4950 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4951 MaterializedType); 4952 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4953 Type = InitialValue->getType(); 4954 } else { 4955 // No initializer, the initialization will be provided when we 4956 // initialize the declaration which performed lifetime extension. 4957 Type = getTypes().ConvertTypeForMem(MaterializedType); 4958 } 4959 4960 // Create a global variable for this lifetime-extended temporary. 4961 llvm::GlobalValue::LinkageTypes Linkage = 4962 getLLVMLinkageVarDefinition(VD, Constant); 4963 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4964 const VarDecl *InitVD; 4965 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4966 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4967 // Temporaries defined inside a class get linkonce_odr linkage because the 4968 // class can be defined in multiple translation units. 4969 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4970 } else { 4971 // There is no need for this temporary to have external linkage if the 4972 // VarDecl has external linkage. 4973 Linkage = llvm::GlobalVariable::InternalLinkage; 4974 } 4975 } 4976 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4977 auto *GV = new llvm::GlobalVariable( 4978 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4979 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4980 if (emitter) emitter->finalize(GV); 4981 setGVProperties(GV, VD); 4982 GV->setAlignment(Align.getQuantity()); 4983 if (supportsCOMDAT() && GV->isWeakForLinker()) 4984 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4985 if (VD->getTLSKind()) 4986 setTLSMode(GV, *VD); 4987 llvm::Constant *CV = GV; 4988 if (AddrSpace != LangAS::Default) 4989 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4990 *this, GV, AddrSpace, LangAS::Default, 4991 Type->getPointerTo( 4992 getContext().getTargetAddressSpace(LangAS::Default))); 4993 MaterializedGlobalTemporaryMap[E] = CV; 4994 return ConstantAddress(CV, Align); 4995 } 4996 4997 /// EmitObjCPropertyImplementations - Emit information for synthesized 4998 /// properties for an implementation. 4999 void CodeGenModule::EmitObjCPropertyImplementations(const 5000 ObjCImplementationDecl *D) { 5001 for (const auto *PID : D->property_impls()) { 5002 // Dynamic is just for type-checking. 5003 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5004 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5005 5006 // Determine which methods need to be implemented, some may have 5007 // been overridden. Note that ::isPropertyAccessor is not the method 5008 // we want, that just indicates if the decl came from a 5009 // property. What we want to know is if the method is defined in 5010 // this implementation. 5011 if (!D->getInstanceMethod(PD->getGetterName())) 5012 CodeGenFunction(*this).GenerateObjCGetter( 5013 const_cast<ObjCImplementationDecl *>(D), PID); 5014 if (!PD->isReadOnly() && 5015 !D->getInstanceMethod(PD->getSetterName())) 5016 CodeGenFunction(*this).GenerateObjCSetter( 5017 const_cast<ObjCImplementationDecl *>(D), PID); 5018 } 5019 } 5020 } 5021 5022 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5023 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5024 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5025 ivar; ivar = ivar->getNextIvar()) 5026 if (ivar->getType().isDestructedType()) 5027 return true; 5028 5029 return false; 5030 } 5031 5032 static bool AllTrivialInitializers(CodeGenModule &CGM, 5033 ObjCImplementationDecl *D) { 5034 CodeGenFunction CGF(CGM); 5035 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5036 E = D->init_end(); B != E; ++B) { 5037 CXXCtorInitializer *CtorInitExp = *B; 5038 Expr *Init = CtorInitExp->getInit(); 5039 if (!CGF.isTrivialInitializer(Init)) 5040 return false; 5041 } 5042 return true; 5043 } 5044 5045 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5046 /// for an implementation. 5047 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5048 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5049 if (needsDestructMethod(D)) { 5050 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5051 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5052 ObjCMethodDecl *DTORMethod = 5053 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 5054 cxxSelector, getContext().VoidTy, nullptr, D, 5055 /*isInstance=*/true, /*isVariadic=*/false, 5056 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 5057 /*isDefined=*/false, ObjCMethodDecl::Required); 5058 D->addInstanceMethod(DTORMethod); 5059 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5060 D->setHasDestructors(true); 5061 } 5062 5063 // If the implementation doesn't have any ivar initializers, we don't need 5064 // a .cxx_construct. 5065 if (D->getNumIvarInitializers() == 0 || 5066 AllTrivialInitializers(*this, D)) 5067 return; 5068 5069 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5070 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5071 // The constructor returns 'self'. 5072 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 5073 D->getLocation(), 5074 D->getLocation(), 5075 cxxSelector, 5076 getContext().getObjCIdType(), 5077 nullptr, D, /*isInstance=*/true, 5078 /*isVariadic=*/false, 5079 /*isPropertyAccessor=*/true, 5080 /*isImplicitlyDeclared=*/true, 5081 /*isDefined=*/false, 5082 ObjCMethodDecl::Required); 5083 D->addInstanceMethod(CTORMethod); 5084 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5085 D->setHasNonZeroConstructors(true); 5086 } 5087 5088 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5089 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5090 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5091 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5092 ErrorUnsupported(LSD, "linkage spec"); 5093 return; 5094 } 5095 5096 EmitDeclContext(LSD); 5097 } 5098 5099 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5100 for (auto *I : DC->decls()) { 5101 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5102 // are themselves considered "top-level", so EmitTopLevelDecl on an 5103 // ObjCImplDecl does not recursively visit them. We need to do that in 5104 // case they're nested inside another construct (LinkageSpecDecl / 5105 // ExportDecl) that does stop them from being considered "top-level". 5106 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5107 for (auto *M : OID->methods()) 5108 EmitTopLevelDecl(M); 5109 } 5110 5111 EmitTopLevelDecl(I); 5112 } 5113 } 5114 5115 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5116 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5117 // Ignore dependent declarations. 5118 if (D->isTemplated()) 5119 return; 5120 5121 switch (D->getKind()) { 5122 case Decl::CXXConversion: 5123 case Decl::CXXMethod: 5124 case Decl::Function: 5125 EmitGlobal(cast<FunctionDecl>(D)); 5126 // Always provide some coverage mapping 5127 // even for the functions that aren't emitted. 5128 AddDeferredUnusedCoverageMapping(D); 5129 break; 5130 5131 case Decl::CXXDeductionGuide: 5132 // Function-like, but does not result in code emission. 5133 break; 5134 5135 case Decl::Var: 5136 case Decl::Decomposition: 5137 case Decl::VarTemplateSpecialization: 5138 EmitGlobal(cast<VarDecl>(D)); 5139 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5140 for (auto *B : DD->bindings()) 5141 if (auto *HD = B->getHoldingVar()) 5142 EmitGlobal(HD); 5143 break; 5144 5145 // Indirect fields from global anonymous structs and unions can be 5146 // ignored; only the actual variable requires IR gen support. 5147 case Decl::IndirectField: 5148 break; 5149 5150 // C++ Decls 5151 case Decl::Namespace: 5152 EmitDeclContext(cast<NamespaceDecl>(D)); 5153 break; 5154 case Decl::ClassTemplateSpecialization: { 5155 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5156 if (DebugInfo && 5157 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5158 Spec->hasDefinition()) 5159 DebugInfo->completeTemplateDefinition(*Spec); 5160 } LLVM_FALLTHROUGH; 5161 case Decl::CXXRecord: 5162 if (DebugInfo) { 5163 if (auto *ES = D->getASTContext().getExternalSource()) 5164 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5165 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5166 } 5167 // Emit any static data members, they may be definitions. 5168 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5169 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5170 EmitTopLevelDecl(I); 5171 break; 5172 // No code generation needed. 5173 case Decl::UsingShadow: 5174 case Decl::ClassTemplate: 5175 case Decl::VarTemplate: 5176 case Decl::Concept: 5177 case Decl::VarTemplatePartialSpecialization: 5178 case Decl::FunctionTemplate: 5179 case Decl::TypeAliasTemplate: 5180 case Decl::Block: 5181 case Decl::Empty: 5182 case Decl::Binding: 5183 break; 5184 case Decl::Using: // using X; [C++] 5185 if (CGDebugInfo *DI = getModuleDebugInfo()) 5186 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5187 return; 5188 case Decl::NamespaceAlias: 5189 if (CGDebugInfo *DI = getModuleDebugInfo()) 5190 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5191 return; 5192 case Decl::UsingDirective: // using namespace X; [C++] 5193 if (CGDebugInfo *DI = getModuleDebugInfo()) 5194 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5195 return; 5196 case Decl::CXXConstructor: 5197 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5198 break; 5199 case Decl::CXXDestructor: 5200 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5201 break; 5202 5203 case Decl::StaticAssert: 5204 // Nothing to do. 5205 break; 5206 5207 // Objective-C Decls 5208 5209 // Forward declarations, no (immediate) code generation. 5210 case Decl::ObjCInterface: 5211 case Decl::ObjCCategory: 5212 break; 5213 5214 case Decl::ObjCProtocol: { 5215 auto *Proto = cast<ObjCProtocolDecl>(D); 5216 if (Proto->isThisDeclarationADefinition()) 5217 ObjCRuntime->GenerateProtocol(Proto); 5218 break; 5219 } 5220 5221 case Decl::ObjCCategoryImpl: 5222 // Categories have properties but don't support synthesize so we 5223 // can ignore them here. 5224 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5225 break; 5226 5227 case Decl::ObjCImplementation: { 5228 auto *OMD = cast<ObjCImplementationDecl>(D); 5229 EmitObjCPropertyImplementations(OMD); 5230 EmitObjCIvarInitializations(OMD); 5231 ObjCRuntime->GenerateClass(OMD); 5232 // Emit global variable debug information. 5233 if (CGDebugInfo *DI = getModuleDebugInfo()) 5234 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 5235 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5236 OMD->getClassInterface()), OMD->getLocation()); 5237 break; 5238 } 5239 case Decl::ObjCMethod: { 5240 auto *OMD = cast<ObjCMethodDecl>(D); 5241 // If this is not a prototype, emit the body. 5242 if (OMD->getBody()) 5243 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5244 break; 5245 } 5246 case Decl::ObjCCompatibleAlias: 5247 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5248 break; 5249 5250 case Decl::PragmaComment: { 5251 const auto *PCD = cast<PragmaCommentDecl>(D); 5252 switch (PCD->getCommentKind()) { 5253 case PCK_Unknown: 5254 llvm_unreachable("unexpected pragma comment kind"); 5255 case PCK_Linker: 5256 AppendLinkerOptions(PCD->getArg()); 5257 break; 5258 case PCK_Lib: 5259 AddDependentLib(PCD->getArg()); 5260 break; 5261 case PCK_Compiler: 5262 case PCK_ExeStr: 5263 case PCK_User: 5264 break; // We ignore all of these. 5265 } 5266 break; 5267 } 5268 5269 case Decl::PragmaDetectMismatch: { 5270 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5271 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5272 break; 5273 } 5274 5275 case Decl::LinkageSpec: 5276 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5277 break; 5278 5279 case Decl::FileScopeAsm: { 5280 // File-scope asm is ignored during device-side CUDA compilation. 5281 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5282 break; 5283 // File-scope asm is ignored during device-side OpenMP compilation. 5284 if (LangOpts.OpenMPIsDevice) 5285 break; 5286 auto *AD = cast<FileScopeAsmDecl>(D); 5287 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5288 break; 5289 } 5290 5291 case Decl::Import: { 5292 auto *Import = cast<ImportDecl>(D); 5293 5294 // If we've already imported this module, we're done. 5295 if (!ImportedModules.insert(Import->getImportedModule())) 5296 break; 5297 5298 // Emit debug information for direct imports. 5299 if (!Import->getImportedOwningModule()) { 5300 if (CGDebugInfo *DI = getModuleDebugInfo()) 5301 DI->EmitImportDecl(*Import); 5302 } 5303 5304 // Find all of the submodules and emit the module initializers. 5305 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5306 SmallVector<clang::Module *, 16> Stack; 5307 Visited.insert(Import->getImportedModule()); 5308 Stack.push_back(Import->getImportedModule()); 5309 5310 while (!Stack.empty()) { 5311 clang::Module *Mod = Stack.pop_back_val(); 5312 if (!EmittedModuleInitializers.insert(Mod).second) 5313 continue; 5314 5315 for (auto *D : Context.getModuleInitializers(Mod)) 5316 EmitTopLevelDecl(D); 5317 5318 // Visit the submodules of this module. 5319 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5320 SubEnd = Mod->submodule_end(); 5321 Sub != SubEnd; ++Sub) { 5322 // Skip explicit children; they need to be explicitly imported to emit 5323 // the initializers. 5324 if ((*Sub)->IsExplicit) 5325 continue; 5326 5327 if (Visited.insert(*Sub).second) 5328 Stack.push_back(*Sub); 5329 } 5330 } 5331 break; 5332 } 5333 5334 case Decl::Export: 5335 EmitDeclContext(cast<ExportDecl>(D)); 5336 break; 5337 5338 case Decl::OMPThreadPrivate: 5339 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5340 break; 5341 5342 case Decl::OMPAllocate: 5343 break; 5344 5345 case Decl::OMPDeclareReduction: 5346 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5347 break; 5348 5349 case Decl::OMPDeclareMapper: 5350 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5351 break; 5352 5353 case Decl::OMPRequires: 5354 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5355 break; 5356 5357 default: 5358 // Make sure we handled everything we should, every other kind is a 5359 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5360 // function. Need to recode Decl::Kind to do that easily. 5361 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5362 break; 5363 } 5364 } 5365 5366 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5367 // Do we need to generate coverage mapping? 5368 if (!CodeGenOpts.CoverageMapping) 5369 return; 5370 switch (D->getKind()) { 5371 case Decl::CXXConversion: 5372 case Decl::CXXMethod: 5373 case Decl::Function: 5374 case Decl::ObjCMethod: 5375 case Decl::CXXConstructor: 5376 case Decl::CXXDestructor: { 5377 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5378 return; 5379 SourceManager &SM = getContext().getSourceManager(); 5380 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5381 return; 5382 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5383 if (I == DeferredEmptyCoverageMappingDecls.end()) 5384 DeferredEmptyCoverageMappingDecls[D] = true; 5385 break; 5386 } 5387 default: 5388 break; 5389 }; 5390 } 5391 5392 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5393 // Do we need to generate coverage mapping? 5394 if (!CodeGenOpts.CoverageMapping) 5395 return; 5396 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5397 if (Fn->isTemplateInstantiation()) 5398 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5399 } 5400 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5401 if (I == DeferredEmptyCoverageMappingDecls.end()) 5402 DeferredEmptyCoverageMappingDecls[D] = false; 5403 else 5404 I->second = false; 5405 } 5406 5407 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5408 // We call takeVector() here to avoid use-after-free. 5409 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5410 // we deserialize function bodies to emit coverage info for them, and that 5411 // deserializes more declarations. How should we handle that case? 5412 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5413 if (!Entry.second) 5414 continue; 5415 const Decl *D = Entry.first; 5416 switch (D->getKind()) { 5417 case Decl::CXXConversion: 5418 case Decl::CXXMethod: 5419 case Decl::Function: 5420 case Decl::ObjCMethod: { 5421 CodeGenPGO PGO(*this); 5422 GlobalDecl GD(cast<FunctionDecl>(D)); 5423 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5424 getFunctionLinkage(GD)); 5425 break; 5426 } 5427 case Decl::CXXConstructor: { 5428 CodeGenPGO PGO(*this); 5429 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5430 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5431 getFunctionLinkage(GD)); 5432 break; 5433 } 5434 case Decl::CXXDestructor: { 5435 CodeGenPGO PGO(*this); 5436 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5437 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5438 getFunctionLinkage(GD)); 5439 break; 5440 } 5441 default: 5442 break; 5443 }; 5444 } 5445 } 5446 5447 /// Turns the given pointer into a constant. 5448 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5449 const void *Ptr) { 5450 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5451 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5452 return llvm::ConstantInt::get(i64, PtrInt); 5453 } 5454 5455 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5456 llvm::NamedMDNode *&GlobalMetadata, 5457 GlobalDecl D, 5458 llvm::GlobalValue *Addr) { 5459 if (!GlobalMetadata) 5460 GlobalMetadata = 5461 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5462 5463 // TODO: should we report variant information for ctors/dtors? 5464 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5465 llvm::ConstantAsMetadata::get(GetPointerConstant( 5466 CGM.getLLVMContext(), D.getDecl()))}; 5467 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5468 } 5469 5470 /// For each function which is declared within an extern "C" region and marked 5471 /// as 'used', but has internal linkage, create an alias from the unmangled 5472 /// name to the mangled name if possible. People expect to be able to refer 5473 /// to such functions with an unmangled name from inline assembly within the 5474 /// same translation unit. 5475 void CodeGenModule::EmitStaticExternCAliases() { 5476 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5477 return; 5478 for (auto &I : StaticExternCValues) { 5479 IdentifierInfo *Name = I.first; 5480 llvm::GlobalValue *Val = I.second; 5481 if (Val && !getModule().getNamedValue(Name->getName())) 5482 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5483 } 5484 } 5485 5486 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5487 GlobalDecl &Result) const { 5488 auto Res = Manglings.find(MangledName); 5489 if (Res == Manglings.end()) 5490 return false; 5491 Result = Res->getValue(); 5492 return true; 5493 } 5494 5495 /// Emits metadata nodes associating all the global values in the 5496 /// current module with the Decls they came from. This is useful for 5497 /// projects using IR gen as a subroutine. 5498 /// 5499 /// Since there's currently no way to associate an MDNode directly 5500 /// with an llvm::GlobalValue, we create a global named metadata 5501 /// with the name 'clang.global.decl.ptrs'. 5502 void CodeGenModule::EmitDeclMetadata() { 5503 llvm::NamedMDNode *GlobalMetadata = nullptr; 5504 5505 for (auto &I : MangledDeclNames) { 5506 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5507 // Some mangled names don't necessarily have an associated GlobalValue 5508 // in this module, e.g. if we mangled it for DebugInfo. 5509 if (Addr) 5510 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5511 } 5512 } 5513 5514 /// Emits metadata nodes for all the local variables in the current 5515 /// function. 5516 void CodeGenFunction::EmitDeclMetadata() { 5517 if (LocalDeclMap.empty()) return; 5518 5519 llvm::LLVMContext &Context = getLLVMContext(); 5520 5521 // Find the unique metadata ID for this name. 5522 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5523 5524 llvm::NamedMDNode *GlobalMetadata = nullptr; 5525 5526 for (auto &I : LocalDeclMap) { 5527 const Decl *D = I.first; 5528 llvm::Value *Addr = I.second.getPointer(); 5529 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5530 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5531 Alloca->setMetadata( 5532 DeclPtrKind, llvm::MDNode::get( 5533 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5534 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5535 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5536 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5537 } 5538 } 5539 } 5540 5541 void CodeGenModule::EmitVersionIdentMetadata() { 5542 llvm::NamedMDNode *IdentMetadata = 5543 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5544 std::string Version = getClangFullVersion(); 5545 llvm::LLVMContext &Ctx = TheModule.getContext(); 5546 5547 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5548 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5549 } 5550 5551 void CodeGenModule::EmitCommandLineMetadata() { 5552 llvm::NamedMDNode *CommandLineMetadata = 5553 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5554 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5555 llvm::LLVMContext &Ctx = TheModule.getContext(); 5556 5557 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5558 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5559 } 5560 5561 void CodeGenModule::EmitTargetMetadata() { 5562 // Warning, new MangledDeclNames may be appended within this loop. 5563 // We rely on MapVector insertions adding new elements to the end 5564 // of the container. 5565 // FIXME: Move this loop into the one target that needs it, and only 5566 // loop over those declarations for which we couldn't emit the target 5567 // metadata when we emitted the declaration. 5568 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5569 auto Val = *(MangledDeclNames.begin() + I); 5570 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5571 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5572 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5573 } 5574 } 5575 5576 void CodeGenModule::EmitCoverageFile() { 5577 if (getCodeGenOpts().CoverageDataFile.empty() && 5578 getCodeGenOpts().CoverageNotesFile.empty()) 5579 return; 5580 5581 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5582 if (!CUNode) 5583 return; 5584 5585 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5586 llvm::LLVMContext &Ctx = TheModule.getContext(); 5587 auto *CoverageDataFile = 5588 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5589 auto *CoverageNotesFile = 5590 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5591 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5592 llvm::MDNode *CU = CUNode->getOperand(i); 5593 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5594 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5595 } 5596 } 5597 5598 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5599 // Sema has checked that all uuid strings are of the form 5600 // "12345678-1234-1234-1234-1234567890ab". 5601 assert(Uuid.size() == 36); 5602 for (unsigned i = 0; i < 36; ++i) { 5603 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5604 else assert(isHexDigit(Uuid[i])); 5605 } 5606 5607 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5608 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5609 5610 llvm::Constant *Field3[8]; 5611 for (unsigned Idx = 0; Idx < 8; ++Idx) 5612 Field3[Idx] = llvm::ConstantInt::get( 5613 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5614 5615 llvm::Constant *Fields[4] = { 5616 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5617 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5618 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5619 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5620 }; 5621 5622 return llvm::ConstantStruct::getAnon(Fields); 5623 } 5624 5625 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5626 bool ForEH) { 5627 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5628 // FIXME: should we even be calling this method if RTTI is disabled 5629 // and it's not for EH? 5630 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5631 return llvm::Constant::getNullValue(Int8PtrTy); 5632 5633 if (ForEH && Ty->isObjCObjectPointerType() && 5634 LangOpts.ObjCRuntime.isGNUFamily()) 5635 return ObjCRuntime->GetEHType(Ty); 5636 5637 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5638 } 5639 5640 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5641 // Do not emit threadprivates in simd-only mode. 5642 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5643 return; 5644 for (auto RefExpr : D->varlists()) { 5645 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5646 bool PerformInit = 5647 VD->getAnyInitializer() && 5648 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5649 /*ForRef=*/false); 5650 5651 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5652 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5653 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5654 CXXGlobalInits.push_back(InitFunction); 5655 } 5656 } 5657 5658 llvm::Metadata * 5659 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5660 StringRef Suffix) { 5661 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5662 if (InternalId) 5663 return InternalId; 5664 5665 if (isExternallyVisible(T->getLinkage())) { 5666 std::string OutName; 5667 llvm::raw_string_ostream Out(OutName); 5668 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5669 Out << Suffix; 5670 5671 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5672 } else { 5673 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5674 llvm::ArrayRef<llvm::Metadata *>()); 5675 } 5676 5677 return InternalId; 5678 } 5679 5680 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5681 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5682 } 5683 5684 llvm::Metadata * 5685 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5686 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5687 } 5688 5689 // Generalize pointer types to a void pointer with the qualifiers of the 5690 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5691 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5692 // 'void *'. 5693 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5694 if (!Ty->isPointerType()) 5695 return Ty; 5696 5697 return Ctx.getPointerType( 5698 QualType(Ctx.VoidTy).withCVRQualifiers( 5699 Ty->getPointeeType().getCVRQualifiers())); 5700 } 5701 5702 // Apply type generalization to a FunctionType's return and argument types 5703 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5704 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5705 SmallVector<QualType, 8> GeneralizedParams; 5706 for (auto &Param : FnType->param_types()) 5707 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5708 5709 return Ctx.getFunctionType( 5710 GeneralizeType(Ctx, FnType->getReturnType()), 5711 GeneralizedParams, FnType->getExtProtoInfo()); 5712 } 5713 5714 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5715 return Ctx.getFunctionNoProtoType( 5716 GeneralizeType(Ctx, FnType->getReturnType())); 5717 5718 llvm_unreachable("Encountered unknown FunctionType"); 5719 } 5720 5721 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5722 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5723 GeneralizedMetadataIdMap, ".generalized"); 5724 } 5725 5726 /// Returns whether this module needs the "all-vtables" type identifier. 5727 bool CodeGenModule::NeedAllVtablesTypeId() const { 5728 // Returns true if at least one of vtable-based CFI checkers is enabled and 5729 // is not in the trapping mode. 5730 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5731 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5732 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5733 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5734 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5735 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5736 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5737 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5738 } 5739 5740 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5741 CharUnits Offset, 5742 const CXXRecordDecl *RD) { 5743 llvm::Metadata *MD = 5744 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5745 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5746 5747 if (CodeGenOpts.SanitizeCfiCrossDso) 5748 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5749 VTable->addTypeMetadata(Offset.getQuantity(), 5750 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5751 5752 if (NeedAllVtablesTypeId()) { 5753 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5754 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5755 } 5756 } 5757 5758 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5759 assert(TD != nullptr); 5760 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5761 5762 ParsedAttr.Features.erase( 5763 llvm::remove_if(ParsedAttr.Features, 5764 [&](const std::string &Feat) { 5765 return !Target.isValidFeatureName( 5766 StringRef{Feat}.substr(1)); 5767 }), 5768 ParsedAttr.Features.end()); 5769 return ParsedAttr; 5770 } 5771 5772 5773 // Fills in the supplied string map with the set of target features for the 5774 // passed in function. 5775 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5776 GlobalDecl GD) { 5777 StringRef TargetCPU = Target.getTargetOpts().CPU; 5778 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5779 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5780 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5781 5782 // Make a copy of the features as passed on the command line into the 5783 // beginning of the additional features from the function to override. 5784 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5785 Target.getTargetOpts().FeaturesAsWritten.begin(), 5786 Target.getTargetOpts().FeaturesAsWritten.end()); 5787 5788 if (ParsedAttr.Architecture != "" && 5789 Target.isValidCPUName(ParsedAttr.Architecture)) 5790 TargetCPU = ParsedAttr.Architecture; 5791 5792 // Now populate the feature map, first with the TargetCPU which is either 5793 // the default or a new one from the target attribute string. Then we'll use 5794 // the passed in features (FeaturesAsWritten) along with the new ones from 5795 // the attribute. 5796 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5797 ParsedAttr.Features); 5798 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5799 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5800 Target.getCPUSpecificCPUDispatchFeatures( 5801 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5802 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5803 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5804 } else { 5805 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5806 Target.getTargetOpts().Features); 5807 } 5808 } 5809 5810 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5811 if (!SanStats) 5812 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5813 5814 return *SanStats; 5815 } 5816 llvm::Value * 5817 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5818 CodeGenFunction &CGF) { 5819 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5820 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5821 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5822 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5823 "__translate_sampler_initializer"), 5824 {C}); 5825 } 5826