1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::le32: 120 return createPNaClTargetCodeGenInfo(CGM); 121 case llvm::Triple::m68k: 122 return createM68kTargetCodeGenInfo(CGM); 123 case llvm::Triple::mips: 124 case llvm::Triple::mipsel: 125 if (Triple.getOS() == llvm::Triple::NaCl) 126 return createPNaClTargetCodeGenInfo(CGM); 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 128 129 case llvm::Triple::mips64: 130 case llvm::Triple::mips64el: 131 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 132 133 case llvm::Triple::avr: { 134 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 135 // on avrtiny. For passing return value, R18~R25 are used on avr, and 136 // R22~R25 are used on avrtiny. 137 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 138 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 139 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 140 } 141 142 case llvm::Triple::aarch64: 143 case llvm::Triple::aarch64_32: 144 case llvm::Triple::aarch64_be: { 145 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 146 if (Target.getABI() == "darwinpcs") 147 Kind = AArch64ABIKind::DarwinPCS; 148 else if (Triple.isOSWindows()) 149 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 150 else if (Target.getABI() == "aapcs-soft") 151 Kind = AArch64ABIKind::AAPCSSoft; 152 else if (Target.getABI() == "pauthtest") 153 Kind = AArch64ABIKind::PAuthTest; 154 155 return createAArch64TargetCodeGenInfo(CGM, Kind); 156 } 157 158 case llvm::Triple::wasm32: 159 case llvm::Triple::wasm64: { 160 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 161 if (Target.getABI() == "experimental-mv") 162 Kind = WebAssemblyABIKind::ExperimentalMV; 163 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 164 } 165 166 case llvm::Triple::arm: 167 case llvm::Triple::armeb: 168 case llvm::Triple::thumb: 169 case llvm::Triple::thumbeb: { 170 if (Triple.getOS() == llvm::Triple::Win32) 171 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 172 173 ARMABIKind Kind = ARMABIKind::AAPCS; 174 StringRef ABIStr = Target.getABI(); 175 if (ABIStr == "apcs-gnu") 176 Kind = ARMABIKind::APCS; 177 else if (ABIStr == "aapcs16") 178 Kind = ARMABIKind::AAPCS16_VFP; 179 else if (CodeGenOpts.FloatABI == "hard" || 180 (CodeGenOpts.FloatABI != "soft" && 181 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 182 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 183 Triple.getEnvironment() == llvm::Triple::EABIHF))) 184 Kind = ARMABIKind::AAPCS_VFP; 185 186 return createARMTargetCodeGenInfo(CGM, Kind); 187 } 188 189 case llvm::Triple::ppc: { 190 if (Triple.isOSAIX()) 191 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 192 193 bool IsSoftFloat = 194 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 195 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 196 } 197 case llvm::Triple::ppcle: { 198 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 199 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 200 } 201 case llvm::Triple::ppc64: 202 if (Triple.isOSAIX()) 203 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 204 205 if (Triple.isOSBinFormatELF()) { 206 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 207 if (Target.getABI() == "elfv2") 208 Kind = PPC64_SVR4_ABIKind::ELFv2; 209 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 210 211 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 212 } 213 return createPPC64TargetCodeGenInfo(CGM); 214 case llvm::Triple::ppc64le: { 215 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 216 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 217 if (Target.getABI() == "elfv1") 218 Kind = PPC64_SVR4_ABIKind::ELFv1; 219 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 220 221 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 222 } 223 224 case llvm::Triple::nvptx: 225 case llvm::Triple::nvptx64: 226 return createNVPTXTargetCodeGenInfo(CGM); 227 228 case llvm::Triple::msp430: 229 return createMSP430TargetCodeGenInfo(CGM); 230 231 case llvm::Triple::riscv32: 232 case llvm::Triple::riscv64: { 233 StringRef ABIStr = Target.getABI(); 234 unsigned XLen = Target.getPointerWidth(LangAS::Default); 235 unsigned ABIFLen = 0; 236 if (ABIStr.ends_with("f")) 237 ABIFLen = 32; 238 else if (ABIStr.ends_with("d")) 239 ABIFLen = 64; 240 bool EABI = ABIStr.ends_with("e"); 241 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 242 } 243 244 case llvm::Triple::systemz: { 245 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 246 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 247 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 248 } 249 250 case llvm::Triple::tce: 251 case llvm::Triple::tcele: 252 return createTCETargetCodeGenInfo(CGM); 253 254 case llvm::Triple::x86: { 255 bool IsDarwinVectorABI = Triple.isOSDarwin(); 256 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 257 258 if (Triple.getOS() == llvm::Triple::Win32) { 259 return createWinX86_32TargetCodeGenInfo( 260 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 261 CodeGenOpts.NumRegisterParameters); 262 } 263 return createX86_32TargetCodeGenInfo( 264 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 265 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 266 } 267 268 case llvm::Triple::x86_64: { 269 StringRef ABI = Target.getABI(); 270 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 271 : ABI == "avx" ? X86AVXABILevel::AVX 272 : X86AVXABILevel::None); 273 274 switch (Triple.getOS()) { 275 case llvm::Triple::Win32: 276 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 default: 278 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 279 } 280 } 281 case llvm::Triple::hexagon: 282 return createHexagonTargetCodeGenInfo(CGM); 283 case llvm::Triple::lanai: 284 return createLanaiTargetCodeGenInfo(CGM); 285 case llvm::Triple::r600: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::amdgcn: 288 return createAMDGPUTargetCodeGenInfo(CGM); 289 case llvm::Triple::sparc: 290 return createSparcV8TargetCodeGenInfo(CGM); 291 case llvm::Triple::sparcv9: 292 return createSparcV9TargetCodeGenInfo(CGM); 293 case llvm::Triple::xcore: 294 return createXCoreTargetCodeGenInfo(CGM); 295 case llvm::Triple::arc: 296 return createARCTargetCodeGenInfo(CGM); 297 case llvm::Triple::spir: 298 case llvm::Triple::spir64: 299 return createCommonSPIRTargetCodeGenInfo(CGM); 300 case llvm::Triple::spirv32: 301 case llvm::Triple::spirv64: 302 return createSPIRVTargetCodeGenInfo(CGM); 303 case llvm::Triple::ve: 304 return createVETargetCodeGenInfo(CGM); 305 case llvm::Triple::csky: { 306 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 307 bool hasFP64 = 308 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 309 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 310 : hasFP64 ? 64 311 : 32); 312 } 313 case llvm::Triple::bpfeb: 314 case llvm::Triple::bpfel: 315 return createBPFTargetCodeGenInfo(CGM); 316 case llvm::Triple::loongarch32: 317 case llvm::Triple::loongarch64: { 318 StringRef ABIStr = Target.getABI(); 319 unsigned ABIFRLen = 0; 320 if (ABIStr.ends_with("f")) 321 ABIFRLen = 32; 322 else if (ABIStr.ends_with("d")) 323 ABIFRLen = 64; 324 return createLoongArchTargetCodeGenInfo( 325 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 326 } 327 } 328 } 329 330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 331 if (!TheTargetCodeGenInfo) 332 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 333 return *TheTargetCodeGenInfo; 334 } 335 336 CodeGenModule::CodeGenModule(ASTContext &C, 337 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 338 const HeaderSearchOptions &HSO, 339 const PreprocessorOptions &PPO, 340 const CodeGenOptions &CGO, llvm::Module &M, 341 DiagnosticsEngine &diags, 342 CoverageSourceInfo *CoverageInfo) 343 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 344 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 345 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 346 VMContext(M.getContext()), VTables(*this), 347 SanitizerMD(new SanitizerMetadata(*this)) { 348 349 // Initialize the type cache. 350 Types.reset(new CodeGenTypes(*this)); 351 llvm::LLVMContext &LLVMContext = M.getContext(); 352 VoidTy = llvm::Type::getVoidTy(LLVMContext); 353 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 354 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 355 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 356 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 357 HalfTy = llvm::Type::getHalfTy(LLVMContext); 358 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 359 FloatTy = llvm::Type::getFloatTy(LLVMContext); 360 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 361 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 362 PointerAlignInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 364 .getQuantity(); 365 SizeSizeInBytes = 366 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 367 IntAlignInBytes = 368 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 369 CharTy = 370 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 371 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 372 IntPtrTy = llvm::IntegerType::get(LLVMContext, 373 C.getTargetInfo().getMaxPointerWidth()); 374 Int8PtrTy = llvm::PointerType::get(LLVMContext, 375 C.getTargetAddressSpace(LangAS::Default)); 376 const llvm::DataLayout &DL = M.getDataLayout(); 377 AllocaInt8PtrTy = 378 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 379 GlobalsInt8PtrTy = 380 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 381 ConstGlobalsPtrTy = llvm::PointerType::get( 382 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 383 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 384 385 // Build C++20 Module initializers. 386 // TODO: Add Microsoft here once we know the mangling required for the 387 // initializers. 388 CXX20ModuleInits = 389 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 390 ItaniumMangleContext::MK_Itanium; 391 392 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 393 394 if (LangOpts.ObjC) 395 createObjCRuntime(); 396 if (LangOpts.OpenCL) 397 createOpenCLRuntime(); 398 if (LangOpts.OpenMP) 399 createOpenMPRuntime(); 400 if (LangOpts.CUDA) 401 createCUDARuntime(); 402 if (LangOpts.HLSL) 403 createHLSLRuntime(); 404 405 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 406 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 407 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 408 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 409 getLangOpts())); 410 411 // If debug info or coverage generation is enabled, create the CGDebugInfo 412 // object. 413 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 414 CodeGenOpts.CoverageNotesFile.size() || 415 CodeGenOpts.CoverageDataFile.size()) 416 DebugInfo.reset(new CGDebugInfo(*this)); 417 418 Block.GlobalUniqueCount = 0; 419 420 if (C.getLangOpts().ObjC) 421 ObjCData.reset(new ObjCEntrypoints()); 422 423 if (CodeGenOpts.hasProfileClangUse()) { 424 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 425 CodeGenOpts.ProfileInstrumentUsePath, *FS, 426 CodeGenOpts.ProfileRemappingFile); 427 // We're checking for profile read errors in CompilerInvocation, so if 428 // there was an error it should've already been caught. If it hasn't been 429 // somehow, trip an assertion. 430 assert(ReaderOrErr); 431 PGOReader = std::move(ReaderOrErr.get()); 432 } 433 434 // If coverage mapping generation is enabled, create the 435 // CoverageMappingModuleGen object. 436 if (CodeGenOpts.CoverageMapping) 437 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 438 439 // Generate the module name hash here if needed. 440 if (CodeGenOpts.UniqueInternalLinkageNames && 441 !getModule().getSourceFileName().empty()) { 442 std::string Path = getModule().getSourceFileName(); 443 // Check if a path substitution is needed from the MacroPrefixMap. 444 for (const auto &Entry : LangOpts.MacroPrefixMap) 445 if (Path.rfind(Entry.first, 0) != std::string::npos) { 446 Path = Entry.second + Path.substr(Entry.first.size()); 447 break; 448 } 449 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 450 } 451 452 // Record mregparm value now so it is visible through all of codegen. 453 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 454 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 455 CodeGenOpts.NumRegisterParameters); 456 } 457 458 CodeGenModule::~CodeGenModule() {} 459 460 void CodeGenModule::createObjCRuntime() { 461 // This is just isGNUFamily(), but we want to force implementors of 462 // new ABIs to decide how best to do this. 463 switch (LangOpts.ObjCRuntime.getKind()) { 464 case ObjCRuntime::GNUstep: 465 case ObjCRuntime::GCC: 466 case ObjCRuntime::ObjFW: 467 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 468 return; 469 470 case ObjCRuntime::FragileMacOSX: 471 case ObjCRuntime::MacOSX: 472 case ObjCRuntime::iOS: 473 case ObjCRuntime::WatchOS: 474 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 475 return; 476 } 477 llvm_unreachable("bad runtime kind"); 478 } 479 480 void CodeGenModule::createOpenCLRuntime() { 481 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 482 } 483 484 void CodeGenModule::createOpenMPRuntime() { 485 // Select a specialized code generation class based on the target, if any. 486 // If it does not exist use the default implementation. 487 switch (getTriple().getArch()) { 488 case llvm::Triple::nvptx: 489 case llvm::Triple::nvptx64: 490 case llvm::Triple::amdgcn: 491 assert(getLangOpts().OpenMPIsTargetDevice && 492 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 493 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 494 break; 495 default: 496 if (LangOpts.OpenMPSimd) 497 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 498 else 499 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 500 break; 501 } 502 } 503 504 void CodeGenModule::createCUDARuntime() { 505 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 506 } 507 508 void CodeGenModule::createHLSLRuntime() { 509 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 510 } 511 512 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 513 Replacements[Name] = C; 514 } 515 516 void CodeGenModule::applyReplacements() { 517 for (auto &I : Replacements) { 518 StringRef MangledName = I.first; 519 llvm::Constant *Replacement = I.second; 520 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 521 if (!Entry) 522 continue; 523 auto *OldF = cast<llvm::Function>(Entry); 524 auto *NewF = dyn_cast<llvm::Function>(Replacement); 525 if (!NewF) { 526 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 527 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 528 } else { 529 auto *CE = cast<llvm::ConstantExpr>(Replacement); 530 assert(CE->getOpcode() == llvm::Instruction::BitCast || 531 CE->getOpcode() == llvm::Instruction::GetElementPtr); 532 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 533 } 534 } 535 536 // Replace old with new, but keep the old order. 537 OldF->replaceAllUsesWith(Replacement); 538 if (NewF) { 539 NewF->removeFromParent(); 540 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 541 NewF); 542 } 543 OldF->eraseFromParent(); 544 } 545 } 546 547 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 548 GlobalValReplacements.push_back(std::make_pair(GV, C)); 549 } 550 551 void CodeGenModule::applyGlobalValReplacements() { 552 for (auto &I : GlobalValReplacements) { 553 llvm::GlobalValue *GV = I.first; 554 llvm::Constant *C = I.second; 555 556 GV->replaceAllUsesWith(C); 557 GV->eraseFromParent(); 558 } 559 } 560 561 // This is only used in aliases that we created and we know they have a 562 // linear structure. 563 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 564 const llvm::Constant *C; 565 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 566 C = GA->getAliasee(); 567 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 568 C = GI->getResolver(); 569 else 570 return GV; 571 572 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 573 if (!AliaseeGV) 574 return nullptr; 575 576 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 577 if (FinalGV == GV) 578 return nullptr; 579 580 return FinalGV; 581 } 582 583 static bool checkAliasedGlobal( 584 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 585 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 586 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 587 SourceRange AliasRange) { 588 GV = getAliasedGlobal(Alias); 589 if (!GV) { 590 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 591 return false; 592 } 593 594 if (GV->hasCommonLinkage()) { 595 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 596 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 597 Diags.Report(Location, diag::err_alias_to_common); 598 return false; 599 } 600 } 601 602 if (GV->isDeclaration()) { 603 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 604 Diags.Report(Location, diag::note_alias_requires_mangled_name) 605 << IsIFunc << IsIFunc; 606 // Provide a note if the given function is not found and exists as a 607 // mangled name. 608 for (const auto &[Decl, Name] : MangledDeclNames) { 609 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 610 if (ND->getName() == GV->getName()) { 611 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 612 << Name 613 << FixItHint::CreateReplacement( 614 AliasRange, 615 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 616 .str()); 617 } 618 } 619 } 620 return false; 621 } 622 623 if (IsIFunc) { 624 // Check resolver function type. 625 const auto *F = dyn_cast<llvm::Function>(GV); 626 if (!F) { 627 Diags.Report(Location, diag::err_alias_to_undefined) 628 << IsIFunc << IsIFunc; 629 return false; 630 } 631 632 llvm::FunctionType *FTy = F->getFunctionType(); 633 if (!FTy->getReturnType()->isPointerTy()) { 634 Diags.Report(Location, diag::err_ifunc_resolver_return); 635 return false; 636 } 637 } 638 639 return true; 640 } 641 642 // Emit a warning if toc-data attribute is requested for global variables that 643 // have aliases and remove the toc-data attribute. 644 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 645 const CodeGenOptions &CodeGenOpts, 646 DiagnosticsEngine &Diags, 647 SourceLocation Location) { 648 if (GVar->hasAttribute("toc-data")) { 649 auto GVId = GVar->getName(); 650 // Is this a global variable specified by the user as local? 651 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 652 Diags.Report(Location, diag::warn_toc_unsupported_type) 653 << GVId << "the variable has an alias"; 654 } 655 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 656 llvm::AttributeSet NewAttributes = 657 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 658 GVar->setAttributes(NewAttributes); 659 } 660 } 661 662 void CodeGenModule::checkAliases() { 663 // Check if the constructed aliases are well formed. It is really unfortunate 664 // that we have to do this in CodeGen, but we only construct mangled names 665 // and aliases during codegen. 666 bool Error = false; 667 DiagnosticsEngine &Diags = getDiags(); 668 for (const GlobalDecl &GD : Aliases) { 669 const auto *D = cast<ValueDecl>(GD.getDecl()); 670 SourceLocation Location; 671 SourceRange Range; 672 bool IsIFunc = D->hasAttr<IFuncAttr>(); 673 if (const Attr *A = D->getDefiningAttr()) { 674 Location = A->getLocation(); 675 Range = A->getRange(); 676 } else 677 llvm_unreachable("Not an alias or ifunc?"); 678 679 StringRef MangledName = getMangledName(GD); 680 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 681 const llvm::GlobalValue *GV = nullptr; 682 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 683 MangledDeclNames, Range)) { 684 Error = true; 685 continue; 686 } 687 688 if (getContext().getTargetInfo().getTriple().isOSAIX()) 689 if (const llvm::GlobalVariable *GVar = 690 dyn_cast<const llvm::GlobalVariable>(GV)) 691 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 692 getCodeGenOpts(), Diags, Location); 693 694 llvm::Constant *Aliasee = 695 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 696 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 697 698 llvm::GlobalValue *AliaseeGV; 699 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 700 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 701 else 702 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 703 704 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 705 StringRef AliasSection = SA->getName(); 706 if (AliasSection != AliaseeGV->getSection()) 707 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 708 << AliasSection << IsIFunc << IsIFunc; 709 } 710 711 // We have to handle alias to weak aliases in here. LLVM itself disallows 712 // this since the object semantics would not match the IL one. For 713 // compatibility with gcc we implement it by just pointing the alias 714 // to its aliasee's aliasee. We also warn, since the user is probably 715 // expecting the link to be weak. 716 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 717 if (GA->isInterposable()) { 718 Diags.Report(Location, diag::warn_alias_to_weak_alias) 719 << GV->getName() << GA->getName() << IsIFunc; 720 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 721 GA->getAliasee(), Alias->getType()); 722 723 if (IsIFunc) 724 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 725 else 726 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 727 } 728 } 729 // ifunc resolvers are usually implemented to run before sanitizer 730 // initialization. Disable instrumentation to prevent the ordering issue. 731 if (IsIFunc) 732 cast<llvm::Function>(Aliasee)->addFnAttr( 733 llvm::Attribute::DisableSanitizerInstrumentation); 734 } 735 if (!Error) 736 return; 737 738 for (const GlobalDecl &GD : Aliases) { 739 StringRef MangledName = getMangledName(GD); 740 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 741 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 742 Alias->eraseFromParent(); 743 } 744 } 745 746 void CodeGenModule::clear() { 747 DeferredDeclsToEmit.clear(); 748 EmittedDeferredDecls.clear(); 749 DeferredAnnotations.clear(); 750 if (OpenMPRuntime) 751 OpenMPRuntime->clear(); 752 } 753 754 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 755 StringRef MainFile) { 756 if (!hasDiagnostics()) 757 return; 758 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 759 if (MainFile.empty()) 760 MainFile = "<stdin>"; 761 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 762 } else { 763 if (Mismatched > 0) 764 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 765 766 if (Missing > 0) 767 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 768 } 769 } 770 771 static std::optional<llvm::GlobalValue::VisibilityTypes> 772 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 773 // Map to LLVM visibility. 774 switch (K) { 775 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 776 return std::nullopt; 777 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 778 return llvm::GlobalValue::DefaultVisibility; 779 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 780 return llvm::GlobalValue::HiddenVisibility; 781 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 782 return llvm::GlobalValue::ProtectedVisibility; 783 } 784 llvm_unreachable("unknown option value!"); 785 } 786 787 void setLLVMVisibility(llvm::GlobalValue &GV, 788 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 789 if (!V) 790 return; 791 792 // Reset DSO locality before setting the visibility. This removes 793 // any effects that visibility options and annotations may have 794 // had on the DSO locality. Setting the visibility will implicitly set 795 // appropriate globals to DSO Local; however, this will be pessimistic 796 // w.r.t. to the normal compiler IRGen. 797 GV.setDSOLocal(false); 798 GV.setVisibility(*V); 799 } 800 801 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 802 llvm::Module &M) { 803 if (!LO.VisibilityFromDLLStorageClass) 804 return; 805 806 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 807 getLLVMVisibility(LO.getDLLExportVisibility()); 808 809 std::optional<llvm::GlobalValue::VisibilityTypes> 810 NoDLLStorageClassVisibility = 811 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 812 813 std::optional<llvm::GlobalValue::VisibilityTypes> 814 ExternDeclDLLImportVisibility = 815 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 816 817 std::optional<llvm::GlobalValue::VisibilityTypes> 818 ExternDeclNoDLLStorageClassVisibility = 819 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 820 821 for (llvm::GlobalValue &GV : M.global_values()) { 822 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 823 continue; 824 825 if (GV.isDeclarationForLinker()) 826 setLLVMVisibility(GV, GV.getDLLStorageClass() == 827 llvm::GlobalValue::DLLImportStorageClass 828 ? ExternDeclDLLImportVisibility 829 : ExternDeclNoDLLStorageClassVisibility); 830 else 831 setLLVMVisibility(GV, GV.getDLLStorageClass() == 832 llvm::GlobalValue::DLLExportStorageClass 833 ? DLLExportVisibility 834 : NoDLLStorageClassVisibility); 835 836 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 837 } 838 } 839 840 static bool isStackProtectorOn(const LangOptions &LangOpts, 841 const llvm::Triple &Triple, 842 clang::LangOptions::StackProtectorMode Mode) { 843 if (Triple.isAMDGPU() || Triple.isNVPTX()) 844 return false; 845 return LangOpts.getStackProtector() == Mode; 846 } 847 848 void CodeGenModule::Release() { 849 Module *Primary = getContext().getCurrentNamedModule(); 850 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 851 EmitModuleInitializers(Primary); 852 EmitDeferred(); 853 DeferredDecls.insert(EmittedDeferredDecls.begin(), 854 EmittedDeferredDecls.end()); 855 EmittedDeferredDecls.clear(); 856 EmitVTablesOpportunistically(); 857 applyGlobalValReplacements(); 858 applyReplacements(); 859 emitMultiVersionFunctions(); 860 861 if (Context.getLangOpts().IncrementalExtensions && 862 GlobalTopLevelStmtBlockInFlight.first) { 863 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 864 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 865 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 866 } 867 868 // Module implementations are initialized the same way as a regular TU that 869 // imports one or more modules. 870 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 871 EmitCXXModuleInitFunc(Primary); 872 else 873 EmitCXXGlobalInitFunc(); 874 EmitCXXGlobalCleanUpFunc(); 875 registerGlobalDtorsWithAtExit(); 876 EmitCXXThreadLocalInitFunc(); 877 if (ObjCRuntime) 878 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 879 AddGlobalCtor(ObjCInitFunction); 880 if (Context.getLangOpts().CUDA && CUDARuntime) { 881 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 882 AddGlobalCtor(CudaCtorFunction); 883 } 884 if (OpenMPRuntime) { 885 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 886 OpenMPRuntime->clear(); 887 } 888 if (PGOReader) { 889 getModule().setProfileSummary( 890 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 891 llvm::ProfileSummary::PSK_Instr); 892 if (PGOStats.hasDiagnostics()) 893 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 894 } 895 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 896 return L.LexOrder < R.LexOrder; 897 }); 898 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 899 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 900 EmitGlobalAnnotations(); 901 EmitStaticExternCAliases(); 902 checkAliases(); 903 EmitDeferredUnusedCoverageMappings(); 904 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 905 CodeGenPGO(*this).setProfileVersion(getModule()); 906 if (CoverageMapping) 907 CoverageMapping->emit(); 908 if (CodeGenOpts.SanitizeCfiCrossDso) { 909 CodeGenFunction(*this).EmitCfiCheckFail(); 910 CodeGenFunction(*this).EmitCfiCheckStub(); 911 } 912 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 913 finalizeKCFITypes(); 914 emitAtAvailableLinkGuard(); 915 if (Context.getTargetInfo().getTriple().isWasm()) 916 EmitMainVoidAlias(); 917 918 if (getTriple().isAMDGPU() || 919 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 920 // Emit amdhsa_code_object_version module flag, which is code object version 921 // times 100. 922 if (getTarget().getTargetOpts().CodeObjectVersion != 923 llvm::CodeObjectVersionKind::COV_None) { 924 getModule().addModuleFlag(llvm::Module::Error, 925 "amdhsa_code_object_version", 926 getTarget().getTargetOpts().CodeObjectVersion); 927 } 928 929 // Currently, "-mprintf-kind" option is only supported for HIP 930 if (LangOpts.HIP) { 931 auto *MDStr = llvm::MDString::get( 932 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 933 TargetOptions::AMDGPUPrintfKind::Hostcall) 934 ? "hostcall" 935 : "buffered"); 936 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 937 MDStr); 938 } 939 } 940 941 // Emit a global array containing all external kernels or device variables 942 // used by host functions and mark it as used for CUDA/HIP. This is necessary 943 // to get kernels or device variables in archives linked in even if these 944 // kernels or device variables are only used in host functions. 945 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 946 SmallVector<llvm::Constant *, 8> UsedArray; 947 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 948 GlobalDecl GD; 949 if (auto *FD = dyn_cast<FunctionDecl>(D)) 950 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 951 else 952 GD = GlobalDecl(D); 953 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 954 GetAddrOfGlobal(GD), Int8PtrTy)); 955 } 956 957 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 958 959 auto *GV = new llvm::GlobalVariable( 960 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 961 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 962 addCompilerUsedGlobal(GV); 963 } 964 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 965 // Emit a unique ID so that host and device binaries from the same 966 // compilation unit can be associated. 967 auto *GV = new llvm::GlobalVariable( 968 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 969 llvm::Constant::getNullValue(Int8Ty), 970 "__hip_cuid_" + getContext().getCUIDHash()); 971 addCompilerUsedGlobal(GV); 972 } 973 emitLLVMUsed(); 974 if (SanStats) 975 SanStats->finish(); 976 977 if (CodeGenOpts.Autolink && 978 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 979 EmitModuleLinkOptions(); 980 } 981 982 // On ELF we pass the dependent library specifiers directly to the linker 983 // without manipulating them. This is in contrast to other platforms where 984 // they are mapped to a specific linker option by the compiler. This 985 // difference is a result of the greater variety of ELF linkers and the fact 986 // that ELF linkers tend to handle libraries in a more complicated fashion 987 // than on other platforms. This forces us to defer handling the dependent 988 // libs to the linker. 989 // 990 // CUDA/HIP device and host libraries are different. Currently there is no 991 // way to differentiate dependent libraries for host or device. Existing 992 // usage of #pragma comment(lib, *) is intended for host libraries on 993 // Windows. Therefore emit llvm.dependent-libraries only for host. 994 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 995 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 996 for (auto *MD : ELFDependentLibraries) 997 NMD->addOperand(MD); 998 } 999 1000 if (CodeGenOpts.DwarfVersion) { 1001 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 1002 CodeGenOpts.DwarfVersion); 1003 } 1004 1005 if (CodeGenOpts.Dwarf64) 1006 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1007 1008 if (Context.getLangOpts().SemanticInterposition) 1009 // Require various optimization to respect semantic interposition. 1010 getModule().setSemanticInterposition(true); 1011 1012 if (CodeGenOpts.EmitCodeView) { 1013 // Indicate that we want CodeView in the metadata. 1014 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1015 } 1016 if (CodeGenOpts.CodeViewGHash) { 1017 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1018 } 1019 if (CodeGenOpts.ControlFlowGuard) { 1020 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1021 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1022 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1023 // Function ID tables for Control Flow Guard (cfguard=1). 1024 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1025 } 1026 if (CodeGenOpts.EHContGuard) { 1027 // Function ID tables for EH Continuation Guard. 1028 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1029 } 1030 if (Context.getLangOpts().Kernel) { 1031 // Note if we are compiling with /kernel. 1032 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1033 } 1034 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1035 // We don't support LTO with 2 with different StrictVTablePointers 1036 // FIXME: we could support it by stripping all the information introduced 1037 // by StrictVTablePointers. 1038 1039 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1040 1041 llvm::Metadata *Ops[2] = { 1042 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1043 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1044 llvm::Type::getInt32Ty(VMContext), 1))}; 1045 1046 getModule().addModuleFlag(llvm::Module::Require, 1047 "StrictVTablePointersRequirement", 1048 llvm::MDNode::get(VMContext, Ops)); 1049 } 1050 if (getModuleDebugInfo()) 1051 // We support a single version in the linked module. The LLVM 1052 // parser will drop debug info with a different version number 1053 // (and warn about it, too). 1054 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1055 llvm::DEBUG_METADATA_VERSION); 1056 1057 // We need to record the widths of enums and wchar_t, so that we can generate 1058 // the correct build attributes in the ARM backend. wchar_size is also used by 1059 // TargetLibraryInfo. 1060 uint64_t WCharWidth = 1061 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1062 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1063 1064 if (getTriple().isOSzOS()) { 1065 getModule().addModuleFlag(llvm::Module::Warning, 1066 "zos_product_major_version", 1067 uint32_t(CLANG_VERSION_MAJOR)); 1068 getModule().addModuleFlag(llvm::Module::Warning, 1069 "zos_product_minor_version", 1070 uint32_t(CLANG_VERSION_MINOR)); 1071 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1072 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1073 std::string ProductId = getClangVendor() + "clang"; 1074 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1075 llvm::MDString::get(VMContext, ProductId)); 1076 1077 // Record the language because we need it for the PPA2. 1078 StringRef lang_str = languageToString( 1079 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1080 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1081 llvm::MDString::get(VMContext, lang_str)); 1082 1083 time_t TT = PreprocessorOpts.SourceDateEpoch 1084 ? *PreprocessorOpts.SourceDateEpoch 1085 : std::time(nullptr); 1086 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1087 static_cast<uint64_t>(TT)); 1088 1089 // Multiple modes will be supported here. 1090 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1091 llvm::MDString::get(VMContext, "ascii")); 1092 } 1093 1094 llvm::Triple T = Context.getTargetInfo().getTriple(); 1095 if (T.isARM() || T.isThumb()) { 1096 // The minimum width of an enum in bytes 1097 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1098 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1099 } 1100 1101 if (T.isRISCV()) { 1102 StringRef ABIStr = Target.getABI(); 1103 llvm::LLVMContext &Ctx = TheModule.getContext(); 1104 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1105 llvm::MDString::get(Ctx, ABIStr)); 1106 1107 // Add the canonical ISA string as metadata so the backend can set the ELF 1108 // attributes correctly. We use AppendUnique so LTO will keep all of the 1109 // unique ISA strings that were linked together. 1110 const std::vector<std::string> &Features = 1111 getTarget().getTargetOpts().Features; 1112 auto ParseResult = 1113 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1114 if (!errorToBool(ParseResult.takeError())) 1115 getModule().addModuleFlag( 1116 llvm::Module::AppendUnique, "riscv-isa", 1117 llvm::MDNode::get( 1118 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1119 } 1120 1121 if (CodeGenOpts.SanitizeCfiCrossDso) { 1122 // Indicate that we want cross-DSO control flow integrity checks. 1123 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1124 } 1125 1126 if (CodeGenOpts.WholeProgramVTables) { 1127 // Indicate whether VFE was enabled for this module, so that the 1128 // vcall_visibility metadata added under whole program vtables is handled 1129 // appropriately in the optimizer. 1130 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1131 CodeGenOpts.VirtualFunctionElimination); 1132 } 1133 1134 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1135 getModule().addModuleFlag(llvm::Module::Override, 1136 "CFI Canonical Jump Tables", 1137 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1138 } 1139 1140 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1141 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1142 // KCFI assumes patchable-function-prefix is the same for all indirectly 1143 // called functions. Store the expected offset for code generation. 1144 if (CodeGenOpts.PatchableFunctionEntryOffset) 1145 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1146 CodeGenOpts.PatchableFunctionEntryOffset); 1147 } 1148 1149 if (CodeGenOpts.CFProtectionReturn && 1150 Target.checkCFProtectionReturnSupported(getDiags())) { 1151 // Indicate that we want to instrument return control flow protection. 1152 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1153 1); 1154 } 1155 1156 if (CodeGenOpts.CFProtectionBranch && 1157 Target.checkCFProtectionBranchSupported(getDiags())) { 1158 // Indicate that we want to instrument branch control flow protection. 1159 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1160 1); 1161 } 1162 1163 if (CodeGenOpts.FunctionReturnThunks) 1164 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1165 1166 if (CodeGenOpts.IndirectBranchCSPrefix) 1167 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1168 1169 // Add module metadata for return address signing (ignoring 1170 // non-leaf/all) and stack tagging. These are actually turned on by function 1171 // attributes, but we use module metadata to emit build attributes. This is 1172 // needed for LTO, where the function attributes are inside bitcode 1173 // serialised into a global variable by the time build attributes are 1174 // emitted, so we can't access them. LTO objects could be compiled with 1175 // different flags therefore module flags are set to "Min" behavior to achieve 1176 // the same end result of the normal build where e.g BTI is off if any object 1177 // doesn't support it. 1178 if (Context.getTargetInfo().hasFeature("ptrauth") && 1179 LangOpts.getSignReturnAddressScope() != 1180 LangOptions::SignReturnAddressScopeKind::None) 1181 getModule().addModuleFlag(llvm::Module::Override, 1182 "sign-return-address-buildattr", 1); 1183 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1184 getModule().addModuleFlag(llvm::Module::Override, 1185 "tag-stack-memory-buildattr", 1); 1186 1187 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1188 if (LangOpts.BranchTargetEnforcement) 1189 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1190 1); 1191 if (LangOpts.BranchProtectionPAuthLR) 1192 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1193 1); 1194 if (LangOpts.GuardedControlStack) 1195 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1196 if (LangOpts.hasSignReturnAddress()) 1197 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1198 if (LangOpts.isSignReturnAddressScopeAll()) 1199 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1200 1); 1201 if (!LangOpts.isSignReturnAddressWithAKey()) 1202 getModule().addModuleFlag(llvm::Module::Min, 1203 "sign-return-address-with-bkey", 1); 1204 1205 if (getTriple().isOSLinux()) { 1206 assert(getTriple().isOSBinFormatELF()); 1207 using namespace llvm::ELF; 1208 uint64_t PAuthABIVersion = 1209 (LangOpts.PointerAuthIntrinsics 1210 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1211 (LangOpts.PointerAuthCalls 1212 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1213 (LangOpts.PointerAuthReturns 1214 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1215 (LangOpts.PointerAuthAuthTraps 1216 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1217 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1218 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1219 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1220 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1221 (LangOpts.PointerAuthInitFini 1222 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI); 1223 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI == 1224 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1225 "Update when new enum items are defined"); 1226 if (PAuthABIVersion != 0) { 1227 getModule().addModuleFlag(llvm::Module::Error, 1228 "aarch64-elf-pauthabi-platform", 1229 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1230 getModule().addModuleFlag(llvm::Module::Error, 1231 "aarch64-elf-pauthabi-version", 1232 PAuthABIVersion); 1233 } 1234 } 1235 } 1236 1237 if (CodeGenOpts.StackClashProtector) 1238 getModule().addModuleFlag( 1239 llvm::Module::Override, "probe-stack", 1240 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1241 1242 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1243 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1244 CodeGenOpts.StackProbeSize); 1245 1246 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1247 llvm::LLVMContext &Ctx = TheModule.getContext(); 1248 getModule().addModuleFlag( 1249 llvm::Module::Error, "MemProfProfileFilename", 1250 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1251 } 1252 1253 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1254 // Indicate whether __nvvm_reflect should be configured to flush denormal 1255 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1256 // property.) 1257 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1258 CodeGenOpts.FP32DenormalMode.Output != 1259 llvm::DenormalMode::IEEE); 1260 } 1261 1262 if (LangOpts.EHAsynch) 1263 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1264 1265 // Indicate whether this Module was compiled with -fopenmp 1266 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1267 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1268 if (getLangOpts().OpenMPIsTargetDevice) 1269 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1270 LangOpts.OpenMP); 1271 1272 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1273 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1274 EmitOpenCLMetadata(); 1275 // Emit SPIR version. 1276 if (getTriple().isSPIR()) { 1277 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1278 // opencl.spir.version named metadata. 1279 // C++ for OpenCL has a distinct mapping for version compatibility with 1280 // OpenCL. 1281 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1282 llvm::Metadata *SPIRVerElts[] = { 1283 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1284 Int32Ty, Version / 100)), 1285 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1286 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1287 llvm::NamedMDNode *SPIRVerMD = 1288 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1289 llvm::LLVMContext &Ctx = TheModule.getContext(); 1290 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1291 } 1292 } 1293 1294 // HLSL related end of code gen work items. 1295 if (LangOpts.HLSL) 1296 getHLSLRuntime().finishCodeGen(); 1297 1298 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1299 assert(PLevel < 3 && "Invalid PIC Level"); 1300 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1301 if (Context.getLangOpts().PIE) 1302 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1303 } 1304 1305 if (getCodeGenOpts().CodeModel.size() > 0) { 1306 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1307 .Case("tiny", llvm::CodeModel::Tiny) 1308 .Case("small", llvm::CodeModel::Small) 1309 .Case("kernel", llvm::CodeModel::Kernel) 1310 .Case("medium", llvm::CodeModel::Medium) 1311 .Case("large", llvm::CodeModel::Large) 1312 .Default(~0u); 1313 if (CM != ~0u) { 1314 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1315 getModule().setCodeModel(codeModel); 1316 1317 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1318 Context.getTargetInfo().getTriple().getArch() == 1319 llvm::Triple::x86_64) { 1320 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1321 } 1322 } 1323 } 1324 1325 if (CodeGenOpts.NoPLT) 1326 getModule().setRtLibUseGOT(); 1327 if (getTriple().isOSBinFormatELF() && 1328 CodeGenOpts.DirectAccessExternalData != 1329 getModule().getDirectAccessExternalData()) { 1330 getModule().setDirectAccessExternalData( 1331 CodeGenOpts.DirectAccessExternalData); 1332 } 1333 if (CodeGenOpts.UnwindTables) 1334 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1335 1336 switch (CodeGenOpts.getFramePointer()) { 1337 case CodeGenOptions::FramePointerKind::None: 1338 // 0 ("none") is the default. 1339 break; 1340 case CodeGenOptions::FramePointerKind::Reserved: 1341 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1342 break; 1343 case CodeGenOptions::FramePointerKind::NonLeaf: 1344 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1345 break; 1346 case CodeGenOptions::FramePointerKind::All: 1347 getModule().setFramePointer(llvm::FramePointerKind::All); 1348 break; 1349 } 1350 1351 SimplifyPersonality(); 1352 1353 if (getCodeGenOpts().EmitDeclMetadata) 1354 EmitDeclMetadata(); 1355 1356 if (getCodeGenOpts().CoverageNotesFile.size() || 1357 getCodeGenOpts().CoverageDataFile.size()) 1358 EmitCoverageFile(); 1359 1360 if (CGDebugInfo *DI = getModuleDebugInfo()) 1361 DI->finalize(); 1362 1363 if (getCodeGenOpts().EmitVersionIdentMetadata) 1364 EmitVersionIdentMetadata(); 1365 1366 if (!getCodeGenOpts().RecordCommandLine.empty()) 1367 EmitCommandLineMetadata(); 1368 1369 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1370 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1371 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1372 getModule().setStackProtectorGuardReg( 1373 getCodeGenOpts().StackProtectorGuardReg); 1374 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1375 getModule().setStackProtectorGuardSymbol( 1376 getCodeGenOpts().StackProtectorGuardSymbol); 1377 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1378 getModule().setStackProtectorGuardOffset( 1379 getCodeGenOpts().StackProtectorGuardOffset); 1380 if (getCodeGenOpts().StackAlignment) 1381 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1382 if (getCodeGenOpts().SkipRaxSetup) 1383 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1384 if (getLangOpts().RegCall4) 1385 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1386 1387 if (getContext().getTargetInfo().getMaxTLSAlign()) 1388 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1389 getContext().getTargetInfo().getMaxTLSAlign()); 1390 1391 getTargetCodeGenInfo().emitTargetGlobals(*this); 1392 1393 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1394 1395 EmitBackendOptionsMetadata(getCodeGenOpts()); 1396 1397 // If there is device offloading code embed it in the host now. 1398 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1399 1400 // Set visibility from DLL storage class 1401 // We do this at the end of LLVM IR generation; after any operation 1402 // that might affect the DLL storage class or the visibility, and 1403 // before anything that might act on these. 1404 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1405 1406 // Check the tail call symbols are truly undefined. 1407 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1408 for (auto &I : MustTailCallUndefinedGlobals) { 1409 if (!I.first->isDefined()) 1410 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1411 else { 1412 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1413 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1414 if (!Entry || Entry->isWeakForLinker() || 1415 Entry->isDeclarationForLinker()) 1416 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1417 } 1418 } 1419 } 1420 } 1421 1422 void CodeGenModule::EmitOpenCLMetadata() { 1423 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1424 // opencl.ocl.version named metadata node. 1425 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1426 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1427 1428 auto EmitVersion = [this](StringRef MDName, int Version) { 1429 llvm::Metadata *OCLVerElts[] = { 1430 llvm::ConstantAsMetadata::get( 1431 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1432 llvm::ConstantAsMetadata::get( 1433 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1434 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1435 llvm::LLVMContext &Ctx = TheModule.getContext(); 1436 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1437 }; 1438 1439 EmitVersion("opencl.ocl.version", CLVersion); 1440 if (LangOpts.OpenCLCPlusPlus) { 1441 // In addition to the OpenCL compatible version, emit the C++ version. 1442 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1443 } 1444 } 1445 1446 void CodeGenModule::EmitBackendOptionsMetadata( 1447 const CodeGenOptions &CodeGenOpts) { 1448 if (getTriple().isRISCV()) { 1449 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1450 CodeGenOpts.SmallDataLimit); 1451 } 1452 } 1453 1454 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1455 // Make sure that this type is translated. 1456 getTypes().UpdateCompletedType(TD); 1457 } 1458 1459 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1460 // Make sure that this type is translated. 1461 getTypes().RefreshTypeCacheForClass(RD); 1462 } 1463 1464 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1465 if (!TBAA) 1466 return nullptr; 1467 return TBAA->getTypeInfo(QTy); 1468 } 1469 1470 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1471 if (!TBAA) 1472 return TBAAAccessInfo(); 1473 if (getLangOpts().CUDAIsDevice) { 1474 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1475 // access info. 1476 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1477 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1478 nullptr) 1479 return TBAAAccessInfo(); 1480 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1481 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1482 nullptr) 1483 return TBAAAccessInfo(); 1484 } 1485 } 1486 return TBAA->getAccessInfo(AccessType); 1487 } 1488 1489 TBAAAccessInfo 1490 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1491 if (!TBAA) 1492 return TBAAAccessInfo(); 1493 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1494 } 1495 1496 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1497 if (!TBAA) 1498 return nullptr; 1499 return TBAA->getTBAAStructInfo(QTy); 1500 } 1501 1502 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1503 if (!TBAA) 1504 return nullptr; 1505 return TBAA->getBaseTypeInfo(QTy); 1506 } 1507 1508 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1509 if (!TBAA) 1510 return nullptr; 1511 return TBAA->getAccessTagInfo(Info); 1512 } 1513 1514 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1515 TBAAAccessInfo TargetInfo) { 1516 if (!TBAA) 1517 return TBAAAccessInfo(); 1518 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1519 } 1520 1521 TBAAAccessInfo 1522 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1523 TBAAAccessInfo InfoB) { 1524 if (!TBAA) 1525 return TBAAAccessInfo(); 1526 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1527 } 1528 1529 TBAAAccessInfo 1530 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1531 TBAAAccessInfo SrcInfo) { 1532 if (!TBAA) 1533 return TBAAAccessInfo(); 1534 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1535 } 1536 1537 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1538 TBAAAccessInfo TBAAInfo) { 1539 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1540 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1541 } 1542 1543 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1544 llvm::Instruction *I, const CXXRecordDecl *RD) { 1545 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1546 llvm::MDNode::get(getLLVMContext(), {})); 1547 } 1548 1549 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1550 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1551 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1552 } 1553 1554 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1555 /// specified stmt yet. 1556 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1557 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1558 "cannot compile this %0 yet"); 1559 std::string Msg = Type; 1560 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1561 << Msg << S->getSourceRange(); 1562 } 1563 1564 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1565 /// specified decl yet. 1566 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1567 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1568 "cannot compile this %0 yet"); 1569 std::string Msg = Type; 1570 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1571 } 1572 1573 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1574 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1575 } 1576 1577 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1578 const NamedDecl *D) const { 1579 // Internal definitions always have default visibility. 1580 if (GV->hasLocalLinkage()) { 1581 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1582 return; 1583 } 1584 if (!D) 1585 return; 1586 1587 // Set visibility for definitions, and for declarations if requested globally 1588 // or set explicitly. 1589 LinkageInfo LV = D->getLinkageAndVisibility(); 1590 1591 // OpenMP declare target variables must be visible to the host so they can 1592 // be registered. We require protected visibility unless the variable has 1593 // the DT_nohost modifier and does not need to be registered. 1594 if (Context.getLangOpts().OpenMP && 1595 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1596 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1597 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1598 OMPDeclareTargetDeclAttr::DT_NoHost && 1599 LV.getVisibility() == HiddenVisibility) { 1600 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1601 return; 1602 } 1603 1604 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1605 // Reject incompatible dlllstorage and visibility annotations. 1606 if (!LV.isVisibilityExplicit()) 1607 return; 1608 if (GV->hasDLLExportStorageClass()) { 1609 if (LV.getVisibility() == HiddenVisibility) 1610 getDiags().Report(D->getLocation(), 1611 diag::err_hidden_visibility_dllexport); 1612 } else if (LV.getVisibility() != DefaultVisibility) { 1613 getDiags().Report(D->getLocation(), 1614 diag::err_non_default_visibility_dllimport); 1615 } 1616 return; 1617 } 1618 1619 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1620 !GV->isDeclarationForLinker()) 1621 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1622 } 1623 1624 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1625 llvm::GlobalValue *GV) { 1626 if (GV->hasLocalLinkage()) 1627 return true; 1628 1629 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1630 return true; 1631 1632 // DLLImport explicitly marks the GV as external. 1633 if (GV->hasDLLImportStorageClass()) 1634 return false; 1635 1636 const llvm::Triple &TT = CGM.getTriple(); 1637 const auto &CGOpts = CGM.getCodeGenOpts(); 1638 if (TT.isWindowsGNUEnvironment()) { 1639 // In MinGW, variables without DLLImport can still be automatically 1640 // imported from a DLL by the linker; don't mark variables that 1641 // potentially could come from another DLL as DSO local. 1642 1643 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1644 // (and this actually happens in the public interface of libstdc++), so 1645 // such variables can't be marked as DSO local. (Native TLS variables 1646 // can't be dllimported at all, though.) 1647 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1648 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1649 CGOpts.AutoImport) 1650 return false; 1651 } 1652 1653 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1654 // remain unresolved in the link, they can be resolved to zero, which is 1655 // outside the current DSO. 1656 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1657 return false; 1658 1659 // Every other GV is local on COFF. 1660 // Make an exception for windows OS in the triple: Some firmware builds use 1661 // *-win32-macho triples. This (accidentally?) produced windows relocations 1662 // without GOT tables in older clang versions; Keep this behaviour. 1663 // FIXME: even thread local variables? 1664 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1665 return true; 1666 1667 // Only handle COFF and ELF for now. 1668 if (!TT.isOSBinFormatELF()) 1669 return false; 1670 1671 // If this is not an executable, don't assume anything is local. 1672 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1673 const auto &LOpts = CGM.getLangOpts(); 1674 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1675 // On ELF, if -fno-semantic-interposition is specified and the target 1676 // supports local aliases, there will be neither CC1 1677 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1678 // dso_local on the function if using a local alias is preferable (can avoid 1679 // PLT indirection). 1680 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1681 return false; 1682 return !(CGM.getLangOpts().SemanticInterposition || 1683 CGM.getLangOpts().HalfNoSemanticInterposition); 1684 } 1685 1686 // A definition cannot be preempted from an executable. 1687 if (!GV->isDeclarationForLinker()) 1688 return true; 1689 1690 // Most PIC code sequences that assume that a symbol is local cannot produce a 1691 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1692 // depended, it seems worth it to handle it here. 1693 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1694 return false; 1695 1696 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1697 if (TT.isPPC64()) 1698 return false; 1699 1700 if (CGOpts.DirectAccessExternalData) { 1701 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1702 // for non-thread-local variables. If the symbol is not defined in the 1703 // executable, a copy relocation will be needed at link time. dso_local is 1704 // excluded for thread-local variables because they generally don't support 1705 // copy relocations. 1706 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1707 if (!Var->isThreadLocal()) 1708 return true; 1709 1710 // -fno-pic sets dso_local on a function declaration to allow direct 1711 // accesses when taking its address (similar to a data symbol). If the 1712 // function is not defined in the executable, a canonical PLT entry will be 1713 // needed at link time. -fno-direct-access-external-data can avoid the 1714 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1715 // it could just cause trouble without providing perceptible benefits. 1716 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1717 return true; 1718 } 1719 1720 // If we can use copy relocations we can assume it is local. 1721 1722 // Otherwise don't assume it is local. 1723 return false; 1724 } 1725 1726 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1727 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1728 } 1729 1730 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1731 GlobalDecl GD) const { 1732 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1733 // C++ destructors have a few C++ ABI specific special cases. 1734 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1735 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1736 return; 1737 } 1738 setDLLImportDLLExport(GV, D); 1739 } 1740 1741 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1742 const NamedDecl *D) const { 1743 if (D && D->isExternallyVisible()) { 1744 if (D->hasAttr<DLLImportAttr>()) 1745 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1746 else if ((D->hasAttr<DLLExportAttr>() || 1747 shouldMapVisibilityToDLLExport(D)) && 1748 !GV->isDeclarationForLinker()) 1749 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1750 } 1751 } 1752 1753 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1754 GlobalDecl GD) const { 1755 setDLLImportDLLExport(GV, GD); 1756 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1757 } 1758 1759 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1760 const NamedDecl *D) const { 1761 setDLLImportDLLExport(GV, D); 1762 setGVPropertiesAux(GV, D); 1763 } 1764 1765 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1766 const NamedDecl *D) const { 1767 setGlobalVisibility(GV, D); 1768 setDSOLocal(GV); 1769 GV->setPartition(CodeGenOpts.SymbolPartition); 1770 } 1771 1772 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1773 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1774 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1775 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1776 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1777 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1778 } 1779 1780 llvm::GlobalVariable::ThreadLocalMode 1781 CodeGenModule::GetDefaultLLVMTLSModel() const { 1782 switch (CodeGenOpts.getDefaultTLSModel()) { 1783 case CodeGenOptions::GeneralDynamicTLSModel: 1784 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1785 case CodeGenOptions::LocalDynamicTLSModel: 1786 return llvm::GlobalVariable::LocalDynamicTLSModel; 1787 case CodeGenOptions::InitialExecTLSModel: 1788 return llvm::GlobalVariable::InitialExecTLSModel; 1789 case CodeGenOptions::LocalExecTLSModel: 1790 return llvm::GlobalVariable::LocalExecTLSModel; 1791 } 1792 llvm_unreachable("Invalid TLS model!"); 1793 } 1794 1795 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1796 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1797 1798 llvm::GlobalValue::ThreadLocalMode TLM; 1799 TLM = GetDefaultLLVMTLSModel(); 1800 1801 // Override the TLS model if it is explicitly specified. 1802 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1803 TLM = GetLLVMTLSModel(Attr->getModel()); 1804 } 1805 1806 GV->setThreadLocalMode(TLM); 1807 } 1808 1809 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1810 StringRef Name) { 1811 const TargetInfo &Target = CGM.getTarget(); 1812 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1813 } 1814 1815 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1816 const CPUSpecificAttr *Attr, 1817 unsigned CPUIndex, 1818 raw_ostream &Out) { 1819 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1820 // supported. 1821 if (Attr) 1822 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1823 else if (CGM.getTarget().supportsIFunc()) 1824 Out << ".resolver"; 1825 } 1826 1827 // Returns true if GD is a function decl with internal linkage and 1828 // needs a unique suffix after the mangled name. 1829 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1830 CodeGenModule &CGM) { 1831 const Decl *D = GD.getDecl(); 1832 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1833 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1834 } 1835 1836 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1837 const NamedDecl *ND, 1838 bool OmitMultiVersionMangling = false) { 1839 SmallString<256> Buffer; 1840 llvm::raw_svector_ostream Out(Buffer); 1841 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1842 if (!CGM.getModuleNameHash().empty()) 1843 MC.needsUniqueInternalLinkageNames(); 1844 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1845 if (ShouldMangle) 1846 MC.mangleName(GD.getWithDecl(ND), Out); 1847 else { 1848 IdentifierInfo *II = ND->getIdentifier(); 1849 assert(II && "Attempt to mangle unnamed decl."); 1850 const auto *FD = dyn_cast<FunctionDecl>(ND); 1851 1852 if (FD && 1853 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1854 if (CGM.getLangOpts().RegCall4) 1855 Out << "__regcall4__" << II->getName(); 1856 else 1857 Out << "__regcall3__" << II->getName(); 1858 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1859 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1860 Out << "__device_stub__" << II->getName(); 1861 } else { 1862 Out << II->getName(); 1863 } 1864 } 1865 1866 // Check if the module name hash should be appended for internal linkage 1867 // symbols. This should come before multi-version target suffixes are 1868 // appended. This is to keep the name and module hash suffix of the 1869 // internal linkage function together. The unique suffix should only be 1870 // added when name mangling is done to make sure that the final name can 1871 // be properly demangled. For example, for C functions without prototypes, 1872 // name mangling is not done and the unique suffix should not be appeneded 1873 // then. 1874 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1875 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1876 "Hash computed when not explicitly requested"); 1877 Out << CGM.getModuleNameHash(); 1878 } 1879 1880 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1881 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1882 switch (FD->getMultiVersionKind()) { 1883 case MultiVersionKind::CPUDispatch: 1884 case MultiVersionKind::CPUSpecific: 1885 AppendCPUSpecificCPUDispatchMangling(CGM, 1886 FD->getAttr<CPUSpecificAttr>(), 1887 GD.getMultiVersionIndex(), Out); 1888 break; 1889 case MultiVersionKind::Target: { 1890 auto *Attr = FD->getAttr<TargetAttr>(); 1891 assert(Attr && "Expected TargetAttr to be present " 1892 "for attribute mangling"); 1893 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1894 Info.appendAttributeMangling(Attr, Out); 1895 break; 1896 } 1897 case MultiVersionKind::TargetVersion: { 1898 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1899 assert(Attr && "Expected TargetVersionAttr to be present " 1900 "for attribute mangling"); 1901 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1902 Info.appendAttributeMangling(Attr, Out); 1903 break; 1904 } 1905 case MultiVersionKind::TargetClones: { 1906 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1907 assert(Attr && "Expected TargetClonesAttr to be present " 1908 "for attribute mangling"); 1909 unsigned Index = GD.getMultiVersionIndex(); 1910 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1911 Info.appendAttributeMangling(Attr, Index, Out); 1912 break; 1913 } 1914 case MultiVersionKind::None: 1915 llvm_unreachable("None multiversion type isn't valid here"); 1916 } 1917 } 1918 1919 // Make unique name for device side static file-scope variable for HIP. 1920 if (CGM.getContext().shouldExternalize(ND) && 1921 CGM.getLangOpts().GPURelocatableDeviceCode && 1922 CGM.getLangOpts().CUDAIsDevice) 1923 CGM.printPostfixForExternalizedDecl(Out, ND); 1924 1925 return std::string(Out.str()); 1926 } 1927 1928 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1929 const FunctionDecl *FD, 1930 StringRef &CurName) { 1931 if (!FD->isMultiVersion()) 1932 return; 1933 1934 // Get the name of what this would be without the 'target' attribute. This 1935 // allows us to lookup the version that was emitted when this wasn't a 1936 // multiversion function. 1937 std::string NonTargetName = 1938 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1939 GlobalDecl OtherGD; 1940 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1941 assert(OtherGD.getCanonicalDecl() 1942 .getDecl() 1943 ->getAsFunction() 1944 ->isMultiVersion() && 1945 "Other GD should now be a multiversioned function"); 1946 // OtherFD is the version of this function that was mangled BEFORE 1947 // becoming a MultiVersion function. It potentially needs to be updated. 1948 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1949 .getDecl() 1950 ->getAsFunction() 1951 ->getMostRecentDecl(); 1952 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1953 // This is so that if the initial version was already the 'default' 1954 // version, we don't try to update it. 1955 if (OtherName != NonTargetName) { 1956 // Remove instead of erase, since others may have stored the StringRef 1957 // to this. 1958 const auto ExistingRecord = Manglings.find(NonTargetName); 1959 if (ExistingRecord != std::end(Manglings)) 1960 Manglings.remove(&(*ExistingRecord)); 1961 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1962 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1963 Result.first->first(); 1964 // If this is the current decl is being created, make sure we update the name. 1965 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1966 CurName = OtherNameRef; 1967 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1968 Entry->setName(OtherName); 1969 } 1970 } 1971 } 1972 1973 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1974 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1975 1976 // Some ABIs don't have constructor variants. Make sure that base and 1977 // complete constructors get mangled the same. 1978 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1979 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1980 CXXCtorType OrigCtorType = GD.getCtorType(); 1981 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1982 if (OrigCtorType == Ctor_Base) 1983 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1984 } 1985 } 1986 1987 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1988 // static device variable depends on whether the variable is referenced by 1989 // a host or device host function. Therefore the mangled name cannot be 1990 // cached. 1991 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1992 auto FoundName = MangledDeclNames.find(CanonicalGD); 1993 if (FoundName != MangledDeclNames.end()) 1994 return FoundName->second; 1995 } 1996 1997 // Keep the first result in the case of a mangling collision. 1998 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1999 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2000 2001 // Ensure either we have different ABIs between host and device compilations, 2002 // says host compilation following MSVC ABI but device compilation follows 2003 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2004 // mangling should be the same after name stubbing. The later checking is 2005 // very important as the device kernel name being mangled in host-compilation 2006 // is used to resolve the device binaries to be executed. Inconsistent naming 2007 // result in undefined behavior. Even though we cannot check that naming 2008 // directly between host- and device-compilations, the host- and 2009 // device-mangling in host compilation could help catching certain ones. 2010 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2011 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2012 (getContext().getAuxTargetInfo() && 2013 (getContext().getAuxTargetInfo()->getCXXABI() != 2014 getContext().getTargetInfo().getCXXABI())) || 2015 getCUDARuntime().getDeviceSideName(ND) == 2016 getMangledNameImpl( 2017 *this, 2018 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2019 ND)); 2020 2021 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2022 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2023 } 2024 2025 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2026 const BlockDecl *BD) { 2027 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2028 const Decl *D = GD.getDecl(); 2029 2030 SmallString<256> Buffer; 2031 llvm::raw_svector_ostream Out(Buffer); 2032 if (!D) 2033 MangleCtx.mangleGlobalBlock(BD, 2034 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2035 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2036 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2037 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2038 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2039 else 2040 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2041 2042 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2043 return Result.first->first(); 2044 } 2045 2046 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2047 auto it = MangledDeclNames.begin(); 2048 while (it != MangledDeclNames.end()) { 2049 if (it->second == Name) 2050 return it->first; 2051 it++; 2052 } 2053 return GlobalDecl(); 2054 } 2055 2056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2057 return getModule().getNamedValue(Name); 2058 } 2059 2060 /// AddGlobalCtor - Add a function to the list that will be called before 2061 /// main() runs. 2062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2063 unsigned LexOrder, 2064 llvm::Constant *AssociatedData) { 2065 // FIXME: Type coercion of void()* types. 2066 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2067 } 2068 2069 /// AddGlobalDtor - Add a function to the list that will be called 2070 /// when the module is unloaded. 2071 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2072 bool IsDtorAttrFunc) { 2073 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2074 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2075 DtorsUsingAtExit[Priority].push_back(Dtor); 2076 return; 2077 } 2078 2079 // FIXME: Type coercion of void()* types. 2080 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2081 } 2082 2083 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2084 if (Fns.empty()) return; 2085 2086 // Ctor function type is void()*. 2087 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2088 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2089 TheModule.getDataLayout().getProgramAddressSpace()); 2090 2091 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2092 llvm::StructType *CtorStructTy = llvm::StructType::get( 2093 Int32Ty, CtorPFTy, VoidPtrTy); 2094 2095 // Construct the constructor and destructor arrays. 2096 ConstantInitBuilder builder(*this); 2097 auto ctors = builder.beginArray(CtorStructTy); 2098 for (const auto &I : Fns) { 2099 auto ctor = ctors.beginStruct(CtorStructTy); 2100 ctor.addInt(Int32Ty, I.Priority); 2101 ctor.add(I.Initializer); 2102 if (I.AssociatedData) 2103 ctor.add(I.AssociatedData); 2104 else 2105 ctor.addNullPointer(VoidPtrTy); 2106 ctor.finishAndAddTo(ctors); 2107 } 2108 2109 auto list = 2110 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2111 /*constant*/ false, 2112 llvm::GlobalValue::AppendingLinkage); 2113 2114 // The LTO linker doesn't seem to like it when we set an alignment 2115 // on appending variables. Take it off as a workaround. 2116 list->setAlignment(std::nullopt); 2117 2118 Fns.clear(); 2119 } 2120 2121 llvm::GlobalValue::LinkageTypes 2122 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2123 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2124 2125 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2126 2127 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2128 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2129 2130 return getLLVMLinkageForDeclarator(D, Linkage); 2131 } 2132 2133 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2134 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2135 if (!MDS) return nullptr; 2136 2137 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2138 } 2139 2140 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2141 if (auto *FnType = T->getAs<FunctionProtoType>()) 2142 T = getContext().getFunctionType( 2143 FnType->getReturnType(), FnType->getParamTypes(), 2144 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2145 2146 std::string OutName; 2147 llvm::raw_string_ostream Out(OutName); 2148 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2149 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2150 2151 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2152 Out << ".normalized"; 2153 2154 return llvm::ConstantInt::get(Int32Ty, 2155 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2156 } 2157 2158 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2159 const CGFunctionInfo &Info, 2160 llvm::Function *F, bool IsThunk) { 2161 unsigned CallingConv; 2162 llvm::AttributeList PAL; 2163 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2164 /*AttrOnCallSite=*/false, IsThunk); 2165 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2166 getTarget().getTriple().isWindowsArm64EC()) { 2167 SourceLocation Loc; 2168 if (const Decl *D = GD.getDecl()) 2169 Loc = D->getLocation(); 2170 2171 Error(Loc, "__vectorcall calling convention is not currently supported"); 2172 } 2173 F->setAttributes(PAL); 2174 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2175 } 2176 2177 static void removeImageAccessQualifier(std::string& TyName) { 2178 std::string ReadOnlyQual("__read_only"); 2179 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2180 if (ReadOnlyPos != std::string::npos) 2181 // "+ 1" for the space after access qualifier. 2182 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2183 else { 2184 std::string WriteOnlyQual("__write_only"); 2185 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2186 if (WriteOnlyPos != std::string::npos) 2187 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2188 else { 2189 std::string ReadWriteQual("__read_write"); 2190 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2191 if (ReadWritePos != std::string::npos) 2192 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2193 } 2194 } 2195 } 2196 2197 // Returns the address space id that should be produced to the 2198 // kernel_arg_addr_space metadata. This is always fixed to the ids 2199 // as specified in the SPIR 2.0 specification in order to differentiate 2200 // for example in clGetKernelArgInfo() implementation between the address 2201 // spaces with targets without unique mapping to the OpenCL address spaces 2202 // (basically all single AS CPUs). 2203 static unsigned ArgInfoAddressSpace(LangAS AS) { 2204 switch (AS) { 2205 case LangAS::opencl_global: 2206 return 1; 2207 case LangAS::opencl_constant: 2208 return 2; 2209 case LangAS::opencl_local: 2210 return 3; 2211 case LangAS::opencl_generic: 2212 return 4; // Not in SPIR 2.0 specs. 2213 case LangAS::opencl_global_device: 2214 return 5; 2215 case LangAS::opencl_global_host: 2216 return 6; 2217 default: 2218 return 0; // Assume private. 2219 } 2220 } 2221 2222 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2223 const FunctionDecl *FD, 2224 CodeGenFunction *CGF) { 2225 assert(((FD && CGF) || (!FD && !CGF)) && 2226 "Incorrect use - FD and CGF should either be both null or not!"); 2227 // Create MDNodes that represent the kernel arg metadata. 2228 // Each MDNode is a list in the form of "key", N number of values which is 2229 // the same number of values as their are kernel arguments. 2230 2231 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2232 2233 // MDNode for the kernel argument address space qualifiers. 2234 SmallVector<llvm::Metadata *, 8> addressQuals; 2235 2236 // MDNode for the kernel argument access qualifiers (images only). 2237 SmallVector<llvm::Metadata *, 8> accessQuals; 2238 2239 // MDNode for the kernel argument type names. 2240 SmallVector<llvm::Metadata *, 8> argTypeNames; 2241 2242 // MDNode for the kernel argument base type names. 2243 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2244 2245 // MDNode for the kernel argument type qualifiers. 2246 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2247 2248 // MDNode for the kernel argument names. 2249 SmallVector<llvm::Metadata *, 8> argNames; 2250 2251 if (FD && CGF) 2252 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2253 const ParmVarDecl *parm = FD->getParamDecl(i); 2254 // Get argument name. 2255 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2256 2257 if (!getLangOpts().OpenCL) 2258 continue; 2259 QualType ty = parm->getType(); 2260 std::string typeQuals; 2261 2262 // Get image and pipe access qualifier: 2263 if (ty->isImageType() || ty->isPipeType()) { 2264 const Decl *PDecl = parm; 2265 if (const auto *TD = ty->getAs<TypedefType>()) 2266 PDecl = TD->getDecl(); 2267 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2268 if (A && A->isWriteOnly()) 2269 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2270 else if (A && A->isReadWrite()) 2271 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2272 else 2273 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2274 } else 2275 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2276 2277 auto getTypeSpelling = [&](QualType Ty) { 2278 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2279 2280 if (Ty.isCanonical()) { 2281 StringRef typeNameRef = typeName; 2282 // Turn "unsigned type" to "utype" 2283 if (typeNameRef.consume_front("unsigned ")) 2284 return std::string("u") + typeNameRef.str(); 2285 if (typeNameRef.consume_front("signed ")) 2286 return typeNameRef.str(); 2287 } 2288 2289 return typeName; 2290 }; 2291 2292 if (ty->isPointerType()) { 2293 QualType pointeeTy = ty->getPointeeType(); 2294 2295 // Get address qualifier. 2296 addressQuals.push_back( 2297 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2298 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2299 2300 // Get argument type name. 2301 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2302 std::string baseTypeName = 2303 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2304 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2305 argBaseTypeNames.push_back( 2306 llvm::MDString::get(VMContext, baseTypeName)); 2307 2308 // Get argument type qualifiers: 2309 if (ty.isRestrictQualified()) 2310 typeQuals = "restrict"; 2311 if (pointeeTy.isConstQualified() || 2312 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2313 typeQuals += typeQuals.empty() ? "const" : " const"; 2314 if (pointeeTy.isVolatileQualified()) 2315 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2316 } else { 2317 uint32_t AddrSpc = 0; 2318 bool isPipe = ty->isPipeType(); 2319 if (ty->isImageType() || isPipe) 2320 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2321 2322 addressQuals.push_back( 2323 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2324 2325 // Get argument type name. 2326 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2327 std::string typeName = getTypeSpelling(ty); 2328 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2329 2330 // Remove access qualifiers on images 2331 // (as they are inseparable from type in clang implementation, 2332 // but OpenCL spec provides a special query to get access qualifier 2333 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2334 if (ty->isImageType()) { 2335 removeImageAccessQualifier(typeName); 2336 removeImageAccessQualifier(baseTypeName); 2337 } 2338 2339 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2340 argBaseTypeNames.push_back( 2341 llvm::MDString::get(VMContext, baseTypeName)); 2342 2343 if (isPipe) 2344 typeQuals = "pipe"; 2345 } 2346 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2347 } 2348 2349 if (getLangOpts().OpenCL) { 2350 Fn->setMetadata("kernel_arg_addr_space", 2351 llvm::MDNode::get(VMContext, addressQuals)); 2352 Fn->setMetadata("kernel_arg_access_qual", 2353 llvm::MDNode::get(VMContext, accessQuals)); 2354 Fn->setMetadata("kernel_arg_type", 2355 llvm::MDNode::get(VMContext, argTypeNames)); 2356 Fn->setMetadata("kernel_arg_base_type", 2357 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2358 Fn->setMetadata("kernel_arg_type_qual", 2359 llvm::MDNode::get(VMContext, argTypeQuals)); 2360 } 2361 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2362 getCodeGenOpts().HIPSaveKernelArgName) 2363 Fn->setMetadata("kernel_arg_name", 2364 llvm::MDNode::get(VMContext, argNames)); 2365 } 2366 2367 /// Determines whether the language options require us to model 2368 /// unwind exceptions. We treat -fexceptions as mandating this 2369 /// except under the fragile ObjC ABI with only ObjC exceptions 2370 /// enabled. This means, for example, that C with -fexceptions 2371 /// enables this. 2372 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2373 // If exceptions are completely disabled, obviously this is false. 2374 if (!LangOpts.Exceptions) return false; 2375 2376 // If C++ exceptions are enabled, this is true. 2377 if (LangOpts.CXXExceptions) return true; 2378 2379 // If ObjC exceptions are enabled, this depends on the ABI. 2380 if (LangOpts.ObjCExceptions) { 2381 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2382 } 2383 2384 return true; 2385 } 2386 2387 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2388 const CXXMethodDecl *MD) { 2389 // Check that the type metadata can ever actually be used by a call. 2390 if (!CGM.getCodeGenOpts().LTOUnit || 2391 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2392 return false; 2393 2394 // Only functions whose address can be taken with a member function pointer 2395 // need this sort of type metadata. 2396 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2397 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2398 } 2399 2400 SmallVector<const CXXRecordDecl *, 0> 2401 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2402 llvm::SetVector<const CXXRecordDecl *> MostBases; 2403 2404 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2405 CollectMostBases = [&](const CXXRecordDecl *RD) { 2406 if (RD->getNumBases() == 0) 2407 MostBases.insert(RD); 2408 for (const CXXBaseSpecifier &B : RD->bases()) 2409 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2410 }; 2411 CollectMostBases(RD); 2412 return MostBases.takeVector(); 2413 } 2414 2415 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2416 llvm::Function *F) { 2417 llvm::AttrBuilder B(F->getContext()); 2418 2419 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2420 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2421 2422 if (CodeGenOpts.StackClashProtector) 2423 B.addAttribute("probe-stack", "inline-asm"); 2424 2425 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2426 B.addAttribute("stack-probe-size", 2427 std::to_string(CodeGenOpts.StackProbeSize)); 2428 2429 if (!hasUnwindExceptions(LangOpts)) 2430 B.addAttribute(llvm::Attribute::NoUnwind); 2431 2432 if (D && D->hasAttr<NoStackProtectorAttr>()) 2433 ; // Do nothing. 2434 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2435 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2436 B.addAttribute(llvm::Attribute::StackProtectStrong); 2437 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2438 B.addAttribute(llvm::Attribute::StackProtect); 2439 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2440 B.addAttribute(llvm::Attribute::StackProtectStrong); 2441 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2442 B.addAttribute(llvm::Attribute::StackProtectReq); 2443 2444 if (!D) { 2445 // If we don't have a declaration to control inlining, the function isn't 2446 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2447 // disabled, mark the function as noinline. 2448 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2449 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2450 B.addAttribute(llvm::Attribute::NoInline); 2451 2452 F->addFnAttrs(B); 2453 return; 2454 } 2455 2456 // Handle SME attributes that apply to function definitions, 2457 // rather than to function prototypes. 2458 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2459 B.addAttribute("aarch64_pstate_sm_body"); 2460 2461 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2462 if (Attr->isNewZA()) 2463 B.addAttribute("aarch64_new_za"); 2464 if (Attr->isNewZT0()) 2465 B.addAttribute("aarch64_new_zt0"); 2466 } 2467 2468 // Track whether we need to add the optnone LLVM attribute, 2469 // starting with the default for this optimization level. 2470 bool ShouldAddOptNone = 2471 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2472 // We can't add optnone in the following cases, it won't pass the verifier. 2473 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2474 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2475 2476 // Add optnone, but do so only if the function isn't always_inline. 2477 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2478 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2479 B.addAttribute(llvm::Attribute::OptimizeNone); 2480 2481 // OptimizeNone implies noinline; we should not be inlining such functions. 2482 B.addAttribute(llvm::Attribute::NoInline); 2483 2484 // We still need to handle naked functions even though optnone subsumes 2485 // much of their semantics. 2486 if (D->hasAttr<NakedAttr>()) 2487 B.addAttribute(llvm::Attribute::Naked); 2488 2489 // OptimizeNone wins over OptimizeForSize and MinSize. 2490 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2491 F->removeFnAttr(llvm::Attribute::MinSize); 2492 } else if (D->hasAttr<NakedAttr>()) { 2493 // Naked implies noinline: we should not be inlining such functions. 2494 B.addAttribute(llvm::Attribute::Naked); 2495 B.addAttribute(llvm::Attribute::NoInline); 2496 } else if (D->hasAttr<NoDuplicateAttr>()) { 2497 B.addAttribute(llvm::Attribute::NoDuplicate); 2498 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2499 // Add noinline if the function isn't always_inline. 2500 B.addAttribute(llvm::Attribute::NoInline); 2501 } else if (D->hasAttr<AlwaysInlineAttr>() && 2502 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2503 // (noinline wins over always_inline, and we can't specify both in IR) 2504 B.addAttribute(llvm::Attribute::AlwaysInline); 2505 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2506 // If we're not inlining, then force everything that isn't always_inline to 2507 // carry an explicit noinline attribute. 2508 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2509 B.addAttribute(llvm::Attribute::NoInline); 2510 } else { 2511 // Otherwise, propagate the inline hint attribute and potentially use its 2512 // absence to mark things as noinline. 2513 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2514 // Search function and template pattern redeclarations for inline. 2515 auto CheckForInline = [](const FunctionDecl *FD) { 2516 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2517 return Redecl->isInlineSpecified(); 2518 }; 2519 if (any_of(FD->redecls(), CheckRedeclForInline)) 2520 return true; 2521 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2522 if (!Pattern) 2523 return false; 2524 return any_of(Pattern->redecls(), CheckRedeclForInline); 2525 }; 2526 if (CheckForInline(FD)) { 2527 B.addAttribute(llvm::Attribute::InlineHint); 2528 } else if (CodeGenOpts.getInlining() == 2529 CodeGenOptions::OnlyHintInlining && 2530 !FD->isInlined() && 2531 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2532 B.addAttribute(llvm::Attribute::NoInline); 2533 } 2534 } 2535 } 2536 2537 // Add other optimization related attributes if we are optimizing this 2538 // function. 2539 if (!D->hasAttr<OptimizeNoneAttr>()) { 2540 if (D->hasAttr<ColdAttr>()) { 2541 if (!ShouldAddOptNone) 2542 B.addAttribute(llvm::Attribute::OptimizeForSize); 2543 B.addAttribute(llvm::Attribute::Cold); 2544 } 2545 if (D->hasAttr<HotAttr>()) 2546 B.addAttribute(llvm::Attribute::Hot); 2547 if (D->hasAttr<MinSizeAttr>()) 2548 B.addAttribute(llvm::Attribute::MinSize); 2549 } 2550 2551 F->addFnAttrs(B); 2552 2553 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2554 if (alignment) 2555 F->setAlignment(llvm::Align(alignment)); 2556 2557 if (!D->hasAttr<AlignedAttr>()) 2558 if (LangOpts.FunctionAlignment) 2559 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2560 2561 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2562 // reserve a bit for differentiating between virtual and non-virtual member 2563 // functions. If the current target's C++ ABI requires this and this is a 2564 // member function, set its alignment accordingly. 2565 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2566 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2567 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2568 } 2569 2570 // In the cross-dso CFI mode with canonical jump tables, we want !type 2571 // attributes on definitions only. 2572 if (CodeGenOpts.SanitizeCfiCrossDso && 2573 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2574 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2575 // Skip available_externally functions. They won't be codegen'ed in the 2576 // current module anyway. 2577 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2578 CreateFunctionTypeMetadataForIcall(FD, F); 2579 } 2580 } 2581 2582 // Emit type metadata on member functions for member function pointer checks. 2583 // These are only ever necessary on definitions; we're guaranteed that the 2584 // definition will be present in the LTO unit as a result of LTO visibility. 2585 auto *MD = dyn_cast<CXXMethodDecl>(D); 2586 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2587 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2588 llvm::Metadata *Id = 2589 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2590 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2591 F->addTypeMetadata(0, Id); 2592 } 2593 } 2594 } 2595 2596 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2597 const Decl *D = GD.getDecl(); 2598 if (isa_and_nonnull<NamedDecl>(D)) 2599 setGVProperties(GV, GD); 2600 else 2601 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2602 2603 if (D && D->hasAttr<UsedAttr>()) 2604 addUsedOrCompilerUsedGlobal(GV); 2605 2606 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2607 VD && 2608 ((CodeGenOpts.KeepPersistentStorageVariables && 2609 (VD->getStorageDuration() == SD_Static || 2610 VD->getStorageDuration() == SD_Thread)) || 2611 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2612 VD->getType().isConstQualified()))) 2613 addUsedOrCompilerUsedGlobal(GV); 2614 } 2615 2616 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2617 llvm::AttrBuilder &Attrs, 2618 bool SetTargetFeatures) { 2619 // Add target-cpu and target-features attributes to functions. If 2620 // we have a decl for the function and it has a target attribute then 2621 // parse that and add it to the feature set. 2622 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2623 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2624 std::vector<std::string> Features; 2625 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2626 FD = FD ? FD->getMostRecentDecl() : FD; 2627 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2628 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2629 assert((!TD || !TV) && "both target_version and target specified"); 2630 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2631 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2632 bool AddedAttr = false; 2633 if (TD || TV || SD || TC) { 2634 llvm::StringMap<bool> FeatureMap; 2635 getContext().getFunctionFeatureMap(FeatureMap, GD); 2636 2637 // Produce the canonical string for this set of features. 2638 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2639 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2640 2641 // Now add the target-cpu and target-features to the function. 2642 // While we populated the feature map above, we still need to 2643 // get and parse the target attribute so we can get the cpu for 2644 // the function. 2645 if (TD) { 2646 ParsedTargetAttr ParsedAttr = 2647 Target.parseTargetAttr(TD->getFeaturesStr()); 2648 if (!ParsedAttr.CPU.empty() && 2649 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2650 TargetCPU = ParsedAttr.CPU; 2651 TuneCPU = ""; // Clear the tune CPU. 2652 } 2653 if (!ParsedAttr.Tune.empty() && 2654 getTarget().isValidCPUName(ParsedAttr.Tune)) 2655 TuneCPU = ParsedAttr.Tune; 2656 } 2657 2658 if (SD) { 2659 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2660 // favor this processor. 2661 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2662 } 2663 } else { 2664 // Otherwise just add the existing target cpu and target features to the 2665 // function. 2666 Features = getTarget().getTargetOpts().Features; 2667 } 2668 2669 if (!TargetCPU.empty()) { 2670 Attrs.addAttribute("target-cpu", TargetCPU); 2671 AddedAttr = true; 2672 } 2673 if (!TuneCPU.empty()) { 2674 Attrs.addAttribute("tune-cpu", TuneCPU); 2675 AddedAttr = true; 2676 } 2677 if (!Features.empty() && SetTargetFeatures) { 2678 llvm::erase_if(Features, [&](const std::string& F) { 2679 return getTarget().isReadOnlyFeature(F.substr(1)); 2680 }); 2681 llvm::sort(Features); 2682 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2683 AddedAttr = true; 2684 } 2685 2686 return AddedAttr; 2687 } 2688 2689 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2690 llvm::GlobalObject *GO) { 2691 const Decl *D = GD.getDecl(); 2692 SetCommonAttributes(GD, GO); 2693 2694 if (D) { 2695 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2696 if (D->hasAttr<RetainAttr>()) 2697 addUsedGlobal(GV); 2698 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2699 GV->addAttribute("bss-section", SA->getName()); 2700 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2701 GV->addAttribute("data-section", SA->getName()); 2702 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2703 GV->addAttribute("rodata-section", SA->getName()); 2704 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2705 GV->addAttribute("relro-section", SA->getName()); 2706 } 2707 2708 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2709 if (D->hasAttr<RetainAttr>()) 2710 addUsedGlobal(F); 2711 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2712 if (!D->getAttr<SectionAttr>()) 2713 F->setSection(SA->getName()); 2714 2715 llvm::AttrBuilder Attrs(F->getContext()); 2716 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2717 // We know that GetCPUAndFeaturesAttributes will always have the 2718 // newest set, since it has the newest possible FunctionDecl, so the 2719 // new ones should replace the old. 2720 llvm::AttributeMask RemoveAttrs; 2721 RemoveAttrs.addAttribute("target-cpu"); 2722 RemoveAttrs.addAttribute("target-features"); 2723 RemoveAttrs.addAttribute("tune-cpu"); 2724 F->removeFnAttrs(RemoveAttrs); 2725 F->addFnAttrs(Attrs); 2726 } 2727 } 2728 2729 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2730 GO->setSection(CSA->getName()); 2731 else if (const auto *SA = D->getAttr<SectionAttr>()) 2732 GO->setSection(SA->getName()); 2733 } 2734 2735 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2736 } 2737 2738 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2739 llvm::Function *F, 2740 const CGFunctionInfo &FI) { 2741 const Decl *D = GD.getDecl(); 2742 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2743 SetLLVMFunctionAttributesForDefinition(D, F); 2744 2745 F->setLinkage(llvm::Function::InternalLinkage); 2746 2747 setNonAliasAttributes(GD, F); 2748 } 2749 2750 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2751 // Set linkage and visibility in case we never see a definition. 2752 LinkageInfo LV = ND->getLinkageAndVisibility(); 2753 // Don't set internal linkage on declarations. 2754 // "extern_weak" is overloaded in LLVM; we probably should have 2755 // separate linkage types for this. 2756 if (isExternallyVisible(LV.getLinkage()) && 2757 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2758 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2759 } 2760 2761 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2762 llvm::Function *F) { 2763 // Only if we are checking indirect calls. 2764 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2765 return; 2766 2767 // Non-static class methods are handled via vtable or member function pointer 2768 // checks elsewhere. 2769 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2770 return; 2771 2772 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2773 F->addTypeMetadata(0, MD); 2774 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2775 2776 // Emit a hash-based bit set entry for cross-DSO calls. 2777 if (CodeGenOpts.SanitizeCfiCrossDso) 2778 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2779 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2780 } 2781 2782 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2783 llvm::LLVMContext &Ctx = F->getContext(); 2784 llvm::MDBuilder MDB(Ctx); 2785 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2786 llvm::MDNode::get( 2787 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2788 } 2789 2790 static bool allowKCFIIdentifier(StringRef Name) { 2791 // KCFI type identifier constants are only necessary for external assembly 2792 // functions, which means it's safe to skip unusual names. Subset of 2793 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2794 return llvm::all_of(Name, [](const char &C) { 2795 return llvm::isAlnum(C) || C == '_' || C == '.'; 2796 }); 2797 } 2798 2799 void CodeGenModule::finalizeKCFITypes() { 2800 llvm::Module &M = getModule(); 2801 for (auto &F : M.functions()) { 2802 // Remove KCFI type metadata from non-address-taken local functions. 2803 bool AddressTaken = F.hasAddressTaken(); 2804 if (!AddressTaken && F.hasLocalLinkage()) 2805 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2806 2807 // Generate a constant with the expected KCFI type identifier for all 2808 // address-taken function declarations to support annotating indirectly 2809 // called assembly functions. 2810 if (!AddressTaken || !F.isDeclaration()) 2811 continue; 2812 2813 const llvm::ConstantInt *Type; 2814 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2815 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2816 else 2817 continue; 2818 2819 StringRef Name = F.getName(); 2820 if (!allowKCFIIdentifier(Name)) 2821 continue; 2822 2823 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2824 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2825 .str(); 2826 M.appendModuleInlineAsm(Asm); 2827 } 2828 } 2829 2830 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2831 bool IsIncompleteFunction, 2832 bool IsThunk) { 2833 2834 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2835 // If this is an intrinsic function, set the function's attributes 2836 // to the intrinsic's attributes. 2837 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2838 return; 2839 } 2840 2841 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2842 2843 if (!IsIncompleteFunction) 2844 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2845 IsThunk); 2846 2847 // Add the Returned attribute for "this", except for iOS 5 and earlier 2848 // where substantial code, including the libstdc++ dylib, was compiled with 2849 // GCC and does not actually return "this". 2850 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2851 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2852 assert(!F->arg_empty() && 2853 F->arg_begin()->getType() 2854 ->canLosslesslyBitCastTo(F->getReturnType()) && 2855 "unexpected this return"); 2856 F->addParamAttr(0, llvm::Attribute::Returned); 2857 } 2858 2859 // Only a few attributes are set on declarations; these may later be 2860 // overridden by a definition. 2861 2862 setLinkageForGV(F, FD); 2863 setGVProperties(F, FD); 2864 2865 // Setup target-specific attributes. 2866 if (!IsIncompleteFunction && F->isDeclaration()) 2867 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2868 2869 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2870 F->setSection(CSA->getName()); 2871 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2872 F->setSection(SA->getName()); 2873 2874 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2875 if (EA->isError()) 2876 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2877 else if (EA->isWarning()) 2878 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2879 } 2880 2881 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2882 if (FD->isInlineBuiltinDeclaration()) { 2883 const FunctionDecl *FDBody; 2884 bool HasBody = FD->hasBody(FDBody); 2885 (void)HasBody; 2886 assert(HasBody && "Inline builtin declarations should always have an " 2887 "available body!"); 2888 if (shouldEmitFunction(FDBody)) 2889 F->addFnAttr(llvm::Attribute::NoBuiltin); 2890 } 2891 2892 if (FD->isReplaceableGlobalAllocationFunction()) { 2893 // A replaceable global allocation function does not act like a builtin by 2894 // default, only if it is invoked by a new-expression or delete-expression. 2895 F->addFnAttr(llvm::Attribute::NoBuiltin); 2896 } 2897 2898 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2899 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2900 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2901 if (MD->isVirtual()) 2902 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2903 2904 // Don't emit entries for function declarations in the cross-DSO mode. This 2905 // is handled with better precision by the receiving DSO. But if jump tables 2906 // are non-canonical then we need type metadata in order to produce the local 2907 // jump table. 2908 if (!CodeGenOpts.SanitizeCfiCrossDso || 2909 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2910 CreateFunctionTypeMetadataForIcall(FD, F); 2911 2912 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2913 setKCFIType(FD, F); 2914 2915 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2916 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2917 2918 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2919 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2920 2921 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2922 // Annotate the callback behavior as metadata: 2923 // - The callback callee (as argument number). 2924 // - The callback payloads (as argument numbers). 2925 llvm::LLVMContext &Ctx = F->getContext(); 2926 llvm::MDBuilder MDB(Ctx); 2927 2928 // The payload indices are all but the first one in the encoding. The first 2929 // identifies the callback callee. 2930 int CalleeIdx = *CB->encoding_begin(); 2931 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2932 F->addMetadata(llvm::LLVMContext::MD_callback, 2933 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2934 CalleeIdx, PayloadIndices, 2935 /* VarArgsArePassed */ false)})); 2936 } 2937 } 2938 2939 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2940 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2941 "Only globals with definition can force usage."); 2942 LLVMUsed.emplace_back(GV); 2943 } 2944 2945 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2946 assert(!GV->isDeclaration() && 2947 "Only globals with definition can force usage."); 2948 LLVMCompilerUsed.emplace_back(GV); 2949 } 2950 2951 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2952 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2953 "Only globals with definition can force usage."); 2954 if (getTriple().isOSBinFormatELF()) 2955 LLVMCompilerUsed.emplace_back(GV); 2956 else 2957 LLVMUsed.emplace_back(GV); 2958 } 2959 2960 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2961 std::vector<llvm::WeakTrackingVH> &List) { 2962 // Don't create llvm.used if there is no need. 2963 if (List.empty()) 2964 return; 2965 2966 // Convert List to what ConstantArray needs. 2967 SmallVector<llvm::Constant*, 8> UsedArray; 2968 UsedArray.resize(List.size()); 2969 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2970 UsedArray[i] = 2971 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2972 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2973 } 2974 2975 if (UsedArray.empty()) 2976 return; 2977 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2978 2979 auto *GV = new llvm::GlobalVariable( 2980 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2981 llvm::ConstantArray::get(ATy, UsedArray), Name); 2982 2983 GV->setSection("llvm.metadata"); 2984 } 2985 2986 void CodeGenModule::emitLLVMUsed() { 2987 emitUsed(*this, "llvm.used", LLVMUsed); 2988 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2989 } 2990 2991 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2992 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2993 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2994 } 2995 2996 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2997 llvm::SmallString<32> Opt; 2998 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2999 if (Opt.empty()) 3000 return; 3001 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3002 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3003 } 3004 3005 void CodeGenModule::AddDependentLib(StringRef Lib) { 3006 auto &C = getLLVMContext(); 3007 if (getTarget().getTriple().isOSBinFormatELF()) { 3008 ELFDependentLibraries.push_back( 3009 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3010 return; 3011 } 3012 3013 llvm::SmallString<24> Opt; 3014 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3015 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3016 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3017 } 3018 3019 /// Add link options implied by the given module, including modules 3020 /// it depends on, using a postorder walk. 3021 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3022 SmallVectorImpl<llvm::MDNode *> &Metadata, 3023 llvm::SmallPtrSet<Module *, 16> &Visited) { 3024 // Import this module's parent. 3025 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3026 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3027 } 3028 3029 // Import this module's dependencies. 3030 for (Module *Import : llvm::reverse(Mod->Imports)) { 3031 if (Visited.insert(Import).second) 3032 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3033 } 3034 3035 // Add linker options to link against the libraries/frameworks 3036 // described by this module. 3037 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3038 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3039 3040 // For modules that use export_as for linking, use that module 3041 // name instead. 3042 if (Mod->UseExportAsModuleLinkName) 3043 return; 3044 3045 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3046 // Link against a framework. Frameworks are currently Darwin only, so we 3047 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3048 if (LL.IsFramework) { 3049 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3050 llvm::MDString::get(Context, LL.Library)}; 3051 3052 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3053 continue; 3054 } 3055 3056 // Link against a library. 3057 if (IsELF) { 3058 llvm::Metadata *Args[2] = { 3059 llvm::MDString::get(Context, "lib"), 3060 llvm::MDString::get(Context, LL.Library), 3061 }; 3062 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3063 } else { 3064 llvm::SmallString<24> Opt; 3065 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3066 auto *OptString = llvm::MDString::get(Context, Opt); 3067 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3068 } 3069 } 3070 } 3071 3072 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3073 assert(Primary->isNamedModuleUnit() && 3074 "We should only emit module initializers for named modules."); 3075 3076 // Emit the initializers in the order that sub-modules appear in the 3077 // source, first Global Module Fragments, if present. 3078 if (auto GMF = Primary->getGlobalModuleFragment()) { 3079 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3080 if (isa<ImportDecl>(D)) 3081 continue; 3082 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3083 EmitTopLevelDecl(D); 3084 } 3085 } 3086 // Second any associated with the module, itself. 3087 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3088 // Skip import decls, the inits for those are called explicitly. 3089 if (isa<ImportDecl>(D)) 3090 continue; 3091 EmitTopLevelDecl(D); 3092 } 3093 // Third any associated with the Privat eMOdule Fragment, if present. 3094 if (auto PMF = Primary->getPrivateModuleFragment()) { 3095 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3096 // Skip import decls, the inits for those are called explicitly. 3097 if (isa<ImportDecl>(D)) 3098 continue; 3099 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3100 EmitTopLevelDecl(D); 3101 } 3102 } 3103 } 3104 3105 void CodeGenModule::EmitModuleLinkOptions() { 3106 // Collect the set of all of the modules we want to visit to emit link 3107 // options, which is essentially the imported modules and all of their 3108 // non-explicit child modules. 3109 llvm::SetVector<clang::Module *> LinkModules; 3110 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3111 SmallVector<clang::Module *, 16> Stack; 3112 3113 // Seed the stack with imported modules. 3114 for (Module *M : ImportedModules) { 3115 // Do not add any link flags when an implementation TU of a module imports 3116 // a header of that same module. 3117 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3118 !getLangOpts().isCompilingModule()) 3119 continue; 3120 if (Visited.insert(M).second) 3121 Stack.push_back(M); 3122 } 3123 3124 // Find all of the modules to import, making a little effort to prune 3125 // non-leaf modules. 3126 while (!Stack.empty()) { 3127 clang::Module *Mod = Stack.pop_back_val(); 3128 3129 bool AnyChildren = false; 3130 3131 // Visit the submodules of this module. 3132 for (const auto &SM : Mod->submodules()) { 3133 // Skip explicit children; they need to be explicitly imported to be 3134 // linked against. 3135 if (SM->IsExplicit) 3136 continue; 3137 3138 if (Visited.insert(SM).second) { 3139 Stack.push_back(SM); 3140 AnyChildren = true; 3141 } 3142 } 3143 3144 // We didn't find any children, so add this module to the list of 3145 // modules to link against. 3146 if (!AnyChildren) { 3147 LinkModules.insert(Mod); 3148 } 3149 } 3150 3151 // Add link options for all of the imported modules in reverse topological 3152 // order. We don't do anything to try to order import link flags with respect 3153 // to linker options inserted by things like #pragma comment(). 3154 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3155 Visited.clear(); 3156 for (Module *M : LinkModules) 3157 if (Visited.insert(M).second) 3158 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3159 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3160 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3161 3162 // Add the linker options metadata flag. 3163 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3164 for (auto *MD : LinkerOptionsMetadata) 3165 NMD->addOperand(MD); 3166 } 3167 3168 void CodeGenModule::EmitDeferred() { 3169 // Emit deferred declare target declarations. 3170 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3171 getOpenMPRuntime().emitDeferredTargetDecls(); 3172 3173 // Emit code for any potentially referenced deferred decls. Since a 3174 // previously unused static decl may become used during the generation of code 3175 // for a static function, iterate until no changes are made. 3176 3177 if (!DeferredVTables.empty()) { 3178 EmitDeferredVTables(); 3179 3180 // Emitting a vtable doesn't directly cause more vtables to 3181 // become deferred, although it can cause functions to be 3182 // emitted that then need those vtables. 3183 assert(DeferredVTables.empty()); 3184 } 3185 3186 // Emit CUDA/HIP static device variables referenced by host code only. 3187 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3188 // needed for further handling. 3189 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3190 llvm::append_range(DeferredDeclsToEmit, 3191 getContext().CUDADeviceVarODRUsedByHost); 3192 3193 // Stop if we're out of both deferred vtables and deferred declarations. 3194 if (DeferredDeclsToEmit.empty()) 3195 return; 3196 3197 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3198 // work, it will not interfere with this. 3199 std::vector<GlobalDecl> CurDeclsToEmit; 3200 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3201 3202 for (GlobalDecl &D : CurDeclsToEmit) { 3203 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3204 // to get GlobalValue with exactly the type we need, not something that 3205 // might had been created for another decl with the same mangled name but 3206 // different type. 3207 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3208 GetAddrOfGlobal(D, ForDefinition)); 3209 3210 // In case of different address spaces, we may still get a cast, even with 3211 // IsForDefinition equal to true. Query mangled names table to get 3212 // GlobalValue. 3213 if (!GV) 3214 GV = GetGlobalValue(getMangledName(D)); 3215 3216 // Make sure GetGlobalValue returned non-null. 3217 assert(GV); 3218 3219 // Check to see if we've already emitted this. This is necessary 3220 // for a couple of reasons: first, decls can end up in the 3221 // deferred-decls queue multiple times, and second, decls can end 3222 // up with definitions in unusual ways (e.g. by an extern inline 3223 // function acquiring a strong function redefinition). Just 3224 // ignore these cases. 3225 if (!GV->isDeclaration()) 3226 continue; 3227 3228 // If this is OpenMP, check if it is legal to emit this global normally. 3229 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3230 continue; 3231 3232 // Otherwise, emit the definition and move on to the next one. 3233 EmitGlobalDefinition(D, GV); 3234 3235 // If we found out that we need to emit more decls, do that recursively. 3236 // This has the advantage that the decls are emitted in a DFS and related 3237 // ones are close together, which is convenient for testing. 3238 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3239 EmitDeferred(); 3240 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3241 } 3242 } 3243 } 3244 3245 void CodeGenModule::EmitVTablesOpportunistically() { 3246 // Try to emit external vtables as available_externally if they have emitted 3247 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3248 // is not allowed to create new references to things that need to be emitted 3249 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3250 3251 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3252 && "Only emit opportunistic vtables with optimizations"); 3253 3254 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3255 assert(getVTables().isVTableExternal(RD) && 3256 "This queue should only contain external vtables"); 3257 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3258 VTables.GenerateClassData(RD); 3259 } 3260 OpportunisticVTables.clear(); 3261 } 3262 3263 void CodeGenModule::EmitGlobalAnnotations() { 3264 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3265 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3266 if (GV) 3267 AddGlobalAnnotations(VD, GV); 3268 } 3269 DeferredAnnotations.clear(); 3270 3271 if (Annotations.empty()) 3272 return; 3273 3274 // Create a new global variable for the ConstantStruct in the Module. 3275 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3276 Annotations[0]->getType(), Annotations.size()), Annotations); 3277 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3278 llvm::GlobalValue::AppendingLinkage, 3279 Array, "llvm.global.annotations"); 3280 gv->setSection(AnnotationSection); 3281 } 3282 3283 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3284 llvm::Constant *&AStr = AnnotationStrings[Str]; 3285 if (AStr) 3286 return AStr; 3287 3288 // Not found yet, create a new global. 3289 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3290 auto *gv = new llvm::GlobalVariable( 3291 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3292 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3293 ConstGlobalsPtrTy->getAddressSpace()); 3294 gv->setSection(AnnotationSection); 3295 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3296 AStr = gv; 3297 return gv; 3298 } 3299 3300 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3301 SourceManager &SM = getContext().getSourceManager(); 3302 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3303 if (PLoc.isValid()) 3304 return EmitAnnotationString(PLoc.getFilename()); 3305 return EmitAnnotationString(SM.getBufferName(Loc)); 3306 } 3307 3308 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3309 SourceManager &SM = getContext().getSourceManager(); 3310 PresumedLoc PLoc = SM.getPresumedLoc(L); 3311 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3312 SM.getExpansionLineNumber(L); 3313 return llvm::ConstantInt::get(Int32Ty, LineNo); 3314 } 3315 3316 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3317 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3318 if (Exprs.empty()) 3319 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3320 3321 llvm::FoldingSetNodeID ID; 3322 for (Expr *E : Exprs) { 3323 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3324 } 3325 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3326 if (Lookup) 3327 return Lookup; 3328 3329 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3330 LLVMArgs.reserve(Exprs.size()); 3331 ConstantEmitter ConstEmiter(*this); 3332 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3333 const auto *CE = cast<clang::ConstantExpr>(E); 3334 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3335 CE->getType()); 3336 }); 3337 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3338 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3339 llvm::GlobalValue::PrivateLinkage, Struct, 3340 ".args"); 3341 GV->setSection(AnnotationSection); 3342 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3343 3344 Lookup = GV; 3345 return GV; 3346 } 3347 3348 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3349 const AnnotateAttr *AA, 3350 SourceLocation L) { 3351 // Get the globals for file name, annotation, and the line number. 3352 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3353 *UnitGV = EmitAnnotationUnit(L), 3354 *LineNoCst = EmitAnnotationLineNo(L), 3355 *Args = EmitAnnotationArgs(AA); 3356 3357 llvm::Constant *GVInGlobalsAS = GV; 3358 if (GV->getAddressSpace() != 3359 getDataLayout().getDefaultGlobalsAddressSpace()) { 3360 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3361 GV, 3362 llvm::PointerType::get( 3363 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3364 } 3365 3366 // Create the ConstantStruct for the global annotation. 3367 llvm::Constant *Fields[] = { 3368 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3369 }; 3370 return llvm::ConstantStruct::getAnon(Fields); 3371 } 3372 3373 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3374 llvm::GlobalValue *GV) { 3375 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3376 // Get the struct elements for these annotations. 3377 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3378 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3379 } 3380 3381 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3382 SourceLocation Loc) const { 3383 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3384 // NoSanitize by function name. 3385 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3386 return true; 3387 // NoSanitize by location. Check "mainfile" prefix. 3388 auto &SM = Context.getSourceManager(); 3389 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3390 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3391 return true; 3392 3393 // Check "src" prefix. 3394 if (Loc.isValid()) 3395 return NoSanitizeL.containsLocation(Kind, Loc); 3396 // If location is unknown, this may be a compiler-generated function. Assume 3397 // it's located in the main file. 3398 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3399 } 3400 3401 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3402 llvm::GlobalVariable *GV, 3403 SourceLocation Loc, QualType Ty, 3404 StringRef Category) const { 3405 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3406 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3407 return true; 3408 auto &SM = Context.getSourceManager(); 3409 if (NoSanitizeL.containsMainFile( 3410 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3411 Category)) 3412 return true; 3413 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3414 return true; 3415 3416 // Check global type. 3417 if (!Ty.isNull()) { 3418 // Drill down the array types: if global variable of a fixed type is 3419 // not sanitized, we also don't instrument arrays of them. 3420 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3421 Ty = AT->getElementType(); 3422 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3423 // Only record types (classes, structs etc.) are ignored. 3424 if (Ty->isRecordType()) { 3425 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3426 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3427 return true; 3428 } 3429 } 3430 return false; 3431 } 3432 3433 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3434 StringRef Category) const { 3435 const auto &XRayFilter = getContext().getXRayFilter(); 3436 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3437 auto Attr = ImbueAttr::NONE; 3438 if (Loc.isValid()) 3439 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3440 if (Attr == ImbueAttr::NONE) 3441 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3442 switch (Attr) { 3443 case ImbueAttr::NONE: 3444 return false; 3445 case ImbueAttr::ALWAYS: 3446 Fn->addFnAttr("function-instrument", "xray-always"); 3447 break; 3448 case ImbueAttr::ALWAYS_ARG1: 3449 Fn->addFnAttr("function-instrument", "xray-always"); 3450 Fn->addFnAttr("xray-log-args", "1"); 3451 break; 3452 case ImbueAttr::NEVER: 3453 Fn->addFnAttr("function-instrument", "xray-never"); 3454 break; 3455 } 3456 return true; 3457 } 3458 3459 ProfileList::ExclusionType 3460 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3461 SourceLocation Loc) const { 3462 const auto &ProfileList = getContext().getProfileList(); 3463 // If the profile list is empty, then instrument everything. 3464 if (ProfileList.isEmpty()) 3465 return ProfileList::Allow; 3466 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3467 // First, check the function name. 3468 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3469 return *V; 3470 // Next, check the source location. 3471 if (Loc.isValid()) 3472 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3473 return *V; 3474 // If location is unknown, this may be a compiler-generated function. Assume 3475 // it's located in the main file. 3476 auto &SM = Context.getSourceManager(); 3477 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3478 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3479 return *V; 3480 return ProfileList.getDefault(Kind); 3481 } 3482 3483 ProfileList::ExclusionType 3484 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3485 SourceLocation Loc) const { 3486 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3487 if (V != ProfileList::Allow) 3488 return V; 3489 3490 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3491 if (NumGroups > 1) { 3492 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3493 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3494 return ProfileList::Skip; 3495 } 3496 return ProfileList::Allow; 3497 } 3498 3499 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3500 // Never defer when EmitAllDecls is specified. 3501 if (LangOpts.EmitAllDecls) 3502 return true; 3503 3504 const auto *VD = dyn_cast<VarDecl>(Global); 3505 if (VD && 3506 ((CodeGenOpts.KeepPersistentStorageVariables && 3507 (VD->getStorageDuration() == SD_Static || 3508 VD->getStorageDuration() == SD_Thread)) || 3509 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3510 VD->getType().isConstQualified()))) 3511 return true; 3512 3513 return getContext().DeclMustBeEmitted(Global); 3514 } 3515 3516 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3517 // In OpenMP 5.0 variables and function may be marked as 3518 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3519 // that they must be emitted on the host/device. To be sure we need to have 3520 // seen a declare target with an explicit mentioning of the function, we know 3521 // we have if the level of the declare target attribute is -1. Note that we 3522 // check somewhere else if we should emit this at all. 3523 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3524 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3525 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3526 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3527 return false; 3528 } 3529 3530 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3531 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3532 // Implicit template instantiations may change linkage if they are later 3533 // explicitly instantiated, so they should not be emitted eagerly. 3534 return false; 3535 // Defer until all versions have been semantically checked. 3536 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3537 return false; 3538 } 3539 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3540 if (Context.getInlineVariableDefinitionKind(VD) == 3541 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3542 // A definition of an inline constexpr static data member may change 3543 // linkage later if it's redeclared outside the class. 3544 return false; 3545 if (CXX20ModuleInits && VD->getOwningModule() && 3546 !VD->getOwningModule()->isModuleMapModule()) { 3547 // For CXX20, module-owned initializers need to be deferred, since it is 3548 // not known at this point if they will be run for the current module or 3549 // as part of the initializer for an imported one. 3550 return false; 3551 } 3552 } 3553 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3554 // codegen for global variables, because they may be marked as threadprivate. 3555 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3556 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3557 !Global->getType().isConstantStorage(getContext(), false, false) && 3558 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3559 return false; 3560 3561 return true; 3562 } 3563 3564 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3565 StringRef Name = getMangledName(GD); 3566 3567 // The UUID descriptor should be pointer aligned. 3568 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3569 3570 // Look for an existing global. 3571 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3572 return ConstantAddress(GV, GV->getValueType(), Alignment); 3573 3574 ConstantEmitter Emitter(*this); 3575 llvm::Constant *Init; 3576 3577 APValue &V = GD->getAsAPValue(); 3578 if (!V.isAbsent()) { 3579 // If possible, emit the APValue version of the initializer. In particular, 3580 // this gets the type of the constant right. 3581 Init = Emitter.emitForInitializer( 3582 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3583 } else { 3584 // As a fallback, directly construct the constant. 3585 // FIXME: This may get padding wrong under esoteric struct layout rules. 3586 // MSVC appears to create a complete type 'struct __s_GUID' that it 3587 // presumably uses to represent these constants. 3588 MSGuidDecl::Parts Parts = GD->getParts(); 3589 llvm::Constant *Fields[4] = { 3590 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3591 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3592 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3593 llvm::ConstantDataArray::getRaw( 3594 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3595 Int8Ty)}; 3596 Init = llvm::ConstantStruct::getAnon(Fields); 3597 } 3598 3599 auto *GV = new llvm::GlobalVariable( 3600 getModule(), Init->getType(), 3601 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3602 if (supportsCOMDAT()) 3603 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3604 setDSOLocal(GV); 3605 3606 if (!V.isAbsent()) { 3607 Emitter.finalize(GV); 3608 return ConstantAddress(GV, GV->getValueType(), Alignment); 3609 } 3610 3611 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3612 return ConstantAddress(GV, Ty, Alignment); 3613 } 3614 3615 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3616 const UnnamedGlobalConstantDecl *GCD) { 3617 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3618 3619 llvm::GlobalVariable **Entry = nullptr; 3620 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3621 if (*Entry) 3622 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3623 3624 ConstantEmitter Emitter(*this); 3625 llvm::Constant *Init; 3626 3627 const APValue &V = GCD->getValue(); 3628 3629 assert(!V.isAbsent()); 3630 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3631 GCD->getType()); 3632 3633 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3634 /*isConstant=*/true, 3635 llvm::GlobalValue::PrivateLinkage, Init, 3636 ".constant"); 3637 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3638 GV->setAlignment(Alignment.getAsAlign()); 3639 3640 Emitter.finalize(GV); 3641 3642 *Entry = GV; 3643 return ConstantAddress(GV, GV->getValueType(), Alignment); 3644 } 3645 3646 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3647 const TemplateParamObjectDecl *TPO) { 3648 StringRef Name = getMangledName(TPO); 3649 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3650 3651 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3652 return ConstantAddress(GV, GV->getValueType(), Alignment); 3653 3654 ConstantEmitter Emitter(*this); 3655 llvm::Constant *Init = Emitter.emitForInitializer( 3656 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3657 3658 if (!Init) { 3659 ErrorUnsupported(TPO, "template parameter object"); 3660 return ConstantAddress::invalid(); 3661 } 3662 3663 llvm::GlobalValue::LinkageTypes Linkage = 3664 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3665 ? llvm::GlobalValue::LinkOnceODRLinkage 3666 : llvm::GlobalValue::InternalLinkage; 3667 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3668 /*isConstant=*/true, Linkage, Init, Name); 3669 setGVProperties(GV, TPO); 3670 if (supportsCOMDAT()) 3671 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3672 Emitter.finalize(GV); 3673 3674 return ConstantAddress(GV, GV->getValueType(), Alignment); 3675 } 3676 3677 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3678 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3679 assert(AA && "No alias?"); 3680 3681 CharUnits Alignment = getContext().getDeclAlign(VD); 3682 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3683 3684 // See if there is already something with the target's name in the module. 3685 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3686 if (Entry) 3687 return ConstantAddress(Entry, DeclTy, Alignment); 3688 3689 llvm::Constant *Aliasee; 3690 if (isa<llvm::FunctionType>(DeclTy)) 3691 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3692 GlobalDecl(cast<FunctionDecl>(VD)), 3693 /*ForVTable=*/false); 3694 else 3695 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3696 nullptr); 3697 3698 auto *F = cast<llvm::GlobalValue>(Aliasee); 3699 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3700 WeakRefReferences.insert(F); 3701 3702 return ConstantAddress(Aliasee, DeclTy, Alignment); 3703 } 3704 3705 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3706 if (!D) 3707 return false; 3708 if (auto *A = D->getAttr<AttrT>()) 3709 return A->isImplicit(); 3710 return D->isImplicit(); 3711 } 3712 3713 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3714 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3715 // We need to emit host-side 'shadows' for all global 3716 // device-side variables because the CUDA runtime needs their 3717 // size and host-side address in order to provide access to 3718 // their device-side incarnations. 3719 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3720 Global->hasAttr<CUDAConstantAttr>() || 3721 Global->hasAttr<CUDASharedAttr>() || 3722 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3723 Global->getType()->isCUDADeviceBuiltinTextureType(); 3724 } 3725 3726 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3727 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3728 3729 // Weak references don't produce any output by themselves. 3730 if (Global->hasAttr<WeakRefAttr>()) 3731 return; 3732 3733 // If this is an alias definition (which otherwise looks like a declaration) 3734 // emit it now. 3735 if (Global->hasAttr<AliasAttr>()) 3736 return EmitAliasDefinition(GD); 3737 3738 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3739 if (Global->hasAttr<IFuncAttr>()) 3740 return emitIFuncDefinition(GD); 3741 3742 // If this is a cpu_dispatch multiversion function, emit the resolver. 3743 if (Global->hasAttr<CPUDispatchAttr>()) 3744 return emitCPUDispatchDefinition(GD); 3745 3746 // If this is CUDA, be selective about which declarations we emit. 3747 // Non-constexpr non-lambda implicit host device functions are not emitted 3748 // unless they are used on device side. 3749 if (LangOpts.CUDA) { 3750 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3751 "Expected Variable or Function"); 3752 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3753 if (!shouldEmitCUDAGlobalVar(VD)) 3754 return; 3755 } else if (LangOpts.CUDAIsDevice) { 3756 const auto *FD = dyn_cast<FunctionDecl>(Global); 3757 if ((!Global->hasAttr<CUDADeviceAttr>() || 3758 (LangOpts.OffloadImplicitHostDeviceTemplates && 3759 hasImplicitAttr<CUDAHostAttr>(FD) && 3760 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3761 !isLambdaCallOperator(FD) && 3762 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3763 !Global->hasAttr<CUDAGlobalAttr>() && 3764 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3765 !Global->hasAttr<CUDAHostAttr>())) 3766 return; 3767 // Device-only functions are the only things we skip. 3768 } else if (!Global->hasAttr<CUDAHostAttr>() && 3769 Global->hasAttr<CUDADeviceAttr>()) 3770 return; 3771 } 3772 3773 if (LangOpts.OpenMP) { 3774 // If this is OpenMP, check if it is legal to emit this global normally. 3775 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3776 return; 3777 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3778 if (MustBeEmitted(Global)) 3779 EmitOMPDeclareReduction(DRD); 3780 return; 3781 } 3782 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3783 if (MustBeEmitted(Global)) 3784 EmitOMPDeclareMapper(DMD); 3785 return; 3786 } 3787 } 3788 3789 // Ignore declarations, they will be emitted on their first use. 3790 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3791 // Update deferred annotations with the latest declaration if the function 3792 // function was already used or defined. 3793 if (FD->hasAttr<AnnotateAttr>()) { 3794 StringRef MangledName = getMangledName(GD); 3795 if (GetGlobalValue(MangledName)) 3796 DeferredAnnotations[MangledName] = FD; 3797 } 3798 3799 // Forward declarations are emitted lazily on first use. 3800 if (!FD->doesThisDeclarationHaveABody()) { 3801 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3802 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3803 return; 3804 3805 StringRef MangledName = getMangledName(GD); 3806 3807 // Compute the function info and LLVM type. 3808 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3809 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3810 3811 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3812 /*DontDefer=*/false); 3813 return; 3814 } 3815 } else { 3816 const auto *VD = cast<VarDecl>(Global); 3817 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3818 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3819 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3820 if (LangOpts.OpenMP) { 3821 // Emit declaration of the must-be-emitted declare target variable. 3822 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3823 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3824 3825 // If this variable has external storage and doesn't require special 3826 // link handling we defer to its canonical definition. 3827 if (VD->hasExternalStorage() && 3828 Res != OMPDeclareTargetDeclAttr::MT_Link) 3829 return; 3830 3831 bool UnifiedMemoryEnabled = 3832 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3833 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3834 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3835 !UnifiedMemoryEnabled) { 3836 (void)GetAddrOfGlobalVar(VD); 3837 } else { 3838 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3839 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3840 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3841 UnifiedMemoryEnabled)) && 3842 "Link clause or to clause with unified memory expected."); 3843 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3844 } 3845 3846 return; 3847 } 3848 } 3849 // If this declaration may have caused an inline variable definition to 3850 // change linkage, make sure that it's emitted. 3851 if (Context.getInlineVariableDefinitionKind(VD) == 3852 ASTContext::InlineVariableDefinitionKind::Strong) 3853 GetAddrOfGlobalVar(VD); 3854 return; 3855 } 3856 } 3857 3858 // Defer code generation to first use when possible, e.g. if this is an inline 3859 // function. If the global must always be emitted, do it eagerly if possible 3860 // to benefit from cache locality. 3861 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3862 // Emit the definition if it can't be deferred. 3863 EmitGlobalDefinition(GD); 3864 addEmittedDeferredDecl(GD); 3865 return; 3866 } 3867 3868 // If we're deferring emission of a C++ variable with an 3869 // initializer, remember the order in which it appeared in the file. 3870 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3871 cast<VarDecl>(Global)->hasInit()) { 3872 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3873 CXXGlobalInits.push_back(nullptr); 3874 } 3875 3876 StringRef MangledName = getMangledName(GD); 3877 if (GetGlobalValue(MangledName) != nullptr) { 3878 // The value has already been used and should therefore be emitted. 3879 addDeferredDeclToEmit(GD); 3880 } else if (MustBeEmitted(Global)) { 3881 // The value must be emitted, but cannot be emitted eagerly. 3882 assert(!MayBeEmittedEagerly(Global)); 3883 addDeferredDeclToEmit(GD); 3884 } else { 3885 // Otherwise, remember that we saw a deferred decl with this name. The 3886 // first use of the mangled name will cause it to move into 3887 // DeferredDeclsToEmit. 3888 DeferredDecls[MangledName] = GD; 3889 } 3890 } 3891 3892 // Check if T is a class type with a destructor that's not dllimport. 3893 static bool HasNonDllImportDtor(QualType T) { 3894 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3895 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3896 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3897 return true; 3898 3899 return false; 3900 } 3901 3902 namespace { 3903 struct FunctionIsDirectlyRecursive 3904 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3905 const StringRef Name; 3906 const Builtin::Context &BI; 3907 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3908 : Name(N), BI(C) {} 3909 3910 bool VisitCallExpr(const CallExpr *E) { 3911 const FunctionDecl *FD = E->getDirectCallee(); 3912 if (!FD) 3913 return false; 3914 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3915 if (Attr && Name == Attr->getLabel()) 3916 return true; 3917 unsigned BuiltinID = FD->getBuiltinID(); 3918 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3919 return false; 3920 StringRef BuiltinName = BI.getName(BuiltinID); 3921 if (BuiltinName.starts_with("__builtin_") && 3922 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3923 return true; 3924 } 3925 return false; 3926 } 3927 3928 bool VisitStmt(const Stmt *S) { 3929 for (const Stmt *Child : S->children()) 3930 if (Child && this->Visit(Child)) 3931 return true; 3932 return false; 3933 } 3934 }; 3935 3936 // Make sure we're not referencing non-imported vars or functions. 3937 struct DLLImportFunctionVisitor 3938 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3939 bool SafeToInline = true; 3940 3941 bool shouldVisitImplicitCode() const { return true; } 3942 3943 bool VisitVarDecl(VarDecl *VD) { 3944 if (VD->getTLSKind()) { 3945 // A thread-local variable cannot be imported. 3946 SafeToInline = false; 3947 return SafeToInline; 3948 } 3949 3950 // A variable definition might imply a destructor call. 3951 if (VD->isThisDeclarationADefinition()) 3952 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3953 3954 return SafeToInline; 3955 } 3956 3957 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3958 if (const auto *D = E->getTemporary()->getDestructor()) 3959 SafeToInline = D->hasAttr<DLLImportAttr>(); 3960 return SafeToInline; 3961 } 3962 3963 bool VisitDeclRefExpr(DeclRefExpr *E) { 3964 ValueDecl *VD = E->getDecl(); 3965 if (isa<FunctionDecl>(VD)) 3966 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3967 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3968 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3969 return SafeToInline; 3970 } 3971 3972 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3973 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3974 return SafeToInline; 3975 } 3976 3977 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3978 CXXMethodDecl *M = E->getMethodDecl(); 3979 if (!M) { 3980 // Call through a pointer to member function. This is safe to inline. 3981 SafeToInline = true; 3982 } else { 3983 SafeToInline = M->hasAttr<DLLImportAttr>(); 3984 } 3985 return SafeToInline; 3986 } 3987 3988 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3989 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3990 return SafeToInline; 3991 } 3992 3993 bool VisitCXXNewExpr(CXXNewExpr *E) { 3994 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3995 return SafeToInline; 3996 } 3997 }; 3998 } 3999 4000 // isTriviallyRecursive - Check if this function calls another 4001 // decl that, because of the asm attribute or the other decl being a builtin, 4002 // ends up pointing to itself. 4003 bool 4004 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4005 StringRef Name; 4006 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4007 // asm labels are a special kind of mangling we have to support. 4008 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4009 if (!Attr) 4010 return false; 4011 Name = Attr->getLabel(); 4012 } else { 4013 Name = FD->getName(); 4014 } 4015 4016 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4017 const Stmt *Body = FD->getBody(); 4018 return Body ? Walker.Visit(Body) : false; 4019 } 4020 4021 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4022 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4023 return true; 4024 4025 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4026 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4027 return false; 4028 4029 // We don't import function bodies from other named module units since that 4030 // behavior may break ABI compatibility of the current unit. 4031 if (const Module *M = F->getOwningModule(); 4032 M && M->getTopLevelModule()->isNamedModule() && 4033 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4034 // There are practices to mark template member function as always-inline 4035 // and mark the template as extern explicit instantiation but not give 4036 // the definition for member function. So we have to emit the function 4037 // from explicitly instantiation with always-inline. 4038 // 4039 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4040 // 4041 // TODO: Maybe it is better to give it a warning if we call a non-inline 4042 // function from other module units which is marked as always-inline. 4043 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4044 return false; 4045 } 4046 } 4047 4048 if (F->hasAttr<NoInlineAttr>()) 4049 return false; 4050 4051 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4052 // Check whether it would be safe to inline this dllimport function. 4053 DLLImportFunctionVisitor Visitor; 4054 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4055 if (!Visitor.SafeToInline) 4056 return false; 4057 4058 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4059 // Implicit destructor invocations aren't captured in the AST, so the 4060 // check above can't see them. Check for them manually here. 4061 for (const Decl *Member : Dtor->getParent()->decls()) 4062 if (isa<FieldDecl>(Member)) 4063 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4064 return false; 4065 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4066 if (HasNonDllImportDtor(B.getType())) 4067 return false; 4068 } 4069 } 4070 4071 // Inline builtins declaration must be emitted. They often are fortified 4072 // functions. 4073 if (F->isInlineBuiltinDeclaration()) 4074 return true; 4075 4076 // PR9614. Avoid cases where the source code is lying to us. An available 4077 // externally function should have an equivalent function somewhere else, 4078 // but a function that calls itself through asm label/`__builtin_` trickery is 4079 // clearly not equivalent to the real implementation. 4080 // This happens in glibc's btowc and in some configure checks. 4081 return !isTriviallyRecursive(F); 4082 } 4083 4084 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4085 return CodeGenOpts.OptimizationLevel > 0; 4086 } 4087 4088 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4089 llvm::GlobalValue *GV) { 4090 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4091 4092 if (FD->isCPUSpecificMultiVersion()) { 4093 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4094 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4095 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4096 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4097 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4098 // AArch64 favors the default target version over the clone if any. 4099 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4100 TC->isFirstOfVersion(I)) 4101 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4102 // Ensure that the resolver function is also emitted. 4103 GetOrCreateMultiVersionResolver(GD); 4104 } else 4105 EmitGlobalFunctionDefinition(GD, GV); 4106 4107 // Defer the resolver emission until we can reason whether the TU 4108 // contains a default target version implementation. 4109 if (FD->isTargetVersionMultiVersion()) 4110 AddDeferredMultiVersionResolverToEmit(GD); 4111 } 4112 4113 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4114 const auto *D = cast<ValueDecl>(GD.getDecl()); 4115 4116 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4117 Context.getSourceManager(), 4118 "Generating code for declaration"); 4119 4120 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4121 // At -O0, don't generate IR for functions with available_externally 4122 // linkage. 4123 if (!shouldEmitFunction(GD)) 4124 return; 4125 4126 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4127 std::string Name; 4128 llvm::raw_string_ostream OS(Name); 4129 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4130 /*Qualified=*/true); 4131 return Name; 4132 }); 4133 4134 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4135 // Make sure to emit the definition(s) before we emit the thunks. 4136 // This is necessary for the generation of certain thunks. 4137 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4138 ABI->emitCXXStructor(GD); 4139 else if (FD->isMultiVersion()) 4140 EmitMultiVersionFunctionDefinition(GD, GV); 4141 else 4142 EmitGlobalFunctionDefinition(GD, GV); 4143 4144 if (Method->isVirtual()) 4145 getVTables().EmitThunks(GD); 4146 4147 return; 4148 } 4149 4150 if (FD->isMultiVersion()) 4151 return EmitMultiVersionFunctionDefinition(GD, GV); 4152 return EmitGlobalFunctionDefinition(GD, GV); 4153 } 4154 4155 if (const auto *VD = dyn_cast<VarDecl>(D)) 4156 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4157 4158 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4159 } 4160 4161 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4162 llvm::Function *NewFn); 4163 4164 static unsigned 4165 TargetMVPriority(const TargetInfo &TI, 4166 const CodeGenFunction::MultiVersionResolverOption &RO) { 4167 unsigned Priority = 0; 4168 unsigned NumFeatures = 0; 4169 for (StringRef Feat : RO.Conditions.Features) { 4170 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4171 NumFeatures++; 4172 } 4173 4174 if (!RO.Conditions.Architecture.empty()) 4175 Priority = std::max( 4176 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4177 4178 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4179 4180 return Priority; 4181 } 4182 4183 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4184 // TU can forward declare the function without causing problems. Particularly 4185 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4186 // work with internal linkage functions, so that the same function name can be 4187 // used with internal linkage in multiple TUs. 4188 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4189 GlobalDecl GD) { 4190 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4191 if (FD->getFormalLinkage() == Linkage::Internal) 4192 return llvm::GlobalValue::InternalLinkage; 4193 return llvm::GlobalValue::WeakODRLinkage; 4194 } 4195 4196 void CodeGenModule::emitMultiVersionFunctions() { 4197 std::vector<GlobalDecl> MVFuncsToEmit; 4198 MultiVersionFuncs.swap(MVFuncsToEmit); 4199 for (GlobalDecl GD : MVFuncsToEmit) { 4200 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4201 assert(FD && "Expected a FunctionDecl"); 4202 4203 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4204 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4205 StringRef MangledName = getMangledName(CurGD); 4206 llvm::Constant *Func = GetGlobalValue(MangledName); 4207 if (!Func) { 4208 if (Decl->isDefined()) { 4209 EmitGlobalFunctionDefinition(CurGD, nullptr); 4210 Func = GetGlobalValue(MangledName); 4211 } else { 4212 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4213 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4214 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4215 /*DontDefer=*/false, ForDefinition); 4216 } 4217 assert(Func && "This should have just been created"); 4218 } 4219 return cast<llvm::Function>(Func); 4220 }; 4221 4222 // For AArch64, a resolver is only emitted if a function marked with 4223 // target_version("default")) or target_clones() is present and defined 4224 // in this TU. For other architectures it is always emitted. 4225 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4226 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4227 4228 getContext().forEachMultiversionedFunctionVersion( 4229 FD, [&](const FunctionDecl *CurFD) { 4230 llvm::SmallVector<StringRef, 8> Feats; 4231 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4232 4233 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4234 TA->getAddedFeatures(Feats); 4235 llvm::Function *Func = createFunction(CurFD); 4236 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4237 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4238 if (TVA->isDefaultVersion() && IsDefined) 4239 ShouldEmitResolver = true; 4240 TVA->getFeatures(Feats); 4241 llvm::Function *Func = createFunction(CurFD); 4242 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4243 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4244 if (IsDefined) 4245 ShouldEmitResolver = true; 4246 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4247 if (!TC->isFirstOfVersion(I)) 4248 continue; 4249 4250 llvm::Function *Func = createFunction(CurFD, I); 4251 StringRef Architecture; 4252 Feats.clear(); 4253 if (getTarget().getTriple().isAArch64()) 4254 TC->getFeatures(Feats, I); 4255 else { 4256 StringRef Version = TC->getFeatureStr(I); 4257 if (Version.starts_with("arch=")) 4258 Architecture = Version.drop_front(sizeof("arch=") - 1); 4259 else if (Version != "default") 4260 Feats.push_back(Version); 4261 } 4262 Options.emplace_back(Func, Architecture, Feats); 4263 } 4264 } else 4265 llvm_unreachable("unexpected MultiVersionKind"); 4266 }); 4267 4268 if (!ShouldEmitResolver) 4269 continue; 4270 4271 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4272 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4273 ResolverConstant = IFunc->getResolver(); 4274 if (FD->isTargetClonesMultiVersion() && 4275 !getTarget().getTriple().isAArch64()) { 4276 std::string MangledName = getMangledNameImpl( 4277 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4278 if (!GetGlobalValue(MangledName + ".ifunc")) { 4279 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4280 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4281 // In prior versions of Clang, the mangling for ifuncs incorrectly 4282 // included an .ifunc suffix. This alias is generated for backward 4283 // compatibility. It is deprecated, and may be removed in the future. 4284 auto *Alias = llvm::GlobalAlias::create( 4285 DeclTy, 0, getMultiversionLinkage(*this, GD), 4286 MangledName + ".ifunc", IFunc, &getModule()); 4287 SetCommonAttributes(FD, Alias); 4288 } 4289 } 4290 } 4291 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4292 4293 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4294 4295 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4296 ResolverFunc->setComdat( 4297 getModule().getOrInsertComdat(ResolverFunc->getName())); 4298 4299 const TargetInfo &TI = getTarget(); 4300 llvm::stable_sort( 4301 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4302 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4303 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4304 }); 4305 CodeGenFunction CGF(*this); 4306 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4307 } 4308 4309 // Ensure that any additions to the deferred decls list caused by emitting a 4310 // variant are emitted. This can happen when the variant itself is inline and 4311 // calls a function without linkage. 4312 if (!MVFuncsToEmit.empty()) 4313 EmitDeferred(); 4314 4315 // Ensure that any additions to the multiversion funcs list from either the 4316 // deferred decls or the multiversion functions themselves are emitted. 4317 if (!MultiVersionFuncs.empty()) 4318 emitMultiVersionFunctions(); 4319 } 4320 4321 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4322 llvm::Constant *New) { 4323 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4324 New->takeName(Old); 4325 Old->replaceAllUsesWith(New); 4326 Old->eraseFromParent(); 4327 } 4328 4329 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4330 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4331 assert(FD && "Not a FunctionDecl?"); 4332 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4333 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4334 assert(DD && "Not a cpu_dispatch Function?"); 4335 4336 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4337 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4338 4339 StringRef ResolverName = getMangledName(GD); 4340 UpdateMultiVersionNames(GD, FD, ResolverName); 4341 4342 llvm::Type *ResolverType; 4343 GlobalDecl ResolverGD; 4344 if (getTarget().supportsIFunc()) { 4345 ResolverType = llvm::FunctionType::get( 4346 llvm::PointerType::get(DeclTy, 4347 getTypes().getTargetAddressSpace(FD->getType())), 4348 false); 4349 } 4350 else { 4351 ResolverType = DeclTy; 4352 ResolverGD = GD; 4353 } 4354 4355 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4356 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4357 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4358 if (supportsCOMDAT()) 4359 ResolverFunc->setComdat( 4360 getModule().getOrInsertComdat(ResolverFunc->getName())); 4361 4362 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4363 const TargetInfo &Target = getTarget(); 4364 unsigned Index = 0; 4365 for (const IdentifierInfo *II : DD->cpus()) { 4366 // Get the name of the target function so we can look it up/create it. 4367 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4368 getCPUSpecificMangling(*this, II->getName()); 4369 4370 llvm::Constant *Func = GetGlobalValue(MangledName); 4371 4372 if (!Func) { 4373 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4374 if (ExistingDecl.getDecl() && 4375 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4376 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4377 Func = GetGlobalValue(MangledName); 4378 } else { 4379 if (!ExistingDecl.getDecl()) 4380 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4381 4382 Func = GetOrCreateLLVMFunction( 4383 MangledName, DeclTy, ExistingDecl, 4384 /*ForVTable=*/false, /*DontDefer=*/true, 4385 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4386 } 4387 } 4388 4389 llvm::SmallVector<StringRef, 32> Features; 4390 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4391 llvm::transform(Features, Features.begin(), 4392 [](StringRef Str) { return Str.substr(1); }); 4393 llvm::erase_if(Features, [&Target](StringRef Feat) { 4394 return !Target.validateCpuSupports(Feat); 4395 }); 4396 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4397 ++Index; 4398 } 4399 4400 llvm::stable_sort( 4401 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4402 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4403 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4404 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4405 }); 4406 4407 // If the list contains multiple 'default' versions, such as when it contains 4408 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4409 // always run on at least a 'pentium'). We do this by deleting the 'least 4410 // advanced' (read, lowest mangling letter). 4411 while (Options.size() > 1 && 4412 llvm::all_of(llvm::X86::getCpuSupportsMask( 4413 (Options.end() - 2)->Conditions.Features), 4414 [](auto X) { return X == 0; })) { 4415 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4416 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4417 if (LHSName.compare(RHSName) < 0) 4418 Options.erase(Options.end() - 2); 4419 else 4420 Options.erase(Options.end() - 1); 4421 } 4422 4423 CodeGenFunction CGF(*this); 4424 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4425 4426 if (getTarget().supportsIFunc()) { 4427 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4428 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4429 4430 // Fix up function declarations that were created for cpu_specific before 4431 // cpu_dispatch was known 4432 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4433 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4434 &getModule()); 4435 replaceDeclarationWith(IFunc, GI); 4436 IFunc = GI; 4437 } 4438 4439 std::string AliasName = getMangledNameImpl( 4440 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4441 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4442 if (!AliasFunc) { 4443 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4444 &getModule()); 4445 SetCommonAttributes(GD, GA); 4446 } 4447 } 4448 } 4449 4450 /// Adds a declaration to the list of multi version functions if not present. 4451 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4452 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4453 assert(FD && "Not a FunctionDecl?"); 4454 4455 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4456 std::string MangledName = 4457 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4458 if (!DeferredResolversToEmit.insert(MangledName).second) 4459 return; 4460 } 4461 MultiVersionFuncs.push_back(GD); 4462 } 4463 4464 /// If a dispatcher for the specified mangled name is not in the module, create 4465 /// and return it. The dispatcher is either an llvm Function with the specified 4466 /// type, or a global ifunc. 4467 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4468 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4469 assert(FD && "Not a FunctionDecl?"); 4470 4471 std::string MangledName = 4472 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4473 4474 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4475 // a separate resolver). 4476 std::string ResolverName = MangledName; 4477 if (getTarget().supportsIFunc()) { 4478 switch (FD->getMultiVersionKind()) { 4479 case MultiVersionKind::None: 4480 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4481 case MultiVersionKind::Target: 4482 case MultiVersionKind::CPUSpecific: 4483 case MultiVersionKind::CPUDispatch: 4484 ResolverName += ".ifunc"; 4485 break; 4486 case MultiVersionKind::TargetClones: 4487 case MultiVersionKind::TargetVersion: 4488 break; 4489 } 4490 } else if (FD->isTargetMultiVersion()) { 4491 ResolverName += ".resolver"; 4492 } 4493 4494 // If the resolver has already been created, just return it. This lookup may 4495 // yield a function declaration instead of a resolver on AArch64. That is 4496 // because we didn't know whether a resolver will be generated when we first 4497 // encountered a use of the symbol named after this resolver. Therefore, 4498 // targets which support ifuncs should not return here unless we actually 4499 // found an ifunc. 4500 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4501 if (ResolverGV && 4502 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4503 return ResolverGV; 4504 4505 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4506 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4507 4508 // The resolver needs to be created. For target and target_clones, defer 4509 // creation until the end of the TU. 4510 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4511 AddDeferredMultiVersionResolverToEmit(GD); 4512 4513 // For cpu_specific, don't create an ifunc yet because we don't know if the 4514 // cpu_dispatch will be emitted in this translation unit. 4515 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4516 llvm::Type *ResolverType = llvm::FunctionType::get( 4517 llvm::PointerType::get(DeclTy, 4518 getTypes().getTargetAddressSpace(FD->getType())), 4519 false); 4520 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4521 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4522 /*ForVTable=*/false); 4523 llvm::GlobalIFunc *GIF = 4524 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4525 "", Resolver, &getModule()); 4526 GIF->setName(ResolverName); 4527 SetCommonAttributes(FD, GIF); 4528 if (ResolverGV) 4529 replaceDeclarationWith(ResolverGV, GIF); 4530 return GIF; 4531 } 4532 4533 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4534 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4535 assert(isa<llvm::GlobalValue>(Resolver) && 4536 "Resolver should be created for the first time"); 4537 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4538 if (ResolverGV) 4539 replaceDeclarationWith(ResolverGV, Resolver); 4540 return Resolver; 4541 } 4542 4543 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4544 const llvm::GlobalValue *GV) const { 4545 auto SC = GV->getDLLStorageClass(); 4546 if (SC == llvm::GlobalValue::DefaultStorageClass) 4547 return false; 4548 const Decl *MRD = D->getMostRecentDecl(); 4549 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4550 !MRD->hasAttr<DLLImportAttr>()) || 4551 (SC == llvm::GlobalValue::DLLExportStorageClass && 4552 !MRD->hasAttr<DLLExportAttr>())) && 4553 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4554 } 4555 4556 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4557 /// module, create and return an llvm Function with the specified type. If there 4558 /// is something in the module with the specified name, return it potentially 4559 /// bitcasted to the right type. 4560 /// 4561 /// If D is non-null, it specifies a decl that correspond to this. This is used 4562 /// to set the attributes on the function when it is first created. 4563 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4564 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4565 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4566 ForDefinition_t IsForDefinition) { 4567 const Decl *D = GD.getDecl(); 4568 4569 std::string NameWithoutMultiVersionMangling; 4570 // Any attempts to use a MultiVersion function should result in retrieving 4571 // the iFunc instead. Name Mangling will handle the rest of the changes. 4572 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4573 // For the device mark the function as one that should be emitted. 4574 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4575 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4576 !DontDefer && !IsForDefinition) { 4577 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4578 GlobalDecl GDDef; 4579 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4580 GDDef = GlobalDecl(CD, GD.getCtorType()); 4581 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4582 GDDef = GlobalDecl(DD, GD.getDtorType()); 4583 else 4584 GDDef = GlobalDecl(FDDef); 4585 EmitGlobal(GDDef); 4586 } 4587 } 4588 4589 if (FD->isMultiVersion()) { 4590 UpdateMultiVersionNames(GD, FD, MangledName); 4591 if (!IsForDefinition) { 4592 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4593 // function is used. Instead we defer the emission until we see a 4594 // default definition. In the meantime we just reference the symbol 4595 // without FMV mangling (it may or may not be replaced later). 4596 if (getTarget().getTriple().isAArch64()) { 4597 AddDeferredMultiVersionResolverToEmit(GD); 4598 NameWithoutMultiVersionMangling = getMangledNameImpl( 4599 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4600 } else 4601 return GetOrCreateMultiVersionResolver(GD); 4602 } 4603 } 4604 } 4605 4606 if (!NameWithoutMultiVersionMangling.empty()) 4607 MangledName = NameWithoutMultiVersionMangling; 4608 4609 // Lookup the entry, lazily creating it if necessary. 4610 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4611 if (Entry) { 4612 if (WeakRefReferences.erase(Entry)) { 4613 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4614 if (FD && !FD->hasAttr<WeakAttr>()) 4615 Entry->setLinkage(llvm::Function::ExternalLinkage); 4616 } 4617 4618 // Handle dropped DLL attributes. 4619 if (D && shouldDropDLLAttribute(D, Entry)) { 4620 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4621 setDSOLocal(Entry); 4622 } 4623 4624 // If there are two attempts to define the same mangled name, issue an 4625 // error. 4626 if (IsForDefinition && !Entry->isDeclaration()) { 4627 GlobalDecl OtherGD; 4628 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4629 // to make sure that we issue an error only once. 4630 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4631 (GD.getCanonicalDecl().getDecl() != 4632 OtherGD.getCanonicalDecl().getDecl()) && 4633 DiagnosedConflictingDefinitions.insert(GD).second) { 4634 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4635 << MangledName; 4636 getDiags().Report(OtherGD.getDecl()->getLocation(), 4637 diag::note_previous_definition); 4638 } 4639 } 4640 4641 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4642 (Entry->getValueType() == Ty)) { 4643 return Entry; 4644 } 4645 4646 // Make sure the result is of the correct type. 4647 // (If function is requested for a definition, we always need to create a new 4648 // function, not just return a bitcast.) 4649 if (!IsForDefinition) 4650 return Entry; 4651 } 4652 4653 // This function doesn't have a complete type (for example, the return 4654 // type is an incomplete struct). Use a fake type instead, and make 4655 // sure not to try to set attributes. 4656 bool IsIncompleteFunction = false; 4657 4658 llvm::FunctionType *FTy; 4659 if (isa<llvm::FunctionType>(Ty)) { 4660 FTy = cast<llvm::FunctionType>(Ty); 4661 } else { 4662 FTy = llvm::FunctionType::get(VoidTy, false); 4663 IsIncompleteFunction = true; 4664 } 4665 4666 llvm::Function *F = 4667 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4668 Entry ? StringRef() : MangledName, &getModule()); 4669 4670 // Store the declaration associated with this function so it is potentially 4671 // updated by further declarations or definitions and emitted at the end. 4672 if (D && D->hasAttr<AnnotateAttr>()) 4673 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4674 4675 // If we already created a function with the same mangled name (but different 4676 // type) before, take its name and add it to the list of functions to be 4677 // replaced with F at the end of CodeGen. 4678 // 4679 // This happens if there is a prototype for a function (e.g. "int f()") and 4680 // then a definition of a different type (e.g. "int f(int x)"). 4681 if (Entry) { 4682 F->takeName(Entry); 4683 4684 // This might be an implementation of a function without a prototype, in 4685 // which case, try to do special replacement of calls which match the new 4686 // prototype. The really key thing here is that we also potentially drop 4687 // arguments from the call site so as to make a direct call, which makes the 4688 // inliner happier and suppresses a number of optimizer warnings (!) about 4689 // dropping arguments. 4690 if (!Entry->use_empty()) { 4691 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4692 Entry->removeDeadConstantUsers(); 4693 } 4694 4695 addGlobalValReplacement(Entry, F); 4696 } 4697 4698 assert(F->getName() == MangledName && "name was uniqued!"); 4699 if (D) 4700 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4701 if (ExtraAttrs.hasFnAttrs()) { 4702 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4703 F->addFnAttrs(B); 4704 } 4705 4706 if (!DontDefer) { 4707 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4708 // each other bottoming out with the base dtor. Therefore we emit non-base 4709 // dtors on usage, even if there is no dtor definition in the TU. 4710 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4711 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4712 GD.getDtorType())) 4713 addDeferredDeclToEmit(GD); 4714 4715 // This is the first use or definition of a mangled name. If there is a 4716 // deferred decl with this name, remember that we need to emit it at the end 4717 // of the file. 4718 auto DDI = DeferredDecls.find(MangledName); 4719 if (DDI != DeferredDecls.end()) { 4720 // Move the potentially referenced deferred decl to the 4721 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4722 // don't need it anymore). 4723 addDeferredDeclToEmit(DDI->second); 4724 DeferredDecls.erase(DDI); 4725 4726 // Otherwise, there are cases we have to worry about where we're 4727 // using a declaration for which we must emit a definition but where 4728 // we might not find a top-level definition: 4729 // - member functions defined inline in their classes 4730 // - friend functions defined inline in some class 4731 // - special member functions with implicit definitions 4732 // If we ever change our AST traversal to walk into class methods, 4733 // this will be unnecessary. 4734 // 4735 // We also don't emit a definition for a function if it's going to be an 4736 // entry in a vtable, unless it's already marked as used. 4737 } else if (getLangOpts().CPlusPlus && D) { 4738 // Look for a declaration that's lexically in a record. 4739 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4740 FD = FD->getPreviousDecl()) { 4741 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4742 if (FD->doesThisDeclarationHaveABody()) { 4743 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4744 break; 4745 } 4746 } 4747 } 4748 } 4749 } 4750 4751 // Make sure the result is of the requested type. 4752 if (!IsIncompleteFunction) { 4753 assert(F->getFunctionType() == Ty); 4754 return F; 4755 } 4756 4757 return F; 4758 } 4759 4760 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4761 /// non-null, then this function will use the specified type if it has to 4762 /// create it (this occurs when we see a definition of the function). 4763 llvm::Constant * 4764 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4765 bool DontDefer, 4766 ForDefinition_t IsForDefinition) { 4767 // If there was no specific requested type, just convert it now. 4768 if (!Ty) { 4769 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4770 Ty = getTypes().ConvertType(FD->getType()); 4771 } 4772 4773 // Devirtualized destructor calls may come through here instead of via 4774 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4775 // of the complete destructor when necessary. 4776 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4777 if (getTarget().getCXXABI().isMicrosoft() && 4778 GD.getDtorType() == Dtor_Complete && 4779 DD->getParent()->getNumVBases() == 0) 4780 GD = GlobalDecl(DD, Dtor_Base); 4781 } 4782 4783 StringRef MangledName = getMangledName(GD); 4784 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4785 /*IsThunk=*/false, llvm::AttributeList(), 4786 IsForDefinition); 4787 // Returns kernel handle for HIP kernel stub function. 4788 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4789 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4790 auto *Handle = getCUDARuntime().getKernelHandle( 4791 cast<llvm::Function>(F->stripPointerCasts()), GD); 4792 if (IsForDefinition) 4793 return F; 4794 return Handle; 4795 } 4796 return F; 4797 } 4798 4799 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4800 llvm::GlobalValue *F = 4801 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4802 4803 return llvm::NoCFIValue::get(F); 4804 } 4805 4806 static const FunctionDecl * 4807 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4808 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4809 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4810 4811 IdentifierInfo &CII = C.Idents.get(Name); 4812 for (const auto *Result : DC->lookup(&CII)) 4813 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4814 return FD; 4815 4816 if (!C.getLangOpts().CPlusPlus) 4817 return nullptr; 4818 4819 // Demangle the premangled name from getTerminateFn() 4820 IdentifierInfo &CXXII = 4821 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4822 ? C.Idents.get("terminate") 4823 : C.Idents.get(Name); 4824 4825 for (const auto &N : {"__cxxabiv1", "std"}) { 4826 IdentifierInfo &NS = C.Idents.get(N); 4827 for (const auto *Result : DC->lookup(&NS)) { 4828 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4829 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4830 for (const auto *Result : LSD->lookup(&NS)) 4831 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4832 break; 4833 4834 if (ND) 4835 for (const auto *Result : ND->lookup(&CXXII)) 4836 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4837 return FD; 4838 } 4839 } 4840 4841 return nullptr; 4842 } 4843 4844 /// CreateRuntimeFunction - Create a new runtime function with the specified 4845 /// type and name. 4846 llvm::FunctionCallee 4847 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4848 llvm::AttributeList ExtraAttrs, bool Local, 4849 bool AssumeConvergent) { 4850 if (AssumeConvergent) { 4851 ExtraAttrs = 4852 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4853 } 4854 4855 llvm::Constant *C = 4856 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4857 /*DontDefer=*/false, /*IsThunk=*/false, 4858 ExtraAttrs); 4859 4860 if (auto *F = dyn_cast<llvm::Function>(C)) { 4861 if (F->empty()) { 4862 F->setCallingConv(getRuntimeCC()); 4863 4864 // In Windows Itanium environments, try to mark runtime functions 4865 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4866 // will link their standard library statically or dynamically. Marking 4867 // functions imported when they are not imported can cause linker errors 4868 // and warnings. 4869 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4870 !getCodeGenOpts().LTOVisibilityPublicStd) { 4871 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4872 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4873 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4874 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4875 } 4876 } 4877 setDSOLocal(F); 4878 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4879 // of trying to approximate the attributes using the LLVM function 4880 // signature. This requires revising the API of CreateRuntimeFunction(). 4881 markRegisterParameterAttributes(F); 4882 } 4883 } 4884 4885 return {FTy, C}; 4886 } 4887 4888 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4889 /// create and return an llvm GlobalVariable with the specified type and address 4890 /// space. If there is something in the module with the specified name, return 4891 /// it potentially bitcasted to the right type. 4892 /// 4893 /// If D is non-null, it specifies a decl that correspond to this. This is used 4894 /// to set the attributes on the global when it is first created. 4895 /// 4896 /// If IsForDefinition is true, it is guaranteed that an actual global with 4897 /// type Ty will be returned, not conversion of a variable with the same 4898 /// mangled name but some other type. 4899 llvm::Constant * 4900 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4901 LangAS AddrSpace, const VarDecl *D, 4902 ForDefinition_t IsForDefinition) { 4903 // Lookup the entry, lazily creating it if necessary. 4904 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4905 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4906 if (Entry) { 4907 if (WeakRefReferences.erase(Entry)) { 4908 if (D && !D->hasAttr<WeakAttr>()) 4909 Entry->setLinkage(llvm::Function::ExternalLinkage); 4910 } 4911 4912 // Handle dropped DLL attributes. 4913 if (D && shouldDropDLLAttribute(D, Entry)) 4914 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4915 4916 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4917 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4918 4919 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4920 return Entry; 4921 4922 // If there are two attempts to define the same mangled name, issue an 4923 // error. 4924 if (IsForDefinition && !Entry->isDeclaration()) { 4925 GlobalDecl OtherGD; 4926 const VarDecl *OtherD; 4927 4928 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4929 // to make sure that we issue an error only once. 4930 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4931 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4932 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4933 OtherD->hasInit() && 4934 DiagnosedConflictingDefinitions.insert(D).second) { 4935 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4936 << MangledName; 4937 getDiags().Report(OtherGD.getDecl()->getLocation(), 4938 diag::note_previous_definition); 4939 } 4940 } 4941 4942 // Make sure the result is of the correct type. 4943 if (Entry->getType()->getAddressSpace() != TargetAS) 4944 return llvm::ConstantExpr::getAddrSpaceCast( 4945 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4946 4947 // (If global is requested for a definition, we always need to create a new 4948 // global, not just return a bitcast.) 4949 if (!IsForDefinition) 4950 return Entry; 4951 } 4952 4953 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4954 4955 auto *GV = new llvm::GlobalVariable( 4956 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4957 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4958 getContext().getTargetAddressSpace(DAddrSpace)); 4959 4960 // If we already created a global with the same mangled name (but different 4961 // type) before, take its name and remove it from its parent. 4962 if (Entry) { 4963 GV->takeName(Entry); 4964 4965 if (!Entry->use_empty()) { 4966 Entry->replaceAllUsesWith(GV); 4967 } 4968 4969 Entry->eraseFromParent(); 4970 } 4971 4972 // This is the first use or definition of a mangled name. If there is a 4973 // deferred decl with this name, remember that we need to emit it at the end 4974 // of the file. 4975 auto DDI = DeferredDecls.find(MangledName); 4976 if (DDI != DeferredDecls.end()) { 4977 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4978 // list, and remove it from DeferredDecls (since we don't need it anymore). 4979 addDeferredDeclToEmit(DDI->second); 4980 DeferredDecls.erase(DDI); 4981 } 4982 4983 // Handle things which are present even on external declarations. 4984 if (D) { 4985 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4986 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4987 4988 // FIXME: This code is overly simple and should be merged with other global 4989 // handling. 4990 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4991 4992 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4993 4994 setLinkageForGV(GV, D); 4995 4996 if (D->getTLSKind()) { 4997 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4998 CXXThreadLocals.push_back(D); 4999 setTLSMode(GV, *D); 5000 } 5001 5002 setGVProperties(GV, D); 5003 5004 // If required by the ABI, treat declarations of static data members with 5005 // inline initializers as definitions. 5006 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5007 EmitGlobalVarDefinition(D); 5008 } 5009 5010 // Emit section information for extern variables. 5011 if (D->hasExternalStorage()) { 5012 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5013 GV->setSection(SA->getName()); 5014 } 5015 5016 // Handle XCore specific ABI requirements. 5017 if (getTriple().getArch() == llvm::Triple::xcore && 5018 D->getLanguageLinkage() == CLanguageLinkage && 5019 D->getType().isConstant(Context) && 5020 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5021 GV->setSection(".cp.rodata"); 5022 5023 // Handle code model attribute 5024 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5025 GV->setCodeModel(CMA->getModel()); 5026 5027 // Check if we a have a const declaration with an initializer, we may be 5028 // able to emit it as available_externally to expose it's value to the 5029 // optimizer. 5030 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5031 D->getType().isConstQualified() && !GV->hasInitializer() && 5032 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5033 const auto *Record = 5034 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5035 bool HasMutableFields = Record && Record->hasMutableFields(); 5036 if (!HasMutableFields) { 5037 const VarDecl *InitDecl; 5038 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5039 if (InitExpr) { 5040 ConstantEmitter emitter(*this); 5041 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5042 if (Init) { 5043 auto *InitType = Init->getType(); 5044 if (GV->getValueType() != InitType) { 5045 // The type of the initializer does not match the definition. 5046 // This happens when an initializer has a different type from 5047 // the type of the global (because of padding at the end of a 5048 // structure for instance). 5049 GV->setName(StringRef()); 5050 // Make a new global with the correct type, this is now guaranteed 5051 // to work. 5052 auto *NewGV = cast<llvm::GlobalVariable>( 5053 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5054 ->stripPointerCasts()); 5055 5056 // Erase the old global, since it is no longer used. 5057 GV->eraseFromParent(); 5058 GV = NewGV; 5059 } else { 5060 GV->setInitializer(Init); 5061 GV->setConstant(true); 5062 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5063 } 5064 emitter.finalize(GV); 5065 } 5066 } 5067 } 5068 } 5069 } 5070 5071 if (D && 5072 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5073 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5074 // External HIP managed variables needed to be recorded for transformation 5075 // in both device and host compilations. 5076 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5077 D->hasExternalStorage()) 5078 getCUDARuntime().handleVarRegistration(D, *GV); 5079 } 5080 5081 if (D) 5082 SanitizerMD->reportGlobal(GV, *D); 5083 5084 LangAS ExpectedAS = 5085 D ? D->getType().getAddressSpace() 5086 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5087 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5088 if (DAddrSpace != ExpectedAS) { 5089 return getTargetCodeGenInfo().performAddrSpaceCast( 5090 *this, GV, DAddrSpace, ExpectedAS, 5091 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5092 } 5093 5094 return GV; 5095 } 5096 5097 llvm::Constant * 5098 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5099 const Decl *D = GD.getDecl(); 5100 5101 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5102 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5103 /*DontDefer=*/false, IsForDefinition); 5104 5105 if (isa<CXXMethodDecl>(D)) { 5106 auto FInfo = 5107 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5108 auto Ty = getTypes().GetFunctionType(*FInfo); 5109 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5110 IsForDefinition); 5111 } 5112 5113 if (isa<FunctionDecl>(D)) { 5114 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5115 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5116 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5117 IsForDefinition); 5118 } 5119 5120 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5121 } 5122 5123 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5124 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5125 llvm::Align Alignment) { 5126 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5127 llvm::GlobalVariable *OldGV = nullptr; 5128 5129 if (GV) { 5130 // Check if the variable has the right type. 5131 if (GV->getValueType() == Ty) 5132 return GV; 5133 5134 // Because C++ name mangling, the only way we can end up with an already 5135 // existing global with the same name is if it has been declared extern "C". 5136 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5137 OldGV = GV; 5138 } 5139 5140 // Create a new variable. 5141 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5142 Linkage, nullptr, Name); 5143 5144 if (OldGV) { 5145 // Replace occurrences of the old variable if needed. 5146 GV->takeName(OldGV); 5147 5148 if (!OldGV->use_empty()) { 5149 OldGV->replaceAllUsesWith(GV); 5150 } 5151 5152 OldGV->eraseFromParent(); 5153 } 5154 5155 if (supportsCOMDAT() && GV->isWeakForLinker() && 5156 !GV->hasAvailableExternallyLinkage()) 5157 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5158 5159 GV->setAlignment(Alignment); 5160 5161 return GV; 5162 } 5163 5164 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5165 /// given global variable. If Ty is non-null and if the global doesn't exist, 5166 /// then it will be created with the specified type instead of whatever the 5167 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5168 /// that an actual global with type Ty will be returned, not conversion of a 5169 /// variable with the same mangled name but some other type. 5170 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5171 llvm::Type *Ty, 5172 ForDefinition_t IsForDefinition) { 5173 assert(D->hasGlobalStorage() && "Not a global variable"); 5174 QualType ASTTy = D->getType(); 5175 if (!Ty) 5176 Ty = getTypes().ConvertTypeForMem(ASTTy); 5177 5178 StringRef MangledName = getMangledName(D); 5179 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5180 IsForDefinition); 5181 } 5182 5183 /// CreateRuntimeVariable - Create a new runtime global variable with the 5184 /// specified type and name. 5185 llvm::Constant * 5186 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5187 StringRef Name) { 5188 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5189 : LangAS::Default; 5190 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5191 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5192 return Ret; 5193 } 5194 5195 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5196 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5197 5198 StringRef MangledName = getMangledName(D); 5199 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5200 5201 // We already have a definition, not declaration, with the same mangled name. 5202 // Emitting of declaration is not required (and actually overwrites emitted 5203 // definition). 5204 if (GV && !GV->isDeclaration()) 5205 return; 5206 5207 // If we have not seen a reference to this variable yet, place it into the 5208 // deferred declarations table to be emitted if needed later. 5209 if (!MustBeEmitted(D) && !GV) { 5210 DeferredDecls[MangledName] = D; 5211 return; 5212 } 5213 5214 // The tentative definition is the only definition. 5215 EmitGlobalVarDefinition(D); 5216 } 5217 5218 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5219 if (auto const *V = dyn_cast<const VarDecl>(D)) 5220 EmitExternalVarDeclaration(V); 5221 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5222 EmitExternalFunctionDeclaration(FD); 5223 } 5224 5225 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5226 return Context.toCharUnitsFromBits( 5227 getDataLayout().getTypeStoreSizeInBits(Ty)); 5228 } 5229 5230 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5231 if (LangOpts.OpenCL) { 5232 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5233 assert(AS == LangAS::opencl_global || 5234 AS == LangAS::opencl_global_device || 5235 AS == LangAS::opencl_global_host || 5236 AS == LangAS::opencl_constant || 5237 AS == LangAS::opencl_local || 5238 AS >= LangAS::FirstTargetAddressSpace); 5239 return AS; 5240 } 5241 5242 if (LangOpts.SYCLIsDevice && 5243 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5244 return LangAS::sycl_global; 5245 5246 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5247 if (D) { 5248 if (D->hasAttr<CUDAConstantAttr>()) 5249 return LangAS::cuda_constant; 5250 if (D->hasAttr<CUDASharedAttr>()) 5251 return LangAS::cuda_shared; 5252 if (D->hasAttr<CUDADeviceAttr>()) 5253 return LangAS::cuda_device; 5254 if (D->getType().isConstQualified()) 5255 return LangAS::cuda_constant; 5256 } 5257 return LangAS::cuda_device; 5258 } 5259 5260 if (LangOpts.OpenMP) { 5261 LangAS AS; 5262 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5263 return AS; 5264 } 5265 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5266 } 5267 5268 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5269 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5270 if (LangOpts.OpenCL) 5271 return LangAS::opencl_constant; 5272 if (LangOpts.SYCLIsDevice) 5273 return LangAS::sycl_global; 5274 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5275 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5276 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5277 // with OpVariable instructions with Generic storage class which is not 5278 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5279 // UniformConstant storage class is not viable as pointers to it may not be 5280 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5281 return LangAS::cuda_device; 5282 if (auto AS = getTarget().getConstantAddressSpace()) 5283 return *AS; 5284 return LangAS::Default; 5285 } 5286 5287 // In address space agnostic languages, string literals are in default address 5288 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5289 // emitted in constant address space in LLVM IR. To be consistent with other 5290 // parts of AST, string literal global variables in constant address space 5291 // need to be casted to default address space before being put into address 5292 // map and referenced by other part of CodeGen. 5293 // In OpenCL, string literals are in constant address space in AST, therefore 5294 // they should not be casted to default address space. 5295 static llvm::Constant * 5296 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5297 llvm::GlobalVariable *GV) { 5298 llvm::Constant *Cast = GV; 5299 if (!CGM.getLangOpts().OpenCL) { 5300 auto AS = CGM.GetGlobalConstantAddressSpace(); 5301 if (AS != LangAS::Default) 5302 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5303 CGM, GV, AS, LangAS::Default, 5304 llvm::PointerType::get( 5305 CGM.getLLVMContext(), 5306 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5307 } 5308 return Cast; 5309 } 5310 5311 template<typename SomeDecl> 5312 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5313 llvm::GlobalValue *GV) { 5314 if (!getLangOpts().CPlusPlus) 5315 return; 5316 5317 // Must have 'used' attribute, or else inline assembly can't rely on 5318 // the name existing. 5319 if (!D->template hasAttr<UsedAttr>()) 5320 return; 5321 5322 // Must have internal linkage and an ordinary name. 5323 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5324 return; 5325 5326 // Must be in an extern "C" context. Entities declared directly within 5327 // a record are not extern "C" even if the record is in such a context. 5328 const SomeDecl *First = D->getFirstDecl(); 5329 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5330 return; 5331 5332 // OK, this is an internal linkage entity inside an extern "C" linkage 5333 // specification. Make a note of that so we can give it the "expected" 5334 // mangled name if nothing else is using that name. 5335 std::pair<StaticExternCMap::iterator, bool> R = 5336 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5337 5338 // If we have multiple internal linkage entities with the same name 5339 // in extern "C" regions, none of them gets that name. 5340 if (!R.second) 5341 R.first->second = nullptr; 5342 } 5343 5344 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5345 if (!CGM.supportsCOMDAT()) 5346 return false; 5347 5348 if (D.hasAttr<SelectAnyAttr>()) 5349 return true; 5350 5351 GVALinkage Linkage; 5352 if (auto *VD = dyn_cast<VarDecl>(&D)) 5353 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5354 else 5355 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5356 5357 switch (Linkage) { 5358 case GVA_Internal: 5359 case GVA_AvailableExternally: 5360 case GVA_StrongExternal: 5361 return false; 5362 case GVA_DiscardableODR: 5363 case GVA_StrongODR: 5364 return true; 5365 } 5366 llvm_unreachable("No such linkage"); 5367 } 5368 5369 bool CodeGenModule::supportsCOMDAT() const { 5370 return getTriple().supportsCOMDAT(); 5371 } 5372 5373 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5374 llvm::GlobalObject &GO) { 5375 if (!shouldBeInCOMDAT(*this, D)) 5376 return; 5377 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5378 } 5379 5380 const ABIInfo &CodeGenModule::getABIInfo() { 5381 return getTargetCodeGenInfo().getABIInfo(); 5382 } 5383 5384 /// Pass IsTentative as true if you want to create a tentative definition. 5385 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5386 bool IsTentative) { 5387 // OpenCL global variables of sampler type are translated to function calls, 5388 // therefore no need to be translated. 5389 QualType ASTTy = D->getType(); 5390 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5391 return; 5392 5393 // If this is OpenMP device, check if it is legal to emit this global 5394 // normally. 5395 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5396 OpenMPRuntime->emitTargetGlobalVariable(D)) 5397 return; 5398 5399 llvm::TrackingVH<llvm::Constant> Init; 5400 bool NeedsGlobalCtor = false; 5401 // Whether the definition of the variable is available externally. 5402 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5403 // since this is the job for its original source. 5404 bool IsDefinitionAvailableExternally = 5405 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5406 bool NeedsGlobalDtor = 5407 !IsDefinitionAvailableExternally && 5408 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5409 5410 // It is helpless to emit the definition for an available_externally variable 5411 // which can't be marked as const. 5412 // We don't need to check if it needs global ctor or dtor. See the above 5413 // comment for ideas. 5414 if (IsDefinitionAvailableExternally && 5415 (!D->hasConstantInitialization() || 5416 // TODO: Update this when we have interface to check constexpr 5417 // destructor. 5418 D->needsDestruction(getContext()) || 5419 !D->getType().isConstantStorage(getContext(), true, true))) 5420 return; 5421 5422 const VarDecl *InitDecl; 5423 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5424 5425 std::optional<ConstantEmitter> emitter; 5426 5427 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5428 // as part of their declaration." Sema has already checked for 5429 // error cases, so we just need to set Init to UndefValue. 5430 bool IsCUDASharedVar = 5431 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5432 // Shadows of initialized device-side global variables are also left 5433 // undefined. 5434 // Managed Variables should be initialized on both host side and device side. 5435 bool IsCUDAShadowVar = 5436 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5437 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5438 D->hasAttr<CUDASharedAttr>()); 5439 bool IsCUDADeviceShadowVar = 5440 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5441 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5442 D->getType()->isCUDADeviceBuiltinTextureType()); 5443 if (getLangOpts().CUDA && 5444 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5445 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5446 else if (D->hasAttr<LoaderUninitializedAttr>()) 5447 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5448 else if (!InitExpr) { 5449 // This is a tentative definition; tentative definitions are 5450 // implicitly initialized with { 0 }. 5451 // 5452 // Note that tentative definitions are only emitted at the end of 5453 // a translation unit, so they should never have incomplete 5454 // type. In addition, EmitTentativeDefinition makes sure that we 5455 // never attempt to emit a tentative definition if a real one 5456 // exists. A use may still exists, however, so we still may need 5457 // to do a RAUW. 5458 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5459 Init = EmitNullConstant(D->getType()); 5460 } else { 5461 initializedGlobalDecl = GlobalDecl(D); 5462 emitter.emplace(*this); 5463 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5464 if (!Initializer) { 5465 QualType T = InitExpr->getType(); 5466 if (D->getType()->isReferenceType()) 5467 T = D->getType(); 5468 5469 if (getLangOpts().CPlusPlus) { 5470 if (InitDecl->hasFlexibleArrayInit(getContext())) 5471 ErrorUnsupported(D, "flexible array initializer"); 5472 Init = EmitNullConstant(T); 5473 5474 if (!IsDefinitionAvailableExternally) 5475 NeedsGlobalCtor = true; 5476 } else { 5477 ErrorUnsupported(D, "static initializer"); 5478 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5479 } 5480 } else { 5481 Init = Initializer; 5482 // We don't need an initializer, so remove the entry for the delayed 5483 // initializer position (just in case this entry was delayed) if we 5484 // also don't need to register a destructor. 5485 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5486 DelayedCXXInitPosition.erase(D); 5487 5488 #ifndef NDEBUG 5489 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5490 InitDecl->getFlexibleArrayInitChars(getContext()); 5491 CharUnits CstSize = CharUnits::fromQuantity( 5492 getDataLayout().getTypeAllocSize(Init->getType())); 5493 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5494 #endif 5495 } 5496 } 5497 5498 llvm::Type* InitType = Init->getType(); 5499 llvm::Constant *Entry = 5500 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5501 5502 // Strip off pointer casts if we got them. 5503 Entry = Entry->stripPointerCasts(); 5504 5505 // Entry is now either a Function or GlobalVariable. 5506 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5507 5508 // We have a definition after a declaration with the wrong type. 5509 // We must make a new GlobalVariable* and update everything that used OldGV 5510 // (a declaration or tentative definition) with the new GlobalVariable* 5511 // (which will be a definition). 5512 // 5513 // This happens if there is a prototype for a global (e.g. 5514 // "extern int x[];") and then a definition of a different type (e.g. 5515 // "int x[10];"). This also happens when an initializer has a different type 5516 // from the type of the global (this happens with unions). 5517 if (!GV || GV->getValueType() != InitType || 5518 GV->getType()->getAddressSpace() != 5519 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5520 5521 // Move the old entry aside so that we'll create a new one. 5522 Entry->setName(StringRef()); 5523 5524 // Make a new global with the correct type, this is now guaranteed to work. 5525 GV = cast<llvm::GlobalVariable>( 5526 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5527 ->stripPointerCasts()); 5528 5529 // Replace all uses of the old global with the new global 5530 llvm::Constant *NewPtrForOldDecl = 5531 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5532 Entry->getType()); 5533 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5534 5535 // Erase the old global, since it is no longer used. 5536 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5537 } 5538 5539 MaybeHandleStaticInExternC(D, GV); 5540 5541 if (D->hasAttr<AnnotateAttr>()) 5542 AddGlobalAnnotations(D, GV); 5543 5544 // Set the llvm linkage type as appropriate. 5545 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5546 5547 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5548 // the device. [...]" 5549 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5550 // __device__, declares a variable that: [...] 5551 // Is accessible from all the threads within the grid and from the host 5552 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5553 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5554 if (LangOpts.CUDA) { 5555 if (LangOpts.CUDAIsDevice) { 5556 if (Linkage != llvm::GlobalValue::InternalLinkage && 5557 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5558 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5559 D->getType()->isCUDADeviceBuiltinTextureType())) 5560 GV->setExternallyInitialized(true); 5561 } else { 5562 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5563 } 5564 getCUDARuntime().handleVarRegistration(D, *GV); 5565 } 5566 5567 GV->setInitializer(Init); 5568 if (emitter) 5569 emitter->finalize(GV); 5570 5571 // If it is safe to mark the global 'constant', do so now. 5572 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5573 D->getType().isConstantStorage(getContext(), true, true)); 5574 5575 // If it is in a read-only section, mark it 'constant'. 5576 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5577 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5578 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5579 GV->setConstant(true); 5580 } 5581 5582 CharUnits AlignVal = getContext().getDeclAlign(D); 5583 // Check for alignment specifed in an 'omp allocate' directive. 5584 if (std::optional<CharUnits> AlignValFromAllocate = 5585 getOMPAllocateAlignment(D)) 5586 AlignVal = *AlignValFromAllocate; 5587 GV->setAlignment(AlignVal.getAsAlign()); 5588 5589 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5590 // function is only defined alongside the variable, not also alongside 5591 // callers. Normally, all accesses to a thread_local go through the 5592 // thread-wrapper in order to ensure initialization has occurred, underlying 5593 // variable will never be used other than the thread-wrapper, so it can be 5594 // converted to internal linkage. 5595 // 5596 // However, if the variable has the 'constinit' attribute, it _can_ be 5597 // referenced directly, without calling the thread-wrapper, so the linkage 5598 // must not be changed. 5599 // 5600 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5601 // weak or linkonce, the de-duplication semantics are important to preserve, 5602 // so we don't change the linkage. 5603 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5604 Linkage == llvm::GlobalValue::ExternalLinkage && 5605 Context.getTargetInfo().getTriple().isOSDarwin() && 5606 !D->hasAttr<ConstInitAttr>()) 5607 Linkage = llvm::GlobalValue::InternalLinkage; 5608 5609 GV->setLinkage(Linkage); 5610 if (D->hasAttr<DLLImportAttr>()) 5611 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5612 else if (D->hasAttr<DLLExportAttr>()) 5613 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5614 else 5615 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5616 5617 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5618 // common vars aren't constant even if declared const. 5619 GV->setConstant(false); 5620 // Tentative definition of global variables may be initialized with 5621 // non-zero null pointers. In this case they should have weak linkage 5622 // since common linkage must have zero initializer and must not have 5623 // explicit section therefore cannot have non-zero initial value. 5624 if (!GV->getInitializer()->isNullValue()) 5625 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5626 } 5627 5628 setNonAliasAttributes(D, GV); 5629 5630 if (D->getTLSKind() && !GV->isThreadLocal()) { 5631 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5632 CXXThreadLocals.push_back(D); 5633 setTLSMode(GV, *D); 5634 } 5635 5636 maybeSetTrivialComdat(*D, *GV); 5637 5638 // Emit the initializer function if necessary. 5639 if (NeedsGlobalCtor || NeedsGlobalDtor) 5640 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5641 5642 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5643 5644 // Emit global variable debug information. 5645 if (CGDebugInfo *DI = getModuleDebugInfo()) 5646 if (getCodeGenOpts().hasReducedDebugInfo()) 5647 DI->EmitGlobalVariable(GV, D); 5648 } 5649 5650 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5651 if (CGDebugInfo *DI = getModuleDebugInfo()) 5652 if (getCodeGenOpts().hasReducedDebugInfo()) { 5653 QualType ASTTy = D->getType(); 5654 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5655 llvm::Constant *GV = 5656 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5657 DI->EmitExternalVariable( 5658 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5659 } 5660 } 5661 5662 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5663 if (CGDebugInfo *DI = getModuleDebugInfo()) 5664 if (getCodeGenOpts().hasReducedDebugInfo()) { 5665 auto *Ty = getTypes().ConvertType(FD->getType()); 5666 StringRef MangledName = getMangledName(FD); 5667 auto *Fn = dyn_cast<llvm::Function>( 5668 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5669 if (!Fn->getSubprogram()) 5670 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5671 } 5672 } 5673 5674 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5675 CodeGenModule &CGM, const VarDecl *D, 5676 bool NoCommon) { 5677 // Don't give variables common linkage if -fno-common was specified unless it 5678 // was overridden by a NoCommon attribute. 5679 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5680 return true; 5681 5682 // C11 6.9.2/2: 5683 // A declaration of an identifier for an object that has file scope without 5684 // an initializer, and without a storage-class specifier or with the 5685 // storage-class specifier static, constitutes a tentative definition. 5686 if (D->getInit() || D->hasExternalStorage()) 5687 return true; 5688 5689 // A variable cannot be both common and exist in a section. 5690 if (D->hasAttr<SectionAttr>()) 5691 return true; 5692 5693 // A variable cannot be both common and exist in a section. 5694 // We don't try to determine which is the right section in the front-end. 5695 // If no specialized section name is applicable, it will resort to default. 5696 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5697 D->hasAttr<PragmaClangDataSectionAttr>() || 5698 D->hasAttr<PragmaClangRelroSectionAttr>() || 5699 D->hasAttr<PragmaClangRodataSectionAttr>()) 5700 return true; 5701 5702 // Thread local vars aren't considered common linkage. 5703 if (D->getTLSKind()) 5704 return true; 5705 5706 // Tentative definitions marked with WeakImportAttr are true definitions. 5707 if (D->hasAttr<WeakImportAttr>()) 5708 return true; 5709 5710 // A variable cannot be both common and exist in a comdat. 5711 if (shouldBeInCOMDAT(CGM, *D)) 5712 return true; 5713 5714 // Declarations with a required alignment do not have common linkage in MSVC 5715 // mode. 5716 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5717 if (D->hasAttr<AlignedAttr>()) 5718 return true; 5719 QualType VarType = D->getType(); 5720 if (Context.isAlignmentRequired(VarType)) 5721 return true; 5722 5723 if (const auto *RT = VarType->getAs<RecordType>()) { 5724 const RecordDecl *RD = RT->getDecl(); 5725 for (const FieldDecl *FD : RD->fields()) { 5726 if (FD->isBitField()) 5727 continue; 5728 if (FD->hasAttr<AlignedAttr>()) 5729 return true; 5730 if (Context.isAlignmentRequired(FD->getType())) 5731 return true; 5732 } 5733 } 5734 } 5735 5736 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5737 // common symbols, so symbols with greater alignment requirements cannot be 5738 // common. 5739 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5740 // alignments for common symbols via the aligncomm directive, so this 5741 // restriction only applies to MSVC environments. 5742 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5743 Context.getTypeAlignIfKnown(D->getType()) > 5744 Context.toBits(CharUnits::fromQuantity(32))) 5745 return true; 5746 5747 return false; 5748 } 5749 5750 llvm::GlobalValue::LinkageTypes 5751 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5752 GVALinkage Linkage) { 5753 if (Linkage == GVA_Internal) 5754 return llvm::Function::InternalLinkage; 5755 5756 if (D->hasAttr<WeakAttr>()) 5757 return llvm::GlobalVariable::WeakAnyLinkage; 5758 5759 if (const auto *FD = D->getAsFunction()) 5760 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5761 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5762 5763 // We are guaranteed to have a strong definition somewhere else, 5764 // so we can use available_externally linkage. 5765 if (Linkage == GVA_AvailableExternally) 5766 return llvm::GlobalValue::AvailableExternallyLinkage; 5767 5768 // Note that Apple's kernel linker doesn't support symbol 5769 // coalescing, so we need to avoid linkonce and weak linkages there. 5770 // Normally, this means we just map to internal, but for explicit 5771 // instantiations we'll map to external. 5772 5773 // In C++, the compiler has to emit a definition in every translation unit 5774 // that references the function. We should use linkonce_odr because 5775 // a) if all references in this translation unit are optimized away, we 5776 // don't need to codegen it. b) if the function persists, it needs to be 5777 // merged with other definitions. c) C++ has the ODR, so we know the 5778 // definition is dependable. 5779 if (Linkage == GVA_DiscardableODR) 5780 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5781 : llvm::Function::InternalLinkage; 5782 5783 // An explicit instantiation of a template has weak linkage, since 5784 // explicit instantiations can occur in multiple translation units 5785 // and must all be equivalent. However, we are not allowed to 5786 // throw away these explicit instantiations. 5787 // 5788 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5789 // so say that CUDA templates are either external (for kernels) or internal. 5790 // This lets llvm perform aggressive inter-procedural optimizations. For 5791 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5792 // therefore we need to follow the normal linkage paradigm. 5793 if (Linkage == GVA_StrongODR) { 5794 if (getLangOpts().AppleKext) 5795 return llvm::Function::ExternalLinkage; 5796 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5797 !getLangOpts().GPURelocatableDeviceCode) 5798 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5799 : llvm::Function::InternalLinkage; 5800 return llvm::Function::WeakODRLinkage; 5801 } 5802 5803 // C++ doesn't have tentative definitions and thus cannot have common 5804 // linkage. 5805 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5806 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5807 CodeGenOpts.NoCommon)) 5808 return llvm::GlobalVariable::CommonLinkage; 5809 5810 // selectany symbols are externally visible, so use weak instead of 5811 // linkonce. MSVC optimizes away references to const selectany globals, so 5812 // all definitions should be the same and ODR linkage should be used. 5813 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5814 if (D->hasAttr<SelectAnyAttr>()) 5815 return llvm::GlobalVariable::WeakODRLinkage; 5816 5817 // Otherwise, we have strong external linkage. 5818 assert(Linkage == GVA_StrongExternal); 5819 return llvm::GlobalVariable::ExternalLinkage; 5820 } 5821 5822 llvm::GlobalValue::LinkageTypes 5823 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5824 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5825 return getLLVMLinkageForDeclarator(VD, Linkage); 5826 } 5827 5828 /// Replace the uses of a function that was declared with a non-proto type. 5829 /// We want to silently drop extra arguments from call sites 5830 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5831 llvm::Function *newFn) { 5832 // Fast path. 5833 if (old->use_empty()) 5834 return; 5835 5836 llvm::Type *newRetTy = newFn->getReturnType(); 5837 SmallVector<llvm::Value *, 4> newArgs; 5838 5839 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5840 5841 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5842 ui != ue; ui++) { 5843 llvm::User *user = ui->getUser(); 5844 5845 // Recognize and replace uses of bitcasts. Most calls to 5846 // unprototyped functions will use bitcasts. 5847 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5848 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5849 replaceUsesOfNonProtoConstant(bitcast, newFn); 5850 continue; 5851 } 5852 5853 // Recognize calls to the function. 5854 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5855 if (!callSite) 5856 continue; 5857 if (!callSite->isCallee(&*ui)) 5858 continue; 5859 5860 // If the return types don't match exactly, then we can't 5861 // transform this call unless it's dead. 5862 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5863 continue; 5864 5865 // Get the call site's attribute list. 5866 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5867 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5868 5869 // If the function was passed too few arguments, don't transform. 5870 unsigned newNumArgs = newFn->arg_size(); 5871 if (callSite->arg_size() < newNumArgs) 5872 continue; 5873 5874 // If extra arguments were passed, we silently drop them. 5875 // If any of the types mismatch, we don't transform. 5876 unsigned argNo = 0; 5877 bool dontTransform = false; 5878 for (llvm::Argument &A : newFn->args()) { 5879 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5880 dontTransform = true; 5881 break; 5882 } 5883 5884 // Add any parameter attributes. 5885 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5886 argNo++; 5887 } 5888 if (dontTransform) 5889 continue; 5890 5891 // Okay, we can transform this. Create the new call instruction and copy 5892 // over the required information. 5893 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5894 5895 // Copy over any operand bundles. 5896 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5897 callSite->getOperandBundlesAsDefs(newBundles); 5898 5899 llvm::CallBase *newCall; 5900 if (isa<llvm::CallInst>(callSite)) { 5901 newCall = 5902 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5903 } else { 5904 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5905 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5906 oldInvoke->getUnwindDest(), newArgs, 5907 newBundles, "", callSite); 5908 } 5909 newArgs.clear(); // for the next iteration 5910 5911 if (!newCall->getType()->isVoidTy()) 5912 newCall->takeName(callSite); 5913 newCall->setAttributes( 5914 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5915 oldAttrs.getRetAttrs(), newArgAttrs)); 5916 newCall->setCallingConv(callSite->getCallingConv()); 5917 5918 // Finally, remove the old call, replacing any uses with the new one. 5919 if (!callSite->use_empty()) 5920 callSite->replaceAllUsesWith(newCall); 5921 5922 // Copy debug location attached to CI. 5923 if (callSite->getDebugLoc()) 5924 newCall->setDebugLoc(callSite->getDebugLoc()); 5925 5926 callSitesToBeRemovedFromParent.push_back(callSite); 5927 } 5928 5929 for (auto *callSite : callSitesToBeRemovedFromParent) { 5930 callSite->eraseFromParent(); 5931 } 5932 } 5933 5934 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5935 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5936 /// existing call uses of the old function in the module, this adjusts them to 5937 /// call the new function directly. 5938 /// 5939 /// This is not just a cleanup: the always_inline pass requires direct calls to 5940 /// functions to be able to inline them. If there is a bitcast in the way, it 5941 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5942 /// run at -O0. 5943 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5944 llvm::Function *NewFn) { 5945 // If we're redefining a global as a function, don't transform it. 5946 if (!isa<llvm::Function>(Old)) return; 5947 5948 replaceUsesOfNonProtoConstant(Old, NewFn); 5949 } 5950 5951 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5952 auto DK = VD->isThisDeclarationADefinition(); 5953 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 5954 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 5955 return; 5956 5957 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5958 // If we have a definition, this might be a deferred decl. If the 5959 // instantiation is explicit, make sure we emit it at the end. 5960 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5961 GetAddrOfGlobalVar(VD); 5962 5963 EmitTopLevelDecl(VD); 5964 } 5965 5966 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5967 llvm::GlobalValue *GV) { 5968 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5969 5970 // Compute the function info and LLVM type. 5971 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5972 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5973 5974 // Get or create the prototype for the function. 5975 if (!GV || (GV->getValueType() != Ty)) 5976 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5977 /*DontDefer=*/true, 5978 ForDefinition)); 5979 5980 // Already emitted. 5981 if (!GV->isDeclaration()) 5982 return; 5983 5984 // We need to set linkage and visibility on the function before 5985 // generating code for it because various parts of IR generation 5986 // want to propagate this information down (e.g. to local static 5987 // declarations). 5988 auto *Fn = cast<llvm::Function>(GV); 5989 setFunctionLinkage(GD, Fn); 5990 5991 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5992 setGVProperties(Fn, GD); 5993 5994 MaybeHandleStaticInExternC(D, Fn); 5995 5996 maybeSetTrivialComdat(*D, *Fn); 5997 5998 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5999 6000 setNonAliasAttributes(GD, Fn); 6001 SetLLVMFunctionAttributesForDefinition(D, Fn); 6002 6003 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6004 AddGlobalCtor(Fn, CA->getPriority()); 6005 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6006 AddGlobalDtor(Fn, DA->getPriority(), true); 6007 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6008 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6009 } 6010 6011 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6012 const auto *D = cast<ValueDecl>(GD.getDecl()); 6013 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6014 assert(AA && "Not an alias?"); 6015 6016 StringRef MangledName = getMangledName(GD); 6017 6018 if (AA->getAliasee() == MangledName) { 6019 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6020 return; 6021 } 6022 6023 // If there is a definition in the module, then it wins over the alias. 6024 // This is dubious, but allow it to be safe. Just ignore the alias. 6025 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6026 if (Entry && !Entry->isDeclaration()) 6027 return; 6028 6029 Aliases.push_back(GD); 6030 6031 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6032 6033 // Create a reference to the named value. This ensures that it is emitted 6034 // if a deferred decl. 6035 llvm::Constant *Aliasee; 6036 llvm::GlobalValue::LinkageTypes LT; 6037 if (isa<llvm::FunctionType>(DeclTy)) { 6038 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6039 /*ForVTable=*/false); 6040 LT = getFunctionLinkage(GD); 6041 } else { 6042 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6043 /*D=*/nullptr); 6044 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6045 LT = getLLVMLinkageVarDefinition(VD); 6046 else 6047 LT = getFunctionLinkage(GD); 6048 } 6049 6050 // Create the new alias itself, but don't set a name yet. 6051 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6052 auto *GA = 6053 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6054 6055 if (Entry) { 6056 if (GA->getAliasee() == Entry) { 6057 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6058 return; 6059 } 6060 6061 assert(Entry->isDeclaration()); 6062 6063 // If there is a declaration in the module, then we had an extern followed 6064 // by the alias, as in: 6065 // extern int test6(); 6066 // ... 6067 // int test6() __attribute__((alias("test7"))); 6068 // 6069 // Remove it and replace uses of it with the alias. 6070 GA->takeName(Entry); 6071 6072 Entry->replaceAllUsesWith(GA); 6073 Entry->eraseFromParent(); 6074 } else { 6075 GA->setName(MangledName); 6076 } 6077 6078 // Set attributes which are particular to an alias; this is a 6079 // specialization of the attributes which may be set on a global 6080 // variable/function. 6081 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6082 D->isWeakImported()) { 6083 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6084 } 6085 6086 if (const auto *VD = dyn_cast<VarDecl>(D)) 6087 if (VD->getTLSKind()) 6088 setTLSMode(GA, *VD); 6089 6090 SetCommonAttributes(GD, GA); 6091 6092 // Emit global alias debug information. 6093 if (isa<VarDecl>(D)) 6094 if (CGDebugInfo *DI = getModuleDebugInfo()) 6095 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6096 } 6097 6098 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6099 const auto *D = cast<ValueDecl>(GD.getDecl()); 6100 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6101 assert(IFA && "Not an ifunc?"); 6102 6103 StringRef MangledName = getMangledName(GD); 6104 6105 if (IFA->getResolver() == MangledName) { 6106 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6107 return; 6108 } 6109 6110 // Report an error if some definition overrides ifunc. 6111 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6112 if (Entry && !Entry->isDeclaration()) { 6113 GlobalDecl OtherGD; 6114 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6115 DiagnosedConflictingDefinitions.insert(GD).second) { 6116 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6117 << MangledName; 6118 Diags.Report(OtherGD.getDecl()->getLocation(), 6119 diag::note_previous_definition); 6120 } 6121 return; 6122 } 6123 6124 Aliases.push_back(GD); 6125 6126 // The resolver might not be visited yet. Specify a dummy non-function type to 6127 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6128 // was emitted) or the whole function will be replaced (if the resolver has 6129 // not been emitted). 6130 llvm::Constant *Resolver = 6131 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6132 /*ForVTable=*/false); 6133 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6134 llvm::GlobalIFunc *GIF = 6135 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6136 "", Resolver, &getModule()); 6137 if (Entry) { 6138 if (GIF->getResolver() == Entry) { 6139 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6140 return; 6141 } 6142 assert(Entry->isDeclaration()); 6143 6144 // If there is a declaration in the module, then we had an extern followed 6145 // by the ifunc, as in: 6146 // extern int test(); 6147 // ... 6148 // int test() __attribute__((ifunc("resolver"))); 6149 // 6150 // Remove it and replace uses of it with the ifunc. 6151 GIF->takeName(Entry); 6152 6153 Entry->replaceAllUsesWith(GIF); 6154 Entry->eraseFromParent(); 6155 } else 6156 GIF->setName(MangledName); 6157 SetCommonAttributes(GD, GIF); 6158 } 6159 6160 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6161 ArrayRef<llvm::Type*> Tys) { 6162 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6163 Tys); 6164 } 6165 6166 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6167 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6168 const StringLiteral *Literal, bool TargetIsLSB, 6169 bool &IsUTF16, unsigned &StringLength) { 6170 StringRef String = Literal->getString(); 6171 unsigned NumBytes = String.size(); 6172 6173 // Check for simple case. 6174 if (!Literal->containsNonAsciiOrNull()) { 6175 StringLength = NumBytes; 6176 return *Map.insert(std::make_pair(String, nullptr)).first; 6177 } 6178 6179 // Otherwise, convert the UTF8 literals into a string of shorts. 6180 IsUTF16 = true; 6181 6182 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6183 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6184 llvm::UTF16 *ToPtr = &ToBuf[0]; 6185 6186 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6187 ToPtr + NumBytes, llvm::strictConversion); 6188 6189 // ConvertUTF8toUTF16 returns the length in ToPtr. 6190 StringLength = ToPtr - &ToBuf[0]; 6191 6192 // Add an explicit null. 6193 *ToPtr = 0; 6194 return *Map.insert(std::make_pair( 6195 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6196 (StringLength + 1) * 2), 6197 nullptr)).first; 6198 } 6199 6200 ConstantAddress 6201 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6202 unsigned StringLength = 0; 6203 bool isUTF16 = false; 6204 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6205 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6206 getDataLayout().isLittleEndian(), isUTF16, 6207 StringLength); 6208 6209 if (auto *C = Entry.second) 6210 return ConstantAddress( 6211 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6212 6213 const ASTContext &Context = getContext(); 6214 const llvm::Triple &Triple = getTriple(); 6215 6216 const auto CFRuntime = getLangOpts().CFRuntime; 6217 const bool IsSwiftABI = 6218 static_cast<unsigned>(CFRuntime) >= 6219 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6220 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6221 6222 // If we don't already have it, get __CFConstantStringClassReference. 6223 if (!CFConstantStringClassRef) { 6224 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6225 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6226 Ty = llvm::ArrayType::get(Ty, 0); 6227 6228 switch (CFRuntime) { 6229 default: break; 6230 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6231 case LangOptions::CoreFoundationABI::Swift5_0: 6232 CFConstantStringClassName = 6233 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6234 : "$s10Foundation19_NSCFConstantStringCN"; 6235 Ty = IntPtrTy; 6236 break; 6237 case LangOptions::CoreFoundationABI::Swift4_2: 6238 CFConstantStringClassName = 6239 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6240 : "$S10Foundation19_NSCFConstantStringCN"; 6241 Ty = IntPtrTy; 6242 break; 6243 case LangOptions::CoreFoundationABI::Swift4_1: 6244 CFConstantStringClassName = 6245 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6246 : "__T010Foundation19_NSCFConstantStringCN"; 6247 Ty = IntPtrTy; 6248 break; 6249 } 6250 6251 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6252 6253 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6254 llvm::GlobalValue *GV = nullptr; 6255 6256 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6257 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6258 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6259 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6260 6261 const VarDecl *VD = nullptr; 6262 for (const auto *Result : DC->lookup(&II)) 6263 if ((VD = dyn_cast<VarDecl>(Result))) 6264 break; 6265 6266 if (Triple.isOSBinFormatELF()) { 6267 if (!VD) 6268 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6269 } else { 6270 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6271 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6272 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6273 else 6274 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6275 } 6276 6277 setDSOLocal(GV); 6278 } 6279 } 6280 6281 // Decay array -> ptr 6282 CFConstantStringClassRef = 6283 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6284 } 6285 6286 QualType CFTy = Context.getCFConstantStringType(); 6287 6288 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6289 6290 ConstantInitBuilder Builder(*this); 6291 auto Fields = Builder.beginStruct(STy); 6292 6293 // Class pointer. 6294 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6295 6296 // Flags. 6297 if (IsSwiftABI) { 6298 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6299 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6300 } else { 6301 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6302 } 6303 6304 // String pointer. 6305 llvm::Constant *C = nullptr; 6306 if (isUTF16) { 6307 auto Arr = llvm::ArrayRef( 6308 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6309 Entry.first().size() / 2); 6310 C = llvm::ConstantDataArray::get(VMContext, Arr); 6311 } else { 6312 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6313 } 6314 6315 // Note: -fwritable-strings doesn't make the backing store strings of 6316 // CFStrings writable. 6317 auto *GV = 6318 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6319 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6320 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6321 // Don't enforce the target's minimum global alignment, since the only use 6322 // of the string is via this class initializer. 6323 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6324 : Context.getTypeAlignInChars(Context.CharTy); 6325 GV->setAlignment(Align.getAsAlign()); 6326 6327 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6328 // Without it LLVM can merge the string with a non unnamed_addr one during 6329 // LTO. Doing that changes the section it ends in, which surprises ld64. 6330 if (Triple.isOSBinFormatMachO()) 6331 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6332 : "__TEXT,__cstring,cstring_literals"); 6333 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6334 // the static linker to adjust permissions to read-only later on. 6335 else if (Triple.isOSBinFormatELF()) 6336 GV->setSection(".rodata"); 6337 6338 // String. 6339 Fields.add(GV); 6340 6341 // String length. 6342 llvm::IntegerType *LengthTy = 6343 llvm::IntegerType::get(getModule().getContext(), 6344 Context.getTargetInfo().getLongWidth()); 6345 if (IsSwiftABI) { 6346 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6347 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6348 LengthTy = Int32Ty; 6349 else 6350 LengthTy = IntPtrTy; 6351 } 6352 Fields.addInt(LengthTy, StringLength); 6353 6354 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6355 // properly aligned on 32-bit platforms. 6356 CharUnits Alignment = 6357 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6358 6359 // The struct. 6360 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6361 /*isConstant=*/false, 6362 llvm::GlobalVariable::PrivateLinkage); 6363 GV->addAttribute("objc_arc_inert"); 6364 switch (Triple.getObjectFormat()) { 6365 case llvm::Triple::UnknownObjectFormat: 6366 llvm_unreachable("unknown file format"); 6367 case llvm::Triple::DXContainer: 6368 case llvm::Triple::GOFF: 6369 case llvm::Triple::SPIRV: 6370 case llvm::Triple::XCOFF: 6371 llvm_unreachable("unimplemented"); 6372 case llvm::Triple::COFF: 6373 case llvm::Triple::ELF: 6374 case llvm::Triple::Wasm: 6375 GV->setSection("cfstring"); 6376 break; 6377 case llvm::Triple::MachO: 6378 GV->setSection("__DATA,__cfstring"); 6379 break; 6380 } 6381 Entry.second = GV; 6382 6383 return ConstantAddress(GV, GV->getValueType(), Alignment); 6384 } 6385 6386 bool CodeGenModule::getExpressionLocationsEnabled() const { 6387 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6388 } 6389 6390 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6391 if (ObjCFastEnumerationStateType.isNull()) { 6392 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6393 D->startDefinition(); 6394 6395 QualType FieldTypes[] = { 6396 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6397 Context.getPointerType(Context.UnsignedLongTy), 6398 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6399 nullptr, ArraySizeModifier::Normal, 0)}; 6400 6401 for (size_t i = 0; i < 4; ++i) { 6402 FieldDecl *Field = FieldDecl::Create(Context, 6403 D, 6404 SourceLocation(), 6405 SourceLocation(), nullptr, 6406 FieldTypes[i], /*TInfo=*/nullptr, 6407 /*BitWidth=*/nullptr, 6408 /*Mutable=*/false, 6409 ICIS_NoInit); 6410 Field->setAccess(AS_public); 6411 D->addDecl(Field); 6412 } 6413 6414 D->completeDefinition(); 6415 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6416 } 6417 6418 return ObjCFastEnumerationStateType; 6419 } 6420 6421 llvm::Constant * 6422 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6423 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6424 6425 // Don't emit it as the address of the string, emit the string data itself 6426 // as an inline array. 6427 if (E->getCharByteWidth() == 1) { 6428 SmallString<64> Str(E->getString()); 6429 6430 // Resize the string to the right size, which is indicated by its type. 6431 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6432 assert(CAT && "String literal not of constant array type!"); 6433 Str.resize(CAT->getZExtSize()); 6434 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6435 } 6436 6437 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6438 llvm::Type *ElemTy = AType->getElementType(); 6439 unsigned NumElements = AType->getNumElements(); 6440 6441 // Wide strings have either 2-byte or 4-byte elements. 6442 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6443 SmallVector<uint16_t, 32> Elements; 6444 Elements.reserve(NumElements); 6445 6446 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6447 Elements.push_back(E->getCodeUnit(i)); 6448 Elements.resize(NumElements); 6449 return llvm::ConstantDataArray::get(VMContext, Elements); 6450 } 6451 6452 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6453 SmallVector<uint32_t, 32> Elements; 6454 Elements.reserve(NumElements); 6455 6456 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6457 Elements.push_back(E->getCodeUnit(i)); 6458 Elements.resize(NumElements); 6459 return llvm::ConstantDataArray::get(VMContext, Elements); 6460 } 6461 6462 static llvm::GlobalVariable * 6463 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6464 CodeGenModule &CGM, StringRef GlobalName, 6465 CharUnits Alignment) { 6466 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6467 CGM.GetGlobalConstantAddressSpace()); 6468 6469 llvm::Module &M = CGM.getModule(); 6470 // Create a global variable for this string 6471 auto *GV = new llvm::GlobalVariable( 6472 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6473 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6474 GV->setAlignment(Alignment.getAsAlign()); 6475 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6476 if (GV->isWeakForLinker()) { 6477 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6478 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6479 } 6480 CGM.setDSOLocal(GV); 6481 6482 return GV; 6483 } 6484 6485 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6486 /// constant array for the given string literal. 6487 ConstantAddress 6488 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6489 StringRef Name) { 6490 CharUnits Alignment = 6491 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6492 6493 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6494 llvm::GlobalVariable **Entry = nullptr; 6495 if (!LangOpts.WritableStrings) { 6496 Entry = &ConstantStringMap[C]; 6497 if (auto GV = *Entry) { 6498 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6499 GV->setAlignment(Alignment.getAsAlign()); 6500 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6501 GV->getValueType(), Alignment); 6502 } 6503 } 6504 6505 SmallString<256> MangledNameBuffer; 6506 StringRef GlobalVariableName; 6507 llvm::GlobalValue::LinkageTypes LT; 6508 6509 // Mangle the string literal if that's how the ABI merges duplicate strings. 6510 // Don't do it if they are writable, since we don't want writes in one TU to 6511 // affect strings in another. 6512 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6513 !LangOpts.WritableStrings) { 6514 llvm::raw_svector_ostream Out(MangledNameBuffer); 6515 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6516 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6517 GlobalVariableName = MangledNameBuffer; 6518 } else { 6519 LT = llvm::GlobalValue::PrivateLinkage; 6520 GlobalVariableName = Name; 6521 } 6522 6523 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6524 6525 CGDebugInfo *DI = getModuleDebugInfo(); 6526 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6527 DI->AddStringLiteralDebugInfo(GV, S); 6528 6529 if (Entry) 6530 *Entry = GV; 6531 6532 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6533 6534 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6535 GV->getValueType(), Alignment); 6536 } 6537 6538 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6539 /// array for the given ObjCEncodeExpr node. 6540 ConstantAddress 6541 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6542 std::string Str; 6543 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6544 6545 return GetAddrOfConstantCString(Str); 6546 } 6547 6548 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6549 /// the literal and a terminating '\0' character. 6550 /// The result has pointer to array type. 6551 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6552 const std::string &Str, const char *GlobalName) { 6553 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6554 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6555 getContext().CharTy, /*VD=*/nullptr); 6556 6557 llvm::Constant *C = 6558 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6559 6560 // Don't share any string literals if strings aren't constant. 6561 llvm::GlobalVariable **Entry = nullptr; 6562 if (!LangOpts.WritableStrings) { 6563 Entry = &ConstantStringMap[C]; 6564 if (auto GV = *Entry) { 6565 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6566 GV->setAlignment(Alignment.getAsAlign()); 6567 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6568 GV->getValueType(), Alignment); 6569 } 6570 } 6571 6572 // Get the default prefix if a name wasn't specified. 6573 if (!GlobalName) 6574 GlobalName = ".str"; 6575 // Create a global variable for this. 6576 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6577 GlobalName, Alignment); 6578 if (Entry) 6579 *Entry = GV; 6580 6581 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6582 GV->getValueType(), Alignment); 6583 } 6584 6585 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6586 const MaterializeTemporaryExpr *E, const Expr *Init) { 6587 assert((E->getStorageDuration() == SD_Static || 6588 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6589 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6590 6591 // If we're not materializing a subobject of the temporary, keep the 6592 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6593 QualType MaterializedType = Init->getType(); 6594 if (Init == E->getSubExpr()) 6595 MaterializedType = E->getType(); 6596 6597 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6598 6599 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6600 if (!InsertResult.second) { 6601 // We've seen this before: either we already created it or we're in the 6602 // process of doing so. 6603 if (!InsertResult.first->second) { 6604 // We recursively re-entered this function, probably during emission of 6605 // the initializer. Create a placeholder. We'll clean this up in the 6606 // outer call, at the end of this function. 6607 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6608 InsertResult.first->second = new llvm::GlobalVariable( 6609 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6610 nullptr); 6611 } 6612 return ConstantAddress(InsertResult.first->second, 6613 llvm::cast<llvm::GlobalVariable>( 6614 InsertResult.first->second->stripPointerCasts()) 6615 ->getValueType(), 6616 Align); 6617 } 6618 6619 // FIXME: If an externally-visible declaration extends multiple temporaries, 6620 // we need to give each temporary the same name in every translation unit (and 6621 // we also need to make the temporaries externally-visible). 6622 SmallString<256> Name; 6623 llvm::raw_svector_ostream Out(Name); 6624 getCXXABI().getMangleContext().mangleReferenceTemporary( 6625 VD, E->getManglingNumber(), Out); 6626 6627 APValue *Value = nullptr; 6628 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6629 // If the initializer of the extending declaration is a constant 6630 // initializer, we should have a cached constant initializer for this 6631 // temporary. Note that this might have a different value from the value 6632 // computed by evaluating the initializer if the surrounding constant 6633 // expression modifies the temporary. 6634 Value = E->getOrCreateValue(false); 6635 } 6636 6637 // Try evaluating it now, it might have a constant initializer. 6638 Expr::EvalResult EvalResult; 6639 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6640 !EvalResult.hasSideEffects()) 6641 Value = &EvalResult.Val; 6642 6643 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6644 6645 std::optional<ConstantEmitter> emitter; 6646 llvm::Constant *InitialValue = nullptr; 6647 bool Constant = false; 6648 llvm::Type *Type; 6649 if (Value) { 6650 // The temporary has a constant initializer, use it. 6651 emitter.emplace(*this); 6652 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6653 MaterializedType); 6654 Constant = 6655 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6656 /*ExcludeDtor*/ false); 6657 Type = InitialValue->getType(); 6658 } else { 6659 // No initializer, the initialization will be provided when we 6660 // initialize the declaration which performed lifetime extension. 6661 Type = getTypes().ConvertTypeForMem(MaterializedType); 6662 } 6663 6664 // Create a global variable for this lifetime-extended temporary. 6665 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6666 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6667 const VarDecl *InitVD; 6668 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6669 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6670 // Temporaries defined inside a class get linkonce_odr linkage because the 6671 // class can be defined in multiple translation units. 6672 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6673 } else { 6674 // There is no need for this temporary to have external linkage if the 6675 // VarDecl has external linkage. 6676 Linkage = llvm::GlobalVariable::InternalLinkage; 6677 } 6678 } 6679 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6680 auto *GV = new llvm::GlobalVariable( 6681 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6682 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6683 if (emitter) emitter->finalize(GV); 6684 // Don't assign dllimport or dllexport to local linkage globals. 6685 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6686 setGVProperties(GV, VD); 6687 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6688 // The reference temporary should never be dllexport. 6689 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6690 } 6691 GV->setAlignment(Align.getAsAlign()); 6692 if (supportsCOMDAT() && GV->isWeakForLinker()) 6693 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6694 if (VD->getTLSKind()) 6695 setTLSMode(GV, *VD); 6696 llvm::Constant *CV = GV; 6697 if (AddrSpace != LangAS::Default) 6698 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6699 *this, GV, AddrSpace, LangAS::Default, 6700 llvm::PointerType::get( 6701 getLLVMContext(), 6702 getContext().getTargetAddressSpace(LangAS::Default))); 6703 6704 // Update the map with the new temporary. If we created a placeholder above, 6705 // replace it with the new global now. 6706 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6707 if (Entry) { 6708 Entry->replaceAllUsesWith(CV); 6709 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6710 } 6711 Entry = CV; 6712 6713 return ConstantAddress(CV, Type, Align); 6714 } 6715 6716 /// EmitObjCPropertyImplementations - Emit information for synthesized 6717 /// properties for an implementation. 6718 void CodeGenModule::EmitObjCPropertyImplementations(const 6719 ObjCImplementationDecl *D) { 6720 for (const auto *PID : D->property_impls()) { 6721 // Dynamic is just for type-checking. 6722 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6723 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6724 6725 // Determine which methods need to be implemented, some may have 6726 // been overridden. Note that ::isPropertyAccessor is not the method 6727 // we want, that just indicates if the decl came from a 6728 // property. What we want to know is if the method is defined in 6729 // this implementation. 6730 auto *Getter = PID->getGetterMethodDecl(); 6731 if (!Getter || Getter->isSynthesizedAccessorStub()) 6732 CodeGenFunction(*this).GenerateObjCGetter( 6733 const_cast<ObjCImplementationDecl *>(D), PID); 6734 auto *Setter = PID->getSetterMethodDecl(); 6735 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6736 CodeGenFunction(*this).GenerateObjCSetter( 6737 const_cast<ObjCImplementationDecl *>(D), PID); 6738 } 6739 } 6740 } 6741 6742 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6743 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6744 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6745 ivar; ivar = ivar->getNextIvar()) 6746 if (ivar->getType().isDestructedType()) 6747 return true; 6748 6749 return false; 6750 } 6751 6752 static bool AllTrivialInitializers(CodeGenModule &CGM, 6753 ObjCImplementationDecl *D) { 6754 CodeGenFunction CGF(CGM); 6755 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6756 E = D->init_end(); B != E; ++B) { 6757 CXXCtorInitializer *CtorInitExp = *B; 6758 Expr *Init = CtorInitExp->getInit(); 6759 if (!CGF.isTrivialInitializer(Init)) 6760 return false; 6761 } 6762 return true; 6763 } 6764 6765 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6766 /// for an implementation. 6767 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6768 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6769 if (needsDestructMethod(D)) { 6770 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6771 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6772 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6773 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6774 getContext().VoidTy, nullptr, D, 6775 /*isInstance=*/true, /*isVariadic=*/false, 6776 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6777 /*isImplicitlyDeclared=*/true, 6778 /*isDefined=*/false, ObjCImplementationControl::Required); 6779 D->addInstanceMethod(DTORMethod); 6780 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6781 D->setHasDestructors(true); 6782 } 6783 6784 // If the implementation doesn't have any ivar initializers, we don't need 6785 // a .cxx_construct. 6786 if (D->getNumIvarInitializers() == 0 || 6787 AllTrivialInitializers(*this, D)) 6788 return; 6789 6790 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6791 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6792 // The constructor returns 'self'. 6793 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6794 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6795 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6796 /*isVariadic=*/false, 6797 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6798 /*isImplicitlyDeclared=*/true, 6799 /*isDefined=*/false, ObjCImplementationControl::Required); 6800 D->addInstanceMethod(CTORMethod); 6801 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6802 D->setHasNonZeroConstructors(true); 6803 } 6804 6805 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6806 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6807 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6808 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6809 ErrorUnsupported(LSD, "linkage spec"); 6810 return; 6811 } 6812 6813 EmitDeclContext(LSD); 6814 } 6815 6816 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6817 // Device code should not be at top level. 6818 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6819 return; 6820 6821 std::unique_ptr<CodeGenFunction> &CurCGF = 6822 GlobalTopLevelStmtBlockInFlight.first; 6823 6824 // We emitted a top-level stmt but after it there is initialization. 6825 // Stop squashing the top-level stmts into a single function. 6826 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6827 CurCGF->FinishFunction(D->getEndLoc()); 6828 CurCGF = nullptr; 6829 } 6830 6831 if (!CurCGF) { 6832 // void __stmts__N(void) 6833 // FIXME: Ask the ABI name mangler to pick a name. 6834 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6835 FunctionArgList Args; 6836 QualType RetTy = getContext().VoidTy; 6837 const CGFunctionInfo &FnInfo = 6838 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6839 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6840 llvm::Function *Fn = llvm::Function::Create( 6841 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6842 6843 CurCGF.reset(new CodeGenFunction(*this)); 6844 GlobalTopLevelStmtBlockInFlight.second = D; 6845 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6846 D->getBeginLoc(), D->getBeginLoc()); 6847 CXXGlobalInits.push_back(Fn); 6848 } 6849 6850 CurCGF->EmitStmt(D->getStmt()); 6851 } 6852 6853 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6854 for (auto *I : DC->decls()) { 6855 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6856 // are themselves considered "top-level", so EmitTopLevelDecl on an 6857 // ObjCImplDecl does not recursively visit them. We need to do that in 6858 // case they're nested inside another construct (LinkageSpecDecl / 6859 // ExportDecl) that does stop them from being considered "top-level". 6860 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6861 for (auto *M : OID->methods()) 6862 EmitTopLevelDecl(M); 6863 } 6864 6865 EmitTopLevelDecl(I); 6866 } 6867 } 6868 6869 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6870 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6871 // Ignore dependent declarations. 6872 if (D->isTemplated()) 6873 return; 6874 6875 // Consteval function shouldn't be emitted. 6876 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6877 return; 6878 6879 switch (D->getKind()) { 6880 case Decl::CXXConversion: 6881 case Decl::CXXMethod: 6882 case Decl::Function: 6883 EmitGlobal(cast<FunctionDecl>(D)); 6884 // Always provide some coverage mapping 6885 // even for the functions that aren't emitted. 6886 AddDeferredUnusedCoverageMapping(D); 6887 break; 6888 6889 case Decl::CXXDeductionGuide: 6890 // Function-like, but does not result in code emission. 6891 break; 6892 6893 case Decl::Var: 6894 case Decl::Decomposition: 6895 case Decl::VarTemplateSpecialization: 6896 EmitGlobal(cast<VarDecl>(D)); 6897 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6898 for (auto *B : DD->bindings()) 6899 if (auto *HD = B->getHoldingVar()) 6900 EmitGlobal(HD); 6901 break; 6902 6903 // Indirect fields from global anonymous structs and unions can be 6904 // ignored; only the actual variable requires IR gen support. 6905 case Decl::IndirectField: 6906 break; 6907 6908 // C++ Decls 6909 case Decl::Namespace: 6910 EmitDeclContext(cast<NamespaceDecl>(D)); 6911 break; 6912 case Decl::ClassTemplateSpecialization: { 6913 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6914 if (CGDebugInfo *DI = getModuleDebugInfo()) 6915 if (Spec->getSpecializationKind() == 6916 TSK_ExplicitInstantiationDefinition && 6917 Spec->hasDefinition()) 6918 DI->completeTemplateDefinition(*Spec); 6919 } [[fallthrough]]; 6920 case Decl::CXXRecord: { 6921 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6922 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6923 if (CRD->hasDefinition()) 6924 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6925 if (auto *ES = D->getASTContext().getExternalSource()) 6926 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6927 DI->completeUnusedClass(*CRD); 6928 } 6929 // Emit any static data members, they may be definitions. 6930 for (auto *I : CRD->decls()) 6931 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6932 EmitTopLevelDecl(I); 6933 break; 6934 } 6935 // No code generation needed. 6936 case Decl::UsingShadow: 6937 case Decl::ClassTemplate: 6938 case Decl::VarTemplate: 6939 case Decl::Concept: 6940 case Decl::VarTemplatePartialSpecialization: 6941 case Decl::FunctionTemplate: 6942 case Decl::TypeAliasTemplate: 6943 case Decl::Block: 6944 case Decl::Empty: 6945 case Decl::Binding: 6946 break; 6947 case Decl::Using: // using X; [C++] 6948 if (CGDebugInfo *DI = getModuleDebugInfo()) 6949 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6950 break; 6951 case Decl::UsingEnum: // using enum X; [C++] 6952 if (CGDebugInfo *DI = getModuleDebugInfo()) 6953 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6954 break; 6955 case Decl::NamespaceAlias: 6956 if (CGDebugInfo *DI = getModuleDebugInfo()) 6957 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6958 break; 6959 case Decl::UsingDirective: // using namespace X; [C++] 6960 if (CGDebugInfo *DI = getModuleDebugInfo()) 6961 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6962 break; 6963 case Decl::CXXConstructor: 6964 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6965 break; 6966 case Decl::CXXDestructor: 6967 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6968 break; 6969 6970 case Decl::StaticAssert: 6971 // Nothing to do. 6972 break; 6973 6974 // Objective-C Decls 6975 6976 // Forward declarations, no (immediate) code generation. 6977 case Decl::ObjCInterface: 6978 case Decl::ObjCCategory: 6979 break; 6980 6981 case Decl::ObjCProtocol: { 6982 auto *Proto = cast<ObjCProtocolDecl>(D); 6983 if (Proto->isThisDeclarationADefinition()) 6984 ObjCRuntime->GenerateProtocol(Proto); 6985 break; 6986 } 6987 6988 case Decl::ObjCCategoryImpl: 6989 // Categories have properties but don't support synthesize so we 6990 // can ignore them here. 6991 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6992 break; 6993 6994 case Decl::ObjCImplementation: { 6995 auto *OMD = cast<ObjCImplementationDecl>(D); 6996 EmitObjCPropertyImplementations(OMD); 6997 EmitObjCIvarInitializations(OMD); 6998 ObjCRuntime->GenerateClass(OMD); 6999 // Emit global variable debug information. 7000 if (CGDebugInfo *DI = getModuleDebugInfo()) 7001 if (getCodeGenOpts().hasReducedDebugInfo()) 7002 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7003 OMD->getClassInterface()), OMD->getLocation()); 7004 break; 7005 } 7006 case Decl::ObjCMethod: { 7007 auto *OMD = cast<ObjCMethodDecl>(D); 7008 // If this is not a prototype, emit the body. 7009 if (OMD->getBody()) 7010 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7011 break; 7012 } 7013 case Decl::ObjCCompatibleAlias: 7014 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7015 break; 7016 7017 case Decl::PragmaComment: { 7018 const auto *PCD = cast<PragmaCommentDecl>(D); 7019 switch (PCD->getCommentKind()) { 7020 case PCK_Unknown: 7021 llvm_unreachable("unexpected pragma comment kind"); 7022 case PCK_Linker: 7023 AppendLinkerOptions(PCD->getArg()); 7024 break; 7025 case PCK_Lib: 7026 AddDependentLib(PCD->getArg()); 7027 break; 7028 case PCK_Compiler: 7029 case PCK_ExeStr: 7030 case PCK_User: 7031 break; // We ignore all of these. 7032 } 7033 break; 7034 } 7035 7036 case Decl::PragmaDetectMismatch: { 7037 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7038 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7039 break; 7040 } 7041 7042 case Decl::LinkageSpec: 7043 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7044 break; 7045 7046 case Decl::FileScopeAsm: { 7047 // File-scope asm is ignored during device-side CUDA compilation. 7048 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7049 break; 7050 // File-scope asm is ignored during device-side OpenMP compilation. 7051 if (LangOpts.OpenMPIsTargetDevice) 7052 break; 7053 // File-scope asm is ignored during device-side SYCL compilation. 7054 if (LangOpts.SYCLIsDevice) 7055 break; 7056 auto *AD = cast<FileScopeAsmDecl>(D); 7057 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7058 break; 7059 } 7060 7061 case Decl::TopLevelStmt: 7062 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7063 break; 7064 7065 case Decl::Import: { 7066 auto *Import = cast<ImportDecl>(D); 7067 7068 // If we've already imported this module, we're done. 7069 if (!ImportedModules.insert(Import->getImportedModule())) 7070 break; 7071 7072 // Emit debug information for direct imports. 7073 if (!Import->getImportedOwningModule()) { 7074 if (CGDebugInfo *DI = getModuleDebugInfo()) 7075 DI->EmitImportDecl(*Import); 7076 } 7077 7078 // For C++ standard modules we are done - we will call the module 7079 // initializer for imported modules, and that will likewise call those for 7080 // any imports it has. 7081 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7082 !Import->getImportedOwningModule()->isModuleMapModule()) 7083 break; 7084 7085 // For clang C++ module map modules the initializers for sub-modules are 7086 // emitted here. 7087 7088 // Find all of the submodules and emit the module initializers. 7089 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7090 SmallVector<clang::Module *, 16> Stack; 7091 Visited.insert(Import->getImportedModule()); 7092 Stack.push_back(Import->getImportedModule()); 7093 7094 while (!Stack.empty()) { 7095 clang::Module *Mod = Stack.pop_back_val(); 7096 if (!EmittedModuleInitializers.insert(Mod).second) 7097 continue; 7098 7099 for (auto *D : Context.getModuleInitializers(Mod)) 7100 EmitTopLevelDecl(D); 7101 7102 // Visit the submodules of this module. 7103 for (auto *Submodule : Mod->submodules()) { 7104 // Skip explicit children; they need to be explicitly imported to emit 7105 // the initializers. 7106 if (Submodule->IsExplicit) 7107 continue; 7108 7109 if (Visited.insert(Submodule).second) 7110 Stack.push_back(Submodule); 7111 } 7112 } 7113 break; 7114 } 7115 7116 case Decl::Export: 7117 EmitDeclContext(cast<ExportDecl>(D)); 7118 break; 7119 7120 case Decl::OMPThreadPrivate: 7121 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7122 break; 7123 7124 case Decl::OMPAllocate: 7125 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7126 break; 7127 7128 case Decl::OMPDeclareReduction: 7129 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7130 break; 7131 7132 case Decl::OMPDeclareMapper: 7133 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7134 break; 7135 7136 case Decl::OMPRequires: 7137 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7138 break; 7139 7140 case Decl::Typedef: 7141 case Decl::TypeAlias: // using foo = bar; [C++11] 7142 if (CGDebugInfo *DI = getModuleDebugInfo()) 7143 DI->EmitAndRetainType( 7144 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7145 break; 7146 7147 case Decl::Record: 7148 if (CGDebugInfo *DI = getModuleDebugInfo()) 7149 if (cast<RecordDecl>(D)->getDefinition()) 7150 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7151 break; 7152 7153 case Decl::Enum: 7154 if (CGDebugInfo *DI = getModuleDebugInfo()) 7155 if (cast<EnumDecl>(D)->getDefinition()) 7156 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7157 break; 7158 7159 case Decl::HLSLBuffer: 7160 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7161 break; 7162 7163 default: 7164 // Make sure we handled everything we should, every other kind is a 7165 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7166 // function. Need to recode Decl::Kind to do that easily. 7167 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7168 break; 7169 } 7170 } 7171 7172 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7173 // Do we need to generate coverage mapping? 7174 if (!CodeGenOpts.CoverageMapping) 7175 return; 7176 switch (D->getKind()) { 7177 case Decl::CXXConversion: 7178 case Decl::CXXMethod: 7179 case Decl::Function: 7180 case Decl::ObjCMethod: 7181 case Decl::CXXConstructor: 7182 case Decl::CXXDestructor: { 7183 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7184 break; 7185 SourceManager &SM = getContext().getSourceManager(); 7186 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7187 break; 7188 if (!llvm::coverage::SystemHeadersCoverage && 7189 SM.isInSystemHeader(D->getBeginLoc())) 7190 break; 7191 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7192 break; 7193 } 7194 default: 7195 break; 7196 }; 7197 } 7198 7199 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7200 // Do we need to generate coverage mapping? 7201 if (!CodeGenOpts.CoverageMapping) 7202 return; 7203 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7204 if (Fn->isTemplateInstantiation()) 7205 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7206 } 7207 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7208 } 7209 7210 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7211 // We call takeVector() here to avoid use-after-free. 7212 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7213 // we deserialize function bodies to emit coverage info for them, and that 7214 // deserializes more declarations. How should we handle that case? 7215 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7216 if (!Entry.second) 7217 continue; 7218 const Decl *D = Entry.first; 7219 switch (D->getKind()) { 7220 case Decl::CXXConversion: 7221 case Decl::CXXMethod: 7222 case Decl::Function: 7223 case Decl::ObjCMethod: { 7224 CodeGenPGO PGO(*this); 7225 GlobalDecl GD(cast<FunctionDecl>(D)); 7226 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7227 getFunctionLinkage(GD)); 7228 break; 7229 } 7230 case Decl::CXXConstructor: { 7231 CodeGenPGO PGO(*this); 7232 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7233 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7234 getFunctionLinkage(GD)); 7235 break; 7236 } 7237 case Decl::CXXDestructor: { 7238 CodeGenPGO PGO(*this); 7239 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7240 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7241 getFunctionLinkage(GD)); 7242 break; 7243 } 7244 default: 7245 break; 7246 }; 7247 } 7248 } 7249 7250 void CodeGenModule::EmitMainVoidAlias() { 7251 // In order to transition away from "__original_main" gracefully, emit an 7252 // alias for "main" in the no-argument case so that libc can detect when 7253 // new-style no-argument main is in used. 7254 if (llvm::Function *F = getModule().getFunction("main")) { 7255 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7256 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7257 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7258 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7259 } 7260 } 7261 } 7262 7263 /// Turns the given pointer into a constant. 7264 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7265 const void *Ptr) { 7266 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7267 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7268 return llvm::ConstantInt::get(i64, PtrInt); 7269 } 7270 7271 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7272 llvm::NamedMDNode *&GlobalMetadata, 7273 GlobalDecl D, 7274 llvm::GlobalValue *Addr) { 7275 if (!GlobalMetadata) 7276 GlobalMetadata = 7277 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7278 7279 // TODO: should we report variant information for ctors/dtors? 7280 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7281 llvm::ConstantAsMetadata::get(GetPointerConstant( 7282 CGM.getLLVMContext(), D.getDecl()))}; 7283 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7284 } 7285 7286 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7287 llvm::GlobalValue *CppFunc) { 7288 // Store the list of ifuncs we need to replace uses in. 7289 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7290 // List of ConstantExprs that we should be able to delete when we're done 7291 // here. 7292 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7293 7294 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7295 if (Elem == CppFunc) 7296 return false; 7297 7298 // First make sure that all users of this are ifuncs (or ifuncs via a 7299 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7300 // later. 7301 for (llvm::User *User : Elem->users()) { 7302 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7303 // ifunc directly. In any other case, just give up, as we don't know what we 7304 // could break by changing those. 7305 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7306 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7307 return false; 7308 7309 for (llvm::User *CEUser : ConstExpr->users()) { 7310 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7311 IFuncs.push_back(IFunc); 7312 } else { 7313 return false; 7314 } 7315 } 7316 CEs.push_back(ConstExpr); 7317 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7318 IFuncs.push_back(IFunc); 7319 } else { 7320 // This user is one we don't know how to handle, so fail redirection. This 7321 // will result in an ifunc retaining a resolver name that will ultimately 7322 // fail to be resolved to a defined function. 7323 return false; 7324 } 7325 } 7326 7327 // Now we know this is a valid case where we can do this alias replacement, we 7328 // need to remove all of the references to Elem (and the bitcasts!) so we can 7329 // delete it. 7330 for (llvm::GlobalIFunc *IFunc : IFuncs) 7331 IFunc->setResolver(nullptr); 7332 for (llvm::ConstantExpr *ConstExpr : CEs) 7333 ConstExpr->destroyConstant(); 7334 7335 // We should now be out of uses for the 'old' version of this function, so we 7336 // can erase it as well. 7337 Elem->eraseFromParent(); 7338 7339 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7340 // The type of the resolver is always just a function-type that returns the 7341 // type of the IFunc, so create that here. If the type of the actual 7342 // resolver doesn't match, it just gets bitcast to the right thing. 7343 auto *ResolverTy = 7344 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7345 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7346 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7347 IFunc->setResolver(Resolver); 7348 } 7349 return true; 7350 } 7351 7352 /// For each function which is declared within an extern "C" region and marked 7353 /// as 'used', but has internal linkage, create an alias from the unmangled 7354 /// name to the mangled name if possible. People expect to be able to refer 7355 /// to such functions with an unmangled name from inline assembly within the 7356 /// same translation unit. 7357 void CodeGenModule::EmitStaticExternCAliases() { 7358 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7359 return; 7360 for (auto &I : StaticExternCValues) { 7361 const IdentifierInfo *Name = I.first; 7362 llvm::GlobalValue *Val = I.second; 7363 7364 // If Val is null, that implies there were multiple declarations that each 7365 // had a claim to the unmangled name. In this case, generation of the alias 7366 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7367 if (!Val) 7368 break; 7369 7370 llvm::GlobalValue *ExistingElem = 7371 getModule().getNamedValue(Name->getName()); 7372 7373 // If there is either not something already by this name, or we were able to 7374 // replace all uses from IFuncs, create the alias. 7375 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7376 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7377 } 7378 } 7379 7380 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7381 GlobalDecl &Result) const { 7382 auto Res = Manglings.find(MangledName); 7383 if (Res == Manglings.end()) 7384 return false; 7385 Result = Res->getValue(); 7386 return true; 7387 } 7388 7389 /// Emits metadata nodes associating all the global values in the 7390 /// current module with the Decls they came from. This is useful for 7391 /// projects using IR gen as a subroutine. 7392 /// 7393 /// Since there's currently no way to associate an MDNode directly 7394 /// with an llvm::GlobalValue, we create a global named metadata 7395 /// with the name 'clang.global.decl.ptrs'. 7396 void CodeGenModule::EmitDeclMetadata() { 7397 llvm::NamedMDNode *GlobalMetadata = nullptr; 7398 7399 for (auto &I : MangledDeclNames) { 7400 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7401 // Some mangled names don't necessarily have an associated GlobalValue 7402 // in this module, e.g. if we mangled it for DebugInfo. 7403 if (Addr) 7404 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7405 } 7406 } 7407 7408 /// Emits metadata nodes for all the local variables in the current 7409 /// function. 7410 void CodeGenFunction::EmitDeclMetadata() { 7411 if (LocalDeclMap.empty()) return; 7412 7413 llvm::LLVMContext &Context = getLLVMContext(); 7414 7415 // Find the unique metadata ID for this name. 7416 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7417 7418 llvm::NamedMDNode *GlobalMetadata = nullptr; 7419 7420 for (auto &I : LocalDeclMap) { 7421 const Decl *D = I.first; 7422 llvm::Value *Addr = I.second.emitRawPointer(*this); 7423 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7424 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7425 Alloca->setMetadata( 7426 DeclPtrKind, llvm::MDNode::get( 7427 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7428 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7429 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7430 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7431 } 7432 } 7433 } 7434 7435 void CodeGenModule::EmitVersionIdentMetadata() { 7436 llvm::NamedMDNode *IdentMetadata = 7437 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7438 std::string Version = getClangFullVersion(); 7439 llvm::LLVMContext &Ctx = TheModule.getContext(); 7440 7441 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7442 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7443 } 7444 7445 void CodeGenModule::EmitCommandLineMetadata() { 7446 llvm::NamedMDNode *CommandLineMetadata = 7447 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7448 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7449 llvm::LLVMContext &Ctx = TheModule.getContext(); 7450 7451 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7452 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7453 } 7454 7455 void CodeGenModule::EmitCoverageFile() { 7456 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7457 if (!CUNode) 7458 return; 7459 7460 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7461 llvm::LLVMContext &Ctx = TheModule.getContext(); 7462 auto *CoverageDataFile = 7463 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7464 auto *CoverageNotesFile = 7465 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7466 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7467 llvm::MDNode *CU = CUNode->getOperand(i); 7468 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7469 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7470 } 7471 } 7472 7473 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7474 bool ForEH) { 7475 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7476 // FIXME: should we even be calling this method if RTTI is disabled 7477 // and it's not for EH? 7478 if (!shouldEmitRTTI(ForEH)) 7479 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7480 7481 if (ForEH && Ty->isObjCObjectPointerType() && 7482 LangOpts.ObjCRuntime.isGNUFamily()) 7483 return ObjCRuntime->GetEHType(Ty); 7484 7485 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7486 } 7487 7488 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7489 // Do not emit threadprivates in simd-only mode. 7490 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7491 return; 7492 for (auto RefExpr : D->varlists()) { 7493 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7494 bool PerformInit = 7495 VD->getAnyInitializer() && 7496 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7497 /*ForRef=*/false); 7498 7499 Address Addr(GetAddrOfGlobalVar(VD), 7500 getTypes().ConvertTypeForMem(VD->getType()), 7501 getContext().getDeclAlign(VD)); 7502 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7503 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7504 CXXGlobalInits.push_back(InitFunction); 7505 } 7506 } 7507 7508 llvm::Metadata * 7509 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7510 StringRef Suffix) { 7511 if (auto *FnType = T->getAs<FunctionProtoType>()) 7512 T = getContext().getFunctionType( 7513 FnType->getReturnType(), FnType->getParamTypes(), 7514 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7515 7516 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7517 if (InternalId) 7518 return InternalId; 7519 7520 if (isExternallyVisible(T->getLinkage())) { 7521 std::string OutName; 7522 llvm::raw_string_ostream Out(OutName); 7523 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7524 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7525 7526 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7527 Out << ".normalized"; 7528 7529 Out << Suffix; 7530 7531 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7532 } else { 7533 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7534 llvm::ArrayRef<llvm::Metadata *>()); 7535 } 7536 7537 return InternalId; 7538 } 7539 7540 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7541 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7542 } 7543 7544 llvm::Metadata * 7545 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7546 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7547 } 7548 7549 // Generalize pointer types to a void pointer with the qualifiers of the 7550 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7551 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7552 // 'void *'. 7553 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7554 if (!Ty->isPointerType()) 7555 return Ty; 7556 7557 return Ctx.getPointerType( 7558 QualType(Ctx.VoidTy).withCVRQualifiers( 7559 Ty->getPointeeType().getCVRQualifiers())); 7560 } 7561 7562 // Apply type generalization to a FunctionType's return and argument types 7563 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7564 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7565 SmallVector<QualType, 8> GeneralizedParams; 7566 for (auto &Param : FnType->param_types()) 7567 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7568 7569 return Ctx.getFunctionType( 7570 GeneralizeType(Ctx, FnType->getReturnType()), 7571 GeneralizedParams, FnType->getExtProtoInfo()); 7572 } 7573 7574 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7575 return Ctx.getFunctionNoProtoType( 7576 GeneralizeType(Ctx, FnType->getReturnType())); 7577 7578 llvm_unreachable("Encountered unknown FunctionType"); 7579 } 7580 7581 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7582 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7583 GeneralizedMetadataIdMap, ".generalized"); 7584 } 7585 7586 /// Returns whether this module needs the "all-vtables" type identifier. 7587 bool CodeGenModule::NeedAllVtablesTypeId() const { 7588 // Returns true if at least one of vtable-based CFI checkers is enabled and 7589 // is not in the trapping mode. 7590 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7591 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7592 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7593 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7594 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7595 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7596 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7597 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7598 } 7599 7600 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7601 CharUnits Offset, 7602 const CXXRecordDecl *RD) { 7603 llvm::Metadata *MD = 7604 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7605 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7606 7607 if (CodeGenOpts.SanitizeCfiCrossDso) 7608 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7609 VTable->addTypeMetadata(Offset.getQuantity(), 7610 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7611 7612 if (NeedAllVtablesTypeId()) { 7613 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7614 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7615 } 7616 } 7617 7618 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7619 if (!SanStats) 7620 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7621 7622 return *SanStats; 7623 } 7624 7625 llvm::Value * 7626 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7627 CodeGenFunction &CGF) { 7628 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7629 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7630 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7631 auto *Call = CGF.EmitRuntimeCall( 7632 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7633 return Call; 7634 } 7635 7636 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7637 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7638 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7639 /* forPointeeType= */ true); 7640 } 7641 7642 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7643 LValueBaseInfo *BaseInfo, 7644 TBAAAccessInfo *TBAAInfo, 7645 bool forPointeeType) { 7646 if (TBAAInfo) 7647 *TBAAInfo = getTBAAAccessInfo(T); 7648 7649 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7650 // that doesn't return the information we need to compute BaseInfo. 7651 7652 // Honor alignment typedef attributes even on incomplete types. 7653 // We also honor them straight for C++ class types, even as pointees; 7654 // there's an expressivity gap here. 7655 if (auto TT = T->getAs<TypedefType>()) { 7656 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7657 if (BaseInfo) 7658 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7659 return getContext().toCharUnitsFromBits(Align); 7660 } 7661 } 7662 7663 bool AlignForArray = T->isArrayType(); 7664 7665 // Analyze the base element type, so we don't get confused by incomplete 7666 // array types. 7667 T = getContext().getBaseElementType(T); 7668 7669 if (T->isIncompleteType()) { 7670 // We could try to replicate the logic from 7671 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7672 // type is incomplete, so it's impossible to test. We could try to reuse 7673 // getTypeAlignIfKnown, but that doesn't return the information we need 7674 // to set BaseInfo. So just ignore the possibility that the alignment is 7675 // greater than one. 7676 if (BaseInfo) 7677 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7678 return CharUnits::One(); 7679 } 7680 7681 if (BaseInfo) 7682 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7683 7684 CharUnits Alignment; 7685 const CXXRecordDecl *RD; 7686 if (T.getQualifiers().hasUnaligned()) { 7687 Alignment = CharUnits::One(); 7688 } else if (forPointeeType && !AlignForArray && 7689 (RD = T->getAsCXXRecordDecl())) { 7690 // For C++ class pointees, we don't know whether we're pointing at a 7691 // base or a complete object, so we generally need to use the 7692 // non-virtual alignment. 7693 Alignment = getClassPointerAlignment(RD); 7694 } else { 7695 Alignment = getContext().getTypeAlignInChars(T); 7696 } 7697 7698 // Cap to the global maximum type alignment unless the alignment 7699 // was somehow explicit on the type. 7700 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7701 if (Alignment.getQuantity() > MaxAlign && 7702 !getContext().isAlignmentRequired(T)) 7703 Alignment = CharUnits::fromQuantity(MaxAlign); 7704 } 7705 return Alignment; 7706 } 7707 7708 bool CodeGenModule::stopAutoInit() { 7709 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7710 if (StopAfter) { 7711 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7712 // used 7713 if (NumAutoVarInit >= StopAfter) { 7714 return true; 7715 } 7716 if (!NumAutoVarInit) { 7717 unsigned DiagID = getDiags().getCustomDiagID( 7718 DiagnosticsEngine::Warning, 7719 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7720 "number of times ftrivial-auto-var-init=%1 gets applied."); 7721 getDiags().Report(DiagID) 7722 << StopAfter 7723 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7724 LangOptions::TrivialAutoVarInitKind::Zero 7725 ? "zero" 7726 : "pattern"); 7727 } 7728 ++NumAutoVarInit; 7729 } 7730 return false; 7731 } 7732 7733 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7734 const Decl *D) const { 7735 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7736 // postfix beginning with '.' since the symbol name can be demangled. 7737 if (LangOpts.HIP) 7738 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7739 else 7740 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7741 7742 // If the CUID is not specified we try to generate a unique postfix. 7743 if (getLangOpts().CUID.empty()) { 7744 SourceManager &SM = getContext().getSourceManager(); 7745 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7746 assert(PLoc.isValid() && "Source location is expected to be valid."); 7747 7748 // Get the hash of the user defined macros. 7749 llvm::MD5 Hash; 7750 llvm::MD5::MD5Result Result; 7751 for (const auto &Arg : PreprocessorOpts.Macros) 7752 Hash.update(Arg.first); 7753 Hash.final(Result); 7754 7755 // Get the UniqueID for the file containing the decl. 7756 llvm::sys::fs::UniqueID ID; 7757 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7758 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7759 assert(PLoc.isValid() && "Source location is expected to be valid."); 7760 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7761 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7762 << PLoc.getFilename() << EC.message(); 7763 } 7764 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7765 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7766 } else { 7767 OS << getContext().getCUIDHash(); 7768 } 7769 } 7770 7771 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7772 assert(DeferredDeclsToEmit.empty() && 7773 "Should have emitted all decls deferred to emit."); 7774 assert(NewBuilder->DeferredDecls.empty() && 7775 "Newly created module should not have deferred decls"); 7776 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7777 assert(EmittedDeferredDecls.empty() && 7778 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7779 7780 assert(NewBuilder->DeferredVTables.empty() && 7781 "Newly created module should not have deferred vtables"); 7782 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7783 7784 assert(NewBuilder->MangledDeclNames.empty() && 7785 "Newly created module should not have mangled decl names"); 7786 assert(NewBuilder->Manglings.empty() && 7787 "Newly created module should not have manglings"); 7788 NewBuilder->Manglings = std::move(Manglings); 7789 7790 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7791 7792 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7793 } 7794