xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152     else if (Target.getABI() == "pauthtest")
153       Kind = AArch64ABIKind::PAuthTest;
154 
155     return createAArch64TargetCodeGenInfo(CGM, Kind);
156   }
157 
158   case llvm::Triple::wasm32:
159   case llvm::Triple::wasm64: {
160     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
161     if (Target.getABI() == "experimental-mv")
162       Kind = WebAssemblyABIKind::ExperimentalMV;
163     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
164   }
165 
166   case llvm::Triple::arm:
167   case llvm::Triple::armeb:
168   case llvm::Triple::thumb:
169   case llvm::Triple::thumbeb: {
170     if (Triple.getOS() == llvm::Triple::Win32)
171       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
172 
173     ARMABIKind Kind = ARMABIKind::AAPCS;
174     StringRef ABIStr = Target.getABI();
175     if (ABIStr == "apcs-gnu")
176       Kind = ARMABIKind::APCS;
177     else if (ABIStr == "aapcs16")
178       Kind = ARMABIKind::AAPCS16_VFP;
179     else if (CodeGenOpts.FloatABI == "hard" ||
180              (CodeGenOpts.FloatABI != "soft" &&
181               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
182                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
183                Triple.getEnvironment() == llvm::Triple::EABIHF)))
184       Kind = ARMABIKind::AAPCS_VFP;
185 
186     return createARMTargetCodeGenInfo(CGM, Kind);
187   }
188 
189   case llvm::Triple::ppc: {
190     if (Triple.isOSAIX())
191       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
192 
193     bool IsSoftFloat =
194         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
195     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
196   }
197   case llvm::Triple::ppcle: {
198     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
199     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
200   }
201   case llvm::Triple::ppc64:
202     if (Triple.isOSAIX())
203       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
204 
205     if (Triple.isOSBinFormatELF()) {
206       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
207       if (Target.getABI() == "elfv2")
208         Kind = PPC64_SVR4_ABIKind::ELFv2;
209       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
210 
211       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
212     }
213     return createPPC64TargetCodeGenInfo(CGM);
214   case llvm::Triple::ppc64le: {
215     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
216     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
217     if (Target.getABI() == "elfv1")
218       Kind = PPC64_SVR4_ABIKind::ELFv1;
219     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
220 
221     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
222   }
223 
224   case llvm::Triple::nvptx:
225   case llvm::Triple::nvptx64:
226     return createNVPTXTargetCodeGenInfo(CGM);
227 
228   case llvm::Triple::msp430:
229     return createMSP430TargetCodeGenInfo(CGM);
230 
231   case llvm::Triple::riscv32:
232   case llvm::Triple::riscv64: {
233     StringRef ABIStr = Target.getABI();
234     unsigned XLen = Target.getPointerWidth(LangAS::Default);
235     unsigned ABIFLen = 0;
236     if (ABIStr.ends_with("f"))
237       ABIFLen = 32;
238     else if (ABIStr.ends_with("d"))
239       ABIFLen = 64;
240     bool EABI = ABIStr.ends_with("e");
241     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
242   }
243 
244   case llvm::Triple::systemz: {
245     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
246     bool HasVector = !SoftFloat && Target.getABI() == "vector";
247     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
248   }
249 
250   case llvm::Triple::tce:
251   case llvm::Triple::tcele:
252     return createTCETargetCodeGenInfo(CGM);
253 
254   case llvm::Triple::x86: {
255     bool IsDarwinVectorABI = Triple.isOSDarwin();
256     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
257 
258     if (Triple.getOS() == llvm::Triple::Win32) {
259       return createWinX86_32TargetCodeGenInfo(
260           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
261           CodeGenOpts.NumRegisterParameters);
262     }
263     return createX86_32TargetCodeGenInfo(
264         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
265         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
266   }
267 
268   case llvm::Triple::x86_64: {
269     StringRef ABI = Target.getABI();
270     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
271                                : ABI == "avx"  ? X86AVXABILevel::AVX
272                                                : X86AVXABILevel::None);
273 
274     switch (Triple.getOS()) {
275     case llvm::Triple::Win32:
276       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     default:
278       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
279     }
280   }
281   case llvm::Triple::hexagon:
282     return createHexagonTargetCodeGenInfo(CGM);
283   case llvm::Triple::lanai:
284     return createLanaiTargetCodeGenInfo(CGM);
285   case llvm::Triple::r600:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::amdgcn:
288     return createAMDGPUTargetCodeGenInfo(CGM);
289   case llvm::Triple::sparc:
290     return createSparcV8TargetCodeGenInfo(CGM);
291   case llvm::Triple::sparcv9:
292     return createSparcV9TargetCodeGenInfo(CGM);
293   case llvm::Triple::xcore:
294     return createXCoreTargetCodeGenInfo(CGM);
295   case llvm::Triple::arc:
296     return createARCTargetCodeGenInfo(CGM);
297   case llvm::Triple::spir:
298   case llvm::Triple::spir64:
299     return createCommonSPIRTargetCodeGenInfo(CGM);
300   case llvm::Triple::spirv32:
301   case llvm::Triple::spirv64:
302     return createSPIRVTargetCodeGenInfo(CGM);
303   case llvm::Triple::ve:
304     return createVETargetCodeGenInfo(CGM);
305   case llvm::Triple::csky: {
306     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
307     bool hasFP64 =
308         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
309     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
310                                             : hasFP64   ? 64
311                                                         : 32);
312   }
313   case llvm::Triple::bpfeb:
314   case llvm::Triple::bpfel:
315     return createBPFTargetCodeGenInfo(CGM);
316   case llvm::Triple::loongarch32:
317   case llvm::Triple::loongarch64: {
318     StringRef ABIStr = Target.getABI();
319     unsigned ABIFRLen = 0;
320     if (ABIStr.ends_with("f"))
321       ABIFRLen = 32;
322     else if (ABIStr.ends_with("d"))
323       ABIFRLen = 64;
324     return createLoongArchTargetCodeGenInfo(
325         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
326   }
327   }
328 }
329 
330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
331   if (!TheTargetCodeGenInfo)
332     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
333   return *TheTargetCodeGenInfo;
334 }
335 
336 CodeGenModule::CodeGenModule(ASTContext &C,
337                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
338                              const HeaderSearchOptions &HSO,
339                              const PreprocessorOptions &PPO,
340                              const CodeGenOptions &CGO, llvm::Module &M,
341                              DiagnosticsEngine &diags,
342                              CoverageSourceInfo *CoverageInfo)
343     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
344       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
345       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
346       VMContext(M.getContext()), VTables(*this),
347       SanitizerMD(new SanitizerMetadata(*this)) {
348 
349   // Initialize the type cache.
350   Types.reset(new CodeGenTypes(*this));
351   llvm::LLVMContext &LLVMContext = M.getContext();
352   VoidTy = llvm::Type::getVoidTy(LLVMContext);
353   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
354   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
355   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
356   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
357   HalfTy = llvm::Type::getHalfTy(LLVMContext);
358   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
359   FloatTy = llvm::Type::getFloatTy(LLVMContext);
360   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
361   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
362   PointerAlignInBytes =
363       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
364           .getQuantity();
365   SizeSizeInBytes =
366     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
367   IntAlignInBytes =
368     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
369   CharTy =
370     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
371   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
372   IntPtrTy = llvm::IntegerType::get(LLVMContext,
373     C.getTargetInfo().getMaxPointerWidth());
374   Int8PtrTy = llvm::PointerType::get(LLVMContext,
375                                      C.getTargetAddressSpace(LangAS::Default));
376   const llvm::DataLayout &DL = M.getDataLayout();
377   AllocaInt8PtrTy =
378       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
379   GlobalsInt8PtrTy =
380       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
381   ConstGlobalsPtrTy = llvm::PointerType::get(
382       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
383   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
384 
385   // Build C++20 Module initializers.
386   // TODO: Add Microsoft here once we know the mangling required for the
387   // initializers.
388   CXX20ModuleInits =
389       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
390                                        ItaniumMangleContext::MK_Itanium;
391 
392   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
393 
394   if (LangOpts.ObjC)
395     createObjCRuntime();
396   if (LangOpts.OpenCL)
397     createOpenCLRuntime();
398   if (LangOpts.OpenMP)
399     createOpenMPRuntime();
400   if (LangOpts.CUDA)
401     createCUDARuntime();
402   if (LangOpts.HLSL)
403     createHLSLRuntime();
404 
405   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
406   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
407       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
408     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
409                                getLangOpts()));
410 
411   // If debug info or coverage generation is enabled, create the CGDebugInfo
412   // object.
413   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
414       CodeGenOpts.CoverageNotesFile.size() ||
415       CodeGenOpts.CoverageDataFile.size())
416     DebugInfo.reset(new CGDebugInfo(*this));
417 
418   Block.GlobalUniqueCount = 0;
419 
420   if (C.getLangOpts().ObjC)
421     ObjCData.reset(new ObjCEntrypoints());
422 
423   if (CodeGenOpts.hasProfileClangUse()) {
424     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
425         CodeGenOpts.ProfileInstrumentUsePath, *FS,
426         CodeGenOpts.ProfileRemappingFile);
427     // We're checking for profile read errors in CompilerInvocation, so if
428     // there was an error it should've already been caught. If it hasn't been
429     // somehow, trip an assertion.
430     assert(ReaderOrErr);
431     PGOReader = std::move(ReaderOrErr.get());
432   }
433 
434   // If coverage mapping generation is enabled, create the
435   // CoverageMappingModuleGen object.
436   if (CodeGenOpts.CoverageMapping)
437     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
438 
439   // Generate the module name hash here if needed.
440   if (CodeGenOpts.UniqueInternalLinkageNames &&
441       !getModule().getSourceFileName().empty()) {
442     std::string Path = getModule().getSourceFileName();
443     // Check if a path substitution is needed from the MacroPrefixMap.
444     for (const auto &Entry : LangOpts.MacroPrefixMap)
445       if (Path.rfind(Entry.first, 0) != std::string::npos) {
446         Path = Entry.second + Path.substr(Entry.first.size());
447         break;
448       }
449     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
450   }
451 
452   // Record mregparm value now so it is visible through all of codegen.
453   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
454     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
455                               CodeGenOpts.NumRegisterParameters);
456 }
457 
458 CodeGenModule::~CodeGenModule() {}
459 
460 void CodeGenModule::createObjCRuntime() {
461   // This is just isGNUFamily(), but we want to force implementors of
462   // new ABIs to decide how best to do this.
463   switch (LangOpts.ObjCRuntime.getKind()) {
464   case ObjCRuntime::GNUstep:
465   case ObjCRuntime::GCC:
466   case ObjCRuntime::ObjFW:
467     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
468     return;
469 
470   case ObjCRuntime::FragileMacOSX:
471   case ObjCRuntime::MacOSX:
472   case ObjCRuntime::iOS:
473   case ObjCRuntime::WatchOS:
474     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
475     return;
476   }
477   llvm_unreachable("bad runtime kind");
478 }
479 
480 void CodeGenModule::createOpenCLRuntime() {
481   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
482 }
483 
484 void CodeGenModule::createOpenMPRuntime() {
485   // Select a specialized code generation class based on the target, if any.
486   // If it does not exist use the default implementation.
487   switch (getTriple().getArch()) {
488   case llvm::Triple::nvptx:
489   case llvm::Triple::nvptx64:
490   case llvm::Triple::amdgcn:
491     assert(getLangOpts().OpenMPIsTargetDevice &&
492            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
493     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
494     break;
495   default:
496     if (LangOpts.OpenMPSimd)
497       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
498     else
499       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
500     break;
501   }
502 }
503 
504 void CodeGenModule::createCUDARuntime() {
505   CUDARuntime.reset(CreateNVCUDARuntime(*this));
506 }
507 
508 void CodeGenModule::createHLSLRuntime() {
509   HLSLRuntime.reset(new CGHLSLRuntime(*this));
510 }
511 
512 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
513   Replacements[Name] = C;
514 }
515 
516 void CodeGenModule::applyReplacements() {
517   for (auto &I : Replacements) {
518     StringRef MangledName = I.first;
519     llvm::Constant *Replacement = I.second;
520     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
521     if (!Entry)
522       continue;
523     auto *OldF = cast<llvm::Function>(Entry);
524     auto *NewF = dyn_cast<llvm::Function>(Replacement);
525     if (!NewF) {
526       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
527         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
528       } else {
529         auto *CE = cast<llvm::ConstantExpr>(Replacement);
530         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
531                CE->getOpcode() == llvm::Instruction::GetElementPtr);
532         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
533       }
534     }
535 
536     // Replace old with new, but keep the old order.
537     OldF->replaceAllUsesWith(Replacement);
538     if (NewF) {
539       NewF->removeFromParent();
540       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
541                                                        NewF);
542     }
543     OldF->eraseFromParent();
544   }
545 }
546 
547 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
548   GlobalValReplacements.push_back(std::make_pair(GV, C));
549 }
550 
551 void CodeGenModule::applyGlobalValReplacements() {
552   for (auto &I : GlobalValReplacements) {
553     llvm::GlobalValue *GV = I.first;
554     llvm::Constant *C = I.second;
555 
556     GV->replaceAllUsesWith(C);
557     GV->eraseFromParent();
558   }
559 }
560 
561 // This is only used in aliases that we created and we know they have a
562 // linear structure.
563 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
564   const llvm::Constant *C;
565   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
566     C = GA->getAliasee();
567   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
568     C = GI->getResolver();
569   else
570     return GV;
571 
572   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
573   if (!AliaseeGV)
574     return nullptr;
575 
576   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
577   if (FinalGV == GV)
578     return nullptr;
579 
580   return FinalGV;
581 }
582 
583 static bool checkAliasedGlobal(
584     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
585     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
586     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
587     SourceRange AliasRange) {
588   GV = getAliasedGlobal(Alias);
589   if (!GV) {
590     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
591     return false;
592   }
593 
594   if (GV->hasCommonLinkage()) {
595     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
596     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
597       Diags.Report(Location, diag::err_alias_to_common);
598       return false;
599     }
600   }
601 
602   if (GV->isDeclaration()) {
603     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
604     Diags.Report(Location, diag::note_alias_requires_mangled_name)
605         << IsIFunc << IsIFunc;
606     // Provide a note if the given function is not found and exists as a
607     // mangled name.
608     for (const auto &[Decl, Name] : MangledDeclNames) {
609       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
610         if (ND->getName() == GV->getName()) {
611           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
612               << Name
613               << FixItHint::CreateReplacement(
614                      AliasRange,
615                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
616                          .str());
617         }
618       }
619     }
620     return false;
621   }
622 
623   if (IsIFunc) {
624     // Check resolver function type.
625     const auto *F = dyn_cast<llvm::Function>(GV);
626     if (!F) {
627       Diags.Report(Location, diag::err_alias_to_undefined)
628           << IsIFunc << IsIFunc;
629       return false;
630     }
631 
632     llvm::FunctionType *FTy = F->getFunctionType();
633     if (!FTy->getReturnType()->isPointerTy()) {
634       Diags.Report(Location, diag::err_ifunc_resolver_return);
635       return false;
636     }
637   }
638 
639   return true;
640 }
641 
642 // Emit a warning if toc-data attribute is requested for global variables that
643 // have aliases and remove the toc-data attribute.
644 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
645                                  const CodeGenOptions &CodeGenOpts,
646                                  DiagnosticsEngine &Diags,
647                                  SourceLocation Location) {
648   if (GVar->hasAttribute("toc-data")) {
649     auto GVId = GVar->getName();
650     // Is this a global variable specified by the user as local?
651     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
652       Diags.Report(Location, diag::warn_toc_unsupported_type)
653           << GVId << "the variable has an alias";
654     }
655     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
656     llvm::AttributeSet NewAttributes =
657         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
658     GVar->setAttributes(NewAttributes);
659   }
660 }
661 
662 void CodeGenModule::checkAliases() {
663   // Check if the constructed aliases are well formed. It is really unfortunate
664   // that we have to do this in CodeGen, but we only construct mangled names
665   // and aliases during codegen.
666   bool Error = false;
667   DiagnosticsEngine &Diags = getDiags();
668   for (const GlobalDecl &GD : Aliases) {
669     const auto *D = cast<ValueDecl>(GD.getDecl());
670     SourceLocation Location;
671     SourceRange Range;
672     bool IsIFunc = D->hasAttr<IFuncAttr>();
673     if (const Attr *A = D->getDefiningAttr()) {
674       Location = A->getLocation();
675       Range = A->getRange();
676     } else
677       llvm_unreachable("Not an alias or ifunc?");
678 
679     StringRef MangledName = getMangledName(GD);
680     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
681     const llvm::GlobalValue *GV = nullptr;
682     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
683                             MangledDeclNames, Range)) {
684       Error = true;
685       continue;
686     }
687 
688     if (getContext().getTargetInfo().getTriple().isOSAIX())
689       if (const llvm::GlobalVariable *GVar =
690               dyn_cast<const llvm::GlobalVariable>(GV))
691         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
692                              getCodeGenOpts(), Diags, Location);
693 
694     llvm::Constant *Aliasee =
695         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
696                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
697 
698     llvm::GlobalValue *AliaseeGV;
699     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
700       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
701     else
702       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
703 
704     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
705       StringRef AliasSection = SA->getName();
706       if (AliasSection != AliaseeGV->getSection())
707         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
708             << AliasSection << IsIFunc << IsIFunc;
709     }
710 
711     // We have to handle alias to weak aliases in here. LLVM itself disallows
712     // this since the object semantics would not match the IL one. For
713     // compatibility with gcc we implement it by just pointing the alias
714     // to its aliasee's aliasee. We also warn, since the user is probably
715     // expecting the link to be weak.
716     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
717       if (GA->isInterposable()) {
718         Diags.Report(Location, diag::warn_alias_to_weak_alias)
719             << GV->getName() << GA->getName() << IsIFunc;
720         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
721             GA->getAliasee(), Alias->getType());
722 
723         if (IsIFunc)
724           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
725         else
726           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
727       }
728     }
729     // ifunc resolvers are usually implemented to run before sanitizer
730     // initialization. Disable instrumentation to prevent the ordering issue.
731     if (IsIFunc)
732       cast<llvm::Function>(Aliasee)->addFnAttr(
733           llvm::Attribute::DisableSanitizerInstrumentation);
734   }
735   if (!Error)
736     return;
737 
738   for (const GlobalDecl &GD : Aliases) {
739     StringRef MangledName = getMangledName(GD);
740     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
741     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
742     Alias->eraseFromParent();
743   }
744 }
745 
746 void CodeGenModule::clear() {
747   DeferredDeclsToEmit.clear();
748   EmittedDeferredDecls.clear();
749   DeferredAnnotations.clear();
750   if (OpenMPRuntime)
751     OpenMPRuntime->clear();
752 }
753 
754 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
755                                        StringRef MainFile) {
756   if (!hasDiagnostics())
757     return;
758   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
759     if (MainFile.empty())
760       MainFile = "<stdin>";
761     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
762   } else {
763     if (Mismatched > 0)
764       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
765 
766     if (Missing > 0)
767       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
768   }
769 }
770 
771 static std::optional<llvm::GlobalValue::VisibilityTypes>
772 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
773   // Map to LLVM visibility.
774   switch (K) {
775   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
776     return std::nullopt;
777   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
778     return llvm::GlobalValue::DefaultVisibility;
779   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
780     return llvm::GlobalValue::HiddenVisibility;
781   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
782     return llvm::GlobalValue::ProtectedVisibility;
783   }
784   llvm_unreachable("unknown option value!");
785 }
786 
787 void setLLVMVisibility(llvm::GlobalValue &GV,
788                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
789   if (!V)
790     return;
791 
792   // Reset DSO locality before setting the visibility. This removes
793   // any effects that visibility options and annotations may have
794   // had on the DSO locality. Setting the visibility will implicitly set
795   // appropriate globals to DSO Local; however, this will be pessimistic
796   // w.r.t. to the normal compiler IRGen.
797   GV.setDSOLocal(false);
798   GV.setVisibility(*V);
799 }
800 
801 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
802                                              llvm::Module &M) {
803   if (!LO.VisibilityFromDLLStorageClass)
804     return;
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
807       getLLVMVisibility(LO.getDLLExportVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       NoDLLStorageClassVisibility =
811           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
812 
813   std::optional<llvm::GlobalValue::VisibilityTypes>
814       ExternDeclDLLImportVisibility =
815           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
816 
817   std::optional<llvm::GlobalValue::VisibilityTypes>
818       ExternDeclNoDLLStorageClassVisibility =
819           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
820 
821   for (llvm::GlobalValue &GV : M.global_values()) {
822     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
823       continue;
824 
825     if (GV.isDeclarationForLinker())
826       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
827                                     llvm::GlobalValue::DLLImportStorageClass
828                                 ? ExternDeclDLLImportVisibility
829                                 : ExternDeclNoDLLStorageClassVisibility);
830     else
831       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
832                                     llvm::GlobalValue::DLLExportStorageClass
833                                 ? DLLExportVisibility
834                                 : NoDLLStorageClassVisibility);
835 
836     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
837   }
838 }
839 
840 static bool isStackProtectorOn(const LangOptions &LangOpts,
841                                const llvm::Triple &Triple,
842                                clang::LangOptions::StackProtectorMode Mode) {
843   if (Triple.isAMDGPU() || Triple.isNVPTX())
844     return false;
845   return LangOpts.getStackProtector() == Mode;
846 }
847 
848 void CodeGenModule::Release() {
849   Module *Primary = getContext().getCurrentNamedModule();
850   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
851     EmitModuleInitializers(Primary);
852   EmitDeferred();
853   DeferredDecls.insert(EmittedDeferredDecls.begin(),
854                        EmittedDeferredDecls.end());
855   EmittedDeferredDecls.clear();
856   EmitVTablesOpportunistically();
857   applyGlobalValReplacements();
858   applyReplacements();
859   emitMultiVersionFunctions();
860 
861   if (Context.getLangOpts().IncrementalExtensions &&
862       GlobalTopLevelStmtBlockInFlight.first) {
863     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
864     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
865     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
866   }
867 
868   // Module implementations are initialized the same way as a regular TU that
869   // imports one or more modules.
870   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
871     EmitCXXModuleInitFunc(Primary);
872   else
873     EmitCXXGlobalInitFunc();
874   EmitCXXGlobalCleanUpFunc();
875   registerGlobalDtorsWithAtExit();
876   EmitCXXThreadLocalInitFunc();
877   if (ObjCRuntime)
878     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
879       AddGlobalCtor(ObjCInitFunction);
880   if (Context.getLangOpts().CUDA && CUDARuntime) {
881     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
882       AddGlobalCtor(CudaCtorFunction);
883   }
884   if (OpenMPRuntime) {
885     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
886     OpenMPRuntime->clear();
887   }
888   if (PGOReader) {
889     getModule().setProfileSummary(
890         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
891         llvm::ProfileSummary::PSK_Instr);
892     if (PGOStats.hasDiagnostics())
893       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
894   }
895   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
896     return L.LexOrder < R.LexOrder;
897   });
898   EmitCtorList(GlobalCtors, "llvm.global_ctors");
899   EmitCtorList(GlobalDtors, "llvm.global_dtors");
900   EmitGlobalAnnotations();
901   EmitStaticExternCAliases();
902   checkAliases();
903   EmitDeferredUnusedCoverageMappings();
904   CodeGenPGO(*this).setValueProfilingFlag(getModule());
905   CodeGenPGO(*this).setProfileVersion(getModule());
906   if (CoverageMapping)
907     CoverageMapping->emit();
908   if (CodeGenOpts.SanitizeCfiCrossDso) {
909     CodeGenFunction(*this).EmitCfiCheckFail();
910     CodeGenFunction(*this).EmitCfiCheckStub();
911   }
912   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
913     finalizeKCFITypes();
914   emitAtAvailableLinkGuard();
915   if (Context.getTargetInfo().getTriple().isWasm())
916     EmitMainVoidAlias();
917 
918   if (getTriple().isAMDGPU() ||
919       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
920     // Emit amdhsa_code_object_version module flag, which is code object version
921     // times 100.
922     if (getTarget().getTargetOpts().CodeObjectVersion !=
923         llvm::CodeObjectVersionKind::COV_None) {
924       getModule().addModuleFlag(llvm::Module::Error,
925                                 "amdhsa_code_object_version",
926                                 getTarget().getTargetOpts().CodeObjectVersion);
927     }
928 
929     // Currently, "-mprintf-kind" option is only supported for HIP
930     if (LangOpts.HIP) {
931       auto *MDStr = llvm::MDString::get(
932           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
933                              TargetOptions::AMDGPUPrintfKind::Hostcall)
934                                 ? "hostcall"
935                                 : "buffered");
936       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
937                                 MDStr);
938     }
939   }
940 
941   // Emit a global array containing all external kernels or device variables
942   // used by host functions and mark it as used for CUDA/HIP. This is necessary
943   // to get kernels or device variables in archives linked in even if these
944   // kernels or device variables are only used in host functions.
945   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
946     SmallVector<llvm::Constant *, 8> UsedArray;
947     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
948       GlobalDecl GD;
949       if (auto *FD = dyn_cast<FunctionDecl>(D))
950         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
951       else
952         GD = GlobalDecl(D);
953       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
954           GetAddrOfGlobal(GD), Int8PtrTy));
955     }
956 
957     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
958 
959     auto *GV = new llvm::GlobalVariable(
960         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
961         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
962     addCompilerUsedGlobal(GV);
963   }
964   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
965     // Emit a unique ID so that host and device binaries from the same
966     // compilation unit can be associated.
967     auto *GV = new llvm::GlobalVariable(
968         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
969         llvm::Constant::getNullValue(Int8Ty),
970         "__hip_cuid_" + getContext().getCUIDHash());
971     addCompilerUsedGlobal(GV);
972   }
973   emitLLVMUsed();
974   if (SanStats)
975     SanStats->finish();
976 
977   if (CodeGenOpts.Autolink &&
978       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
979     EmitModuleLinkOptions();
980   }
981 
982   // On ELF we pass the dependent library specifiers directly to the linker
983   // without manipulating them. This is in contrast to other platforms where
984   // they are mapped to a specific linker option by the compiler. This
985   // difference is a result of the greater variety of ELF linkers and the fact
986   // that ELF linkers tend to handle libraries in a more complicated fashion
987   // than on other platforms. This forces us to defer handling the dependent
988   // libs to the linker.
989   //
990   // CUDA/HIP device and host libraries are different. Currently there is no
991   // way to differentiate dependent libraries for host or device. Existing
992   // usage of #pragma comment(lib, *) is intended for host libraries on
993   // Windows. Therefore emit llvm.dependent-libraries only for host.
994   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
995     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
996     for (auto *MD : ELFDependentLibraries)
997       NMD->addOperand(MD);
998   }
999 
1000   if (CodeGenOpts.DwarfVersion) {
1001     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1002                               CodeGenOpts.DwarfVersion);
1003   }
1004 
1005   if (CodeGenOpts.Dwarf64)
1006     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1007 
1008   if (Context.getLangOpts().SemanticInterposition)
1009     // Require various optimization to respect semantic interposition.
1010     getModule().setSemanticInterposition(true);
1011 
1012   if (CodeGenOpts.EmitCodeView) {
1013     // Indicate that we want CodeView in the metadata.
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1015   }
1016   if (CodeGenOpts.CodeViewGHash) {
1017     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1018   }
1019   if (CodeGenOpts.ControlFlowGuard) {
1020     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1022   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1023     // Function ID tables for Control Flow Guard (cfguard=1).
1024     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1025   }
1026   if (CodeGenOpts.EHContGuard) {
1027     // Function ID tables for EH Continuation Guard.
1028     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1029   }
1030   if (Context.getLangOpts().Kernel) {
1031     // Note if we are compiling with /kernel.
1032     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1033   }
1034   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1035     // We don't support LTO with 2 with different StrictVTablePointers
1036     // FIXME: we could support it by stripping all the information introduced
1037     // by StrictVTablePointers.
1038 
1039     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1040 
1041     llvm::Metadata *Ops[2] = {
1042               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1043               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1044                   llvm::Type::getInt32Ty(VMContext), 1))};
1045 
1046     getModule().addModuleFlag(llvm::Module::Require,
1047                               "StrictVTablePointersRequirement",
1048                               llvm::MDNode::get(VMContext, Ops));
1049   }
1050   if (getModuleDebugInfo())
1051     // We support a single version in the linked module. The LLVM
1052     // parser will drop debug info with a different version number
1053     // (and warn about it, too).
1054     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1055                               llvm::DEBUG_METADATA_VERSION);
1056 
1057   // We need to record the widths of enums and wchar_t, so that we can generate
1058   // the correct build attributes in the ARM backend. wchar_size is also used by
1059   // TargetLibraryInfo.
1060   uint64_t WCharWidth =
1061       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1062   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1063 
1064   if (getTriple().isOSzOS()) {
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_major_version",
1067                               uint32_t(CLANG_VERSION_MAJOR));
1068     getModule().addModuleFlag(llvm::Module::Warning,
1069                               "zos_product_minor_version",
1070                               uint32_t(CLANG_VERSION_MINOR));
1071     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1072                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1073     std::string ProductId = getClangVendor() + "clang";
1074     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1075                               llvm::MDString::get(VMContext, ProductId));
1076 
1077     // Record the language because we need it for the PPA2.
1078     StringRef lang_str = languageToString(
1079         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1080     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1081                               llvm::MDString::get(VMContext, lang_str));
1082 
1083     time_t TT = PreprocessorOpts.SourceDateEpoch
1084                     ? *PreprocessorOpts.SourceDateEpoch
1085                     : std::time(nullptr);
1086     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1087                               static_cast<uint64_t>(TT));
1088 
1089     // Multiple modes will be supported here.
1090     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1091                               llvm::MDString::get(VMContext, "ascii"));
1092   }
1093 
1094   llvm::Triple T = Context.getTargetInfo().getTriple();
1095   if (T.isARM() || T.isThumb()) {
1096     // The minimum width of an enum in bytes
1097     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1098     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1099   }
1100 
1101   if (T.isRISCV()) {
1102     StringRef ABIStr = Target.getABI();
1103     llvm::LLVMContext &Ctx = TheModule.getContext();
1104     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1105                               llvm::MDString::get(Ctx, ABIStr));
1106 
1107     // Add the canonical ISA string as metadata so the backend can set the ELF
1108     // attributes correctly. We use AppendUnique so LTO will keep all of the
1109     // unique ISA strings that were linked together.
1110     const std::vector<std::string> &Features =
1111         getTarget().getTargetOpts().Features;
1112     auto ParseResult =
1113         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1114     if (!errorToBool(ParseResult.takeError()))
1115       getModule().addModuleFlag(
1116           llvm::Module::AppendUnique, "riscv-isa",
1117           llvm::MDNode::get(
1118               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1119   }
1120 
1121   if (CodeGenOpts.SanitizeCfiCrossDso) {
1122     // Indicate that we want cross-DSO control flow integrity checks.
1123     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1124   }
1125 
1126   if (CodeGenOpts.WholeProgramVTables) {
1127     // Indicate whether VFE was enabled for this module, so that the
1128     // vcall_visibility metadata added under whole program vtables is handled
1129     // appropriately in the optimizer.
1130     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1131                               CodeGenOpts.VirtualFunctionElimination);
1132   }
1133 
1134   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1135     getModule().addModuleFlag(llvm::Module::Override,
1136                               "CFI Canonical Jump Tables",
1137                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1138   }
1139 
1140   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1141     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1142     // KCFI assumes patchable-function-prefix is the same for all indirectly
1143     // called functions. Store the expected offset for code generation.
1144     if (CodeGenOpts.PatchableFunctionEntryOffset)
1145       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1146                                 CodeGenOpts.PatchableFunctionEntryOffset);
1147   }
1148 
1149   if (CodeGenOpts.CFProtectionReturn &&
1150       Target.checkCFProtectionReturnSupported(getDiags())) {
1151     // Indicate that we want to instrument return control flow protection.
1152     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1153                               1);
1154   }
1155 
1156   if (CodeGenOpts.CFProtectionBranch &&
1157       Target.checkCFProtectionBranchSupported(getDiags())) {
1158     // Indicate that we want to instrument branch control flow protection.
1159     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1160                               1);
1161   }
1162 
1163   if (CodeGenOpts.FunctionReturnThunks)
1164     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1165 
1166   if (CodeGenOpts.IndirectBranchCSPrefix)
1167     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1168 
1169   // Add module metadata for return address signing (ignoring
1170   // non-leaf/all) and stack tagging. These are actually turned on by function
1171   // attributes, but we use module metadata to emit build attributes. This is
1172   // needed for LTO, where the function attributes are inside bitcode
1173   // serialised into a global variable by the time build attributes are
1174   // emitted, so we can't access them. LTO objects could be compiled with
1175   // different flags therefore module flags are set to "Min" behavior to achieve
1176   // the same end result of the normal build where e.g BTI is off if any object
1177   // doesn't support it.
1178   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1179       LangOpts.getSignReturnAddressScope() !=
1180           LangOptions::SignReturnAddressScopeKind::None)
1181     getModule().addModuleFlag(llvm::Module::Override,
1182                               "sign-return-address-buildattr", 1);
1183   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1184     getModule().addModuleFlag(llvm::Module::Override,
1185                               "tag-stack-memory-buildattr", 1);
1186 
1187   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1188     if (LangOpts.BranchTargetEnforcement)
1189       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1190                                 1);
1191     if (LangOpts.BranchProtectionPAuthLR)
1192       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1193                                 1);
1194     if (LangOpts.GuardedControlStack)
1195       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1196     if (LangOpts.hasSignReturnAddress())
1197       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1198     if (LangOpts.isSignReturnAddressScopeAll())
1199       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1200                                 1);
1201     if (!LangOpts.isSignReturnAddressWithAKey())
1202       getModule().addModuleFlag(llvm::Module::Min,
1203                                 "sign-return-address-with-bkey", 1);
1204 
1205     if (getTriple().isOSLinux()) {
1206       assert(getTriple().isOSBinFormatELF());
1207       using namespace llvm::ELF;
1208       uint64_t PAuthABIVersion =
1209           (LangOpts.PointerAuthIntrinsics
1210            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1211           (LangOpts.PointerAuthCalls
1212            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1213           (LangOpts.PointerAuthReturns
1214            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1215           (LangOpts.PointerAuthAuthTraps
1216            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1217           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1218            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1219           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1220            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1221           (LangOpts.PointerAuthInitFini
1222            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1223       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1224                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1225                     "Update when new enum items are defined");
1226       if (PAuthABIVersion != 0) {
1227         getModule().addModuleFlag(llvm::Module::Error,
1228                                   "aarch64-elf-pauthabi-platform",
1229                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1230         getModule().addModuleFlag(llvm::Module::Error,
1231                                   "aarch64-elf-pauthabi-version",
1232                                   PAuthABIVersion);
1233       }
1234     }
1235   }
1236 
1237   if (CodeGenOpts.StackClashProtector)
1238     getModule().addModuleFlag(
1239         llvm::Module::Override, "probe-stack",
1240         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1241 
1242   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1243     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1244                               CodeGenOpts.StackProbeSize);
1245 
1246   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1247     llvm::LLVMContext &Ctx = TheModule.getContext();
1248     getModule().addModuleFlag(
1249         llvm::Module::Error, "MemProfProfileFilename",
1250         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1251   }
1252 
1253   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1254     // Indicate whether __nvvm_reflect should be configured to flush denormal
1255     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1256     // property.)
1257     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1258                               CodeGenOpts.FP32DenormalMode.Output !=
1259                                   llvm::DenormalMode::IEEE);
1260   }
1261 
1262   if (LangOpts.EHAsynch)
1263     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1264 
1265   // Indicate whether this Module was compiled with -fopenmp
1266   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1267     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1268   if (getLangOpts().OpenMPIsTargetDevice)
1269     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1270                               LangOpts.OpenMP);
1271 
1272   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1273   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1274     EmitOpenCLMetadata();
1275     // Emit SPIR version.
1276     if (getTriple().isSPIR()) {
1277       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1278       // opencl.spir.version named metadata.
1279       // C++ for OpenCL has a distinct mapping for version compatibility with
1280       // OpenCL.
1281       auto Version = LangOpts.getOpenCLCompatibleVersion();
1282       llvm::Metadata *SPIRVerElts[] = {
1283           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1284               Int32Ty, Version / 100)),
1285           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1286               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1287       llvm::NamedMDNode *SPIRVerMD =
1288           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1289       llvm::LLVMContext &Ctx = TheModule.getContext();
1290       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1291     }
1292   }
1293 
1294   // HLSL related end of code gen work items.
1295   if (LangOpts.HLSL)
1296     getHLSLRuntime().finishCodeGen();
1297 
1298   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1299     assert(PLevel < 3 && "Invalid PIC Level");
1300     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1301     if (Context.getLangOpts().PIE)
1302       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1303   }
1304 
1305   if (getCodeGenOpts().CodeModel.size() > 0) {
1306     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1307                   .Case("tiny", llvm::CodeModel::Tiny)
1308                   .Case("small", llvm::CodeModel::Small)
1309                   .Case("kernel", llvm::CodeModel::Kernel)
1310                   .Case("medium", llvm::CodeModel::Medium)
1311                   .Case("large", llvm::CodeModel::Large)
1312                   .Default(~0u);
1313     if (CM != ~0u) {
1314       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1315       getModule().setCodeModel(codeModel);
1316 
1317       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1318           Context.getTargetInfo().getTriple().getArch() ==
1319               llvm::Triple::x86_64) {
1320         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1321       }
1322     }
1323   }
1324 
1325   if (CodeGenOpts.NoPLT)
1326     getModule().setRtLibUseGOT();
1327   if (getTriple().isOSBinFormatELF() &&
1328       CodeGenOpts.DirectAccessExternalData !=
1329           getModule().getDirectAccessExternalData()) {
1330     getModule().setDirectAccessExternalData(
1331         CodeGenOpts.DirectAccessExternalData);
1332   }
1333   if (CodeGenOpts.UnwindTables)
1334     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1335 
1336   switch (CodeGenOpts.getFramePointer()) {
1337   case CodeGenOptions::FramePointerKind::None:
1338     // 0 ("none") is the default.
1339     break;
1340   case CodeGenOptions::FramePointerKind::Reserved:
1341     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1342     break;
1343   case CodeGenOptions::FramePointerKind::NonLeaf:
1344     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1345     break;
1346   case CodeGenOptions::FramePointerKind::All:
1347     getModule().setFramePointer(llvm::FramePointerKind::All);
1348     break;
1349   }
1350 
1351   SimplifyPersonality();
1352 
1353   if (getCodeGenOpts().EmitDeclMetadata)
1354     EmitDeclMetadata();
1355 
1356   if (getCodeGenOpts().CoverageNotesFile.size() ||
1357       getCodeGenOpts().CoverageDataFile.size())
1358     EmitCoverageFile();
1359 
1360   if (CGDebugInfo *DI = getModuleDebugInfo())
1361     DI->finalize();
1362 
1363   if (getCodeGenOpts().EmitVersionIdentMetadata)
1364     EmitVersionIdentMetadata();
1365 
1366   if (!getCodeGenOpts().RecordCommandLine.empty())
1367     EmitCommandLineMetadata();
1368 
1369   if (!getCodeGenOpts().StackProtectorGuard.empty())
1370     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1371   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1372     getModule().setStackProtectorGuardReg(
1373         getCodeGenOpts().StackProtectorGuardReg);
1374   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1375     getModule().setStackProtectorGuardSymbol(
1376         getCodeGenOpts().StackProtectorGuardSymbol);
1377   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1378     getModule().setStackProtectorGuardOffset(
1379         getCodeGenOpts().StackProtectorGuardOffset);
1380   if (getCodeGenOpts().StackAlignment)
1381     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1382   if (getCodeGenOpts().SkipRaxSetup)
1383     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1384   if (getLangOpts().RegCall4)
1385     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1386 
1387   if (getContext().getTargetInfo().getMaxTLSAlign())
1388     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1389                               getContext().getTargetInfo().getMaxTLSAlign());
1390 
1391   getTargetCodeGenInfo().emitTargetGlobals(*this);
1392 
1393   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1394 
1395   EmitBackendOptionsMetadata(getCodeGenOpts());
1396 
1397   // If there is device offloading code embed it in the host now.
1398   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1399 
1400   // Set visibility from DLL storage class
1401   // We do this at the end of LLVM IR generation; after any operation
1402   // that might affect the DLL storage class or the visibility, and
1403   // before anything that might act on these.
1404   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1405 
1406   // Check the tail call symbols are truly undefined.
1407   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1408     for (auto &I : MustTailCallUndefinedGlobals) {
1409       if (!I.first->isDefined())
1410         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1411       else {
1412         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1413         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1414         if (!Entry || Entry->isWeakForLinker() ||
1415             Entry->isDeclarationForLinker())
1416           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1417       }
1418     }
1419   }
1420 }
1421 
1422 void CodeGenModule::EmitOpenCLMetadata() {
1423   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1424   // opencl.ocl.version named metadata node.
1425   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1426   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1427 
1428   auto EmitVersion = [this](StringRef MDName, int Version) {
1429     llvm::Metadata *OCLVerElts[] = {
1430         llvm::ConstantAsMetadata::get(
1431             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1432         llvm::ConstantAsMetadata::get(
1433             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1434     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1435     llvm::LLVMContext &Ctx = TheModule.getContext();
1436     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1437   };
1438 
1439   EmitVersion("opencl.ocl.version", CLVersion);
1440   if (LangOpts.OpenCLCPlusPlus) {
1441     // In addition to the OpenCL compatible version, emit the C++ version.
1442     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1443   }
1444 }
1445 
1446 void CodeGenModule::EmitBackendOptionsMetadata(
1447     const CodeGenOptions &CodeGenOpts) {
1448   if (getTriple().isRISCV()) {
1449     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1450                               CodeGenOpts.SmallDataLimit);
1451   }
1452 }
1453 
1454 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1455   // Make sure that this type is translated.
1456   getTypes().UpdateCompletedType(TD);
1457 }
1458 
1459 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1460   // Make sure that this type is translated.
1461   getTypes().RefreshTypeCacheForClass(RD);
1462 }
1463 
1464 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1465   if (!TBAA)
1466     return nullptr;
1467   return TBAA->getTypeInfo(QTy);
1468 }
1469 
1470 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1471   if (!TBAA)
1472     return TBAAAccessInfo();
1473   if (getLangOpts().CUDAIsDevice) {
1474     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1475     // access info.
1476     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1477       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1478           nullptr)
1479         return TBAAAccessInfo();
1480     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1481       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1482           nullptr)
1483         return TBAAAccessInfo();
1484     }
1485   }
1486   return TBAA->getAccessInfo(AccessType);
1487 }
1488 
1489 TBAAAccessInfo
1490 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1491   if (!TBAA)
1492     return TBAAAccessInfo();
1493   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1494 }
1495 
1496 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1497   if (!TBAA)
1498     return nullptr;
1499   return TBAA->getTBAAStructInfo(QTy);
1500 }
1501 
1502 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1503   if (!TBAA)
1504     return nullptr;
1505   return TBAA->getBaseTypeInfo(QTy);
1506 }
1507 
1508 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1509   if (!TBAA)
1510     return nullptr;
1511   return TBAA->getAccessTagInfo(Info);
1512 }
1513 
1514 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1515                                                    TBAAAccessInfo TargetInfo) {
1516   if (!TBAA)
1517     return TBAAAccessInfo();
1518   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1519 }
1520 
1521 TBAAAccessInfo
1522 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1523                                                    TBAAAccessInfo InfoB) {
1524   if (!TBAA)
1525     return TBAAAccessInfo();
1526   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1527 }
1528 
1529 TBAAAccessInfo
1530 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1531                                               TBAAAccessInfo SrcInfo) {
1532   if (!TBAA)
1533     return TBAAAccessInfo();
1534   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1535 }
1536 
1537 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1538                                                 TBAAAccessInfo TBAAInfo) {
1539   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1540     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1541 }
1542 
1543 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1544     llvm::Instruction *I, const CXXRecordDecl *RD) {
1545   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1546                  llvm::MDNode::get(getLLVMContext(), {}));
1547 }
1548 
1549 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1550   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1551   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1552 }
1553 
1554 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1555 /// specified stmt yet.
1556 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1557   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1558                                                "cannot compile this %0 yet");
1559   std::string Msg = Type;
1560   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1561       << Msg << S->getSourceRange();
1562 }
1563 
1564 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1565 /// specified decl yet.
1566 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1567   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1568                                                "cannot compile this %0 yet");
1569   std::string Msg = Type;
1570   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1571 }
1572 
1573 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1574   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1575 }
1576 
1577 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1578                                         const NamedDecl *D) const {
1579   // Internal definitions always have default visibility.
1580   if (GV->hasLocalLinkage()) {
1581     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1582     return;
1583   }
1584   if (!D)
1585     return;
1586 
1587   // Set visibility for definitions, and for declarations if requested globally
1588   // or set explicitly.
1589   LinkageInfo LV = D->getLinkageAndVisibility();
1590 
1591   // OpenMP declare target variables must be visible to the host so they can
1592   // be registered. We require protected visibility unless the variable has
1593   // the DT_nohost modifier and does not need to be registered.
1594   if (Context.getLangOpts().OpenMP &&
1595       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1596       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1597       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1598           OMPDeclareTargetDeclAttr::DT_NoHost &&
1599       LV.getVisibility() == HiddenVisibility) {
1600     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1601     return;
1602   }
1603 
1604   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1605     // Reject incompatible dlllstorage and visibility annotations.
1606     if (!LV.isVisibilityExplicit())
1607       return;
1608     if (GV->hasDLLExportStorageClass()) {
1609       if (LV.getVisibility() == HiddenVisibility)
1610         getDiags().Report(D->getLocation(),
1611                           diag::err_hidden_visibility_dllexport);
1612     } else if (LV.getVisibility() != DefaultVisibility) {
1613       getDiags().Report(D->getLocation(),
1614                         diag::err_non_default_visibility_dllimport);
1615     }
1616     return;
1617   }
1618 
1619   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1620       !GV->isDeclarationForLinker())
1621     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1622 }
1623 
1624 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1625                                  llvm::GlobalValue *GV) {
1626   if (GV->hasLocalLinkage())
1627     return true;
1628 
1629   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1630     return true;
1631 
1632   // DLLImport explicitly marks the GV as external.
1633   if (GV->hasDLLImportStorageClass())
1634     return false;
1635 
1636   const llvm::Triple &TT = CGM.getTriple();
1637   const auto &CGOpts = CGM.getCodeGenOpts();
1638   if (TT.isWindowsGNUEnvironment()) {
1639     // In MinGW, variables without DLLImport can still be automatically
1640     // imported from a DLL by the linker; don't mark variables that
1641     // potentially could come from another DLL as DSO local.
1642 
1643     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1644     // (and this actually happens in the public interface of libstdc++), so
1645     // such variables can't be marked as DSO local. (Native TLS variables
1646     // can't be dllimported at all, though.)
1647     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1648         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1649         CGOpts.AutoImport)
1650       return false;
1651   }
1652 
1653   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1654   // remain unresolved in the link, they can be resolved to zero, which is
1655   // outside the current DSO.
1656   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1657     return false;
1658 
1659   // Every other GV is local on COFF.
1660   // Make an exception for windows OS in the triple: Some firmware builds use
1661   // *-win32-macho triples. This (accidentally?) produced windows relocations
1662   // without GOT tables in older clang versions; Keep this behaviour.
1663   // FIXME: even thread local variables?
1664   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1665     return true;
1666 
1667   // Only handle COFF and ELF for now.
1668   if (!TT.isOSBinFormatELF())
1669     return false;
1670 
1671   // If this is not an executable, don't assume anything is local.
1672   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1673   const auto &LOpts = CGM.getLangOpts();
1674   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1675     // On ELF, if -fno-semantic-interposition is specified and the target
1676     // supports local aliases, there will be neither CC1
1677     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1678     // dso_local on the function if using a local alias is preferable (can avoid
1679     // PLT indirection).
1680     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1681       return false;
1682     return !(CGM.getLangOpts().SemanticInterposition ||
1683              CGM.getLangOpts().HalfNoSemanticInterposition);
1684   }
1685 
1686   // A definition cannot be preempted from an executable.
1687   if (!GV->isDeclarationForLinker())
1688     return true;
1689 
1690   // Most PIC code sequences that assume that a symbol is local cannot produce a
1691   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1692   // depended, it seems worth it to handle it here.
1693   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1694     return false;
1695 
1696   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1697   if (TT.isPPC64())
1698     return false;
1699 
1700   if (CGOpts.DirectAccessExternalData) {
1701     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1702     // for non-thread-local variables. If the symbol is not defined in the
1703     // executable, a copy relocation will be needed at link time. dso_local is
1704     // excluded for thread-local variables because they generally don't support
1705     // copy relocations.
1706     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1707       if (!Var->isThreadLocal())
1708         return true;
1709 
1710     // -fno-pic sets dso_local on a function declaration to allow direct
1711     // accesses when taking its address (similar to a data symbol). If the
1712     // function is not defined in the executable, a canonical PLT entry will be
1713     // needed at link time. -fno-direct-access-external-data can avoid the
1714     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1715     // it could just cause trouble without providing perceptible benefits.
1716     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1717       return true;
1718   }
1719 
1720   // If we can use copy relocations we can assume it is local.
1721 
1722   // Otherwise don't assume it is local.
1723   return false;
1724 }
1725 
1726 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1727   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1728 }
1729 
1730 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1731                                           GlobalDecl GD) const {
1732   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1733   // C++ destructors have a few C++ ABI specific special cases.
1734   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1735     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1736     return;
1737   }
1738   setDLLImportDLLExport(GV, D);
1739 }
1740 
1741 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1742                                           const NamedDecl *D) const {
1743   if (D && D->isExternallyVisible()) {
1744     if (D->hasAttr<DLLImportAttr>())
1745       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1746     else if ((D->hasAttr<DLLExportAttr>() ||
1747               shouldMapVisibilityToDLLExport(D)) &&
1748              !GV->isDeclarationForLinker())
1749       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1750   }
1751 }
1752 
1753 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1754                                     GlobalDecl GD) const {
1755   setDLLImportDLLExport(GV, GD);
1756   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1757 }
1758 
1759 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1760                                     const NamedDecl *D) const {
1761   setDLLImportDLLExport(GV, D);
1762   setGVPropertiesAux(GV, D);
1763 }
1764 
1765 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1766                                        const NamedDecl *D) const {
1767   setGlobalVisibility(GV, D);
1768   setDSOLocal(GV);
1769   GV->setPartition(CodeGenOpts.SymbolPartition);
1770 }
1771 
1772 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1773   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1774       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1775       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1776       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1777       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1778 }
1779 
1780 llvm::GlobalVariable::ThreadLocalMode
1781 CodeGenModule::GetDefaultLLVMTLSModel() const {
1782   switch (CodeGenOpts.getDefaultTLSModel()) {
1783   case CodeGenOptions::GeneralDynamicTLSModel:
1784     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1785   case CodeGenOptions::LocalDynamicTLSModel:
1786     return llvm::GlobalVariable::LocalDynamicTLSModel;
1787   case CodeGenOptions::InitialExecTLSModel:
1788     return llvm::GlobalVariable::InitialExecTLSModel;
1789   case CodeGenOptions::LocalExecTLSModel:
1790     return llvm::GlobalVariable::LocalExecTLSModel;
1791   }
1792   llvm_unreachable("Invalid TLS model!");
1793 }
1794 
1795 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1796   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1797 
1798   llvm::GlobalValue::ThreadLocalMode TLM;
1799   TLM = GetDefaultLLVMTLSModel();
1800 
1801   // Override the TLS model if it is explicitly specified.
1802   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1803     TLM = GetLLVMTLSModel(Attr->getModel());
1804   }
1805 
1806   GV->setThreadLocalMode(TLM);
1807 }
1808 
1809 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1810                                           StringRef Name) {
1811   const TargetInfo &Target = CGM.getTarget();
1812   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1813 }
1814 
1815 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1816                                                  const CPUSpecificAttr *Attr,
1817                                                  unsigned CPUIndex,
1818                                                  raw_ostream &Out) {
1819   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1820   // supported.
1821   if (Attr)
1822     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1823   else if (CGM.getTarget().supportsIFunc())
1824     Out << ".resolver";
1825 }
1826 
1827 // Returns true if GD is a function decl with internal linkage and
1828 // needs a unique suffix after the mangled name.
1829 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1830                                         CodeGenModule &CGM) {
1831   const Decl *D = GD.getDecl();
1832   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1833          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1834 }
1835 
1836 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1837                                       const NamedDecl *ND,
1838                                       bool OmitMultiVersionMangling = false) {
1839   SmallString<256> Buffer;
1840   llvm::raw_svector_ostream Out(Buffer);
1841   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1842   if (!CGM.getModuleNameHash().empty())
1843     MC.needsUniqueInternalLinkageNames();
1844   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1845   if (ShouldMangle)
1846     MC.mangleName(GD.getWithDecl(ND), Out);
1847   else {
1848     IdentifierInfo *II = ND->getIdentifier();
1849     assert(II && "Attempt to mangle unnamed decl.");
1850     const auto *FD = dyn_cast<FunctionDecl>(ND);
1851 
1852     if (FD &&
1853         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1854       if (CGM.getLangOpts().RegCall4)
1855         Out << "__regcall4__" << II->getName();
1856       else
1857         Out << "__regcall3__" << II->getName();
1858     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1859                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1860       Out << "__device_stub__" << II->getName();
1861     } else {
1862       Out << II->getName();
1863     }
1864   }
1865 
1866   // Check if the module name hash should be appended for internal linkage
1867   // symbols.   This should come before multi-version target suffixes are
1868   // appended. This is to keep the name and module hash suffix of the
1869   // internal linkage function together.  The unique suffix should only be
1870   // added when name mangling is done to make sure that the final name can
1871   // be properly demangled.  For example, for C functions without prototypes,
1872   // name mangling is not done and the unique suffix should not be appeneded
1873   // then.
1874   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1875     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1876            "Hash computed when not explicitly requested");
1877     Out << CGM.getModuleNameHash();
1878   }
1879 
1880   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1881     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1882       switch (FD->getMultiVersionKind()) {
1883       case MultiVersionKind::CPUDispatch:
1884       case MultiVersionKind::CPUSpecific:
1885         AppendCPUSpecificCPUDispatchMangling(CGM,
1886                                              FD->getAttr<CPUSpecificAttr>(),
1887                                              GD.getMultiVersionIndex(), Out);
1888         break;
1889       case MultiVersionKind::Target: {
1890         auto *Attr = FD->getAttr<TargetAttr>();
1891         assert(Attr && "Expected TargetAttr to be present "
1892                        "for attribute mangling");
1893         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1894         Info.appendAttributeMangling(Attr, Out);
1895         break;
1896       }
1897       case MultiVersionKind::TargetVersion: {
1898         auto *Attr = FD->getAttr<TargetVersionAttr>();
1899         assert(Attr && "Expected TargetVersionAttr to be present "
1900                        "for attribute mangling");
1901         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1902         Info.appendAttributeMangling(Attr, Out);
1903         break;
1904       }
1905       case MultiVersionKind::TargetClones: {
1906         auto *Attr = FD->getAttr<TargetClonesAttr>();
1907         assert(Attr && "Expected TargetClonesAttr to be present "
1908                        "for attribute mangling");
1909         unsigned Index = GD.getMultiVersionIndex();
1910         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1911         Info.appendAttributeMangling(Attr, Index, Out);
1912         break;
1913       }
1914       case MultiVersionKind::None:
1915         llvm_unreachable("None multiversion type isn't valid here");
1916       }
1917     }
1918 
1919   // Make unique name for device side static file-scope variable for HIP.
1920   if (CGM.getContext().shouldExternalize(ND) &&
1921       CGM.getLangOpts().GPURelocatableDeviceCode &&
1922       CGM.getLangOpts().CUDAIsDevice)
1923     CGM.printPostfixForExternalizedDecl(Out, ND);
1924 
1925   return std::string(Out.str());
1926 }
1927 
1928 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1929                                             const FunctionDecl *FD,
1930                                             StringRef &CurName) {
1931   if (!FD->isMultiVersion())
1932     return;
1933 
1934   // Get the name of what this would be without the 'target' attribute.  This
1935   // allows us to lookup the version that was emitted when this wasn't a
1936   // multiversion function.
1937   std::string NonTargetName =
1938       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1939   GlobalDecl OtherGD;
1940   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1941     assert(OtherGD.getCanonicalDecl()
1942                .getDecl()
1943                ->getAsFunction()
1944                ->isMultiVersion() &&
1945            "Other GD should now be a multiversioned function");
1946     // OtherFD is the version of this function that was mangled BEFORE
1947     // becoming a MultiVersion function.  It potentially needs to be updated.
1948     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1949                                       .getDecl()
1950                                       ->getAsFunction()
1951                                       ->getMostRecentDecl();
1952     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1953     // This is so that if the initial version was already the 'default'
1954     // version, we don't try to update it.
1955     if (OtherName != NonTargetName) {
1956       // Remove instead of erase, since others may have stored the StringRef
1957       // to this.
1958       const auto ExistingRecord = Manglings.find(NonTargetName);
1959       if (ExistingRecord != std::end(Manglings))
1960         Manglings.remove(&(*ExistingRecord));
1961       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1962       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1963           Result.first->first();
1964       // If this is the current decl is being created, make sure we update the name.
1965       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1966         CurName = OtherNameRef;
1967       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1968         Entry->setName(OtherName);
1969     }
1970   }
1971 }
1972 
1973 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1974   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1975 
1976   // Some ABIs don't have constructor variants.  Make sure that base and
1977   // complete constructors get mangled the same.
1978   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1979     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1980       CXXCtorType OrigCtorType = GD.getCtorType();
1981       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1982       if (OrigCtorType == Ctor_Base)
1983         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1984     }
1985   }
1986 
1987   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1988   // static device variable depends on whether the variable is referenced by
1989   // a host or device host function. Therefore the mangled name cannot be
1990   // cached.
1991   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1992     auto FoundName = MangledDeclNames.find(CanonicalGD);
1993     if (FoundName != MangledDeclNames.end())
1994       return FoundName->second;
1995   }
1996 
1997   // Keep the first result in the case of a mangling collision.
1998   const auto *ND = cast<NamedDecl>(GD.getDecl());
1999   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2000 
2001   // Ensure either we have different ABIs between host and device compilations,
2002   // says host compilation following MSVC ABI but device compilation follows
2003   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2004   // mangling should be the same after name stubbing. The later checking is
2005   // very important as the device kernel name being mangled in host-compilation
2006   // is used to resolve the device binaries to be executed. Inconsistent naming
2007   // result in undefined behavior. Even though we cannot check that naming
2008   // directly between host- and device-compilations, the host- and
2009   // device-mangling in host compilation could help catching certain ones.
2010   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2011          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2012          (getContext().getAuxTargetInfo() &&
2013           (getContext().getAuxTargetInfo()->getCXXABI() !=
2014            getContext().getTargetInfo().getCXXABI())) ||
2015          getCUDARuntime().getDeviceSideName(ND) ==
2016              getMangledNameImpl(
2017                  *this,
2018                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2019                  ND));
2020 
2021   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2022   return MangledDeclNames[CanonicalGD] = Result.first->first();
2023 }
2024 
2025 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2026                                              const BlockDecl *BD) {
2027   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2028   const Decl *D = GD.getDecl();
2029 
2030   SmallString<256> Buffer;
2031   llvm::raw_svector_ostream Out(Buffer);
2032   if (!D)
2033     MangleCtx.mangleGlobalBlock(BD,
2034       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2035   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2036     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2037   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2038     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2039   else
2040     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2041 
2042   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2043   return Result.first->first();
2044 }
2045 
2046 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2047   auto it = MangledDeclNames.begin();
2048   while (it != MangledDeclNames.end()) {
2049     if (it->second == Name)
2050       return it->first;
2051     it++;
2052   }
2053   return GlobalDecl();
2054 }
2055 
2056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2057   return getModule().getNamedValue(Name);
2058 }
2059 
2060 /// AddGlobalCtor - Add a function to the list that will be called before
2061 /// main() runs.
2062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2063                                   unsigned LexOrder,
2064                                   llvm::Constant *AssociatedData) {
2065   // FIXME: Type coercion of void()* types.
2066   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2067 }
2068 
2069 /// AddGlobalDtor - Add a function to the list that will be called
2070 /// when the module is unloaded.
2071 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2072                                   bool IsDtorAttrFunc) {
2073   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2074       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2075     DtorsUsingAtExit[Priority].push_back(Dtor);
2076     return;
2077   }
2078 
2079   // FIXME: Type coercion of void()* types.
2080   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2081 }
2082 
2083 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2084   if (Fns.empty()) return;
2085 
2086   // Ctor function type is void()*.
2087   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2088   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2089       TheModule.getDataLayout().getProgramAddressSpace());
2090 
2091   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2092   llvm::StructType *CtorStructTy = llvm::StructType::get(
2093       Int32Ty, CtorPFTy, VoidPtrTy);
2094 
2095   // Construct the constructor and destructor arrays.
2096   ConstantInitBuilder builder(*this);
2097   auto ctors = builder.beginArray(CtorStructTy);
2098   for (const auto &I : Fns) {
2099     auto ctor = ctors.beginStruct(CtorStructTy);
2100     ctor.addInt(Int32Ty, I.Priority);
2101     ctor.add(I.Initializer);
2102     if (I.AssociatedData)
2103       ctor.add(I.AssociatedData);
2104     else
2105       ctor.addNullPointer(VoidPtrTy);
2106     ctor.finishAndAddTo(ctors);
2107   }
2108 
2109   auto list =
2110     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2111                                 /*constant*/ false,
2112                                 llvm::GlobalValue::AppendingLinkage);
2113 
2114   // The LTO linker doesn't seem to like it when we set an alignment
2115   // on appending variables.  Take it off as a workaround.
2116   list->setAlignment(std::nullopt);
2117 
2118   Fns.clear();
2119 }
2120 
2121 llvm::GlobalValue::LinkageTypes
2122 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2123   const auto *D = cast<FunctionDecl>(GD.getDecl());
2124 
2125   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2126 
2127   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2128     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2129 
2130   return getLLVMLinkageForDeclarator(D, Linkage);
2131 }
2132 
2133 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2134   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2135   if (!MDS) return nullptr;
2136 
2137   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2138 }
2139 
2140 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2141   if (auto *FnType = T->getAs<FunctionProtoType>())
2142     T = getContext().getFunctionType(
2143         FnType->getReturnType(), FnType->getParamTypes(),
2144         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2145 
2146   std::string OutName;
2147   llvm::raw_string_ostream Out(OutName);
2148   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2149       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2150 
2151   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2152     Out << ".normalized";
2153 
2154   return llvm::ConstantInt::get(Int32Ty,
2155                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2156 }
2157 
2158 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2159                                               const CGFunctionInfo &Info,
2160                                               llvm::Function *F, bool IsThunk) {
2161   unsigned CallingConv;
2162   llvm::AttributeList PAL;
2163   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2164                          /*AttrOnCallSite=*/false, IsThunk);
2165   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2166       getTarget().getTriple().isWindowsArm64EC()) {
2167     SourceLocation Loc;
2168     if (const Decl *D = GD.getDecl())
2169       Loc = D->getLocation();
2170 
2171     Error(Loc, "__vectorcall calling convention is not currently supported");
2172   }
2173   F->setAttributes(PAL);
2174   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2175 }
2176 
2177 static void removeImageAccessQualifier(std::string& TyName) {
2178   std::string ReadOnlyQual("__read_only");
2179   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2180   if (ReadOnlyPos != std::string::npos)
2181     // "+ 1" for the space after access qualifier.
2182     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2183   else {
2184     std::string WriteOnlyQual("__write_only");
2185     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2186     if (WriteOnlyPos != std::string::npos)
2187       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2188     else {
2189       std::string ReadWriteQual("__read_write");
2190       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2191       if (ReadWritePos != std::string::npos)
2192         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2193     }
2194   }
2195 }
2196 
2197 // Returns the address space id that should be produced to the
2198 // kernel_arg_addr_space metadata. This is always fixed to the ids
2199 // as specified in the SPIR 2.0 specification in order to differentiate
2200 // for example in clGetKernelArgInfo() implementation between the address
2201 // spaces with targets without unique mapping to the OpenCL address spaces
2202 // (basically all single AS CPUs).
2203 static unsigned ArgInfoAddressSpace(LangAS AS) {
2204   switch (AS) {
2205   case LangAS::opencl_global:
2206     return 1;
2207   case LangAS::opencl_constant:
2208     return 2;
2209   case LangAS::opencl_local:
2210     return 3;
2211   case LangAS::opencl_generic:
2212     return 4; // Not in SPIR 2.0 specs.
2213   case LangAS::opencl_global_device:
2214     return 5;
2215   case LangAS::opencl_global_host:
2216     return 6;
2217   default:
2218     return 0; // Assume private.
2219   }
2220 }
2221 
2222 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2223                                          const FunctionDecl *FD,
2224                                          CodeGenFunction *CGF) {
2225   assert(((FD && CGF) || (!FD && !CGF)) &&
2226          "Incorrect use - FD and CGF should either be both null or not!");
2227   // Create MDNodes that represent the kernel arg metadata.
2228   // Each MDNode is a list in the form of "key", N number of values which is
2229   // the same number of values as their are kernel arguments.
2230 
2231   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2232 
2233   // MDNode for the kernel argument address space qualifiers.
2234   SmallVector<llvm::Metadata *, 8> addressQuals;
2235 
2236   // MDNode for the kernel argument access qualifiers (images only).
2237   SmallVector<llvm::Metadata *, 8> accessQuals;
2238 
2239   // MDNode for the kernel argument type names.
2240   SmallVector<llvm::Metadata *, 8> argTypeNames;
2241 
2242   // MDNode for the kernel argument base type names.
2243   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2244 
2245   // MDNode for the kernel argument type qualifiers.
2246   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2247 
2248   // MDNode for the kernel argument names.
2249   SmallVector<llvm::Metadata *, 8> argNames;
2250 
2251   if (FD && CGF)
2252     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2253       const ParmVarDecl *parm = FD->getParamDecl(i);
2254       // Get argument name.
2255       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2256 
2257       if (!getLangOpts().OpenCL)
2258         continue;
2259       QualType ty = parm->getType();
2260       std::string typeQuals;
2261 
2262       // Get image and pipe access qualifier:
2263       if (ty->isImageType() || ty->isPipeType()) {
2264         const Decl *PDecl = parm;
2265         if (const auto *TD = ty->getAs<TypedefType>())
2266           PDecl = TD->getDecl();
2267         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2268         if (A && A->isWriteOnly())
2269           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2270         else if (A && A->isReadWrite())
2271           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2272         else
2273           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2274       } else
2275         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2276 
2277       auto getTypeSpelling = [&](QualType Ty) {
2278         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2279 
2280         if (Ty.isCanonical()) {
2281           StringRef typeNameRef = typeName;
2282           // Turn "unsigned type" to "utype"
2283           if (typeNameRef.consume_front("unsigned "))
2284             return std::string("u") + typeNameRef.str();
2285           if (typeNameRef.consume_front("signed "))
2286             return typeNameRef.str();
2287         }
2288 
2289         return typeName;
2290       };
2291 
2292       if (ty->isPointerType()) {
2293         QualType pointeeTy = ty->getPointeeType();
2294 
2295         // Get address qualifier.
2296         addressQuals.push_back(
2297             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2298                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2299 
2300         // Get argument type name.
2301         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2302         std::string baseTypeName =
2303             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2304         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2305         argBaseTypeNames.push_back(
2306             llvm::MDString::get(VMContext, baseTypeName));
2307 
2308         // Get argument type qualifiers:
2309         if (ty.isRestrictQualified())
2310           typeQuals = "restrict";
2311         if (pointeeTy.isConstQualified() ||
2312             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2313           typeQuals += typeQuals.empty() ? "const" : " const";
2314         if (pointeeTy.isVolatileQualified())
2315           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2316       } else {
2317         uint32_t AddrSpc = 0;
2318         bool isPipe = ty->isPipeType();
2319         if (ty->isImageType() || isPipe)
2320           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2321 
2322         addressQuals.push_back(
2323             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2324 
2325         // Get argument type name.
2326         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2327         std::string typeName = getTypeSpelling(ty);
2328         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2329 
2330         // Remove access qualifiers on images
2331         // (as they are inseparable from type in clang implementation,
2332         // but OpenCL spec provides a special query to get access qualifier
2333         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2334         if (ty->isImageType()) {
2335           removeImageAccessQualifier(typeName);
2336           removeImageAccessQualifier(baseTypeName);
2337         }
2338 
2339         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2340         argBaseTypeNames.push_back(
2341             llvm::MDString::get(VMContext, baseTypeName));
2342 
2343         if (isPipe)
2344           typeQuals = "pipe";
2345       }
2346       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2347     }
2348 
2349   if (getLangOpts().OpenCL) {
2350     Fn->setMetadata("kernel_arg_addr_space",
2351                     llvm::MDNode::get(VMContext, addressQuals));
2352     Fn->setMetadata("kernel_arg_access_qual",
2353                     llvm::MDNode::get(VMContext, accessQuals));
2354     Fn->setMetadata("kernel_arg_type",
2355                     llvm::MDNode::get(VMContext, argTypeNames));
2356     Fn->setMetadata("kernel_arg_base_type",
2357                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2358     Fn->setMetadata("kernel_arg_type_qual",
2359                     llvm::MDNode::get(VMContext, argTypeQuals));
2360   }
2361   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2362       getCodeGenOpts().HIPSaveKernelArgName)
2363     Fn->setMetadata("kernel_arg_name",
2364                     llvm::MDNode::get(VMContext, argNames));
2365 }
2366 
2367 /// Determines whether the language options require us to model
2368 /// unwind exceptions.  We treat -fexceptions as mandating this
2369 /// except under the fragile ObjC ABI with only ObjC exceptions
2370 /// enabled.  This means, for example, that C with -fexceptions
2371 /// enables this.
2372 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2373   // If exceptions are completely disabled, obviously this is false.
2374   if (!LangOpts.Exceptions) return false;
2375 
2376   // If C++ exceptions are enabled, this is true.
2377   if (LangOpts.CXXExceptions) return true;
2378 
2379   // If ObjC exceptions are enabled, this depends on the ABI.
2380   if (LangOpts.ObjCExceptions) {
2381     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2382   }
2383 
2384   return true;
2385 }
2386 
2387 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2388                                                       const CXXMethodDecl *MD) {
2389   // Check that the type metadata can ever actually be used by a call.
2390   if (!CGM.getCodeGenOpts().LTOUnit ||
2391       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2392     return false;
2393 
2394   // Only functions whose address can be taken with a member function pointer
2395   // need this sort of type metadata.
2396   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2397          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2398 }
2399 
2400 SmallVector<const CXXRecordDecl *, 0>
2401 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2402   llvm::SetVector<const CXXRecordDecl *> MostBases;
2403 
2404   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2405   CollectMostBases = [&](const CXXRecordDecl *RD) {
2406     if (RD->getNumBases() == 0)
2407       MostBases.insert(RD);
2408     for (const CXXBaseSpecifier &B : RD->bases())
2409       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2410   };
2411   CollectMostBases(RD);
2412   return MostBases.takeVector();
2413 }
2414 
2415 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2416                                                            llvm::Function *F) {
2417   llvm::AttrBuilder B(F->getContext());
2418 
2419   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2420     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2421 
2422   if (CodeGenOpts.StackClashProtector)
2423     B.addAttribute("probe-stack", "inline-asm");
2424 
2425   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2426     B.addAttribute("stack-probe-size",
2427                    std::to_string(CodeGenOpts.StackProbeSize));
2428 
2429   if (!hasUnwindExceptions(LangOpts))
2430     B.addAttribute(llvm::Attribute::NoUnwind);
2431 
2432   if (D && D->hasAttr<NoStackProtectorAttr>())
2433     ; // Do nothing.
2434   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2435            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2436     B.addAttribute(llvm::Attribute::StackProtectStrong);
2437   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2438     B.addAttribute(llvm::Attribute::StackProtect);
2439   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2440     B.addAttribute(llvm::Attribute::StackProtectStrong);
2441   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2442     B.addAttribute(llvm::Attribute::StackProtectReq);
2443 
2444   if (!D) {
2445     // If we don't have a declaration to control inlining, the function isn't
2446     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2447     // disabled, mark the function as noinline.
2448     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2449         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2450       B.addAttribute(llvm::Attribute::NoInline);
2451 
2452     F->addFnAttrs(B);
2453     return;
2454   }
2455 
2456   // Handle SME attributes that apply to function definitions,
2457   // rather than to function prototypes.
2458   if (D->hasAttr<ArmLocallyStreamingAttr>())
2459     B.addAttribute("aarch64_pstate_sm_body");
2460 
2461   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2462     if (Attr->isNewZA())
2463       B.addAttribute("aarch64_new_za");
2464     if (Attr->isNewZT0())
2465       B.addAttribute("aarch64_new_zt0");
2466   }
2467 
2468   // Track whether we need to add the optnone LLVM attribute,
2469   // starting with the default for this optimization level.
2470   bool ShouldAddOptNone =
2471       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2472   // We can't add optnone in the following cases, it won't pass the verifier.
2473   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2474   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2475 
2476   // Add optnone, but do so only if the function isn't always_inline.
2477   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2478       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2479     B.addAttribute(llvm::Attribute::OptimizeNone);
2480 
2481     // OptimizeNone implies noinline; we should not be inlining such functions.
2482     B.addAttribute(llvm::Attribute::NoInline);
2483 
2484     // We still need to handle naked functions even though optnone subsumes
2485     // much of their semantics.
2486     if (D->hasAttr<NakedAttr>())
2487       B.addAttribute(llvm::Attribute::Naked);
2488 
2489     // OptimizeNone wins over OptimizeForSize and MinSize.
2490     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2491     F->removeFnAttr(llvm::Attribute::MinSize);
2492   } else if (D->hasAttr<NakedAttr>()) {
2493     // Naked implies noinline: we should not be inlining such functions.
2494     B.addAttribute(llvm::Attribute::Naked);
2495     B.addAttribute(llvm::Attribute::NoInline);
2496   } else if (D->hasAttr<NoDuplicateAttr>()) {
2497     B.addAttribute(llvm::Attribute::NoDuplicate);
2498   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2499     // Add noinline if the function isn't always_inline.
2500     B.addAttribute(llvm::Attribute::NoInline);
2501   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2502              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2503     // (noinline wins over always_inline, and we can't specify both in IR)
2504     B.addAttribute(llvm::Attribute::AlwaysInline);
2505   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2506     // If we're not inlining, then force everything that isn't always_inline to
2507     // carry an explicit noinline attribute.
2508     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2509       B.addAttribute(llvm::Attribute::NoInline);
2510   } else {
2511     // Otherwise, propagate the inline hint attribute and potentially use its
2512     // absence to mark things as noinline.
2513     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2514       // Search function and template pattern redeclarations for inline.
2515       auto CheckForInline = [](const FunctionDecl *FD) {
2516         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2517           return Redecl->isInlineSpecified();
2518         };
2519         if (any_of(FD->redecls(), CheckRedeclForInline))
2520           return true;
2521         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2522         if (!Pattern)
2523           return false;
2524         return any_of(Pattern->redecls(), CheckRedeclForInline);
2525       };
2526       if (CheckForInline(FD)) {
2527         B.addAttribute(llvm::Attribute::InlineHint);
2528       } else if (CodeGenOpts.getInlining() ==
2529                      CodeGenOptions::OnlyHintInlining &&
2530                  !FD->isInlined() &&
2531                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2532         B.addAttribute(llvm::Attribute::NoInline);
2533       }
2534     }
2535   }
2536 
2537   // Add other optimization related attributes if we are optimizing this
2538   // function.
2539   if (!D->hasAttr<OptimizeNoneAttr>()) {
2540     if (D->hasAttr<ColdAttr>()) {
2541       if (!ShouldAddOptNone)
2542         B.addAttribute(llvm::Attribute::OptimizeForSize);
2543       B.addAttribute(llvm::Attribute::Cold);
2544     }
2545     if (D->hasAttr<HotAttr>())
2546       B.addAttribute(llvm::Attribute::Hot);
2547     if (D->hasAttr<MinSizeAttr>())
2548       B.addAttribute(llvm::Attribute::MinSize);
2549   }
2550 
2551   F->addFnAttrs(B);
2552 
2553   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2554   if (alignment)
2555     F->setAlignment(llvm::Align(alignment));
2556 
2557   if (!D->hasAttr<AlignedAttr>())
2558     if (LangOpts.FunctionAlignment)
2559       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2560 
2561   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2562   // reserve a bit for differentiating between virtual and non-virtual member
2563   // functions. If the current target's C++ ABI requires this and this is a
2564   // member function, set its alignment accordingly.
2565   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2566     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2567       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2568   }
2569 
2570   // In the cross-dso CFI mode with canonical jump tables, we want !type
2571   // attributes on definitions only.
2572   if (CodeGenOpts.SanitizeCfiCrossDso &&
2573       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2574     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2575       // Skip available_externally functions. They won't be codegen'ed in the
2576       // current module anyway.
2577       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2578         CreateFunctionTypeMetadataForIcall(FD, F);
2579     }
2580   }
2581 
2582   // Emit type metadata on member functions for member function pointer checks.
2583   // These are only ever necessary on definitions; we're guaranteed that the
2584   // definition will be present in the LTO unit as a result of LTO visibility.
2585   auto *MD = dyn_cast<CXXMethodDecl>(D);
2586   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2587     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2588       llvm::Metadata *Id =
2589           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2590               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2591       F->addTypeMetadata(0, Id);
2592     }
2593   }
2594 }
2595 
2596 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2597   const Decl *D = GD.getDecl();
2598   if (isa_and_nonnull<NamedDecl>(D))
2599     setGVProperties(GV, GD);
2600   else
2601     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2602 
2603   if (D && D->hasAttr<UsedAttr>())
2604     addUsedOrCompilerUsedGlobal(GV);
2605 
2606   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2607       VD &&
2608       ((CodeGenOpts.KeepPersistentStorageVariables &&
2609         (VD->getStorageDuration() == SD_Static ||
2610          VD->getStorageDuration() == SD_Thread)) ||
2611        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2612         VD->getType().isConstQualified())))
2613     addUsedOrCompilerUsedGlobal(GV);
2614 }
2615 
2616 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2617                                                 llvm::AttrBuilder &Attrs,
2618                                                 bool SetTargetFeatures) {
2619   // Add target-cpu and target-features attributes to functions. If
2620   // we have a decl for the function and it has a target attribute then
2621   // parse that and add it to the feature set.
2622   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2623   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2624   std::vector<std::string> Features;
2625   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2626   FD = FD ? FD->getMostRecentDecl() : FD;
2627   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2628   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2629   assert((!TD || !TV) && "both target_version and target specified");
2630   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2631   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2632   bool AddedAttr = false;
2633   if (TD || TV || SD || TC) {
2634     llvm::StringMap<bool> FeatureMap;
2635     getContext().getFunctionFeatureMap(FeatureMap, GD);
2636 
2637     // Produce the canonical string for this set of features.
2638     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2639       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2640 
2641     // Now add the target-cpu and target-features to the function.
2642     // While we populated the feature map above, we still need to
2643     // get and parse the target attribute so we can get the cpu for
2644     // the function.
2645     if (TD) {
2646       ParsedTargetAttr ParsedAttr =
2647           Target.parseTargetAttr(TD->getFeaturesStr());
2648       if (!ParsedAttr.CPU.empty() &&
2649           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2650         TargetCPU = ParsedAttr.CPU;
2651         TuneCPU = ""; // Clear the tune CPU.
2652       }
2653       if (!ParsedAttr.Tune.empty() &&
2654           getTarget().isValidCPUName(ParsedAttr.Tune))
2655         TuneCPU = ParsedAttr.Tune;
2656     }
2657 
2658     if (SD) {
2659       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2660       // favor this processor.
2661       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2662     }
2663   } else {
2664     // Otherwise just add the existing target cpu and target features to the
2665     // function.
2666     Features = getTarget().getTargetOpts().Features;
2667   }
2668 
2669   if (!TargetCPU.empty()) {
2670     Attrs.addAttribute("target-cpu", TargetCPU);
2671     AddedAttr = true;
2672   }
2673   if (!TuneCPU.empty()) {
2674     Attrs.addAttribute("tune-cpu", TuneCPU);
2675     AddedAttr = true;
2676   }
2677   if (!Features.empty() && SetTargetFeatures) {
2678     llvm::erase_if(Features, [&](const std::string& F) {
2679        return getTarget().isReadOnlyFeature(F.substr(1));
2680     });
2681     llvm::sort(Features);
2682     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2683     AddedAttr = true;
2684   }
2685 
2686   return AddedAttr;
2687 }
2688 
2689 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2690                                           llvm::GlobalObject *GO) {
2691   const Decl *D = GD.getDecl();
2692   SetCommonAttributes(GD, GO);
2693 
2694   if (D) {
2695     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2696       if (D->hasAttr<RetainAttr>())
2697         addUsedGlobal(GV);
2698       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2699         GV->addAttribute("bss-section", SA->getName());
2700       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2701         GV->addAttribute("data-section", SA->getName());
2702       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2703         GV->addAttribute("rodata-section", SA->getName());
2704       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2705         GV->addAttribute("relro-section", SA->getName());
2706     }
2707 
2708     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2709       if (D->hasAttr<RetainAttr>())
2710         addUsedGlobal(F);
2711       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2712         if (!D->getAttr<SectionAttr>())
2713           F->setSection(SA->getName());
2714 
2715       llvm::AttrBuilder Attrs(F->getContext());
2716       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2717         // We know that GetCPUAndFeaturesAttributes will always have the
2718         // newest set, since it has the newest possible FunctionDecl, so the
2719         // new ones should replace the old.
2720         llvm::AttributeMask RemoveAttrs;
2721         RemoveAttrs.addAttribute("target-cpu");
2722         RemoveAttrs.addAttribute("target-features");
2723         RemoveAttrs.addAttribute("tune-cpu");
2724         F->removeFnAttrs(RemoveAttrs);
2725         F->addFnAttrs(Attrs);
2726       }
2727     }
2728 
2729     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2730       GO->setSection(CSA->getName());
2731     else if (const auto *SA = D->getAttr<SectionAttr>())
2732       GO->setSection(SA->getName());
2733   }
2734 
2735   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2736 }
2737 
2738 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2739                                                   llvm::Function *F,
2740                                                   const CGFunctionInfo &FI) {
2741   const Decl *D = GD.getDecl();
2742   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2743   SetLLVMFunctionAttributesForDefinition(D, F);
2744 
2745   F->setLinkage(llvm::Function::InternalLinkage);
2746 
2747   setNonAliasAttributes(GD, F);
2748 }
2749 
2750 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2751   // Set linkage and visibility in case we never see a definition.
2752   LinkageInfo LV = ND->getLinkageAndVisibility();
2753   // Don't set internal linkage on declarations.
2754   // "extern_weak" is overloaded in LLVM; we probably should have
2755   // separate linkage types for this.
2756   if (isExternallyVisible(LV.getLinkage()) &&
2757       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2758     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2759 }
2760 
2761 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2762                                                        llvm::Function *F) {
2763   // Only if we are checking indirect calls.
2764   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2765     return;
2766 
2767   // Non-static class methods are handled via vtable or member function pointer
2768   // checks elsewhere.
2769   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2770     return;
2771 
2772   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2773   F->addTypeMetadata(0, MD);
2774   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2775 
2776   // Emit a hash-based bit set entry for cross-DSO calls.
2777   if (CodeGenOpts.SanitizeCfiCrossDso)
2778     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2779       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2780 }
2781 
2782 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2783   llvm::LLVMContext &Ctx = F->getContext();
2784   llvm::MDBuilder MDB(Ctx);
2785   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2786                  llvm::MDNode::get(
2787                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2788 }
2789 
2790 static bool allowKCFIIdentifier(StringRef Name) {
2791   // KCFI type identifier constants are only necessary for external assembly
2792   // functions, which means it's safe to skip unusual names. Subset of
2793   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2794   return llvm::all_of(Name, [](const char &C) {
2795     return llvm::isAlnum(C) || C == '_' || C == '.';
2796   });
2797 }
2798 
2799 void CodeGenModule::finalizeKCFITypes() {
2800   llvm::Module &M = getModule();
2801   for (auto &F : M.functions()) {
2802     // Remove KCFI type metadata from non-address-taken local functions.
2803     bool AddressTaken = F.hasAddressTaken();
2804     if (!AddressTaken && F.hasLocalLinkage())
2805       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2806 
2807     // Generate a constant with the expected KCFI type identifier for all
2808     // address-taken function declarations to support annotating indirectly
2809     // called assembly functions.
2810     if (!AddressTaken || !F.isDeclaration())
2811       continue;
2812 
2813     const llvm::ConstantInt *Type;
2814     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2815       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2816     else
2817       continue;
2818 
2819     StringRef Name = F.getName();
2820     if (!allowKCFIIdentifier(Name))
2821       continue;
2822 
2823     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2824                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2825                           .str();
2826     M.appendModuleInlineAsm(Asm);
2827   }
2828 }
2829 
2830 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2831                                           bool IsIncompleteFunction,
2832                                           bool IsThunk) {
2833 
2834   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2835     // If this is an intrinsic function, set the function's attributes
2836     // to the intrinsic's attributes.
2837     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2838     return;
2839   }
2840 
2841   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2842 
2843   if (!IsIncompleteFunction)
2844     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2845                               IsThunk);
2846 
2847   // Add the Returned attribute for "this", except for iOS 5 and earlier
2848   // where substantial code, including the libstdc++ dylib, was compiled with
2849   // GCC and does not actually return "this".
2850   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2851       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2852     assert(!F->arg_empty() &&
2853            F->arg_begin()->getType()
2854              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2855            "unexpected this return");
2856     F->addParamAttr(0, llvm::Attribute::Returned);
2857   }
2858 
2859   // Only a few attributes are set on declarations; these may later be
2860   // overridden by a definition.
2861 
2862   setLinkageForGV(F, FD);
2863   setGVProperties(F, FD);
2864 
2865   // Setup target-specific attributes.
2866   if (!IsIncompleteFunction && F->isDeclaration())
2867     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2868 
2869   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2870     F->setSection(CSA->getName());
2871   else if (const auto *SA = FD->getAttr<SectionAttr>())
2872      F->setSection(SA->getName());
2873 
2874   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2875     if (EA->isError())
2876       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2877     else if (EA->isWarning())
2878       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2879   }
2880 
2881   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2882   if (FD->isInlineBuiltinDeclaration()) {
2883     const FunctionDecl *FDBody;
2884     bool HasBody = FD->hasBody(FDBody);
2885     (void)HasBody;
2886     assert(HasBody && "Inline builtin declarations should always have an "
2887                       "available body!");
2888     if (shouldEmitFunction(FDBody))
2889       F->addFnAttr(llvm::Attribute::NoBuiltin);
2890   }
2891 
2892   if (FD->isReplaceableGlobalAllocationFunction()) {
2893     // A replaceable global allocation function does not act like a builtin by
2894     // default, only if it is invoked by a new-expression or delete-expression.
2895     F->addFnAttr(llvm::Attribute::NoBuiltin);
2896   }
2897 
2898   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2899     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2900   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2901     if (MD->isVirtual())
2902       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2903 
2904   // Don't emit entries for function declarations in the cross-DSO mode. This
2905   // is handled with better precision by the receiving DSO. But if jump tables
2906   // are non-canonical then we need type metadata in order to produce the local
2907   // jump table.
2908   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2909       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2910     CreateFunctionTypeMetadataForIcall(FD, F);
2911 
2912   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2913     setKCFIType(FD, F);
2914 
2915   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2916     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2917 
2918   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2919     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2920 
2921   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2922     // Annotate the callback behavior as metadata:
2923     //  - The callback callee (as argument number).
2924     //  - The callback payloads (as argument numbers).
2925     llvm::LLVMContext &Ctx = F->getContext();
2926     llvm::MDBuilder MDB(Ctx);
2927 
2928     // The payload indices are all but the first one in the encoding. The first
2929     // identifies the callback callee.
2930     int CalleeIdx = *CB->encoding_begin();
2931     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2932     F->addMetadata(llvm::LLVMContext::MD_callback,
2933                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2934                                                CalleeIdx, PayloadIndices,
2935                                                /* VarArgsArePassed */ false)}));
2936   }
2937 }
2938 
2939 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2940   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2941          "Only globals with definition can force usage.");
2942   LLVMUsed.emplace_back(GV);
2943 }
2944 
2945 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2946   assert(!GV->isDeclaration() &&
2947          "Only globals with definition can force usage.");
2948   LLVMCompilerUsed.emplace_back(GV);
2949 }
2950 
2951 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2952   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2953          "Only globals with definition can force usage.");
2954   if (getTriple().isOSBinFormatELF())
2955     LLVMCompilerUsed.emplace_back(GV);
2956   else
2957     LLVMUsed.emplace_back(GV);
2958 }
2959 
2960 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2961                      std::vector<llvm::WeakTrackingVH> &List) {
2962   // Don't create llvm.used if there is no need.
2963   if (List.empty())
2964     return;
2965 
2966   // Convert List to what ConstantArray needs.
2967   SmallVector<llvm::Constant*, 8> UsedArray;
2968   UsedArray.resize(List.size());
2969   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2970     UsedArray[i] =
2971         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2972             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2973   }
2974 
2975   if (UsedArray.empty())
2976     return;
2977   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2978 
2979   auto *GV = new llvm::GlobalVariable(
2980       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2981       llvm::ConstantArray::get(ATy, UsedArray), Name);
2982 
2983   GV->setSection("llvm.metadata");
2984 }
2985 
2986 void CodeGenModule::emitLLVMUsed() {
2987   emitUsed(*this, "llvm.used", LLVMUsed);
2988   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2989 }
2990 
2991 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2992   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2993   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2994 }
2995 
2996 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2997   llvm::SmallString<32> Opt;
2998   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2999   if (Opt.empty())
3000     return;
3001   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3002   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3003 }
3004 
3005 void CodeGenModule::AddDependentLib(StringRef Lib) {
3006   auto &C = getLLVMContext();
3007   if (getTarget().getTriple().isOSBinFormatELF()) {
3008       ELFDependentLibraries.push_back(
3009         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3010     return;
3011   }
3012 
3013   llvm::SmallString<24> Opt;
3014   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3015   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3016   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3017 }
3018 
3019 /// Add link options implied by the given module, including modules
3020 /// it depends on, using a postorder walk.
3021 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3022                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3023                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3024   // Import this module's parent.
3025   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3026     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3027   }
3028 
3029   // Import this module's dependencies.
3030   for (Module *Import : llvm::reverse(Mod->Imports)) {
3031     if (Visited.insert(Import).second)
3032       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3033   }
3034 
3035   // Add linker options to link against the libraries/frameworks
3036   // described by this module.
3037   llvm::LLVMContext &Context = CGM.getLLVMContext();
3038   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3039 
3040   // For modules that use export_as for linking, use that module
3041   // name instead.
3042   if (Mod->UseExportAsModuleLinkName)
3043     return;
3044 
3045   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3046     // Link against a framework.  Frameworks are currently Darwin only, so we
3047     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3048     if (LL.IsFramework) {
3049       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3050                                  llvm::MDString::get(Context, LL.Library)};
3051 
3052       Metadata.push_back(llvm::MDNode::get(Context, Args));
3053       continue;
3054     }
3055 
3056     // Link against a library.
3057     if (IsELF) {
3058       llvm::Metadata *Args[2] = {
3059           llvm::MDString::get(Context, "lib"),
3060           llvm::MDString::get(Context, LL.Library),
3061       };
3062       Metadata.push_back(llvm::MDNode::get(Context, Args));
3063     } else {
3064       llvm::SmallString<24> Opt;
3065       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3066       auto *OptString = llvm::MDString::get(Context, Opt);
3067       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3068     }
3069   }
3070 }
3071 
3072 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3073   assert(Primary->isNamedModuleUnit() &&
3074          "We should only emit module initializers for named modules.");
3075 
3076   // Emit the initializers in the order that sub-modules appear in the
3077   // source, first Global Module Fragments, if present.
3078   if (auto GMF = Primary->getGlobalModuleFragment()) {
3079     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3080       if (isa<ImportDecl>(D))
3081         continue;
3082       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3083       EmitTopLevelDecl(D);
3084     }
3085   }
3086   // Second any associated with the module, itself.
3087   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3088     // Skip import decls, the inits for those are called explicitly.
3089     if (isa<ImportDecl>(D))
3090       continue;
3091     EmitTopLevelDecl(D);
3092   }
3093   // Third any associated with the Privat eMOdule Fragment, if present.
3094   if (auto PMF = Primary->getPrivateModuleFragment()) {
3095     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3096       // Skip import decls, the inits for those are called explicitly.
3097       if (isa<ImportDecl>(D))
3098         continue;
3099       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3100       EmitTopLevelDecl(D);
3101     }
3102   }
3103 }
3104 
3105 void CodeGenModule::EmitModuleLinkOptions() {
3106   // Collect the set of all of the modules we want to visit to emit link
3107   // options, which is essentially the imported modules and all of their
3108   // non-explicit child modules.
3109   llvm::SetVector<clang::Module *> LinkModules;
3110   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3111   SmallVector<clang::Module *, 16> Stack;
3112 
3113   // Seed the stack with imported modules.
3114   for (Module *M : ImportedModules) {
3115     // Do not add any link flags when an implementation TU of a module imports
3116     // a header of that same module.
3117     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3118         !getLangOpts().isCompilingModule())
3119       continue;
3120     if (Visited.insert(M).second)
3121       Stack.push_back(M);
3122   }
3123 
3124   // Find all of the modules to import, making a little effort to prune
3125   // non-leaf modules.
3126   while (!Stack.empty()) {
3127     clang::Module *Mod = Stack.pop_back_val();
3128 
3129     bool AnyChildren = false;
3130 
3131     // Visit the submodules of this module.
3132     for (const auto &SM : Mod->submodules()) {
3133       // Skip explicit children; they need to be explicitly imported to be
3134       // linked against.
3135       if (SM->IsExplicit)
3136         continue;
3137 
3138       if (Visited.insert(SM).second) {
3139         Stack.push_back(SM);
3140         AnyChildren = true;
3141       }
3142     }
3143 
3144     // We didn't find any children, so add this module to the list of
3145     // modules to link against.
3146     if (!AnyChildren) {
3147       LinkModules.insert(Mod);
3148     }
3149   }
3150 
3151   // Add link options for all of the imported modules in reverse topological
3152   // order.  We don't do anything to try to order import link flags with respect
3153   // to linker options inserted by things like #pragma comment().
3154   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3155   Visited.clear();
3156   for (Module *M : LinkModules)
3157     if (Visited.insert(M).second)
3158       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3159   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3160   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3161 
3162   // Add the linker options metadata flag.
3163   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3164   for (auto *MD : LinkerOptionsMetadata)
3165     NMD->addOperand(MD);
3166 }
3167 
3168 void CodeGenModule::EmitDeferred() {
3169   // Emit deferred declare target declarations.
3170   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3171     getOpenMPRuntime().emitDeferredTargetDecls();
3172 
3173   // Emit code for any potentially referenced deferred decls.  Since a
3174   // previously unused static decl may become used during the generation of code
3175   // for a static function, iterate until no changes are made.
3176 
3177   if (!DeferredVTables.empty()) {
3178     EmitDeferredVTables();
3179 
3180     // Emitting a vtable doesn't directly cause more vtables to
3181     // become deferred, although it can cause functions to be
3182     // emitted that then need those vtables.
3183     assert(DeferredVTables.empty());
3184   }
3185 
3186   // Emit CUDA/HIP static device variables referenced by host code only.
3187   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3188   // needed for further handling.
3189   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3190     llvm::append_range(DeferredDeclsToEmit,
3191                        getContext().CUDADeviceVarODRUsedByHost);
3192 
3193   // Stop if we're out of both deferred vtables and deferred declarations.
3194   if (DeferredDeclsToEmit.empty())
3195     return;
3196 
3197   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3198   // work, it will not interfere with this.
3199   std::vector<GlobalDecl> CurDeclsToEmit;
3200   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3201 
3202   for (GlobalDecl &D : CurDeclsToEmit) {
3203     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3204     // to get GlobalValue with exactly the type we need, not something that
3205     // might had been created for another decl with the same mangled name but
3206     // different type.
3207     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3208         GetAddrOfGlobal(D, ForDefinition));
3209 
3210     // In case of different address spaces, we may still get a cast, even with
3211     // IsForDefinition equal to true. Query mangled names table to get
3212     // GlobalValue.
3213     if (!GV)
3214       GV = GetGlobalValue(getMangledName(D));
3215 
3216     // Make sure GetGlobalValue returned non-null.
3217     assert(GV);
3218 
3219     // Check to see if we've already emitted this.  This is necessary
3220     // for a couple of reasons: first, decls can end up in the
3221     // deferred-decls queue multiple times, and second, decls can end
3222     // up with definitions in unusual ways (e.g. by an extern inline
3223     // function acquiring a strong function redefinition).  Just
3224     // ignore these cases.
3225     if (!GV->isDeclaration())
3226       continue;
3227 
3228     // If this is OpenMP, check if it is legal to emit this global normally.
3229     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3230       continue;
3231 
3232     // Otherwise, emit the definition and move on to the next one.
3233     EmitGlobalDefinition(D, GV);
3234 
3235     // If we found out that we need to emit more decls, do that recursively.
3236     // This has the advantage that the decls are emitted in a DFS and related
3237     // ones are close together, which is convenient for testing.
3238     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3239       EmitDeferred();
3240       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3241     }
3242   }
3243 }
3244 
3245 void CodeGenModule::EmitVTablesOpportunistically() {
3246   // Try to emit external vtables as available_externally if they have emitted
3247   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3248   // is not allowed to create new references to things that need to be emitted
3249   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3250 
3251   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3252          && "Only emit opportunistic vtables with optimizations");
3253 
3254   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3255     assert(getVTables().isVTableExternal(RD) &&
3256            "This queue should only contain external vtables");
3257     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3258       VTables.GenerateClassData(RD);
3259   }
3260   OpportunisticVTables.clear();
3261 }
3262 
3263 void CodeGenModule::EmitGlobalAnnotations() {
3264   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3265     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3266     if (GV)
3267       AddGlobalAnnotations(VD, GV);
3268   }
3269   DeferredAnnotations.clear();
3270 
3271   if (Annotations.empty())
3272     return;
3273 
3274   // Create a new global variable for the ConstantStruct in the Module.
3275   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3276     Annotations[0]->getType(), Annotations.size()), Annotations);
3277   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3278                                       llvm::GlobalValue::AppendingLinkage,
3279                                       Array, "llvm.global.annotations");
3280   gv->setSection(AnnotationSection);
3281 }
3282 
3283 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3284   llvm::Constant *&AStr = AnnotationStrings[Str];
3285   if (AStr)
3286     return AStr;
3287 
3288   // Not found yet, create a new global.
3289   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3290   auto *gv = new llvm::GlobalVariable(
3291       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3292       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3293       ConstGlobalsPtrTy->getAddressSpace());
3294   gv->setSection(AnnotationSection);
3295   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3296   AStr = gv;
3297   return gv;
3298 }
3299 
3300 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3301   SourceManager &SM = getContext().getSourceManager();
3302   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3303   if (PLoc.isValid())
3304     return EmitAnnotationString(PLoc.getFilename());
3305   return EmitAnnotationString(SM.getBufferName(Loc));
3306 }
3307 
3308 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3309   SourceManager &SM = getContext().getSourceManager();
3310   PresumedLoc PLoc = SM.getPresumedLoc(L);
3311   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3312     SM.getExpansionLineNumber(L);
3313   return llvm::ConstantInt::get(Int32Ty, LineNo);
3314 }
3315 
3316 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3317   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3318   if (Exprs.empty())
3319     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3320 
3321   llvm::FoldingSetNodeID ID;
3322   for (Expr *E : Exprs) {
3323     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3324   }
3325   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3326   if (Lookup)
3327     return Lookup;
3328 
3329   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3330   LLVMArgs.reserve(Exprs.size());
3331   ConstantEmitter ConstEmiter(*this);
3332   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3333     const auto *CE = cast<clang::ConstantExpr>(E);
3334     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3335                                     CE->getType());
3336   });
3337   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3338   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3339                                       llvm::GlobalValue::PrivateLinkage, Struct,
3340                                       ".args");
3341   GV->setSection(AnnotationSection);
3342   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3343 
3344   Lookup = GV;
3345   return GV;
3346 }
3347 
3348 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3349                                                 const AnnotateAttr *AA,
3350                                                 SourceLocation L) {
3351   // Get the globals for file name, annotation, and the line number.
3352   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3353                  *UnitGV = EmitAnnotationUnit(L),
3354                  *LineNoCst = EmitAnnotationLineNo(L),
3355                  *Args = EmitAnnotationArgs(AA);
3356 
3357   llvm::Constant *GVInGlobalsAS = GV;
3358   if (GV->getAddressSpace() !=
3359       getDataLayout().getDefaultGlobalsAddressSpace()) {
3360     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3361         GV,
3362         llvm::PointerType::get(
3363             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3364   }
3365 
3366   // Create the ConstantStruct for the global annotation.
3367   llvm::Constant *Fields[] = {
3368       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3369   };
3370   return llvm::ConstantStruct::getAnon(Fields);
3371 }
3372 
3373 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3374                                          llvm::GlobalValue *GV) {
3375   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3376   // Get the struct elements for these annotations.
3377   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3378     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3379 }
3380 
3381 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3382                                        SourceLocation Loc) const {
3383   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3384   // NoSanitize by function name.
3385   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3386     return true;
3387   // NoSanitize by location. Check "mainfile" prefix.
3388   auto &SM = Context.getSourceManager();
3389   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3390   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3391     return true;
3392 
3393   // Check "src" prefix.
3394   if (Loc.isValid())
3395     return NoSanitizeL.containsLocation(Kind, Loc);
3396   // If location is unknown, this may be a compiler-generated function. Assume
3397   // it's located in the main file.
3398   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3399 }
3400 
3401 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3402                                        llvm::GlobalVariable *GV,
3403                                        SourceLocation Loc, QualType Ty,
3404                                        StringRef Category) const {
3405   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3406   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3407     return true;
3408   auto &SM = Context.getSourceManager();
3409   if (NoSanitizeL.containsMainFile(
3410           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3411           Category))
3412     return true;
3413   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3414     return true;
3415 
3416   // Check global type.
3417   if (!Ty.isNull()) {
3418     // Drill down the array types: if global variable of a fixed type is
3419     // not sanitized, we also don't instrument arrays of them.
3420     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3421       Ty = AT->getElementType();
3422     Ty = Ty.getCanonicalType().getUnqualifiedType();
3423     // Only record types (classes, structs etc.) are ignored.
3424     if (Ty->isRecordType()) {
3425       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3426       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3427         return true;
3428     }
3429   }
3430   return false;
3431 }
3432 
3433 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3434                                    StringRef Category) const {
3435   const auto &XRayFilter = getContext().getXRayFilter();
3436   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3437   auto Attr = ImbueAttr::NONE;
3438   if (Loc.isValid())
3439     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3440   if (Attr == ImbueAttr::NONE)
3441     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3442   switch (Attr) {
3443   case ImbueAttr::NONE:
3444     return false;
3445   case ImbueAttr::ALWAYS:
3446     Fn->addFnAttr("function-instrument", "xray-always");
3447     break;
3448   case ImbueAttr::ALWAYS_ARG1:
3449     Fn->addFnAttr("function-instrument", "xray-always");
3450     Fn->addFnAttr("xray-log-args", "1");
3451     break;
3452   case ImbueAttr::NEVER:
3453     Fn->addFnAttr("function-instrument", "xray-never");
3454     break;
3455   }
3456   return true;
3457 }
3458 
3459 ProfileList::ExclusionType
3460 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3461                                               SourceLocation Loc) const {
3462   const auto &ProfileList = getContext().getProfileList();
3463   // If the profile list is empty, then instrument everything.
3464   if (ProfileList.isEmpty())
3465     return ProfileList::Allow;
3466   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3467   // First, check the function name.
3468   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3469     return *V;
3470   // Next, check the source location.
3471   if (Loc.isValid())
3472     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3473       return *V;
3474   // If location is unknown, this may be a compiler-generated function. Assume
3475   // it's located in the main file.
3476   auto &SM = Context.getSourceManager();
3477   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3478     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3479       return *V;
3480   return ProfileList.getDefault(Kind);
3481 }
3482 
3483 ProfileList::ExclusionType
3484 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3485                                                  SourceLocation Loc) const {
3486   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3487   if (V != ProfileList::Allow)
3488     return V;
3489 
3490   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3491   if (NumGroups > 1) {
3492     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3493     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3494       return ProfileList::Skip;
3495   }
3496   return ProfileList::Allow;
3497 }
3498 
3499 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3500   // Never defer when EmitAllDecls is specified.
3501   if (LangOpts.EmitAllDecls)
3502     return true;
3503 
3504   const auto *VD = dyn_cast<VarDecl>(Global);
3505   if (VD &&
3506       ((CodeGenOpts.KeepPersistentStorageVariables &&
3507         (VD->getStorageDuration() == SD_Static ||
3508          VD->getStorageDuration() == SD_Thread)) ||
3509        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3510         VD->getType().isConstQualified())))
3511     return true;
3512 
3513   return getContext().DeclMustBeEmitted(Global);
3514 }
3515 
3516 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3517   // In OpenMP 5.0 variables and function may be marked as
3518   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3519   // that they must be emitted on the host/device. To be sure we need to have
3520   // seen a declare target with an explicit mentioning of the function, we know
3521   // we have if the level of the declare target attribute is -1. Note that we
3522   // check somewhere else if we should emit this at all.
3523   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3524     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3525         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3526     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3527       return false;
3528   }
3529 
3530   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3531     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3532       // Implicit template instantiations may change linkage if they are later
3533       // explicitly instantiated, so they should not be emitted eagerly.
3534       return false;
3535     // Defer until all versions have been semantically checked.
3536     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3537       return false;
3538   }
3539   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3540     if (Context.getInlineVariableDefinitionKind(VD) ==
3541         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3542       // A definition of an inline constexpr static data member may change
3543       // linkage later if it's redeclared outside the class.
3544       return false;
3545     if (CXX20ModuleInits && VD->getOwningModule() &&
3546         !VD->getOwningModule()->isModuleMapModule()) {
3547       // For CXX20, module-owned initializers need to be deferred, since it is
3548       // not known at this point if they will be run for the current module or
3549       // as part of the initializer for an imported one.
3550       return false;
3551     }
3552   }
3553   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3554   // codegen for global variables, because they may be marked as threadprivate.
3555   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3556       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3557       !Global->getType().isConstantStorage(getContext(), false, false) &&
3558       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3559     return false;
3560 
3561   return true;
3562 }
3563 
3564 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3565   StringRef Name = getMangledName(GD);
3566 
3567   // The UUID descriptor should be pointer aligned.
3568   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3569 
3570   // Look for an existing global.
3571   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3572     return ConstantAddress(GV, GV->getValueType(), Alignment);
3573 
3574   ConstantEmitter Emitter(*this);
3575   llvm::Constant *Init;
3576 
3577   APValue &V = GD->getAsAPValue();
3578   if (!V.isAbsent()) {
3579     // If possible, emit the APValue version of the initializer. In particular,
3580     // this gets the type of the constant right.
3581     Init = Emitter.emitForInitializer(
3582         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3583   } else {
3584     // As a fallback, directly construct the constant.
3585     // FIXME: This may get padding wrong under esoteric struct layout rules.
3586     // MSVC appears to create a complete type 'struct __s_GUID' that it
3587     // presumably uses to represent these constants.
3588     MSGuidDecl::Parts Parts = GD->getParts();
3589     llvm::Constant *Fields[4] = {
3590         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3591         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3592         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3593         llvm::ConstantDataArray::getRaw(
3594             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3595             Int8Ty)};
3596     Init = llvm::ConstantStruct::getAnon(Fields);
3597   }
3598 
3599   auto *GV = new llvm::GlobalVariable(
3600       getModule(), Init->getType(),
3601       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3602   if (supportsCOMDAT())
3603     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3604   setDSOLocal(GV);
3605 
3606   if (!V.isAbsent()) {
3607     Emitter.finalize(GV);
3608     return ConstantAddress(GV, GV->getValueType(), Alignment);
3609   }
3610 
3611   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3612   return ConstantAddress(GV, Ty, Alignment);
3613 }
3614 
3615 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3616     const UnnamedGlobalConstantDecl *GCD) {
3617   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3618 
3619   llvm::GlobalVariable **Entry = nullptr;
3620   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3621   if (*Entry)
3622     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3623 
3624   ConstantEmitter Emitter(*this);
3625   llvm::Constant *Init;
3626 
3627   const APValue &V = GCD->getValue();
3628 
3629   assert(!V.isAbsent());
3630   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3631                                     GCD->getType());
3632 
3633   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3634                                       /*isConstant=*/true,
3635                                       llvm::GlobalValue::PrivateLinkage, Init,
3636                                       ".constant");
3637   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3638   GV->setAlignment(Alignment.getAsAlign());
3639 
3640   Emitter.finalize(GV);
3641 
3642   *Entry = GV;
3643   return ConstantAddress(GV, GV->getValueType(), Alignment);
3644 }
3645 
3646 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3647     const TemplateParamObjectDecl *TPO) {
3648   StringRef Name = getMangledName(TPO);
3649   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3650 
3651   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3652     return ConstantAddress(GV, GV->getValueType(), Alignment);
3653 
3654   ConstantEmitter Emitter(*this);
3655   llvm::Constant *Init = Emitter.emitForInitializer(
3656         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3657 
3658   if (!Init) {
3659     ErrorUnsupported(TPO, "template parameter object");
3660     return ConstantAddress::invalid();
3661   }
3662 
3663   llvm::GlobalValue::LinkageTypes Linkage =
3664       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3665           ? llvm::GlobalValue::LinkOnceODRLinkage
3666           : llvm::GlobalValue::InternalLinkage;
3667   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3668                                       /*isConstant=*/true, Linkage, Init, Name);
3669   setGVProperties(GV, TPO);
3670   if (supportsCOMDAT())
3671     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3672   Emitter.finalize(GV);
3673 
3674     return ConstantAddress(GV, GV->getValueType(), Alignment);
3675 }
3676 
3677 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3678   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3679   assert(AA && "No alias?");
3680 
3681   CharUnits Alignment = getContext().getDeclAlign(VD);
3682   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3683 
3684   // See if there is already something with the target's name in the module.
3685   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3686   if (Entry)
3687     return ConstantAddress(Entry, DeclTy, Alignment);
3688 
3689   llvm::Constant *Aliasee;
3690   if (isa<llvm::FunctionType>(DeclTy))
3691     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3692                                       GlobalDecl(cast<FunctionDecl>(VD)),
3693                                       /*ForVTable=*/false);
3694   else
3695     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3696                                     nullptr);
3697 
3698   auto *F = cast<llvm::GlobalValue>(Aliasee);
3699   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3700   WeakRefReferences.insert(F);
3701 
3702   return ConstantAddress(Aliasee, DeclTy, Alignment);
3703 }
3704 
3705 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3706   if (!D)
3707     return false;
3708   if (auto *A = D->getAttr<AttrT>())
3709     return A->isImplicit();
3710   return D->isImplicit();
3711 }
3712 
3713 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3714   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3715   // We need to emit host-side 'shadows' for all global
3716   // device-side variables because the CUDA runtime needs their
3717   // size and host-side address in order to provide access to
3718   // their device-side incarnations.
3719   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3720          Global->hasAttr<CUDAConstantAttr>() ||
3721          Global->hasAttr<CUDASharedAttr>() ||
3722          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3723          Global->getType()->isCUDADeviceBuiltinTextureType();
3724 }
3725 
3726 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3727   const auto *Global = cast<ValueDecl>(GD.getDecl());
3728 
3729   // Weak references don't produce any output by themselves.
3730   if (Global->hasAttr<WeakRefAttr>())
3731     return;
3732 
3733   // If this is an alias definition (which otherwise looks like a declaration)
3734   // emit it now.
3735   if (Global->hasAttr<AliasAttr>())
3736     return EmitAliasDefinition(GD);
3737 
3738   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3739   if (Global->hasAttr<IFuncAttr>())
3740     return emitIFuncDefinition(GD);
3741 
3742   // If this is a cpu_dispatch multiversion function, emit the resolver.
3743   if (Global->hasAttr<CPUDispatchAttr>())
3744     return emitCPUDispatchDefinition(GD);
3745 
3746   // If this is CUDA, be selective about which declarations we emit.
3747   // Non-constexpr non-lambda implicit host device functions are not emitted
3748   // unless they are used on device side.
3749   if (LangOpts.CUDA) {
3750     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3751            "Expected Variable or Function");
3752     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3753       if (!shouldEmitCUDAGlobalVar(VD))
3754         return;
3755     } else if (LangOpts.CUDAIsDevice) {
3756       const auto *FD = dyn_cast<FunctionDecl>(Global);
3757       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3758            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3759             hasImplicitAttr<CUDAHostAttr>(FD) &&
3760             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3761             !isLambdaCallOperator(FD) &&
3762             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3763           !Global->hasAttr<CUDAGlobalAttr>() &&
3764           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3765             !Global->hasAttr<CUDAHostAttr>()))
3766         return;
3767       // Device-only functions are the only things we skip.
3768     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3769                Global->hasAttr<CUDADeviceAttr>())
3770       return;
3771   }
3772 
3773   if (LangOpts.OpenMP) {
3774     // If this is OpenMP, check if it is legal to emit this global normally.
3775     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3776       return;
3777     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3778       if (MustBeEmitted(Global))
3779         EmitOMPDeclareReduction(DRD);
3780       return;
3781     }
3782     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3783       if (MustBeEmitted(Global))
3784         EmitOMPDeclareMapper(DMD);
3785       return;
3786     }
3787   }
3788 
3789   // Ignore declarations, they will be emitted on their first use.
3790   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3791     // Update deferred annotations with the latest declaration if the function
3792     // function was already used or defined.
3793     if (FD->hasAttr<AnnotateAttr>()) {
3794       StringRef MangledName = getMangledName(GD);
3795       if (GetGlobalValue(MangledName))
3796         DeferredAnnotations[MangledName] = FD;
3797     }
3798 
3799     // Forward declarations are emitted lazily on first use.
3800     if (!FD->doesThisDeclarationHaveABody()) {
3801       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3802           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3803         return;
3804 
3805       StringRef MangledName = getMangledName(GD);
3806 
3807       // Compute the function info and LLVM type.
3808       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3809       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3810 
3811       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3812                               /*DontDefer=*/false);
3813       return;
3814     }
3815   } else {
3816     const auto *VD = cast<VarDecl>(Global);
3817     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3818     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3819         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3820       if (LangOpts.OpenMP) {
3821         // Emit declaration of the must-be-emitted declare target variable.
3822         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3823                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3824 
3825           // If this variable has external storage and doesn't require special
3826           // link handling we defer to its canonical definition.
3827           if (VD->hasExternalStorage() &&
3828               Res != OMPDeclareTargetDeclAttr::MT_Link)
3829             return;
3830 
3831           bool UnifiedMemoryEnabled =
3832               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3833           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3834                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3835               !UnifiedMemoryEnabled) {
3836             (void)GetAddrOfGlobalVar(VD);
3837           } else {
3838             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3839                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3840                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3841                      UnifiedMemoryEnabled)) &&
3842                    "Link clause or to clause with unified memory expected.");
3843             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3844           }
3845 
3846           return;
3847         }
3848       }
3849       // If this declaration may have caused an inline variable definition to
3850       // change linkage, make sure that it's emitted.
3851       if (Context.getInlineVariableDefinitionKind(VD) ==
3852           ASTContext::InlineVariableDefinitionKind::Strong)
3853         GetAddrOfGlobalVar(VD);
3854       return;
3855     }
3856   }
3857 
3858   // Defer code generation to first use when possible, e.g. if this is an inline
3859   // function. If the global must always be emitted, do it eagerly if possible
3860   // to benefit from cache locality.
3861   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3862     // Emit the definition if it can't be deferred.
3863     EmitGlobalDefinition(GD);
3864     addEmittedDeferredDecl(GD);
3865     return;
3866   }
3867 
3868   // If we're deferring emission of a C++ variable with an
3869   // initializer, remember the order in which it appeared in the file.
3870   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3871       cast<VarDecl>(Global)->hasInit()) {
3872     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3873     CXXGlobalInits.push_back(nullptr);
3874   }
3875 
3876   StringRef MangledName = getMangledName(GD);
3877   if (GetGlobalValue(MangledName) != nullptr) {
3878     // The value has already been used and should therefore be emitted.
3879     addDeferredDeclToEmit(GD);
3880   } else if (MustBeEmitted(Global)) {
3881     // The value must be emitted, but cannot be emitted eagerly.
3882     assert(!MayBeEmittedEagerly(Global));
3883     addDeferredDeclToEmit(GD);
3884   } else {
3885     // Otherwise, remember that we saw a deferred decl with this name.  The
3886     // first use of the mangled name will cause it to move into
3887     // DeferredDeclsToEmit.
3888     DeferredDecls[MangledName] = GD;
3889   }
3890 }
3891 
3892 // Check if T is a class type with a destructor that's not dllimport.
3893 static bool HasNonDllImportDtor(QualType T) {
3894   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3895     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3896       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3897         return true;
3898 
3899   return false;
3900 }
3901 
3902 namespace {
3903   struct FunctionIsDirectlyRecursive
3904       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3905     const StringRef Name;
3906     const Builtin::Context &BI;
3907     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3908         : Name(N), BI(C) {}
3909 
3910     bool VisitCallExpr(const CallExpr *E) {
3911       const FunctionDecl *FD = E->getDirectCallee();
3912       if (!FD)
3913         return false;
3914       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3915       if (Attr && Name == Attr->getLabel())
3916         return true;
3917       unsigned BuiltinID = FD->getBuiltinID();
3918       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3919         return false;
3920       StringRef BuiltinName = BI.getName(BuiltinID);
3921       if (BuiltinName.starts_with("__builtin_") &&
3922           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3923         return true;
3924       }
3925       return false;
3926     }
3927 
3928     bool VisitStmt(const Stmt *S) {
3929       for (const Stmt *Child : S->children())
3930         if (Child && this->Visit(Child))
3931           return true;
3932       return false;
3933     }
3934   };
3935 
3936   // Make sure we're not referencing non-imported vars or functions.
3937   struct DLLImportFunctionVisitor
3938       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3939     bool SafeToInline = true;
3940 
3941     bool shouldVisitImplicitCode() const { return true; }
3942 
3943     bool VisitVarDecl(VarDecl *VD) {
3944       if (VD->getTLSKind()) {
3945         // A thread-local variable cannot be imported.
3946         SafeToInline = false;
3947         return SafeToInline;
3948       }
3949 
3950       // A variable definition might imply a destructor call.
3951       if (VD->isThisDeclarationADefinition())
3952         SafeToInline = !HasNonDllImportDtor(VD->getType());
3953 
3954       return SafeToInline;
3955     }
3956 
3957     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3958       if (const auto *D = E->getTemporary()->getDestructor())
3959         SafeToInline = D->hasAttr<DLLImportAttr>();
3960       return SafeToInline;
3961     }
3962 
3963     bool VisitDeclRefExpr(DeclRefExpr *E) {
3964       ValueDecl *VD = E->getDecl();
3965       if (isa<FunctionDecl>(VD))
3966         SafeToInline = VD->hasAttr<DLLImportAttr>();
3967       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3968         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3969       return SafeToInline;
3970     }
3971 
3972     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3973       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3974       return SafeToInline;
3975     }
3976 
3977     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3978       CXXMethodDecl *M = E->getMethodDecl();
3979       if (!M) {
3980         // Call through a pointer to member function. This is safe to inline.
3981         SafeToInline = true;
3982       } else {
3983         SafeToInline = M->hasAttr<DLLImportAttr>();
3984       }
3985       return SafeToInline;
3986     }
3987 
3988     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3989       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3990       return SafeToInline;
3991     }
3992 
3993     bool VisitCXXNewExpr(CXXNewExpr *E) {
3994       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3995       return SafeToInline;
3996     }
3997   };
3998 }
3999 
4000 // isTriviallyRecursive - Check if this function calls another
4001 // decl that, because of the asm attribute or the other decl being a builtin,
4002 // ends up pointing to itself.
4003 bool
4004 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4005   StringRef Name;
4006   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4007     // asm labels are a special kind of mangling we have to support.
4008     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4009     if (!Attr)
4010       return false;
4011     Name = Attr->getLabel();
4012   } else {
4013     Name = FD->getName();
4014   }
4015 
4016   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4017   const Stmt *Body = FD->getBody();
4018   return Body ? Walker.Visit(Body) : false;
4019 }
4020 
4021 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4022   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4023     return true;
4024 
4025   const auto *F = cast<FunctionDecl>(GD.getDecl());
4026   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4027     return false;
4028 
4029   // We don't import function bodies from other named module units since that
4030   // behavior may break ABI compatibility of the current unit.
4031   if (const Module *M = F->getOwningModule();
4032       M && M->getTopLevelModule()->isNamedModule() &&
4033       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4034     // There are practices to mark template member function as always-inline
4035     // and mark the template as extern explicit instantiation but not give
4036     // the definition for member function. So we have to emit the function
4037     // from explicitly instantiation with always-inline.
4038     //
4039     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4040     //
4041     // TODO: Maybe it is better to give it a warning if we call a non-inline
4042     // function from other module units which is marked as always-inline.
4043     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4044       return false;
4045     }
4046   }
4047 
4048   if (F->hasAttr<NoInlineAttr>())
4049     return false;
4050 
4051   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4052     // Check whether it would be safe to inline this dllimport function.
4053     DLLImportFunctionVisitor Visitor;
4054     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4055     if (!Visitor.SafeToInline)
4056       return false;
4057 
4058     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4059       // Implicit destructor invocations aren't captured in the AST, so the
4060       // check above can't see them. Check for them manually here.
4061       for (const Decl *Member : Dtor->getParent()->decls())
4062         if (isa<FieldDecl>(Member))
4063           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4064             return false;
4065       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4066         if (HasNonDllImportDtor(B.getType()))
4067           return false;
4068     }
4069   }
4070 
4071   // Inline builtins declaration must be emitted. They often are fortified
4072   // functions.
4073   if (F->isInlineBuiltinDeclaration())
4074     return true;
4075 
4076   // PR9614. Avoid cases where the source code is lying to us. An available
4077   // externally function should have an equivalent function somewhere else,
4078   // but a function that calls itself through asm label/`__builtin_` trickery is
4079   // clearly not equivalent to the real implementation.
4080   // This happens in glibc's btowc and in some configure checks.
4081   return !isTriviallyRecursive(F);
4082 }
4083 
4084 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4085   return CodeGenOpts.OptimizationLevel > 0;
4086 }
4087 
4088 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4089                                                        llvm::GlobalValue *GV) {
4090   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4091 
4092   if (FD->isCPUSpecificMultiVersion()) {
4093     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4094     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4095       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4096   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4097     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4098       // AArch64 favors the default target version over the clone if any.
4099       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4100           TC->isFirstOfVersion(I))
4101         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4102     // Ensure that the resolver function is also emitted.
4103     GetOrCreateMultiVersionResolver(GD);
4104   } else
4105     EmitGlobalFunctionDefinition(GD, GV);
4106 
4107   // Defer the resolver emission until we can reason whether the TU
4108   // contains a default target version implementation.
4109   if (FD->isTargetVersionMultiVersion())
4110     AddDeferredMultiVersionResolverToEmit(GD);
4111 }
4112 
4113 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4114   const auto *D = cast<ValueDecl>(GD.getDecl());
4115 
4116   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4117                                  Context.getSourceManager(),
4118                                  "Generating code for declaration");
4119 
4120   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4121     // At -O0, don't generate IR for functions with available_externally
4122     // linkage.
4123     if (!shouldEmitFunction(GD))
4124       return;
4125 
4126     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4127       std::string Name;
4128       llvm::raw_string_ostream OS(Name);
4129       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4130                                /*Qualified=*/true);
4131       return Name;
4132     });
4133 
4134     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4135       // Make sure to emit the definition(s) before we emit the thunks.
4136       // This is necessary for the generation of certain thunks.
4137       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4138         ABI->emitCXXStructor(GD);
4139       else if (FD->isMultiVersion())
4140         EmitMultiVersionFunctionDefinition(GD, GV);
4141       else
4142         EmitGlobalFunctionDefinition(GD, GV);
4143 
4144       if (Method->isVirtual())
4145         getVTables().EmitThunks(GD);
4146 
4147       return;
4148     }
4149 
4150     if (FD->isMultiVersion())
4151       return EmitMultiVersionFunctionDefinition(GD, GV);
4152     return EmitGlobalFunctionDefinition(GD, GV);
4153   }
4154 
4155   if (const auto *VD = dyn_cast<VarDecl>(D))
4156     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4157 
4158   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4159 }
4160 
4161 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4162                                                       llvm::Function *NewFn);
4163 
4164 static unsigned
4165 TargetMVPriority(const TargetInfo &TI,
4166                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4167   unsigned Priority = 0;
4168   unsigned NumFeatures = 0;
4169   for (StringRef Feat : RO.Conditions.Features) {
4170     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4171     NumFeatures++;
4172   }
4173 
4174   if (!RO.Conditions.Architecture.empty())
4175     Priority = std::max(
4176         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4177 
4178   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4179 
4180   return Priority;
4181 }
4182 
4183 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4184 // TU can forward declare the function without causing problems.  Particularly
4185 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4186 // work with internal linkage functions, so that the same function name can be
4187 // used with internal linkage in multiple TUs.
4188 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4189                                                        GlobalDecl GD) {
4190   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4191   if (FD->getFormalLinkage() == Linkage::Internal)
4192     return llvm::GlobalValue::InternalLinkage;
4193   return llvm::GlobalValue::WeakODRLinkage;
4194 }
4195 
4196 void CodeGenModule::emitMultiVersionFunctions() {
4197   std::vector<GlobalDecl> MVFuncsToEmit;
4198   MultiVersionFuncs.swap(MVFuncsToEmit);
4199   for (GlobalDecl GD : MVFuncsToEmit) {
4200     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4201     assert(FD && "Expected a FunctionDecl");
4202 
4203     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4204       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4205       StringRef MangledName = getMangledName(CurGD);
4206       llvm::Constant *Func = GetGlobalValue(MangledName);
4207       if (!Func) {
4208         if (Decl->isDefined()) {
4209           EmitGlobalFunctionDefinition(CurGD, nullptr);
4210           Func = GetGlobalValue(MangledName);
4211         } else {
4212           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4213           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4214           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4215                                    /*DontDefer=*/false, ForDefinition);
4216         }
4217         assert(Func && "This should have just been created");
4218       }
4219       return cast<llvm::Function>(Func);
4220     };
4221 
4222     // For AArch64, a resolver is only emitted if a function marked with
4223     // target_version("default")) or target_clones() is present and defined
4224     // in this TU. For other architectures it is always emitted.
4225     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4226     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4227 
4228     getContext().forEachMultiversionedFunctionVersion(
4229         FD, [&](const FunctionDecl *CurFD) {
4230           llvm::SmallVector<StringRef, 8> Feats;
4231           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4232 
4233           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4234             TA->getAddedFeatures(Feats);
4235             llvm::Function *Func = createFunction(CurFD);
4236             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4237           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4238             if (TVA->isDefaultVersion() && IsDefined)
4239               ShouldEmitResolver = true;
4240             TVA->getFeatures(Feats);
4241             llvm::Function *Func = createFunction(CurFD);
4242             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4243           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4244             if (IsDefined)
4245               ShouldEmitResolver = true;
4246             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4247               if (!TC->isFirstOfVersion(I))
4248                 continue;
4249 
4250               llvm::Function *Func = createFunction(CurFD, I);
4251               StringRef Architecture;
4252               Feats.clear();
4253               if (getTarget().getTriple().isAArch64())
4254                 TC->getFeatures(Feats, I);
4255               else {
4256                 StringRef Version = TC->getFeatureStr(I);
4257                 if (Version.starts_with("arch="))
4258                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4259                 else if (Version != "default")
4260                   Feats.push_back(Version);
4261               }
4262               Options.emplace_back(Func, Architecture, Feats);
4263             }
4264           } else
4265             llvm_unreachable("unexpected MultiVersionKind");
4266         });
4267 
4268     if (!ShouldEmitResolver)
4269       continue;
4270 
4271     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4272     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4273       ResolverConstant = IFunc->getResolver();
4274       if (FD->isTargetClonesMultiVersion() &&
4275           !getTarget().getTriple().isAArch64()) {
4276         std::string MangledName = getMangledNameImpl(
4277             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4278         if (!GetGlobalValue(MangledName + ".ifunc")) {
4279           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4280           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4281           // In prior versions of Clang, the mangling for ifuncs incorrectly
4282           // included an .ifunc suffix. This alias is generated for backward
4283           // compatibility. It is deprecated, and may be removed in the future.
4284           auto *Alias = llvm::GlobalAlias::create(
4285               DeclTy, 0, getMultiversionLinkage(*this, GD),
4286               MangledName + ".ifunc", IFunc, &getModule());
4287           SetCommonAttributes(FD, Alias);
4288         }
4289       }
4290     }
4291     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4292 
4293     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4294 
4295     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4296       ResolverFunc->setComdat(
4297           getModule().getOrInsertComdat(ResolverFunc->getName()));
4298 
4299     const TargetInfo &TI = getTarget();
4300     llvm::stable_sort(
4301         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4302                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4303           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4304         });
4305     CodeGenFunction CGF(*this);
4306     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4307   }
4308 
4309   // Ensure that any additions to the deferred decls list caused by emitting a
4310   // variant are emitted.  This can happen when the variant itself is inline and
4311   // calls a function without linkage.
4312   if (!MVFuncsToEmit.empty())
4313     EmitDeferred();
4314 
4315   // Ensure that any additions to the multiversion funcs list from either the
4316   // deferred decls or the multiversion functions themselves are emitted.
4317   if (!MultiVersionFuncs.empty())
4318     emitMultiVersionFunctions();
4319 }
4320 
4321 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4322                                    llvm::Constant *New) {
4323   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4324   New->takeName(Old);
4325   Old->replaceAllUsesWith(New);
4326   Old->eraseFromParent();
4327 }
4328 
4329 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4330   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4331   assert(FD && "Not a FunctionDecl?");
4332   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4333   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4334   assert(DD && "Not a cpu_dispatch Function?");
4335 
4336   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4337   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4338 
4339   StringRef ResolverName = getMangledName(GD);
4340   UpdateMultiVersionNames(GD, FD, ResolverName);
4341 
4342   llvm::Type *ResolverType;
4343   GlobalDecl ResolverGD;
4344   if (getTarget().supportsIFunc()) {
4345     ResolverType = llvm::FunctionType::get(
4346         llvm::PointerType::get(DeclTy,
4347                                getTypes().getTargetAddressSpace(FD->getType())),
4348         false);
4349   }
4350   else {
4351     ResolverType = DeclTy;
4352     ResolverGD = GD;
4353   }
4354 
4355   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4356       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4357   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4358   if (supportsCOMDAT())
4359     ResolverFunc->setComdat(
4360         getModule().getOrInsertComdat(ResolverFunc->getName()));
4361 
4362   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4363   const TargetInfo &Target = getTarget();
4364   unsigned Index = 0;
4365   for (const IdentifierInfo *II : DD->cpus()) {
4366     // Get the name of the target function so we can look it up/create it.
4367     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4368                               getCPUSpecificMangling(*this, II->getName());
4369 
4370     llvm::Constant *Func = GetGlobalValue(MangledName);
4371 
4372     if (!Func) {
4373       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4374       if (ExistingDecl.getDecl() &&
4375           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4376         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4377         Func = GetGlobalValue(MangledName);
4378       } else {
4379         if (!ExistingDecl.getDecl())
4380           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4381 
4382       Func = GetOrCreateLLVMFunction(
4383           MangledName, DeclTy, ExistingDecl,
4384           /*ForVTable=*/false, /*DontDefer=*/true,
4385           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4386       }
4387     }
4388 
4389     llvm::SmallVector<StringRef, 32> Features;
4390     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4391     llvm::transform(Features, Features.begin(),
4392                     [](StringRef Str) { return Str.substr(1); });
4393     llvm::erase_if(Features, [&Target](StringRef Feat) {
4394       return !Target.validateCpuSupports(Feat);
4395     });
4396     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4397     ++Index;
4398   }
4399 
4400   llvm::stable_sort(
4401       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4402                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4403         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4404                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4405       });
4406 
4407   // If the list contains multiple 'default' versions, such as when it contains
4408   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4409   // always run on at least a 'pentium'). We do this by deleting the 'least
4410   // advanced' (read, lowest mangling letter).
4411   while (Options.size() > 1 &&
4412          llvm::all_of(llvm::X86::getCpuSupportsMask(
4413                           (Options.end() - 2)->Conditions.Features),
4414                       [](auto X) { return X == 0; })) {
4415     StringRef LHSName = (Options.end() - 2)->Function->getName();
4416     StringRef RHSName = (Options.end() - 1)->Function->getName();
4417     if (LHSName.compare(RHSName) < 0)
4418       Options.erase(Options.end() - 2);
4419     else
4420       Options.erase(Options.end() - 1);
4421   }
4422 
4423   CodeGenFunction CGF(*this);
4424   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4425 
4426   if (getTarget().supportsIFunc()) {
4427     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4428     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4429 
4430     // Fix up function declarations that were created for cpu_specific before
4431     // cpu_dispatch was known
4432     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4433       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4434                                            &getModule());
4435       replaceDeclarationWith(IFunc, GI);
4436       IFunc = GI;
4437     }
4438 
4439     std::string AliasName = getMangledNameImpl(
4440         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4441     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4442     if (!AliasFunc) {
4443       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4444                                            &getModule());
4445       SetCommonAttributes(GD, GA);
4446     }
4447   }
4448 }
4449 
4450 /// Adds a declaration to the list of multi version functions if not present.
4451 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4452   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4453   assert(FD && "Not a FunctionDecl?");
4454 
4455   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4456     std::string MangledName =
4457         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4458     if (!DeferredResolversToEmit.insert(MangledName).second)
4459       return;
4460   }
4461   MultiVersionFuncs.push_back(GD);
4462 }
4463 
4464 /// If a dispatcher for the specified mangled name is not in the module, create
4465 /// and return it. The dispatcher is either an llvm Function with the specified
4466 /// type, or a global ifunc.
4467 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4468   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4469   assert(FD && "Not a FunctionDecl?");
4470 
4471   std::string MangledName =
4472       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4473 
4474   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4475   // a separate resolver).
4476   std::string ResolverName = MangledName;
4477   if (getTarget().supportsIFunc()) {
4478     switch (FD->getMultiVersionKind()) {
4479     case MultiVersionKind::None:
4480       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4481     case MultiVersionKind::Target:
4482     case MultiVersionKind::CPUSpecific:
4483     case MultiVersionKind::CPUDispatch:
4484       ResolverName += ".ifunc";
4485       break;
4486     case MultiVersionKind::TargetClones:
4487     case MultiVersionKind::TargetVersion:
4488       break;
4489     }
4490   } else if (FD->isTargetMultiVersion()) {
4491     ResolverName += ".resolver";
4492   }
4493 
4494   // If the resolver has already been created, just return it. This lookup may
4495   // yield a function declaration instead of a resolver on AArch64. That is
4496   // because we didn't know whether a resolver will be generated when we first
4497   // encountered a use of the symbol named after this resolver. Therefore,
4498   // targets which support ifuncs should not return here unless we actually
4499   // found an ifunc.
4500   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4501   if (ResolverGV &&
4502       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4503     return ResolverGV;
4504 
4505   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4506   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4507 
4508   // The resolver needs to be created. For target and target_clones, defer
4509   // creation until the end of the TU.
4510   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4511     AddDeferredMultiVersionResolverToEmit(GD);
4512 
4513   // For cpu_specific, don't create an ifunc yet because we don't know if the
4514   // cpu_dispatch will be emitted in this translation unit.
4515   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4516     llvm::Type *ResolverType = llvm::FunctionType::get(
4517         llvm::PointerType::get(DeclTy,
4518                                getTypes().getTargetAddressSpace(FD->getType())),
4519         false);
4520     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4521         MangledName + ".resolver", ResolverType, GlobalDecl{},
4522         /*ForVTable=*/false);
4523     llvm::GlobalIFunc *GIF =
4524         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4525                                   "", Resolver, &getModule());
4526     GIF->setName(ResolverName);
4527     SetCommonAttributes(FD, GIF);
4528     if (ResolverGV)
4529       replaceDeclarationWith(ResolverGV, GIF);
4530     return GIF;
4531   }
4532 
4533   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4534       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4535   assert(isa<llvm::GlobalValue>(Resolver) &&
4536          "Resolver should be created for the first time");
4537   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4538   if (ResolverGV)
4539     replaceDeclarationWith(ResolverGV, Resolver);
4540   return Resolver;
4541 }
4542 
4543 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4544                                            const llvm::GlobalValue *GV) const {
4545   auto SC = GV->getDLLStorageClass();
4546   if (SC == llvm::GlobalValue::DefaultStorageClass)
4547     return false;
4548   const Decl *MRD = D->getMostRecentDecl();
4549   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4550             !MRD->hasAttr<DLLImportAttr>()) ||
4551            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4552             !MRD->hasAttr<DLLExportAttr>())) &&
4553           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4554 }
4555 
4556 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4557 /// module, create and return an llvm Function with the specified type. If there
4558 /// is something in the module with the specified name, return it potentially
4559 /// bitcasted to the right type.
4560 ///
4561 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4562 /// to set the attributes on the function when it is first created.
4563 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4564     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4565     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4566     ForDefinition_t IsForDefinition) {
4567   const Decl *D = GD.getDecl();
4568 
4569   std::string NameWithoutMultiVersionMangling;
4570   // Any attempts to use a MultiVersion function should result in retrieving
4571   // the iFunc instead. Name Mangling will handle the rest of the changes.
4572   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4573     // For the device mark the function as one that should be emitted.
4574     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4575         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4576         !DontDefer && !IsForDefinition) {
4577       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4578         GlobalDecl GDDef;
4579         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4580           GDDef = GlobalDecl(CD, GD.getCtorType());
4581         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4582           GDDef = GlobalDecl(DD, GD.getDtorType());
4583         else
4584           GDDef = GlobalDecl(FDDef);
4585         EmitGlobal(GDDef);
4586       }
4587     }
4588 
4589     if (FD->isMultiVersion()) {
4590       UpdateMultiVersionNames(GD, FD, MangledName);
4591       if (!IsForDefinition) {
4592         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4593         // function is used. Instead we defer the emission until we see a
4594         // default definition. In the meantime we just reference the symbol
4595         // without FMV mangling (it may or may not be replaced later).
4596         if (getTarget().getTriple().isAArch64()) {
4597           AddDeferredMultiVersionResolverToEmit(GD);
4598           NameWithoutMultiVersionMangling = getMangledNameImpl(
4599               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4600         } else
4601           return GetOrCreateMultiVersionResolver(GD);
4602       }
4603     }
4604   }
4605 
4606   if (!NameWithoutMultiVersionMangling.empty())
4607     MangledName = NameWithoutMultiVersionMangling;
4608 
4609   // Lookup the entry, lazily creating it if necessary.
4610   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4611   if (Entry) {
4612     if (WeakRefReferences.erase(Entry)) {
4613       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4614       if (FD && !FD->hasAttr<WeakAttr>())
4615         Entry->setLinkage(llvm::Function::ExternalLinkage);
4616     }
4617 
4618     // Handle dropped DLL attributes.
4619     if (D && shouldDropDLLAttribute(D, Entry)) {
4620       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4621       setDSOLocal(Entry);
4622     }
4623 
4624     // If there are two attempts to define the same mangled name, issue an
4625     // error.
4626     if (IsForDefinition && !Entry->isDeclaration()) {
4627       GlobalDecl OtherGD;
4628       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4629       // to make sure that we issue an error only once.
4630       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4631           (GD.getCanonicalDecl().getDecl() !=
4632            OtherGD.getCanonicalDecl().getDecl()) &&
4633           DiagnosedConflictingDefinitions.insert(GD).second) {
4634         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4635             << MangledName;
4636         getDiags().Report(OtherGD.getDecl()->getLocation(),
4637                           diag::note_previous_definition);
4638       }
4639     }
4640 
4641     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4642         (Entry->getValueType() == Ty)) {
4643       return Entry;
4644     }
4645 
4646     // Make sure the result is of the correct type.
4647     // (If function is requested for a definition, we always need to create a new
4648     // function, not just return a bitcast.)
4649     if (!IsForDefinition)
4650       return Entry;
4651   }
4652 
4653   // This function doesn't have a complete type (for example, the return
4654   // type is an incomplete struct). Use a fake type instead, and make
4655   // sure not to try to set attributes.
4656   bool IsIncompleteFunction = false;
4657 
4658   llvm::FunctionType *FTy;
4659   if (isa<llvm::FunctionType>(Ty)) {
4660     FTy = cast<llvm::FunctionType>(Ty);
4661   } else {
4662     FTy = llvm::FunctionType::get(VoidTy, false);
4663     IsIncompleteFunction = true;
4664   }
4665 
4666   llvm::Function *F =
4667       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4668                              Entry ? StringRef() : MangledName, &getModule());
4669 
4670   // Store the declaration associated with this function so it is potentially
4671   // updated by further declarations or definitions and emitted at the end.
4672   if (D && D->hasAttr<AnnotateAttr>())
4673     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4674 
4675   // If we already created a function with the same mangled name (but different
4676   // type) before, take its name and add it to the list of functions to be
4677   // replaced with F at the end of CodeGen.
4678   //
4679   // This happens if there is a prototype for a function (e.g. "int f()") and
4680   // then a definition of a different type (e.g. "int f(int x)").
4681   if (Entry) {
4682     F->takeName(Entry);
4683 
4684     // This might be an implementation of a function without a prototype, in
4685     // which case, try to do special replacement of calls which match the new
4686     // prototype.  The really key thing here is that we also potentially drop
4687     // arguments from the call site so as to make a direct call, which makes the
4688     // inliner happier and suppresses a number of optimizer warnings (!) about
4689     // dropping arguments.
4690     if (!Entry->use_empty()) {
4691       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4692       Entry->removeDeadConstantUsers();
4693     }
4694 
4695     addGlobalValReplacement(Entry, F);
4696   }
4697 
4698   assert(F->getName() == MangledName && "name was uniqued!");
4699   if (D)
4700     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4701   if (ExtraAttrs.hasFnAttrs()) {
4702     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4703     F->addFnAttrs(B);
4704   }
4705 
4706   if (!DontDefer) {
4707     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4708     // each other bottoming out with the base dtor.  Therefore we emit non-base
4709     // dtors on usage, even if there is no dtor definition in the TU.
4710     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4711         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4712                                            GD.getDtorType()))
4713       addDeferredDeclToEmit(GD);
4714 
4715     // This is the first use or definition of a mangled name.  If there is a
4716     // deferred decl with this name, remember that we need to emit it at the end
4717     // of the file.
4718     auto DDI = DeferredDecls.find(MangledName);
4719     if (DDI != DeferredDecls.end()) {
4720       // Move the potentially referenced deferred decl to the
4721       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4722       // don't need it anymore).
4723       addDeferredDeclToEmit(DDI->second);
4724       DeferredDecls.erase(DDI);
4725 
4726       // Otherwise, there are cases we have to worry about where we're
4727       // using a declaration for which we must emit a definition but where
4728       // we might not find a top-level definition:
4729       //   - member functions defined inline in their classes
4730       //   - friend functions defined inline in some class
4731       //   - special member functions with implicit definitions
4732       // If we ever change our AST traversal to walk into class methods,
4733       // this will be unnecessary.
4734       //
4735       // We also don't emit a definition for a function if it's going to be an
4736       // entry in a vtable, unless it's already marked as used.
4737     } else if (getLangOpts().CPlusPlus && D) {
4738       // Look for a declaration that's lexically in a record.
4739       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4740            FD = FD->getPreviousDecl()) {
4741         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4742           if (FD->doesThisDeclarationHaveABody()) {
4743             addDeferredDeclToEmit(GD.getWithDecl(FD));
4744             break;
4745           }
4746         }
4747       }
4748     }
4749   }
4750 
4751   // Make sure the result is of the requested type.
4752   if (!IsIncompleteFunction) {
4753     assert(F->getFunctionType() == Ty);
4754     return F;
4755   }
4756 
4757   return F;
4758 }
4759 
4760 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4761 /// non-null, then this function will use the specified type if it has to
4762 /// create it (this occurs when we see a definition of the function).
4763 llvm::Constant *
4764 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4765                                  bool DontDefer,
4766                                  ForDefinition_t IsForDefinition) {
4767   // If there was no specific requested type, just convert it now.
4768   if (!Ty) {
4769     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4770     Ty = getTypes().ConvertType(FD->getType());
4771   }
4772 
4773   // Devirtualized destructor calls may come through here instead of via
4774   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4775   // of the complete destructor when necessary.
4776   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4777     if (getTarget().getCXXABI().isMicrosoft() &&
4778         GD.getDtorType() == Dtor_Complete &&
4779         DD->getParent()->getNumVBases() == 0)
4780       GD = GlobalDecl(DD, Dtor_Base);
4781   }
4782 
4783   StringRef MangledName = getMangledName(GD);
4784   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4785                                     /*IsThunk=*/false, llvm::AttributeList(),
4786                                     IsForDefinition);
4787   // Returns kernel handle for HIP kernel stub function.
4788   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4789       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4790     auto *Handle = getCUDARuntime().getKernelHandle(
4791         cast<llvm::Function>(F->stripPointerCasts()), GD);
4792     if (IsForDefinition)
4793       return F;
4794     return Handle;
4795   }
4796   return F;
4797 }
4798 
4799 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4800   llvm::GlobalValue *F =
4801       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4802 
4803   return llvm::NoCFIValue::get(F);
4804 }
4805 
4806 static const FunctionDecl *
4807 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4808   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4809   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4810 
4811   IdentifierInfo &CII = C.Idents.get(Name);
4812   for (const auto *Result : DC->lookup(&CII))
4813     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4814       return FD;
4815 
4816   if (!C.getLangOpts().CPlusPlus)
4817     return nullptr;
4818 
4819   // Demangle the premangled name from getTerminateFn()
4820   IdentifierInfo &CXXII =
4821       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4822           ? C.Idents.get("terminate")
4823           : C.Idents.get(Name);
4824 
4825   for (const auto &N : {"__cxxabiv1", "std"}) {
4826     IdentifierInfo &NS = C.Idents.get(N);
4827     for (const auto *Result : DC->lookup(&NS)) {
4828       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4829       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4830         for (const auto *Result : LSD->lookup(&NS))
4831           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4832             break;
4833 
4834       if (ND)
4835         for (const auto *Result : ND->lookup(&CXXII))
4836           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4837             return FD;
4838     }
4839   }
4840 
4841   return nullptr;
4842 }
4843 
4844 /// CreateRuntimeFunction - Create a new runtime function with the specified
4845 /// type and name.
4846 llvm::FunctionCallee
4847 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4848                                      llvm::AttributeList ExtraAttrs, bool Local,
4849                                      bool AssumeConvergent) {
4850   if (AssumeConvergent) {
4851     ExtraAttrs =
4852         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4853   }
4854 
4855   llvm::Constant *C =
4856       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4857                               /*DontDefer=*/false, /*IsThunk=*/false,
4858                               ExtraAttrs);
4859 
4860   if (auto *F = dyn_cast<llvm::Function>(C)) {
4861     if (F->empty()) {
4862       F->setCallingConv(getRuntimeCC());
4863 
4864       // In Windows Itanium environments, try to mark runtime functions
4865       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4866       // will link their standard library statically or dynamically. Marking
4867       // functions imported when they are not imported can cause linker errors
4868       // and warnings.
4869       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4870           !getCodeGenOpts().LTOVisibilityPublicStd) {
4871         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4872         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4873           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4874           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4875         }
4876       }
4877       setDSOLocal(F);
4878       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4879       // of trying to approximate the attributes using the LLVM function
4880       // signature. This requires revising the API of CreateRuntimeFunction().
4881       markRegisterParameterAttributes(F);
4882     }
4883   }
4884 
4885   return {FTy, C};
4886 }
4887 
4888 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4889 /// create and return an llvm GlobalVariable with the specified type and address
4890 /// space. If there is something in the module with the specified name, return
4891 /// it potentially bitcasted to the right type.
4892 ///
4893 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4894 /// to set the attributes on the global when it is first created.
4895 ///
4896 /// If IsForDefinition is true, it is guaranteed that an actual global with
4897 /// type Ty will be returned, not conversion of a variable with the same
4898 /// mangled name but some other type.
4899 llvm::Constant *
4900 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4901                                      LangAS AddrSpace, const VarDecl *D,
4902                                      ForDefinition_t IsForDefinition) {
4903   // Lookup the entry, lazily creating it if necessary.
4904   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4905   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4906   if (Entry) {
4907     if (WeakRefReferences.erase(Entry)) {
4908       if (D && !D->hasAttr<WeakAttr>())
4909         Entry->setLinkage(llvm::Function::ExternalLinkage);
4910     }
4911 
4912     // Handle dropped DLL attributes.
4913     if (D && shouldDropDLLAttribute(D, Entry))
4914       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4915 
4916     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4917       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4918 
4919     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4920       return Entry;
4921 
4922     // If there are two attempts to define the same mangled name, issue an
4923     // error.
4924     if (IsForDefinition && !Entry->isDeclaration()) {
4925       GlobalDecl OtherGD;
4926       const VarDecl *OtherD;
4927 
4928       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4929       // to make sure that we issue an error only once.
4930       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4931           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4932           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4933           OtherD->hasInit() &&
4934           DiagnosedConflictingDefinitions.insert(D).second) {
4935         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4936             << MangledName;
4937         getDiags().Report(OtherGD.getDecl()->getLocation(),
4938                           diag::note_previous_definition);
4939       }
4940     }
4941 
4942     // Make sure the result is of the correct type.
4943     if (Entry->getType()->getAddressSpace() != TargetAS)
4944       return llvm::ConstantExpr::getAddrSpaceCast(
4945           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4946 
4947     // (If global is requested for a definition, we always need to create a new
4948     // global, not just return a bitcast.)
4949     if (!IsForDefinition)
4950       return Entry;
4951   }
4952 
4953   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4954 
4955   auto *GV = new llvm::GlobalVariable(
4956       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4957       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4958       getContext().getTargetAddressSpace(DAddrSpace));
4959 
4960   // If we already created a global with the same mangled name (but different
4961   // type) before, take its name and remove it from its parent.
4962   if (Entry) {
4963     GV->takeName(Entry);
4964 
4965     if (!Entry->use_empty()) {
4966       Entry->replaceAllUsesWith(GV);
4967     }
4968 
4969     Entry->eraseFromParent();
4970   }
4971 
4972   // This is the first use or definition of a mangled name.  If there is a
4973   // deferred decl with this name, remember that we need to emit it at the end
4974   // of the file.
4975   auto DDI = DeferredDecls.find(MangledName);
4976   if (DDI != DeferredDecls.end()) {
4977     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4978     // list, and remove it from DeferredDecls (since we don't need it anymore).
4979     addDeferredDeclToEmit(DDI->second);
4980     DeferredDecls.erase(DDI);
4981   }
4982 
4983   // Handle things which are present even on external declarations.
4984   if (D) {
4985     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4986       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4987 
4988     // FIXME: This code is overly simple and should be merged with other global
4989     // handling.
4990     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4991 
4992     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4993 
4994     setLinkageForGV(GV, D);
4995 
4996     if (D->getTLSKind()) {
4997       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4998         CXXThreadLocals.push_back(D);
4999       setTLSMode(GV, *D);
5000     }
5001 
5002     setGVProperties(GV, D);
5003 
5004     // If required by the ABI, treat declarations of static data members with
5005     // inline initializers as definitions.
5006     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5007       EmitGlobalVarDefinition(D);
5008     }
5009 
5010     // Emit section information for extern variables.
5011     if (D->hasExternalStorage()) {
5012       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5013         GV->setSection(SA->getName());
5014     }
5015 
5016     // Handle XCore specific ABI requirements.
5017     if (getTriple().getArch() == llvm::Triple::xcore &&
5018         D->getLanguageLinkage() == CLanguageLinkage &&
5019         D->getType().isConstant(Context) &&
5020         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5021       GV->setSection(".cp.rodata");
5022 
5023     // Handle code model attribute
5024     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5025       GV->setCodeModel(CMA->getModel());
5026 
5027     // Check if we a have a const declaration with an initializer, we may be
5028     // able to emit it as available_externally to expose it's value to the
5029     // optimizer.
5030     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5031         D->getType().isConstQualified() && !GV->hasInitializer() &&
5032         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5033       const auto *Record =
5034           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5035       bool HasMutableFields = Record && Record->hasMutableFields();
5036       if (!HasMutableFields) {
5037         const VarDecl *InitDecl;
5038         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5039         if (InitExpr) {
5040           ConstantEmitter emitter(*this);
5041           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5042           if (Init) {
5043             auto *InitType = Init->getType();
5044             if (GV->getValueType() != InitType) {
5045               // The type of the initializer does not match the definition.
5046               // This happens when an initializer has a different type from
5047               // the type of the global (because of padding at the end of a
5048               // structure for instance).
5049               GV->setName(StringRef());
5050               // Make a new global with the correct type, this is now guaranteed
5051               // to work.
5052               auto *NewGV = cast<llvm::GlobalVariable>(
5053                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5054                       ->stripPointerCasts());
5055 
5056               // Erase the old global, since it is no longer used.
5057               GV->eraseFromParent();
5058               GV = NewGV;
5059             } else {
5060               GV->setInitializer(Init);
5061               GV->setConstant(true);
5062               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5063             }
5064             emitter.finalize(GV);
5065           }
5066         }
5067       }
5068     }
5069   }
5070 
5071   if (D &&
5072       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5073     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5074     // External HIP managed variables needed to be recorded for transformation
5075     // in both device and host compilations.
5076     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5077         D->hasExternalStorage())
5078       getCUDARuntime().handleVarRegistration(D, *GV);
5079   }
5080 
5081   if (D)
5082     SanitizerMD->reportGlobal(GV, *D);
5083 
5084   LangAS ExpectedAS =
5085       D ? D->getType().getAddressSpace()
5086         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5087   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5088   if (DAddrSpace != ExpectedAS) {
5089     return getTargetCodeGenInfo().performAddrSpaceCast(
5090         *this, GV, DAddrSpace, ExpectedAS,
5091         llvm::PointerType::get(getLLVMContext(), TargetAS));
5092   }
5093 
5094   return GV;
5095 }
5096 
5097 llvm::Constant *
5098 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5099   const Decl *D = GD.getDecl();
5100 
5101   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5102     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5103                                 /*DontDefer=*/false, IsForDefinition);
5104 
5105   if (isa<CXXMethodDecl>(D)) {
5106     auto FInfo =
5107         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5108     auto Ty = getTypes().GetFunctionType(*FInfo);
5109     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5110                              IsForDefinition);
5111   }
5112 
5113   if (isa<FunctionDecl>(D)) {
5114     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5115     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5116     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5117                              IsForDefinition);
5118   }
5119 
5120   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5121 }
5122 
5123 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5124     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5125     llvm::Align Alignment) {
5126   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5127   llvm::GlobalVariable *OldGV = nullptr;
5128 
5129   if (GV) {
5130     // Check if the variable has the right type.
5131     if (GV->getValueType() == Ty)
5132       return GV;
5133 
5134     // Because C++ name mangling, the only way we can end up with an already
5135     // existing global with the same name is if it has been declared extern "C".
5136     assert(GV->isDeclaration() && "Declaration has wrong type!");
5137     OldGV = GV;
5138   }
5139 
5140   // Create a new variable.
5141   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5142                                 Linkage, nullptr, Name);
5143 
5144   if (OldGV) {
5145     // Replace occurrences of the old variable if needed.
5146     GV->takeName(OldGV);
5147 
5148     if (!OldGV->use_empty()) {
5149       OldGV->replaceAllUsesWith(GV);
5150     }
5151 
5152     OldGV->eraseFromParent();
5153   }
5154 
5155   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5156       !GV->hasAvailableExternallyLinkage())
5157     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5158 
5159   GV->setAlignment(Alignment);
5160 
5161   return GV;
5162 }
5163 
5164 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5165 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5166 /// then it will be created with the specified type instead of whatever the
5167 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5168 /// that an actual global with type Ty will be returned, not conversion of a
5169 /// variable with the same mangled name but some other type.
5170 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5171                                                   llvm::Type *Ty,
5172                                            ForDefinition_t IsForDefinition) {
5173   assert(D->hasGlobalStorage() && "Not a global variable");
5174   QualType ASTTy = D->getType();
5175   if (!Ty)
5176     Ty = getTypes().ConvertTypeForMem(ASTTy);
5177 
5178   StringRef MangledName = getMangledName(D);
5179   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5180                                IsForDefinition);
5181 }
5182 
5183 /// CreateRuntimeVariable - Create a new runtime global variable with the
5184 /// specified type and name.
5185 llvm::Constant *
5186 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5187                                      StringRef Name) {
5188   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5189                                                        : LangAS::Default;
5190   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5191   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5192   return Ret;
5193 }
5194 
5195 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5196   assert(!D->getInit() && "Cannot emit definite definitions here!");
5197 
5198   StringRef MangledName = getMangledName(D);
5199   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5200 
5201   // We already have a definition, not declaration, with the same mangled name.
5202   // Emitting of declaration is not required (and actually overwrites emitted
5203   // definition).
5204   if (GV && !GV->isDeclaration())
5205     return;
5206 
5207   // If we have not seen a reference to this variable yet, place it into the
5208   // deferred declarations table to be emitted if needed later.
5209   if (!MustBeEmitted(D) && !GV) {
5210       DeferredDecls[MangledName] = D;
5211       return;
5212   }
5213 
5214   // The tentative definition is the only definition.
5215   EmitGlobalVarDefinition(D);
5216 }
5217 
5218 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5219   if (auto const *V = dyn_cast<const VarDecl>(D))
5220     EmitExternalVarDeclaration(V);
5221   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5222     EmitExternalFunctionDeclaration(FD);
5223 }
5224 
5225 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5226   return Context.toCharUnitsFromBits(
5227       getDataLayout().getTypeStoreSizeInBits(Ty));
5228 }
5229 
5230 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5231   if (LangOpts.OpenCL) {
5232     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5233     assert(AS == LangAS::opencl_global ||
5234            AS == LangAS::opencl_global_device ||
5235            AS == LangAS::opencl_global_host ||
5236            AS == LangAS::opencl_constant ||
5237            AS == LangAS::opencl_local ||
5238            AS >= LangAS::FirstTargetAddressSpace);
5239     return AS;
5240   }
5241 
5242   if (LangOpts.SYCLIsDevice &&
5243       (!D || D->getType().getAddressSpace() == LangAS::Default))
5244     return LangAS::sycl_global;
5245 
5246   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5247     if (D) {
5248       if (D->hasAttr<CUDAConstantAttr>())
5249         return LangAS::cuda_constant;
5250       if (D->hasAttr<CUDASharedAttr>())
5251         return LangAS::cuda_shared;
5252       if (D->hasAttr<CUDADeviceAttr>())
5253         return LangAS::cuda_device;
5254       if (D->getType().isConstQualified())
5255         return LangAS::cuda_constant;
5256     }
5257     return LangAS::cuda_device;
5258   }
5259 
5260   if (LangOpts.OpenMP) {
5261     LangAS AS;
5262     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5263       return AS;
5264   }
5265   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5266 }
5267 
5268 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5269   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5270   if (LangOpts.OpenCL)
5271     return LangAS::opencl_constant;
5272   if (LangOpts.SYCLIsDevice)
5273     return LangAS::sycl_global;
5274   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5275     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5276     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5277     // with OpVariable instructions with Generic storage class which is not
5278     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5279     // UniformConstant storage class is not viable as pointers to it may not be
5280     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5281     return LangAS::cuda_device;
5282   if (auto AS = getTarget().getConstantAddressSpace())
5283     return *AS;
5284   return LangAS::Default;
5285 }
5286 
5287 // In address space agnostic languages, string literals are in default address
5288 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5289 // emitted in constant address space in LLVM IR. To be consistent with other
5290 // parts of AST, string literal global variables in constant address space
5291 // need to be casted to default address space before being put into address
5292 // map and referenced by other part of CodeGen.
5293 // In OpenCL, string literals are in constant address space in AST, therefore
5294 // they should not be casted to default address space.
5295 static llvm::Constant *
5296 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5297                                        llvm::GlobalVariable *GV) {
5298   llvm::Constant *Cast = GV;
5299   if (!CGM.getLangOpts().OpenCL) {
5300     auto AS = CGM.GetGlobalConstantAddressSpace();
5301     if (AS != LangAS::Default)
5302       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5303           CGM, GV, AS, LangAS::Default,
5304           llvm::PointerType::get(
5305               CGM.getLLVMContext(),
5306               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5307   }
5308   return Cast;
5309 }
5310 
5311 template<typename SomeDecl>
5312 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5313                                                llvm::GlobalValue *GV) {
5314   if (!getLangOpts().CPlusPlus)
5315     return;
5316 
5317   // Must have 'used' attribute, or else inline assembly can't rely on
5318   // the name existing.
5319   if (!D->template hasAttr<UsedAttr>())
5320     return;
5321 
5322   // Must have internal linkage and an ordinary name.
5323   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5324     return;
5325 
5326   // Must be in an extern "C" context. Entities declared directly within
5327   // a record are not extern "C" even if the record is in such a context.
5328   const SomeDecl *First = D->getFirstDecl();
5329   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5330     return;
5331 
5332   // OK, this is an internal linkage entity inside an extern "C" linkage
5333   // specification. Make a note of that so we can give it the "expected"
5334   // mangled name if nothing else is using that name.
5335   std::pair<StaticExternCMap::iterator, bool> R =
5336       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5337 
5338   // If we have multiple internal linkage entities with the same name
5339   // in extern "C" regions, none of them gets that name.
5340   if (!R.second)
5341     R.first->second = nullptr;
5342 }
5343 
5344 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5345   if (!CGM.supportsCOMDAT())
5346     return false;
5347 
5348   if (D.hasAttr<SelectAnyAttr>())
5349     return true;
5350 
5351   GVALinkage Linkage;
5352   if (auto *VD = dyn_cast<VarDecl>(&D))
5353     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5354   else
5355     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5356 
5357   switch (Linkage) {
5358   case GVA_Internal:
5359   case GVA_AvailableExternally:
5360   case GVA_StrongExternal:
5361     return false;
5362   case GVA_DiscardableODR:
5363   case GVA_StrongODR:
5364     return true;
5365   }
5366   llvm_unreachable("No such linkage");
5367 }
5368 
5369 bool CodeGenModule::supportsCOMDAT() const {
5370   return getTriple().supportsCOMDAT();
5371 }
5372 
5373 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5374                                           llvm::GlobalObject &GO) {
5375   if (!shouldBeInCOMDAT(*this, D))
5376     return;
5377   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5378 }
5379 
5380 const ABIInfo &CodeGenModule::getABIInfo() {
5381   return getTargetCodeGenInfo().getABIInfo();
5382 }
5383 
5384 /// Pass IsTentative as true if you want to create a tentative definition.
5385 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5386                                             bool IsTentative) {
5387   // OpenCL global variables of sampler type are translated to function calls,
5388   // therefore no need to be translated.
5389   QualType ASTTy = D->getType();
5390   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5391     return;
5392 
5393   // If this is OpenMP device, check if it is legal to emit this global
5394   // normally.
5395   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5396       OpenMPRuntime->emitTargetGlobalVariable(D))
5397     return;
5398 
5399   llvm::TrackingVH<llvm::Constant> Init;
5400   bool NeedsGlobalCtor = false;
5401   // Whether the definition of the variable is available externally.
5402   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5403   // since this is the job for its original source.
5404   bool IsDefinitionAvailableExternally =
5405       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5406   bool NeedsGlobalDtor =
5407       !IsDefinitionAvailableExternally &&
5408       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5409 
5410   // It is helpless to emit the definition for an available_externally variable
5411   // which can't be marked as const.
5412   // We don't need to check if it needs global ctor or dtor. See the above
5413   // comment for ideas.
5414   if (IsDefinitionAvailableExternally &&
5415       (!D->hasConstantInitialization() ||
5416        // TODO: Update this when we have interface to check constexpr
5417        // destructor.
5418        D->needsDestruction(getContext()) ||
5419        !D->getType().isConstantStorage(getContext(), true, true)))
5420     return;
5421 
5422   const VarDecl *InitDecl;
5423   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5424 
5425   std::optional<ConstantEmitter> emitter;
5426 
5427   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5428   // as part of their declaration."  Sema has already checked for
5429   // error cases, so we just need to set Init to UndefValue.
5430   bool IsCUDASharedVar =
5431       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5432   // Shadows of initialized device-side global variables are also left
5433   // undefined.
5434   // Managed Variables should be initialized on both host side and device side.
5435   bool IsCUDAShadowVar =
5436       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5437       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5438        D->hasAttr<CUDASharedAttr>());
5439   bool IsCUDADeviceShadowVar =
5440       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5441       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5442        D->getType()->isCUDADeviceBuiltinTextureType());
5443   if (getLangOpts().CUDA &&
5444       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5445     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5446   else if (D->hasAttr<LoaderUninitializedAttr>())
5447     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5448   else if (!InitExpr) {
5449     // This is a tentative definition; tentative definitions are
5450     // implicitly initialized with { 0 }.
5451     //
5452     // Note that tentative definitions are only emitted at the end of
5453     // a translation unit, so they should never have incomplete
5454     // type. In addition, EmitTentativeDefinition makes sure that we
5455     // never attempt to emit a tentative definition if a real one
5456     // exists. A use may still exists, however, so we still may need
5457     // to do a RAUW.
5458     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5459     Init = EmitNullConstant(D->getType());
5460   } else {
5461     initializedGlobalDecl = GlobalDecl(D);
5462     emitter.emplace(*this);
5463     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5464     if (!Initializer) {
5465       QualType T = InitExpr->getType();
5466       if (D->getType()->isReferenceType())
5467         T = D->getType();
5468 
5469       if (getLangOpts().CPlusPlus) {
5470         if (InitDecl->hasFlexibleArrayInit(getContext()))
5471           ErrorUnsupported(D, "flexible array initializer");
5472         Init = EmitNullConstant(T);
5473 
5474         if (!IsDefinitionAvailableExternally)
5475           NeedsGlobalCtor = true;
5476       } else {
5477         ErrorUnsupported(D, "static initializer");
5478         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5479       }
5480     } else {
5481       Init = Initializer;
5482       // We don't need an initializer, so remove the entry for the delayed
5483       // initializer position (just in case this entry was delayed) if we
5484       // also don't need to register a destructor.
5485       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5486         DelayedCXXInitPosition.erase(D);
5487 
5488 #ifndef NDEBUG
5489       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5490                           InitDecl->getFlexibleArrayInitChars(getContext());
5491       CharUnits CstSize = CharUnits::fromQuantity(
5492           getDataLayout().getTypeAllocSize(Init->getType()));
5493       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5494 #endif
5495     }
5496   }
5497 
5498   llvm::Type* InitType = Init->getType();
5499   llvm::Constant *Entry =
5500       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5501 
5502   // Strip off pointer casts if we got them.
5503   Entry = Entry->stripPointerCasts();
5504 
5505   // Entry is now either a Function or GlobalVariable.
5506   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5507 
5508   // We have a definition after a declaration with the wrong type.
5509   // We must make a new GlobalVariable* and update everything that used OldGV
5510   // (a declaration or tentative definition) with the new GlobalVariable*
5511   // (which will be a definition).
5512   //
5513   // This happens if there is a prototype for a global (e.g.
5514   // "extern int x[];") and then a definition of a different type (e.g.
5515   // "int x[10];"). This also happens when an initializer has a different type
5516   // from the type of the global (this happens with unions).
5517   if (!GV || GV->getValueType() != InitType ||
5518       GV->getType()->getAddressSpace() !=
5519           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5520 
5521     // Move the old entry aside so that we'll create a new one.
5522     Entry->setName(StringRef());
5523 
5524     // Make a new global with the correct type, this is now guaranteed to work.
5525     GV = cast<llvm::GlobalVariable>(
5526         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5527             ->stripPointerCasts());
5528 
5529     // Replace all uses of the old global with the new global
5530     llvm::Constant *NewPtrForOldDecl =
5531         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5532                                                              Entry->getType());
5533     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5534 
5535     // Erase the old global, since it is no longer used.
5536     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5537   }
5538 
5539   MaybeHandleStaticInExternC(D, GV);
5540 
5541   if (D->hasAttr<AnnotateAttr>())
5542     AddGlobalAnnotations(D, GV);
5543 
5544   // Set the llvm linkage type as appropriate.
5545   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5546 
5547   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5548   // the device. [...]"
5549   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5550   // __device__, declares a variable that: [...]
5551   // Is accessible from all the threads within the grid and from the host
5552   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5553   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5554   if (LangOpts.CUDA) {
5555     if (LangOpts.CUDAIsDevice) {
5556       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5557           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5558            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5559            D->getType()->isCUDADeviceBuiltinTextureType()))
5560         GV->setExternallyInitialized(true);
5561     } else {
5562       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5563     }
5564     getCUDARuntime().handleVarRegistration(D, *GV);
5565   }
5566 
5567   GV->setInitializer(Init);
5568   if (emitter)
5569     emitter->finalize(GV);
5570 
5571   // If it is safe to mark the global 'constant', do so now.
5572   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5573                   D->getType().isConstantStorage(getContext(), true, true));
5574 
5575   // If it is in a read-only section, mark it 'constant'.
5576   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5577     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5578     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5579       GV->setConstant(true);
5580   }
5581 
5582   CharUnits AlignVal = getContext().getDeclAlign(D);
5583   // Check for alignment specifed in an 'omp allocate' directive.
5584   if (std::optional<CharUnits> AlignValFromAllocate =
5585           getOMPAllocateAlignment(D))
5586     AlignVal = *AlignValFromAllocate;
5587   GV->setAlignment(AlignVal.getAsAlign());
5588 
5589   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5590   // function is only defined alongside the variable, not also alongside
5591   // callers. Normally, all accesses to a thread_local go through the
5592   // thread-wrapper in order to ensure initialization has occurred, underlying
5593   // variable will never be used other than the thread-wrapper, so it can be
5594   // converted to internal linkage.
5595   //
5596   // However, if the variable has the 'constinit' attribute, it _can_ be
5597   // referenced directly, without calling the thread-wrapper, so the linkage
5598   // must not be changed.
5599   //
5600   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5601   // weak or linkonce, the de-duplication semantics are important to preserve,
5602   // so we don't change the linkage.
5603   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5604       Linkage == llvm::GlobalValue::ExternalLinkage &&
5605       Context.getTargetInfo().getTriple().isOSDarwin() &&
5606       !D->hasAttr<ConstInitAttr>())
5607     Linkage = llvm::GlobalValue::InternalLinkage;
5608 
5609   GV->setLinkage(Linkage);
5610   if (D->hasAttr<DLLImportAttr>())
5611     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5612   else if (D->hasAttr<DLLExportAttr>())
5613     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5614   else
5615     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5616 
5617   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5618     // common vars aren't constant even if declared const.
5619     GV->setConstant(false);
5620     // Tentative definition of global variables may be initialized with
5621     // non-zero null pointers. In this case they should have weak linkage
5622     // since common linkage must have zero initializer and must not have
5623     // explicit section therefore cannot have non-zero initial value.
5624     if (!GV->getInitializer()->isNullValue())
5625       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5626   }
5627 
5628   setNonAliasAttributes(D, GV);
5629 
5630   if (D->getTLSKind() && !GV->isThreadLocal()) {
5631     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5632       CXXThreadLocals.push_back(D);
5633     setTLSMode(GV, *D);
5634   }
5635 
5636   maybeSetTrivialComdat(*D, *GV);
5637 
5638   // Emit the initializer function if necessary.
5639   if (NeedsGlobalCtor || NeedsGlobalDtor)
5640     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5641 
5642   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5643 
5644   // Emit global variable debug information.
5645   if (CGDebugInfo *DI = getModuleDebugInfo())
5646     if (getCodeGenOpts().hasReducedDebugInfo())
5647       DI->EmitGlobalVariable(GV, D);
5648 }
5649 
5650 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5651   if (CGDebugInfo *DI = getModuleDebugInfo())
5652     if (getCodeGenOpts().hasReducedDebugInfo()) {
5653       QualType ASTTy = D->getType();
5654       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5655       llvm::Constant *GV =
5656           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5657       DI->EmitExternalVariable(
5658           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5659     }
5660 }
5661 
5662 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5663   if (CGDebugInfo *DI = getModuleDebugInfo())
5664     if (getCodeGenOpts().hasReducedDebugInfo()) {
5665       auto *Ty = getTypes().ConvertType(FD->getType());
5666       StringRef MangledName = getMangledName(FD);
5667       auto *Fn = dyn_cast<llvm::Function>(
5668           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5669       if (!Fn->getSubprogram())
5670         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5671     }
5672 }
5673 
5674 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5675                                       CodeGenModule &CGM, const VarDecl *D,
5676                                       bool NoCommon) {
5677   // Don't give variables common linkage if -fno-common was specified unless it
5678   // was overridden by a NoCommon attribute.
5679   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5680     return true;
5681 
5682   // C11 6.9.2/2:
5683   //   A declaration of an identifier for an object that has file scope without
5684   //   an initializer, and without a storage-class specifier or with the
5685   //   storage-class specifier static, constitutes a tentative definition.
5686   if (D->getInit() || D->hasExternalStorage())
5687     return true;
5688 
5689   // A variable cannot be both common and exist in a section.
5690   if (D->hasAttr<SectionAttr>())
5691     return true;
5692 
5693   // A variable cannot be both common and exist in a section.
5694   // We don't try to determine which is the right section in the front-end.
5695   // If no specialized section name is applicable, it will resort to default.
5696   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5697       D->hasAttr<PragmaClangDataSectionAttr>() ||
5698       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5699       D->hasAttr<PragmaClangRodataSectionAttr>())
5700     return true;
5701 
5702   // Thread local vars aren't considered common linkage.
5703   if (D->getTLSKind())
5704     return true;
5705 
5706   // Tentative definitions marked with WeakImportAttr are true definitions.
5707   if (D->hasAttr<WeakImportAttr>())
5708     return true;
5709 
5710   // A variable cannot be both common and exist in a comdat.
5711   if (shouldBeInCOMDAT(CGM, *D))
5712     return true;
5713 
5714   // Declarations with a required alignment do not have common linkage in MSVC
5715   // mode.
5716   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5717     if (D->hasAttr<AlignedAttr>())
5718       return true;
5719     QualType VarType = D->getType();
5720     if (Context.isAlignmentRequired(VarType))
5721       return true;
5722 
5723     if (const auto *RT = VarType->getAs<RecordType>()) {
5724       const RecordDecl *RD = RT->getDecl();
5725       for (const FieldDecl *FD : RD->fields()) {
5726         if (FD->isBitField())
5727           continue;
5728         if (FD->hasAttr<AlignedAttr>())
5729           return true;
5730         if (Context.isAlignmentRequired(FD->getType()))
5731           return true;
5732       }
5733     }
5734   }
5735 
5736   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5737   // common symbols, so symbols with greater alignment requirements cannot be
5738   // common.
5739   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5740   // alignments for common symbols via the aligncomm directive, so this
5741   // restriction only applies to MSVC environments.
5742   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5743       Context.getTypeAlignIfKnown(D->getType()) >
5744           Context.toBits(CharUnits::fromQuantity(32)))
5745     return true;
5746 
5747   return false;
5748 }
5749 
5750 llvm::GlobalValue::LinkageTypes
5751 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5752                                            GVALinkage Linkage) {
5753   if (Linkage == GVA_Internal)
5754     return llvm::Function::InternalLinkage;
5755 
5756   if (D->hasAttr<WeakAttr>())
5757     return llvm::GlobalVariable::WeakAnyLinkage;
5758 
5759   if (const auto *FD = D->getAsFunction())
5760     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5761       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5762 
5763   // We are guaranteed to have a strong definition somewhere else,
5764   // so we can use available_externally linkage.
5765   if (Linkage == GVA_AvailableExternally)
5766     return llvm::GlobalValue::AvailableExternallyLinkage;
5767 
5768   // Note that Apple's kernel linker doesn't support symbol
5769   // coalescing, so we need to avoid linkonce and weak linkages there.
5770   // Normally, this means we just map to internal, but for explicit
5771   // instantiations we'll map to external.
5772 
5773   // In C++, the compiler has to emit a definition in every translation unit
5774   // that references the function.  We should use linkonce_odr because
5775   // a) if all references in this translation unit are optimized away, we
5776   // don't need to codegen it.  b) if the function persists, it needs to be
5777   // merged with other definitions. c) C++ has the ODR, so we know the
5778   // definition is dependable.
5779   if (Linkage == GVA_DiscardableODR)
5780     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5781                                             : llvm::Function::InternalLinkage;
5782 
5783   // An explicit instantiation of a template has weak linkage, since
5784   // explicit instantiations can occur in multiple translation units
5785   // and must all be equivalent. However, we are not allowed to
5786   // throw away these explicit instantiations.
5787   //
5788   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5789   // so say that CUDA templates are either external (for kernels) or internal.
5790   // This lets llvm perform aggressive inter-procedural optimizations. For
5791   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5792   // therefore we need to follow the normal linkage paradigm.
5793   if (Linkage == GVA_StrongODR) {
5794     if (getLangOpts().AppleKext)
5795       return llvm::Function::ExternalLinkage;
5796     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5797         !getLangOpts().GPURelocatableDeviceCode)
5798       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5799                                           : llvm::Function::InternalLinkage;
5800     return llvm::Function::WeakODRLinkage;
5801   }
5802 
5803   // C++ doesn't have tentative definitions and thus cannot have common
5804   // linkage.
5805   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5806       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5807                                  CodeGenOpts.NoCommon))
5808     return llvm::GlobalVariable::CommonLinkage;
5809 
5810   // selectany symbols are externally visible, so use weak instead of
5811   // linkonce.  MSVC optimizes away references to const selectany globals, so
5812   // all definitions should be the same and ODR linkage should be used.
5813   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5814   if (D->hasAttr<SelectAnyAttr>())
5815     return llvm::GlobalVariable::WeakODRLinkage;
5816 
5817   // Otherwise, we have strong external linkage.
5818   assert(Linkage == GVA_StrongExternal);
5819   return llvm::GlobalVariable::ExternalLinkage;
5820 }
5821 
5822 llvm::GlobalValue::LinkageTypes
5823 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5824   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5825   return getLLVMLinkageForDeclarator(VD, Linkage);
5826 }
5827 
5828 /// Replace the uses of a function that was declared with a non-proto type.
5829 /// We want to silently drop extra arguments from call sites
5830 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5831                                           llvm::Function *newFn) {
5832   // Fast path.
5833   if (old->use_empty())
5834     return;
5835 
5836   llvm::Type *newRetTy = newFn->getReturnType();
5837   SmallVector<llvm::Value *, 4> newArgs;
5838 
5839   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5840 
5841   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5842        ui != ue; ui++) {
5843     llvm::User *user = ui->getUser();
5844 
5845     // Recognize and replace uses of bitcasts.  Most calls to
5846     // unprototyped functions will use bitcasts.
5847     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5848       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5849         replaceUsesOfNonProtoConstant(bitcast, newFn);
5850       continue;
5851     }
5852 
5853     // Recognize calls to the function.
5854     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5855     if (!callSite)
5856       continue;
5857     if (!callSite->isCallee(&*ui))
5858       continue;
5859 
5860     // If the return types don't match exactly, then we can't
5861     // transform this call unless it's dead.
5862     if (callSite->getType() != newRetTy && !callSite->use_empty())
5863       continue;
5864 
5865     // Get the call site's attribute list.
5866     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5867     llvm::AttributeList oldAttrs = callSite->getAttributes();
5868 
5869     // If the function was passed too few arguments, don't transform.
5870     unsigned newNumArgs = newFn->arg_size();
5871     if (callSite->arg_size() < newNumArgs)
5872       continue;
5873 
5874     // If extra arguments were passed, we silently drop them.
5875     // If any of the types mismatch, we don't transform.
5876     unsigned argNo = 0;
5877     bool dontTransform = false;
5878     for (llvm::Argument &A : newFn->args()) {
5879       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5880         dontTransform = true;
5881         break;
5882       }
5883 
5884       // Add any parameter attributes.
5885       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5886       argNo++;
5887     }
5888     if (dontTransform)
5889       continue;
5890 
5891     // Okay, we can transform this.  Create the new call instruction and copy
5892     // over the required information.
5893     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5894 
5895     // Copy over any operand bundles.
5896     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5897     callSite->getOperandBundlesAsDefs(newBundles);
5898 
5899     llvm::CallBase *newCall;
5900     if (isa<llvm::CallInst>(callSite)) {
5901       newCall =
5902           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5903     } else {
5904       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5905       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5906                                          oldInvoke->getUnwindDest(), newArgs,
5907                                          newBundles, "", callSite);
5908     }
5909     newArgs.clear(); // for the next iteration
5910 
5911     if (!newCall->getType()->isVoidTy())
5912       newCall->takeName(callSite);
5913     newCall->setAttributes(
5914         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5915                                  oldAttrs.getRetAttrs(), newArgAttrs));
5916     newCall->setCallingConv(callSite->getCallingConv());
5917 
5918     // Finally, remove the old call, replacing any uses with the new one.
5919     if (!callSite->use_empty())
5920       callSite->replaceAllUsesWith(newCall);
5921 
5922     // Copy debug location attached to CI.
5923     if (callSite->getDebugLoc())
5924       newCall->setDebugLoc(callSite->getDebugLoc());
5925 
5926     callSitesToBeRemovedFromParent.push_back(callSite);
5927   }
5928 
5929   for (auto *callSite : callSitesToBeRemovedFromParent) {
5930     callSite->eraseFromParent();
5931   }
5932 }
5933 
5934 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5935 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5936 /// existing call uses of the old function in the module, this adjusts them to
5937 /// call the new function directly.
5938 ///
5939 /// This is not just a cleanup: the always_inline pass requires direct calls to
5940 /// functions to be able to inline them.  If there is a bitcast in the way, it
5941 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5942 /// run at -O0.
5943 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5944                                                       llvm::Function *NewFn) {
5945   // If we're redefining a global as a function, don't transform it.
5946   if (!isa<llvm::Function>(Old)) return;
5947 
5948   replaceUsesOfNonProtoConstant(Old, NewFn);
5949 }
5950 
5951 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5952   auto DK = VD->isThisDeclarationADefinition();
5953   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5954       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5955     return;
5956 
5957   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5958   // If we have a definition, this might be a deferred decl. If the
5959   // instantiation is explicit, make sure we emit it at the end.
5960   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5961     GetAddrOfGlobalVar(VD);
5962 
5963   EmitTopLevelDecl(VD);
5964 }
5965 
5966 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5967                                                  llvm::GlobalValue *GV) {
5968   const auto *D = cast<FunctionDecl>(GD.getDecl());
5969 
5970   // Compute the function info and LLVM type.
5971   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5972   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5973 
5974   // Get or create the prototype for the function.
5975   if (!GV || (GV->getValueType() != Ty))
5976     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5977                                                    /*DontDefer=*/true,
5978                                                    ForDefinition));
5979 
5980   // Already emitted.
5981   if (!GV->isDeclaration())
5982     return;
5983 
5984   // We need to set linkage and visibility on the function before
5985   // generating code for it because various parts of IR generation
5986   // want to propagate this information down (e.g. to local static
5987   // declarations).
5988   auto *Fn = cast<llvm::Function>(GV);
5989   setFunctionLinkage(GD, Fn);
5990 
5991   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5992   setGVProperties(Fn, GD);
5993 
5994   MaybeHandleStaticInExternC(D, Fn);
5995 
5996   maybeSetTrivialComdat(*D, *Fn);
5997 
5998   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5999 
6000   setNonAliasAttributes(GD, Fn);
6001   SetLLVMFunctionAttributesForDefinition(D, Fn);
6002 
6003   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6004     AddGlobalCtor(Fn, CA->getPriority());
6005   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6006     AddGlobalDtor(Fn, DA->getPriority(), true);
6007   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6008     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6009 }
6010 
6011 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6012   const auto *D = cast<ValueDecl>(GD.getDecl());
6013   const AliasAttr *AA = D->getAttr<AliasAttr>();
6014   assert(AA && "Not an alias?");
6015 
6016   StringRef MangledName = getMangledName(GD);
6017 
6018   if (AA->getAliasee() == MangledName) {
6019     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6020     return;
6021   }
6022 
6023   // If there is a definition in the module, then it wins over the alias.
6024   // This is dubious, but allow it to be safe.  Just ignore the alias.
6025   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6026   if (Entry && !Entry->isDeclaration())
6027     return;
6028 
6029   Aliases.push_back(GD);
6030 
6031   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6032 
6033   // Create a reference to the named value.  This ensures that it is emitted
6034   // if a deferred decl.
6035   llvm::Constant *Aliasee;
6036   llvm::GlobalValue::LinkageTypes LT;
6037   if (isa<llvm::FunctionType>(DeclTy)) {
6038     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6039                                       /*ForVTable=*/false);
6040     LT = getFunctionLinkage(GD);
6041   } else {
6042     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6043                                     /*D=*/nullptr);
6044     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6045       LT = getLLVMLinkageVarDefinition(VD);
6046     else
6047       LT = getFunctionLinkage(GD);
6048   }
6049 
6050   // Create the new alias itself, but don't set a name yet.
6051   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6052   auto *GA =
6053       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6054 
6055   if (Entry) {
6056     if (GA->getAliasee() == Entry) {
6057       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6058       return;
6059     }
6060 
6061     assert(Entry->isDeclaration());
6062 
6063     // If there is a declaration in the module, then we had an extern followed
6064     // by the alias, as in:
6065     //   extern int test6();
6066     //   ...
6067     //   int test6() __attribute__((alias("test7")));
6068     //
6069     // Remove it and replace uses of it with the alias.
6070     GA->takeName(Entry);
6071 
6072     Entry->replaceAllUsesWith(GA);
6073     Entry->eraseFromParent();
6074   } else {
6075     GA->setName(MangledName);
6076   }
6077 
6078   // Set attributes which are particular to an alias; this is a
6079   // specialization of the attributes which may be set on a global
6080   // variable/function.
6081   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6082       D->isWeakImported()) {
6083     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6084   }
6085 
6086   if (const auto *VD = dyn_cast<VarDecl>(D))
6087     if (VD->getTLSKind())
6088       setTLSMode(GA, *VD);
6089 
6090   SetCommonAttributes(GD, GA);
6091 
6092   // Emit global alias debug information.
6093   if (isa<VarDecl>(D))
6094     if (CGDebugInfo *DI = getModuleDebugInfo())
6095       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6096 }
6097 
6098 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6099   const auto *D = cast<ValueDecl>(GD.getDecl());
6100   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6101   assert(IFA && "Not an ifunc?");
6102 
6103   StringRef MangledName = getMangledName(GD);
6104 
6105   if (IFA->getResolver() == MangledName) {
6106     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6107     return;
6108   }
6109 
6110   // Report an error if some definition overrides ifunc.
6111   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6112   if (Entry && !Entry->isDeclaration()) {
6113     GlobalDecl OtherGD;
6114     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6115         DiagnosedConflictingDefinitions.insert(GD).second) {
6116       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6117           << MangledName;
6118       Diags.Report(OtherGD.getDecl()->getLocation(),
6119                    diag::note_previous_definition);
6120     }
6121     return;
6122   }
6123 
6124   Aliases.push_back(GD);
6125 
6126   // The resolver might not be visited yet. Specify a dummy non-function type to
6127   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6128   // was emitted) or the whole function will be replaced (if the resolver has
6129   // not been emitted).
6130   llvm::Constant *Resolver =
6131       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6132                               /*ForVTable=*/false);
6133   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6134   llvm::GlobalIFunc *GIF =
6135       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6136                                 "", Resolver, &getModule());
6137   if (Entry) {
6138     if (GIF->getResolver() == Entry) {
6139       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6140       return;
6141     }
6142     assert(Entry->isDeclaration());
6143 
6144     // If there is a declaration in the module, then we had an extern followed
6145     // by the ifunc, as in:
6146     //   extern int test();
6147     //   ...
6148     //   int test() __attribute__((ifunc("resolver")));
6149     //
6150     // Remove it and replace uses of it with the ifunc.
6151     GIF->takeName(Entry);
6152 
6153     Entry->replaceAllUsesWith(GIF);
6154     Entry->eraseFromParent();
6155   } else
6156     GIF->setName(MangledName);
6157   SetCommonAttributes(GD, GIF);
6158 }
6159 
6160 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6161                                             ArrayRef<llvm::Type*> Tys) {
6162   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6163                                          Tys);
6164 }
6165 
6166 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6167 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6168                          const StringLiteral *Literal, bool TargetIsLSB,
6169                          bool &IsUTF16, unsigned &StringLength) {
6170   StringRef String = Literal->getString();
6171   unsigned NumBytes = String.size();
6172 
6173   // Check for simple case.
6174   if (!Literal->containsNonAsciiOrNull()) {
6175     StringLength = NumBytes;
6176     return *Map.insert(std::make_pair(String, nullptr)).first;
6177   }
6178 
6179   // Otherwise, convert the UTF8 literals into a string of shorts.
6180   IsUTF16 = true;
6181 
6182   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6183   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6184   llvm::UTF16 *ToPtr = &ToBuf[0];
6185 
6186   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6187                                  ToPtr + NumBytes, llvm::strictConversion);
6188 
6189   // ConvertUTF8toUTF16 returns the length in ToPtr.
6190   StringLength = ToPtr - &ToBuf[0];
6191 
6192   // Add an explicit null.
6193   *ToPtr = 0;
6194   return *Map.insert(std::make_pair(
6195                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6196                                    (StringLength + 1) * 2),
6197                          nullptr)).first;
6198 }
6199 
6200 ConstantAddress
6201 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6202   unsigned StringLength = 0;
6203   bool isUTF16 = false;
6204   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6205       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6206                                getDataLayout().isLittleEndian(), isUTF16,
6207                                StringLength);
6208 
6209   if (auto *C = Entry.second)
6210     return ConstantAddress(
6211         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6212 
6213   const ASTContext &Context = getContext();
6214   const llvm::Triple &Triple = getTriple();
6215 
6216   const auto CFRuntime = getLangOpts().CFRuntime;
6217   const bool IsSwiftABI =
6218       static_cast<unsigned>(CFRuntime) >=
6219       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6220   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6221 
6222   // If we don't already have it, get __CFConstantStringClassReference.
6223   if (!CFConstantStringClassRef) {
6224     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6225     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6226     Ty = llvm::ArrayType::get(Ty, 0);
6227 
6228     switch (CFRuntime) {
6229     default: break;
6230     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6231     case LangOptions::CoreFoundationABI::Swift5_0:
6232       CFConstantStringClassName =
6233           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6234                               : "$s10Foundation19_NSCFConstantStringCN";
6235       Ty = IntPtrTy;
6236       break;
6237     case LangOptions::CoreFoundationABI::Swift4_2:
6238       CFConstantStringClassName =
6239           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6240                               : "$S10Foundation19_NSCFConstantStringCN";
6241       Ty = IntPtrTy;
6242       break;
6243     case LangOptions::CoreFoundationABI::Swift4_1:
6244       CFConstantStringClassName =
6245           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6246                               : "__T010Foundation19_NSCFConstantStringCN";
6247       Ty = IntPtrTy;
6248       break;
6249     }
6250 
6251     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6252 
6253     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6254       llvm::GlobalValue *GV = nullptr;
6255 
6256       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6257         IdentifierInfo &II = Context.Idents.get(GV->getName());
6258         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6259         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6260 
6261         const VarDecl *VD = nullptr;
6262         for (const auto *Result : DC->lookup(&II))
6263           if ((VD = dyn_cast<VarDecl>(Result)))
6264             break;
6265 
6266         if (Triple.isOSBinFormatELF()) {
6267           if (!VD)
6268             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6269         } else {
6270           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6271           if (!VD || !VD->hasAttr<DLLExportAttr>())
6272             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6273           else
6274             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6275         }
6276 
6277         setDSOLocal(GV);
6278       }
6279     }
6280 
6281     // Decay array -> ptr
6282     CFConstantStringClassRef =
6283         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6284   }
6285 
6286   QualType CFTy = Context.getCFConstantStringType();
6287 
6288   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6289 
6290   ConstantInitBuilder Builder(*this);
6291   auto Fields = Builder.beginStruct(STy);
6292 
6293   // Class pointer.
6294   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6295 
6296   // Flags.
6297   if (IsSwiftABI) {
6298     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6299     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6300   } else {
6301     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6302   }
6303 
6304   // String pointer.
6305   llvm::Constant *C = nullptr;
6306   if (isUTF16) {
6307     auto Arr = llvm::ArrayRef(
6308         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6309         Entry.first().size() / 2);
6310     C = llvm::ConstantDataArray::get(VMContext, Arr);
6311   } else {
6312     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6313   }
6314 
6315   // Note: -fwritable-strings doesn't make the backing store strings of
6316   // CFStrings writable.
6317   auto *GV =
6318       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6319                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6320   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6321   // Don't enforce the target's minimum global alignment, since the only use
6322   // of the string is via this class initializer.
6323   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6324                             : Context.getTypeAlignInChars(Context.CharTy);
6325   GV->setAlignment(Align.getAsAlign());
6326 
6327   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6328   // Without it LLVM can merge the string with a non unnamed_addr one during
6329   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6330   if (Triple.isOSBinFormatMachO())
6331     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6332                            : "__TEXT,__cstring,cstring_literals");
6333   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6334   // the static linker to adjust permissions to read-only later on.
6335   else if (Triple.isOSBinFormatELF())
6336     GV->setSection(".rodata");
6337 
6338   // String.
6339   Fields.add(GV);
6340 
6341   // String length.
6342   llvm::IntegerType *LengthTy =
6343       llvm::IntegerType::get(getModule().getContext(),
6344                              Context.getTargetInfo().getLongWidth());
6345   if (IsSwiftABI) {
6346     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6347         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6348       LengthTy = Int32Ty;
6349     else
6350       LengthTy = IntPtrTy;
6351   }
6352   Fields.addInt(LengthTy, StringLength);
6353 
6354   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6355   // properly aligned on 32-bit platforms.
6356   CharUnits Alignment =
6357       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6358 
6359   // The struct.
6360   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6361                                     /*isConstant=*/false,
6362                                     llvm::GlobalVariable::PrivateLinkage);
6363   GV->addAttribute("objc_arc_inert");
6364   switch (Triple.getObjectFormat()) {
6365   case llvm::Triple::UnknownObjectFormat:
6366     llvm_unreachable("unknown file format");
6367   case llvm::Triple::DXContainer:
6368   case llvm::Triple::GOFF:
6369   case llvm::Triple::SPIRV:
6370   case llvm::Triple::XCOFF:
6371     llvm_unreachable("unimplemented");
6372   case llvm::Triple::COFF:
6373   case llvm::Triple::ELF:
6374   case llvm::Triple::Wasm:
6375     GV->setSection("cfstring");
6376     break;
6377   case llvm::Triple::MachO:
6378     GV->setSection("__DATA,__cfstring");
6379     break;
6380   }
6381   Entry.second = GV;
6382 
6383   return ConstantAddress(GV, GV->getValueType(), Alignment);
6384 }
6385 
6386 bool CodeGenModule::getExpressionLocationsEnabled() const {
6387   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6388 }
6389 
6390 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6391   if (ObjCFastEnumerationStateType.isNull()) {
6392     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6393     D->startDefinition();
6394 
6395     QualType FieldTypes[] = {
6396         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6397         Context.getPointerType(Context.UnsignedLongTy),
6398         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6399                                      nullptr, ArraySizeModifier::Normal, 0)};
6400 
6401     for (size_t i = 0; i < 4; ++i) {
6402       FieldDecl *Field = FieldDecl::Create(Context,
6403                                            D,
6404                                            SourceLocation(),
6405                                            SourceLocation(), nullptr,
6406                                            FieldTypes[i], /*TInfo=*/nullptr,
6407                                            /*BitWidth=*/nullptr,
6408                                            /*Mutable=*/false,
6409                                            ICIS_NoInit);
6410       Field->setAccess(AS_public);
6411       D->addDecl(Field);
6412     }
6413 
6414     D->completeDefinition();
6415     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6416   }
6417 
6418   return ObjCFastEnumerationStateType;
6419 }
6420 
6421 llvm::Constant *
6422 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6423   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6424 
6425   // Don't emit it as the address of the string, emit the string data itself
6426   // as an inline array.
6427   if (E->getCharByteWidth() == 1) {
6428     SmallString<64> Str(E->getString());
6429 
6430     // Resize the string to the right size, which is indicated by its type.
6431     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6432     assert(CAT && "String literal not of constant array type!");
6433     Str.resize(CAT->getZExtSize());
6434     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6435   }
6436 
6437   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6438   llvm::Type *ElemTy = AType->getElementType();
6439   unsigned NumElements = AType->getNumElements();
6440 
6441   // Wide strings have either 2-byte or 4-byte elements.
6442   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6443     SmallVector<uint16_t, 32> Elements;
6444     Elements.reserve(NumElements);
6445 
6446     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6447       Elements.push_back(E->getCodeUnit(i));
6448     Elements.resize(NumElements);
6449     return llvm::ConstantDataArray::get(VMContext, Elements);
6450   }
6451 
6452   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6453   SmallVector<uint32_t, 32> Elements;
6454   Elements.reserve(NumElements);
6455 
6456   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6457     Elements.push_back(E->getCodeUnit(i));
6458   Elements.resize(NumElements);
6459   return llvm::ConstantDataArray::get(VMContext, Elements);
6460 }
6461 
6462 static llvm::GlobalVariable *
6463 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6464                       CodeGenModule &CGM, StringRef GlobalName,
6465                       CharUnits Alignment) {
6466   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6467       CGM.GetGlobalConstantAddressSpace());
6468 
6469   llvm::Module &M = CGM.getModule();
6470   // Create a global variable for this string
6471   auto *GV = new llvm::GlobalVariable(
6472       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6473       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6474   GV->setAlignment(Alignment.getAsAlign());
6475   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6476   if (GV->isWeakForLinker()) {
6477     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6478     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6479   }
6480   CGM.setDSOLocal(GV);
6481 
6482   return GV;
6483 }
6484 
6485 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6486 /// constant array for the given string literal.
6487 ConstantAddress
6488 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6489                                                   StringRef Name) {
6490   CharUnits Alignment =
6491       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6492 
6493   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6494   llvm::GlobalVariable **Entry = nullptr;
6495   if (!LangOpts.WritableStrings) {
6496     Entry = &ConstantStringMap[C];
6497     if (auto GV = *Entry) {
6498       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6499         GV->setAlignment(Alignment.getAsAlign());
6500       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6501                              GV->getValueType(), Alignment);
6502     }
6503   }
6504 
6505   SmallString<256> MangledNameBuffer;
6506   StringRef GlobalVariableName;
6507   llvm::GlobalValue::LinkageTypes LT;
6508 
6509   // Mangle the string literal if that's how the ABI merges duplicate strings.
6510   // Don't do it if they are writable, since we don't want writes in one TU to
6511   // affect strings in another.
6512   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6513       !LangOpts.WritableStrings) {
6514     llvm::raw_svector_ostream Out(MangledNameBuffer);
6515     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6516     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6517     GlobalVariableName = MangledNameBuffer;
6518   } else {
6519     LT = llvm::GlobalValue::PrivateLinkage;
6520     GlobalVariableName = Name;
6521   }
6522 
6523   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6524 
6525   CGDebugInfo *DI = getModuleDebugInfo();
6526   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6527     DI->AddStringLiteralDebugInfo(GV, S);
6528 
6529   if (Entry)
6530     *Entry = GV;
6531 
6532   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6533 
6534   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6535                          GV->getValueType(), Alignment);
6536 }
6537 
6538 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6539 /// array for the given ObjCEncodeExpr node.
6540 ConstantAddress
6541 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6542   std::string Str;
6543   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6544 
6545   return GetAddrOfConstantCString(Str);
6546 }
6547 
6548 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6549 /// the literal and a terminating '\0' character.
6550 /// The result has pointer to array type.
6551 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6552     const std::string &Str, const char *GlobalName) {
6553   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6554   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6555       getContext().CharTy, /*VD=*/nullptr);
6556 
6557   llvm::Constant *C =
6558       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6559 
6560   // Don't share any string literals if strings aren't constant.
6561   llvm::GlobalVariable **Entry = nullptr;
6562   if (!LangOpts.WritableStrings) {
6563     Entry = &ConstantStringMap[C];
6564     if (auto GV = *Entry) {
6565       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6566         GV->setAlignment(Alignment.getAsAlign());
6567       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6568                              GV->getValueType(), Alignment);
6569     }
6570   }
6571 
6572   // Get the default prefix if a name wasn't specified.
6573   if (!GlobalName)
6574     GlobalName = ".str";
6575   // Create a global variable for this.
6576   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6577                                   GlobalName, Alignment);
6578   if (Entry)
6579     *Entry = GV;
6580 
6581   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6582                          GV->getValueType(), Alignment);
6583 }
6584 
6585 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6586     const MaterializeTemporaryExpr *E, const Expr *Init) {
6587   assert((E->getStorageDuration() == SD_Static ||
6588           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6589   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6590 
6591   // If we're not materializing a subobject of the temporary, keep the
6592   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6593   QualType MaterializedType = Init->getType();
6594   if (Init == E->getSubExpr())
6595     MaterializedType = E->getType();
6596 
6597   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6598 
6599   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6600   if (!InsertResult.second) {
6601     // We've seen this before: either we already created it or we're in the
6602     // process of doing so.
6603     if (!InsertResult.first->second) {
6604       // We recursively re-entered this function, probably during emission of
6605       // the initializer. Create a placeholder. We'll clean this up in the
6606       // outer call, at the end of this function.
6607       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6608       InsertResult.first->second = new llvm::GlobalVariable(
6609           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6610           nullptr);
6611     }
6612     return ConstantAddress(InsertResult.first->second,
6613                            llvm::cast<llvm::GlobalVariable>(
6614                                InsertResult.first->second->stripPointerCasts())
6615                                ->getValueType(),
6616                            Align);
6617   }
6618 
6619   // FIXME: If an externally-visible declaration extends multiple temporaries,
6620   // we need to give each temporary the same name in every translation unit (and
6621   // we also need to make the temporaries externally-visible).
6622   SmallString<256> Name;
6623   llvm::raw_svector_ostream Out(Name);
6624   getCXXABI().getMangleContext().mangleReferenceTemporary(
6625       VD, E->getManglingNumber(), Out);
6626 
6627   APValue *Value = nullptr;
6628   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6629     // If the initializer of the extending declaration is a constant
6630     // initializer, we should have a cached constant initializer for this
6631     // temporary. Note that this might have a different value from the value
6632     // computed by evaluating the initializer if the surrounding constant
6633     // expression modifies the temporary.
6634     Value = E->getOrCreateValue(false);
6635   }
6636 
6637   // Try evaluating it now, it might have a constant initializer.
6638   Expr::EvalResult EvalResult;
6639   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6640       !EvalResult.hasSideEffects())
6641     Value = &EvalResult.Val;
6642 
6643   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6644 
6645   std::optional<ConstantEmitter> emitter;
6646   llvm::Constant *InitialValue = nullptr;
6647   bool Constant = false;
6648   llvm::Type *Type;
6649   if (Value) {
6650     // The temporary has a constant initializer, use it.
6651     emitter.emplace(*this);
6652     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6653                                                MaterializedType);
6654     Constant =
6655         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6656                                            /*ExcludeDtor*/ false);
6657     Type = InitialValue->getType();
6658   } else {
6659     // No initializer, the initialization will be provided when we
6660     // initialize the declaration which performed lifetime extension.
6661     Type = getTypes().ConvertTypeForMem(MaterializedType);
6662   }
6663 
6664   // Create a global variable for this lifetime-extended temporary.
6665   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6666   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6667     const VarDecl *InitVD;
6668     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6669         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6670       // Temporaries defined inside a class get linkonce_odr linkage because the
6671       // class can be defined in multiple translation units.
6672       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6673     } else {
6674       // There is no need for this temporary to have external linkage if the
6675       // VarDecl has external linkage.
6676       Linkage = llvm::GlobalVariable::InternalLinkage;
6677     }
6678   }
6679   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6680   auto *GV = new llvm::GlobalVariable(
6681       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6682       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6683   if (emitter) emitter->finalize(GV);
6684   // Don't assign dllimport or dllexport to local linkage globals.
6685   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6686     setGVProperties(GV, VD);
6687     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6688       // The reference temporary should never be dllexport.
6689       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6690   }
6691   GV->setAlignment(Align.getAsAlign());
6692   if (supportsCOMDAT() && GV->isWeakForLinker())
6693     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6694   if (VD->getTLSKind())
6695     setTLSMode(GV, *VD);
6696   llvm::Constant *CV = GV;
6697   if (AddrSpace != LangAS::Default)
6698     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6699         *this, GV, AddrSpace, LangAS::Default,
6700         llvm::PointerType::get(
6701             getLLVMContext(),
6702             getContext().getTargetAddressSpace(LangAS::Default)));
6703 
6704   // Update the map with the new temporary. If we created a placeholder above,
6705   // replace it with the new global now.
6706   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6707   if (Entry) {
6708     Entry->replaceAllUsesWith(CV);
6709     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6710   }
6711   Entry = CV;
6712 
6713   return ConstantAddress(CV, Type, Align);
6714 }
6715 
6716 /// EmitObjCPropertyImplementations - Emit information for synthesized
6717 /// properties for an implementation.
6718 void CodeGenModule::EmitObjCPropertyImplementations(const
6719                                                     ObjCImplementationDecl *D) {
6720   for (const auto *PID : D->property_impls()) {
6721     // Dynamic is just for type-checking.
6722     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6723       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6724 
6725       // Determine which methods need to be implemented, some may have
6726       // been overridden. Note that ::isPropertyAccessor is not the method
6727       // we want, that just indicates if the decl came from a
6728       // property. What we want to know is if the method is defined in
6729       // this implementation.
6730       auto *Getter = PID->getGetterMethodDecl();
6731       if (!Getter || Getter->isSynthesizedAccessorStub())
6732         CodeGenFunction(*this).GenerateObjCGetter(
6733             const_cast<ObjCImplementationDecl *>(D), PID);
6734       auto *Setter = PID->getSetterMethodDecl();
6735       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6736         CodeGenFunction(*this).GenerateObjCSetter(
6737                                  const_cast<ObjCImplementationDecl *>(D), PID);
6738     }
6739   }
6740 }
6741 
6742 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6743   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6744   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6745        ivar; ivar = ivar->getNextIvar())
6746     if (ivar->getType().isDestructedType())
6747       return true;
6748 
6749   return false;
6750 }
6751 
6752 static bool AllTrivialInitializers(CodeGenModule &CGM,
6753                                    ObjCImplementationDecl *D) {
6754   CodeGenFunction CGF(CGM);
6755   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6756        E = D->init_end(); B != E; ++B) {
6757     CXXCtorInitializer *CtorInitExp = *B;
6758     Expr *Init = CtorInitExp->getInit();
6759     if (!CGF.isTrivialInitializer(Init))
6760       return false;
6761   }
6762   return true;
6763 }
6764 
6765 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6766 /// for an implementation.
6767 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6768   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6769   if (needsDestructMethod(D)) {
6770     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6771     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6772     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6773         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6774         getContext().VoidTy, nullptr, D,
6775         /*isInstance=*/true, /*isVariadic=*/false,
6776         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6777         /*isImplicitlyDeclared=*/true,
6778         /*isDefined=*/false, ObjCImplementationControl::Required);
6779     D->addInstanceMethod(DTORMethod);
6780     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6781     D->setHasDestructors(true);
6782   }
6783 
6784   // If the implementation doesn't have any ivar initializers, we don't need
6785   // a .cxx_construct.
6786   if (D->getNumIvarInitializers() == 0 ||
6787       AllTrivialInitializers(*this, D))
6788     return;
6789 
6790   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6791   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6792   // The constructor returns 'self'.
6793   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6794       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6795       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6796       /*isVariadic=*/false,
6797       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6798       /*isImplicitlyDeclared=*/true,
6799       /*isDefined=*/false, ObjCImplementationControl::Required);
6800   D->addInstanceMethod(CTORMethod);
6801   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6802   D->setHasNonZeroConstructors(true);
6803 }
6804 
6805 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6806 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6807   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6808       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6809     ErrorUnsupported(LSD, "linkage spec");
6810     return;
6811   }
6812 
6813   EmitDeclContext(LSD);
6814 }
6815 
6816 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6817   // Device code should not be at top level.
6818   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6819     return;
6820 
6821   std::unique_ptr<CodeGenFunction> &CurCGF =
6822       GlobalTopLevelStmtBlockInFlight.first;
6823 
6824   // We emitted a top-level stmt but after it there is initialization.
6825   // Stop squashing the top-level stmts into a single function.
6826   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6827     CurCGF->FinishFunction(D->getEndLoc());
6828     CurCGF = nullptr;
6829   }
6830 
6831   if (!CurCGF) {
6832     // void __stmts__N(void)
6833     // FIXME: Ask the ABI name mangler to pick a name.
6834     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6835     FunctionArgList Args;
6836     QualType RetTy = getContext().VoidTy;
6837     const CGFunctionInfo &FnInfo =
6838         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6839     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6840     llvm::Function *Fn = llvm::Function::Create(
6841         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6842 
6843     CurCGF.reset(new CodeGenFunction(*this));
6844     GlobalTopLevelStmtBlockInFlight.second = D;
6845     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6846                           D->getBeginLoc(), D->getBeginLoc());
6847     CXXGlobalInits.push_back(Fn);
6848   }
6849 
6850   CurCGF->EmitStmt(D->getStmt());
6851 }
6852 
6853 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6854   for (auto *I : DC->decls()) {
6855     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6856     // are themselves considered "top-level", so EmitTopLevelDecl on an
6857     // ObjCImplDecl does not recursively visit them. We need to do that in
6858     // case they're nested inside another construct (LinkageSpecDecl /
6859     // ExportDecl) that does stop them from being considered "top-level".
6860     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6861       for (auto *M : OID->methods())
6862         EmitTopLevelDecl(M);
6863     }
6864 
6865     EmitTopLevelDecl(I);
6866   }
6867 }
6868 
6869 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6870 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6871   // Ignore dependent declarations.
6872   if (D->isTemplated())
6873     return;
6874 
6875   // Consteval function shouldn't be emitted.
6876   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6877     return;
6878 
6879   switch (D->getKind()) {
6880   case Decl::CXXConversion:
6881   case Decl::CXXMethod:
6882   case Decl::Function:
6883     EmitGlobal(cast<FunctionDecl>(D));
6884     // Always provide some coverage mapping
6885     // even for the functions that aren't emitted.
6886     AddDeferredUnusedCoverageMapping(D);
6887     break;
6888 
6889   case Decl::CXXDeductionGuide:
6890     // Function-like, but does not result in code emission.
6891     break;
6892 
6893   case Decl::Var:
6894   case Decl::Decomposition:
6895   case Decl::VarTemplateSpecialization:
6896     EmitGlobal(cast<VarDecl>(D));
6897     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6898       for (auto *B : DD->bindings())
6899         if (auto *HD = B->getHoldingVar())
6900           EmitGlobal(HD);
6901     break;
6902 
6903   // Indirect fields from global anonymous structs and unions can be
6904   // ignored; only the actual variable requires IR gen support.
6905   case Decl::IndirectField:
6906     break;
6907 
6908   // C++ Decls
6909   case Decl::Namespace:
6910     EmitDeclContext(cast<NamespaceDecl>(D));
6911     break;
6912   case Decl::ClassTemplateSpecialization: {
6913     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6914     if (CGDebugInfo *DI = getModuleDebugInfo())
6915       if (Spec->getSpecializationKind() ==
6916               TSK_ExplicitInstantiationDefinition &&
6917           Spec->hasDefinition())
6918         DI->completeTemplateDefinition(*Spec);
6919   } [[fallthrough]];
6920   case Decl::CXXRecord: {
6921     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6922     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6923       if (CRD->hasDefinition())
6924         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6925       if (auto *ES = D->getASTContext().getExternalSource())
6926         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6927           DI->completeUnusedClass(*CRD);
6928     }
6929     // Emit any static data members, they may be definitions.
6930     for (auto *I : CRD->decls())
6931       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6932         EmitTopLevelDecl(I);
6933     break;
6934   }
6935     // No code generation needed.
6936   case Decl::UsingShadow:
6937   case Decl::ClassTemplate:
6938   case Decl::VarTemplate:
6939   case Decl::Concept:
6940   case Decl::VarTemplatePartialSpecialization:
6941   case Decl::FunctionTemplate:
6942   case Decl::TypeAliasTemplate:
6943   case Decl::Block:
6944   case Decl::Empty:
6945   case Decl::Binding:
6946     break;
6947   case Decl::Using:          // using X; [C++]
6948     if (CGDebugInfo *DI = getModuleDebugInfo())
6949         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6950     break;
6951   case Decl::UsingEnum: // using enum X; [C++]
6952     if (CGDebugInfo *DI = getModuleDebugInfo())
6953       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6954     break;
6955   case Decl::NamespaceAlias:
6956     if (CGDebugInfo *DI = getModuleDebugInfo())
6957         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6958     break;
6959   case Decl::UsingDirective: // using namespace X; [C++]
6960     if (CGDebugInfo *DI = getModuleDebugInfo())
6961       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6962     break;
6963   case Decl::CXXConstructor:
6964     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6965     break;
6966   case Decl::CXXDestructor:
6967     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6968     break;
6969 
6970   case Decl::StaticAssert:
6971     // Nothing to do.
6972     break;
6973 
6974   // Objective-C Decls
6975 
6976   // Forward declarations, no (immediate) code generation.
6977   case Decl::ObjCInterface:
6978   case Decl::ObjCCategory:
6979     break;
6980 
6981   case Decl::ObjCProtocol: {
6982     auto *Proto = cast<ObjCProtocolDecl>(D);
6983     if (Proto->isThisDeclarationADefinition())
6984       ObjCRuntime->GenerateProtocol(Proto);
6985     break;
6986   }
6987 
6988   case Decl::ObjCCategoryImpl:
6989     // Categories have properties but don't support synthesize so we
6990     // can ignore them here.
6991     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6992     break;
6993 
6994   case Decl::ObjCImplementation: {
6995     auto *OMD = cast<ObjCImplementationDecl>(D);
6996     EmitObjCPropertyImplementations(OMD);
6997     EmitObjCIvarInitializations(OMD);
6998     ObjCRuntime->GenerateClass(OMD);
6999     // Emit global variable debug information.
7000     if (CGDebugInfo *DI = getModuleDebugInfo())
7001       if (getCodeGenOpts().hasReducedDebugInfo())
7002         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7003             OMD->getClassInterface()), OMD->getLocation());
7004     break;
7005   }
7006   case Decl::ObjCMethod: {
7007     auto *OMD = cast<ObjCMethodDecl>(D);
7008     // If this is not a prototype, emit the body.
7009     if (OMD->getBody())
7010       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7011     break;
7012   }
7013   case Decl::ObjCCompatibleAlias:
7014     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7015     break;
7016 
7017   case Decl::PragmaComment: {
7018     const auto *PCD = cast<PragmaCommentDecl>(D);
7019     switch (PCD->getCommentKind()) {
7020     case PCK_Unknown:
7021       llvm_unreachable("unexpected pragma comment kind");
7022     case PCK_Linker:
7023       AppendLinkerOptions(PCD->getArg());
7024       break;
7025     case PCK_Lib:
7026         AddDependentLib(PCD->getArg());
7027       break;
7028     case PCK_Compiler:
7029     case PCK_ExeStr:
7030     case PCK_User:
7031       break; // We ignore all of these.
7032     }
7033     break;
7034   }
7035 
7036   case Decl::PragmaDetectMismatch: {
7037     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7038     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7039     break;
7040   }
7041 
7042   case Decl::LinkageSpec:
7043     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7044     break;
7045 
7046   case Decl::FileScopeAsm: {
7047     // File-scope asm is ignored during device-side CUDA compilation.
7048     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7049       break;
7050     // File-scope asm is ignored during device-side OpenMP compilation.
7051     if (LangOpts.OpenMPIsTargetDevice)
7052       break;
7053     // File-scope asm is ignored during device-side SYCL compilation.
7054     if (LangOpts.SYCLIsDevice)
7055       break;
7056     auto *AD = cast<FileScopeAsmDecl>(D);
7057     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7058     break;
7059   }
7060 
7061   case Decl::TopLevelStmt:
7062     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7063     break;
7064 
7065   case Decl::Import: {
7066     auto *Import = cast<ImportDecl>(D);
7067 
7068     // If we've already imported this module, we're done.
7069     if (!ImportedModules.insert(Import->getImportedModule()))
7070       break;
7071 
7072     // Emit debug information for direct imports.
7073     if (!Import->getImportedOwningModule()) {
7074       if (CGDebugInfo *DI = getModuleDebugInfo())
7075         DI->EmitImportDecl(*Import);
7076     }
7077 
7078     // For C++ standard modules we are done - we will call the module
7079     // initializer for imported modules, and that will likewise call those for
7080     // any imports it has.
7081     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7082         !Import->getImportedOwningModule()->isModuleMapModule())
7083       break;
7084 
7085     // For clang C++ module map modules the initializers for sub-modules are
7086     // emitted here.
7087 
7088     // Find all of the submodules and emit the module initializers.
7089     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7090     SmallVector<clang::Module *, 16> Stack;
7091     Visited.insert(Import->getImportedModule());
7092     Stack.push_back(Import->getImportedModule());
7093 
7094     while (!Stack.empty()) {
7095       clang::Module *Mod = Stack.pop_back_val();
7096       if (!EmittedModuleInitializers.insert(Mod).second)
7097         continue;
7098 
7099       for (auto *D : Context.getModuleInitializers(Mod))
7100         EmitTopLevelDecl(D);
7101 
7102       // Visit the submodules of this module.
7103       for (auto *Submodule : Mod->submodules()) {
7104         // Skip explicit children; they need to be explicitly imported to emit
7105         // the initializers.
7106         if (Submodule->IsExplicit)
7107           continue;
7108 
7109         if (Visited.insert(Submodule).second)
7110           Stack.push_back(Submodule);
7111       }
7112     }
7113     break;
7114   }
7115 
7116   case Decl::Export:
7117     EmitDeclContext(cast<ExportDecl>(D));
7118     break;
7119 
7120   case Decl::OMPThreadPrivate:
7121     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7122     break;
7123 
7124   case Decl::OMPAllocate:
7125     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7126     break;
7127 
7128   case Decl::OMPDeclareReduction:
7129     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7130     break;
7131 
7132   case Decl::OMPDeclareMapper:
7133     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7134     break;
7135 
7136   case Decl::OMPRequires:
7137     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7138     break;
7139 
7140   case Decl::Typedef:
7141   case Decl::TypeAlias: // using foo = bar; [C++11]
7142     if (CGDebugInfo *DI = getModuleDebugInfo())
7143       DI->EmitAndRetainType(
7144           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7145     break;
7146 
7147   case Decl::Record:
7148     if (CGDebugInfo *DI = getModuleDebugInfo())
7149       if (cast<RecordDecl>(D)->getDefinition())
7150         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7151     break;
7152 
7153   case Decl::Enum:
7154     if (CGDebugInfo *DI = getModuleDebugInfo())
7155       if (cast<EnumDecl>(D)->getDefinition())
7156         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7157     break;
7158 
7159   case Decl::HLSLBuffer:
7160     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7161     break;
7162 
7163   default:
7164     // Make sure we handled everything we should, every other kind is a
7165     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7166     // function. Need to recode Decl::Kind to do that easily.
7167     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7168     break;
7169   }
7170 }
7171 
7172 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7173   // Do we need to generate coverage mapping?
7174   if (!CodeGenOpts.CoverageMapping)
7175     return;
7176   switch (D->getKind()) {
7177   case Decl::CXXConversion:
7178   case Decl::CXXMethod:
7179   case Decl::Function:
7180   case Decl::ObjCMethod:
7181   case Decl::CXXConstructor:
7182   case Decl::CXXDestructor: {
7183     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7184       break;
7185     SourceManager &SM = getContext().getSourceManager();
7186     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7187       break;
7188     if (!llvm::coverage::SystemHeadersCoverage &&
7189         SM.isInSystemHeader(D->getBeginLoc()))
7190       break;
7191     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7192     break;
7193   }
7194   default:
7195     break;
7196   };
7197 }
7198 
7199 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7200   // Do we need to generate coverage mapping?
7201   if (!CodeGenOpts.CoverageMapping)
7202     return;
7203   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7204     if (Fn->isTemplateInstantiation())
7205       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7206   }
7207   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7208 }
7209 
7210 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7211   // We call takeVector() here to avoid use-after-free.
7212   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7213   // we deserialize function bodies to emit coverage info for them, and that
7214   // deserializes more declarations. How should we handle that case?
7215   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7216     if (!Entry.second)
7217       continue;
7218     const Decl *D = Entry.first;
7219     switch (D->getKind()) {
7220     case Decl::CXXConversion:
7221     case Decl::CXXMethod:
7222     case Decl::Function:
7223     case Decl::ObjCMethod: {
7224       CodeGenPGO PGO(*this);
7225       GlobalDecl GD(cast<FunctionDecl>(D));
7226       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7227                                   getFunctionLinkage(GD));
7228       break;
7229     }
7230     case Decl::CXXConstructor: {
7231       CodeGenPGO PGO(*this);
7232       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7233       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7234                                   getFunctionLinkage(GD));
7235       break;
7236     }
7237     case Decl::CXXDestructor: {
7238       CodeGenPGO PGO(*this);
7239       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7240       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7241                                   getFunctionLinkage(GD));
7242       break;
7243     }
7244     default:
7245       break;
7246     };
7247   }
7248 }
7249 
7250 void CodeGenModule::EmitMainVoidAlias() {
7251   // In order to transition away from "__original_main" gracefully, emit an
7252   // alias for "main" in the no-argument case so that libc can detect when
7253   // new-style no-argument main is in used.
7254   if (llvm::Function *F = getModule().getFunction("main")) {
7255     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7256         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7257       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7258       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7259     }
7260   }
7261 }
7262 
7263 /// Turns the given pointer into a constant.
7264 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7265                                           const void *Ptr) {
7266   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7267   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7268   return llvm::ConstantInt::get(i64, PtrInt);
7269 }
7270 
7271 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7272                                    llvm::NamedMDNode *&GlobalMetadata,
7273                                    GlobalDecl D,
7274                                    llvm::GlobalValue *Addr) {
7275   if (!GlobalMetadata)
7276     GlobalMetadata =
7277       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7278 
7279   // TODO: should we report variant information for ctors/dtors?
7280   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7281                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7282                                CGM.getLLVMContext(), D.getDecl()))};
7283   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7284 }
7285 
7286 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7287                                                  llvm::GlobalValue *CppFunc) {
7288   // Store the list of ifuncs we need to replace uses in.
7289   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7290   // List of ConstantExprs that we should be able to delete when we're done
7291   // here.
7292   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7293 
7294   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7295   if (Elem == CppFunc)
7296     return false;
7297 
7298   // First make sure that all users of this are ifuncs (or ifuncs via a
7299   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7300   // later.
7301   for (llvm::User *User : Elem->users()) {
7302     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7303     // ifunc directly. In any other case, just give up, as we don't know what we
7304     // could break by changing those.
7305     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7306       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7307         return false;
7308 
7309       for (llvm::User *CEUser : ConstExpr->users()) {
7310         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7311           IFuncs.push_back(IFunc);
7312         } else {
7313           return false;
7314         }
7315       }
7316       CEs.push_back(ConstExpr);
7317     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7318       IFuncs.push_back(IFunc);
7319     } else {
7320       // This user is one we don't know how to handle, so fail redirection. This
7321       // will result in an ifunc retaining a resolver name that will ultimately
7322       // fail to be resolved to a defined function.
7323       return false;
7324     }
7325   }
7326 
7327   // Now we know this is a valid case where we can do this alias replacement, we
7328   // need to remove all of the references to Elem (and the bitcasts!) so we can
7329   // delete it.
7330   for (llvm::GlobalIFunc *IFunc : IFuncs)
7331     IFunc->setResolver(nullptr);
7332   for (llvm::ConstantExpr *ConstExpr : CEs)
7333     ConstExpr->destroyConstant();
7334 
7335   // We should now be out of uses for the 'old' version of this function, so we
7336   // can erase it as well.
7337   Elem->eraseFromParent();
7338 
7339   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7340     // The type of the resolver is always just a function-type that returns the
7341     // type of the IFunc, so create that here. If the type of the actual
7342     // resolver doesn't match, it just gets bitcast to the right thing.
7343     auto *ResolverTy =
7344         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7345     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7346         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7347     IFunc->setResolver(Resolver);
7348   }
7349   return true;
7350 }
7351 
7352 /// For each function which is declared within an extern "C" region and marked
7353 /// as 'used', but has internal linkage, create an alias from the unmangled
7354 /// name to the mangled name if possible. People expect to be able to refer
7355 /// to such functions with an unmangled name from inline assembly within the
7356 /// same translation unit.
7357 void CodeGenModule::EmitStaticExternCAliases() {
7358   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7359     return;
7360   for (auto &I : StaticExternCValues) {
7361     const IdentifierInfo *Name = I.first;
7362     llvm::GlobalValue *Val = I.second;
7363 
7364     // If Val is null, that implies there were multiple declarations that each
7365     // had a claim to the unmangled name. In this case, generation of the alias
7366     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7367     if (!Val)
7368       break;
7369 
7370     llvm::GlobalValue *ExistingElem =
7371         getModule().getNamedValue(Name->getName());
7372 
7373     // If there is either not something already by this name, or we were able to
7374     // replace all uses from IFuncs, create the alias.
7375     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7376       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7377   }
7378 }
7379 
7380 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7381                                              GlobalDecl &Result) const {
7382   auto Res = Manglings.find(MangledName);
7383   if (Res == Manglings.end())
7384     return false;
7385   Result = Res->getValue();
7386   return true;
7387 }
7388 
7389 /// Emits metadata nodes associating all the global values in the
7390 /// current module with the Decls they came from.  This is useful for
7391 /// projects using IR gen as a subroutine.
7392 ///
7393 /// Since there's currently no way to associate an MDNode directly
7394 /// with an llvm::GlobalValue, we create a global named metadata
7395 /// with the name 'clang.global.decl.ptrs'.
7396 void CodeGenModule::EmitDeclMetadata() {
7397   llvm::NamedMDNode *GlobalMetadata = nullptr;
7398 
7399   for (auto &I : MangledDeclNames) {
7400     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7401     // Some mangled names don't necessarily have an associated GlobalValue
7402     // in this module, e.g. if we mangled it for DebugInfo.
7403     if (Addr)
7404       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7405   }
7406 }
7407 
7408 /// Emits metadata nodes for all the local variables in the current
7409 /// function.
7410 void CodeGenFunction::EmitDeclMetadata() {
7411   if (LocalDeclMap.empty()) return;
7412 
7413   llvm::LLVMContext &Context = getLLVMContext();
7414 
7415   // Find the unique metadata ID for this name.
7416   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7417 
7418   llvm::NamedMDNode *GlobalMetadata = nullptr;
7419 
7420   for (auto &I : LocalDeclMap) {
7421     const Decl *D = I.first;
7422     llvm::Value *Addr = I.second.emitRawPointer(*this);
7423     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7424       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7425       Alloca->setMetadata(
7426           DeclPtrKind, llvm::MDNode::get(
7427                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7428     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7429       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7430       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7431     }
7432   }
7433 }
7434 
7435 void CodeGenModule::EmitVersionIdentMetadata() {
7436   llvm::NamedMDNode *IdentMetadata =
7437     TheModule.getOrInsertNamedMetadata("llvm.ident");
7438   std::string Version = getClangFullVersion();
7439   llvm::LLVMContext &Ctx = TheModule.getContext();
7440 
7441   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7442   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7443 }
7444 
7445 void CodeGenModule::EmitCommandLineMetadata() {
7446   llvm::NamedMDNode *CommandLineMetadata =
7447     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7448   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7449   llvm::LLVMContext &Ctx = TheModule.getContext();
7450 
7451   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7452   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7453 }
7454 
7455 void CodeGenModule::EmitCoverageFile() {
7456   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7457   if (!CUNode)
7458     return;
7459 
7460   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7461   llvm::LLVMContext &Ctx = TheModule.getContext();
7462   auto *CoverageDataFile =
7463       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7464   auto *CoverageNotesFile =
7465       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7466   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7467     llvm::MDNode *CU = CUNode->getOperand(i);
7468     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7469     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7470   }
7471 }
7472 
7473 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7474                                                        bool ForEH) {
7475   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7476   // FIXME: should we even be calling this method if RTTI is disabled
7477   // and it's not for EH?
7478   if (!shouldEmitRTTI(ForEH))
7479     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7480 
7481   if (ForEH && Ty->isObjCObjectPointerType() &&
7482       LangOpts.ObjCRuntime.isGNUFamily())
7483     return ObjCRuntime->GetEHType(Ty);
7484 
7485   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7486 }
7487 
7488 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7489   // Do not emit threadprivates in simd-only mode.
7490   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7491     return;
7492   for (auto RefExpr : D->varlists()) {
7493     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7494     bool PerformInit =
7495         VD->getAnyInitializer() &&
7496         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7497                                                         /*ForRef=*/false);
7498 
7499     Address Addr(GetAddrOfGlobalVar(VD),
7500                  getTypes().ConvertTypeForMem(VD->getType()),
7501                  getContext().getDeclAlign(VD));
7502     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7503             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7504       CXXGlobalInits.push_back(InitFunction);
7505   }
7506 }
7507 
7508 llvm::Metadata *
7509 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7510                                             StringRef Suffix) {
7511   if (auto *FnType = T->getAs<FunctionProtoType>())
7512     T = getContext().getFunctionType(
7513         FnType->getReturnType(), FnType->getParamTypes(),
7514         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7515 
7516   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7517   if (InternalId)
7518     return InternalId;
7519 
7520   if (isExternallyVisible(T->getLinkage())) {
7521     std::string OutName;
7522     llvm::raw_string_ostream Out(OutName);
7523     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7524         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7525 
7526     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7527       Out << ".normalized";
7528 
7529     Out << Suffix;
7530 
7531     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7532   } else {
7533     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7534                                            llvm::ArrayRef<llvm::Metadata *>());
7535   }
7536 
7537   return InternalId;
7538 }
7539 
7540 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7541   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7542 }
7543 
7544 llvm::Metadata *
7545 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7546   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7547 }
7548 
7549 // Generalize pointer types to a void pointer with the qualifiers of the
7550 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7551 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7552 // 'void *'.
7553 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7554   if (!Ty->isPointerType())
7555     return Ty;
7556 
7557   return Ctx.getPointerType(
7558       QualType(Ctx.VoidTy).withCVRQualifiers(
7559           Ty->getPointeeType().getCVRQualifiers()));
7560 }
7561 
7562 // Apply type generalization to a FunctionType's return and argument types
7563 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7564   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7565     SmallVector<QualType, 8> GeneralizedParams;
7566     for (auto &Param : FnType->param_types())
7567       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7568 
7569     return Ctx.getFunctionType(
7570         GeneralizeType(Ctx, FnType->getReturnType()),
7571         GeneralizedParams, FnType->getExtProtoInfo());
7572   }
7573 
7574   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7575     return Ctx.getFunctionNoProtoType(
7576         GeneralizeType(Ctx, FnType->getReturnType()));
7577 
7578   llvm_unreachable("Encountered unknown FunctionType");
7579 }
7580 
7581 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7582   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7583                                       GeneralizedMetadataIdMap, ".generalized");
7584 }
7585 
7586 /// Returns whether this module needs the "all-vtables" type identifier.
7587 bool CodeGenModule::NeedAllVtablesTypeId() const {
7588   // Returns true if at least one of vtable-based CFI checkers is enabled and
7589   // is not in the trapping mode.
7590   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7591            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7592           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7593            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7594           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7595            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7596           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7597            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7598 }
7599 
7600 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7601                                           CharUnits Offset,
7602                                           const CXXRecordDecl *RD) {
7603   llvm::Metadata *MD =
7604       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7605   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7606 
7607   if (CodeGenOpts.SanitizeCfiCrossDso)
7608     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7609       VTable->addTypeMetadata(Offset.getQuantity(),
7610                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7611 
7612   if (NeedAllVtablesTypeId()) {
7613     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7614     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7615   }
7616 }
7617 
7618 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7619   if (!SanStats)
7620     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7621 
7622   return *SanStats;
7623 }
7624 
7625 llvm::Value *
7626 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7627                                                   CodeGenFunction &CGF) {
7628   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7629   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7630   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7631   auto *Call = CGF.EmitRuntimeCall(
7632       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7633   return Call;
7634 }
7635 
7636 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7637     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7638   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7639                                  /* forPointeeType= */ true);
7640 }
7641 
7642 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7643                                                  LValueBaseInfo *BaseInfo,
7644                                                  TBAAAccessInfo *TBAAInfo,
7645                                                  bool forPointeeType) {
7646   if (TBAAInfo)
7647     *TBAAInfo = getTBAAAccessInfo(T);
7648 
7649   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7650   // that doesn't return the information we need to compute BaseInfo.
7651 
7652   // Honor alignment typedef attributes even on incomplete types.
7653   // We also honor them straight for C++ class types, even as pointees;
7654   // there's an expressivity gap here.
7655   if (auto TT = T->getAs<TypedefType>()) {
7656     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7657       if (BaseInfo)
7658         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7659       return getContext().toCharUnitsFromBits(Align);
7660     }
7661   }
7662 
7663   bool AlignForArray = T->isArrayType();
7664 
7665   // Analyze the base element type, so we don't get confused by incomplete
7666   // array types.
7667   T = getContext().getBaseElementType(T);
7668 
7669   if (T->isIncompleteType()) {
7670     // We could try to replicate the logic from
7671     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7672     // type is incomplete, so it's impossible to test. We could try to reuse
7673     // getTypeAlignIfKnown, but that doesn't return the information we need
7674     // to set BaseInfo.  So just ignore the possibility that the alignment is
7675     // greater than one.
7676     if (BaseInfo)
7677       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7678     return CharUnits::One();
7679   }
7680 
7681   if (BaseInfo)
7682     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7683 
7684   CharUnits Alignment;
7685   const CXXRecordDecl *RD;
7686   if (T.getQualifiers().hasUnaligned()) {
7687     Alignment = CharUnits::One();
7688   } else if (forPointeeType && !AlignForArray &&
7689              (RD = T->getAsCXXRecordDecl())) {
7690     // For C++ class pointees, we don't know whether we're pointing at a
7691     // base or a complete object, so we generally need to use the
7692     // non-virtual alignment.
7693     Alignment = getClassPointerAlignment(RD);
7694   } else {
7695     Alignment = getContext().getTypeAlignInChars(T);
7696   }
7697 
7698   // Cap to the global maximum type alignment unless the alignment
7699   // was somehow explicit on the type.
7700   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7701     if (Alignment.getQuantity() > MaxAlign &&
7702         !getContext().isAlignmentRequired(T))
7703       Alignment = CharUnits::fromQuantity(MaxAlign);
7704   }
7705   return Alignment;
7706 }
7707 
7708 bool CodeGenModule::stopAutoInit() {
7709   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7710   if (StopAfter) {
7711     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7712     // used
7713     if (NumAutoVarInit >= StopAfter) {
7714       return true;
7715     }
7716     if (!NumAutoVarInit) {
7717       unsigned DiagID = getDiags().getCustomDiagID(
7718           DiagnosticsEngine::Warning,
7719           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7720           "number of times ftrivial-auto-var-init=%1 gets applied.");
7721       getDiags().Report(DiagID)
7722           << StopAfter
7723           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7724                       LangOptions::TrivialAutoVarInitKind::Zero
7725                   ? "zero"
7726                   : "pattern");
7727     }
7728     ++NumAutoVarInit;
7729   }
7730   return false;
7731 }
7732 
7733 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7734                                                     const Decl *D) const {
7735   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7736   // postfix beginning with '.' since the symbol name can be demangled.
7737   if (LangOpts.HIP)
7738     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7739   else
7740     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7741 
7742   // If the CUID is not specified we try to generate a unique postfix.
7743   if (getLangOpts().CUID.empty()) {
7744     SourceManager &SM = getContext().getSourceManager();
7745     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7746     assert(PLoc.isValid() && "Source location is expected to be valid.");
7747 
7748     // Get the hash of the user defined macros.
7749     llvm::MD5 Hash;
7750     llvm::MD5::MD5Result Result;
7751     for (const auto &Arg : PreprocessorOpts.Macros)
7752       Hash.update(Arg.first);
7753     Hash.final(Result);
7754 
7755     // Get the UniqueID for the file containing the decl.
7756     llvm::sys::fs::UniqueID ID;
7757     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7758       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7759       assert(PLoc.isValid() && "Source location is expected to be valid.");
7760       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7761         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7762             << PLoc.getFilename() << EC.message();
7763     }
7764     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7765        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7766   } else {
7767     OS << getContext().getCUIDHash();
7768   }
7769 }
7770 
7771 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7772   assert(DeferredDeclsToEmit.empty() &&
7773          "Should have emitted all decls deferred to emit.");
7774   assert(NewBuilder->DeferredDecls.empty() &&
7775          "Newly created module should not have deferred decls");
7776   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7777   assert(EmittedDeferredDecls.empty() &&
7778          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7779 
7780   assert(NewBuilder->DeferredVTables.empty() &&
7781          "Newly created module should not have deferred vtables");
7782   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7783 
7784   assert(NewBuilder->MangledDeclNames.empty() &&
7785          "Newly created module should not have mangled decl names");
7786   assert(NewBuilder->Manglings.empty() &&
7787          "Newly created module should not have manglings");
7788   NewBuilder->Manglings = std::move(Manglings);
7789 
7790   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7791 
7792   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7793 }
7794