xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152     else if (Target.getABI() == "pauthtest")
153       Kind = AArch64ABIKind::PAuthTest;
154 
155     return createAArch64TargetCodeGenInfo(CGM, Kind);
156   }
157 
158   case llvm::Triple::wasm32:
159   case llvm::Triple::wasm64: {
160     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
161     if (Target.getABI() == "experimental-mv")
162       Kind = WebAssemblyABIKind::ExperimentalMV;
163     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
164   }
165 
166   case llvm::Triple::arm:
167   case llvm::Triple::armeb:
168   case llvm::Triple::thumb:
169   case llvm::Triple::thumbeb: {
170     if (Triple.getOS() == llvm::Triple::Win32)
171       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
172 
173     ARMABIKind Kind = ARMABIKind::AAPCS;
174     StringRef ABIStr = Target.getABI();
175     if (ABIStr == "apcs-gnu")
176       Kind = ARMABIKind::APCS;
177     else if (ABIStr == "aapcs16")
178       Kind = ARMABIKind::AAPCS16_VFP;
179     else if (CodeGenOpts.FloatABI == "hard" ||
180              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
181       Kind = ARMABIKind::AAPCS_VFP;
182 
183     return createARMTargetCodeGenInfo(CGM, Kind);
184   }
185 
186   case llvm::Triple::ppc: {
187     if (Triple.isOSAIX())
188       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
189 
190     bool IsSoftFloat =
191         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
192     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
193   }
194   case llvm::Triple::ppcle: {
195     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
196     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
197   }
198   case llvm::Triple::ppc64:
199     if (Triple.isOSAIX())
200       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
201 
202     if (Triple.isOSBinFormatELF()) {
203       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
204       if (Target.getABI() == "elfv2")
205         Kind = PPC64_SVR4_ABIKind::ELFv2;
206       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
207 
208       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
209     }
210     return createPPC64TargetCodeGenInfo(CGM);
211   case llvm::Triple::ppc64le: {
212     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
213     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
214     if (Target.getABI() == "elfv1")
215       Kind = PPC64_SVR4_ABIKind::ELFv1;
216     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
217 
218     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
219   }
220 
221   case llvm::Triple::nvptx:
222   case llvm::Triple::nvptx64:
223     return createNVPTXTargetCodeGenInfo(CGM);
224 
225   case llvm::Triple::msp430:
226     return createMSP430TargetCodeGenInfo(CGM);
227 
228   case llvm::Triple::riscv32:
229   case llvm::Triple::riscv64: {
230     StringRef ABIStr = Target.getABI();
231     unsigned XLen = Target.getPointerWidth(LangAS::Default);
232     unsigned ABIFLen = 0;
233     if (ABIStr.ends_with("f"))
234       ABIFLen = 32;
235     else if (ABIStr.ends_with("d"))
236       ABIFLen = 64;
237     bool EABI = ABIStr.ends_with("e");
238     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
239   }
240 
241   case llvm::Triple::systemz: {
242     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
243     bool HasVector = !SoftFloat && Target.getABI() == "vector";
244     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
245   }
246 
247   case llvm::Triple::tce:
248   case llvm::Triple::tcele:
249     return createTCETargetCodeGenInfo(CGM);
250 
251   case llvm::Triple::x86: {
252     bool IsDarwinVectorABI = Triple.isOSDarwin();
253     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
254 
255     if (Triple.getOS() == llvm::Triple::Win32) {
256       return createWinX86_32TargetCodeGenInfo(
257           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
258           CodeGenOpts.NumRegisterParameters);
259     }
260     return createX86_32TargetCodeGenInfo(
261         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
262         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
263   }
264 
265   case llvm::Triple::x86_64: {
266     StringRef ABI = Target.getABI();
267     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
268                                : ABI == "avx"  ? X86AVXABILevel::AVX
269                                                : X86AVXABILevel::None);
270 
271     switch (Triple.getOS()) {
272     case llvm::Triple::Win32:
273       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
274     default:
275       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
276     }
277   }
278   case llvm::Triple::hexagon:
279     return createHexagonTargetCodeGenInfo(CGM);
280   case llvm::Triple::lanai:
281     return createLanaiTargetCodeGenInfo(CGM);
282   case llvm::Triple::r600:
283     return createAMDGPUTargetCodeGenInfo(CGM);
284   case llvm::Triple::amdgcn:
285     return createAMDGPUTargetCodeGenInfo(CGM);
286   case llvm::Triple::sparc:
287     return createSparcV8TargetCodeGenInfo(CGM);
288   case llvm::Triple::sparcv9:
289     return createSparcV9TargetCodeGenInfo(CGM);
290   case llvm::Triple::xcore:
291     return createXCoreTargetCodeGenInfo(CGM);
292   case llvm::Triple::arc:
293     return createARCTargetCodeGenInfo(CGM);
294   case llvm::Triple::spir:
295   case llvm::Triple::spir64:
296     return createCommonSPIRTargetCodeGenInfo(CGM);
297   case llvm::Triple::spirv32:
298   case llvm::Triple::spirv64:
299     return createSPIRVTargetCodeGenInfo(CGM);
300   case llvm::Triple::ve:
301     return createVETargetCodeGenInfo(CGM);
302   case llvm::Triple::csky: {
303     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
304     bool hasFP64 =
305         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
306     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
307                                             : hasFP64   ? 64
308                                                         : 32);
309   }
310   case llvm::Triple::bpfeb:
311   case llvm::Triple::bpfel:
312     return createBPFTargetCodeGenInfo(CGM);
313   case llvm::Triple::loongarch32:
314   case llvm::Triple::loongarch64: {
315     StringRef ABIStr = Target.getABI();
316     unsigned ABIFRLen = 0;
317     if (ABIStr.ends_with("f"))
318       ABIFRLen = 32;
319     else if (ABIStr.ends_with("d"))
320       ABIFRLen = 64;
321     return createLoongArchTargetCodeGenInfo(
322         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
323   }
324   }
325 }
326 
327 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
328   if (!TheTargetCodeGenInfo)
329     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
330   return *TheTargetCodeGenInfo;
331 }
332 
333 CodeGenModule::CodeGenModule(ASTContext &C,
334                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
335                              const HeaderSearchOptions &HSO,
336                              const PreprocessorOptions &PPO,
337                              const CodeGenOptions &CGO, llvm::Module &M,
338                              DiagnosticsEngine &diags,
339                              CoverageSourceInfo *CoverageInfo)
340     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
341       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
342       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
343       VMContext(M.getContext()), VTables(*this),
344       SanitizerMD(new SanitizerMetadata(*this)) {
345 
346   // Initialize the type cache.
347   Types.reset(new CodeGenTypes(*this));
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext,
372                                      C.getTargetAddressSpace(LangAS::Default));
373   const llvm::DataLayout &DL = M.getDataLayout();
374   AllocaInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376   GlobalsInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378   ConstGlobalsPtrTy = llvm::PointerType::get(
379       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381 
382   // Build C++20 Module initializers.
383   // TODO: Add Microsoft here once we know the mangling required for the
384   // initializers.
385   CXX20ModuleInits =
386       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387                                        ItaniumMangleContext::MK_Itanium;
388 
389   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390 
391   if (LangOpts.ObjC)
392     createObjCRuntime();
393   if (LangOpts.OpenCL)
394     createOpenCLRuntime();
395   if (LangOpts.OpenMP)
396     createOpenMPRuntime();
397   if (LangOpts.CUDA)
398     createCUDARuntime();
399   if (LangOpts.HLSL)
400     createHLSLRuntime();
401 
402   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406                                getLangOpts()));
407 
408   // If debug info or coverage generation is enabled, create the CGDebugInfo
409   // object.
410   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411       CodeGenOpts.CoverageNotesFile.size() ||
412       CodeGenOpts.CoverageDataFile.size())
413     DebugInfo.reset(new CGDebugInfo(*this));
414 
415   Block.GlobalUniqueCount = 0;
416 
417   if (C.getLangOpts().ObjC)
418     ObjCData.reset(new ObjCEntrypoints());
419 
420   if (CodeGenOpts.hasProfileClangUse()) {
421     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422         CodeGenOpts.ProfileInstrumentUsePath, *FS,
423         CodeGenOpts.ProfileRemappingFile);
424     // We're checking for profile read errors in CompilerInvocation, so if
425     // there was an error it should've already been caught. If it hasn't been
426     // somehow, trip an assertion.
427     assert(ReaderOrErr);
428     PGOReader = std::move(ReaderOrErr.get());
429   }
430 
431   // If coverage mapping generation is enabled, create the
432   // CoverageMappingModuleGen object.
433   if (CodeGenOpts.CoverageMapping)
434     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435 
436   // Generate the module name hash here if needed.
437   if (CodeGenOpts.UniqueInternalLinkageNames &&
438       !getModule().getSourceFileName().empty()) {
439     std::string Path = getModule().getSourceFileName();
440     // Check if a path substitution is needed from the MacroPrefixMap.
441     for (const auto &Entry : LangOpts.MacroPrefixMap)
442       if (Path.rfind(Entry.first, 0) != std::string::npos) {
443         Path = Entry.second + Path.substr(Entry.first.size());
444         break;
445       }
446     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447   }
448 
449   // Record mregparm value now so it is visible through all of codegen.
450   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452                               CodeGenOpts.NumRegisterParameters);
453 }
454 
455 CodeGenModule::~CodeGenModule() {}
456 
457 void CodeGenModule::createObjCRuntime() {
458   // This is just isGNUFamily(), but we want to force implementors of
459   // new ABIs to decide how best to do this.
460   switch (LangOpts.ObjCRuntime.getKind()) {
461   case ObjCRuntime::GNUstep:
462   case ObjCRuntime::GCC:
463   case ObjCRuntime::ObjFW:
464     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465     return;
466 
467   case ObjCRuntime::FragileMacOSX:
468   case ObjCRuntime::MacOSX:
469   case ObjCRuntime::iOS:
470   case ObjCRuntime::WatchOS:
471     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472     return;
473   }
474   llvm_unreachable("bad runtime kind");
475 }
476 
477 void CodeGenModule::createOpenCLRuntime() {
478   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480 
481 void CodeGenModule::createOpenMPRuntime() {
482   // Select a specialized code generation class based on the target, if any.
483   // If it does not exist use the default implementation.
484   switch (getTriple().getArch()) {
485   case llvm::Triple::nvptx:
486   case llvm::Triple::nvptx64:
487   case llvm::Triple::amdgcn:
488     assert(getLangOpts().OpenMPIsTargetDevice &&
489            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491     break;
492   default:
493     if (LangOpts.OpenMPSimd)
494       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495     else
496       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497     break;
498   }
499 }
500 
501 void CodeGenModule::createCUDARuntime() {
502   CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504 
505 void CodeGenModule::createHLSLRuntime() {
506   HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508 
509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510   Replacements[Name] = C;
511 }
512 
513 void CodeGenModule::applyReplacements() {
514   for (auto &I : Replacements) {
515     StringRef MangledName = I.first;
516     llvm::Constant *Replacement = I.second;
517     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518     if (!Entry)
519       continue;
520     auto *OldF = cast<llvm::Function>(Entry);
521     auto *NewF = dyn_cast<llvm::Function>(Replacement);
522     if (!NewF) {
523       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525       } else {
526         auto *CE = cast<llvm::ConstantExpr>(Replacement);
527         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528                CE->getOpcode() == llvm::Instruction::GetElementPtr);
529         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530       }
531     }
532 
533     // Replace old with new, but keep the old order.
534     OldF->replaceAllUsesWith(Replacement);
535     if (NewF) {
536       NewF->removeFromParent();
537       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538                                                        NewF);
539     }
540     OldF->eraseFromParent();
541   }
542 }
543 
544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545   GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547 
548 void CodeGenModule::applyGlobalValReplacements() {
549   for (auto &I : GlobalValReplacements) {
550     llvm::GlobalValue *GV = I.first;
551     llvm::Constant *C = I.second;
552 
553     GV->replaceAllUsesWith(C);
554     GV->eraseFromParent();
555   }
556 }
557 
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561   const llvm::Constant *C;
562   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563     C = GA->getAliasee();
564   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565     C = GI->getResolver();
566   else
567     return GV;
568 
569   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570   if (!AliaseeGV)
571     return nullptr;
572 
573   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574   if (FinalGV == GV)
575     return nullptr;
576 
577   return FinalGV;
578 }
579 
580 static bool checkAliasedGlobal(
581     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584     SourceRange AliasRange) {
585   GV = getAliasedGlobal(Alias);
586   if (!GV) {
587     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588     return false;
589   }
590 
591   if (GV->hasCommonLinkage()) {
592     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594       Diags.Report(Location, diag::err_alias_to_common);
595       return false;
596     }
597   }
598 
599   if (GV->isDeclaration()) {
600     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601     Diags.Report(Location, diag::note_alias_requires_mangled_name)
602         << IsIFunc << IsIFunc;
603     // Provide a note if the given function is not found and exists as a
604     // mangled name.
605     for (const auto &[Decl, Name] : MangledDeclNames) {
606       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607         if (ND->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726     // ifunc resolvers are usually implemented to run before sanitizer
727     // initialization. Disable instrumentation to prevent the ordering issue.
728     if (IsIFunc)
729       cast<llvm::Function>(Aliasee)->addFnAttr(
730           llvm::Attribute::DisableSanitizerInstrumentation);
731   }
732   if (!Error)
733     return;
734 
735   for (const GlobalDecl &GD : Aliases) {
736     StringRef MangledName = getMangledName(GD);
737     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
738     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
739     Alias->eraseFromParent();
740   }
741 }
742 
743 void CodeGenModule::clear() {
744   DeferredDeclsToEmit.clear();
745   EmittedDeferredDecls.clear();
746   DeferredAnnotations.clear();
747   if (OpenMPRuntime)
748     OpenMPRuntime->clear();
749 }
750 
751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
752                                        StringRef MainFile) {
753   if (!hasDiagnostics())
754     return;
755   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
756     if (MainFile.empty())
757       MainFile = "<stdin>";
758     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
759   } else {
760     if (Mismatched > 0)
761       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
762 
763     if (Missing > 0)
764       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
765   }
766 }
767 
768 static std::optional<llvm::GlobalValue::VisibilityTypes>
769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
770   // Map to LLVM visibility.
771   switch (K) {
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
773     return std::nullopt;
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
775     return llvm::GlobalValue::DefaultVisibility;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
777     return llvm::GlobalValue::HiddenVisibility;
778   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
779     return llvm::GlobalValue::ProtectedVisibility;
780   }
781   llvm_unreachable("unknown option value!");
782 }
783 
784 void setLLVMVisibility(llvm::GlobalValue &GV,
785                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
786   if (!V)
787     return;
788 
789   // Reset DSO locality before setting the visibility. This removes
790   // any effects that visibility options and annotations may have
791   // had on the DSO locality. Setting the visibility will implicitly set
792   // appropriate globals to DSO Local; however, this will be pessimistic
793   // w.r.t. to the normal compiler IRGen.
794   GV.setDSOLocal(false);
795   GV.setVisibility(*V);
796 }
797 
798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
799                                              llvm::Module &M) {
800   if (!LO.VisibilityFromDLLStorageClass)
801     return;
802 
803   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
804       getLLVMVisibility(LO.getDLLExportVisibility());
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes>
807       NoDLLStorageClassVisibility =
808           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
809 
810   std::optional<llvm::GlobalValue::VisibilityTypes>
811       ExternDeclDLLImportVisibility =
812           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
813 
814   std::optional<llvm::GlobalValue::VisibilityTypes>
815       ExternDeclNoDLLStorageClassVisibility =
816           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
817 
818   for (llvm::GlobalValue &GV : M.global_values()) {
819     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
820       continue;
821 
822     if (GV.isDeclarationForLinker())
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLImportStorageClass
825                                 ? ExternDeclDLLImportVisibility
826                                 : ExternDeclNoDLLStorageClassVisibility);
827     else
828       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
829                                     llvm::GlobalValue::DLLExportStorageClass
830                                 ? DLLExportVisibility
831                                 : NoDLLStorageClassVisibility);
832 
833     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
834   }
835 }
836 
837 static bool isStackProtectorOn(const LangOptions &LangOpts,
838                                const llvm::Triple &Triple,
839                                clang::LangOptions::StackProtectorMode Mode) {
840   if (Triple.isAMDGPU() || Triple.isNVPTX())
841     return false;
842   return LangOpts.getStackProtector() == Mode;
843 }
844 
845 void CodeGenModule::Release() {
846   Module *Primary = getContext().getCurrentNamedModule();
847   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
848     EmitModuleInitializers(Primary);
849   EmitDeferred();
850   DeferredDecls.insert(EmittedDeferredDecls.begin(),
851                        EmittedDeferredDecls.end());
852   EmittedDeferredDecls.clear();
853   EmitVTablesOpportunistically();
854   applyGlobalValReplacements();
855   applyReplacements();
856   emitMultiVersionFunctions();
857 
858   if (Context.getLangOpts().IncrementalExtensions &&
859       GlobalTopLevelStmtBlockInFlight.first) {
860     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
861     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
862     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
863   }
864 
865   // Module implementations are initialized the same way as a regular TU that
866   // imports one or more modules.
867   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
868     EmitCXXModuleInitFunc(Primary);
869   else
870     EmitCXXGlobalInitFunc();
871   EmitCXXGlobalCleanUpFunc();
872   registerGlobalDtorsWithAtExit();
873   EmitCXXThreadLocalInitFunc();
874   if (ObjCRuntime)
875     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
876       AddGlobalCtor(ObjCInitFunction);
877   if (Context.getLangOpts().CUDA && CUDARuntime) {
878     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
879       AddGlobalCtor(CudaCtorFunction);
880   }
881   if (OpenMPRuntime) {
882     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
883     OpenMPRuntime->clear();
884   }
885   if (PGOReader) {
886     getModule().setProfileSummary(
887         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
888         llvm::ProfileSummary::PSK_Instr);
889     if (PGOStats.hasDiagnostics())
890       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
891   }
892   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
893     return L.LexOrder < R.LexOrder;
894   });
895   EmitCtorList(GlobalCtors, "llvm.global_ctors");
896   EmitCtorList(GlobalDtors, "llvm.global_dtors");
897   EmitGlobalAnnotations();
898   EmitStaticExternCAliases();
899   checkAliases();
900   EmitDeferredUnusedCoverageMappings();
901   CodeGenPGO(*this).setValueProfilingFlag(getModule());
902   CodeGenPGO(*this).setProfileVersion(getModule());
903   if (CoverageMapping)
904     CoverageMapping->emit();
905   if (CodeGenOpts.SanitizeCfiCrossDso) {
906     CodeGenFunction(*this).EmitCfiCheckFail();
907     CodeGenFunction(*this).EmitCfiCheckStub();
908   }
909   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
910     finalizeKCFITypes();
911   emitAtAvailableLinkGuard();
912   if (Context.getTargetInfo().getTriple().isWasm())
913     EmitMainVoidAlias();
914 
915   if (getTriple().isAMDGPU() ||
916       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
917     // Emit amdhsa_code_object_version module flag, which is code object version
918     // times 100.
919     if (getTarget().getTargetOpts().CodeObjectVersion !=
920         llvm::CodeObjectVersionKind::COV_None) {
921       getModule().addModuleFlag(llvm::Module::Error,
922                                 "amdhsa_code_object_version",
923                                 getTarget().getTargetOpts().CodeObjectVersion);
924     }
925 
926     // Currently, "-mprintf-kind" option is only supported for HIP
927     if (LangOpts.HIP) {
928       auto *MDStr = llvm::MDString::get(
929           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
930                              TargetOptions::AMDGPUPrintfKind::Hostcall)
931                                 ? "hostcall"
932                                 : "buffered");
933       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
934                                 MDStr);
935     }
936   }
937 
938   // Emit a global array containing all external kernels or device variables
939   // used by host functions and mark it as used for CUDA/HIP. This is necessary
940   // to get kernels or device variables in archives linked in even if these
941   // kernels or device variables are only used in host functions.
942   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
943     SmallVector<llvm::Constant *, 8> UsedArray;
944     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
945       GlobalDecl GD;
946       if (auto *FD = dyn_cast<FunctionDecl>(D))
947         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
948       else
949         GD = GlobalDecl(D);
950       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
951           GetAddrOfGlobal(GD), Int8PtrTy));
952     }
953 
954     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
955 
956     auto *GV = new llvm::GlobalVariable(
957         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
958         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
959     addCompilerUsedGlobal(GV);
960   }
961   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
962     // Emit a unique ID so that host and device binaries from the same
963     // compilation unit can be associated.
964     auto *GV = new llvm::GlobalVariable(
965         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
966         llvm::Constant::getNullValue(Int8Ty),
967         "__hip_cuid_" + getContext().getCUIDHash());
968     addCompilerUsedGlobal(GV);
969   }
970   emitLLVMUsed();
971   if (SanStats)
972     SanStats->finish();
973 
974   if (CodeGenOpts.Autolink &&
975       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
976     EmitModuleLinkOptions();
977   }
978 
979   // On ELF we pass the dependent library specifiers directly to the linker
980   // without manipulating them. This is in contrast to other platforms where
981   // they are mapped to a specific linker option by the compiler. This
982   // difference is a result of the greater variety of ELF linkers and the fact
983   // that ELF linkers tend to handle libraries in a more complicated fashion
984   // than on other platforms. This forces us to defer handling the dependent
985   // libs to the linker.
986   //
987   // CUDA/HIP device and host libraries are different. Currently there is no
988   // way to differentiate dependent libraries for host or device. Existing
989   // usage of #pragma comment(lib, *) is intended for host libraries on
990   // Windows. Therefore emit llvm.dependent-libraries only for host.
991   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
992     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
993     for (auto *MD : ELFDependentLibraries)
994       NMD->addOperand(MD);
995   }
996 
997   if (CodeGenOpts.DwarfVersion) {
998     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
999                               CodeGenOpts.DwarfVersion);
1000   }
1001 
1002   if (CodeGenOpts.Dwarf64)
1003     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1004 
1005   if (Context.getLangOpts().SemanticInterposition)
1006     // Require various optimization to respect semantic interposition.
1007     getModule().setSemanticInterposition(true);
1008 
1009   if (CodeGenOpts.EmitCodeView) {
1010     // Indicate that we want CodeView in the metadata.
1011     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1012   }
1013   if (CodeGenOpts.CodeViewGHash) {
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1015   }
1016   if (CodeGenOpts.ControlFlowGuard) {
1017     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1018     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1019   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1020     // Function ID tables for Control Flow Guard (cfguard=1).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1022   }
1023   if (CodeGenOpts.EHContGuard) {
1024     // Function ID tables for EH Continuation Guard.
1025     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1026   }
1027   if (Context.getLangOpts().Kernel) {
1028     // Note if we are compiling with /kernel.
1029     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1030   }
1031   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1032     // We don't support LTO with 2 with different StrictVTablePointers
1033     // FIXME: we could support it by stripping all the information introduced
1034     // by StrictVTablePointers.
1035 
1036     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1037 
1038     llvm::Metadata *Ops[2] = {
1039               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1040               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1041                   llvm::Type::getInt32Ty(VMContext), 1))};
1042 
1043     getModule().addModuleFlag(llvm::Module::Require,
1044                               "StrictVTablePointersRequirement",
1045                               llvm::MDNode::get(VMContext, Ops));
1046   }
1047   if (getModuleDebugInfo())
1048     // We support a single version in the linked module. The LLVM
1049     // parser will drop debug info with a different version number
1050     // (and warn about it, too).
1051     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1052                               llvm::DEBUG_METADATA_VERSION);
1053 
1054   // We need to record the widths of enums and wchar_t, so that we can generate
1055   // the correct build attributes in the ARM backend. wchar_size is also used by
1056   // TargetLibraryInfo.
1057   uint64_t WCharWidth =
1058       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1059   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1060 
1061   if (getTriple().isOSzOS()) {
1062     getModule().addModuleFlag(llvm::Module::Warning,
1063                               "zos_product_major_version",
1064                               uint32_t(CLANG_VERSION_MAJOR));
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_minor_version",
1067                               uint32_t(CLANG_VERSION_MINOR));
1068     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1069                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1070     std::string ProductId = getClangVendor() + "clang";
1071     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1072                               llvm::MDString::get(VMContext, ProductId));
1073 
1074     // Record the language because we need it for the PPA2.
1075     StringRef lang_str = languageToString(
1076         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1077     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1078                               llvm::MDString::get(VMContext, lang_str));
1079 
1080     time_t TT = PreprocessorOpts.SourceDateEpoch
1081                     ? *PreprocessorOpts.SourceDateEpoch
1082                     : std::time(nullptr);
1083     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1084                               static_cast<uint64_t>(TT));
1085 
1086     // Multiple modes will be supported here.
1087     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1088                               llvm::MDString::get(VMContext, "ascii"));
1089   }
1090 
1091   llvm::Triple T = Context.getTargetInfo().getTriple();
1092   if (T.isARM() || T.isThumb()) {
1093     // The minimum width of an enum in bytes
1094     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1095     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1096   }
1097 
1098   if (T.isRISCV()) {
1099     StringRef ABIStr = Target.getABI();
1100     llvm::LLVMContext &Ctx = TheModule.getContext();
1101     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1102                               llvm::MDString::get(Ctx, ABIStr));
1103 
1104     // Add the canonical ISA string as metadata so the backend can set the ELF
1105     // attributes correctly. We use AppendUnique so LTO will keep all of the
1106     // unique ISA strings that were linked together.
1107     const std::vector<std::string> &Features =
1108         getTarget().getTargetOpts().Features;
1109     auto ParseResult =
1110         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1111     if (!errorToBool(ParseResult.takeError()))
1112       getModule().addModuleFlag(
1113           llvm::Module::AppendUnique, "riscv-isa",
1114           llvm::MDNode::get(
1115               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1116   }
1117 
1118   if (CodeGenOpts.SanitizeCfiCrossDso) {
1119     // Indicate that we want cross-DSO control flow integrity checks.
1120     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1121   }
1122 
1123   if (CodeGenOpts.WholeProgramVTables) {
1124     // Indicate whether VFE was enabled for this module, so that the
1125     // vcall_visibility metadata added under whole program vtables is handled
1126     // appropriately in the optimizer.
1127     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1128                               CodeGenOpts.VirtualFunctionElimination);
1129   }
1130 
1131   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1132     getModule().addModuleFlag(llvm::Module::Override,
1133                               "CFI Canonical Jump Tables",
1134                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1135   }
1136 
1137   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1138     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1139                               1);
1140   }
1141 
1142   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1143     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1144     // KCFI assumes patchable-function-prefix is the same for all indirectly
1145     // called functions. Store the expected offset for code generation.
1146     if (CodeGenOpts.PatchableFunctionEntryOffset)
1147       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1148                                 CodeGenOpts.PatchableFunctionEntryOffset);
1149   }
1150 
1151   if (CodeGenOpts.CFProtectionReturn &&
1152       Target.checkCFProtectionReturnSupported(getDiags())) {
1153     // Indicate that we want to instrument return control flow protection.
1154     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1155                               1);
1156   }
1157 
1158   if (CodeGenOpts.CFProtectionBranch &&
1159       Target.checkCFProtectionBranchSupported(getDiags())) {
1160     // Indicate that we want to instrument branch control flow protection.
1161     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1162                               1);
1163   }
1164 
1165   if (CodeGenOpts.FunctionReturnThunks)
1166     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1167 
1168   if (CodeGenOpts.IndirectBranchCSPrefix)
1169     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1170 
1171   // Add module metadata for return address signing (ignoring
1172   // non-leaf/all) and stack tagging. These are actually turned on by function
1173   // attributes, but we use module metadata to emit build attributes. This is
1174   // needed for LTO, where the function attributes are inside bitcode
1175   // serialised into a global variable by the time build attributes are
1176   // emitted, so we can't access them. LTO objects could be compiled with
1177   // different flags therefore module flags are set to "Min" behavior to achieve
1178   // the same end result of the normal build where e.g BTI is off if any object
1179   // doesn't support it.
1180   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1181       LangOpts.getSignReturnAddressScope() !=
1182           LangOptions::SignReturnAddressScopeKind::None)
1183     getModule().addModuleFlag(llvm::Module::Override,
1184                               "sign-return-address-buildattr", 1);
1185   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1186     getModule().addModuleFlag(llvm::Module::Override,
1187                               "tag-stack-memory-buildattr", 1);
1188 
1189   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1190     if (LangOpts.BranchTargetEnforcement)
1191       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1192                                 1);
1193     if (LangOpts.BranchProtectionPAuthLR)
1194       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1195                                 1);
1196     if (LangOpts.GuardedControlStack)
1197       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1198     if (LangOpts.hasSignReturnAddress())
1199       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1200     if (LangOpts.isSignReturnAddressScopeAll())
1201       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1202                                 1);
1203     if (!LangOpts.isSignReturnAddressWithAKey())
1204       getModule().addModuleFlag(llvm::Module::Min,
1205                                 "sign-return-address-with-bkey", 1);
1206 
1207     if (getTriple().isOSLinux()) {
1208       assert(getTriple().isOSBinFormatELF());
1209       using namespace llvm::ELF;
1210       uint64_t PAuthABIVersion =
1211           (LangOpts.PointerAuthIntrinsics
1212            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1213           (LangOpts.PointerAuthCalls
1214            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1215           (LangOpts.PointerAuthReturns
1216            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1217           (LangOpts.PointerAuthAuthTraps
1218            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1219           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1220            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1221           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1222            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1223           (LangOpts.PointerAuthInitFini
1224            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1225       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1226                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1227                     "Update when new enum items are defined");
1228       if (PAuthABIVersion != 0) {
1229         getModule().addModuleFlag(llvm::Module::Error,
1230                                   "aarch64-elf-pauthabi-platform",
1231                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1232         getModule().addModuleFlag(llvm::Module::Error,
1233                                   "aarch64-elf-pauthabi-version",
1234                                   PAuthABIVersion);
1235       }
1236     }
1237   }
1238 
1239   if (CodeGenOpts.StackClashProtector)
1240     getModule().addModuleFlag(
1241         llvm::Module::Override, "probe-stack",
1242         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1243 
1244   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1245     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1246                               CodeGenOpts.StackProbeSize);
1247 
1248   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1249     llvm::LLVMContext &Ctx = TheModule.getContext();
1250     getModule().addModuleFlag(
1251         llvm::Module::Error, "MemProfProfileFilename",
1252         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1253   }
1254 
1255   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1256     // Indicate whether __nvvm_reflect should be configured to flush denormal
1257     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1258     // property.)
1259     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1260                               CodeGenOpts.FP32DenormalMode.Output !=
1261                                   llvm::DenormalMode::IEEE);
1262   }
1263 
1264   if (LangOpts.EHAsynch)
1265     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1266 
1267   // Indicate whether this Module was compiled with -fopenmp
1268   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1269     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1270   if (getLangOpts().OpenMPIsTargetDevice)
1271     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1272                               LangOpts.OpenMP);
1273 
1274   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1275   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1276     EmitOpenCLMetadata();
1277     // Emit SPIR version.
1278     if (getTriple().isSPIR()) {
1279       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1280       // opencl.spir.version named metadata.
1281       // C++ for OpenCL has a distinct mapping for version compatibility with
1282       // OpenCL.
1283       auto Version = LangOpts.getOpenCLCompatibleVersion();
1284       llvm::Metadata *SPIRVerElts[] = {
1285           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1286               Int32Ty, Version / 100)),
1287           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1288               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1289       llvm::NamedMDNode *SPIRVerMD =
1290           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1291       llvm::LLVMContext &Ctx = TheModule.getContext();
1292       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1293     }
1294   }
1295 
1296   // HLSL related end of code gen work items.
1297   if (LangOpts.HLSL)
1298     getHLSLRuntime().finishCodeGen();
1299 
1300   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1301     assert(PLevel < 3 && "Invalid PIC Level");
1302     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1303     if (Context.getLangOpts().PIE)
1304       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1305   }
1306 
1307   if (getCodeGenOpts().CodeModel.size() > 0) {
1308     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1309                   .Case("tiny", llvm::CodeModel::Tiny)
1310                   .Case("small", llvm::CodeModel::Small)
1311                   .Case("kernel", llvm::CodeModel::Kernel)
1312                   .Case("medium", llvm::CodeModel::Medium)
1313                   .Case("large", llvm::CodeModel::Large)
1314                   .Default(~0u);
1315     if (CM != ~0u) {
1316       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1317       getModule().setCodeModel(codeModel);
1318 
1319       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1320           Context.getTargetInfo().getTriple().getArch() ==
1321               llvm::Triple::x86_64) {
1322         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1323       }
1324     }
1325   }
1326 
1327   if (CodeGenOpts.NoPLT)
1328     getModule().setRtLibUseGOT();
1329   if (getTriple().isOSBinFormatELF() &&
1330       CodeGenOpts.DirectAccessExternalData !=
1331           getModule().getDirectAccessExternalData()) {
1332     getModule().setDirectAccessExternalData(
1333         CodeGenOpts.DirectAccessExternalData);
1334   }
1335   if (CodeGenOpts.UnwindTables)
1336     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1337 
1338   switch (CodeGenOpts.getFramePointer()) {
1339   case CodeGenOptions::FramePointerKind::None:
1340     // 0 ("none") is the default.
1341     break;
1342   case CodeGenOptions::FramePointerKind::Reserved:
1343     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1344     break;
1345   case CodeGenOptions::FramePointerKind::NonLeaf:
1346     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1347     break;
1348   case CodeGenOptions::FramePointerKind::All:
1349     getModule().setFramePointer(llvm::FramePointerKind::All);
1350     break;
1351   }
1352 
1353   SimplifyPersonality();
1354 
1355   if (getCodeGenOpts().EmitDeclMetadata)
1356     EmitDeclMetadata();
1357 
1358   if (getCodeGenOpts().CoverageNotesFile.size() ||
1359       getCodeGenOpts().CoverageDataFile.size())
1360     EmitCoverageFile();
1361 
1362   if (CGDebugInfo *DI = getModuleDebugInfo())
1363     DI->finalize();
1364 
1365   if (getCodeGenOpts().EmitVersionIdentMetadata)
1366     EmitVersionIdentMetadata();
1367 
1368   if (!getCodeGenOpts().RecordCommandLine.empty())
1369     EmitCommandLineMetadata();
1370 
1371   if (!getCodeGenOpts().StackProtectorGuard.empty())
1372     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1373   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1374     getModule().setStackProtectorGuardReg(
1375         getCodeGenOpts().StackProtectorGuardReg);
1376   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1377     getModule().setStackProtectorGuardSymbol(
1378         getCodeGenOpts().StackProtectorGuardSymbol);
1379   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1380     getModule().setStackProtectorGuardOffset(
1381         getCodeGenOpts().StackProtectorGuardOffset);
1382   if (getCodeGenOpts().StackAlignment)
1383     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1384   if (getCodeGenOpts().SkipRaxSetup)
1385     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1386   if (getLangOpts().RegCall4)
1387     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1388 
1389   if (getContext().getTargetInfo().getMaxTLSAlign())
1390     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1391                               getContext().getTargetInfo().getMaxTLSAlign());
1392 
1393   getTargetCodeGenInfo().emitTargetGlobals(*this);
1394 
1395   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1396 
1397   EmitBackendOptionsMetadata(getCodeGenOpts());
1398 
1399   // If there is device offloading code embed it in the host now.
1400   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1401 
1402   // Set visibility from DLL storage class
1403   // We do this at the end of LLVM IR generation; after any operation
1404   // that might affect the DLL storage class or the visibility, and
1405   // before anything that might act on these.
1406   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1407 
1408   // Check the tail call symbols are truly undefined.
1409   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1410     for (auto &I : MustTailCallUndefinedGlobals) {
1411       if (!I.first->isDefined())
1412         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1413       else {
1414         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1415         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1416         if (!Entry || Entry->isWeakForLinker() ||
1417             Entry->isDeclarationForLinker())
1418           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1419       }
1420     }
1421   }
1422 }
1423 
1424 void CodeGenModule::EmitOpenCLMetadata() {
1425   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1426   // opencl.ocl.version named metadata node.
1427   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1428   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1429 
1430   auto EmitVersion = [this](StringRef MDName, int Version) {
1431     llvm::Metadata *OCLVerElts[] = {
1432         llvm::ConstantAsMetadata::get(
1433             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1434         llvm::ConstantAsMetadata::get(
1435             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1436     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1437     llvm::LLVMContext &Ctx = TheModule.getContext();
1438     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1439   };
1440 
1441   EmitVersion("opencl.ocl.version", CLVersion);
1442   if (LangOpts.OpenCLCPlusPlus) {
1443     // In addition to the OpenCL compatible version, emit the C++ version.
1444     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1445   }
1446 }
1447 
1448 void CodeGenModule::EmitBackendOptionsMetadata(
1449     const CodeGenOptions &CodeGenOpts) {
1450   if (getTriple().isRISCV()) {
1451     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1452                               CodeGenOpts.SmallDataLimit);
1453   }
1454 }
1455 
1456 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1457   // Make sure that this type is translated.
1458   getTypes().UpdateCompletedType(TD);
1459 }
1460 
1461 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1462   // Make sure that this type is translated.
1463   getTypes().RefreshTypeCacheForClass(RD);
1464 }
1465 
1466 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1467   if (!TBAA)
1468     return nullptr;
1469   return TBAA->getTypeInfo(QTy);
1470 }
1471 
1472 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1473   if (!TBAA)
1474     return TBAAAccessInfo();
1475   if (getLangOpts().CUDAIsDevice) {
1476     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1477     // access info.
1478     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1479       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1480           nullptr)
1481         return TBAAAccessInfo();
1482     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1483       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1484           nullptr)
1485         return TBAAAccessInfo();
1486     }
1487   }
1488   return TBAA->getAccessInfo(AccessType);
1489 }
1490 
1491 TBAAAccessInfo
1492 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1493   if (!TBAA)
1494     return TBAAAccessInfo();
1495   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1496 }
1497 
1498 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1499   if (!TBAA)
1500     return nullptr;
1501   return TBAA->getTBAAStructInfo(QTy);
1502 }
1503 
1504 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1505   if (!TBAA)
1506     return nullptr;
1507   return TBAA->getBaseTypeInfo(QTy);
1508 }
1509 
1510 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1511   if (!TBAA)
1512     return nullptr;
1513   return TBAA->getAccessTagInfo(Info);
1514 }
1515 
1516 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1517                                                    TBAAAccessInfo TargetInfo) {
1518   if (!TBAA)
1519     return TBAAAccessInfo();
1520   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1521 }
1522 
1523 TBAAAccessInfo
1524 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1525                                                    TBAAAccessInfo InfoB) {
1526   if (!TBAA)
1527     return TBAAAccessInfo();
1528   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1529 }
1530 
1531 TBAAAccessInfo
1532 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1533                                               TBAAAccessInfo SrcInfo) {
1534   if (!TBAA)
1535     return TBAAAccessInfo();
1536   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1537 }
1538 
1539 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1540                                                 TBAAAccessInfo TBAAInfo) {
1541   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1542     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1543 }
1544 
1545 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1546     llvm::Instruction *I, const CXXRecordDecl *RD) {
1547   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1548                  llvm::MDNode::get(getLLVMContext(), {}));
1549 }
1550 
1551 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1552   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1553   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1554 }
1555 
1556 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1557 /// specified stmt yet.
1558 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1559   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1560                                                "cannot compile this %0 yet");
1561   std::string Msg = Type;
1562   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1563       << Msg << S->getSourceRange();
1564 }
1565 
1566 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1567 /// specified decl yet.
1568 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1569   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1570                                                "cannot compile this %0 yet");
1571   std::string Msg = Type;
1572   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1573 }
1574 
1575 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1576   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1577 }
1578 
1579 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1580                                         const NamedDecl *D) const {
1581   // Internal definitions always have default visibility.
1582   if (GV->hasLocalLinkage()) {
1583     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1584     return;
1585   }
1586   if (!D)
1587     return;
1588 
1589   // Set visibility for definitions, and for declarations if requested globally
1590   // or set explicitly.
1591   LinkageInfo LV = D->getLinkageAndVisibility();
1592 
1593   // OpenMP declare target variables must be visible to the host so they can
1594   // be registered. We require protected visibility unless the variable has
1595   // the DT_nohost modifier and does not need to be registered.
1596   if (Context.getLangOpts().OpenMP &&
1597       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1598       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1599       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1600           OMPDeclareTargetDeclAttr::DT_NoHost &&
1601       LV.getVisibility() == HiddenVisibility) {
1602     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1603     return;
1604   }
1605 
1606   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1607     // Reject incompatible dlllstorage and visibility annotations.
1608     if (!LV.isVisibilityExplicit())
1609       return;
1610     if (GV->hasDLLExportStorageClass()) {
1611       if (LV.getVisibility() == HiddenVisibility)
1612         getDiags().Report(D->getLocation(),
1613                           diag::err_hidden_visibility_dllexport);
1614     } else if (LV.getVisibility() != DefaultVisibility) {
1615       getDiags().Report(D->getLocation(),
1616                         diag::err_non_default_visibility_dllimport);
1617     }
1618     return;
1619   }
1620 
1621   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1622       !GV->isDeclarationForLinker())
1623     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1624 }
1625 
1626 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1627                                  llvm::GlobalValue *GV) {
1628   if (GV->hasLocalLinkage())
1629     return true;
1630 
1631   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1632     return true;
1633 
1634   // DLLImport explicitly marks the GV as external.
1635   if (GV->hasDLLImportStorageClass())
1636     return false;
1637 
1638   const llvm::Triple &TT = CGM.getTriple();
1639   const auto &CGOpts = CGM.getCodeGenOpts();
1640   if (TT.isWindowsGNUEnvironment()) {
1641     // In MinGW, variables without DLLImport can still be automatically
1642     // imported from a DLL by the linker; don't mark variables that
1643     // potentially could come from another DLL as DSO local.
1644 
1645     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1646     // (and this actually happens in the public interface of libstdc++), so
1647     // such variables can't be marked as DSO local. (Native TLS variables
1648     // can't be dllimported at all, though.)
1649     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1650         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1651         CGOpts.AutoImport)
1652       return false;
1653   }
1654 
1655   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1656   // remain unresolved in the link, they can be resolved to zero, which is
1657   // outside the current DSO.
1658   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1659     return false;
1660 
1661   // Every other GV is local on COFF.
1662   // Make an exception for windows OS in the triple: Some firmware builds use
1663   // *-win32-macho triples. This (accidentally?) produced windows relocations
1664   // without GOT tables in older clang versions; Keep this behaviour.
1665   // FIXME: even thread local variables?
1666   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1667     return true;
1668 
1669   // Only handle COFF and ELF for now.
1670   if (!TT.isOSBinFormatELF())
1671     return false;
1672 
1673   // If this is not an executable, don't assume anything is local.
1674   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1675   const auto &LOpts = CGM.getLangOpts();
1676   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1677     // On ELF, if -fno-semantic-interposition is specified and the target
1678     // supports local aliases, there will be neither CC1
1679     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1680     // dso_local on the function if using a local alias is preferable (can avoid
1681     // PLT indirection).
1682     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1683       return false;
1684     return !(CGM.getLangOpts().SemanticInterposition ||
1685              CGM.getLangOpts().HalfNoSemanticInterposition);
1686   }
1687 
1688   // A definition cannot be preempted from an executable.
1689   if (!GV->isDeclarationForLinker())
1690     return true;
1691 
1692   // Most PIC code sequences that assume that a symbol is local cannot produce a
1693   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1694   // depended, it seems worth it to handle it here.
1695   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1696     return false;
1697 
1698   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1699   if (TT.isPPC64())
1700     return false;
1701 
1702   if (CGOpts.DirectAccessExternalData) {
1703     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1704     // for non-thread-local variables. If the symbol is not defined in the
1705     // executable, a copy relocation will be needed at link time. dso_local is
1706     // excluded for thread-local variables because they generally don't support
1707     // copy relocations.
1708     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1709       if (!Var->isThreadLocal())
1710         return true;
1711 
1712     // -fno-pic sets dso_local on a function declaration to allow direct
1713     // accesses when taking its address (similar to a data symbol). If the
1714     // function is not defined in the executable, a canonical PLT entry will be
1715     // needed at link time. -fno-direct-access-external-data can avoid the
1716     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1717     // it could just cause trouble without providing perceptible benefits.
1718     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1719       return true;
1720   }
1721 
1722   // If we can use copy relocations we can assume it is local.
1723 
1724   // Otherwise don't assume it is local.
1725   return false;
1726 }
1727 
1728 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1729   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1730 }
1731 
1732 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1733                                           GlobalDecl GD) const {
1734   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1735   // C++ destructors have a few C++ ABI specific special cases.
1736   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1737     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1738     return;
1739   }
1740   setDLLImportDLLExport(GV, D);
1741 }
1742 
1743 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1744                                           const NamedDecl *D) const {
1745   if (D && D->isExternallyVisible()) {
1746     if (D->hasAttr<DLLImportAttr>())
1747       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1748     else if ((D->hasAttr<DLLExportAttr>() ||
1749               shouldMapVisibilityToDLLExport(D)) &&
1750              !GV->isDeclarationForLinker())
1751       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1752   }
1753 }
1754 
1755 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1756                                     GlobalDecl GD) const {
1757   setDLLImportDLLExport(GV, GD);
1758   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1759 }
1760 
1761 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1762                                     const NamedDecl *D) const {
1763   setDLLImportDLLExport(GV, D);
1764   setGVPropertiesAux(GV, D);
1765 }
1766 
1767 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1768                                        const NamedDecl *D) const {
1769   setGlobalVisibility(GV, D);
1770   setDSOLocal(GV);
1771   GV->setPartition(CodeGenOpts.SymbolPartition);
1772 }
1773 
1774 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1775   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1776       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1777       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1778       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1779       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1780 }
1781 
1782 llvm::GlobalVariable::ThreadLocalMode
1783 CodeGenModule::GetDefaultLLVMTLSModel() const {
1784   switch (CodeGenOpts.getDefaultTLSModel()) {
1785   case CodeGenOptions::GeneralDynamicTLSModel:
1786     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1787   case CodeGenOptions::LocalDynamicTLSModel:
1788     return llvm::GlobalVariable::LocalDynamicTLSModel;
1789   case CodeGenOptions::InitialExecTLSModel:
1790     return llvm::GlobalVariable::InitialExecTLSModel;
1791   case CodeGenOptions::LocalExecTLSModel:
1792     return llvm::GlobalVariable::LocalExecTLSModel;
1793   }
1794   llvm_unreachable("Invalid TLS model!");
1795 }
1796 
1797 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1798   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1799 
1800   llvm::GlobalValue::ThreadLocalMode TLM;
1801   TLM = GetDefaultLLVMTLSModel();
1802 
1803   // Override the TLS model if it is explicitly specified.
1804   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1805     TLM = GetLLVMTLSModel(Attr->getModel());
1806   }
1807 
1808   GV->setThreadLocalMode(TLM);
1809 }
1810 
1811 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1812                                           StringRef Name) {
1813   const TargetInfo &Target = CGM.getTarget();
1814   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1815 }
1816 
1817 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1818                                                  const CPUSpecificAttr *Attr,
1819                                                  unsigned CPUIndex,
1820                                                  raw_ostream &Out) {
1821   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1822   // supported.
1823   if (Attr)
1824     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1825   else if (CGM.getTarget().supportsIFunc())
1826     Out << ".resolver";
1827 }
1828 
1829 // Returns true if GD is a function decl with internal linkage and
1830 // needs a unique suffix after the mangled name.
1831 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1832                                         CodeGenModule &CGM) {
1833   const Decl *D = GD.getDecl();
1834   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1835          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1836 }
1837 
1838 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1839                                       const NamedDecl *ND,
1840                                       bool OmitMultiVersionMangling = false) {
1841   SmallString<256> Buffer;
1842   llvm::raw_svector_ostream Out(Buffer);
1843   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1844   if (!CGM.getModuleNameHash().empty())
1845     MC.needsUniqueInternalLinkageNames();
1846   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1847   if (ShouldMangle)
1848     MC.mangleName(GD.getWithDecl(ND), Out);
1849   else {
1850     IdentifierInfo *II = ND->getIdentifier();
1851     assert(II && "Attempt to mangle unnamed decl.");
1852     const auto *FD = dyn_cast<FunctionDecl>(ND);
1853 
1854     if (FD &&
1855         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1856       if (CGM.getLangOpts().RegCall4)
1857         Out << "__regcall4__" << II->getName();
1858       else
1859         Out << "__regcall3__" << II->getName();
1860     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1861                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1862       Out << "__device_stub__" << II->getName();
1863     } else {
1864       Out << II->getName();
1865     }
1866   }
1867 
1868   // Check if the module name hash should be appended for internal linkage
1869   // symbols.   This should come before multi-version target suffixes are
1870   // appended. This is to keep the name and module hash suffix of the
1871   // internal linkage function together.  The unique suffix should only be
1872   // added when name mangling is done to make sure that the final name can
1873   // be properly demangled.  For example, for C functions without prototypes,
1874   // name mangling is not done and the unique suffix should not be appeneded
1875   // then.
1876   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1877     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1878            "Hash computed when not explicitly requested");
1879     Out << CGM.getModuleNameHash();
1880   }
1881 
1882   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1883     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1884       switch (FD->getMultiVersionKind()) {
1885       case MultiVersionKind::CPUDispatch:
1886       case MultiVersionKind::CPUSpecific:
1887         AppendCPUSpecificCPUDispatchMangling(CGM,
1888                                              FD->getAttr<CPUSpecificAttr>(),
1889                                              GD.getMultiVersionIndex(), Out);
1890         break;
1891       case MultiVersionKind::Target: {
1892         auto *Attr = FD->getAttr<TargetAttr>();
1893         assert(Attr && "Expected TargetAttr to be present "
1894                        "for attribute mangling");
1895         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1896         Info.appendAttributeMangling(Attr, Out);
1897         break;
1898       }
1899       case MultiVersionKind::TargetVersion: {
1900         auto *Attr = FD->getAttr<TargetVersionAttr>();
1901         assert(Attr && "Expected TargetVersionAttr to be present "
1902                        "for attribute mangling");
1903         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1904         Info.appendAttributeMangling(Attr, Out);
1905         break;
1906       }
1907       case MultiVersionKind::TargetClones: {
1908         auto *Attr = FD->getAttr<TargetClonesAttr>();
1909         assert(Attr && "Expected TargetClonesAttr to be present "
1910                        "for attribute mangling");
1911         unsigned Index = GD.getMultiVersionIndex();
1912         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1913         Info.appendAttributeMangling(Attr, Index, Out);
1914         break;
1915       }
1916       case MultiVersionKind::None:
1917         llvm_unreachable("None multiversion type isn't valid here");
1918       }
1919     }
1920 
1921   // Make unique name for device side static file-scope variable for HIP.
1922   if (CGM.getContext().shouldExternalize(ND) &&
1923       CGM.getLangOpts().GPURelocatableDeviceCode &&
1924       CGM.getLangOpts().CUDAIsDevice)
1925     CGM.printPostfixForExternalizedDecl(Out, ND);
1926 
1927   return std::string(Out.str());
1928 }
1929 
1930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1931                                             const FunctionDecl *FD,
1932                                             StringRef &CurName) {
1933   if (!FD->isMultiVersion())
1934     return;
1935 
1936   // Get the name of what this would be without the 'target' attribute.  This
1937   // allows us to lookup the version that was emitted when this wasn't a
1938   // multiversion function.
1939   std::string NonTargetName =
1940       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1941   GlobalDecl OtherGD;
1942   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1943     assert(OtherGD.getCanonicalDecl()
1944                .getDecl()
1945                ->getAsFunction()
1946                ->isMultiVersion() &&
1947            "Other GD should now be a multiversioned function");
1948     // OtherFD is the version of this function that was mangled BEFORE
1949     // becoming a MultiVersion function.  It potentially needs to be updated.
1950     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1951                                       .getDecl()
1952                                       ->getAsFunction()
1953                                       ->getMostRecentDecl();
1954     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1955     // This is so that if the initial version was already the 'default'
1956     // version, we don't try to update it.
1957     if (OtherName != NonTargetName) {
1958       // Remove instead of erase, since others may have stored the StringRef
1959       // to this.
1960       const auto ExistingRecord = Manglings.find(NonTargetName);
1961       if (ExistingRecord != std::end(Manglings))
1962         Manglings.remove(&(*ExistingRecord));
1963       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1964       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1965           Result.first->first();
1966       // If this is the current decl is being created, make sure we update the name.
1967       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1968         CurName = OtherNameRef;
1969       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1970         Entry->setName(OtherName);
1971     }
1972   }
1973 }
1974 
1975 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1976   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1977 
1978   // Some ABIs don't have constructor variants.  Make sure that base and
1979   // complete constructors get mangled the same.
1980   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1981     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1982       CXXCtorType OrigCtorType = GD.getCtorType();
1983       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1984       if (OrigCtorType == Ctor_Base)
1985         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1986     }
1987   }
1988 
1989   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1990   // static device variable depends on whether the variable is referenced by
1991   // a host or device host function. Therefore the mangled name cannot be
1992   // cached.
1993   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1994     auto FoundName = MangledDeclNames.find(CanonicalGD);
1995     if (FoundName != MangledDeclNames.end())
1996       return FoundName->second;
1997   }
1998 
1999   // Keep the first result in the case of a mangling collision.
2000   const auto *ND = cast<NamedDecl>(GD.getDecl());
2001   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2002 
2003   // Ensure either we have different ABIs between host and device compilations,
2004   // says host compilation following MSVC ABI but device compilation follows
2005   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2006   // mangling should be the same after name stubbing. The later checking is
2007   // very important as the device kernel name being mangled in host-compilation
2008   // is used to resolve the device binaries to be executed. Inconsistent naming
2009   // result in undefined behavior. Even though we cannot check that naming
2010   // directly between host- and device-compilations, the host- and
2011   // device-mangling in host compilation could help catching certain ones.
2012   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2013          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2014          (getContext().getAuxTargetInfo() &&
2015           (getContext().getAuxTargetInfo()->getCXXABI() !=
2016            getContext().getTargetInfo().getCXXABI())) ||
2017          getCUDARuntime().getDeviceSideName(ND) ==
2018              getMangledNameImpl(
2019                  *this,
2020                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2021                  ND));
2022 
2023   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2024   return MangledDeclNames[CanonicalGD] = Result.first->first();
2025 }
2026 
2027 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2028                                              const BlockDecl *BD) {
2029   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2030   const Decl *D = GD.getDecl();
2031 
2032   SmallString<256> Buffer;
2033   llvm::raw_svector_ostream Out(Buffer);
2034   if (!D)
2035     MangleCtx.mangleGlobalBlock(BD,
2036       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2037   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2038     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2039   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2040     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2041   else
2042     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2043 
2044   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2045   return Result.first->first();
2046 }
2047 
2048 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2049   auto it = MangledDeclNames.begin();
2050   while (it != MangledDeclNames.end()) {
2051     if (it->second == Name)
2052       return it->first;
2053     it++;
2054   }
2055   return GlobalDecl();
2056 }
2057 
2058 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2059   return getModule().getNamedValue(Name);
2060 }
2061 
2062 /// AddGlobalCtor - Add a function to the list that will be called before
2063 /// main() runs.
2064 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2065                                   unsigned LexOrder,
2066                                   llvm::Constant *AssociatedData) {
2067   // FIXME: Type coercion of void()* types.
2068   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2069 }
2070 
2071 /// AddGlobalDtor - Add a function to the list that will be called
2072 /// when the module is unloaded.
2073 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2074                                   bool IsDtorAttrFunc) {
2075   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2076       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2077     DtorsUsingAtExit[Priority].push_back(Dtor);
2078     return;
2079   }
2080 
2081   // FIXME: Type coercion of void()* types.
2082   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2083 }
2084 
2085 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2086   if (Fns.empty()) return;
2087 
2088   // Ctor function type is void()*.
2089   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2090   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2091       TheModule.getDataLayout().getProgramAddressSpace());
2092 
2093   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2094   llvm::StructType *CtorStructTy = llvm::StructType::get(
2095       Int32Ty, CtorPFTy, VoidPtrTy);
2096 
2097   // Construct the constructor and destructor arrays.
2098   ConstantInitBuilder builder(*this);
2099   auto ctors = builder.beginArray(CtorStructTy);
2100   for (const auto &I : Fns) {
2101     auto ctor = ctors.beginStruct(CtorStructTy);
2102     ctor.addInt(Int32Ty, I.Priority);
2103     ctor.add(I.Initializer);
2104     if (I.AssociatedData)
2105       ctor.add(I.AssociatedData);
2106     else
2107       ctor.addNullPointer(VoidPtrTy);
2108     ctor.finishAndAddTo(ctors);
2109   }
2110 
2111   auto list =
2112     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2113                                 /*constant*/ false,
2114                                 llvm::GlobalValue::AppendingLinkage);
2115 
2116   // The LTO linker doesn't seem to like it when we set an alignment
2117   // on appending variables.  Take it off as a workaround.
2118   list->setAlignment(std::nullopt);
2119 
2120   Fns.clear();
2121 }
2122 
2123 llvm::GlobalValue::LinkageTypes
2124 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2125   const auto *D = cast<FunctionDecl>(GD.getDecl());
2126 
2127   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2128 
2129   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2130     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2131 
2132   return getLLVMLinkageForDeclarator(D, Linkage);
2133 }
2134 
2135 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2136   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2137   if (!MDS) return nullptr;
2138 
2139   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2140 }
2141 
2142 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2143   if (auto *FnType = T->getAs<FunctionProtoType>())
2144     T = getContext().getFunctionType(
2145         FnType->getReturnType(), FnType->getParamTypes(),
2146         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2147 
2148   std::string OutName;
2149   llvm::raw_string_ostream Out(OutName);
2150   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2151       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2152 
2153   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2154     Out << ".normalized";
2155 
2156   return llvm::ConstantInt::get(Int32Ty,
2157                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2158 }
2159 
2160 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2161                                               const CGFunctionInfo &Info,
2162                                               llvm::Function *F, bool IsThunk) {
2163   unsigned CallingConv;
2164   llvm::AttributeList PAL;
2165   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2166                          /*AttrOnCallSite=*/false, IsThunk);
2167   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2168       getTarget().getTriple().isWindowsArm64EC()) {
2169     SourceLocation Loc;
2170     if (const Decl *D = GD.getDecl())
2171       Loc = D->getLocation();
2172 
2173     Error(Loc, "__vectorcall calling convention is not currently supported");
2174   }
2175   F->setAttributes(PAL);
2176   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2177 }
2178 
2179 static void removeImageAccessQualifier(std::string& TyName) {
2180   std::string ReadOnlyQual("__read_only");
2181   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2182   if (ReadOnlyPos != std::string::npos)
2183     // "+ 1" for the space after access qualifier.
2184     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2185   else {
2186     std::string WriteOnlyQual("__write_only");
2187     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2188     if (WriteOnlyPos != std::string::npos)
2189       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2190     else {
2191       std::string ReadWriteQual("__read_write");
2192       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2193       if (ReadWritePos != std::string::npos)
2194         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2195     }
2196   }
2197 }
2198 
2199 // Returns the address space id that should be produced to the
2200 // kernel_arg_addr_space metadata. This is always fixed to the ids
2201 // as specified in the SPIR 2.0 specification in order to differentiate
2202 // for example in clGetKernelArgInfo() implementation between the address
2203 // spaces with targets without unique mapping to the OpenCL address spaces
2204 // (basically all single AS CPUs).
2205 static unsigned ArgInfoAddressSpace(LangAS AS) {
2206   switch (AS) {
2207   case LangAS::opencl_global:
2208     return 1;
2209   case LangAS::opencl_constant:
2210     return 2;
2211   case LangAS::opencl_local:
2212     return 3;
2213   case LangAS::opencl_generic:
2214     return 4; // Not in SPIR 2.0 specs.
2215   case LangAS::opencl_global_device:
2216     return 5;
2217   case LangAS::opencl_global_host:
2218     return 6;
2219   default:
2220     return 0; // Assume private.
2221   }
2222 }
2223 
2224 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2225                                          const FunctionDecl *FD,
2226                                          CodeGenFunction *CGF) {
2227   assert(((FD && CGF) || (!FD && !CGF)) &&
2228          "Incorrect use - FD and CGF should either be both null or not!");
2229   // Create MDNodes that represent the kernel arg metadata.
2230   // Each MDNode is a list in the form of "key", N number of values which is
2231   // the same number of values as their are kernel arguments.
2232 
2233   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2234 
2235   // MDNode for the kernel argument address space qualifiers.
2236   SmallVector<llvm::Metadata *, 8> addressQuals;
2237 
2238   // MDNode for the kernel argument access qualifiers (images only).
2239   SmallVector<llvm::Metadata *, 8> accessQuals;
2240 
2241   // MDNode for the kernel argument type names.
2242   SmallVector<llvm::Metadata *, 8> argTypeNames;
2243 
2244   // MDNode for the kernel argument base type names.
2245   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2246 
2247   // MDNode for the kernel argument type qualifiers.
2248   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2249 
2250   // MDNode for the kernel argument names.
2251   SmallVector<llvm::Metadata *, 8> argNames;
2252 
2253   if (FD && CGF)
2254     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2255       const ParmVarDecl *parm = FD->getParamDecl(i);
2256       // Get argument name.
2257       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2258 
2259       if (!getLangOpts().OpenCL)
2260         continue;
2261       QualType ty = parm->getType();
2262       std::string typeQuals;
2263 
2264       // Get image and pipe access qualifier:
2265       if (ty->isImageType() || ty->isPipeType()) {
2266         const Decl *PDecl = parm;
2267         if (const auto *TD = ty->getAs<TypedefType>())
2268           PDecl = TD->getDecl();
2269         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2270         if (A && A->isWriteOnly())
2271           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2272         else if (A && A->isReadWrite())
2273           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2274         else
2275           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2276       } else
2277         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2278 
2279       auto getTypeSpelling = [&](QualType Ty) {
2280         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2281 
2282         if (Ty.isCanonical()) {
2283           StringRef typeNameRef = typeName;
2284           // Turn "unsigned type" to "utype"
2285           if (typeNameRef.consume_front("unsigned "))
2286             return std::string("u") + typeNameRef.str();
2287           if (typeNameRef.consume_front("signed "))
2288             return typeNameRef.str();
2289         }
2290 
2291         return typeName;
2292       };
2293 
2294       if (ty->isPointerType()) {
2295         QualType pointeeTy = ty->getPointeeType();
2296 
2297         // Get address qualifier.
2298         addressQuals.push_back(
2299             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2300                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2301 
2302         // Get argument type name.
2303         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2304         std::string baseTypeName =
2305             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2306         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2307         argBaseTypeNames.push_back(
2308             llvm::MDString::get(VMContext, baseTypeName));
2309 
2310         // Get argument type qualifiers:
2311         if (ty.isRestrictQualified())
2312           typeQuals = "restrict";
2313         if (pointeeTy.isConstQualified() ||
2314             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2315           typeQuals += typeQuals.empty() ? "const" : " const";
2316         if (pointeeTy.isVolatileQualified())
2317           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2318       } else {
2319         uint32_t AddrSpc = 0;
2320         bool isPipe = ty->isPipeType();
2321         if (ty->isImageType() || isPipe)
2322           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2323 
2324         addressQuals.push_back(
2325             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2326 
2327         // Get argument type name.
2328         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2329         std::string typeName = getTypeSpelling(ty);
2330         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2331 
2332         // Remove access qualifiers on images
2333         // (as they are inseparable from type in clang implementation,
2334         // but OpenCL spec provides a special query to get access qualifier
2335         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2336         if (ty->isImageType()) {
2337           removeImageAccessQualifier(typeName);
2338           removeImageAccessQualifier(baseTypeName);
2339         }
2340 
2341         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2342         argBaseTypeNames.push_back(
2343             llvm::MDString::get(VMContext, baseTypeName));
2344 
2345         if (isPipe)
2346           typeQuals = "pipe";
2347       }
2348       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2349     }
2350 
2351   if (getLangOpts().OpenCL) {
2352     Fn->setMetadata("kernel_arg_addr_space",
2353                     llvm::MDNode::get(VMContext, addressQuals));
2354     Fn->setMetadata("kernel_arg_access_qual",
2355                     llvm::MDNode::get(VMContext, accessQuals));
2356     Fn->setMetadata("kernel_arg_type",
2357                     llvm::MDNode::get(VMContext, argTypeNames));
2358     Fn->setMetadata("kernel_arg_base_type",
2359                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2360     Fn->setMetadata("kernel_arg_type_qual",
2361                     llvm::MDNode::get(VMContext, argTypeQuals));
2362   }
2363   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2364       getCodeGenOpts().HIPSaveKernelArgName)
2365     Fn->setMetadata("kernel_arg_name",
2366                     llvm::MDNode::get(VMContext, argNames));
2367 }
2368 
2369 /// Determines whether the language options require us to model
2370 /// unwind exceptions.  We treat -fexceptions as mandating this
2371 /// except under the fragile ObjC ABI with only ObjC exceptions
2372 /// enabled.  This means, for example, that C with -fexceptions
2373 /// enables this.
2374 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2375   // If exceptions are completely disabled, obviously this is false.
2376   if (!LangOpts.Exceptions) return false;
2377 
2378   // If C++ exceptions are enabled, this is true.
2379   if (LangOpts.CXXExceptions) return true;
2380 
2381   // If ObjC exceptions are enabled, this depends on the ABI.
2382   if (LangOpts.ObjCExceptions) {
2383     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2384   }
2385 
2386   return true;
2387 }
2388 
2389 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2390                                                       const CXXMethodDecl *MD) {
2391   // Check that the type metadata can ever actually be used by a call.
2392   if (!CGM.getCodeGenOpts().LTOUnit ||
2393       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2394     return false;
2395 
2396   // Only functions whose address can be taken with a member function pointer
2397   // need this sort of type metadata.
2398   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2399          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2400 }
2401 
2402 SmallVector<const CXXRecordDecl *, 0>
2403 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2404   llvm::SetVector<const CXXRecordDecl *> MostBases;
2405 
2406   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2407   CollectMostBases = [&](const CXXRecordDecl *RD) {
2408     if (RD->getNumBases() == 0)
2409       MostBases.insert(RD);
2410     for (const CXXBaseSpecifier &B : RD->bases())
2411       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2412   };
2413   CollectMostBases(RD);
2414   return MostBases.takeVector();
2415 }
2416 
2417 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2418                                                            llvm::Function *F) {
2419   llvm::AttrBuilder B(F->getContext());
2420 
2421   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2422     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2423 
2424   if (CodeGenOpts.StackClashProtector)
2425     B.addAttribute("probe-stack", "inline-asm");
2426 
2427   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2428     B.addAttribute("stack-probe-size",
2429                    std::to_string(CodeGenOpts.StackProbeSize));
2430 
2431   if (!hasUnwindExceptions(LangOpts))
2432     B.addAttribute(llvm::Attribute::NoUnwind);
2433 
2434   if (D && D->hasAttr<NoStackProtectorAttr>())
2435     ; // Do nothing.
2436   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2437            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2438     B.addAttribute(llvm::Attribute::StackProtectStrong);
2439   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2440     B.addAttribute(llvm::Attribute::StackProtect);
2441   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2442     B.addAttribute(llvm::Attribute::StackProtectStrong);
2443   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2444     B.addAttribute(llvm::Attribute::StackProtectReq);
2445 
2446   if (!D) {
2447     // If we don't have a declaration to control inlining, the function isn't
2448     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2449     // disabled, mark the function as noinline.
2450     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2451         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2452       B.addAttribute(llvm::Attribute::NoInline);
2453 
2454     F->addFnAttrs(B);
2455     return;
2456   }
2457 
2458   // Handle SME attributes that apply to function definitions,
2459   // rather than to function prototypes.
2460   if (D->hasAttr<ArmLocallyStreamingAttr>())
2461     B.addAttribute("aarch64_pstate_sm_body");
2462 
2463   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2464     if (Attr->isNewZA())
2465       B.addAttribute("aarch64_new_za");
2466     if (Attr->isNewZT0())
2467       B.addAttribute("aarch64_new_zt0");
2468   }
2469 
2470   // Track whether we need to add the optnone LLVM attribute,
2471   // starting with the default for this optimization level.
2472   bool ShouldAddOptNone =
2473       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2474   // We can't add optnone in the following cases, it won't pass the verifier.
2475   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2476   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2477 
2478   // Add optnone, but do so only if the function isn't always_inline.
2479   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2480       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2481     B.addAttribute(llvm::Attribute::OptimizeNone);
2482 
2483     // OptimizeNone implies noinline; we should not be inlining such functions.
2484     B.addAttribute(llvm::Attribute::NoInline);
2485 
2486     // We still need to handle naked functions even though optnone subsumes
2487     // much of their semantics.
2488     if (D->hasAttr<NakedAttr>())
2489       B.addAttribute(llvm::Attribute::Naked);
2490 
2491     // OptimizeNone wins over OptimizeForSize and MinSize.
2492     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2493     F->removeFnAttr(llvm::Attribute::MinSize);
2494   } else if (D->hasAttr<NakedAttr>()) {
2495     // Naked implies noinline: we should not be inlining such functions.
2496     B.addAttribute(llvm::Attribute::Naked);
2497     B.addAttribute(llvm::Attribute::NoInline);
2498   } else if (D->hasAttr<NoDuplicateAttr>()) {
2499     B.addAttribute(llvm::Attribute::NoDuplicate);
2500   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2501     // Add noinline if the function isn't always_inline.
2502     B.addAttribute(llvm::Attribute::NoInline);
2503   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2504              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2505     // (noinline wins over always_inline, and we can't specify both in IR)
2506     B.addAttribute(llvm::Attribute::AlwaysInline);
2507   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2508     // If we're not inlining, then force everything that isn't always_inline to
2509     // carry an explicit noinline attribute.
2510     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2511       B.addAttribute(llvm::Attribute::NoInline);
2512   } else {
2513     // Otherwise, propagate the inline hint attribute and potentially use its
2514     // absence to mark things as noinline.
2515     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2516       // Search function and template pattern redeclarations for inline.
2517       auto CheckForInline = [](const FunctionDecl *FD) {
2518         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2519           return Redecl->isInlineSpecified();
2520         };
2521         if (any_of(FD->redecls(), CheckRedeclForInline))
2522           return true;
2523         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2524         if (!Pattern)
2525           return false;
2526         return any_of(Pattern->redecls(), CheckRedeclForInline);
2527       };
2528       if (CheckForInline(FD)) {
2529         B.addAttribute(llvm::Attribute::InlineHint);
2530       } else if (CodeGenOpts.getInlining() ==
2531                      CodeGenOptions::OnlyHintInlining &&
2532                  !FD->isInlined() &&
2533                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2534         B.addAttribute(llvm::Attribute::NoInline);
2535       }
2536     }
2537   }
2538 
2539   // Add other optimization related attributes if we are optimizing this
2540   // function.
2541   if (!D->hasAttr<OptimizeNoneAttr>()) {
2542     if (D->hasAttr<ColdAttr>()) {
2543       if (!ShouldAddOptNone)
2544         B.addAttribute(llvm::Attribute::OptimizeForSize);
2545       B.addAttribute(llvm::Attribute::Cold);
2546     }
2547     if (D->hasAttr<HotAttr>())
2548       B.addAttribute(llvm::Attribute::Hot);
2549     if (D->hasAttr<MinSizeAttr>())
2550       B.addAttribute(llvm::Attribute::MinSize);
2551   }
2552 
2553   F->addFnAttrs(B);
2554 
2555   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2556   if (alignment)
2557     F->setAlignment(llvm::Align(alignment));
2558 
2559   if (!D->hasAttr<AlignedAttr>())
2560     if (LangOpts.FunctionAlignment)
2561       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2562 
2563   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2564   // reserve a bit for differentiating between virtual and non-virtual member
2565   // functions. If the current target's C++ ABI requires this and this is a
2566   // member function, set its alignment accordingly.
2567   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2568     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2569       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2570   }
2571 
2572   // In the cross-dso CFI mode with canonical jump tables, we want !type
2573   // attributes on definitions only.
2574   if (CodeGenOpts.SanitizeCfiCrossDso &&
2575       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2576     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2577       // Skip available_externally functions. They won't be codegen'ed in the
2578       // current module anyway.
2579       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2580         CreateFunctionTypeMetadataForIcall(FD, F);
2581     }
2582   }
2583 
2584   // Emit type metadata on member functions for member function pointer checks.
2585   // These are only ever necessary on definitions; we're guaranteed that the
2586   // definition will be present in the LTO unit as a result of LTO visibility.
2587   auto *MD = dyn_cast<CXXMethodDecl>(D);
2588   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2589     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2590       llvm::Metadata *Id =
2591           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2592               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2593       F->addTypeMetadata(0, Id);
2594     }
2595   }
2596 }
2597 
2598 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2599   const Decl *D = GD.getDecl();
2600   if (isa_and_nonnull<NamedDecl>(D))
2601     setGVProperties(GV, GD);
2602   else
2603     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2604 
2605   if (D && D->hasAttr<UsedAttr>())
2606     addUsedOrCompilerUsedGlobal(GV);
2607 
2608   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2609       VD &&
2610       ((CodeGenOpts.KeepPersistentStorageVariables &&
2611         (VD->getStorageDuration() == SD_Static ||
2612          VD->getStorageDuration() == SD_Thread)) ||
2613        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2614         VD->getType().isConstQualified())))
2615     addUsedOrCompilerUsedGlobal(GV);
2616 }
2617 
2618 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2619                                                 llvm::AttrBuilder &Attrs,
2620                                                 bool SetTargetFeatures) {
2621   // Add target-cpu and target-features attributes to functions. If
2622   // we have a decl for the function and it has a target attribute then
2623   // parse that and add it to the feature set.
2624   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2625   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2626   std::vector<std::string> Features;
2627   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2628   FD = FD ? FD->getMostRecentDecl() : FD;
2629   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2630   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2631   assert((!TD || !TV) && "both target_version and target specified");
2632   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2633   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2634   bool AddedAttr = false;
2635   if (TD || TV || SD || TC) {
2636     llvm::StringMap<bool> FeatureMap;
2637     getContext().getFunctionFeatureMap(FeatureMap, GD);
2638 
2639     // Produce the canonical string for this set of features.
2640     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2641       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2642 
2643     // Now add the target-cpu and target-features to the function.
2644     // While we populated the feature map above, we still need to
2645     // get and parse the target attribute so we can get the cpu for
2646     // the function.
2647     if (TD) {
2648       ParsedTargetAttr ParsedAttr =
2649           Target.parseTargetAttr(TD->getFeaturesStr());
2650       if (!ParsedAttr.CPU.empty() &&
2651           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2652         TargetCPU = ParsedAttr.CPU;
2653         TuneCPU = ""; // Clear the tune CPU.
2654       }
2655       if (!ParsedAttr.Tune.empty() &&
2656           getTarget().isValidCPUName(ParsedAttr.Tune))
2657         TuneCPU = ParsedAttr.Tune;
2658     }
2659 
2660     if (SD) {
2661       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2662       // favor this processor.
2663       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2664     }
2665   } else {
2666     // Otherwise just add the existing target cpu and target features to the
2667     // function.
2668     Features = getTarget().getTargetOpts().Features;
2669   }
2670 
2671   if (!TargetCPU.empty()) {
2672     Attrs.addAttribute("target-cpu", TargetCPU);
2673     AddedAttr = true;
2674   }
2675   if (!TuneCPU.empty()) {
2676     Attrs.addAttribute("tune-cpu", TuneCPU);
2677     AddedAttr = true;
2678   }
2679   if (!Features.empty() && SetTargetFeatures) {
2680     llvm::erase_if(Features, [&](const std::string& F) {
2681        return getTarget().isReadOnlyFeature(F.substr(1));
2682     });
2683     llvm::sort(Features);
2684     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2685     AddedAttr = true;
2686   }
2687 
2688   return AddedAttr;
2689 }
2690 
2691 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2692                                           llvm::GlobalObject *GO) {
2693   const Decl *D = GD.getDecl();
2694   SetCommonAttributes(GD, GO);
2695 
2696   if (D) {
2697     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2698       if (D->hasAttr<RetainAttr>())
2699         addUsedGlobal(GV);
2700       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2701         GV->addAttribute("bss-section", SA->getName());
2702       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2703         GV->addAttribute("data-section", SA->getName());
2704       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2705         GV->addAttribute("rodata-section", SA->getName());
2706       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2707         GV->addAttribute("relro-section", SA->getName());
2708     }
2709 
2710     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2711       if (D->hasAttr<RetainAttr>())
2712         addUsedGlobal(F);
2713       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2714         if (!D->getAttr<SectionAttr>())
2715           F->setSection(SA->getName());
2716 
2717       llvm::AttrBuilder Attrs(F->getContext());
2718       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2719         // We know that GetCPUAndFeaturesAttributes will always have the
2720         // newest set, since it has the newest possible FunctionDecl, so the
2721         // new ones should replace the old.
2722         llvm::AttributeMask RemoveAttrs;
2723         RemoveAttrs.addAttribute("target-cpu");
2724         RemoveAttrs.addAttribute("target-features");
2725         RemoveAttrs.addAttribute("tune-cpu");
2726         F->removeFnAttrs(RemoveAttrs);
2727         F->addFnAttrs(Attrs);
2728       }
2729     }
2730 
2731     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2732       GO->setSection(CSA->getName());
2733     else if (const auto *SA = D->getAttr<SectionAttr>())
2734       GO->setSection(SA->getName());
2735   }
2736 
2737   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2738 }
2739 
2740 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2741                                                   llvm::Function *F,
2742                                                   const CGFunctionInfo &FI) {
2743   const Decl *D = GD.getDecl();
2744   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2745   SetLLVMFunctionAttributesForDefinition(D, F);
2746 
2747   F->setLinkage(llvm::Function::InternalLinkage);
2748 
2749   setNonAliasAttributes(GD, F);
2750 }
2751 
2752 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2753   // Set linkage and visibility in case we never see a definition.
2754   LinkageInfo LV = ND->getLinkageAndVisibility();
2755   // Don't set internal linkage on declarations.
2756   // "extern_weak" is overloaded in LLVM; we probably should have
2757   // separate linkage types for this.
2758   if (isExternallyVisible(LV.getLinkage()) &&
2759       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2760     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2761 }
2762 
2763 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2764                                                        llvm::Function *F) {
2765   // Only if we are checking indirect calls.
2766   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2767     return;
2768 
2769   // Non-static class methods are handled via vtable or member function pointer
2770   // checks elsewhere.
2771   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2772     return;
2773 
2774   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2775   F->addTypeMetadata(0, MD);
2776   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2777 
2778   // Emit a hash-based bit set entry for cross-DSO calls.
2779   if (CodeGenOpts.SanitizeCfiCrossDso)
2780     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2781       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2782 }
2783 
2784 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2785   llvm::LLVMContext &Ctx = F->getContext();
2786   llvm::MDBuilder MDB(Ctx);
2787   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2788                  llvm::MDNode::get(
2789                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2790 }
2791 
2792 static bool allowKCFIIdentifier(StringRef Name) {
2793   // KCFI type identifier constants are only necessary for external assembly
2794   // functions, which means it's safe to skip unusual names. Subset of
2795   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2796   return llvm::all_of(Name, [](const char &C) {
2797     return llvm::isAlnum(C) || C == '_' || C == '.';
2798   });
2799 }
2800 
2801 void CodeGenModule::finalizeKCFITypes() {
2802   llvm::Module &M = getModule();
2803   for (auto &F : M.functions()) {
2804     // Remove KCFI type metadata from non-address-taken local functions.
2805     bool AddressTaken = F.hasAddressTaken();
2806     if (!AddressTaken && F.hasLocalLinkage())
2807       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2808 
2809     // Generate a constant with the expected KCFI type identifier for all
2810     // address-taken function declarations to support annotating indirectly
2811     // called assembly functions.
2812     if (!AddressTaken || !F.isDeclaration())
2813       continue;
2814 
2815     const llvm::ConstantInt *Type;
2816     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2817       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2818     else
2819       continue;
2820 
2821     StringRef Name = F.getName();
2822     if (!allowKCFIIdentifier(Name))
2823       continue;
2824 
2825     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2826                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2827                           .str();
2828     M.appendModuleInlineAsm(Asm);
2829   }
2830 }
2831 
2832 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2833                                           bool IsIncompleteFunction,
2834                                           bool IsThunk) {
2835 
2836   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2837     // If this is an intrinsic function, set the function's attributes
2838     // to the intrinsic's attributes.
2839     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2840     return;
2841   }
2842 
2843   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2844 
2845   if (!IsIncompleteFunction)
2846     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2847                               IsThunk);
2848 
2849   // Add the Returned attribute for "this", except for iOS 5 and earlier
2850   // where substantial code, including the libstdc++ dylib, was compiled with
2851   // GCC and does not actually return "this".
2852   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2853       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2854     assert(!F->arg_empty() &&
2855            F->arg_begin()->getType()
2856              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2857            "unexpected this return");
2858     F->addParamAttr(0, llvm::Attribute::Returned);
2859   }
2860 
2861   // Only a few attributes are set on declarations; these may later be
2862   // overridden by a definition.
2863 
2864   setLinkageForGV(F, FD);
2865   setGVProperties(F, FD);
2866 
2867   // Setup target-specific attributes.
2868   if (!IsIncompleteFunction && F->isDeclaration())
2869     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2870 
2871   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2872     F->setSection(CSA->getName());
2873   else if (const auto *SA = FD->getAttr<SectionAttr>())
2874      F->setSection(SA->getName());
2875 
2876   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2877     if (EA->isError())
2878       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2879     else if (EA->isWarning())
2880       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2881   }
2882 
2883   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2884   if (FD->isInlineBuiltinDeclaration()) {
2885     const FunctionDecl *FDBody;
2886     bool HasBody = FD->hasBody(FDBody);
2887     (void)HasBody;
2888     assert(HasBody && "Inline builtin declarations should always have an "
2889                       "available body!");
2890     if (shouldEmitFunction(FDBody))
2891       F->addFnAttr(llvm::Attribute::NoBuiltin);
2892   }
2893 
2894   if (FD->isReplaceableGlobalAllocationFunction()) {
2895     // A replaceable global allocation function does not act like a builtin by
2896     // default, only if it is invoked by a new-expression or delete-expression.
2897     F->addFnAttr(llvm::Attribute::NoBuiltin);
2898   }
2899 
2900   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2901     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2902   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2903     if (MD->isVirtual())
2904       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2905 
2906   // Don't emit entries for function declarations in the cross-DSO mode. This
2907   // is handled with better precision by the receiving DSO. But if jump tables
2908   // are non-canonical then we need type metadata in order to produce the local
2909   // jump table.
2910   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2911       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2912     CreateFunctionTypeMetadataForIcall(FD, F);
2913 
2914   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2915     setKCFIType(FD, F);
2916 
2917   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2918     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2919 
2920   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2921     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2922 
2923   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2924     // Annotate the callback behavior as metadata:
2925     //  - The callback callee (as argument number).
2926     //  - The callback payloads (as argument numbers).
2927     llvm::LLVMContext &Ctx = F->getContext();
2928     llvm::MDBuilder MDB(Ctx);
2929 
2930     // The payload indices are all but the first one in the encoding. The first
2931     // identifies the callback callee.
2932     int CalleeIdx = *CB->encoding_begin();
2933     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2934     F->addMetadata(llvm::LLVMContext::MD_callback,
2935                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2936                                                CalleeIdx, PayloadIndices,
2937                                                /* VarArgsArePassed */ false)}));
2938   }
2939 }
2940 
2941 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2942   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2943          "Only globals with definition can force usage.");
2944   LLVMUsed.emplace_back(GV);
2945 }
2946 
2947 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2948   assert(!GV->isDeclaration() &&
2949          "Only globals with definition can force usage.");
2950   LLVMCompilerUsed.emplace_back(GV);
2951 }
2952 
2953 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2954   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2955          "Only globals with definition can force usage.");
2956   if (getTriple().isOSBinFormatELF())
2957     LLVMCompilerUsed.emplace_back(GV);
2958   else
2959     LLVMUsed.emplace_back(GV);
2960 }
2961 
2962 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2963                      std::vector<llvm::WeakTrackingVH> &List) {
2964   // Don't create llvm.used if there is no need.
2965   if (List.empty())
2966     return;
2967 
2968   // Convert List to what ConstantArray needs.
2969   SmallVector<llvm::Constant*, 8> UsedArray;
2970   UsedArray.resize(List.size());
2971   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2972     UsedArray[i] =
2973         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2974             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2975   }
2976 
2977   if (UsedArray.empty())
2978     return;
2979   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2980 
2981   auto *GV = new llvm::GlobalVariable(
2982       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2983       llvm::ConstantArray::get(ATy, UsedArray), Name);
2984 
2985   GV->setSection("llvm.metadata");
2986 }
2987 
2988 void CodeGenModule::emitLLVMUsed() {
2989   emitUsed(*this, "llvm.used", LLVMUsed);
2990   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2991 }
2992 
2993 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2994   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2995   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2996 }
2997 
2998 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2999   llvm::SmallString<32> Opt;
3000   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3001   if (Opt.empty())
3002     return;
3003   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3004   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3005 }
3006 
3007 void CodeGenModule::AddDependentLib(StringRef Lib) {
3008   auto &C = getLLVMContext();
3009   if (getTarget().getTriple().isOSBinFormatELF()) {
3010       ELFDependentLibraries.push_back(
3011         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3012     return;
3013   }
3014 
3015   llvm::SmallString<24> Opt;
3016   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3017   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3018   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3019 }
3020 
3021 /// Add link options implied by the given module, including modules
3022 /// it depends on, using a postorder walk.
3023 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3024                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3025                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3026   // Import this module's parent.
3027   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3028     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3029   }
3030 
3031   // Import this module's dependencies.
3032   for (Module *Import : llvm::reverse(Mod->Imports)) {
3033     if (Visited.insert(Import).second)
3034       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3035   }
3036 
3037   // Add linker options to link against the libraries/frameworks
3038   // described by this module.
3039   llvm::LLVMContext &Context = CGM.getLLVMContext();
3040   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3041 
3042   // For modules that use export_as for linking, use that module
3043   // name instead.
3044   if (Mod->UseExportAsModuleLinkName)
3045     return;
3046 
3047   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3048     // Link against a framework.  Frameworks are currently Darwin only, so we
3049     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3050     if (LL.IsFramework) {
3051       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3052                                  llvm::MDString::get(Context, LL.Library)};
3053 
3054       Metadata.push_back(llvm::MDNode::get(Context, Args));
3055       continue;
3056     }
3057 
3058     // Link against a library.
3059     if (IsELF) {
3060       llvm::Metadata *Args[2] = {
3061           llvm::MDString::get(Context, "lib"),
3062           llvm::MDString::get(Context, LL.Library),
3063       };
3064       Metadata.push_back(llvm::MDNode::get(Context, Args));
3065     } else {
3066       llvm::SmallString<24> Opt;
3067       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3068       auto *OptString = llvm::MDString::get(Context, Opt);
3069       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3070     }
3071   }
3072 }
3073 
3074 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3075   assert(Primary->isNamedModuleUnit() &&
3076          "We should only emit module initializers for named modules.");
3077 
3078   // Emit the initializers in the order that sub-modules appear in the
3079   // source, first Global Module Fragments, if present.
3080   if (auto GMF = Primary->getGlobalModuleFragment()) {
3081     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3082       if (isa<ImportDecl>(D))
3083         continue;
3084       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3085       EmitTopLevelDecl(D);
3086     }
3087   }
3088   // Second any associated with the module, itself.
3089   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3090     // Skip import decls, the inits for those are called explicitly.
3091     if (isa<ImportDecl>(D))
3092       continue;
3093     EmitTopLevelDecl(D);
3094   }
3095   // Third any associated with the Privat eMOdule Fragment, if present.
3096   if (auto PMF = Primary->getPrivateModuleFragment()) {
3097     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3098       // Skip import decls, the inits for those are called explicitly.
3099       if (isa<ImportDecl>(D))
3100         continue;
3101       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3102       EmitTopLevelDecl(D);
3103     }
3104   }
3105 }
3106 
3107 void CodeGenModule::EmitModuleLinkOptions() {
3108   // Collect the set of all of the modules we want to visit to emit link
3109   // options, which is essentially the imported modules and all of their
3110   // non-explicit child modules.
3111   llvm::SetVector<clang::Module *> LinkModules;
3112   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3113   SmallVector<clang::Module *, 16> Stack;
3114 
3115   // Seed the stack with imported modules.
3116   for (Module *M : ImportedModules) {
3117     // Do not add any link flags when an implementation TU of a module imports
3118     // a header of that same module.
3119     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3120         !getLangOpts().isCompilingModule())
3121       continue;
3122     if (Visited.insert(M).second)
3123       Stack.push_back(M);
3124   }
3125 
3126   // Find all of the modules to import, making a little effort to prune
3127   // non-leaf modules.
3128   while (!Stack.empty()) {
3129     clang::Module *Mod = Stack.pop_back_val();
3130 
3131     bool AnyChildren = false;
3132 
3133     // Visit the submodules of this module.
3134     for (const auto &SM : Mod->submodules()) {
3135       // Skip explicit children; they need to be explicitly imported to be
3136       // linked against.
3137       if (SM->IsExplicit)
3138         continue;
3139 
3140       if (Visited.insert(SM).second) {
3141         Stack.push_back(SM);
3142         AnyChildren = true;
3143       }
3144     }
3145 
3146     // We didn't find any children, so add this module to the list of
3147     // modules to link against.
3148     if (!AnyChildren) {
3149       LinkModules.insert(Mod);
3150     }
3151   }
3152 
3153   // Add link options for all of the imported modules in reverse topological
3154   // order.  We don't do anything to try to order import link flags with respect
3155   // to linker options inserted by things like #pragma comment().
3156   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3157   Visited.clear();
3158   for (Module *M : LinkModules)
3159     if (Visited.insert(M).second)
3160       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3161   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3162   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3163 
3164   // Add the linker options metadata flag.
3165   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3166   for (auto *MD : LinkerOptionsMetadata)
3167     NMD->addOperand(MD);
3168 }
3169 
3170 void CodeGenModule::EmitDeferred() {
3171   // Emit deferred declare target declarations.
3172   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3173     getOpenMPRuntime().emitDeferredTargetDecls();
3174 
3175   // Emit code for any potentially referenced deferred decls.  Since a
3176   // previously unused static decl may become used during the generation of code
3177   // for a static function, iterate until no changes are made.
3178 
3179   if (!DeferredVTables.empty()) {
3180     EmitDeferredVTables();
3181 
3182     // Emitting a vtable doesn't directly cause more vtables to
3183     // become deferred, although it can cause functions to be
3184     // emitted that then need those vtables.
3185     assert(DeferredVTables.empty());
3186   }
3187 
3188   // Emit CUDA/HIP static device variables referenced by host code only.
3189   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3190   // needed for further handling.
3191   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3192     llvm::append_range(DeferredDeclsToEmit,
3193                        getContext().CUDADeviceVarODRUsedByHost);
3194 
3195   // Stop if we're out of both deferred vtables and deferred declarations.
3196   if (DeferredDeclsToEmit.empty())
3197     return;
3198 
3199   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3200   // work, it will not interfere with this.
3201   std::vector<GlobalDecl> CurDeclsToEmit;
3202   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3203 
3204   for (GlobalDecl &D : CurDeclsToEmit) {
3205     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3206     // to get GlobalValue with exactly the type we need, not something that
3207     // might had been created for another decl with the same mangled name but
3208     // different type.
3209     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3210         GetAddrOfGlobal(D, ForDefinition));
3211 
3212     // In case of different address spaces, we may still get a cast, even with
3213     // IsForDefinition equal to true. Query mangled names table to get
3214     // GlobalValue.
3215     if (!GV)
3216       GV = GetGlobalValue(getMangledName(D));
3217 
3218     // Make sure GetGlobalValue returned non-null.
3219     assert(GV);
3220 
3221     // Check to see if we've already emitted this.  This is necessary
3222     // for a couple of reasons: first, decls can end up in the
3223     // deferred-decls queue multiple times, and second, decls can end
3224     // up with definitions in unusual ways (e.g. by an extern inline
3225     // function acquiring a strong function redefinition).  Just
3226     // ignore these cases.
3227     if (!GV->isDeclaration())
3228       continue;
3229 
3230     // If this is OpenMP, check if it is legal to emit this global normally.
3231     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3232       continue;
3233 
3234     // Otherwise, emit the definition and move on to the next one.
3235     EmitGlobalDefinition(D, GV);
3236 
3237     // If we found out that we need to emit more decls, do that recursively.
3238     // This has the advantage that the decls are emitted in a DFS and related
3239     // ones are close together, which is convenient for testing.
3240     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3241       EmitDeferred();
3242       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3243     }
3244   }
3245 }
3246 
3247 void CodeGenModule::EmitVTablesOpportunistically() {
3248   // Try to emit external vtables as available_externally if they have emitted
3249   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3250   // is not allowed to create new references to things that need to be emitted
3251   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3252 
3253   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3254          && "Only emit opportunistic vtables with optimizations");
3255 
3256   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3257     assert(getVTables().isVTableExternal(RD) &&
3258            "This queue should only contain external vtables");
3259     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3260       VTables.GenerateClassData(RD);
3261   }
3262   OpportunisticVTables.clear();
3263 }
3264 
3265 void CodeGenModule::EmitGlobalAnnotations() {
3266   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3267     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3268     if (GV)
3269       AddGlobalAnnotations(VD, GV);
3270   }
3271   DeferredAnnotations.clear();
3272 
3273   if (Annotations.empty())
3274     return;
3275 
3276   // Create a new global variable for the ConstantStruct in the Module.
3277   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3278     Annotations[0]->getType(), Annotations.size()), Annotations);
3279   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3280                                       llvm::GlobalValue::AppendingLinkage,
3281                                       Array, "llvm.global.annotations");
3282   gv->setSection(AnnotationSection);
3283 }
3284 
3285 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3286   llvm::Constant *&AStr = AnnotationStrings[Str];
3287   if (AStr)
3288     return AStr;
3289 
3290   // Not found yet, create a new global.
3291   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3292   auto *gv = new llvm::GlobalVariable(
3293       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3294       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3295       ConstGlobalsPtrTy->getAddressSpace());
3296   gv->setSection(AnnotationSection);
3297   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3298   AStr = gv;
3299   return gv;
3300 }
3301 
3302 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3303   SourceManager &SM = getContext().getSourceManager();
3304   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3305   if (PLoc.isValid())
3306     return EmitAnnotationString(PLoc.getFilename());
3307   return EmitAnnotationString(SM.getBufferName(Loc));
3308 }
3309 
3310 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3311   SourceManager &SM = getContext().getSourceManager();
3312   PresumedLoc PLoc = SM.getPresumedLoc(L);
3313   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3314     SM.getExpansionLineNumber(L);
3315   return llvm::ConstantInt::get(Int32Ty, LineNo);
3316 }
3317 
3318 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3319   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3320   if (Exprs.empty())
3321     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3322 
3323   llvm::FoldingSetNodeID ID;
3324   for (Expr *E : Exprs) {
3325     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3326   }
3327   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3328   if (Lookup)
3329     return Lookup;
3330 
3331   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3332   LLVMArgs.reserve(Exprs.size());
3333   ConstantEmitter ConstEmiter(*this);
3334   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3335     const auto *CE = cast<clang::ConstantExpr>(E);
3336     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3337                                     CE->getType());
3338   });
3339   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3340   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3341                                       llvm::GlobalValue::PrivateLinkage, Struct,
3342                                       ".args");
3343   GV->setSection(AnnotationSection);
3344   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3345 
3346   Lookup = GV;
3347   return GV;
3348 }
3349 
3350 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3351                                                 const AnnotateAttr *AA,
3352                                                 SourceLocation L) {
3353   // Get the globals for file name, annotation, and the line number.
3354   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3355                  *UnitGV = EmitAnnotationUnit(L),
3356                  *LineNoCst = EmitAnnotationLineNo(L),
3357                  *Args = EmitAnnotationArgs(AA);
3358 
3359   llvm::Constant *GVInGlobalsAS = GV;
3360   if (GV->getAddressSpace() !=
3361       getDataLayout().getDefaultGlobalsAddressSpace()) {
3362     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3363         GV,
3364         llvm::PointerType::get(
3365             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3366   }
3367 
3368   // Create the ConstantStruct for the global annotation.
3369   llvm::Constant *Fields[] = {
3370       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3371   };
3372   return llvm::ConstantStruct::getAnon(Fields);
3373 }
3374 
3375 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3376                                          llvm::GlobalValue *GV) {
3377   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3378   // Get the struct elements for these annotations.
3379   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3380     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3381 }
3382 
3383 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3384                                        SourceLocation Loc) const {
3385   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3386   // NoSanitize by function name.
3387   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3388     return true;
3389   // NoSanitize by location. Check "mainfile" prefix.
3390   auto &SM = Context.getSourceManager();
3391   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3392   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3393     return true;
3394 
3395   // Check "src" prefix.
3396   if (Loc.isValid())
3397     return NoSanitizeL.containsLocation(Kind, Loc);
3398   // If location is unknown, this may be a compiler-generated function. Assume
3399   // it's located in the main file.
3400   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3401 }
3402 
3403 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3404                                        llvm::GlobalVariable *GV,
3405                                        SourceLocation Loc, QualType Ty,
3406                                        StringRef Category) const {
3407   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3408   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3409     return true;
3410   auto &SM = Context.getSourceManager();
3411   if (NoSanitizeL.containsMainFile(
3412           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3413           Category))
3414     return true;
3415   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3416     return true;
3417 
3418   // Check global type.
3419   if (!Ty.isNull()) {
3420     // Drill down the array types: if global variable of a fixed type is
3421     // not sanitized, we also don't instrument arrays of them.
3422     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3423       Ty = AT->getElementType();
3424     Ty = Ty.getCanonicalType().getUnqualifiedType();
3425     // Only record types (classes, structs etc.) are ignored.
3426     if (Ty->isRecordType()) {
3427       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3428       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3429         return true;
3430     }
3431   }
3432   return false;
3433 }
3434 
3435 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3436                                    StringRef Category) const {
3437   const auto &XRayFilter = getContext().getXRayFilter();
3438   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3439   auto Attr = ImbueAttr::NONE;
3440   if (Loc.isValid())
3441     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3442   if (Attr == ImbueAttr::NONE)
3443     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3444   switch (Attr) {
3445   case ImbueAttr::NONE:
3446     return false;
3447   case ImbueAttr::ALWAYS:
3448     Fn->addFnAttr("function-instrument", "xray-always");
3449     break;
3450   case ImbueAttr::ALWAYS_ARG1:
3451     Fn->addFnAttr("function-instrument", "xray-always");
3452     Fn->addFnAttr("xray-log-args", "1");
3453     break;
3454   case ImbueAttr::NEVER:
3455     Fn->addFnAttr("function-instrument", "xray-never");
3456     break;
3457   }
3458   return true;
3459 }
3460 
3461 ProfileList::ExclusionType
3462 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3463                                               SourceLocation Loc) const {
3464   const auto &ProfileList = getContext().getProfileList();
3465   // If the profile list is empty, then instrument everything.
3466   if (ProfileList.isEmpty())
3467     return ProfileList::Allow;
3468   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3469   // First, check the function name.
3470   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3471     return *V;
3472   // Next, check the source location.
3473   if (Loc.isValid())
3474     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3475       return *V;
3476   // If location is unknown, this may be a compiler-generated function. Assume
3477   // it's located in the main file.
3478   auto &SM = Context.getSourceManager();
3479   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3480     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3481       return *V;
3482   return ProfileList.getDefault(Kind);
3483 }
3484 
3485 ProfileList::ExclusionType
3486 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3487                                                  SourceLocation Loc) const {
3488   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3489   if (V != ProfileList::Allow)
3490     return V;
3491 
3492   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3493   if (NumGroups > 1) {
3494     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3495     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3496       return ProfileList::Skip;
3497   }
3498   return ProfileList::Allow;
3499 }
3500 
3501 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3502   // Never defer when EmitAllDecls is specified.
3503   if (LangOpts.EmitAllDecls)
3504     return true;
3505 
3506   const auto *VD = dyn_cast<VarDecl>(Global);
3507   if (VD &&
3508       ((CodeGenOpts.KeepPersistentStorageVariables &&
3509         (VD->getStorageDuration() == SD_Static ||
3510          VD->getStorageDuration() == SD_Thread)) ||
3511        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3512         VD->getType().isConstQualified())))
3513     return true;
3514 
3515   return getContext().DeclMustBeEmitted(Global);
3516 }
3517 
3518 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3519   // In OpenMP 5.0 variables and function may be marked as
3520   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3521   // that they must be emitted on the host/device. To be sure we need to have
3522   // seen a declare target with an explicit mentioning of the function, we know
3523   // we have if the level of the declare target attribute is -1. Note that we
3524   // check somewhere else if we should emit this at all.
3525   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3526     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3527         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3528     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3529       return false;
3530   }
3531 
3532   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3533     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3534       // Implicit template instantiations may change linkage if they are later
3535       // explicitly instantiated, so they should not be emitted eagerly.
3536       return false;
3537     // Defer until all versions have been semantically checked.
3538     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3539       return false;
3540   }
3541   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3542     if (Context.getInlineVariableDefinitionKind(VD) ==
3543         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3544       // A definition of an inline constexpr static data member may change
3545       // linkage later if it's redeclared outside the class.
3546       return false;
3547     if (CXX20ModuleInits && VD->getOwningModule() &&
3548         !VD->getOwningModule()->isModuleMapModule()) {
3549       // For CXX20, module-owned initializers need to be deferred, since it is
3550       // not known at this point if they will be run for the current module or
3551       // as part of the initializer for an imported one.
3552       return false;
3553     }
3554   }
3555   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3556   // codegen for global variables, because they may be marked as threadprivate.
3557   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3558       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3559       !Global->getType().isConstantStorage(getContext(), false, false) &&
3560       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3561     return false;
3562 
3563   return true;
3564 }
3565 
3566 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3567   StringRef Name = getMangledName(GD);
3568 
3569   // The UUID descriptor should be pointer aligned.
3570   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3571 
3572   // Look for an existing global.
3573   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3574     return ConstantAddress(GV, GV->getValueType(), Alignment);
3575 
3576   ConstantEmitter Emitter(*this);
3577   llvm::Constant *Init;
3578 
3579   APValue &V = GD->getAsAPValue();
3580   if (!V.isAbsent()) {
3581     // If possible, emit the APValue version of the initializer. In particular,
3582     // this gets the type of the constant right.
3583     Init = Emitter.emitForInitializer(
3584         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3585   } else {
3586     // As a fallback, directly construct the constant.
3587     // FIXME: This may get padding wrong under esoteric struct layout rules.
3588     // MSVC appears to create a complete type 'struct __s_GUID' that it
3589     // presumably uses to represent these constants.
3590     MSGuidDecl::Parts Parts = GD->getParts();
3591     llvm::Constant *Fields[4] = {
3592         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3593         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3594         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3595         llvm::ConstantDataArray::getRaw(
3596             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3597             Int8Ty)};
3598     Init = llvm::ConstantStruct::getAnon(Fields);
3599   }
3600 
3601   auto *GV = new llvm::GlobalVariable(
3602       getModule(), Init->getType(),
3603       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3604   if (supportsCOMDAT())
3605     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3606   setDSOLocal(GV);
3607 
3608   if (!V.isAbsent()) {
3609     Emitter.finalize(GV);
3610     return ConstantAddress(GV, GV->getValueType(), Alignment);
3611   }
3612 
3613   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3614   return ConstantAddress(GV, Ty, Alignment);
3615 }
3616 
3617 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3618     const UnnamedGlobalConstantDecl *GCD) {
3619   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3620 
3621   llvm::GlobalVariable **Entry = nullptr;
3622   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3623   if (*Entry)
3624     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3625 
3626   ConstantEmitter Emitter(*this);
3627   llvm::Constant *Init;
3628 
3629   const APValue &V = GCD->getValue();
3630 
3631   assert(!V.isAbsent());
3632   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3633                                     GCD->getType());
3634 
3635   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3636                                       /*isConstant=*/true,
3637                                       llvm::GlobalValue::PrivateLinkage, Init,
3638                                       ".constant");
3639   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3640   GV->setAlignment(Alignment.getAsAlign());
3641 
3642   Emitter.finalize(GV);
3643 
3644   *Entry = GV;
3645   return ConstantAddress(GV, GV->getValueType(), Alignment);
3646 }
3647 
3648 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3649     const TemplateParamObjectDecl *TPO) {
3650   StringRef Name = getMangledName(TPO);
3651   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3652 
3653   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3654     return ConstantAddress(GV, GV->getValueType(), Alignment);
3655 
3656   ConstantEmitter Emitter(*this);
3657   llvm::Constant *Init = Emitter.emitForInitializer(
3658         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3659 
3660   if (!Init) {
3661     ErrorUnsupported(TPO, "template parameter object");
3662     return ConstantAddress::invalid();
3663   }
3664 
3665   llvm::GlobalValue::LinkageTypes Linkage =
3666       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3667           ? llvm::GlobalValue::LinkOnceODRLinkage
3668           : llvm::GlobalValue::InternalLinkage;
3669   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3670                                       /*isConstant=*/true, Linkage, Init, Name);
3671   setGVProperties(GV, TPO);
3672   if (supportsCOMDAT())
3673     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3674   Emitter.finalize(GV);
3675 
3676     return ConstantAddress(GV, GV->getValueType(), Alignment);
3677 }
3678 
3679 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3680   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3681   assert(AA && "No alias?");
3682 
3683   CharUnits Alignment = getContext().getDeclAlign(VD);
3684   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3685 
3686   // See if there is already something with the target's name in the module.
3687   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3688   if (Entry)
3689     return ConstantAddress(Entry, DeclTy, Alignment);
3690 
3691   llvm::Constant *Aliasee;
3692   if (isa<llvm::FunctionType>(DeclTy))
3693     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3694                                       GlobalDecl(cast<FunctionDecl>(VD)),
3695                                       /*ForVTable=*/false);
3696   else
3697     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3698                                     nullptr);
3699 
3700   auto *F = cast<llvm::GlobalValue>(Aliasee);
3701   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3702   WeakRefReferences.insert(F);
3703 
3704   return ConstantAddress(Aliasee, DeclTy, Alignment);
3705 }
3706 
3707 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3708   if (!D)
3709     return false;
3710   if (auto *A = D->getAttr<AttrT>())
3711     return A->isImplicit();
3712   return D->isImplicit();
3713 }
3714 
3715 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3716   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3717   // We need to emit host-side 'shadows' for all global
3718   // device-side variables because the CUDA runtime needs their
3719   // size and host-side address in order to provide access to
3720   // their device-side incarnations.
3721   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3722          Global->hasAttr<CUDAConstantAttr>() ||
3723          Global->hasAttr<CUDASharedAttr>() ||
3724          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3725          Global->getType()->isCUDADeviceBuiltinTextureType();
3726 }
3727 
3728 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3729   const auto *Global = cast<ValueDecl>(GD.getDecl());
3730 
3731   // Weak references don't produce any output by themselves.
3732   if (Global->hasAttr<WeakRefAttr>())
3733     return;
3734 
3735   // If this is an alias definition (which otherwise looks like a declaration)
3736   // emit it now.
3737   if (Global->hasAttr<AliasAttr>())
3738     return EmitAliasDefinition(GD);
3739 
3740   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3741   if (Global->hasAttr<IFuncAttr>())
3742     return emitIFuncDefinition(GD);
3743 
3744   // If this is a cpu_dispatch multiversion function, emit the resolver.
3745   if (Global->hasAttr<CPUDispatchAttr>())
3746     return emitCPUDispatchDefinition(GD);
3747 
3748   // If this is CUDA, be selective about which declarations we emit.
3749   // Non-constexpr non-lambda implicit host device functions are not emitted
3750   // unless they are used on device side.
3751   if (LangOpts.CUDA) {
3752     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3753            "Expected Variable or Function");
3754     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3755       if (!shouldEmitCUDAGlobalVar(VD))
3756         return;
3757     } else if (LangOpts.CUDAIsDevice) {
3758       const auto *FD = dyn_cast<FunctionDecl>(Global);
3759       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3760            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3761             hasImplicitAttr<CUDAHostAttr>(FD) &&
3762             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3763             !isLambdaCallOperator(FD) &&
3764             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3765           !Global->hasAttr<CUDAGlobalAttr>() &&
3766           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3767             !Global->hasAttr<CUDAHostAttr>()))
3768         return;
3769       // Device-only functions are the only things we skip.
3770     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3771                Global->hasAttr<CUDADeviceAttr>())
3772       return;
3773   }
3774 
3775   if (LangOpts.OpenMP) {
3776     // If this is OpenMP, check if it is legal to emit this global normally.
3777     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3778       return;
3779     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3780       if (MustBeEmitted(Global))
3781         EmitOMPDeclareReduction(DRD);
3782       return;
3783     }
3784     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3785       if (MustBeEmitted(Global))
3786         EmitOMPDeclareMapper(DMD);
3787       return;
3788     }
3789   }
3790 
3791   // Ignore declarations, they will be emitted on their first use.
3792   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3793     // Update deferred annotations with the latest declaration if the function
3794     // function was already used or defined.
3795     if (FD->hasAttr<AnnotateAttr>()) {
3796       StringRef MangledName = getMangledName(GD);
3797       if (GetGlobalValue(MangledName))
3798         DeferredAnnotations[MangledName] = FD;
3799     }
3800 
3801     // Forward declarations are emitted lazily on first use.
3802     if (!FD->doesThisDeclarationHaveABody()) {
3803       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3804           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3805         return;
3806 
3807       StringRef MangledName = getMangledName(GD);
3808 
3809       // Compute the function info and LLVM type.
3810       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3811       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3812 
3813       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3814                               /*DontDefer=*/false);
3815       return;
3816     }
3817   } else {
3818     const auto *VD = cast<VarDecl>(Global);
3819     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3820     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3821         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3822       if (LangOpts.OpenMP) {
3823         // Emit declaration of the must-be-emitted declare target variable.
3824         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3825                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3826 
3827           // If this variable has external storage and doesn't require special
3828           // link handling we defer to its canonical definition.
3829           if (VD->hasExternalStorage() &&
3830               Res != OMPDeclareTargetDeclAttr::MT_Link)
3831             return;
3832 
3833           bool UnifiedMemoryEnabled =
3834               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3835           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3836                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3837               !UnifiedMemoryEnabled) {
3838             (void)GetAddrOfGlobalVar(VD);
3839           } else {
3840             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3841                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3842                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3843                      UnifiedMemoryEnabled)) &&
3844                    "Link clause or to clause with unified memory expected.");
3845             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3846           }
3847 
3848           return;
3849         }
3850       }
3851       // If this declaration may have caused an inline variable definition to
3852       // change linkage, make sure that it's emitted.
3853       if (Context.getInlineVariableDefinitionKind(VD) ==
3854           ASTContext::InlineVariableDefinitionKind::Strong)
3855         GetAddrOfGlobalVar(VD);
3856       return;
3857     }
3858   }
3859 
3860   // Defer code generation to first use when possible, e.g. if this is an inline
3861   // function. If the global must always be emitted, do it eagerly if possible
3862   // to benefit from cache locality.
3863   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3864     // Emit the definition if it can't be deferred.
3865     EmitGlobalDefinition(GD);
3866     addEmittedDeferredDecl(GD);
3867     return;
3868   }
3869 
3870   // If we're deferring emission of a C++ variable with an
3871   // initializer, remember the order in which it appeared in the file.
3872   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3873       cast<VarDecl>(Global)->hasInit()) {
3874     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3875     CXXGlobalInits.push_back(nullptr);
3876   }
3877 
3878   StringRef MangledName = getMangledName(GD);
3879   if (GetGlobalValue(MangledName) != nullptr) {
3880     // The value has already been used and should therefore be emitted.
3881     addDeferredDeclToEmit(GD);
3882   } else if (MustBeEmitted(Global)) {
3883     // The value must be emitted, but cannot be emitted eagerly.
3884     assert(!MayBeEmittedEagerly(Global));
3885     addDeferredDeclToEmit(GD);
3886   } else {
3887     // Otherwise, remember that we saw a deferred decl with this name.  The
3888     // first use of the mangled name will cause it to move into
3889     // DeferredDeclsToEmit.
3890     DeferredDecls[MangledName] = GD;
3891   }
3892 }
3893 
3894 // Check if T is a class type with a destructor that's not dllimport.
3895 static bool HasNonDllImportDtor(QualType T) {
3896   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3897     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3898       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3899         return true;
3900 
3901   return false;
3902 }
3903 
3904 namespace {
3905   struct FunctionIsDirectlyRecursive
3906       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3907     const StringRef Name;
3908     const Builtin::Context &BI;
3909     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3910         : Name(N), BI(C) {}
3911 
3912     bool VisitCallExpr(const CallExpr *E) {
3913       const FunctionDecl *FD = E->getDirectCallee();
3914       if (!FD)
3915         return false;
3916       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3917       if (Attr && Name == Attr->getLabel())
3918         return true;
3919       unsigned BuiltinID = FD->getBuiltinID();
3920       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3921         return false;
3922       StringRef BuiltinName = BI.getName(BuiltinID);
3923       if (BuiltinName.starts_with("__builtin_") &&
3924           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3925         return true;
3926       }
3927       return false;
3928     }
3929 
3930     bool VisitStmt(const Stmt *S) {
3931       for (const Stmt *Child : S->children())
3932         if (Child && this->Visit(Child))
3933           return true;
3934       return false;
3935     }
3936   };
3937 
3938   // Make sure we're not referencing non-imported vars or functions.
3939   struct DLLImportFunctionVisitor
3940       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3941     bool SafeToInline = true;
3942 
3943     bool shouldVisitImplicitCode() const { return true; }
3944 
3945     bool VisitVarDecl(VarDecl *VD) {
3946       if (VD->getTLSKind()) {
3947         // A thread-local variable cannot be imported.
3948         SafeToInline = false;
3949         return SafeToInline;
3950       }
3951 
3952       // A variable definition might imply a destructor call.
3953       if (VD->isThisDeclarationADefinition())
3954         SafeToInline = !HasNonDllImportDtor(VD->getType());
3955 
3956       return SafeToInline;
3957     }
3958 
3959     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3960       if (const auto *D = E->getTemporary()->getDestructor())
3961         SafeToInline = D->hasAttr<DLLImportAttr>();
3962       return SafeToInline;
3963     }
3964 
3965     bool VisitDeclRefExpr(DeclRefExpr *E) {
3966       ValueDecl *VD = E->getDecl();
3967       if (isa<FunctionDecl>(VD))
3968         SafeToInline = VD->hasAttr<DLLImportAttr>();
3969       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3970         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3971       return SafeToInline;
3972     }
3973 
3974     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3975       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3976       return SafeToInline;
3977     }
3978 
3979     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3980       CXXMethodDecl *M = E->getMethodDecl();
3981       if (!M) {
3982         // Call through a pointer to member function. This is safe to inline.
3983         SafeToInline = true;
3984       } else {
3985         SafeToInline = M->hasAttr<DLLImportAttr>();
3986       }
3987       return SafeToInline;
3988     }
3989 
3990     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3991       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3992       return SafeToInline;
3993     }
3994 
3995     bool VisitCXXNewExpr(CXXNewExpr *E) {
3996       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3997       return SafeToInline;
3998     }
3999   };
4000 }
4001 
4002 // isTriviallyRecursive - Check if this function calls another
4003 // decl that, because of the asm attribute or the other decl being a builtin,
4004 // ends up pointing to itself.
4005 bool
4006 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4007   StringRef Name;
4008   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4009     // asm labels are a special kind of mangling we have to support.
4010     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4011     if (!Attr)
4012       return false;
4013     Name = Attr->getLabel();
4014   } else {
4015     Name = FD->getName();
4016   }
4017 
4018   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4019   const Stmt *Body = FD->getBody();
4020   return Body ? Walker.Visit(Body) : false;
4021 }
4022 
4023 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4024   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4025     return true;
4026 
4027   const auto *F = cast<FunctionDecl>(GD.getDecl());
4028   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4029     return false;
4030 
4031   // We don't import function bodies from other named module units since that
4032   // behavior may break ABI compatibility of the current unit.
4033   if (const Module *M = F->getOwningModule();
4034       M && M->getTopLevelModule()->isNamedModule() &&
4035       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4036     // There are practices to mark template member function as always-inline
4037     // and mark the template as extern explicit instantiation but not give
4038     // the definition for member function. So we have to emit the function
4039     // from explicitly instantiation with always-inline.
4040     //
4041     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4042     //
4043     // TODO: Maybe it is better to give it a warning if we call a non-inline
4044     // function from other module units which is marked as always-inline.
4045     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4046       return false;
4047     }
4048   }
4049 
4050   if (F->hasAttr<NoInlineAttr>())
4051     return false;
4052 
4053   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4054     // Check whether it would be safe to inline this dllimport function.
4055     DLLImportFunctionVisitor Visitor;
4056     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4057     if (!Visitor.SafeToInline)
4058       return false;
4059 
4060     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4061       // Implicit destructor invocations aren't captured in the AST, so the
4062       // check above can't see them. Check for them manually here.
4063       for (const Decl *Member : Dtor->getParent()->decls())
4064         if (isa<FieldDecl>(Member))
4065           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4066             return false;
4067       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4068         if (HasNonDllImportDtor(B.getType()))
4069           return false;
4070     }
4071   }
4072 
4073   // Inline builtins declaration must be emitted. They often are fortified
4074   // functions.
4075   if (F->isInlineBuiltinDeclaration())
4076     return true;
4077 
4078   // PR9614. Avoid cases where the source code is lying to us. An available
4079   // externally function should have an equivalent function somewhere else,
4080   // but a function that calls itself through asm label/`__builtin_` trickery is
4081   // clearly not equivalent to the real implementation.
4082   // This happens in glibc's btowc and in some configure checks.
4083   return !isTriviallyRecursive(F);
4084 }
4085 
4086 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4087   return CodeGenOpts.OptimizationLevel > 0;
4088 }
4089 
4090 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4091                                                        llvm::GlobalValue *GV) {
4092   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4093 
4094   if (FD->isCPUSpecificMultiVersion()) {
4095     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4096     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4097       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4098   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4099     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4100       // AArch64 favors the default target version over the clone if any.
4101       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4102           TC->isFirstOfVersion(I))
4103         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4104     // Ensure that the resolver function is also emitted.
4105     GetOrCreateMultiVersionResolver(GD);
4106   } else
4107     EmitGlobalFunctionDefinition(GD, GV);
4108 
4109   // Defer the resolver emission until we can reason whether the TU
4110   // contains a default target version implementation.
4111   if (FD->isTargetVersionMultiVersion())
4112     AddDeferredMultiVersionResolverToEmit(GD);
4113 }
4114 
4115 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4116   const auto *D = cast<ValueDecl>(GD.getDecl());
4117 
4118   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4119                                  Context.getSourceManager(),
4120                                  "Generating code for declaration");
4121 
4122   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4123     // At -O0, don't generate IR for functions with available_externally
4124     // linkage.
4125     if (!shouldEmitFunction(GD))
4126       return;
4127 
4128     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4129       std::string Name;
4130       llvm::raw_string_ostream OS(Name);
4131       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4132                                /*Qualified=*/true);
4133       return Name;
4134     });
4135 
4136     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4137       // Make sure to emit the definition(s) before we emit the thunks.
4138       // This is necessary for the generation of certain thunks.
4139       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4140         ABI->emitCXXStructor(GD);
4141       else if (FD->isMultiVersion())
4142         EmitMultiVersionFunctionDefinition(GD, GV);
4143       else
4144         EmitGlobalFunctionDefinition(GD, GV);
4145 
4146       if (Method->isVirtual())
4147         getVTables().EmitThunks(GD);
4148 
4149       return;
4150     }
4151 
4152     if (FD->isMultiVersion())
4153       return EmitMultiVersionFunctionDefinition(GD, GV);
4154     return EmitGlobalFunctionDefinition(GD, GV);
4155   }
4156 
4157   if (const auto *VD = dyn_cast<VarDecl>(D))
4158     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4159 
4160   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4161 }
4162 
4163 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4164                                                       llvm::Function *NewFn);
4165 
4166 static unsigned
4167 TargetMVPriority(const TargetInfo &TI,
4168                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4169   unsigned Priority = 0;
4170   unsigned NumFeatures = 0;
4171   for (StringRef Feat : RO.Conditions.Features) {
4172     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4173     NumFeatures++;
4174   }
4175 
4176   if (!RO.Conditions.Architecture.empty())
4177     Priority = std::max(
4178         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4179 
4180   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4181 
4182   return Priority;
4183 }
4184 
4185 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4186 // TU can forward declare the function without causing problems.  Particularly
4187 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4188 // work with internal linkage functions, so that the same function name can be
4189 // used with internal linkage in multiple TUs.
4190 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4191                                                        GlobalDecl GD) {
4192   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4193   if (FD->getFormalLinkage() == Linkage::Internal)
4194     return llvm::GlobalValue::InternalLinkage;
4195   return llvm::GlobalValue::WeakODRLinkage;
4196 }
4197 
4198 void CodeGenModule::emitMultiVersionFunctions() {
4199   std::vector<GlobalDecl> MVFuncsToEmit;
4200   MultiVersionFuncs.swap(MVFuncsToEmit);
4201   for (GlobalDecl GD : MVFuncsToEmit) {
4202     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4203     assert(FD && "Expected a FunctionDecl");
4204 
4205     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4206       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4207       StringRef MangledName = getMangledName(CurGD);
4208       llvm::Constant *Func = GetGlobalValue(MangledName);
4209       if (!Func) {
4210         if (Decl->isDefined()) {
4211           EmitGlobalFunctionDefinition(CurGD, nullptr);
4212           Func = GetGlobalValue(MangledName);
4213         } else {
4214           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4215           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4216           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4217                                    /*DontDefer=*/false, ForDefinition);
4218         }
4219         assert(Func && "This should have just been created");
4220       }
4221       return cast<llvm::Function>(Func);
4222     };
4223 
4224     // For AArch64, a resolver is only emitted if a function marked with
4225     // target_version("default")) or target_clones() is present and defined
4226     // in this TU. For other architectures it is always emitted.
4227     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4228     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4229 
4230     getContext().forEachMultiversionedFunctionVersion(
4231         FD, [&](const FunctionDecl *CurFD) {
4232           llvm::SmallVector<StringRef, 8> Feats;
4233           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4234 
4235           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4236             TA->getAddedFeatures(Feats);
4237             llvm::Function *Func = createFunction(CurFD);
4238             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4239           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4240             if (TVA->isDefaultVersion() && IsDefined)
4241               ShouldEmitResolver = true;
4242             TVA->getFeatures(Feats);
4243             llvm::Function *Func = createFunction(CurFD);
4244             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4245           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4246             if (IsDefined)
4247               ShouldEmitResolver = true;
4248             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4249               if (!TC->isFirstOfVersion(I))
4250                 continue;
4251 
4252               llvm::Function *Func = createFunction(CurFD, I);
4253               StringRef Architecture;
4254               Feats.clear();
4255               if (getTarget().getTriple().isAArch64())
4256                 TC->getFeatures(Feats, I);
4257               else {
4258                 StringRef Version = TC->getFeatureStr(I);
4259                 if (Version.starts_with("arch="))
4260                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4261                 else if (Version != "default")
4262                   Feats.push_back(Version);
4263               }
4264               Options.emplace_back(Func, Architecture, Feats);
4265             }
4266           } else
4267             llvm_unreachable("unexpected MultiVersionKind");
4268         });
4269 
4270     if (!ShouldEmitResolver)
4271       continue;
4272 
4273     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4274     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4275       ResolverConstant = IFunc->getResolver();
4276       if (FD->isTargetClonesMultiVersion() &&
4277           !getTarget().getTriple().isAArch64()) {
4278         std::string MangledName = getMangledNameImpl(
4279             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4280         if (!GetGlobalValue(MangledName + ".ifunc")) {
4281           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4282           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4283           // In prior versions of Clang, the mangling for ifuncs incorrectly
4284           // included an .ifunc suffix. This alias is generated for backward
4285           // compatibility. It is deprecated, and may be removed in the future.
4286           auto *Alias = llvm::GlobalAlias::create(
4287               DeclTy, 0, getMultiversionLinkage(*this, GD),
4288               MangledName + ".ifunc", IFunc, &getModule());
4289           SetCommonAttributes(FD, Alias);
4290         }
4291       }
4292     }
4293     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4294 
4295     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4296 
4297     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4298       ResolverFunc->setComdat(
4299           getModule().getOrInsertComdat(ResolverFunc->getName()));
4300 
4301     const TargetInfo &TI = getTarget();
4302     llvm::stable_sort(
4303         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4304                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4305           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4306         });
4307     CodeGenFunction CGF(*this);
4308     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4309   }
4310 
4311   // Ensure that any additions to the deferred decls list caused by emitting a
4312   // variant are emitted.  This can happen when the variant itself is inline and
4313   // calls a function without linkage.
4314   if (!MVFuncsToEmit.empty())
4315     EmitDeferred();
4316 
4317   // Ensure that any additions to the multiversion funcs list from either the
4318   // deferred decls or the multiversion functions themselves are emitted.
4319   if (!MultiVersionFuncs.empty())
4320     emitMultiVersionFunctions();
4321 }
4322 
4323 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4324                                    llvm::Constant *New) {
4325   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4326   New->takeName(Old);
4327   Old->replaceAllUsesWith(New);
4328   Old->eraseFromParent();
4329 }
4330 
4331 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4332   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4333   assert(FD && "Not a FunctionDecl?");
4334   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4335   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4336   assert(DD && "Not a cpu_dispatch Function?");
4337 
4338   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4339   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4340 
4341   StringRef ResolverName = getMangledName(GD);
4342   UpdateMultiVersionNames(GD, FD, ResolverName);
4343 
4344   llvm::Type *ResolverType;
4345   GlobalDecl ResolverGD;
4346   if (getTarget().supportsIFunc()) {
4347     ResolverType = llvm::FunctionType::get(
4348         llvm::PointerType::get(DeclTy,
4349                                getTypes().getTargetAddressSpace(FD->getType())),
4350         false);
4351   }
4352   else {
4353     ResolverType = DeclTy;
4354     ResolverGD = GD;
4355   }
4356 
4357   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4358       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4359   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4360   if (supportsCOMDAT())
4361     ResolverFunc->setComdat(
4362         getModule().getOrInsertComdat(ResolverFunc->getName()));
4363 
4364   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4365   const TargetInfo &Target = getTarget();
4366   unsigned Index = 0;
4367   for (const IdentifierInfo *II : DD->cpus()) {
4368     // Get the name of the target function so we can look it up/create it.
4369     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4370                               getCPUSpecificMangling(*this, II->getName());
4371 
4372     llvm::Constant *Func = GetGlobalValue(MangledName);
4373 
4374     if (!Func) {
4375       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4376       if (ExistingDecl.getDecl() &&
4377           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4378         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4379         Func = GetGlobalValue(MangledName);
4380       } else {
4381         if (!ExistingDecl.getDecl())
4382           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4383 
4384       Func = GetOrCreateLLVMFunction(
4385           MangledName, DeclTy, ExistingDecl,
4386           /*ForVTable=*/false, /*DontDefer=*/true,
4387           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4388       }
4389     }
4390 
4391     llvm::SmallVector<StringRef, 32> Features;
4392     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4393     llvm::transform(Features, Features.begin(),
4394                     [](StringRef Str) { return Str.substr(1); });
4395     llvm::erase_if(Features, [&Target](StringRef Feat) {
4396       return !Target.validateCpuSupports(Feat);
4397     });
4398     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4399     ++Index;
4400   }
4401 
4402   llvm::stable_sort(
4403       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4404                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4405         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4406                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4407       });
4408 
4409   // If the list contains multiple 'default' versions, such as when it contains
4410   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4411   // always run on at least a 'pentium'). We do this by deleting the 'least
4412   // advanced' (read, lowest mangling letter).
4413   while (Options.size() > 1 &&
4414          llvm::all_of(llvm::X86::getCpuSupportsMask(
4415                           (Options.end() - 2)->Conditions.Features),
4416                       [](auto X) { return X == 0; })) {
4417     StringRef LHSName = (Options.end() - 2)->Function->getName();
4418     StringRef RHSName = (Options.end() - 1)->Function->getName();
4419     if (LHSName.compare(RHSName) < 0)
4420       Options.erase(Options.end() - 2);
4421     else
4422       Options.erase(Options.end() - 1);
4423   }
4424 
4425   CodeGenFunction CGF(*this);
4426   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4427 
4428   if (getTarget().supportsIFunc()) {
4429     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4430     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4431 
4432     // Fix up function declarations that were created for cpu_specific before
4433     // cpu_dispatch was known
4434     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4435       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4436                                            &getModule());
4437       replaceDeclarationWith(IFunc, GI);
4438       IFunc = GI;
4439     }
4440 
4441     std::string AliasName = getMangledNameImpl(
4442         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4443     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4444     if (!AliasFunc) {
4445       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4446                                            &getModule());
4447       SetCommonAttributes(GD, GA);
4448     }
4449   }
4450 }
4451 
4452 /// Adds a declaration to the list of multi version functions if not present.
4453 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4454   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4455   assert(FD && "Not a FunctionDecl?");
4456 
4457   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4458     std::string MangledName =
4459         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4460     if (!DeferredResolversToEmit.insert(MangledName).second)
4461       return;
4462   }
4463   MultiVersionFuncs.push_back(GD);
4464 }
4465 
4466 /// If a dispatcher for the specified mangled name is not in the module, create
4467 /// and return it. The dispatcher is either an llvm Function with the specified
4468 /// type, or a global ifunc.
4469 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4470   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4471   assert(FD && "Not a FunctionDecl?");
4472 
4473   std::string MangledName =
4474       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4475 
4476   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4477   // a separate resolver).
4478   std::string ResolverName = MangledName;
4479   if (getTarget().supportsIFunc()) {
4480     switch (FD->getMultiVersionKind()) {
4481     case MultiVersionKind::None:
4482       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4483     case MultiVersionKind::Target:
4484     case MultiVersionKind::CPUSpecific:
4485     case MultiVersionKind::CPUDispatch:
4486       ResolverName += ".ifunc";
4487       break;
4488     case MultiVersionKind::TargetClones:
4489     case MultiVersionKind::TargetVersion:
4490       break;
4491     }
4492   } else if (FD->isTargetMultiVersion()) {
4493     ResolverName += ".resolver";
4494   }
4495 
4496   // If the resolver has already been created, just return it. This lookup may
4497   // yield a function declaration instead of a resolver on AArch64. That is
4498   // because we didn't know whether a resolver will be generated when we first
4499   // encountered a use of the symbol named after this resolver. Therefore,
4500   // targets which support ifuncs should not return here unless we actually
4501   // found an ifunc.
4502   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4503   if (ResolverGV &&
4504       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4505     return ResolverGV;
4506 
4507   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4508   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4509 
4510   // The resolver needs to be created. For target and target_clones, defer
4511   // creation until the end of the TU.
4512   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4513     AddDeferredMultiVersionResolverToEmit(GD);
4514 
4515   // For cpu_specific, don't create an ifunc yet because we don't know if the
4516   // cpu_dispatch will be emitted in this translation unit.
4517   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4518     llvm::Type *ResolverType = llvm::FunctionType::get(
4519         llvm::PointerType::get(DeclTy,
4520                                getTypes().getTargetAddressSpace(FD->getType())),
4521         false);
4522     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4523         MangledName + ".resolver", ResolverType, GlobalDecl{},
4524         /*ForVTable=*/false);
4525     llvm::GlobalIFunc *GIF =
4526         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4527                                   "", Resolver, &getModule());
4528     GIF->setName(ResolverName);
4529     SetCommonAttributes(FD, GIF);
4530     if (ResolverGV)
4531       replaceDeclarationWith(ResolverGV, GIF);
4532     return GIF;
4533   }
4534 
4535   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4536       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4537   assert(isa<llvm::GlobalValue>(Resolver) &&
4538          "Resolver should be created for the first time");
4539   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4540   if (ResolverGV)
4541     replaceDeclarationWith(ResolverGV, Resolver);
4542   return Resolver;
4543 }
4544 
4545 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4546                                            const llvm::GlobalValue *GV) const {
4547   auto SC = GV->getDLLStorageClass();
4548   if (SC == llvm::GlobalValue::DefaultStorageClass)
4549     return false;
4550   const Decl *MRD = D->getMostRecentDecl();
4551   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4552             !MRD->hasAttr<DLLImportAttr>()) ||
4553            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4554             !MRD->hasAttr<DLLExportAttr>())) &&
4555           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4556 }
4557 
4558 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4559 /// module, create and return an llvm Function with the specified type. If there
4560 /// is something in the module with the specified name, return it potentially
4561 /// bitcasted to the right type.
4562 ///
4563 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4564 /// to set the attributes on the function when it is first created.
4565 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4566     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4567     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4568     ForDefinition_t IsForDefinition) {
4569   const Decl *D = GD.getDecl();
4570 
4571   std::string NameWithoutMultiVersionMangling;
4572   // Any attempts to use a MultiVersion function should result in retrieving
4573   // the iFunc instead. Name Mangling will handle the rest of the changes.
4574   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4575     // For the device mark the function as one that should be emitted.
4576     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4577         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4578         !DontDefer && !IsForDefinition) {
4579       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4580         GlobalDecl GDDef;
4581         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4582           GDDef = GlobalDecl(CD, GD.getCtorType());
4583         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4584           GDDef = GlobalDecl(DD, GD.getDtorType());
4585         else
4586           GDDef = GlobalDecl(FDDef);
4587         EmitGlobal(GDDef);
4588       }
4589     }
4590 
4591     if (FD->isMultiVersion()) {
4592       UpdateMultiVersionNames(GD, FD, MangledName);
4593       if (!IsForDefinition) {
4594         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4595         // function is used. Instead we defer the emission until we see a
4596         // default definition. In the meantime we just reference the symbol
4597         // without FMV mangling (it may or may not be replaced later).
4598         if (getTarget().getTriple().isAArch64()) {
4599           AddDeferredMultiVersionResolverToEmit(GD);
4600           NameWithoutMultiVersionMangling = getMangledNameImpl(
4601               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4602         } else
4603           return GetOrCreateMultiVersionResolver(GD);
4604       }
4605     }
4606   }
4607 
4608   if (!NameWithoutMultiVersionMangling.empty())
4609     MangledName = NameWithoutMultiVersionMangling;
4610 
4611   // Lookup the entry, lazily creating it if necessary.
4612   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4613   if (Entry) {
4614     if (WeakRefReferences.erase(Entry)) {
4615       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4616       if (FD && !FD->hasAttr<WeakAttr>())
4617         Entry->setLinkage(llvm::Function::ExternalLinkage);
4618     }
4619 
4620     // Handle dropped DLL attributes.
4621     if (D && shouldDropDLLAttribute(D, Entry)) {
4622       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4623       setDSOLocal(Entry);
4624     }
4625 
4626     // If there are two attempts to define the same mangled name, issue an
4627     // error.
4628     if (IsForDefinition && !Entry->isDeclaration()) {
4629       GlobalDecl OtherGD;
4630       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4631       // to make sure that we issue an error only once.
4632       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4633           (GD.getCanonicalDecl().getDecl() !=
4634            OtherGD.getCanonicalDecl().getDecl()) &&
4635           DiagnosedConflictingDefinitions.insert(GD).second) {
4636         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4637             << MangledName;
4638         getDiags().Report(OtherGD.getDecl()->getLocation(),
4639                           diag::note_previous_definition);
4640       }
4641     }
4642 
4643     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4644         (Entry->getValueType() == Ty)) {
4645       return Entry;
4646     }
4647 
4648     // Make sure the result is of the correct type.
4649     // (If function is requested for a definition, we always need to create a new
4650     // function, not just return a bitcast.)
4651     if (!IsForDefinition)
4652       return Entry;
4653   }
4654 
4655   // This function doesn't have a complete type (for example, the return
4656   // type is an incomplete struct). Use a fake type instead, and make
4657   // sure not to try to set attributes.
4658   bool IsIncompleteFunction = false;
4659 
4660   llvm::FunctionType *FTy;
4661   if (isa<llvm::FunctionType>(Ty)) {
4662     FTy = cast<llvm::FunctionType>(Ty);
4663   } else {
4664     FTy = llvm::FunctionType::get(VoidTy, false);
4665     IsIncompleteFunction = true;
4666   }
4667 
4668   llvm::Function *F =
4669       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4670                              Entry ? StringRef() : MangledName, &getModule());
4671 
4672   // Store the declaration associated with this function so it is potentially
4673   // updated by further declarations or definitions and emitted at the end.
4674   if (D && D->hasAttr<AnnotateAttr>())
4675     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4676 
4677   // If we already created a function with the same mangled name (but different
4678   // type) before, take its name and add it to the list of functions to be
4679   // replaced with F at the end of CodeGen.
4680   //
4681   // This happens if there is a prototype for a function (e.g. "int f()") and
4682   // then a definition of a different type (e.g. "int f(int x)").
4683   if (Entry) {
4684     F->takeName(Entry);
4685 
4686     // This might be an implementation of a function without a prototype, in
4687     // which case, try to do special replacement of calls which match the new
4688     // prototype.  The really key thing here is that we also potentially drop
4689     // arguments from the call site so as to make a direct call, which makes the
4690     // inliner happier and suppresses a number of optimizer warnings (!) about
4691     // dropping arguments.
4692     if (!Entry->use_empty()) {
4693       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4694       Entry->removeDeadConstantUsers();
4695     }
4696 
4697     addGlobalValReplacement(Entry, F);
4698   }
4699 
4700   assert(F->getName() == MangledName && "name was uniqued!");
4701   if (D)
4702     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4703   if (ExtraAttrs.hasFnAttrs()) {
4704     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4705     F->addFnAttrs(B);
4706   }
4707 
4708   if (!DontDefer) {
4709     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4710     // each other bottoming out with the base dtor.  Therefore we emit non-base
4711     // dtors on usage, even if there is no dtor definition in the TU.
4712     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4713         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4714                                            GD.getDtorType()))
4715       addDeferredDeclToEmit(GD);
4716 
4717     // This is the first use or definition of a mangled name.  If there is a
4718     // deferred decl with this name, remember that we need to emit it at the end
4719     // of the file.
4720     auto DDI = DeferredDecls.find(MangledName);
4721     if (DDI != DeferredDecls.end()) {
4722       // Move the potentially referenced deferred decl to the
4723       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4724       // don't need it anymore).
4725       addDeferredDeclToEmit(DDI->second);
4726       DeferredDecls.erase(DDI);
4727 
4728       // Otherwise, there are cases we have to worry about where we're
4729       // using a declaration for which we must emit a definition but where
4730       // we might not find a top-level definition:
4731       //   - member functions defined inline in their classes
4732       //   - friend functions defined inline in some class
4733       //   - special member functions with implicit definitions
4734       // If we ever change our AST traversal to walk into class methods,
4735       // this will be unnecessary.
4736       //
4737       // We also don't emit a definition for a function if it's going to be an
4738       // entry in a vtable, unless it's already marked as used.
4739     } else if (getLangOpts().CPlusPlus && D) {
4740       // Look for a declaration that's lexically in a record.
4741       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4742            FD = FD->getPreviousDecl()) {
4743         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4744           if (FD->doesThisDeclarationHaveABody()) {
4745             addDeferredDeclToEmit(GD.getWithDecl(FD));
4746             break;
4747           }
4748         }
4749       }
4750     }
4751   }
4752 
4753   // Make sure the result is of the requested type.
4754   if (!IsIncompleteFunction) {
4755     assert(F->getFunctionType() == Ty);
4756     return F;
4757   }
4758 
4759   return F;
4760 }
4761 
4762 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4763 /// non-null, then this function will use the specified type if it has to
4764 /// create it (this occurs when we see a definition of the function).
4765 llvm::Constant *
4766 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4767                                  bool DontDefer,
4768                                  ForDefinition_t IsForDefinition) {
4769   // If there was no specific requested type, just convert it now.
4770   if (!Ty) {
4771     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4772     Ty = getTypes().ConvertType(FD->getType());
4773   }
4774 
4775   // Devirtualized destructor calls may come through here instead of via
4776   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4777   // of the complete destructor when necessary.
4778   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4779     if (getTarget().getCXXABI().isMicrosoft() &&
4780         GD.getDtorType() == Dtor_Complete &&
4781         DD->getParent()->getNumVBases() == 0)
4782       GD = GlobalDecl(DD, Dtor_Base);
4783   }
4784 
4785   StringRef MangledName = getMangledName(GD);
4786   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4787                                     /*IsThunk=*/false, llvm::AttributeList(),
4788                                     IsForDefinition);
4789   // Returns kernel handle for HIP kernel stub function.
4790   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4791       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4792     auto *Handle = getCUDARuntime().getKernelHandle(
4793         cast<llvm::Function>(F->stripPointerCasts()), GD);
4794     if (IsForDefinition)
4795       return F;
4796     return Handle;
4797   }
4798   return F;
4799 }
4800 
4801 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4802   llvm::GlobalValue *F =
4803       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4804 
4805   return llvm::NoCFIValue::get(F);
4806 }
4807 
4808 static const FunctionDecl *
4809 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4810   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4811   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4812 
4813   IdentifierInfo &CII = C.Idents.get(Name);
4814   for (const auto *Result : DC->lookup(&CII))
4815     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4816       return FD;
4817 
4818   if (!C.getLangOpts().CPlusPlus)
4819     return nullptr;
4820 
4821   // Demangle the premangled name from getTerminateFn()
4822   IdentifierInfo &CXXII =
4823       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4824           ? C.Idents.get("terminate")
4825           : C.Idents.get(Name);
4826 
4827   for (const auto &N : {"__cxxabiv1", "std"}) {
4828     IdentifierInfo &NS = C.Idents.get(N);
4829     for (const auto *Result : DC->lookup(&NS)) {
4830       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4831       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4832         for (const auto *Result : LSD->lookup(&NS))
4833           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4834             break;
4835 
4836       if (ND)
4837         for (const auto *Result : ND->lookup(&CXXII))
4838           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4839             return FD;
4840     }
4841   }
4842 
4843   return nullptr;
4844 }
4845 
4846 /// CreateRuntimeFunction - Create a new runtime function with the specified
4847 /// type and name.
4848 llvm::FunctionCallee
4849 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4850                                      llvm::AttributeList ExtraAttrs, bool Local,
4851                                      bool AssumeConvergent) {
4852   if (AssumeConvergent) {
4853     ExtraAttrs =
4854         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4855   }
4856 
4857   llvm::Constant *C =
4858       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4859                               /*DontDefer=*/false, /*IsThunk=*/false,
4860                               ExtraAttrs);
4861 
4862   if (auto *F = dyn_cast<llvm::Function>(C)) {
4863     if (F->empty()) {
4864       F->setCallingConv(getRuntimeCC());
4865 
4866       // In Windows Itanium environments, try to mark runtime functions
4867       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4868       // will link their standard library statically or dynamically. Marking
4869       // functions imported when they are not imported can cause linker errors
4870       // and warnings.
4871       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4872           !getCodeGenOpts().LTOVisibilityPublicStd) {
4873         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4874         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4875           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4876           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4877         }
4878       }
4879       setDSOLocal(F);
4880       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4881       // of trying to approximate the attributes using the LLVM function
4882       // signature. This requires revising the API of CreateRuntimeFunction().
4883       markRegisterParameterAttributes(F);
4884     }
4885   }
4886 
4887   return {FTy, C};
4888 }
4889 
4890 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4891 /// create and return an llvm GlobalVariable with the specified type and address
4892 /// space. If there is something in the module with the specified name, return
4893 /// it potentially bitcasted to the right type.
4894 ///
4895 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4896 /// to set the attributes on the global when it is first created.
4897 ///
4898 /// If IsForDefinition is true, it is guaranteed that an actual global with
4899 /// type Ty will be returned, not conversion of a variable with the same
4900 /// mangled name but some other type.
4901 llvm::Constant *
4902 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4903                                      LangAS AddrSpace, const VarDecl *D,
4904                                      ForDefinition_t IsForDefinition) {
4905   // Lookup the entry, lazily creating it if necessary.
4906   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4907   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4908   if (Entry) {
4909     if (WeakRefReferences.erase(Entry)) {
4910       if (D && !D->hasAttr<WeakAttr>())
4911         Entry->setLinkage(llvm::Function::ExternalLinkage);
4912     }
4913 
4914     // Handle dropped DLL attributes.
4915     if (D && shouldDropDLLAttribute(D, Entry))
4916       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4917 
4918     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4919       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4920 
4921     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4922       return Entry;
4923 
4924     // If there are two attempts to define the same mangled name, issue an
4925     // error.
4926     if (IsForDefinition && !Entry->isDeclaration()) {
4927       GlobalDecl OtherGD;
4928       const VarDecl *OtherD;
4929 
4930       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4931       // to make sure that we issue an error only once.
4932       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4933           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4934           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4935           OtherD->hasInit() &&
4936           DiagnosedConflictingDefinitions.insert(D).second) {
4937         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4938             << MangledName;
4939         getDiags().Report(OtherGD.getDecl()->getLocation(),
4940                           diag::note_previous_definition);
4941       }
4942     }
4943 
4944     // Make sure the result is of the correct type.
4945     if (Entry->getType()->getAddressSpace() != TargetAS)
4946       return llvm::ConstantExpr::getAddrSpaceCast(
4947           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4948 
4949     // (If global is requested for a definition, we always need to create a new
4950     // global, not just return a bitcast.)
4951     if (!IsForDefinition)
4952       return Entry;
4953   }
4954 
4955   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4956 
4957   auto *GV = new llvm::GlobalVariable(
4958       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4959       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4960       getContext().getTargetAddressSpace(DAddrSpace));
4961 
4962   // If we already created a global with the same mangled name (but different
4963   // type) before, take its name and remove it from its parent.
4964   if (Entry) {
4965     GV->takeName(Entry);
4966 
4967     if (!Entry->use_empty()) {
4968       Entry->replaceAllUsesWith(GV);
4969     }
4970 
4971     Entry->eraseFromParent();
4972   }
4973 
4974   // This is the first use or definition of a mangled name.  If there is a
4975   // deferred decl with this name, remember that we need to emit it at the end
4976   // of the file.
4977   auto DDI = DeferredDecls.find(MangledName);
4978   if (DDI != DeferredDecls.end()) {
4979     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4980     // list, and remove it from DeferredDecls (since we don't need it anymore).
4981     addDeferredDeclToEmit(DDI->second);
4982     DeferredDecls.erase(DDI);
4983   }
4984 
4985   // Handle things which are present even on external declarations.
4986   if (D) {
4987     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4988       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4989 
4990     // FIXME: This code is overly simple and should be merged with other global
4991     // handling.
4992     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4993 
4994     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4995 
4996     setLinkageForGV(GV, D);
4997 
4998     if (D->getTLSKind()) {
4999       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5000         CXXThreadLocals.push_back(D);
5001       setTLSMode(GV, *D);
5002     }
5003 
5004     setGVProperties(GV, D);
5005 
5006     // If required by the ABI, treat declarations of static data members with
5007     // inline initializers as definitions.
5008     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5009       EmitGlobalVarDefinition(D);
5010     }
5011 
5012     // Emit section information for extern variables.
5013     if (D->hasExternalStorage()) {
5014       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5015         GV->setSection(SA->getName());
5016     }
5017 
5018     // Handle XCore specific ABI requirements.
5019     if (getTriple().getArch() == llvm::Triple::xcore &&
5020         D->getLanguageLinkage() == CLanguageLinkage &&
5021         D->getType().isConstant(Context) &&
5022         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5023       GV->setSection(".cp.rodata");
5024 
5025     // Handle code model attribute
5026     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5027       GV->setCodeModel(CMA->getModel());
5028 
5029     // Check if we a have a const declaration with an initializer, we may be
5030     // able to emit it as available_externally to expose it's value to the
5031     // optimizer.
5032     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5033         D->getType().isConstQualified() && !GV->hasInitializer() &&
5034         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5035       const auto *Record =
5036           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5037       bool HasMutableFields = Record && Record->hasMutableFields();
5038       if (!HasMutableFields) {
5039         const VarDecl *InitDecl;
5040         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5041         if (InitExpr) {
5042           ConstantEmitter emitter(*this);
5043           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5044           if (Init) {
5045             auto *InitType = Init->getType();
5046             if (GV->getValueType() != InitType) {
5047               // The type of the initializer does not match the definition.
5048               // This happens when an initializer has a different type from
5049               // the type of the global (because of padding at the end of a
5050               // structure for instance).
5051               GV->setName(StringRef());
5052               // Make a new global with the correct type, this is now guaranteed
5053               // to work.
5054               auto *NewGV = cast<llvm::GlobalVariable>(
5055                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5056                       ->stripPointerCasts());
5057 
5058               // Erase the old global, since it is no longer used.
5059               GV->eraseFromParent();
5060               GV = NewGV;
5061             } else {
5062               GV->setInitializer(Init);
5063               GV->setConstant(true);
5064               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5065             }
5066             emitter.finalize(GV);
5067           }
5068         }
5069       }
5070     }
5071   }
5072 
5073   if (D &&
5074       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5075     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5076     // External HIP managed variables needed to be recorded for transformation
5077     // in both device and host compilations.
5078     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5079         D->hasExternalStorage())
5080       getCUDARuntime().handleVarRegistration(D, *GV);
5081   }
5082 
5083   if (D)
5084     SanitizerMD->reportGlobal(GV, *D);
5085 
5086   LangAS ExpectedAS =
5087       D ? D->getType().getAddressSpace()
5088         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5089   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5090   if (DAddrSpace != ExpectedAS) {
5091     return getTargetCodeGenInfo().performAddrSpaceCast(
5092         *this, GV, DAddrSpace, ExpectedAS,
5093         llvm::PointerType::get(getLLVMContext(), TargetAS));
5094   }
5095 
5096   return GV;
5097 }
5098 
5099 llvm::Constant *
5100 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5101   const Decl *D = GD.getDecl();
5102 
5103   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5104     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5105                                 /*DontDefer=*/false, IsForDefinition);
5106 
5107   if (isa<CXXMethodDecl>(D)) {
5108     auto FInfo =
5109         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5110     auto Ty = getTypes().GetFunctionType(*FInfo);
5111     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5112                              IsForDefinition);
5113   }
5114 
5115   if (isa<FunctionDecl>(D)) {
5116     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5117     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5118     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5119                              IsForDefinition);
5120   }
5121 
5122   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5123 }
5124 
5125 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5126     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5127     llvm::Align Alignment) {
5128   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5129   llvm::GlobalVariable *OldGV = nullptr;
5130 
5131   if (GV) {
5132     // Check if the variable has the right type.
5133     if (GV->getValueType() == Ty)
5134       return GV;
5135 
5136     // Because C++ name mangling, the only way we can end up with an already
5137     // existing global with the same name is if it has been declared extern "C".
5138     assert(GV->isDeclaration() && "Declaration has wrong type!");
5139     OldGV = GV;
5140   }
5141 
5142   // Create a new variable.
5143   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5144                                 Linkage, nullptr, Name);
5145 
5146   if (OldGV) {
5147     // Replace occurrences of the old variable if needed.
5148     GV->takeName(OldGV);
5149 
5150     if (!OldGV->use_empty()) {
5151       OldGV->replaceAllUsesWith(GV);
5152     }
5153 
5154     OldGV->eraseFromParent();
5155   }
5156 
5157   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5158       !GV->hasAvailableExternallyLinkage())
5159     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5160 
5161   GV->setAlignment(Alignment);
5162 
5163   return GV;
5164 }
5165 
5166 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5167 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5168 /// then it will be created with the specified type instead of whatever the
5169 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5170 /// that an actual global with type Ty will be returned, not conversion of a
5171 /// variable with the same mangled name but some other type.
5172 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5173                                                   llvm::Type *Ty,
5174                                            ForDefinition_t IsForDefinition) {
5175   assert(D->hasGlobalStorage() && "Not a global variable");
5176   QualType ASTTy = D->getType();
5177   if (!Ty)
5178     Ty = getTypes().ConvertTypeForMem(ASTTy);
5179 
5180   StringRef MangledName = getMangledName(D);
5181   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5182                                IsForDefinition);
5183 }
5184 
5185 /// CreateRuntimeVariable - Create a new runtime global variable with the
5186 /// specified type and name.
5187 llvm::Constant *
5188 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5189                                      StringRef Name) {
5190   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5191                                                        : LangAS::Default;
5192   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5193   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5194   return Ret;
5195 }
5196 
5197 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5198   assert(!D->getInit() && "Cannot emit definite definitions here!");
5199 
5200   StringRef MangledName = getMangledName(D);
5201   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5202 
5203   // We already have a definition, not declaration, with the same mangled name.
5204   // Emitting of declaration is not required (and actually overwrites emitted
5205   // definition).
5206   if (GV && !GV->isDeclaration())
5207     return;
5208 
5209   // If we have not seen a reference to this variable yet, place it into the
5210   // deferred declarations table to be emitted if needed later.
5211   if (!MustBeEmitted(D) && !GV) {
5212       DeferredDecls[MangledName] = D;
5213       return;
5214   }
5215 
5216   // The tentative definition is the only definition.
5217   EmitGlobalVarDefinition(D);
5218 }
5219 
5220 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5221   if (auto const *V = dyn_cast<const VarDecl>(D))
5222     EmitExternalVarDeclaration(V);
5223   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5224     EmitExternalFunctionDeclaration(FD);
5225 }
5226 
5227 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5228   return Context.toCharUnitsFromBits(
5229       getDataLayout().getTypeStoreSizeInBits(Ty));
5230 }
5231 
5232 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5233   if (LangOpts.OpenCL) {
5234     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5235     assert(AS == LangAS::opencl_global ||
5236            AS == LangAS::opencl_global_device ||
5237            AS == LangAS::opencl_global_host ||
5238            AS == LangAS::opencl_constant ||
5239            AS == LangAS::opencl_local ||
5240            AS >= LangAS::FirstTargetAddressSpace);
5241     return AS;
5242   }
5243 
5244   if (LangOpts.SYCLIsDevice &&
5245       (!D || D->getType().getAddressSpace() == LangAS::Default))
5246     return LangAS::sycl_global;
5247 
5248   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5249     if (D) {
5250       if (D->hasAttr<CUDAConstantAttr>())
5251         return LangAS::cuda_constant;
5252       if (D->hasAttr<CUDASharedAttr>())
5253         return LangAS::cuda_shared;
5254       if (D->hasAttr<CUDADeviceAttr>())
5255         return LangAS::cuda_device;
5256       if (D->getType().isConstQualified())
5257         return LangAS::cuda_constant;
5258     }
5259     return LangAS::cuda_device;
5260   }
5261 
5262   if (LangOpts.OpenMP) {
5263     LangAS AS;
5264     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5265       return AS;
5266   }
5267   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5268 }
5269 
5270 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5271   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5272   if (LangOpts.OpenCL)
5273     return LangAS::opencl_constant;
5274   if (LangOpts.SYCLIsDevice)
5275     return LangAS::sycl_global;
5276   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5277     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5278     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5279     // with OpVariable instructions with Generic storage class which is not
5280     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5281     // UniformConstant storage class is not viable as pointers to it may not be
5282     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5283     return LangAS::cuda_device;
5284   if (auto AS = getTarget().getConstantAddressSpace())
5285     return *AS;
5286   return LangAS::Default;
5287 }
5288 
5289 // In address space agnostic languages, string literals are in default address
5290 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5291 // emitted in constant address space in LLVM IR. To be consistent with other
5292 // parts of AST, string literal global variables in constant address space
5293 // need to be casted to default address space before being put into address
5294 // map and referenced by other part of CodeGen.
5295 // In OpenCL, string literals are in constant address space in AST, therefore
5296 // they should not be casted to default address space.
5297 static llvm::Constant *
5298 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5299                                        llvm::GlobalVariable *GV) {
5300   llvm::Constant *Cast = GV;
5301   if (!CGM.getLangOpts().OpenCL) {
5302     auto AS = CGM.GetGlobalConstantAddressSpace();
5303     if (AS != LangAS::Default)
5304       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5305           CGM, GV, AS, LangAS::Default,
5306           llvm::PointerType::get(
5307               CGM.getLLVMContext(),
5308               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5309   }
5310   return Cast;
5311 }
5312 
5313 template<typename SomeDecl>
5314 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5315                                                llvm::GlobalValue *GV) {
5316   if (!getLangOpts().CPlusPlus)
5317     return;
5318 
5319   // Must have 'used' attribute, or else inline assembly can't rely on
5320   // the name existing.
5321   if (!D->template hasAttr<UsedAttr>())
5322     return;
5323 
5324   // Must have internal linkage and an ordinary name.
5325   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5326     return;
5327 
5328   // Must be in an extern "C" context. Entities declared directly within
5329   // a record are not extern "C" even if the record is in such a context.
5330   const SomeDecl *First = D->getFirstDecl();
5331   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5332     return;
5333 
5334   // OK, this is an internal linkage entity inside an extern "C" linkage
5335   // specification. Make a note of that so we can give it the "expected"
5336   // mangled name if nothing else is using that name.
5337   std::pair<StaticExternCMap::iterator, bool> R =
5338       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5339 
5340   // If we have multiple internal linkage entities with the same name
5341   // in extern "C" regions, none of them gets that name.
5342   if (!R.second)
5343     R.first->second = nullptr;
5344 }
5345 
5346 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5347   if (!CGM.supportsCOMDAT())
5348     return false;
5349 
5350   if (D.hasAttr<SelectAnyAttr>())
5351     return true;
5352 
5353   GVALinkage Linkage;
5354   if (auto *VD = dyn_cast<VarDecl>(&D))
5355     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5356   else
5357     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5358 
5359   switch (Linkage) {
5360   case GVA_Internal:
5361   case GVA_AvailableExternally:
5362   case GVA_StrongExternal:
5363     return false;
5364   case GVA_DiscardableODR:
5365   case GVA_StrongODR:
5366     return true;
5367   }
5368   llvm_unreachable("No such linkage");
5369 }
5370 
5371 bool CodeGenModule::supportsCOMDAT() const {
5372   return getTriple().supportsCOMDAT();
5373 }
5374 
5375 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5376                                           llvm::GlobalObject &GO) {
5377   if (!shouldBeInCOMDAT(*this, D))
5378     return;
5379   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5380 }
5381 
5382 const ABIInfo &CodeGenModule::getABIInfo() {
5383   return getTargetCodeGenInfo().getABIInfo();
5384 }
5385 
5386 /// Pass IsTentative as true if you want to create a tentative definition.
5387 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5388                                             bool IsTentative) {
5389   // OpenCL global variables of sampler type are translated to function calls,
5390   // therefore no need to be translated.
5391   QualType ASTTy = D->getType();
5392   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5393     return;
5394 
5395   // If this is OpenMP device, check if it is legal to emit this global
5396   // normally.
5397   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5398       OpenMPRuntime->emitTargetGlobalVariable(D))
5399     return;
5400 
5401   llvm::TrackingVH<llvm::Constant> Init;
5402   bool NeedsGlobalCtor = false;
5403   // Whether the definition of the variable is available externally.
5404   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5405   // since this is the job for its original source.
5406   bool IsDefinitionAvailableExternally =
5407       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5408   bool NeedsGlobalDtor =
5409       !IsDefinitionAvailableExternally &&
5410       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5411 
5412   // It is helpless to emit the definition for an available_externally variable
5413   // which can't be marked as const.
5414   // We don't need to check if it needs global ctor or dtor. See the above
5415   // comment for ideas.
5416   if (IsDefinitionAvailableExternally &&
5417       (!D->hasConstantInitialization() ||
5418        // TODO: Update this when we have interface to check constexpr
5419        // destructor.
5420        D->needsDestruction(getContext()) ||
5421        !D->getType().isConstantStorage(getContext(), true, true)))
5422     return;
5423 
5424   const VarDecl *InitDecl;
5425   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5426 
5427   std::optional<ConstantEmitter> emitter;
5428 
5429   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5430   // as part of their declaration."  Sema has already checked for
5431   // error cases, so we just need to set Init to UndefValue.
5432   bool IsCUDASharedVar =
5433       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5434   // Shadows of initialized device-side global variables are also left
5435   // undefined.
5436   // Managed Variables should be initialized on both host side and device side.
5437   bool IsCUDAShadowVar =
5438       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5439       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5440        D->hasAttr<CUDASharedAttr>());
5441   bool IsCUDADeviceShadowVar =
5442       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5443       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5444        D->getType()->isCUDADeviceBuiltinTextureType());
5445   if (getLangOpts().CUDA &&
5446       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5447     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5448   else if (D->hasAttr<LoaderUninitializedAttr>())
5449     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5450   else if (!InitExpr) {
5451     // This is a tentative definition; tentative definitions are
5452     // implicitly initialized with { 0 }.
5453     //
5454     // Note that tentative definitions are only emitted at the end of
5455     // a translation unit, so they should never have incomplete
5456     // type. In addition, EmitTentativeDefinition makes sure that we
5457     // never attempt to emit a tentative definition if a real one
5458     // exists. A use may still exists, however, so we still may need
5459     // to do a RAUW.
5460     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5461     Init = EmitNullConstant(D->getType());
5462   } else {
5463     initializedGlobalDecl = GlobalDecl(D);
5464     emitter.emplace(*this);
5465     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5466     if (!Initializer) {
5467       QualType T = InitExpr->getType();
5468       if (D->getType()->isReferenceType())
5469         T = D->getType();
5470 
5471       if (getLangOpts().CPlusPlus) {
5472         if (InitDecl->hasFlexibleArrayInit(getContext()))
5473           ErrorUnsupported(D, "flexible array initializer");
5474         Init = EmitNullConstant(T);
5475 
5476         if (!IsDefinitionAvailableExternally)
5477           NeedsGlobalCtor = true;
5478       } else {
5479         ErrorUnsupported(D, "static initializer");
5480         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5481       }
5482     } else {
5483       Init = Initializer;
5484       // We don't need an initializer, so remove the entry for the delayed
5485       // initializer position (just in case this entry was delayed) if we
5486       // also don't need to register a destructor.
5487       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5488         DelayedCXXInitPosition.erase(D);
5489 
5490 #ifndef NDEBUG
5491       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5492                           InitDecl->getFlexibleArrayInitChars(getContext());
5493       CharUnits CstSize = CharUnits::fromQuantity(
5494           getDataLayout().getTypeAllocSize(Init->getType()));
5495       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5496 #endif
5497     }
5498   }
5499 
5500   llvm::Type* InitType = Init->getType();
5501   llvm::Constant *Entry =
5502       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5503 
5504   // Strip off pointer casts if we got them.
5505   Entry = Entry->stripPointerCasts();
5506 
5507   // Entry is now either a Function or GlobalVariable.
5508   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5509 
5510   // We have a definition after a declaration with the wrong type.
5511   // We must make a new GlobalVariable* and update everything that used OldGV
5512   // (a declaration or tentative definition) with the new GlobalVariable*
5513   // (which will be a definition).
5514   //
5515   // This happens if there is a prototype for a global (e.g.
5516   // "extern int x[];") and then a definition of a different type (e.g.
5517   // "int x[10];"). This also happens when an initializer has a different type
5518   // from the type of the global (this happens with unions).
5519   if (!GV || GV->getValueType() != InitType ||
5520       GV->getType()->getAddressSpace() !=
5521           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5522 
5523     // Move the old entry aside so that we'll create a new one.
5524     Entry->setName(StringRef());
5525 
5526     // Make a new global with the correct type, this is now guaranteed to work.
5527     GV = cast<llvm::GlobalVariable>(
5528         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5529             ->stripPointerCasts());
5530 
5531     // Replace all uses of the old global with the new global
5532     llvm::Constant *NewPtrForOldDecl =
5533         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5534                                                              Entry->getType());
5535     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5536 
5537     // Erase the old global, since it is no longer used.
5538     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5539   }
5540 
5541   MaybeHandleStaticInExternC(D, GV);
5542 
5543   if (D->hasAttr<AnnotateAttr>())
5544     AddGlobalAnnotations(D, GV);
5545 
5546   // Set the llvm linkage type as appropriate.
5547   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5548 
5549   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5550   // the device. [...]"
5551   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5552   // __device__, declares a variable that: [...]
5553   // Is accessible from all the threads within the grid and from the host
5554   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5555   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5556   if (LangOpts.CUDA) {
5557     if (LangOpts.CUDAIsDevice) {
5558       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5559           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5560            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5561            D->getType()->isCUDADeviceBuiltinTextureType()))
5562         GV->setExternallyInitialized(true);
5563     } else {
5564       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5565     }
5566     getCUDARuntime().handleVarRegistration(D, *GV);
5567   }
5568 
5569   GV->setInitializer(Init);
5570   if (emitter)
5571     emitter->finalize(GV);
5572 
5573   // If it is safe to mark the global 'constant', do so now.
5574   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5575                   D->getType().isConstantStorage(getContext(), true, true));
5576 
5577   // If it is in a read-only section, mark it 'constant'.
5578   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5579     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5580     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5581       GV->setConstant(true);
5582   }
5583 
5584   CharUnits AlignVal = getContext().getDeclAlign(D);
5585   // Check for alignment specifed in an 'omp allocate' directive.
5586   if (std::optional<CharUnits> AlignValFromAllocate =
5587           getOMPAllocateAlignment(D))
5588     AlignVal = *AlignValFromAllocate;
5589   GV->setAlignment(AlignVal.getAsAlign());
5590 
5591   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5592   // function is only defined alongside the variable, not also alongside
5593   // callers. Normally, all accesses to a thread_local go through the
5594   // thread-wrapper in order to ensure initialization has occurred, underlying
5595   // variable will never be used other than the thread-wrapper, so it can be
5596   // converted to internal linkage.
5597   //
5598   // However, if the variable has the 'constinit' attribute, it _can_ be
5599   // referenced directly, without calling the thread-wrapper, so the linkage
5600   // must not be changed.
5601   //
5602   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5603   // weak or linkonce, the de-duplication semantics are important to preserve,
5604   // so we don't change the linkage.
5605   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5606       Linkage == llvm::GlobalValue::ExternalLinkage &&
5607       Context.getTargetInfo().getTriple().isOSDarwin() &&
5608       !D->hasAttr<ConstInitAttr>())
5609     Linkage = llvm::GlobalValue::InternalLinkage;
5610 
5611   GV->setLinkage(Linkage);
5612   if (D->hasAttr<DLLImportAttr>())
5613     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5614   else if (D->hasAttr<DLLExportAttr>())
5615     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5616   else
5617     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5618 
5619   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5620     // common vars aren't constant even if declared const.
5621     GV->setConstant(false);
5622     // Tentative definition of global variables may be initialized with
5623     // non-zero null pointers. In this case they should have weak linkage
5624     // since common linkage must have zero initializer and must not have
5625     // explicit section therefore cannot have non-zero initial value.
5626     if (!GV->getInitializer()->isNullValue())
5627       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5628   }
5629 
5630   setNonAliasAttributes(D, GV);
5631 
5632   if (D->getTLSKind() && !GV->isThreadLocal()) {
5633     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5634       CXXThreadLocals.push_back(D);
5635     setTLSMode(GV, *D);
5636   }
5637 
5638   maybeSetTrivialComdat(*D, *GV);
5639 
5640   // Emit the initializer function if necessary.
5641   if (NeedsGlobalCtor || NeedsGlobalDtor)
5642     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5643 
5644   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5645 
5646   // Emit global variable debug information.
5647   if (CGDebugInfo *DI = getModuleDebugInfo())
5648     if (getCodeGenOpts().hasReducedDebugInfo())
5649       DI->EmitGlobalVariable(GV, D);
5650 }
5651 
5652 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5653   if (CGDebugInfo *DI = getModuleDebugInfo())
5654     if (getCodeGenOpts().hasReducedDebugInfo()) {
5655       QualType ASTTy = D->getType();
5656       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5657       llvm::Constant *GV =
5658           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5659       DI->EmitExternalVariable(
5660           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5661     }
5662 }
5663 
5664 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5665   if (CGDebugInfo *DI = getModuleDebugInfo())
5666     if (getCodeGenOpts().hasReducedDebugInfo()) {
5667       auto *Ty = getTypes().ConvertType(FD->getType());
5668       StringRef MangledName = getMangledName(FD);
5669       auto *Fn = dyn_cast<llvm::Function>(
5670           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5671       if (!Fn->getSubprogram())
5672         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5673     }
5674 }
5675 
5676 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5677                                       CodeGenModule &CGM, const VarDecl *D,
5678                                       bool NoCommon) {
5679   // Don't give variables common linkage if -fno-common was specified unless it
5680   // was overridden by a NoCommon attribute.
5681   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5682     return true;
5683 
5684   // C11 6.9.2/2:
5685   //   A declaration of an identifier for an object that has file scope without
5686   //   an initializer, and without a storage-class specifier or with the
5687   //   storage-class specifier static, constitutes a tentative definition.
5688   if (D->getInit() || D->hasExternalStorage())
5689     return true;
5690 
5691   // A variable cannot be both common and exist in a section.
5692   if (D->hasAttr<SectionAttr>())
5693     return true;
5694 
5695   // A variable cannot be both common and exist in a section.
5696   // We don't try to determine which is the right section in the front-end.
5697   // If no specialized section name is applicable, it will resort to default.
5698   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5699       D->hasAttr<PragmaClangDataSectionAttr>() ||
5700       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5701       D->hasAttr<PragmaClangRodataSectionAttr>())
5702     return true;
5703 
5704   // Thread local vars aren't considered common linkage.
5705   if (D->getTLSKind())
5706     return true;
5707 
5708   // Tentative definitions marked with WeakImportAttr are true definitions.
5709   if (D->hasAttr<WeakImportAttr>())
5710     return true;
5711 
5712   // A variable cannot be both common and exist in a comdat.
5713   if (shouldBeInCOMDAT(CGM, *D))
5714     return true;
5715 
5716   // Declarations with a required alignment do not have common linkage in MSVC
5717   // mode.
5718   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5719     if (D->hasAttr<AlignedAttr>())
5720       return true;
5721     QualType VarType = D->getType();
5722     if (Context.isAlignmentRequired(VarType))
5723       return true;
5724 
5725     if (const auto *RT = VarType->getAs<RecordType>()) {
5726       const RecordDecl *RD = RT->getDecl();
5727       for (const FieldDecl *FD : RD->fields()) {
5728         if (FD->isBitField())
5729           continue;
5730         if (FD->hasAttr<AlignedAttr>())
5731           return true;
5732         if (Context.isAlignmentRequired(FD->getType()))
5733           return true;
5734       }
5735     }
5736   }
5737 
5738   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5739   // common symbols, so symbols with greater alignment requirements cannot be
5740   // common.
5741   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5742   // alignments for common symbols via the aligncomm directive, so this
5743   // restriction only applies to MSVC environments.
5744   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5745       Context.getTypeAlignIfKnown(D->getType()) >
5746           Context.toBits(CharUnits::fromQuantity(32)))
5747     return true;
5748 
5749   return false;
5750 }
5751 
5752 llvm::GlobalValue::LinkageTypes
5753 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5754                                            GVALinkage Linkage) {
5755   if (Linkage == GVA_Internal)
5756     return llvm::Function::InternalLinkage;
5757 
5758   if (D->hasAttr<WeakAttr>())
5759     return llvm::GlobalVariable::WeakAnyLinkage;
5760 
5761   if (const auto *FD = D->getAsFunction())
5762     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5763       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5764 
5765   // We are guaranteed to have a strong definition somewhere else,
5766   // so we can use available_externally linkage.
5767   if (Linkage == GVA_AvailableExternally)
5768     return llvm::GlobalValue::AvailableExternallyLinkage;
5769 
5770   // Note that Apple's kernel linker doesn't support symbol
5771   // coalescing, so we need to avoid linkonce and weak linkages there.
5772   // Normally, this means we just map to internal, but for explicit
5773   // instantiations we'll map to external.
5774 
5775   // In C++, the compiler has to emit a definition in every translation unit
5776   // that references the function.  We should use linkonce_odr because
5777   // a) if all references in this translation unit are optimized away, we
5778   // don't need to codegen it.  b) if the function persists, it needs to be
5779   // merged with other definitions. c) C++ has the ODR, so we know the
5780   // definition is dependable.
5781   if (Linkage == GVA_DiscardableODR)
5782     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5783                                             : llvm::Function::InternalLinkage;
5784 
5785   // An explicit instantiation of a template has weak linkage, since
5786   // explicit instantiations can occur in multiple translation units
5787   // and must all be equivalent. However, we are not allowed to
5788   // throw away these explicit instantiations.
5789   //
5790   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5791   // so say that CUDA templates are either external (for kernels) or internal.
5792   // This lets llvm perform aggressive inter-procedural optimizations. For
5793   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5794   // therefore we need to follow the normal linkage paradigm.
5795   if (Linkage == GVA_StrongODR) {
5796     if (getLangOpts().AppleKext)
5797       return llvm::Function::ExternalLinkage;
5798     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5799         !getLangOpts().GPURelocatableDeviceCode)
5800       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5801                                           : llvm::Function::InternalLinkage;
5802     return llvm::Function::WeakODRLinkage;
5803   }
5804 
5805   // C++ doesn't have tentative definitions and thus cannot have common
5806   // linkage.
5807   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5808       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5809                                  CodeGenOpts.NoCommon))
5810     return llvm::GlobalVariable::CommonLinkage;
5811 
5812   // selectany symbols are externally visible, so use weak instead of
5813   // linkonce.  MSVC optimizes away references to const selectany globals, so
5814   // all definitions should be the same and ODR linkage should be used.
5815   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5816   if (D->hasAttr<SelectAnyAttr>())
5817     return llvm::GlobalVariable::WeakODRLinkage;
5818 
5819   // Otherwise, we have strong external linkage.
5820   assert(Linkage == GVA_StrongExternal);
5821   return llvm::GlobalVariable::ExternalLinkage;
5822 }
5823 
5824 llvm::GlobalValue::LinkageTypes
5825 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5826   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5827   return getLLVMLinkageForDeclarator(VD, Linkage);
5828 }
5829 
5830 /// Replace the uses of a function that was declared with a non-proto type.
5831 /// We want to silently drop extra arguments from call sites
5832 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5833                                           llvm::Function *newFn) {
5834   // Fast path.
5835   if (old->use_empty())
5836     return;
5837 
5838   llvm::Type *newRetTy = newFn->getReturnType();
5839   SmallVector<llvm::Value *, 4> newArgs;
5840 
5841   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5842 
5843   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5844        ui != ue; ui++) {
5845     llvm::User *user = ui->getUser();
5846 
5847     // Recognize and replace uses of bitcasts.  Most calls to
5848     // unprototyped functions will use bitcasts.
5849     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5850       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5851         replaceUsesOfNonProtoConstant(bitcast, newFn);
5852       continue;
5853     }
5854 
5855     // Recognize calls to the function.
5856     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5857     if (!callSite)
5858       continue;
5859     if (!callSite->isCallee(&*ui))
5860       continue;
5861 
5862     // If the return types don't match exactly, then we can't
5863     // transform this call unless it's dead.
5864     if (callSite->getType() != newRetTy && !callSite->use_empty())
5865       continue;
5866 
5867     // Get the call site's attribute list.
5868     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5869     llvm::AttributeList oldAttrs = callSite->getAttributes();
5870 
5871     // If the function was passed too few arguments, don't transform.
5872     unsigned newNumArgs = newFn->arg_size();
5873     if (callSite->arg_size() < newNumArgs)
5874       continue;
5875 
5876     // If extra arguments were passed, we silently drop them.
5877     // If any of the types mismatch, we don't transform.
5878     unsigned argNo = 0;
5879     bool dontTransform = false;
5880     for (llvm::Argument &A : newFn->args()) {
5881       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5882         dontTransform = true;
5883         break;
5884       }
5885 
5886       // Add any parameter attributes.
5887       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5888       argNo++;
5889     }
5890     if (dontTransform)
5891       continue;
5892 
5893     // Okay, we can transform this.  Create the new call instruction and copy
5894     // over the required information.
5895     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5896 
5897     // Copy over any operand bundles.
5898     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5899     callSite->getOperandBundlesAsDefs(newBundles);
5900 
5901     llvm::CallBase *newCall;
5902     if (isa<llvm::CallInst>(callSite)) {
5903       newCall =
5904           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5905     } else {
5906       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5907       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5908                                          oldInvoke->getUnwindDest(), newArgs,
5909                                          newBundles, "", callSite);
5910     }
5911     newArgs.clear(); // for the next iteration
5912 
5913     if (!newCall->getType()->isVoidTy())
5914       newCall->takeName(callSite);
5915     newCall->setAttributes(
5916         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5917                                  oldAttrs.getRetAttrs(), newArgAttrs));
5918     newCall->setCallingConv(callSite->getCallingConv());
5919 
5920     // Finally, remove the old call, replacing any uses with the new one.
5921     if (!callSite->use_empty())
5922       callSite->replaceAllUsesWith(newCall);
5923 
5924     // Copy debug location attached to CI.
5925     if (callSite->getDebugLoc())
5926       newCall->setDebugLoc(callSite->getDebugLoc());
5927 
5928     callSitesToBeRemovedFromParent.push_back(callSite);
5929   }
5930 
5931   for (auto *callSite : callSitesToBeRemovedFromParent) {
5932     callSite->eraseFromParent();
5933   }
5934 }
5935 
5936 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5937 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5938 /// existing call uses of the old function in the module, this adjusts them to
5939 /// call the new function directly.
5940 ///
5941 /// This is not just a cleanup: the always_inline pass requires direct calls to
5942 /// functions to be able to inline them.  If there is a bitcast in the way, it
5943 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5944 /// run at -O0.
5945 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5946                                                       llvm::Function *NewFn) {
5947   // If we're redefining a global as a function, don't transform it.
5948   if (!isa<llvm::Function>(Old)) return;
5949 
5950   replaceUsesOfNonProtoConstant(Old, NewFn);
5951 }
5952 
5953 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5954   auto DK = VD->isThisDeclarationADefinition();
5955   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5956       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5957     return;
5958 
5959   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5960   // If we have a definition, this might be a deferred decl. If the
5961   // instantiation is explicit, make sure we emit it at the end.
5962   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5963     GetAddrOfGlobalVar(VD);
5964 
5965   EmitTopLevelDecl(VD);
5966 }
5967 
5968 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5969                                                  llvm::GlobalValue *GV) {
5970   const auto *D = cast<FunctionDecl>(GD.getDecl());
5971 
5972   // Compute the function info and LLVM type.
5973   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5974   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5975 
5976   // Get or create the prototype for the function.
5977   if (!GV || (GV->getValueType() != Ty))
5978     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5979                                                    /*DontDefer=*/true,
5980                                                    ForDefinition));
5981 
5982   // Already emitted.
5983   if (!GV->isDeclaration())
5984     return;
5985 
5986   // We need to set linkage and visibility on the function before
5987   // generating code for it because various parts of IR generation
5988   // want to propagate this information down (e.g. to local static
5989   // declarations).
5990   auto *Fn = cast<llvm::Function>(GV);
5991   setFunctionLinkage(GD, Fn);
5992 
5993   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5994   setGVProperties(Fn, GD);
5995 
5996   MaybeHandleStaticInExternC(D, Fn);
5997 
5998   maybeSetTrivialComdat(*D, *Fn);
5999 
6000   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6001 
6002   setNonAliasAttributes(GD, Fn);
6003   SetLLVMFunctionAttributesForDefinition(D, Fn);
6004 
6005   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6006     AddGlobalCtor(Fn, CA->getPriority());
6007   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6008     AddGlobalDtor(Fn, DA->getPriority(), true);
6009   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6010     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6011 }
6012 
6013 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6014   const auto *D = cast<ValueDecl>(GD.getDecl());
6015   const AliasAttr *AA = D->getAttr<AliasAttr>();
6016   assert(AA && "Not an alias?");
6017 
6018   StringRef MangledName = getMangledName(GD);
6019 
6020   if (AA->getAliasee() == MangledName) {
6021     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6022     return;
6023   }
6024 
6025   // If there is a definition in the module, then it wins over the alias.
6026   // This is dubious, but allow it to be safe.  Just ignore the alias.
6027   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6028   if (Entry && !Entry->isDeclaration())
6029     return;
6030 
6031   Aliases.push_back(GD);
6032 
6033   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6034 
6035   // Create a reference to the named value.  This ensures that it is emitted
6036   // if a deferred decl.
6037   llvm::Constant *Aliasee;
6038   llvm::GlobalValue::LinkageTypes LT;
6039   if (isa<llvm::FunctionType>(DeclTy)) {
6040     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6041                                       /*ForVTable=*/false);
6042     LT = getFunctionLinkage(GD);
6043   } else {
6044     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6045                                     /*D=*/nullptr);
6046     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6047       LT = getLLVMLinkageVarDefinition(VD);
6048     else
6049       LT = getFunctionLinkage(GD);
6050   }
6051 
6052   // Create the new alias itself, but don't set a name yet.
6053   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6054   auto *GA =
6055       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6056 
6057   if (Entry) {
6058     if (GA->getAliasee() == Entry) {
6059       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6060       return;
6061     }
6062 
6063     assert(Entry->isDeclaration());
6064 
6065     // If there is a declaration in the module, then we had an extern followed
6066     // by the alias, as in:
6067     //   extern int test6();
6068     //   ...
6069     //   int test6() __attribute__((alias("test7")));
6070     //
6071     // Remove it and replace uses of it with the alias.
6072     GA->takeName(Entry);
6073 
6074     Entry->replaceAllUsesWith(GA);
6075     Entry->eraseFromParent();
6076   } else {
6077     GA->setName(MangledName);
6078   }
6079 
6080   // Set attributes which are particular to an alias; this is a
6081   // specialization of the attributes which may be set on a global
6082   // variable/function.
6083   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6084       D->isWeakImported()) {
6085     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6086   }
6087 
6088   if (const auto *VD = dyn_cast<VarDecl>(D))
6089     if (VD->getTLSKind())
6090       setTLSMode(GA, *VD);
6091 
6092   SetCommonAttributes(GD, GA);
6093 
6094   // Emit global alias debug information.
6095   if (isa<VarDecl>(D))
6096     if (CGDebugInfo *DI = getModuleDebugInfo())
6097       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6098 }
6099 
6100 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6101   const auto *D = cast<ValueDecl>(GD.getDecl());
6102   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6103   assert(IFA && "Not an ifunc?");
6104 
6105   StringRef MangledName = getMangledName(GD);
6106 
6107   if (IFA->getResolver() == MangledName) {
6108     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6109     return;
6110   }
6111 
6112   // Report an error if some definition overrides ifunc.
6113   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6114   if (Entry && !Entry->isDeclaration()) {
6115     GlobalDecl OtherGD;
6116     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6117         DiagnosedConflictingDefinitions.insert(GD).second) {
6118       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6119           << MangledName;
6120       Diags.Report(OtherGD.getDecl()->getLocation(),
6121                    diag::note_previous_definition);
6122     }
6123     return;
6124   }
6125 
6126   Aliases.push_back(GD);
6127 
6128   // The resolver might not be visited yet. Specify a dummy non-function type to
6129   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6130   // was emitted) or the whole function will be replaced (if the resolver has
6131   // not been emitted).
6132   llvm::Constant *Resolver =
6133       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6134                               /*ForVTable=*/false);
6135   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6136   llvm::GlobalIFunc *GIF =
6137       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6138                                 "", Resolver, &getModule());
6139   if (Entry) {
6140     if (GIF->getResolver() == Entry) {
6141       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6142       return;
6143     }
6144     assert(Entry->isDeclaration());
6145 
6146     // If there is a declaration in the module, then we had an extern followed
6147     // by the ifunc, as in:
6148     //   extern int test();
6149     //   ...
6150     //   int test() __attribute__((ifunc("resolver")));
6151     //
6152     // Remove it and replace uses of it with the ifunc.
6153     GIF->takeName(Entry);
6154 
6155     Entry->replaceAllUsesWith(GIF);
6156     Entry->eraseFromParent();
6157   } else
6158     GIF->setName(MangledName);
6159   SetCommonAttributes(GD, GIF);
6160 }
6161 
6162 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6163                                             ArrayRef<llvm::Type*> Tys) {
6164   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6165                                          Tys);
6166 }
6167 
6168 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6169 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6170                          const StringLiteral *Literal, bool TargetIsLSB,
6171                          bool &IsUTF16, unsigned &StringLength) {
6172   StringRef String = Literal->getString();
6173   unsigned NumBytes = String.size();
6174 
6175   // Check for simple case.
6176   if (!Literal->containsNonAsciiOrNull()) {
6177     StringLength = NumBytes;
6178     return *Map.insert(std::make_pair(String, nullptr)).first;
6179   }
6180 
6181   // Otherwise, convert the UTF8 literals into a string of shorts.
6182   IsUTF16 = true;
6183 
6184   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6185   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6186   llvm::UTF16 *ToPtr = &ToBuf[0];
6187 
6188   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6189                                  ToPtr + NumBytes, llvm::strictConversion);
6190 
6191   // ConvertUTF8toUTF16 returns the length in ToPtr.
6192   StringLength = ToPtr - &ToBuf[0];
6193 
6194   // Add an explicit null.
6195   *ToPtr = 0;
6196   return *Map.insert(std::make_pair(
6197                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6198                                    (StringLength + 1) * 2),
6199                          nullptr)).first;
6200 }
6201 
6202 ConstantAddress
6203 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6204   unsigned StringLength = 0;
6205   bool isUTF16 = false;
6206   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6207       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6208                                getDataLayout().isLittleEndian(), isUTF16,
6209                                StringLength);
6210 
6211   if (auto *C = Entry.second)
6212     return ConstantAddress(
6213         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6214 
6215   const ASTContext &Context = getContext();
6216   const llvm::Triple &Triple = getTriple();
6217 
6218   const auto CFRuntime = getLangOpts().CFRuntime;
6219   const bool IsSwiftABI =
6220       static_cast<unsigned>(CFRuntime) >=
6221       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6222   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6223 
6224   // If we don't already have it, get __CFConstantStringClassReference.
6225   if (!CFConstantStringClassRef) {
6226     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6227     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6228     Ty = llvm::ArrayType::get(Ty, 0);
6229 
6230     switch (CFRuntime) {
6231     default: break;
6232     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6233     case LangOptions::CoreFoundationABI::Swift5_0:
6234       CFConstantStringClassName =
6235           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6236                               : "$s10Foundation19_NSCFConstantStringCN";
6237       Ty = IntPtrTy;
6238       break;
6239     case LangOptions::CoreFoundationABI::Swift4_2:
6240       CFConstantStringClassName =
6241           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6242                               : "$S10Foundation19_NSCFConstantStringCN";
6243       Ty = IntPtrTy;
6244       break;
6245     case LangOptions::CoreFoundationABI::Swift4_1:
6246       CFConstantStringClassName =
6247           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6248                               : "__T010Foundation19_NSCFConstantStringCN";
6249       Ty = IntPtrTy;
6250       break;
6251     }
6252 
6253     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6254 
6255     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6256       llvm::GlobalValue *GV = nullptr;
6257 
6258       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6259         IdentifierInfo &II = Context.Idents.get(GV->getName());
6260         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6261         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6262 
6263         const VarDecl *VD = nullptr;
6264         for (const auto *Result : DC->lookup(&II))
6265           if ((VD = dyn_cast<VarDecl>(Result)))
6266             break;
6267 
6268         if (Triple.isOSBinFormatELF()) {
6269           if (!VD)
6270             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6271         } else {
6272           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6273           if (!VD || !VD->hasAttr<DLLExportAttr>())
6274             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6275           else
6276             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6277         }
6278 
6279         setDSOLocal(GV);
6280       }
6281     }
6282 
6283     // Decay array -> ptr
6284     CFConstantStringClassRef =
6285         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6286   }
6287 
6288   QualType CFTy = Context.getCFConstantStringType();
6289 
6290   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6291 
6292   ConstantInitBuilder Builder(*this);
6293   auto Fields = Builder.beginStruct(STy);
6294 
6295   // Class pointer.
6296   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6297 
6298   // Flags.
6299   if (IsSwiftABI) {
6300     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6301     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6302   } else {
6303     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6304   }
6305 
6306   // String pointer.
6307   llvm::Constant *C = nullptr;
6308   if (isUTF16) {
6309     auto Arr = llvm::ArrayRef(
6310         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6311         Entry.first().size() / 2);
6312     C = llvm::ConstantDataArray::get(VMContext, Arr);
6313   } else {
6314     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6315   }
6316 
6317   // Note: -fwritable-strings doesn't make the backing store strings of
6318   // CFStrings writable.
6319   auto *GV =
6320       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6321                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6322   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6323   // Don't enforce the target's minimum global alignment, since the only use
6324   // of the string is via this class initializer.
6325   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6326                             : Context.getTypeAlignInChars(Context.CharTy);
6327   GV->setAlignment(Align.getAsAlign());
6328 
6329   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6330   // Without it LLVM can merge the string with a non unnamed_addr one during
6331   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6332   if (Triple.isOSBinFormatMachO())
6333     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6334                            : "__TEXT,__cstring,cstring_literals");
6335   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6336   // the static linker to adjust permissions to read-only later on.
6337   else if (Triple.isOSBinFormatELF())
6338     GV->setSection(".rodata");
6339 
6340   // String.
6341   Fields.add(GV);
6342 
6343   // String length.
6344   llvm::IntegerType *LengthTy =
6345       llvm::IntegerType::get(getModule().getContext(),
6346                              Context.getTargetInfo().getLongWidth());
6347   if (IsSwiftABI) {
6348     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6349         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6350       LengthTy = Int32Ty;
6351     else
6352       LengthTy = IntPtrTy;
6353   }
6354   Fields.addInt(LengthTy, StringLength);
6355 
6356   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6357   // properly aligned on 32-bit platforms.
6358   CharUnits Alignment =
6359       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6360 
6361   // The struct.
6362   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6363                                     /*isConstant=*/false,
6364                                     llvm::GlobalVariable::PrivateLinkage);
6365   GV->addAttribute("objc_arc_inert");
6366   switch (Triple.getObjectFormat()) {
6367   case llvm::Triple::UnknownObjectFormat:
6368     llvm_unreachable("unknown file format");
6369   case llvm::Triple::DXContainer:
6370   case llvm::Triple::GOFF:
6371   case llvm::Triple::SPIRV:
6372   case llvm::Triple::XCOFF:
6373     llvm_unreachable("unimplemented");
6374   case llvm::Triple::COFF:
6375   case llvm::Triple::ELF:
6376   case llvm::Triple::Wasm:
6377     GV->setSection("cfstring");
6378     break;
6379   case llvm::Triple::MachO:
6380     GV->setSection("__DATA,__cfstring");
6381     break;
6382   }
6383   Entry.second = GV;
6384 
6385   return ConstantAddress(GV, GV->getValueType(), Alignment);
6386 }
6387 
6388 bool CodeGenModule::getExpressionLocationsEnabled() const {
6389   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6390 }
6391 
6392 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6393   if (ObjCFastEnumerationStateType.isNull()) {
6394     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6395     D->startDefinition();
6396 
6397     QualType FieldTypes[] = {
6398         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6399         Context.getPointerType(Context.UnsignedLongTy),
6400         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6401                                      nullptr, ArraySizeModifier::Normal, 0)};
6402 
6403     for (size_t i = 0; i < 4; ++i) {
6404       FieldDecl *Field = FieldDecl::Create(Context,
6405                                            D,
6406                                            SourceLocation(),
6407                                            SourceLocation(), nullptr,
6408                                            FieldTypes[i], /*TInfo=*/nullptr,
6409                                            /*BitWidth=*/nullptr,
6410                                            /*Mutable=*/false,
6411                                            ICIS_NoInit);
6412       Field->setAccess(AS_public);
6413       D->addDecl(Field);
6414     }
6415 
6416     D->completeDefinition();
6417     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6418   }
6419 
6420   return ObjCFastEnumerationStateType;
6421 }
6422 
6423 llvm::Constant *
6424 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6425   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6426 
6427   // Don't emit it as the address of the string, emit the string data itself
6428   // as an inline array.
6429   if (E->getCharByteWidth() == 1) {
6430     SmallString<64> Str(E->getString());
6431 
6432     // Resize the string to the right size, which is indicated by its type.
6433     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6434     assert(CAT && "String literal not of constant array type!");
6435     Str.resize(CAT->getZExtSize());
6436     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6437   }
6438 
6439   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6440   llvm::Type *ElemTy = AType->getElementType();
6441   unsigned NumElements = AType->getNumElements();
6442 
6443   // Wide strings have either 2-byte or 4-byte elements.
6444   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6445     SmallVector<uint16_t, 32> Elements;
6446     Elements.reserve(NumElements);
6447 
6448     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6449       Elements.push_back(E->getCodeUnit(i));
6450     Elements.resize(NumElements);
6451     return llvm::ConstantDataArray::get(VMContext, Elements);
6452   }
6453 
6454   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6455   SmallVector<uint32_t, 32> Elements;
6456   Elements.reserve(NumElements);
6457 
6458   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6459     Elements.push_back(E->getCodeUnit(i));
6460   Elements.resize(NumElements);
6461   return llvm::ConstantDataArray::get(VMContext, Elements);
6462 }
6463 
6464 static llvm::GlobalVariable *
6465 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6466                       CodeGenModule &CGM, StringRef GlobalName,
6467                       CharUnits Alignment) {
6468   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6469       CGM.GetGlobalConstantAddressSpace());
6470 
6471   llvm::Module &M = CGM.getModule();
6472   // Create a global variable for this string
6473   auto *GV = new llvm::GlobalVariable(
6474       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6475       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6476   GV->setAlignment(Alignment.getAsAlign());
6477   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6478   if (GV->isWeakForLinker()) {
6479     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6480     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6481   }
6482   CGM.setDSOLocal(GV);
6483 
6484   return GV;
6485 }
6486 
6487 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6488 /// constant array for the given string literal.
6489 ConstantAddress
6490 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6491                                                   StringRef Name) {
6492   CharUnits Alignment =
6493       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6494 
6495   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6496   llvm::GlobalVariable **Entry = nullptr;
6497   if (!LangOpts.WritableStrings) {
6498     Entry = &ConstantStringMap[C];
6499     if (auto GV = *Entry) {
6500       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6501         GV->setAlignment(Alignment.getAsAlign());
6502       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6503                              GV->getValueType(), Alignment);
6504     }
6505   }
6506 
6507   SmallString<256> MangledNameBuffer;
6508   StringRef GlobalVariableName;
6509   llvm::GlobalValue::LinkageTypes LT;
6510 
6511   // Mangle the string literal if that's how the ABI merges duplicate strings.
6512   // Don't do it if they are writable, since we don't want writes in one TU to
6513   // affect strings in another.
6514   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6515       !LangOpts.WritableStrings) {
6516     llvm::raw_svector_ostream Out(MangledNameBuffer);
6517     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6518     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6519     GlobalVariableName = MangledNameBuffer;
6520   } else {
6521     LT = llvm::GlobalValue::PrivateLinkage;
6522     GlobalVariableName = Name;
6523   }
6524 
6525   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6526 
6527   CGDebugInfo *DI = getModuleDebugInfo();
6528   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6529     DI->AddStringLiteralDebugInfo(GV, S);
6530 
6531   if (Entry)
6532     *Entry = GV;
6533 
6534   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6535 
6536   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6537                          GV->getValueType(), Alignment);
6538 }
6539 
6540 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6541 /// array for the given ObjCEncodeExpr node.
6542 ConstantAddress
6543 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6544   std::string Str;
6545   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6546 
6547   return GetAddrOfConstantCString(Str);
6548 }
6549 
6550 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6551 /// the literal and a terminating '\0' character.
6552 /// The result has pointer to array type.
6553 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6554     const std::string &Str, const char *GlobalName) {
6555   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6556   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6557       getContext().CharTy, /*VD=*/nullptr);
6558 
6559   llvm::Constant *C =
6560       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6561 
6562   // Don't share any string literals if strings aren't constant.
6563   llvm::GlobalVariable **Entry = nullptr;
6564   if (!LangOpts.WritableStrings) {
6565     Entry = &ConstantStringMap[C];
6566     if (auto GV = *Entry) {
6567       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6568         GV->setAlignment(Alignment.getAsAlign());
6569       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6570                              GV->getValueType(), Alignment);
6571     }
6572   }
6573 
6574   // Get the default prefix if a name wasn't specified.
6575   if (!GlobalName)
6576     GlobalName = ".str";
6577   // Create a global variable for this.
6578   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6579                                   GlobalName, Alignment);
6580   if (Entry)
6581     *Entry = GV;
6582 
6583   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6584                          GV->getValueType(), Alignment);
6585 }
6586 
6587 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6588     const MaterializeTemporaryExpr *E, const Expr *Init) {
6589   assert((E->getStorageDuration() == SD_Static ||
6590           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6591   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6592 
6593   // If we're not materializing a subobject of the temporary, keep the
6594   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6595   QualType MaterializedType = Init->getType();
6596   if (Init == E->getSubExpr())
6597     MaterializedType = E->getType();
6598 
6599   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6600 
6601   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6602   if (!InsertResult.second) {
6603     // We've seen this before: either we already created it or we're in the
6604     // process of doing so.
6605     if (!InsertResult.first->second) {
6606       // We recursively re-entered this function, probably during emission of
6607       // the initializer. Create a placeholder. We'll clean this up in the
6608       // outer call, at the end of this function.
6609       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6610       InsertResult.first->second = new llvm::GlobalVariable(
6611           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6612           nullptr);
6613     }
6614     return ConstantAddress(InsertResult.first->second,
6615                            llvm::cast<llvm::GlobalVariable>(
6616                                InsertResult.first->second->stripPointerCasts())
6617                                ->getValueType(),
6618                            Align);
6619   }
6620 
6621   // FIXME: If an externally-visible declaration extends multiple temporaries,
6622   // we need to give each temporary the same name in every translation unit (and
6623   // we also need to make the temporaries externally-visible).
6624   SmallString<256> Name;
6625   llvm::raw_svector_ostream Out(Name);
6626   getCXXABI().getMangleContext().mangleReferenceTemporary(
6627       VD, E->getManglingNumber(), Out);
6628 
6629   APValue *Value = nullptr;
6630   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6631     // If the initializer of the extending declaration is a constant
6632     // initializer, we should have a cached constant initializer for this
6633     // temporary. Note that this might have a different value from the value
6634     // computed by evaluating the initializer if the surrounding constant
6635     // expression modifies the temporary.
6636     Value = E->getOrCreateValue(false);
6637   }
6638 
6639   // Try evaluating it now, it might have a constant initializer.
6640   Expr::EvalResult EvalResult;
6641   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6642       !EvalResult.hasSideEffects())
6643     Value = &EvalResult.Val;
6644 
6645   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6646 
6647   std::optional<ConstantEmitter> emitter;
6648   llvm::Constant *InitialValue = nullptr;
6649   bool Constant = false;
6650   llvm::Type *Type;
6651   if (Value) {
6652     // The temporary has a constant initializer, use it.
6653     emitter.emplace(*this);
6654     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6655                                                MaterializedType);
6656     Constant =
6657         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6658                                            /*ExcludeDtor*/ false);
6659     Type = InitialValue->getType();
6660   } else {
6661     // No initializer, the initialization will be provided when we
6662     // initialize the declaration which performed lifetime extension.
6663     Type = getTypes().ConvertTypeForMem(MaterializedType);
6664   }
6665 
6666   // Create a global variable for this lifetime-extended temporary.
6667   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6668   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6669     const VarDecl *InitVD;
6670     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6671         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6672       // Temporaries defined inside a class get linkonce_odr linkage because the
6673       // class can be defined in multiple translation units.
6674       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6675     } else {
6676       // There is no need for this temporary to have external linkage if the
6677       // VarDecl has external linkage.
6678       Linkage = llvm::GlobalVariable::InternalLinkage;
6679     }
6680   }
6681   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6682   auto *GV = new llvm::GlobalVariable(
6683       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6684       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6685   if (emitter) emitter->finalize(GV);
6686   // Don't assign dllimport or dllexport to local linkage globals.
6687   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6688     setGVProperties(GV, VD);
6689     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6690       // The reference temporary should never be dllexport.
6691       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6692   }
6693   GV->setAlignment(Align.getAsAlign());
6694   if (supportsCOMDAT() && GV->isWeakForLinker())
6695     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6696   if (VD->getTLSKind())
6697     setTLSMode(GV, *VD);
6698   llvm::Constant *CV = GV;
6699   if (AddrSpace != LangAS::Default)
6700     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6701         *this, GV, AddrSpace, LangAS::Default,
6702         llvm::PointerType::get(
6703             getLLVMContext(),
6704             getContext().getTargetAddressSpace(LangAS::Default)));
6705 
6706   // Update the map with the new temporary. If we created a placeholder above,
6707   // replace it with the new global now.
6708   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6709   if (Entry) {
6710     Entry->replaceAllUsesWith(CV);
6711     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6712   }
6713   Entry = CV;
6714 
6715   return ConstantAddress(CV, Type, Align);
6716 }
6717 
6718 /// EmitObjCPropertyImplementations - Emit information for synthesized
6719 /// properties for an implementation.
6720 void CodeGenModule::EmitObjCPropertyImplementations(const
6721                                                     ObjCImplementationDecl *D) {
6722   for (const auto *PID : D->property_impls()) {
6723     // Dynamic is just for type-checking.
6724     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6725       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6726 
6727       // Determine which methods need to be implemented, some may have
6728       // been overridden. Note that ::isPropertyAccessor is not the method
6729       // we want, that just indicates if the decl came from a
6730       // property. What we want to know is if the method is defined in
6731       // this implementation.
6732       auto *Getter = PID->getGetterMethodDecl();
6733       if (!Getter || Getter->isSynthesizedAccessorStub())
6734         CodeGenFunction(*this).GenerateObjCGetter(
6735             const_cast<ObjCImplementationDecl *>(D), PID);
6736       auto *Setter = PID->getSetterMethodDecl();
6737       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6738         CodeGenFunction(*this).GenerateObjCSetter(
6739                                  const_cast<ObjCImplementationDecl *>(D), PID);
6740     }
6741   }
6742 }
6743 
6744 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6745   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6746   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6747        ivar; ivar = ivar->getNextIvar())
6748     if (ivar->getType().isDestructedType())
6749       return true;
6750 
6751   return false;
6752 }
6753 
6754 static bool AllTrivialInitializers(CodeGenModule &CGM,
6755                                    ObjCImplementationDecl *D) {
6756   CodeGenFunction CGF(CGM);
6757   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6758        E = D->init_end(); B != E; ++B) {
6759     CXXCtorInitializer *CtorInitExp = *B;
6760     Expr *Init = CtorInitExp->getInit();
6761     if (!CGF.isTrivialInitializer(Init))
6762       return false;
6763   }
6764   return true;
6765 }
6766 
6767 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6768 /// for an implementation.
6769 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6770   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6771   if (needsDestructMethod(D)) {
6772     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6773     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6774     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6775         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6776         getContext().VoidTy, nullptr, D,
6777         /*isInstance=*/true, /*isVariadic=*/false,
6778         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6779         /*isImplicitlyDeclared=*/true,
6780         /*isDefined=*/false, ObjCImplementationControl::Required);
6781     D->addInstanceMethod(DTORMethod);
6782     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6783     D->setHasDestructors(true);
6784   }
6785 
6786   // If the implementation doesn't have any ivar initializers, we don't need
6787   // a .cxx_construct.
6788   if (D->getNumIvarInitializers() == 0 ||
6789       AllTrivialInitializers(*this, D))
6790     return;
6791 
6792   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6793   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6794   // The constructor returns 'self'.
6795   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6796       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6797       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6798       /*isVariadic=*/false,
6799       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6800       /*isImplicitlyDeclared=*/true,
6801       /*isDefined=*/false, ObjCImplementationControl::Required);
6802   D->addInstanceMethod(CTORMethod);
6803   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6804   D->setHasNonZeroConstructors(true);
6805 }
6806 
6807 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6808 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6809   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6810       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6811     ErrorUnsupported(LSD, "linkage spec");
6812     return;
6813   }
6814 
6815   EmitDeclContext(LSD);
6816 }
6817 
6818 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6819   // Device code should not be at top level.
6820   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6821     return;
6822 
6823   std::unique_ptr<CodeGenFunction> &CurCGF =
6824       GlobalTopLevelStmtBlockInFlight.first;
6825 
6826   // We emitted a top-level stmt but after it there is initialization.
6827   // Stop squashing the top-level stmts into a single function.
6828   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6829     CurCGF->FinishFunction(D->getEndLoc());
6830     CurCGF = nullptr;
6831   }
6832 
6833   if (!CurCGF) {
6834     // void __stmts__N(void)
6835     // FIXME: Ask the ABI name mangler to pick a name.
6836     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6837     FunctionArgList Args;
6838     QualType RetTy = getContext().VoidTy;
6839     const CGFunctionInfo &FnInfo =
6840         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6841     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6842     llvm::Function *Fn = llvm::Function::Create(
6843         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6844 
6845     CurCGF.reset(new CodeGenFunction(*this));
6846     GlobalTopLevelStmtBlockInFlight.second = D;
6847     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6848                           D->getBeginLoc(), D->getBeginLoc());
6849     CXXGlobalInits.push_back(Fn);
6850   }
6851 
6852   CurCGF->EmitStmt(D->getStmt());
6853 }
6854 
6855 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6856   for (auto *I : DC->decls()) {
6857     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6858     // are themselves considered "top-level", so EmitTopLevelDecl on an
6859     // ObjCImplDecl does not recursively visit them. We need to do that in
6860     // case they're nested inside another construct (LinkageSpecDecl /
6861     // ExportDecl) that does stop them from being considered "top-level".
6862     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6863       for (auto *M : OID->methods())
6864         EmitTopLevelDecl(M);
6865     }
6866 
6867     EmitTopLevelDecl(I);
6868   }
6869 }
6870 
6871 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6872 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6873   // Ignore dependent declarations.
6874   if (D->isTemplated())
6875     return;
6876 
6877   // Consteval function shouldn't be emitted.
6878   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6879     return;
6880 
6881   switch (D->getKind()) {
6882   case Decl::CXXConversion:
6883   case Decl::CXXMethod:
6884   case Decl::Function:
6885     EmitGlobal(cast<FunctionDecl>(D));
6886     // Always provide some coverage mapping
6887     // even for the functions that aren't emitted.
6888     AddDeferredUnusedCoverageMapping(D);
6889     break;
6890 
6891   case Decl::CXXDeductionGuide:
6892     // Function-like, but does not result in code emission.
6893     break;
6894 
6895   case Decl::Var:
6896   case Decl::Decomposition:
6897   case Decl::VarTemplateSpecialization:
6898     EmitGlobal(cast<VarDecl>(D));
6899     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6900       for (auto *B : DD->bindings())
6901         if (auto *HD = B->getHoldingVar())
6902           EmitGlobal(HD);
6903     break;
6904 
6905   // Indirect fields from global anonymous structs and unions can be
6906   // ignored; only the actual variable requires IR gen support.
6907   case Decl::IndirectField:
6908     break;
6909 
6910   // C++ Decls
6911   case Decl::Namespace:
6912     EmitDeclContext(cast<NamespaceDecl>(D));
6913     break;
6914   case Decl::ClassTemplateSpecialization: {
6915     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6916     if (CGDebugInfo *DI = getModuleDebugInfo())
6917       if (Spec->getSpecializationKind() ==
6918               TSK_ExplicitInstantiationDefinition &&
6919           Spec->hasDefinition())
6920         DI->completeTemplateDefinition(*Spec);
6921   } [[fallthrough]];
6922   case Decl::CXXRecord: {
6923     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6924     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6925       if (CRD->hasDefinition())
6926         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6927       if (auto *ES = D->getASTContext().getExternalSource())
6928         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6929           DI->completeUnusedClass(*CRD);
6930     }
6931     // Emit any static data members, they may be definitions.
6932     for (auto *I : CRD->decls())
6933       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6934         EmitTopLevelDecl(I);
6935     break;
6936   }
6937     // No code generation needed.
6938   case Decl::UsingShadow:
6939   case Decl::ClassTemplate:
6940   case Decl::VarTemplate:
6941   case Decl::Concept:
6942   case Decl::VarTemplatePartialSpecialization:
6943   case Decl::FunctionTemplate:
6944   case Decl::TypeAliasTemplate:
6945   case Decl::Block:
6946   case Decl::Empty:
6947   case Decl::Binding:
6948     break;
6949   case Decl::Using:          // using X; [C++]
6950     if (CGDebugInfo *DI = getModuleDebugInfo())
6951         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6952     break;
6953   case Decl::UsingEnum: // using enum X; [C++]
6954     if (CGDebugInfo *DI = getModuleDebugInfo())
6955       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6956     break;
6957   case Decl::NamespaceAlias:
6958     if (CGDebugInfo *DI = getModuleDebugInfo())
6959         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6960     break;
6961   case Decl::UsingDirective: // using namespace X; [C++]
6962     if (CGDebugInfo *DI = getModuleDebugInfo())
6963       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6964     break;
6965   case Decl::CXXConstructor:
6966     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6967     break;
6968   case Decl::CXXDestructor:
6969     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6970     break;
6971 
6972   case Decl::StaticAssert:
6973     // Nothing to do.
6974     break;
6975 
6976   // Objective-C Decls
6977 
6978   // Forward declarations, no (immediate) code generation.
6979   case Decl::ObjCInterface:
6980   case Decl::ObjCCategory:
6981     break;
6982 
6983   case Decl::ObjCProtocol: {
6984     auto *Proto = cast<ObjCProtocolDecl>(D);
6985     if (Proto->isThisDeclarationADefinition())
6986       ObjCRuntime->GenerateProtocol(Proto);
6987     break;
6988   }
6989 
6990   case Decl::ObjCCategoryImpl:
6991     // Categories have properties but don't support synthesize so we
6992     // can ignore them here.
6993     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6994     break;
6995 
6996   case Decl::ObjCImplementation: {
6997     auto *OMD = cast<ObjCImplementationDecl>(D);
6998     EmitObjCPropertyImplementations(OMD);
6999     EmitObjCIvarInitializations(OMD);
7000     ObjCRuntime->GenerateClass(OMD);
7001     // Emit global variable debug information.
7002     if (CGDebugInfo *DI = getModuleDebugInfo())
7003       if (getCodeGenOpts().hasReducedDebugInfo())
7004         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7005             OMD->getClassInterface()), OMD->getLocation());
7006     break;
7007   }
7008   case Decl::ObjCMethod: {
7009     auto *OMD = cast<ObjCMethodDecl>(D);
7010     // If this is not a prototype, emit the body.
7011     if (OMD->getBody())
7012       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7013     break;
7014   }
7015   case Decl::ObjCCompatibleAlias:
7016     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7017     break;
7018 
7019   case Decl::PragmaComment: {
7020     const auto *PCD = cast<PragmaCommentDecl>(D);
7021     switch (PCD->getCommentKind()) {
7022     case PCK_Unknown:
7023       llvm_unreachable("unexpected pragma comment kind");
7024     case PCK_Linker:
7025       AppendLinkerOptions(PCD->getArg());
7026       break;
7027     case PCK_Lib:
7028         AddDependentLib(PCD->getArg());
7029       break;
7030     case PCK_Compiler:
7031     case PCK_ExeStr:
7032     case PCK_User:
7033       break; // We ignore all of these.
7034     }
7035     break;
7036   }
7037 
7038   case Decl::PragmaDetectMismatch: {
7039     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7040     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7041     break;
7042   }
7043 
7044   case Decl::LinkageSpec:
7045     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7046     break;
7047 
7048   case Decl::FileScopeAsm: {
7049     // File-scope asm is ignored during device-side CUDA compilation.
7050     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7051       break;
7052     // File-scope asm is ignored during device-side OpenMP compilation.
7053     if (LangOpts.OpenMPIsTargetDevice)
7054       break;
7055     // File-scope asm is ignored during device-side SYCL compilation.
7056     if (LangOpts.SYCLIsDevice)
7057       break;
7058     auto *AD = cast<FileScopeAsmDecl>(D);
7059     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7060     break;
7061   }
7062 
7063   case Decl::TopLevelStmt:
7064     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7065     break;
7066 
7067   case Decl::Import: {
7068     auto *Import = cast<ImportDecl>(D);
7069 
7070     // If we've already imported this module, we're done.
7071     if (!ImportedModules.insert(Import->getImportedModule()))
7072       break;
7073 
7074     // Emit debug information for direct imports.
7075     if (!Import->getImportedOwningModule()) {
7076       if (CGDebugInfo *DI = getModuleDebugInfo())
7077         DI->EmitImportDecl(*Import);
7078     }
7079 
7080     // For C++ standard modules we are done - we will call the module
7081     // initializer for imported modules, and that will likewise call those for
7082     // any imports it has.
7083     if (CXX20ModuleInits && Import->getImportedModule() &&
7084         Import->getImportedModule()->isNamedModule())
7085       break;
7086 
7087     // For clang C++ module map modules the initializers for sub-modules are
7088     // emitted here.
7089 
7090     // Find all of the submodules and emit the module initializers.
7091     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7092     SmallVector<clang::Module *, 16> Stack;
7093     Visited.insert(Import->getImportedModule());
7094     Stack.push_back(Import->getImportedModule());
7095 
7096     while (!Stack.empty()) {
7097       clang::Module *Mod = Stack.pop_back_val();
7098       if (!EmittedModuleInitializers.insert(Mod).second)
7099         continue;
7100 
7101       for (auto *D : Context.getModuleInitializers(Mod))
7102         EmitTopLevelDecl(D);
7103 
7104       // Visit the submodules of this module.
7105       for (auto *Submodule : Mod->submodules()) {
7106         // Skip explicit children; they need to be explicitly imported to emit
7107         // the initializers.
7108         if (Submodule->IsExplicit)
7109           continue;
7110 
7111         if (Visited.insert(Submodule).second)
7112           Stack.push_back(Submodule);
7113       }
7114     }
7115     break;
7116   }
7117 
7118   case Decl::Export:
7119     EmitDeclContext(cast<ExportDecl>(D));
7120     break;
7121 
7122   case Decl::OMPThreadPrivate:
7123     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7124     break;
7125 
7126   case Decl::OMPAllocate:
7127     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7128     break;
7129 
7130   case Decl::OMPDeclareReduction:
7131     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7132     break;
7133 
7134   case Decl::OMPDeclareMapper:
7135     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7136     break;
7137 
7138   case Decl::OMPRequires:
7139     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7140     break;
7141 
7142   case Decl::Typedef:
7143   case Decl::TypeAlias: // using foo = bar; [C++11]
7144     if (CGDebugInfo *DI = getModuleDebugInfo())
7145       DI->EmitAndRetainType(
7146           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7147     break;
7148 
7149   case Decl::Record:
7150     if (CGDebugInfo *DI = getModuleDebugInfo())
7151       if (cast<RecordDecl>(D)->getDefinition())
7152         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7153     break;
7154 
7155   case Decl::Enum:
7156     if (CGDebugInfo *DI = getModuleDebugInfo())
7157       if (cast<EnumDecl>(D)->getDefinition())
7158         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7159     break;
7160 
7161   case Decl::HLSLBuffer:
7162     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7163     break;
7164 
7165   default:
7166     // Make sure we handled everything we should, every other kind is a
7167     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7168     // function. Need to recode Decl::Kind to do that easily.
7169     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7170     break;
7171   }
7172 }
7173 
7174 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7175   // Do we need to generate coverage mapping?
7176   if (!CodeGenOpts.CoverageMapping)
7177     return;
7178   switch (D->getKind()) {
7179   case Decl::CXXConversion:
7180   case Decl::CXXMethod:
7181   case Decl::Function:
7182   case Decl::ObjCMethod:
7183   case Decl::CXXConstructor:
7184   case Decl::CXXDestructor: {
7185     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7186       break;
7187     SourceManager &SM = getContext().getSourceManager();
7188     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7189       break;
7190     if (!llvm::coverage::SystemHeadersCoverage &&
7191         SM.isInSystemHeader(D->getBeginLoc()))
7192       break;
7193     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7194     break;
7195   }
7196   default:
7197     break;
7198   };
7199 }
7200 
7201 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7202   // Do we need to generate coverage mapping?
7203   if (!CodeGenOpts.CoverageMapping)
7204     return;
7205   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7206     if (Fn->isTemplateInstantiation())
7207       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7208   }
7209   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7210 }
7211 
7212 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7213   // We call takeVector() here to avoid use-after-free.
7214   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7215   // we deserialize function bodies to emit coverage info for them, and that
7216   // deserializes more declarations. How should we handle that case?
7217   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7218     if (!Entry.second)
7219       continue;
7220     const Decl *D = Entry.first;
7221     switch (D->getKind()) {
7222     case Decl::CXXConversion:
7223     case Decl::CXXMethod:
7224     case Decl::Function:
7225     case Decl::ObjCMethod: {
7226       CodeGenPGO PGO(*this);
7227       GlobalDecl GD(cast<FunctionDecl>(D));
7228       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7229                                   getFunctionLinkage(GD));
7230       break;
7231     }
7232     case Decl::CXXConstructor: {
7233       CodeGenPGO PGO(*this);
7234       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7235       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7236                                   getFunctionLinkage(GD));
7237       break;
7238     }
7239     case Decl::CXXDestructor: {
7240       CodeGenPGO PGO(*this);
7241       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7242       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7243                                   getFunctionLinkage(GD));
7244       break;
7245     }
7246     default:
7247       break;
7248     };
7249   }
7250 }
7251 
7252 void CodeGenModule::EmitMainVoidAlias() {
7253   // In order to transition away from "__original_main" gracefully, emit an
7254   // alias for "main" in the no-argument case so that libc can detect when
7255   // new-style no-argument main is in used.
7256   if (llvm::Function *F = getModule().getFunction("main")) {
7257     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7258         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7259       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7260       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7261     }
7262   }
7263 }
7264 
7265 /// Turns the given pointer into a constant.
7266 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7267                                           const void *Ptr) {
7268   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7269   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7270   return llvm::ConstantInt::get(i64, PtrInt);
7271 }
7272 
7273 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7274                                    llvm::NamedMDNode *&GlobalMetadata,
7275                                    GlobalDecl D,
7276                                    llvm::GlobalValue *Addr) {
7277   if (!GlobalMetadata)
7278     GlobalMetadata =
7279       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7280 
7281   // TODO: should we report variant information for ctors/dtors?
7282   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7283                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7284                                CGM.getLLVMContext(), D.getDecl()))};
7285   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7286 }
7287 
7288 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7289                                                  llvm::GlobalValue *CppFunc) {
7290   // Store the list of ifuncs we need to replace uses in.
7291   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7292   // List of ConstantExprs that we should be able to delete when we're done
7293   // here.
7294   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7295 
7296   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7297   if (Elem == CppFunc)
7298     return false;
7299 
7300   // First make sure that all users of this are ifuncs (or ifuncs via a
7301   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7302   // later.
7303   for (llvm::User *User : Elem->users()) {
7304     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7305     // ifunc directly. In any other case, just give up, as we don't know what we
7306     // could break by changing those.
7307     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7308       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7309         return false;
7310 
7311       for (llvm::User *CEUser : ConstExpr->users()) {
7312         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7313           IFuncs.push_back(IFunc);
7314         } else {
7315           return false;
7316         }
7317       }
7318       CEs.push_back(ConstExpr);
7319     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7320       IFuncs.push_back(IFunc);
7321     } else {
7322       // This user is one we don't know how to handle, so fail redirection. This
7323       // will result in an ifunc retaining a resolver name that will ultimately
7324       // fail to be resolved to a defined function.
7325       return false;
7326     }
7327   }
7328 
7329   // Now we know this is a valid case where we can do this alias replacement, we
7330   // need to remove all of the references to Elem (and the bitcasts!) so we can
7331   // delete it.
7332   for (llvm::GlobalIFunc *IFunc : IFuncs)
7333     IFunc->setResolver(nullptr);
7334   for (llvm::ConstantExpr *ConstExpr : CEs)
7335     ConstExpr->destroyConstant();
7336 
7337   // We should now be out of uses for the 'old' version of this function, so we
7338   // can erase it as well.
7339   Elem->eraseFromParent();
7340 
7341   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7342     // The type of the resolver is always just a function-type that returns the
7343     // type of the IFunc, so create that here. If the type of the actual
7344     // resolver doesn't match, it just gets bitcast to the right thing.
7345     auto *ResolverTy =
7346         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7347     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7348         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7349     IFunc->setResolver(Resolver);
7350   }
7351   return true;
7352 }
7353 
7354 /// For each function which is declared within an extern "C" region and marked
7355 /// as 'used', but has internal linkage, create an alias from the unmangled
7356 /// name to the mangled name if possible. People expect to be able to refer
7357 /// to such functions with an unmangled name from inline assembly within the
7358 /// same translation unit.
7359 void CodeGenModule::EmitStaticExternCAliases() {
7360   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7361     return;
7362   for (auto &I : StaticExternCValues) {
7363     const IdentifierInfo *Name = I.first;
7364     llvm::GlobalValue *Val = I.second;
7365 
7366     // If Val is null, that implies there were multiple declarations that each
7367     // had a claim to the unmangled name. In this case, generation of the alias
7368     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7369     if (!Val)
7370       break;
7371 
7372     llvm::GlobalValue *ExistingElem =
7373         getModule().getNamedValue(Name->getName());
7374 
7375     // If there is either not something already by this name, or we were able to
7376     // replace all uses from IFuncs, create the alias.
7377     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7378       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7379   }
7380 }
7381 
7382 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7383                                              GlobalDecl &Result) const {
7384   auto Res = Manglings.find(MangledName);
7385   if (Res == Manglings.end())
7386     return false;
7387   Result = Res->getValue();
7388   return true;
7389 }
7390 
7391 /// Emits metadata nodes associating all the global values in the
7392 /// current module with the Decls they came from.  This is useful for
7393 /// projects using IR gen as a subroutine.
7394 ///
7395 /// Since there's currently no way to associate an MDNode directly
7396 /// with an llvm::GlobalValue, we create a global named metadata
7397 /// with the name 'clang.global.decl.ptrs'.
7398 void CodeGenModule::EmitDeclMetadata() {
7399   llvm::NamedMDNode *GlobalMetadata = nullptr;
7400 
7401   for (auto &I : MangledDeclNames) {
7402     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7403     // Some mangled names don't necessarily have an associated GlobalValue
7404     // in this module, e.g. if we mangled it for DebugInfo.
7405     if (Addr)
7406       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7407   }
7408 }
7409 
7410 /// Emits metadata nodes for all the local variables in the current
7411 /// function.
7412 void CodeGenFunction::EmitDeclMetadata() {
7413   if (LocalDeclMap.empty()) return;
7414 
7415   llvm::LLVMContext &Context = getLLVMContext();
7416 
7417   // Find the unique metadata ID for this name.
7418   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7419 
7420   llvm::NamedMDNode *GlobalMetadata = nullptr;
7421 
7422   for (auto &I : LocalDeclMap) {
7423     const Decl *D = I.first;
7424     llvm::Value *Addr = I.second.emitRawPointer(*this);
7425     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7426       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7427       Alloca->setMetadata(
7428           DeclPtrKind, llvm::MDNode::get(
7429                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7430     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7431       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7432       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7433     }
7434   }
7435 }
7436 
7437 void CodeGenModule::EmitVersionIdentMetadata() {
7438   llvm::NamedMDNode *IdentMetadata =
7439     TheModule.getOrInsertNamedMetadata("llvm.ident");
7440   std::string Version = getClangFullVersion();
7441   llvm::LLVMContext &Ctx = TheModule.getContext();
7442 
7443   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7444   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7445 }
7446 
7447 void CodeGenModule::EmitCommandLineMetadata() {
7448   llvm::NamedMDNode *CommandLineMetadata =
7449     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7450   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7451   llvm::LLVMContext &Ctx = TheModule.getContext();
7452 
7453   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7454   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7455 }
7456 
7457 void CodeGenModule::EmitCoverageFile() {
7458   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7459   if (!CUNode)
7460     return;
7461 
7462   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7463   llvm::LLVMContext &Ctx = TheModule.getContext();
7464   auto *CoverageDataFile =
7465       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7466   auto *CoverageNotesFile =
7467       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7468   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7469     llvm::MDNode *CU = CUNode->getOperand(i);
7470     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7471     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7472   }
7473 }
7474 
7475 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7476                                                        bool ForEH) {
7477   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7478   // FIXME: should we even be calling this method if RTTI is disabled
7479   // and it's not for EH?
7480   if (!shouldEmitRTTI(ForEH))
7481     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7482 
7483   if (ForEH && Ty->isObjCObjectPointerType() &&
7484       LangOpts.ObjCRuntime.isGNUFamily())
7485     return ObjCRuntime->GetEHType(Ty);
7486 
7487   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7488 }
7489 
7490 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7491   // Do not emit threadprivates in simd-only mode.
7492   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7493     return;
7494   for (auto RefExpr : D->varlists()) {
7495     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7496     bool PerformInit =
7497         VD->getAnyInitializer() &&
7498         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7499                                                         /*ForRef=*/false);
7500 
7501     Address Addr(GetAddrOfGlobalVar(VD),
7502                  getTypes().ConvertTypeForMem(VD->getType()),
7503                  getContext().getDeclAlign(VD));
7504     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7505             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7506       CXXGlobalInits.push_back(InitFunction);
7507   }
7508 }
7509 
7510 llvm::Metadata *
7511 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7512                                             StringRef Suffix) {
7513   if (auto *FnType = T->getAs<FunctionProtoType>())
7514     T = getContext().getFunctionType(
7515         FnType->getReturnType(), FnType->getParamTypes(),
7516         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7517 
7518   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7519   if (InternalId)
7520     return InternalId;
7521 
7522   if (isExternallyVisible(T->getLinkage())) {
7523     std::string OutName;
7524     llvm::raw_string_ostream Out(OutName);
7525     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7526         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7527 
7528     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7529       Out << ".normalized";
7530 
7531     Out << Suffix;
7532 
7533     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7534   } else {
7535     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7536                                            llvm::ArrayRef<llvm::Metadata *>());
7537   }
7538 
7539   return InternalId;
7540 }
7541 
7542 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7543   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7544 }
7545 
7546 llvm::Metadata *
7547 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7548   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7549 }
7550 
7551 // Generalize pointer types to a void pointer with the qualifiers of the
7552 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7553 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7554 // 'void *'.
7555 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7556   if (!Ty->isPointerType())
7557     return Ty;
7558 
7559   return Ctx.getPointerType(
7560       QualType(Ctx.VoidTy).withCVRQualifiers(
7561           Ty->getPointeeType().getCVRQualifiers()));
7562 }
7563 
7564 // Apply type generalization to a FunctionType's return and argument types
7565 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7566   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7567     SmallVector<QualType, 8> GeneralizedParams;
7568     for (auto &Param : FnType->param_types())
7569       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7570 
7571     return Ctx.getFunctionType(
7572         GeneralizeType(Ctx, FnType->getReturnType()),
7573         GeneralizedParams, FnType->getExtProtoInfo());
7574   }
7575 
7576   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7577     return Ctx.getFunctionNoProtoType(
7578         GeneralizeType(Ctx, FnType->getReturnType()));
7579 
7580   llvm_unreachable("Encountered unknown FunctionType");
7581 }
7582 
7583 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7584   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7585                                       GeneralizedMetadataIdMap, ".generalized");
7586 }
7587 
7588 /// Returns whether this module needs the "all-vtables" type identifier.
7589 bool CodeGenModule::NeedAllVtablesTypeId() const {
7590   // Returns true if at least one of vtable-based CFI checkers is enabled and
7591   // is not in the trapping mode.
7592   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7593            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7594           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7595            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7596           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7597            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7598           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7599            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7600 }
7601 
7602 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7603                                           CharUnits Offset,
7604                                           const CXXRecordDecl *RD) {
7605   llvm::Metadata *MD =
7606       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7607   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7608 
7609   if (CodeGenOpts.SanitizeCfiCrossDso)
7610     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7611       VTable->addTypeMetadata(Offset.getQuantity(),
7612                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7613 
7614   if (NeedAllVtablesTypeId()) {
7615     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7616     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7617   }
7618 }
7619 
7620 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7621   if (!SanStats)
7622     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7623 
7624   return *SanStats;
7625 }
7626 
7627 llvm::Value *
7628 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7629                                                   CodeGenFunction &CGF) {
7630   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7631   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7632   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7633   auto *Call = CGF.EmitRuntimeCall(
7634       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7635   return Call;
7636 }
7637 
7638 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7639     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7640   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7641                                  /* forPointeeType= */ true);
7642 }
7643 
7644 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7645                                                  LValueBaseInfo *BaseInfo,
7646                                                  TBAAAccessInfo *TBAAInfo,
7647                                                  bool forPointeeType) {
7648   if (TBAAInfo)
7649     *TBAAInfo = getTBAAAccessInfo(T);
7650 
7651   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7652   // that doesn't return the information we need to compute BaseInfo.
7653 
7654   // Honor alignment typedef attributes even on incomplete types.
7655   // We also honor them straight for C++ class types, even as pointees;
7656   // there's an expressivity gap here.
7657   if (auto TT = T->getAs<TypedefType>()) {
7658     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7659       if (BaseInfo)
7660         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7661       return getContext().toCharUnitsFromBits(Align);
7662     }
7663   }
7664 
7665   bool AlignForArray = T->isArrayType();
7666 
7667   // Analyze the base element type, so we don't get confused by incomplete
7668   // array types.
7669   T = getContext().getBaseElementType(T);
7670 
7671   if (T->isIncompleteType()) {
7672     // We could try to replicate the logic from
7673     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7674     // type is incomplete, so it's impossible to test. We could try to reuse
7675     // getTypeAlignIfKnown, but that doesn't return the information we need
7676     // to set BaseInfo.  So just ignore the possibility that the alignment is
7677     // greater than one.
7678     if (BaseInfo)
7679       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7680     return CharUnits::One();
7681   }
7682 
7683   if (BaseInfo)
7684     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7685 
7686   CharUnits Alignment;
7687   const CXXRecordDecl *RD;
7688   if (T.getQualifiers().hasUnaligned()) {
7689     Alignment = CharUnits::One();
7690   } else if (forPointeeType && !AlignForArray &&
7691              (RD = T->getAsCXXRecordDecl())) {
7692     // For C++ class pointees, we don't know whether we're pointing at a
7693     // base or a complete object, so we generally need to use the
7694     // non-virtual alignment.
7695     Alignment = getClassPointerAlignment(RD);
7696   } else {
7697     Alignment = getContext().getTypeAlignInChars(T);
7698   }
7699 
7700   // Cap to the global maximum type alignment unless the alignment
7701   // was somehow explicit on the type.
7702   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7703     if (Alignment.getQuantity() > MaxAlign &&
7704         !getContext().isAlignmentRequired(T))
7705       Alignment = CharUnits::fromQuantity(MaxAlign);
7706   }
7707   return Alignment;
7708 }
7709 
7710 bool CodeGenModule::stopAutoInit() {
7711   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7712   if (StopAfter) {
7713     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7714     // used
7715     if (NumAutoVarInit >= StopAfter) {
7716       return true;
7717     }
7718     if (!NumAutoVarInit) {
7719       unsigned DiagID = getDiags().getCustomDiagID(
7720           DiagnosticsEngine::Warning,
7721           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7722           "number of times ftrivial-auto-var-init=%1 gets applied.");
7723       getDiags().Report(DiagID)
7724           << StopAfter
7725           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7726                       LangOptions::TrivialAutoVarInitKind::Zero
7727                   ? "zero"
7728                   : "pattern");
7729     }
7730     ++NumAutoVarInit;
7731   }
7732   return false;
7733 }
7734 
7735 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7736                                                     const Decl *D) const {
7737   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7738   // postfix beginning with '.' since the symbol name can be demangled.
7739   if (LangOpts.HIP)
7740     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7741   else
7742     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7743 
7744   // If the CUID is not specified we try to generate a unique postfix.
7745   if (getLangOpts().CUID.empty()) {
7746     SourceManager &SM = getContext().getSourceManager();
7747     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7748     assert(PLoc.isValid() && "Source location is expected to be valid.");
7749 
7750     // Get the hash of the user defined macros.
7751     llvm::MD5 Hash;
7752     llvm::MD5::MD5Result Result;
7753     for (const auto &Arg : PreprocessorOpts.Macros)
7754       Hash.update(Arg.first);
7755     Hash.final(Result);
7756 
7757     // Get the UniqueID for the file containing the decl.
7758     llvm::sys::fs::UniqueID ID;
7759     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7760       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7761       assert(PLoc.isValid() && "Source location is expected to be valid.");
7762       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7763         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7764             << PLoc.getFilename() << EC.message();
7765     }
7766     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7767        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7768   } else {
7769     OS << getContext().getCUIDHash();
7770   }
7771 }
7772 
7773 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7774   assert(DeferredDeclsToEmit.empty() &&
7775          "Should have emitted all decls deferred to emit.");
7776   assert(NewBuilder->DeferredDecls.empty() &&
7777          "Newly created module should not have deferred decls");
7778   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7779   assert(EmittedDeferredDecls.empty() &&
7780          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7781 
7782   assert(NewBuilder->DeferredVTables.empty() &&
7783          "Newly created module should not have deferred vtables");
7784   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7785 
7786   assert(NewBuilder->MangledDeclNames.empty() &&
7787          "Newly created module should not have mangled decl names");
7788   assert(NewBuilder->Manglings.empty() &&
7789          "Newly created module should not have manglings");
7790   NewBuilder->Manglings = std::move(Manglings);
7791 
7792   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7793 
7794   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7795 }
7796