xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0c59e0b4e5817f139ce28486085b2f196351c7a3)
1  //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This coordinates the per-module state used while generating code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CodeGenModule.h"
14  #include "ABIInfo.h"
15  #include "CGBlocks.h"
16  #include "CGCUDARuntime.h"
17  #include "CGCXXABI.h"
18  #include "CGCall.h"
19  #include "CGDebugInfo.h"
20  #include "CGHLSLRuntime.h"
21  #include "CGObjCRuntime.h"
22  #include "CGOpenCLRuntime.h"
23  #include "CGOpenMPRuntime.h"
24  #include "CGOpenMPRuntimeGPU.h"
25  #include "CodeGenFunction.h"
26  #include "CodeGenPGO.h"
27  #include "ConstantEmitter.h"
28  #include "CoverageMappingGen.h"
29  #include "TargetInfo.h"
30  #include "clang/AST/ASTContext.h"
31  #include "clang/AST/CharUnits.h"
32  #include "clang/AST/DeclCXX.h"
33  #include "clang/AST/DeclObjC.h"
34  #include "clang/AST/DeclTemplate.h"
35  #include "clang/AST/Mangle.h"
36  #include "clang/AST/RecursiveASTVisitor.h"
37  #include "clang/AST/StmtVisitor.h"
38  #include "clang/Basic/Builtins.h"
39  #include "clang/Basic/CharInfo.h"
40  #include "clang/Basic/CodeGenOptions.h"
41  #include "clang/Basic/Diagnostic.h"
42  #include "clang/Basic/FileManager.h"
43  #include "clang/Basic/Module.h"
44  #include "clang/Basic/SourceManager.h"
45  #include "clang/Basic/TargetInfo.h"
46  #include "clang/Basic/Version.h"
47  #include "clang/CodeGen/BackendUtil.h"
48  #include "clang/CodeGen/ConstantInitBuilder.h"
49  #include "clang/Frontend/FrontendDiagnostic.h"
50  #include "llvm/ADT/StringSwitch.h"
51  #include "llvm/ADT/Triple.h"
52  #include "llvm/Analysis/TargetLibraryInfo.h"
53  #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54  #include "llvm/IR/CallingConv.h"
55  #include "llvm/IR/DataLayout.h"
56  #include "llvm/IR/Intrinsics.h"
57  #include "llvm/IR/LLVMContext.h"
58  #include "llvm/IR/Module.h"
59  #include "llvm/IR/ProfileSummary.h"
60  #include "llvm/ProfileData/InstrProfReader.h"
61  #include "llvm/Support/CRC.h"
62  #include "llvm/Support/CodeGen.h"
63  #include "llvm/Support/CommandLine.h"
64  #include "llvm/Support/ConvertUTF.h"
65  #include "llvm/Support/ErrorHandling.h"
66  #include "llvm/Support/MD5.h"
67  #include "llvm/Support/TimeProfiler.h"
68  #include "llvm/Support/X86TargetParser.h"
69  
70  using namespace clang;
71  using namespace CodeGen;
72  
73  static llvm::cl::opt<bool> LimitedCoverage(
74      "limited-coverage-experimental", llvm::cl::Hidden,
75      llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
76  
77  static const char AnnotationSection[] = "llvm.metadata";
78  
79  static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
80    switch (CGM.getContext().getCXXABIKind()) {
81    case TargetCXXABI::AppleARM64:
82    case TargetCXXABI::Fuchsia:
83    case TargetCXXABI::GenericAArch64:
84    case TargetCXXABI::GenericARM:
85    case TargetCXXABI::iOS:
86    case TargetCXXABI::WatchOS:
87    case TargetCXXABI::GenericMIPS:
88    case TargetCXXABI::GenericItanium:
89    case TargetCXXABI::WebAssembly:
90    case TargetCXXABI::XL:
91      return CreateItaniumCXXABI(CGM);
92    case TargetCXXABI::Microsoft:
93      return CreateMicrosoftCXXABI(CGM);
94    }
95  
96    llvm_unreachable("invalid C++ ABI kind");
97  }
98  
99  CodeGenModule::CodeGenModule(ASTContext &C,
100                               IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
101                               const HeaderSearchOptions &HSO,
102                               const PreprocessorOptions &PPO,
103                               const CodeGenOptions &CGO, llvm::Module &M,
104                               DiagnosticsEngine &diags,
105                               CoverageSourceInfo *CoverageInfo)
106      : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
107        HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
108        TheModule(M), Diags(diags), Target(C.getTargetInfo()),
109        ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
110        VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
111  
112    // Initialize the type cache.
113    llvm::LLVMContext &LLVMContext = M.getContext();
114    VoidTy = llvm::Type::getVoidTy(LLVMContext);
115    Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
116    Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
117    Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
118    Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
119    HalfTy = llvm::Type::getHalfTy(LLVMContext);
120    BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
121    FloatTy = llvm::Type::getFloatTy(LLVMContext);
122    DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
123    PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
124    PointerAlignInBytes =
125      C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
126    SizeSizeInBytes =
127      C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
128    IntAlignInBytes =
129      C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
130    CharTy =
131      llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
132    IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
133    IntPtrTy = llvm::IntegerType::get(LLVMContext,
134      C.getTargetInfo().getMaxPointerWidth());
135    Int8PtrTy = Int8Ty->getPointerTo(0);
136    Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
137    const llvm::DataLayout &DL = M.getDataLayout();
138    AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
139    GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
140    ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
141  
142    // Build C++20 Module initializers.
143    // TODO: Add Microsoft here once we know the mangling required for the
144    // initializers.
145    CXX20ModuleInits =
146        LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
147                                         ItaniumMangleContext::MK_Itanium;
148  
149    RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
150  
151    if (LangOpts.ObjC)
152      createObjCRuntime();
153    if (LangOpts.OpenCL)
154      createOpenCLRuntime();
155    if (LangOpts.OpenMP)
156      createOpenMPRuntime();
157    if (LangOpts.CUDA)
158      createCUDARuntime();
159    if (LangOpts.HLSL)
160      createHLSLRuntime();
161  
162    // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
163    if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
164        (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
165      TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
166                                 getCXXABI().getMangleContext()));
167  
168    // If debug info or coverage generation is enabled, create the CGDebugInfo
169    // object.
170    if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
171        CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
172      DebugInfo.reset(new CGDebugInfo(*this));
173  
174    Block.GlobalUniqueCount = 0;
175  
176    if (C.getLangOpts().ObjC)
177      ObjCData.reset(new ObjCEntrypoints());
178  
179    if (CodeGenOpts.hasProfileClangUse()) {
180      auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
181          CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
182      if (auto E = ReaderOrErr.takeError()) {
183        unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
184                                                "Could not read profile %0: %1");
185        llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
186          getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
187                                    << EI.message();
188        });
189      } else
190        PGOReader = std::move(ReaderOrErr.get());
191    }
192  
193    // If coverage mapping generation is enabled, create the
194    // CoverageMappingModuleGen object.
195    if (CodeGenOpts.CoverageMapping)
196      CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
197  
198    // Generate the module name hash here if needed.
199    if (CodeGenOpts.UniqueInternalLinkageNames &&
200        !getModule().getSourceFileName().empty()) {
201      std::string Path = getModule().getSourceFileName();
202      // Check if a path substitution is needed from the MacroPrefixMap.
203      for (const auto &Entry : LangOpts.MacroPrefixMap)
204        if (Path.rfind(Entry.first, 0) != std::string::npos) {
205          Path = Entry.second + Path.substr(Entry.first.size());
206          break;
207        }
208      llvm::MD5 Md5;
209      Md5.update(Path);
210      llvm::MD5::MD5Result R;
211      Md5.final(R);
212      SmallString<32> Str;
213      llvm::MD5::stringifyResult(R, Str);
214      // Convert MD5hash to Decimal. Demangler suffixes can either contain
215      // numbers or characters but not both.
216      llvm::APInt IntHash(128, Str.str(), 16);
217      // Prepend "__uniq" before the hash for tools like profilers to understand
218      // that this symbol is of internal linkage type.  The "__uniq" is the
219      // pre-determined prefix that is used to tell tools that this symbol was
220      // created with -funique-internal-linakge-symbols and the tools can strip or
221      // keep the prefix as needed.
222      ModuleNameHash = (Twine(".__uniq.") +
223          Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
224    }
225  }
226  
227  CodeGenModule::~CodeGenModule() {}
228  
229  void CodeGenModule::createObjCRuntime() {
230    // This is just isGNUFamily(), but we want to force implementors of
231    // new ABIs to decide how best to do this.
232    switch (LangOpts.ObjCRuntime.getKind()) {
233    case ObjCRuntime::GNUstep:
234    case ObjCRuntime::GCC:
235    case ObjCRuntime::ObjFW:
236      ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
237      return;
238  
239    case ObjCRuntime::FragileMacOSX:
240    case ObjCRuntime::MacOSX:
241    case ObjCRuntime::iOS:
242    case ObjCRuntime::WatchOS:
243      ObjCRuntime.reset(CreateMacObjCRuntime(*this));
244      return;
245    }
246    llvm_unreachable("bad runtime kind");
247  }
248  
249  void CodeGenModule::createOpenCLRuntime() {
250    OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
251  }
252  
253  void CodeGenModule::createOpenMPRuntime() {
254    // Select a specialized code generation class based on the target, if any.
255    // If it does not exist use the default implementation.
256    switch (getTriple().getArch()) {
257    case llvm::Triple::nvptx:
258    case llvm::Triple::nvptx64:
259    case llvm::Triple::amdgcn:
260      assert(getLangOpts().OpenMPIsDevice &&
261             "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
262      OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
263      break;
264    default:
265      if (LangOpts.OpenMPSimd)
266        OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
267      else
268        OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
269      break;
270    }
271  }
272  
273  void CodeGenModule::createCUDARuntime() {
274    CUDARuntime.reset(CreateNVCUDARuntime(*this));
275  }
276  
277  void CodeGenModule::createHLSLRuntime() {
278    HLSLRuntime.reset(new CGHLSLRuntime(*this));
279  }
280  
281  void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
282    Replacements[Name] = C;
283  }
284  
285  void CodeGenModule::applyReplacements() {
286    for (auto &I : Replacements) {
287      StringRef MangledName = I.first();
288      llvm::Constant *Replacement = I.second;
289      llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290      if (!Entry)
291        continue;
292      auto *OldF = cast<llvm::Function>(Entry);
293      auto *NewF = dyn_cast<llvm::Function>(Replacement);
294      if (!NewF) {
295        if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
296          NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
297        } else {
298          auto *CE = cast<llvm::ConstantExpr>(Replacement);
299          assert(CE->getOpcode() == llvm::Instruction::BitCast ||
300                 CE->getOpcode() == llvm::Instruction::GetElementPtr);
301          NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
302        }
303      }
304  
305      // Replace old with new, but keep the old order.
306      OldF->replaceAllUsesWith(Replacement);
307      if (NewF) {
308        NewF->removeFromParent();
309        OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
310                                                         NewF);
311      }
312      OldF->eraseFromParent();
313    }
314  }
315  
316  void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
317    GlobalValReplacements.push_back(std::make_pair(GV, C));
318  }
319  
320  void CodeGenModule::applyGlobalValReplacements() {
321    for (auto &I : GlobalValReplacements) {
322      llvm::GlobalValue *GV = I.first;
323      llvm::Constant *C = I.second;
324  
325      GV->replaceAllUsesWith(C);
326      GV->eraseFromParent();
327    }
328  }
329  
330  // This is only used in aliases that we created and we know they have a
331  // linear structure.
332  static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
333    const llvm::Constant *C;
334    if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
335      C = GA->getAliasee();
336    else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
337      C = GI->getResolver();
338    else
339      return GV;
340  
341    const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
342    if (!AliaseeGV)
343      return nullptr;
344  
345    const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
346    if (FinalGV == GV)
347      return nullptr;
348  
349    return FinalGV;
350  }
351  
352  static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
353                                 SourceLocation Location, bool IsIFunc,
354                                 const llvm::GlobalValue *Alias,
355                                 const llvm::GlobalValue *&GV) {
356    GV = getAliasedGlobal(Alias);
357    if (!GV) {
358      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
359      return false;
360    }
361  
362    if (GV->isDeclaration()) {
363      Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
364      return false;
365    }
366  
367    if (IsIFunc) {
368      // Check resolver function type.
369      const auto *F = dyn_cast<llvm::Function>(GV);
370      if (!F) {
371        Diags.Report(Location, diag::err_alias_to_undefined)
372            << IsIFunc << IsIFunc;
373        return false;
374      }
375  
376      llvm::FunctionType *FTy = F->getFunctionType();
377      if (!FTy->getReturnType()->isPointerTy()) {
378        Diags.Report(Location, diag::err_ifunc_resolver_return);
379        return false;
380      }
381    }
382  
383    return true;
384  }
385  
386  void CodeGenModule::checkAliases() {
387    // Check if the constructed aliases are well formed. It is really unfortunate
388    // that we have to do this in CodeGen, but we only construct mangled names
389    // and aliases during codegen.
390    bool Error = false;
391    DiagnosticsEngine &Diags = getDiags();
392    for (const GlobalDecl &GD : Aliases) {
393      const auto *D = cast<ValueDecl>(GD.getDecl());
394      SourceLocation Location;
395      bool IsIFunc = D->hasAttr<IFuncAttr>();
396      if (const Attr *A = D->getDefiningAttr())
397        Location = A->getLocation();
398      else
399        llvm_unreachable("Not an alias or ifunc?");
400  
401      StringRef MangledName = getMangledName(GD);
402      llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
403      const llvm::GlobalValue *GV = nullptr;
404      if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
405        Error = true;
406        continue;
407      }
408  
409      llvm::Constant *Aliasee =
410          IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
411                  : cast<llvm::GlobalAlias>(Alias)->getAliasee();
412  
413      llvm::GlobalValue *AliaseeGV;
414      if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
415        AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
416      else
417        AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
418  
419      if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
420        StringRef AliasSection = SA->getName();
421        if (AliasSection != AliaseeGV->getSection())
422          Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
423              << AliasSection << IsIFunc << IsIFunc;
424      }
425  
426      // We have to handle alias to weak aliases in here. LLVM itself disallows
427      // this since the object semantics would not match the IL one. For
428      // compatibility with gcc we implement it by just pointing the alias
429      // to its aliasee's aliasee. We also warn, since the user is probably
430      // expecting the link to be weak.
431      if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
432        if (GA->isInterposable()) {
433          Diags.Report(Location, diag::warn_alias_to_weak_alias)
434              << GV->getName() << GA->getName() << IsIFunc;
435          Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
436              GA->getAliasee(), Alias->getType());
437  
438          if (IsIFunc)
439            cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
440          else
441            cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
442        }
443      }
444    }
445    if (!Error)
446      return;
447  
448    for (const GlobalDecl &GD : Aliases) {
449      StringRef MangledName = getMangledName(GD);
450      llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
451      Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
452      Alias->eraseFromParent();
453    }
454  }
455  
456  void CodeGenModule::clear() {
457    DeferredDeclsToEmit.clear();
458    EmittedDeferredDecls.clear();
459    if (OpenMPRuntime)
460      OpenMPRuntime->clear();
461  }
462  
463  void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
464                                         StringRef MainFile) {
465    if (!hasDiagnostics())
466      return;
467    if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
468      if (MainFile.empty())
469        MainFile = "<stdin>";
470      Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
471    } else {
472      if (Mismatched > 0)
473        Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
474  
475      if (Missing > 0)
476        Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
477    }
478  }
479  
480  static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
481                                               llvm::Module &M) {
482    if (!LO.VisibilityFromDLLStorageClass)
483      return;
484  
485    llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
486        CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
487    llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
488        CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
489    llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
490        CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
491    llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
492        CodeGenModule::GetLLVMVisibility(
493            LO.getExternDeclNoDLLStorageClassVisibility());
494  
495    for (llvm::GlobalValue &GV : M.global_values()) {
496      if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
497        continue;
498  
499      // Reset DSO locality before setting the visibility. This removes
500      // any effects that visibility options and annotations may have
501      // had on the DSO locality. Setting the visibility will implicitly set
502      // appropriate globals to DSO Local; however, this will be pessimistic
503      // w.r.t. to the normal compiler IRGen.
504      GV.setDSOLocal(false);
505  
506      if (GV.isDeclarationForLinker()) {
507        GV.setVisibility(GV.getDLLStorageClass() ==
508                                 llvm::GlobalValue::DLLImportStorageClass
509                             ? ExternDeclDLLImportVisibility
510                             : ExternDeclNoDLLStorageClassVisibility);
511      } else {
512        GV.setVisibility(GV.getDLLStorageClass() ==
513                                 llvm::GlobalValue::DLLExportStorageClass
514                             ? DLLExportVisibility
515                             : NoDLLStorageClassVisibility);
516      }
517  
518      GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
519    }
520  }
521  
522  void CodeGenModule::Release() {
523    Module *Primary = getContext().getModuleForCodeGen();
524    if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
525      EmitModuleInitializers(Primary);
526    EmitDeferred();
527    DeferredDecls.insert(EmittedDeferredDecls.begin(),
528                         EmittedDeferredDecls.end());
529    EmittedDeferredDecls.clear();
530    EmitVTablesOpportunistically();
531    applyGlobalValReplacements();
532    applyReplacements();
533    emitMultiVersionFunctions();
534    if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
535      EmitCXXModuleInitFunc(Primary);
536    else
537      EmitCXXGlobalInitFunc();
538    EmitCXXGlobalCleanUpFunc();
539    registerGlobalDtorsWithAtExit();
540    EmitCXXThreadLocalInitFunc();
541    if (ObjCRuntime)
542      if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
543        AddGlobalCtor(ObjCInitFunction);
544    if (Context.getLangOpts().CUDA && CUDARuntime) {
545      if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
546        AddGlobalCtor(CudaCtorFunction);
547    }
548    if (OpenMPRuntime) {
549      if (llvm::Function *OpenMPRequiresDirectiveRegFun =
550              OpenMPRuntime->emitRequiresDirectiveRegFun()) {
551        AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
552      }
553      OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
554      OpenMPRuntime->clear();
555    }
556    if (PGOReader) {
557      getModule().setProfileSummary(
558          PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
559          llvm::ProfileSummary::PSK_Instr);
560      if (PGOStats.hasDiagnostics())
561        PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
562    }
563    EmitCtorList(GlobalCtors, "llvm.global_ctors");
564    EmitCtorList(GlobalDtors, "llvm.global_dtors");
565    EmitGlobalAnnotations();
566    EmitStaticExternCAliases();
567    checkAliases();
568    EmitDeferredUnusedCoverageMappings();
569    CodeGenPGO(*this).setValueProfilingFlag(getModule());
570    if (CoverageMapping)
571      CoverageMapping->emit();
572    if (CodeGenOpts.SanitizeCfiCrossDso) {
573      CodeGenFunction(*this).EmitCfiCheckFail();
574      CodeGenFunction(*this).EmitCfiCheckStub();
575    }
576    emitAtAvailableLinkGuard();
577    if (Context.getTargetInfo().getTriple().isWasm())
578      EmitMainVoidAlias();
579  
580    if (getTriple().isAMDGPU()) {
581      // Emit reference of __amdgpu_device_library_preserve_asan_functions to
582      // preserve ASAN functions in bitcode libraries.
583      if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
584        auto *FT = llvm::FunctionType::get(VoidTy, {});
585        auto *F = llvm::Function::Create(
586            FT, llvm::GlobalValue::ExternalLinkage,
587            "__amdgpu_device_library_preserve_asan_functions", &getModule());
588        auto *Var = new llvm::GlobalVariable(
589            getModule(), FT->getPointerTo(),
590            /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
591            "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
592            llvm::GlobalVariable::NotThreadLocal);
593        addCompilerUsedGlobal(Var);
594      }
595      // Emit amdgpu_code_object_version module flag, which is code object version
596      // times 100.
597      // ToDo: Enable module flag for all code object version when ROCm device
598      // library is ready.
599      if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
600        getModule().addModuleFlag(llvm::Module::Error,
601                                  "amdgpu_code_object_version",
602                                  getTarget().getTargetOpts().CodeObjectVersion);
603      }
604    }
605  
606    // Emit a global array containing all external kernels or device variables
607    // used by host functions and mark it as used for CUDA/HIP. This is necessary
608    // to get kernels or device variables in archives linked in even if these
609    // kernels or device variables are only used in host functions.
610    if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
611      SmallVector<llvm::Constant *, 8> UsedArray;
612      for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
613        GlobalDecl GD;
614        if (auto *FD = dyn_cast<FunctionDecl>(D))
615          GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
616        else
617          GD = GlobalDecl(D);
618        UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
619            GetAddrOfGlobal(GD), Int8PtrTy));
620      }
621  
622      llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
623  
624      auto *GV = new llvm::GlobalVariable(
625          getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
626          llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
627      addCompilerUsedGlobal(GV);
628    }
629  
630    emitLLVMUsed();
631    if (SanStats)
632      SanStats->finish();
633  
634    if (CodeGenOpts.Autolink &&
635        (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
636      EmitModuleLinkOptions();
637    }
638  
639    // On ELF we pass the dependent library specifiers directly to the linker
640    // without manipulating them. This is in contrast to other platforms where
641    // they are mapped to a specific linker option by the compiler. This
642    // difference is a result of the greater variety of ELF linkers and the fact
643    // that ELF linkers tend to handle libraries in a more complicated fashion
644    // than on other platforms. This forces us to defer handling the dependent
645    // libs to the linker.
646    //
647    // CUDA/HIP device and host libraries are different. Currently there is no
648    // way to differentiate dependent libraries for host or device. Existing
649    // usage of #pragma comment(lib, *) is intended for host libraries on
650    // Windows. Therefore emit llvm.dependent-libraries only for host.
651    if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
652      auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
653      for (auto *MD : ELFDependentLibraries)
654        NMD->addOperand(MD);
655    }
656  
657    // Record mregparm value now so it is visible through rest of codegen.
658    if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
659      getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
660                                CodeGenOpts.NumRegisterParameters);
661  
662    if (CodeGenOpts.DwarfVersion) {
663      getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
664                                CodeGenOpts.DwarfVersion);
665    }
666  
667    if (CodeGenOpts.Dwarf64)
668      getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
669  
670    if (Context.getLangOpts().SemanticInterposition)
671      // Require various optimization to respect semantic interposition.
672      getModule().setSemanticInterposition(true);
673  
674    if (CodeGenOpts.EmitCodeView) {
675      // Indicate that we want CodeView in the metadata.
676      getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
677    }
678    if (CodeGenOpts.CodeViewGHash) {
679      getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
680    }
681    if (CodeGenOpts.ControlFlowGuard) {
682      // Function ID tables and checks for Control Flow Guard (cfguard=2).
683      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
684    } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
685      // Function ID tables for Control Flow Guard (cfguard=1).
686      getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
687    }
688    if (CodeGenOpts.EHContGuard) {
689      // Function ID tables for EH Continuation Guard.
690      getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
691    }
692    if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
693      // We don't support LTO with 2 with different StrictVTablePointers
694      // FIXME: we could support it by stripping all the information introduced
695      // by StrictVTablePointers.
696  
697      getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
698  
699      llvm::Metadata *Ops[2] = {
700                llvm::MDString::get(VMContext, "StrictVTablePointers"),
701                llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
702                    llvm::Type::getInt32Ty(VMContext), 1))};
703  
704      getModule().addModuleFlag(llvm::Module::Require,
705                                "StrictVTablePointersRequirement",
706                                llvm::MDNode::get(VMContext, Ops));
707    }
708    if (getModuleDebugInfo())
709      // We support a single version in the linked module. The LLVM
710      // parser will drop debug info with a different version number
711      // (and warn about it, too).
712      getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
713                                llvm::DEBUG_METADATA_VERSION);
714  
715    // We need to record the widths of enums and wchar_t, so that we can generate
716    // the correct build attributes in the ARM backend. wchar_size is also used by
717    // TargetLibraryInfo.
718    uint64_t WCharWidth =
719        Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
720    getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
721  
722    llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
723    if (   Arch == llvm::Triple::arm
724        || Arch == llvm::Triple::armeb
725        || Arch == llvm::Triple::thumb
726        || Arch == llvm::Triple::thumbeb) {
727      // The minimum width of an enum in bytes
728      uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
729      getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
730    }
731  
732    if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
733      StringRef ABIStr = Target.getABI();
734      llvm::LLVMContext &Ctx = TheModule.getContext();
735      getModule().addModuleFlag(llvm::Module::Error, "target-abi",
736                                llvm::MDString::get(Ctx, ABIStr));
737    }
738  
739    if (CodeGenOpts.SanitizeCfiCrossDso) {
740      // Indicate that we want cross-DSO control flow integrity checks.
741      getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
742    }
743  
744    if (CodeGenOpts.WholeProgramVTables) {
745      // Indicate whether VFE was enabled for this module, so that the
746      // vcall_visibility metadata added under whole program vtables is handled
747      // appropriately in the optimizer.
748      getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
749                                CodeGenOpts.VirtualFunctionElimination);
750    }
751  
752    if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
753      getModule().addModuleFlag(llvm::Module::Override,
754                                "CFI Canonical Jump Tables",
755                                CodeGenOpts.SanitizeCfiCanonicalJumpTables);
756    }
757  
758    if (CodeGenOpts.CFProtectionReturn &&
759        Target.checkCFProtectionReturnSupported(getDiags())) {
760      // Indicate that we want to instrument return control flow protection.
761      getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
762                                1);
763    }
764  
765    if (CodeGenOpts.CFProtectionBranch &&
766        Target.checkCFProtectionBranchSupported(getDiags())) {
767      // Indicate that we want to instrument branch control flow protection.
768      getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
769                                1);
770    }
771  
772    if (CodeGenOpts.IBTSeal)
773      getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
774  
775    if (CodeGenOpts.FunctionReturnThunks)
776      getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
777  
778    // Add module metadata for return address signing (ignoring
779    // non-leaf/all) and stack tagging. These are actually turned on by function
780    // attributes, but we use module metadata to emit build attributes. This is
781    // needed for LTO, where the function attributes are inside bitcode
782    // serialised into a global variable by the time build attributes are
783    // emitted, so we can't access them. LTO objects could be compiled with
784    // different flags therefore module flags are set to "Min" behavior to achieve
785    // the same end result of the normal build where e.g BTI is off if any object
786    // doesn't support it.
787    if (Context.getTargetInfo().hasFeature("ptrauth") &&
788        LangOpts.getSignReturnAddressScope() !=
789            LangOptions::SignReturnAddressScopeKind::None)
790      getModule().addModuleFlag(llvm::Module::Override,
791                                "sign-return-address-buildattr", 1);
792    if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
793      getModule().addModuleFlag(llvm::Module::Override,
794                                "tag-stack-memory-buildattr", 1);
795  
796    if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
797        Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
798        Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
799        Arch == llvm::Triple::aarch64_be) {
800      if (LangOpts.BranchTargetEnforcement)
801        getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
802                                  1);
803      if (LangOpts.hasSignReturnAddress())
804        getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
805      if (LangOpts.isSignReturnAddressScopeAll())
806        getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
807                                  1);
808      if (!LangOpts.isSignReturnAddressWithAKey())
809        getModule().addModuleFlag(llvm::Module::Min,
810                                  "sign-return-address-with-bkey", 1);
811    }
812  
813    if (!CodeGenOpts.MemoryProfileOutput.empty()) {
814      llvm::LLVMContext &Ctx = TheModule.getContext();
815      getModule().addModuleFlag(
816          llvm::Module::Error, "MemProfProfileFilename",
817          llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
818    }
819  
820    if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
821      // Indicate whether __nvvm_reflect should be configured to flush denormal
822      // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
823      // property.)
824      getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
825                                CodeGenOpts.FP32DenormalMode.Output !=
826                                    llvm::DenormalMode::IEEE);
827    }
828  
829    if (LangOpts.EHAsynch)
830      getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
831  
832    // Indicate whether this Module was compiled with -fopenmp
833    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
834      getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
835    if (getLangOpts().OpenMPIsDevice)
836      getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
837                                LangOpts.OpenMP);
838  
839    // Emit OpenCL specific module metadata: OpenCL/SPIR version.
840    if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
841      EmitOpenCLMetadata();
842      // Emit SPIR version.
843      if (getTriple().isSPIR()) {
844        // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
845        // opencl.spir.version named metadata.
846        // C++ for OpenCL has a distinct mapping for version compatibility with
847        // OpenCL.
848        auto Version = LangOpts.getOpenCLCompatibleVersion();
849        llvm::Metadata *SPIRVerElts[] = {
850            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
851                Int32Ty, Version / 100)),
852            llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
853                Int32Ty, (Version / 100 > 1) ? 0 : 2))};
854        llvm::NamedMDNode *SPIRVerMD =
855            TheModule.getOrInsertNamedMetadata("opencl.spir.version");
856        llvm::LLVMContext &Ctx = TheModule.getContext();
857        SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
858      }
859    }
860  
861    // HLSL related end of code gen work items.
862    if (LangOpts.HLSL)
863      getHLSLRuntime().finishCodeGen();
864  
865    if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
866      assert(PLevel < 3 && "Invalid PIC Level");
867      getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
868      if (Context.getLangOpts().PIE)
869        getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
870    }
871  
872    if (getCodeGenOpts().CodeModel.size() > 0) {
873      unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
874                    .Case("tiny", llvm::CodeModel::Tiny)
875                    .Case("small", llvm::CodeModel::Small)
876                    .Case("kernel", llvm::CodeModel::Kernel)
877                    .Case("medium", llvm::CodeModel::Medium)
878                    .Case("large", llvm::CodeModel::Large)
879                    .Default(~0u);
880      if (CM != ~0u) {
881        llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
882        getModule().setCodeModel(codeModel);
883      }
884    }
885  
886    if (CodeGenOpts.NoPLT)
887      getModule().setRtLibUseGOT();
888    if (CodeGenOpts.UnwindTables)
889      getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
890  
891    switch (CodeGenOpts.getFramePointer()) {
892    case CodeGenOptions::FramePointerKind::None:
893      // 0 ("none") is the default.
894      break;
895    case CodeGenOptions::FramePointerKind::NonLeaf:
896      getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
897      break;
898    case CodeGenOptions::FramePointerKind::All:
899      getModule().setFramePointer(llvm::FramePointerKind::All);
900      break;
901    }
902  
903    SimplifyPersonality();
904  
905    if (getCodeGenOpts().EmitDeclMetadata)
906      EmitDeclMetadata();
907  
908    if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
909      EmitCoverageFile();
910  
911    if (CGDebugInfo *DI = getModuleDebugInfo())
912      DI->finalize();
913  
914    if (getCodeGenOpts().EmitVersionIdentMetadata)
915      EmitVersionIdentMetadata();
916  
917    if (!getCodeGenOpts().RecordCommandLine.empty())
918      EmitCommandLineMetadata();
919  
920    if (!getCodeGenOpts().StackProtectorGuard.empty())
921      getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
922    if (!getCodeGenOpts().StackProtectorGuardReg.empty())
923      getModule().setStackProtectorGuardReg(
924          getCodeGenOpts().StackProtectorGuardReg);
925    if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
926      getModule().setStackProtectorGuardSymbol(
927          getCodeGenOpts().StackProtectorGuardSymbol);
928    if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
929      getModule().setStackProtectorGuardOffset(
930          getCodeGenOpts().StackProtectorGuardOffset);
931    if (getCodeGenOpts().StackAlignment)
932      getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
933    if (getCodeGenOpts().SkipRaxSetup)
934      getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
935  
936    getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
937  
938    EmitBackendOptionsMetadata(getCodeGenOpts());
939  
940    // If there is device offloading code embed it in the host now.
941    EmbedObject(&getModule(), CodeGenOpts, getDiags());
942  
943    // Set visibility from DLL storage class
944    // We do this at the end of LLVM IR generation; after any operation
945    // that might affect the DLL storage class or the visibility, and
946    // before anything that might act on these.
947    setVisibilityFromDLLStorageClass(LangOpts, getModule());
948  }
949  
950  void CodeGenModule::EmitOpenCLMetadata() {
951    // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
952    // opencl.ocl.version named metadata node.
953    // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
954    auto Version = LangOpts.getOpenCLCompatibleVersion();
955    llvm::Metadata *OCLVerElts[] = {
956        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
957            Int32Ty, Version / 100)),
958        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
959            Int32Ty, (Version % 100) / 10))};
960    llvm::NamedMDNode *OCLVerMD =
961        TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
962    llvm::LLVMContext &Ctx = TheModule.getContext();
963    OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
964  }
965  
966  void CodeGenModule::EmitBackendOptionsMetadata(
967      const CodeGenOptions CodeGenOpts) {
968    switch (getTriple().getArch()) {
969    default:
970      break;
971    case llvm::Triple::riscv32:
972    case llvm::Triple::riscv64:
973      getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
974                                CodeGenOpts.SmallDataLimit);
975      break;
976    }
977  }
978  
979  void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
980    // Make sure that this type is translated.
981    Types.UpdateCompletedType(TD);
982  }
983  
984  void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
985    // Make sure that this type is translated.
986    Types.RefreshTypeCacheForClass(RD);
987  }
988  
989  llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
990    if (!TBAA)
991      return nullptr;
992    return TBAA->getTypeInfo(QTy);
993  }
994  
995  TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
996    if (!TBAA)
997      return TBAAAccessInfo();
998    if (getLangOpts().CUDAIsDevice) {
999      // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1000      // access info.
1001      if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1002        if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1003            nullptr)
1004          return TBAAAccessInfo();
1005      } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1006        if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1007            nullptr)
1008          return TBAAAccessInfo();
1009      }
1010    }
1011    return TBAA->getAccessInfo(AccessType);
1012  }
1013  
1014  TBAAAccessInfo
1015  CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1016    if (!TBAA)
1017      return TBAAAccessInfo();
1018    return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1019  }
1020  
1021  llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1022    if (!TBAA)
1023      return nullptr;
1024    return TBAA->getTBAAStructInfo(QTy);
1025  }
1026  
1027  llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1028    if (!TBAA)
1029      return nullptr;
1030    return TBAA->getBaseTypeInfo(QTy);
1031  }
1032  
1033  llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1034    if (!TBAA)
1035      return nullptr;
1036    return TBAA->getAccessTagInfo(Info);
1037  }
1038  
1039  TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1040                                                     TBAAAccessInfo TargetInfo) {
1041    if (!TBAA)
1042      return TBAAAccessInfo();
1043    return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1044  }
1045  
1046  TBAAAccessInfo
1047  CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1048                                                     TBAAAccessInfo InfoB) {
1049    if (!TBAA)
1050      return TBAAAccessInfo();
1051    return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1052  }
1053  
1054  TBAAAccessInfo
1055  CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1056                                                TBAAAccessInfo SrcInfo) {
1057    if (!TBAA)
1058      return TBAAAccessInfo();
1059    return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1060  }
1061  
1062  void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1063                                                  TBAAAccessInfo TBAAInfo) {
1064    if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1065      Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1066  }
1067  
1068  void CodeGenModule::DecorateInstructionWithInvariantGroup(
1069      llvm::Instruction *I, const CXXRecordDecl *RD) {
1070    I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1071                   llvm::MDNode::get(getLLVMContext(), {}));
1072  }
1073  
1074  void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1075    unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1076    getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1077  }
1078  
1079  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1080  /// specified stmt yet.
1081  void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1082    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1083                                                 "cannot compile this %0 yet");
1084    std::string Msg = Type;
1085    getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1086        << Msg << S->getSourceRange();
1087  }
1088  
1089  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1090  /// specified decl yet.
1091  void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1092    unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1093                                                 "cannot compile this %0 yet");
1094    std::string Msg = Type;
1095    getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1096  }
1097  
1098  llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1099    return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1100  }
1101  
1102  void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1103                                          const NamedDecl *D) const {
1104    if (GV->hasDLLImportStorageClass())
1105      return;
1106    // Internal definitions always have default visibility.
1107    if (GV->hasLocalLinkage()) {
1108      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1109      return;
1110    }
1111    if (!D)
1112      return;
1113    // Set visibility for definitions, and for declarations if requested globally
1114    // or set explicitly.
1115    LinkageInfo LV = D->getLinkageAndVisibility();
1116    if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1117        !GV->isDeclarationForLinker())
1118      GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1119  }
1120  
1121  static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1122                                   llvm::GlobalValue *GV) {
1123    if (GV->hasLocalLinkage())
1124      return true;
1125  
1126    if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1127      return true;
1128  
1129    // DLLImport explicitly marks the GV as external.
1130    if (GV->hasDLLImportStorageClass())
1131      return false;
1132  
1133    const llvm::Triple &TT = CGM.getTriple();
1134    if (TT.isWindowsGNUEnvironment()) {
1135      // In MinGW, variables without DLLImport can still be automatically
1136      // imported from a DLL by the linker; don't mark variables that
1137      // potentially could come from another DLL as DSO local.
1138  
1139      // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1140      // (and this actually happens in the public interface of libstdc++), so
1141      // such variables can't be marked as DSO local. (Native TLS variables
1142      // can't be dllimported at all, though.)
1143      if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1144          (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1145        return false;
1146    }
1147  
1148    // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1149    // remain unresolved in the link, they can be resolved to zero, which is
1150    // outside the current DSO.
1151    if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1152      return false;
1153  
1154    // Every other GV is local on COFF.
1155    // Make an exception for windows OS in the triple: Some firmware builds use
1156    // *-win32-macho triples. This (accidentally?) produced windows relocations
1157    // without GOT tables in older clang versions; Keep this behaviour.
1158    // FIXME: even thread local variables?
1159    if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1160      return true;
1161  
1162    // Only handle COFF and ELF for now.
1163    if (!TT.isOSBinFormatELF())
1164      return false;
1165  
1166    // If this is not an executable, don't assume anything is local.
1167    const auto &CGOpts = CGM.getCodeGenOpts();
1168    llvm::Reloc::Model RM = CGOpts.RelocationModel;
1169    const auto &LOpts = CGM.getLangOpts();
1170    if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1171      // On ELF, if -fno-semantic-interposition is specified and the target
1172      // supports local aliases, there will be neither CC1
1173      // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1174      // dso_local on the function if using a local alias is preferable (can avoid
1175      // PLT indirection).
1176      if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1177        return false;
1178      return !(CGM.getLangOpts().SemanticInterposition ||
1179               CGM.getLangOpts().HalfNoSemanticInterposition);
1180    }
1181  
1182    // A definition cannot be preempted from an executable.
1183    if (!GV->isDeclarationForLinker())
1184      return true;
1185  
1186    // Most PIC code sequences that assume that a symbol is local cannot produce a
1187    // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1188    // depended, it seems worth it to handle it here.
1189    if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1190      return false;
1191  
1192    // PowerPC64 prefers TOC indirection to avoid copy relocations.
1193    if (TT.isPPC64())
1194      return false;
1195  
1196    if (CGOpts.DirectAccessExternalData) {
1197      // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1198      // for non-thread-local variables. If the symbol is not defined in the
1199      // executable, a copy relocation will be needed at link time. dso_local is
1200      // excluded for thread-local variables because they generally don't support
1201      // copy relocations.
1202      if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1203        if (!Var->isThreadLocal())
1204          return true;
1205  
1206      // -fno-pic sets dso_local on a function declaration to allow direct
1207      // accesses when taking its address (similar to a data symbol). If the
1208      // function is not defined in the executable, a canonical PLT entry will be
1209      // needed at link time. -fno-direct-access-external-data can avoid the
1210      // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1211      // it could just cause trouble without providing perceptible benefits.
1212      if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1213        return true;
1214    }
1215  
1216    // If we can use copy relocations we can assume it is local.
1217  
1218    // Otherwise don't assume it is local.
1219    return false;
1220  }
1221  
1222  void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1223    GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1224  }
1225  
1226  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1227                                            GlobalDecl GD) const {
1228    const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1229    // C++ destructors have a few C++ ABI specific special cases.
1230    if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1231      getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1232      return;
1233    }
1234    setDLLImportDLLExport(GV, D);
1235  }
1236  
1237  void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1238                                            const NamedDecl *D) const {
1239    if (D && D->isExternallyVisible()) {
1240      if (D->hasAttr<DLLImportAttr>())
1241        GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1242      else if ((D->hasAttr<DLLExportAttr>() ||
1243                shouldMapVisibilityToDLLExport(D)) &&
1244               !GV->isDeclarationForLinker())
1245        GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1246    }
1247  }
1248  
1249  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1250                                      GlobalDecl GD) const {
1251    setDLLImportDLLExport(GV, GD);
1252    setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1253  }
1254  
1255  void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1256                                      const NamedDecl *D) const {
1257    setDLLImportDLLExport(GV, D);
1258    setGVPropertiesAux(GV, D);
1259  }
1260  
1261  void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1262                                         const NamedDecl *D) const {
1263    setGlobalVisibility(GV, D);
1264    setDSOLocal(GV);
1265    GV->setPartition(CodeGenOpts.SymbolPartition);
1266  }
1267  
1268  static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1269    return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1270        .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1271        .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1272        .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1273        .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1274  }
1275  
1276  llvm::GlobalVariable::ThreadLocalMode
1277  CodeGenModule::GetDefaultLLVMTLSModel() const {
1278    switch (CodeGenOpts.getDefaultTLSModel()) {
1279    case CodeGenOptions::GeneralDynamicTLSModel:
1280      return llvm::GlobalVariable::GeneralDynamicTLSModel;
1281    case CodeGenOptions::LocalDynamicTLSModel:
1282      return llvm::GlobalVariable::LocalDynamicTLSModel;
1283    case CodeGenOptions::InitialExecTLSModel:
1284      return llvm::GlobalVariable::InitialExecTLSModel;
1285    case CodeGenOptions::LocalExecTLSModel:
1286      return llvm::GlobalVariable::LocalExecTLSModel;
1287    }
1288    llvm_unreachable("Invalid TLS model!");
1289  }
1290  
1291  void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1292    assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1293  
1294    llvm::GlobalValue::ThreadLocalMode TLM;
1295    TLM = GetDefaultLLVMTLSModel();
1296  
1297    // Override the TLS model if it is explicitly specified.
1298    if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1299      TLM = GetLLVMTLSModel(Attr->getModel());
1300    }
1301  
1302    GV->setThreadLocalMode(TLM);
1303  }
1304  
1305  static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1306                                            StringRef Name) {
1307    const TargetInfo &Target = CGM.getTarget();
1308    return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1309  }
1310  
1311  static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1312                                                   const CPUSpecificAttr *Attr,
1313                                                   unsigned CPUIndex,
1314                                                   raw_ostream &Out) {
1315    // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1316    // supported.
1317    if (Attr)
1318      Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1319    else if (CGM.getTarget().supportsIFunc())
1320      Out << ".resolver";
1321  }
1322  
1323  static void AppendTargetMangling(const CodeGenModule &CGM,
1324                                   const TargetAttr *Attr, raw_ostream &Out) {
1325    if (Attr->isDefaultVersion())
1326      return;
1327  
1328    Out << '.';
1329    const TargetInfo &Target = CGM.getTarget();
1330    ParsedTargetAttr Info =
1331        Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1332          // Multiversioning doesn't allow "no-${feature}", so we can
1333          // only have "+" prefixes here.
1334          assert(LHS.startswith("+") && RHS.startswith("+") &&
1335                 "Features should always have a prefix.");
1336          return Target.multiVersionSortPriority(LHS.substr(1)) >
1337                 Target.multiVersionSortPriority(RHS.substr(1));
1338        });
1339  
1340    bool IsFirst = true;
1341  
1342    if (!Info.Architecture.empty()) {
1343      IsFirst = false;
1344      Out << "arch_" << Info.Architecture;
1345    }
1346  
1347    for (StringRef Feat : Info.Features) {
1348      if (!IsFirst)
1349        Out << '_';
1350      IsFirst = false;
1351      Out << Feat.substr(1);
1352    }
1353  }
1354  
1355  // Returns true if GD is a function decl with internal linkage and
1356  // needs a unique suffix after the mangled name.
1357  static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1358                                          CodeGenModule &CGM) {
1359    const Decl *D = GD.getDecl();
1360    return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1361           (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1362  }
1363  
1364  static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1365                                         const TargetClonesAttr *Attr,
1366                                         unsigned VersionIndex,
1367                                         raw_ostream &Out) {
1368    Out << '.';
1369    StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1370    if (FeatureStr.startswith("arch="))
1371      Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1372    else
1373      Out << FeatureStr;
1374  
1375    Out << '.' << Attr->getMangledIndex(VersionIndex);
1376  }
1377  
1378  static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1379                                        const NamedDecl *ND,
1380                                        bool OmitMultiVersionMangling = false) {
1381    SmallString<256> Buffer;
1382    llvm::raw_svector_ostream Out(Buffer);
1383    MangleContext &MC = CGM.getCXXABI().getMangleContext();
1384    if (!CGM.getModuleNameHash().empty())
1385      MC.needsUniqueInternalLinkageNames();
1386    bool ShouldMangle = MC.shouldMangleDeclName(ND);
1387    if (ShouldMangle)
1388      MC.mangleName(GD.getWithDecl(ND), Out);
1389    else {
1390      IdentifierInfo *II = ND->getIdentifier();
1391      assert(II && "Attempt to mangle unnamed decl.");
1392      const auto *FD = dyn_cast<FunctionDecl>(ND);
1393  
1394      if (FD &&
1395          FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1396        Out << "__regcall3__" << II->getName();
1397      } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1398                 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1399        Out << "__device_stub__" << II->getName();
1400      } else {
1401        Out << II->getName();
1402      }
1403    }
1404  
1405    // Check if the module name hash should be appended for internal linkage
1406    // symbols.   This should come before multi-version target suffixes are
1407    // appended. This is to keep the name and module hash suffix of the
1408    // internal linkage function together.  The unique suffix should only be
1409    // added when name mangling is done to make sure that the final name can
1410    // be properly demangled.  For example, for C functions without prototypes,
1411    // name mangling is not done and the unique suffix should not be appeneded
1412    // then.
1413    if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1414      assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1415             "Hash computed when not explicitly requested");
1416      Out << CGM.getModuleNameHash();
1417    }
1418  
1419    if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1420      if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1421        switch (FD->getMultiVersionKind()) {
1422        case MultiVersionKind::CPUDispatch:
1423        case MultiVersionKind::CPUSpecific:
1424          AppendCPUSpecificCPUDispatchMangling(CGM,
1425                                               FD->getAttr<CPUSpecificAttr>(),
1426                                               GD.getMultiVersionIndex(), Out);
1427          break;
1428        case MultiVersionKind::Target:
1429          AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1430          break;
1431        case MultiVersionKind::TargetClones:
1432          AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1433                                     GD.getMultiVersionIndex(), Out);
1434          break;
1435        case MultiVersionKind::None:
1436          llvm_unreachable("None multiversion type isn't valid here");
1437        }
1438      }
1439  
1440    // Make unique name for device side static file-scope variable for HIP.
1441    if (CGM.getContext().shouldExternalize(ND) &&
1442        CGM.getLangOpts().GPURelocatableDeviceCode &&
1443        CGM.getLangOpts().CUDAIsDevice)
1444      CGM.printPostfixForExternalizedDecl(Out, ND);
1445  
1446    return std::string(Out.str());
1447  }
1448  
1449  void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1450                                              const FunctionDecl *FD,
1451                                              StringRef &CurName) {
1452    if (!FD->isMultiVersion())
1453      return;
1454  
1455    // Get the name of what this would be without the 'target' attribute.  This
1456    // allows us to lookup the version that was emitted when this wasn't a
1457    // multiversion function.
1458    std::string NonTargetName =
1459        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1460    GlobalDecl OtherGD;
1461    if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1462      assert(OtherGD.getCanonicalDecl()
1463                 .getDecl()
1464                 ->getAsFunction()
1465                 ->isMultiVersion() &&
1466             "Other GD should now be a multiversioned function");
1467      // OtherFD is the version of this function that was mangled BEFORE
1468      // becoming a MultiVersion function.  It potentially needs to be updated.
1469      const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1470                                        .getDecl()
1471                                        ->getAsFunction()
1472                                        ->getMostRecentDecl();
1473      std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1474      // This is so that if the initial version was already the 'default'
1475      // version, we don't try to update it.
1476      if (OtherName != NonTargetName) {
1477        // Remove instead of erase, since others may have stored the StringRef
1478        // to this.
1479        const auto ExistingRecord = Manglings.find(NonTargetName);
1480        if (ExistingRecord != std::end(Manglings))
1481          Manglings.remove(&(*ExistingRecord));
1482        auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1483        StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1484            Result.first->first();
1485        // If this is the current decl is being created, make sure we update the name.
1486        if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1487          CurName = OtherNameRef;
1488        if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1489          Entry->setName(OtherName);
1490      }
1491    }
1492  }
1493  
1494  StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1495    GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1496  
1497    // Some ABIs don't have constructor variants.  Make sure that base and
1498    // complete constructors get mangled the same.
1499    if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1500      if (!getTarget().getCXXABI().hasConstructorVariants()) {
1501        CXXCtorType OrigCtorType = GD.getCtorType();
1502        assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1503        if (OrigCtorType == Ctor_Base)
1504          CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1505      }
1506    }
1507  
1508    // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1509    // static device variable depends on whether the variable is referenced by
1510    // a host or device host function. Therefore the mangled name cannot be
1511    // cached.
1512    if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1513      auto FoundName = MangledDeclNames.find(CanonicalGD);
1514      if (FoundName != MangledDeclNames.end())
1515        return FoundName->second;
1516    }
1517  
1518    // Keep the first result in the case of a mangling collision.
1519    const auto *ND = cast<NamedDecl>(GD.getDecl());
1520    std::string MangledName = getMangledNameImpl(*this, GD, ND);
1521  
1522    // Ensure either we have different ABIs between host and device compilations,
1523    // says host compilation following MSVC ABI but device compilation follows
1524    // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1525    // mangling should be the same after name stubbing. The later checking is
1526    // very important as the device kernel name being mangled in host-compilation
1527    // is used to resolve the device binaries to be executed. Inconsistent naming
1528    // result in undefined behavior. Even though we cannot check that naming
1529    // directly between host- and device-compilations, the host- and
1530    // device-mangling in host compilation could help catching certain ones.
1531    assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1532           getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1533           (getContext().getAuxTargetInfo() &&
1534            (getContext().getAuxTargetInfo()->getCXXABI() !=
1535             getContext().getTargetInfo().getCXXABI())) ||
1536           getCUDARuntime().getDeviceSideName(ND) ==
1537               getMangledNameImpl(
1538                   *this,
1539                   GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1540                   ND));
1541  
1542    auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1543    return MangledDeclNames[CanonicalGD] = Result.first->first();
1544  }
1545  
1546  StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1547                                               const BlockDecl *BD) {
1548    MangleContext &MangleCtx = getCXXABI().getMangleContext();
1549    const Decl *D = GD.getDecl();
1550  
1551    SmallString<256> Buffer;
1552    llvm::raw_svector_ostream Out(Buffer);
1553    if (!D)
1554      MangleCtx.mangleGlobalBlock(BD,
1555        dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1556    else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1557      MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1558    else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1559      MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1560    else
1561      MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1562  
1563    auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1564    return Result.first->first();
1565  }
1566  
1567  const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1568    auto it = MangledDeclNames.begin();
1569    while (it != MangledDeclNames.end()) {
1570      if (it->second == Name)
1571        return it->first;
1572      it++;
1573    }
1574    return GlobalDecl();
1575  }
1576  
1577  llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1578    return getModule().getNamedValue(Name);
1579  }
1580  
1581  /// AddGlobalCtor - Add a function to the list that will be called before
1582  /// main() runs.
1583  void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1584                                    llvm::Constant *AssociatedData) {
1585    // FIXME: Type coercion of void()* types.
1586    GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1587  }
1588  
1589  /// AddGlobalDtor - Add a function to the list that will be called
1590  /// when the module is unloaded.
1591  void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1592                                    bool IsDtorAttrFunc) {
1593    if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1594        (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1595      DtorsUsingAtExit[Priority].push_back(Dtor);
1596      return;
1597    }
1598  
1599    // FIXME: Type coercion of void()* types.
1600    GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1601  }
1602  
1603  void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1604    if (Fns.empty()) return;
1605  
1606    // Ctor function type is void()*.
1607    llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1608    llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1609        TheModule.getDataLayout().getProgramAddressSpace());
1610  
1611    // Get the type of a ctor entry, { i32, void ()*, i8* }.
1612    llvm::StructType *CtorStructTy = llvm::StructType::get(
1613        Int32Ty, CtorPFTy, VoidPtrTy);
1614  
1615    // Construct the constructor and destructor arrays.
1616    ConstantInitBuilder builder(*this);
1617    auto ctors = builder.beginArray(CtorStructTy);
1618    for (const auto &I : Fns) {
1619      auto ctor = ctors.beginStruct(CtorStructTy);
1620      ctor.addInt(Int32Ty, I.Priority);
1621      ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1622      if (I.AssociatedData)
1623        ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1624      else
1625        ctor.addNullPointer(VoidPtrTy);
1626      ctor.finishAndAddTo(ctors);
1627    }
1628  
1629    auto list =
1630      ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1631                                  /*constant*/ false,
1632                                  llvm::GlobalValue::AppendingLinkage);
1633  
1634    // The LTO linker doesn't seem to like it when we set an alignment
1635    // on appending variables.  Take it off as a workaround.
1636    list->setAlignment(llvm::None);
1637  
1638    Fns.clear();
1639  }
1640  
1641  llvm::GlobalValue::LinkageTypes
1642  CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1643    const auto *D = cast<FunctionDecl>(GD.getDecl());
1644  
1645    GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1646  
1647    if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1648      return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1649  
1650    if (isa<CXXConstructorDecl>(D) &&
1651        cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1652        Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1653      // Our approach to inheriting constructors is fundamentally different from
1654      // that used by the MS ABI, so keep our inheriting constructor thunks
1655      // internal rather than trying to pick an unambiguous mangling for them.
1656      return llvm::GlobalValue::InternalLinkage;
1657    }
1658  
1659    return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1660  }
1661  
1662  llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1663    llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1664    if (!MDS) return nullptr;
1665  
1666    return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1667  }
1668  
1669  void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1670                                                const CGFunctionInfo &Info,
1671                                                llvm::Function *F, bool IsThunk) {
1672    unsigned CallingConv;
1673    llvm::AttributeList PAL;
1674    ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1675                           /*AttrOnCallSite=*/false, IsThunk);
1676    F->setAttributes(PAL);
1677    F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1678  }
1679  
1680  static void removeImageAccessQualifier(std::string& TyName) {
1681    std::string ReadOnlyQual("__read_only");
1682    std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1683    if (ReadOnlyPos != std::string::npos)
1684      // "+ 1" for the space after access qualifier.
1685      TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1686    else {
1687      std::string WriteOnlyQual("__write_only");
1688      std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1689      if (WriteOnlyPos != std::string::npos)
1690        TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1691      else {
1692        std::string ReadWriteQual("__read_write");
1693        std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1694        if (ReadWritePos != std::string::npos)
1695          TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1696      }
1697    }
1698  }
1699  
1700  // Returns the address space id that should be produced to the
1701  // kernel_arg_addr_space metadata. This is always fixed to the ids
1702  // as specified in the SPIR 2.0 specification in order to differentiate
1703  // for example in clGetKernelArgInfo() implementation between the address
1704  // spaces with targets without unique mapping to the OpenCL address spaces
1705  // (basically all single AS CPUs).
1706  static unsigned ArgInfoAddressSpace(LangAS AS) {
1707    switch (AS) {
1708    case LangAS::opencl_global:
1709      return 1;
1710    case LangAS::opencl_constant:
1711      return 2;
1712    case LangAS::opencl_local:
1713      return 3;
1714    case LangAS::opencl_generic:
1715      return 4; // Not in SPIR 2.0 specs.
1716    case LangAS::opencl_global_device:
1717      return 5;
1718    case LangAS::opencl_global_host:
1719      return 6;
1720    default:
1721      return 0; // Assume private.
1722    }
1723  }
1724  
1725  void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1726                                           const FunctionDecl *FD,
1727                                           CodeGenFunction *CGF) {
1728    assert(((FD && CGF) || (!FD && !CGF)) &&
1729           "Incorrect use - FD and CGF should either be both null or not!");
1730    // Create MDNodes that represent the kernel arg metadata.
1731    // Each MDNode is a list in the form of "key", N number of values which is
1732    // the same number of values as their are kernel arguments.
1733  
1734    const PrintingPolicy &Policy = Context.getPrintingPolicy();
1735  
1736    // MDNode for the kernel argument address space qualifiers.
1737    SmallVector<llvm::Metadata *, 8> addressQuals;
1738  
1739    // MDNode for the kernel argument access qualifiers (images only).
1740    SmallVector<llvm::Metadata *, 8> accessQuals;
1741  
1742    // MDNode for the kernel argument type names.
1743    SmallVector<llvm::Metadata *, 8> argTypeNames;
1744  
1745    // MDNode for the kernel argument base type names.
1746    SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1747  
1748    // MDNode for the kernel argument type qualifiers.
1749    SmallVector<llvm::Metadata *, 8> argTypeQuals;
1750  
1751    // MDNode for the kernel argument names.
1752    SmallVector<llvm::Metadata *, 8> argNames;
1753  
1754    if (FD && CGF)
1755      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1756        const ParmVarDecl *parm = FD->getParamDecl(i);
1757        // Get argument name.
1758        argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1759  
1760        if (!getLangOpts().OpenCL)
1761          continue;
1762        QualType ty = parm->getType();
1763        std::string typeQuals;
1764  
1765        // Get image and pipe access qualifier:
1766        if (ty->isImageType() || ty->isPipeType()) {
1767          const Decl *PDecl = parm;
1768          if (auto *TD = dyn_cast<TypedefType>(ty))
1769            PDecl = TD->getDecl();
1770          const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1771          if (A && A->isWriteOnly())
1772            accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1773          else if (A && A->isReadWrite())
1774            accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1775          else
1776            accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1777        } else
1778          accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1779  
1780        auto getTypeSpelling = [&](QualType Ty) {
1781          auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1782  
1783          if (Ty.isCanonical()) {
1784            StringRef typeNameRef = typeName;
1785            // Turn "unsigned type" to "utype"
1786            if (typeNameRef.consume_front("unsigned "))
1787              return std::string("u") + typeNameRef.str();
1788            if (typeNameRef.consume_front("signed "))
1789              return typeNameRef.str();
1790          }
1791  
1792          return typeName;
1793        };
1794  
1795        if (ty->isPointerType()) {
1796          QualType pointeeTy = ty->getPointeeType();
1797  
1798          // Get address qualifier.
1799          addressQuals.push_back(
1800              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1801                  ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1802  
1803          // Get argument type name.
1804          std::string typeName = getTypeSpelling(pointeeTy) + "*";
1805          std::string baseTypeName =
1806              getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1807          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1808          argBaseTypeNames.push_back(
1809              llvm::MDString::get(VMContext, baseTypeName));
1810  
1811          // Get argument type qualifiers:
1812          if (ty.isRestrictQualified())
1813            typeQuals = "restrict";
1814          if (pointeeTy.isConstQualified() ||
1815              (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1816            typeQuals += typeQuals.empty() ? "const" : " const";
1817          if (pointeeTy.isVolatileQualified())
1818            typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1819        } else {
1820          uint32_t AddrSpc = 0;
1821          bool isPipe = ty->isPipeType();
1822          if (ty->isImageType() || isPipe)
1823            AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1824  
1825          addressQuals.push_back(
1826              llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1827  
1828          // Get argument type name.
1829          ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1830          std::string typeName = getTypeSpelling(ty);
1831          std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1832  
1833          // Remove access qualifiers on images
1834          // (as they are inseparable from type in clang implementation,
1835          // but OpenCL spec provides a special query to get access qualifier
1836          // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1837          if (ty->isImageType()) {
1838            removeImageAccessQualifier(typeName);
1839            removeImageAccessQualifier(baseTypeName);
1840          }
1841  
1842          argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1843          argBaseTypeNames.push_back(
1844              llvm::MDString::get(VMContext, baseTypeName));
1845  
1846          if (isPipe)
1847            typeQuals = "pipe";
1848        }
1849        argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1850      }
1851  
1852    if (getLangOpts().OpenCL) {
1853      Fn->setMetadata("kernel_arg_addr_space",
1854                      llvm::MDNode::get(VMContext, addressQuals));
1855      Fn->setMetadata("kernel_arg_access_qual",
1856                      llvm::MDNode::get(VMContext, accessQuals));
1857      Fn->setMetadata("kernel_arg_type",
1858                      llvm::MDNode::get(VMContext, argTypeNames));
1859      Fn->setMetadata("kernel_arg_base_type",
1860                      llvm::MDNode::get(VMContext, argBaseTypeNames));
1861      Fn->setMetadata("kernel_arg_type_qual",
1862                      llvm::MDNode::get(VMContext, argTypeQuals));
1863    }
1864    if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1865        getCodeGenOpts().HIPSaveKernelArgName)
1866      Fn->setMetadata("kernel_arg_name",
1867                      llvm::MDNode::get(VMContext, argNames));
1868  }
1869  
1870  /// Determines whether the language options require us to model
1871  /// unwind exceptions.  We treat -fexceptions as mandating this
1872  /// except under the fragile ObjC ABI with only ObjC exceptions
1873  /// enabled.  This means, for example, that C with -fexceptions
1874  /// enables this.
1875  static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1876    // If exceptions are completely disabled, obviously this is false.
1877    if (!LangOpts.Exceptions) return false;
1878  
1879    // If C++ exceptions are enabled, this is true.
1880    if (LangOpts.CXXExceptions) return true;
1881  
1882    // If ObjC exceptions are enabled, this depends on the ABI.
1883    if (LangOpts.ObjCExceptions) {
1884      return LangOpts.ObjCRuntime.hasUnwindExceptions();
1885    }
1886  
1887    return true;
1888  }
1889  
1890  static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1891                                                        const CXXMethodDecl *MD) {
1892    // Check that the type metadata can ever actually be used by a call.
1893    if (!CGM.getCodeGenOpts().LTOUnit ||
1894        !CGM.HasHiddenLTOVisibility(MD->getParent()))
1895      return false;
1896  
1897    // Only functions whose address can be taken with a member function pointer
1898    // need this sort of type metadata.
1899    return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1900           !isa<CXXDestructorDecl>(MD);
1901  }
1902  
1903  std::vector<const CXXRecordDecl *>
1904  CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1905    llvm::SetVector<const CXXRecordDecl *> MostBases;
1906  
1907    std::function<void (const CXXRecordDecl *)> CollectMostBases;
1908    CollectMostBases = [&](const CXXRecordDecl *RD) {
1909      if (RD->getNumBases() == 0)
1910        MostBases.insert(RD);
1911      for (const CXXBaseSpecifier &B : RD->bases())
1912        CollectMostBases(B.getType()->getAsCXXRecordDecl());
1913    };
1914    CollectMostBases(RD);
1915    return MostBases.takeVector();
1916  }
1917  
1918  llvm::GlobalVariable *
1919  CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1920    auto It = RTTIProxyMap.find(Addr);
1921    if (It != RTTIProxyMap.end())
1922      return It->second;
1923  
1924    auto *FTRTTIProxy = new llvm::GlobalVariable(
1925        TheModule, Addr->getType(),
1926        /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1927        "__llvm_rtti_proxy");
1928    FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1929  
1930    RTTIProxyMap[Addr] = FTRTTIProxy;
1931    return FTRTTIProxy;
1932  }
1933  
1934  void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1935                                                             llvm::Function *F) {
1936    llvm::AttrBuilder B(F->getContext());
1937  
1938    if (CodeGenOpts.UnwindTables)
1939      B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1940  
1941    if (CodeGenOpts.StackClashProtector)
1942      B.addAttribute("probe-stack", "inline-asm");
1943  
1944    if (!hasUnwindExceptions(LangOpts))
1945      B.addAttribute(llvm::Attribute::NoUnwind);
1946  
1947    if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1948      if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1949        B.addAttribute(llvm::Attribute::StackProtect);
1950      else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1951        B.addAttribute(llvm::Attribute::StackProtectStrong);
1952      else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1953        B.addAttribute(llvm::Attribute::StackProtectReq);
1954    }
1955  
1956    if (!D) {
1957      // If we don't have a declaration to control inlining, the function isn't
1958      // explicitly marked as alwaysinline for semantic reasons, and inlining is
1959      // disabled, mark the function as noinline.
1960      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1961          CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1962        B.addAttribute(llvm::Attribute::NoInline);
1963  
1964      F->addFnAttrs(B);
1965      return;
1966    }
1967  
1968    // Track whether we need to add the optnone LLVM attribute,
1969    // starting with the default for this optimization level.
1970    bool ShouldAddOptNone =
1971        !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1972    // We can't add optnone in the following cases, it won't pass the verifier.
1973    ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1974    ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1975  
1976    // Add optnone, but do so only if the function isn't always_inline.
1977    if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1978        !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1979      B.addAttribute(llvm::Attribute::OptimizeNone);
1980  
1981      // OptimizeNone implies noinline; we should not be inlining such functions.
1982      B.addAttribute(llvm::Attribute::NoInline);
1983  
1984      // We still need to handle naked functions even though optnone subsumes
1985      // much of their semantics.
1986      if (D->hasAttr<NakedAttr>())
1987        B.addAttribute(llvm::Attribute::Naked);
1988  
1989      // OptimizeNone wins over OptimizeForSize and MinSize.
1990      F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1991      F->removeFnAttr(llvm::Attribute::MinSize);
1992    } else if (D->hasAttr<NakedAttr>()) {
1993      // Naked implies noinline: we should not be inlining such functions.
1994      B.addAttribute(llvm::Attribute::Naked);
1995      B.addAttribute(llvm::Attribute::NoInline);
1996    } else if (D->hasAttr<NoDuplicateAttr>()) {
1997      B.addAttribute(llvm::Attribute::NoDuplicate);
1998    } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1999      // Add noinline if the function isn't always_inline.
2000      B.addAttribute(llvm::Attribute::NoInline);
2001    } else if (D->hasAttr<AlwaysInlineAttr>() &&
2002               !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2003      // (noinline wins over always_inline, and we can't specify both in IR)
2004      B.addAttribute(llvm::Attribute::AlwaysInline);
2005    } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2006      // If we're not inlining, then force everything that isn't always_inline to
2007      // carry an explicit noinline attribute.
2008      if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2009        B.addAttribute(llvm::Attribute::NoInline);
2010    } else {
2011      // Otherwise, propagate the inline hint attribute and potentially use its
2012      // absence to mark things as noinline.
2013      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2014        // Search function and template pattern redeclarations for inline.
2015        auto CheckForInline = [](const FunctionDecl *FD) {
2016          auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2017            return Redecl->isInlineSpecified();
2018          };
2019          if (any_of(FD->redecls(), CheckRedeclForInline))
2020            return true;
2021          const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2022          if (!Pattern)
2023            return false;
2024          return any_of(Pattern->redecls(), CheckRedeclForInline);
2025        };
2026        if (CheckForInline(FD)) {
2027          B.addAttribute(llvm::Attribute::InlineHint);
2028        } else if (CodeGenOpts.getInlining() ==
2029                       CodeGenOptions::OnlyHintInlining &&
2030                   !FD->isInlined() &&
2031                   !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2032          B.addAttribute(llvm::Attribute::NoInline);
2033        }
2034      }
2035    }
2036  
2037    // Add other optimization related attributes if we are optimizing this
2038    // function.
2039    if (!D->hasAttr<OptimizeNoneAttr>()) {
2040      if (D->hasAttr<ColdAttr>()) {
2041        if (!ShouldAddOptNone)
2042          B.addAttribute(llvm::Attribute::OptimizeForSize);
2043        B.addAttribute(llvm::Attribute::Cold);
2044      }
2045      if (D->hasAttr<HotAttr>())
2046        B.addAttribute(llvm::Attribute::Hot);
2047      if (D->hasAttr<MinSizeAttr>())
2048        B.addAttribute(llvm::Attribute::MinSize);
2049    }
2050  
2051    F->addFnAttrs(B);
2052  
2053    unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2054    if (alignment)
2055      F->setAlignment(llvm::Align(alignment));
2056  
2057    if (!D->hasAttr<AlignedAttr>())
2058      if (LangOpts.FunctionAlignment)
2059        F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2060  
2061    // Some C++ ABIs require 2-byte alignment for member functions, in order to
2062    // reserve a bit for differentiating between virtual and non-virtual member
2063    // functions. If the current target's C++ ABI requires this and this is a
2064    // member function, set its alignment accordingly.
2065    if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2066      if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2067        F->setAlignment(llvm::Align(2));
2068    }
2069  
2070    // In the cross-dso CFI mode with canonical jump tables, we want !type
2071    // attributes on definitions only.
2072    if (CodeGenOpts.SanitizeCfiCrossDso &&
2073        CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2074      if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2075        // Skip available_externally functions. They won't be codegen'ed in the
2076        // current module anyway.
2077        if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2078          CreateFunctionTypeMetadataForIcall(FD, F);
2079      }
2080    }
2081  
2082    // Emit type metadata on member functions for member function pointer checks.
2083    // These are only ever necessary on definitions; we're guaranteed that the
2084    // definition will be present in the LTO unit as a result of LTO visibility.
2085    auto *MD = dyn_cast<CXXMethodDecl>(D);
2086    if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2087      for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2088        llvm::Metadata *Id =
2089            CreateMetadataIdentifierForType(Context.getMemberPointerType(
2090                MD->getType(), Context.getRecordType(Base).getTypePtr()));
2091        F->addTypeMetadata(0, Id);
2092      }
2093    }
2094  }
2095  
2096  void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2097                                                    llvm::Function *F) {
2098    if (D->hasAttr<StrictFPAttr>()) {
2099      llvm::AttrBuilder FuncAttrs(F->getContext());
2100      FuncAttrs.addAttribute("strictfp");
2101      F->addFnAttrs(FuncAttrs);
2102    }
2103  }
2104  
2105  void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2106    const Decl *D = GD.getDecl();
2107    if (isa_and_nonnull<NamedDecl>(D))
2108      setGVProperties(GV, GD);
2109    else
2110      GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2111  
2112    if (D && D->hasAttr<UsedAttr>())
2113      addUsedOrCompilerUsedGlobal(GV);
2114  
2115    if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2116      const auto *VD = cast<VarDecl>(D);
2117      if (VD->getType().isConstQualified() &&
2118          VD->getStorageDuration() == SD_Static)
2119        addUsedOrCompilerUsedGlobal(GV);
2120    }
2121  }
2122  
2123  bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2124                                                  llvm::AttrBuilder &Attrs) {
2125    // Add target-cpu and target-features attributes to functions. If
2126    // we have a decl for the function and it has a target attribute then
2127    // parse that and add it to the feature set.
2128    StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2129    StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2130    std::vector<std::string> Features;
2131    const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2132    FD = FD ? FD->getMostRecentDecl() : FD;
2133    const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2134    const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2135    const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2136    bool AddedAttr = false;
2137    if (TD || SD || TC) {
2138      llvm::StringMap<bool> FeatureMap;
2139      getContext().getFunctionFeatureMap(FeatureMap, GD);
2140  
2141      // Produce the canonical string for this set of features.
2142      for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2143        Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2144  
2145      // Now add the target-cpu and target-features to the function.
2146      // While we populated the feature map above, we still need to
2147      // get and parse the target attribute so we can get the cpu for
2148      // the function.
2149      if (TD) {
2150        ParsedTargetAttr ParsedAttr = TD->parse();
2151        if (!ParsedAttr.Architecture.empty() &&
2152            getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2153          TargetCPU = ParsedAttr.Architecture;
2154          TuneCPU = ""; // Clear the tune CPU.
2155        }
2156        if (!ParsedAttr.Tune.empty() &&
2157            getTarget().isValidCPUName(ParsedAttr.Tune))
2158          TuneCPU = ParsedAttr.Tune;
2159      }
2160  
2161      if (SD) {
2162        // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2163        // favor this processor.
2164        TuneCPU = getTarget().getCPUSpecificTuneName(
2165            SD->getCPUName(GD.getMultiVersionIndex())->getName());
2166      }
2167    } else {
2168      // Otherwise just add the existing target cpu and target features to the
2169      // function.
2170      Features = getTarget().getTargetOpts().Features;
2171    }
2172  
2173    if (!TargetCPU.empty()) {
2174      Attrs.addAttribute("target-cpu", TargetCPU);
2175      AddedAttr = true;
2176    }
2177    if (!TuneCPU.empty()) {
2178      Attrs.addAttribute("tune-cpu", TuneCPU);
2179      AddedAttr = true;
2180    }
2181    if (!Features.empty()) {
2182      llvm::sort(Features);
2183      Attrs.addAttribute("target-features", llvm::join(Features, ","));
2184      AddedAttr = true;
2185    }
2186  
2187    return AddedAttr;
2188  }
2189  
2190  void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2191                                            llvm::GlobalObject *GO) {
2192    const Decl *D = GD.getDecl();
2193    SetCommonAttributes(GD, GO);
2194  
2195    if (D) {
2196      if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2197        if (D->hasAttr<RetainAttr>())
2198          addUsedGlobal(GV);
2199        if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2200          GV->addAttribute("bss-section", SA->getName());
2201        if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2202          GV->addAttribute("data-section", SA->getName());
2203        if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2204          GV->addAttribute("rodata-section", SA->getName());
2205        if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2206          GV->addAttribute("relro-section", SA->getName());
2207      }
2208  
2209      if (auto *F = dyn_cast<llvm::Function>(GO)) {
2210        if (D->hasAttr<RetainAttr>())
2211          addUsedGlobal(F);
2212        if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2213          if (!D->getAttr<SectionAttr>())
2214            F->addFnAttr("implicit-section-name", SA->getName());
2215  
2216        llvm::AttrBuilder Attrs(F->getContext());
2217        if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2218          // We know that GetCPUAndFeaturesAttributes will always have the
2219          // newest set, since it has the newest possible FunctionDecl, so the
2220          // new ones should replace the old.
2221          llvm::AttributeMask RemoveAttrs;
2222          RemoveAttrs.addAttribute("target-cpu");
2223          RemoveAttrs.addAttribute("target-features");
2224          RemoveAttrs.addAttribute("tune-cpu");
2225          F->removeFnAttrs(RemoveAttrs);
2226          F->addFnAttrs(Attrs);
2227        }
2228      }
2229  
2230      if (const auto *CSA = D->getAttr<CodeSegAttr>())
2231        GO->setSection(CSA->getName());
2232      else if (const auto *SA = D->getAttr<SectionAttr>())
2233        GO->setSection(SA->getName());
2234    }
2235  
2236    getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2237  }
2238  
2239  void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2240                                                    llvm::Function *F,
2241                                                    const CGFunctionInfo &FI) {
2242    const Decl *D = GD.getDecl();
2243    SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2244    SetLLVMFunctionAttributesForDefinition(D, F);
2245  
2246    F->setLinkage(llvm::Function::InternalLinkage);
2247  
2248    setNonAliasAttributes(GD, F);
2249  }
2250  
2251  static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2252    // Set linkage and visibility in case we never see a definition.
2253    LinkageInfo LV = ND->getLinkageAndVisibility();
2254    // Don't set internal linkage on declarations.
2255    // "extern_weak" is overloaded in LLVM; we probably should have
2256    // separate linkage types for this.
2257    if (isExternallyVisible(LV.getLinkage()) &&
2258        (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2259      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2260  }
2261  
2262  void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2263                                                         llvm::Function *F) {
2264    // Only if we are checking indirect calls.
2265    if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2266      return;
2267  
2268    // Non-static class methods are handled via vtable or member function pointer
2269    // checks elsewhere.
2270    if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2271      return;
2272  
2273    llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2274    F->addTypeMetadata(0, MD);
2275    F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2276  
2277    // Emit a hash-based bit set entry for cross-DSO calls.
2278    if (CodeGenOpts.SanitizeCfiCrossDso)
2279      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2280        F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2281  }
2282  
2283  void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2284                                            bool IsIncompleteFunction,
2285                                            bool IsThunk) {
2286  
2287    if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2288      // If this is an intrinsic function, set the function's attributes
2289      // to the intrinsic's attributes.
2290      F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2291      return;
2292    }
2293  
2294    const auto *FD = cast<FunctionDecl>(GD.getDecl());
2295  
2296    if (!IsIncompleteFunction)
2297      SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2298                                IsThunk);
2299  
2300    // Add the Returned attribute for "this", except for iOS 5 and earlier
2301    // where substantial code, including the libstdc++ dylib, was compiled with
2302    // GCC and does not actually return "this".
2303    if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2304        !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2305      assert(!F->arg_empty() &&
2306             F->arg_begin()->getType()
2307               ->canLosslesslyBitCastTo(F->getReturnType()) &&
2308             "unexpected this return");
2309      F->addParamAttr(0, llvm::Attribute::Returned);
2310    }
2311  
2312    // Only a few attributes are set on declarations; these may later be
2313    // overridden by a definition.
2314  
2315    setLinkageForGV(F, FD);
2316    setGVProperties(F, FD);
2317  
2318    // Setup target-specific attributes.
2319    if (!IsIncompleteFunction && F->isDeclaration())
2320      getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2321  
2322    if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2323      F->setSection(CSA->getName());
2324    else if (const auto *SA = FD->getAttr<SectionAttr>())
2325       F->setSection(SA->getName());
2326  
2327    if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2328      if (EA->isError())
2329        F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2330      else if (EA->isWarning())
2331        F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2332    }
2333  
2334    // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2335    if (FD->isInlineBuiltinDeclaration()) {
2336      const FunctionDecl *FDBody;
2337      bool HasBody = FD->hasBody(FDBody);
2338      (void)HasBody;
2339      assert(HasBody && "Inline builtin declarations should always have an "
2340                        "available body!");
2341      if (shouldEmitFunction(FDBody))
2342        F->addFnAttr(llvm::Attribute::NoBuiltin);
2343    }
2344  
2345    if (FD->isReplaceableGlobalAllocationFunction()) {
2346      // A replaceable global allocation function does not act like a builtin by
2347      // default, only if it is invoked by a new-expression or delete-expression.
2348      F->addFnAttr(llvm::Attribute::NoBuiltin);
2349    }
2350  
2351    if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2352      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2353    else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2354      if (MD->isVirtual())
2355        F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2356  
2357    // Don't emit entries for function declarations in the cross-DSO mode. This
2358    // is handled with better precision by the receiving DSO. But if jump tables
2359    // are non-canonical then we need type metadata in order to produce the local
2360    // jump table.
2361    if (!CodeGenOpts.SanitizeCfiCrossDso ||
2362        !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2363      CreateFunctionTypeMetadataForIcall(FD, F);
2364  
2365    if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2366      getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2367  
2368    if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2369      // Annotate the callback behavior as metadata:
2370      //  - The callback callee (as argument number).
2371      //  - The callback payloads (as argument numbers).
2372      llvm::LLVMContext &Ctx = F->getContext();
2373      llvm::MDBuilder MDB(Ctx);
2374  
2375      // The payload indices are all but the first one in the encoding. The first
2376      // identifies the callback callee.
2377      int CalleeIdx = *CB->encoding_begin();
2378      ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2379      F->addMetadata(llvm::LLVMContext::MD_callback,
2380                     *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2381                                                 CalleeIdx, PayloadIndices,
2382                                                 /* VarArgsArePassed */ false)}));
2383    }
2384  }
2385  
2386  void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2387    assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2388           "Only globals with definition can force usage.");
2389    LLVMUsed.emplace_back(GV);
2390  }
2391  
2392  void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2393    assert(!GV->isDeclaration() &&
2394           "Only globals with definition can force usage.");
2395    LLVMCompilerUsed.emplace_back(GV);
2396  }
2397  
2398  void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2399    assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2400           "Only globals with definition can force usage.");
2401    if (getTriple().isOSBinFormatELF())
2402      LLVMCompilerUsed.emplace_back(GV);
2403    else
2404      LLVMUsed.emplace_back(GV);
2405  }
2406  
2407  static void emitUsed(CodeGenModule &CGM, StringRef Name,
2408                       std::vector<llvm::WeakTrackingVH> &List) {
2409    // Don't create llvm.used if there is no need.
2410    if (List.empty())
2411      return;
2412  
2413    // Convert List to what ConstantArray needs.
2414    SmallVector<llvm::Constant*, 8> UsedArray;
2415    UsedArray.resize(List.size());
2416    for (unsigned i = 0, e = List.size(); i != e; ++i) {
2417      UsedArray[i] =
2418          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2419              cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2420    }
2421  
2422    if (UsedArray.empty())
2423      return;
2424    llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2425  
2426    auto *GV = new llvm::GlobalVariable(
2427        CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2428        llvm::ConstantArray::get(ATy, UsedArray), Name);
2429  
2430    GV->setSection("llvm.metadata");
2431  }
2432  
2433  void CodeGenModule::emitLLVMUsed() {
2434    emitUsed(*this, "llvm.used", LLVMUsed);
2435    emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2436  }
2437  
2438  void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2439    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2440    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2441  }
2442  
2443  void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2444    llvm::SmallString<32> Opt;
2445    getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2446    if (Opt.empty())
2447      return;
2448    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2449    LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2450  }
2451  
2452  void CodeGenModule::AddDependentLib(StringRef Lib) {
2453    auto &C = getLLVMContext();
2454    if (getTarget().getTriple().isOSBinFormatELF()) {
2455        ELFDependentLibraries.push_back(
2456          llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2457      return;
2458    }
2459  
2460    llvm::SmallString<24> Opt;
2461    getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2462    auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2463    LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2464  }
2465  
2466  /// Add link options implied by the given module, including modules
2467  /// it depends on, using a postorder walk.
2468  static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2469                                      SmallVectorImpl<llvm::MDNode *> &Metadata,
2470                                      llvm::SmallPtrSet<Module *, 16> &Visited) {
2471    // Import this module's parent.
2472    if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2473      addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2474    }
2475  
2476    // Import this module's dependencies.
2477    for (Module *Import : llvm::reverse(Mod->Imports)) {
2478      if (Visited.insert(Import).second)
2479        addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2480    }
2481  
2482    // Add linker options to link against the libraries/frameworks
2483    // described by this module.
2484    llvm::LLVMContext &Context = CGM.getLLVMContext();
2485    bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2486  
2487    // For modules that use export_as for linking, use that module
2488    // name instead.
2489    if (Mod->UseExportAsModuleLinkName)
2490      return;
2491  
2492    for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2493      // Link against a framework.  Frameworks are currently Darwin only, so we
2494      // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2495      if (LL.IsFramework) {
2496        llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2497                                   llvm::MDString::get(Context, LL.Library)};
2498  
2499        Metadata.push_back(llvm::MDNode::get(Context, Args));
2500        continue;
2501      }
2502  
2503      // Link against a library.
2504      if (IsELF) {
2505        llvm::Metadata *Args[2] = {
2506            llvm::MDString::get(Context, "lib"),
2507            llvm::MDString::get(Context, LL.Library),
2508        };
2509        Metadata.push_back(llvm::MDNode::get(Context, Args));
2510      } else {
2511        llvm::SmallString<24> Opt;
2512        CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2513        auto *OptString = llvm::MDString::get(Context, Opt);
2514        Metadata.push_back(llvm::MDNode::get(Context, OptString));
2515      }
2516    }
2517  }
2518  
2519  void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2520    // Emit the initializers in the order that sub-modules appear in the
2521    // source, first Global Module Fragments, if present.
2522    if (auto GMF = Primary->getGlobalModuleFragment()) {
2523      for (Decl *D : getContext().getModuleInitializers(GMF)) {
2524        if (isa<ImportDecl>(D))
2525          continue;
2526        assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2527        EmitTopLevelDecl(D);
2528      }
2529    }
2530    // Second any associated with the module, itself.
2531    for (Decl *D : getContext().getModuleInitializers(Primary)) {
2532      // Skip import decls, the inits for those are called explicitly.
2533      if (isa<ImportDecl>(D))
2534        continue;
2535      EmitTopLevelDecl(D);
2536    }
2537    // Third any associated with the Privat eMOdule Fragment, if present.
2538    if (auto PMF = Primary->getPrivateModuleFragment()) {
2539      for (Decl *D : getContext().getModuleInitializers(PMF)) {
2540        assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2541        EmitTopLevelDecl(D);
2542      }
2543    }
2544  }
2545  
2546  void CodeGenModule::EmitModuleLinkOptions() {
2547    // Collect the set of all of the modules we want to visit to emit link
2548    // options, which is essentially the imported modules and all of their
2549    // non-explicit child modules.
2550    llvm::SetVector<clang::Module *> LinkModules;
2551    llvm::SmallPtrSet<clang::Module *, 16> Visited;
2552    SmallVector<clang::Module *, 16> Stack;
2553  
2554    // Seed the stack with imported modules.
2555    for (Module *M : ImportedModules) {
2556      // Do not add any link flags when an implementation TU of a module imports
2557      // a header of that same module.
2558      if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2559          !getLangOpts().isCompilingModule())
2560        continue;
2561      if (Visited.insert(M).second)
2562        Stack.push_back(M);
2563    }
2564  
2565    // Find all of the modules to import, making a little effort to prune
2566    // non-leaf modules.
2567    while (!Stack.empty()) {
2568      clang::Module *Mod = Stack.pop_back_val();
2569  
2570      bool AnyChildren = false;
2571  
2572      // Visit the submodules of this module.
2573      for (const auto &SM : Mod->submodules()) {
2574        // Skip explicit children; they need to be explicitly imported to be
2575        // linked against.
2576        if (SM->IsExplicit)
2577          continue;
2578  
2579        if (Visited.insert(SM).second) {
2580          Stack.push_back(SM);
2581          AnyChildren = true;
2582        }
2583      }
2584  
2585      // We didn't find any children, so add this module to the list of
2586      // modules to link against.
2587      if (!AnyChildren) {
2588        LinkModules.insert(Mod);
2589      }
2590    }
2591  
2592    // Add link options for all of the imported modules in reverse topological
2593    // order.  We don't do anything to try to order import link flags with respect
2594    // to linker options inserted by things like #pragma comment().
2595    SmallVector<llvm::MDNode *, 16> MetadataArgs;
2596    Visited.clear();
2597    for (Module *M : LinkModules)
2598      if (Visited.insert(M).second)
2599        addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2600    std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2601    LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2602  
2603    // Add the linker options metadata flag.
2604    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2605    for (auto *MD : LinkerOptionsMetadata)
2606      NMD->addOperand(MD);
2607  }
2608  
2609  void CodeGenModule::EmitDeferred() {
2610    // Emit deferred declare target declarations.
2611    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2612      getOpenMPRuntime().emitDeferredTargetDecls();
2613  
2614    // Emit code for any potentially referenced deferred decls.  Since a
2615    // previously unused static decl may become used during the generation of code
2616    // for a static function, iterate until no changes are made.
2617  
2618    if (!DeferredVTables.empty()) {
2619      EmitDeferredVTables();
2620  
2621      // Emitting a vtable doesn't directly cause more vtables to
2622      // become deferred, although it can cause functions to be
2623      // emitted that then need those vtables.
2624      assert(DeferredVTables.empty());
2625    }
2626  
2627    // Emit CUDA/HIP static device variables referenced by host code only.
2628    // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2629    // needed for further handling.
2630    if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2631      llvm::append_range(DeferredDeclsToEmit,
2632                         getContext().CUDADeviceVarODRUsedByHost);
2633  
2634    // Stop if we're out of both deferred vtables and deferred declarations.
2635    if (DeferredDeclsToEmit.empty())
2636      return;
2637  
2638    // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2639    // work, it will not interfere with this.
2640    std::vector<GlobalDecl> CurDeclsToEmit;
2641    CurDeclsToEmit.swap(DeferredDeclsToEmit);
2642  
2643    for (GlobalDecl &D : CurDeclsToEmit) {
2644      // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2645      // to get GlobalValue with exactly the type we need, not something that
2646      // might had been created for another decl with the same mangled name but
2647      // different type.
2648      llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2649          GetAddrOfGlobal(D, ForDefinition));
2650  
2651      // In case of different address spaces, we may still get a cast, even with
2652      // IsForDefinition equal to true. Query mangled names table to get
2653      // GlobalValue.
2654      if (!GV)
2655        GV = GetGlobalValue(getMangledName(D));
2656  
2657      // Make sure GetGlobalValue returned non-null.
2658      assert(GV);
2659  
2660      // Check to see if we've already emitted this.  This is necessary
2661      // for a couple of reasons: first, decls can end up in the
2662      // deferred-decls queue multiple times, and second, decls can end
2663      // up with definitions in unusual ways (e.g. by an extern inline
2664      // function acquiring a strong function redefinition).  Just
2665      // ignore these cases.
2666      if (!GV->isDeclaration())
2667        continue;
2668  
2669      // If this is OpenMP, check if it is legal to emit this global normally.
2670      if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2671        continue;
2672  
2673      // Otherwise, emit the definition and move on to the next one.
2674      EmitGlobalDefinition(D, GV);
2675  
2676      // If we found out that we need to emit more decls, do that recursively.
2677      // This has the advantage that the decls are emitted in a DFS and related
2678      // ones are close together, which is convenient for testing.
2679      if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2680        EmitDeferred();
2681        assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2682      }
2683    }
2684  }
2685  
2686  void CodeGenModule::EmitVTablesOpportunistically() {
2687    // Try to emit external vtables as available_externally if they have emitted
2688    // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2689    // is not allowed to create new references to things that need to be emitted
2690    // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2691  
2692    assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2693           && "Only emit opportunistic vtables with optimizations");
2694  
2695    for (const CXXRecordDecl *RD : OpportunisticVTables) {
2696      assert(getVTables().isVTableExternal(RD) &&
2697             "This queue should only contain external vtables");
2698      if (getCXXABI().canSpeculativelyEmitVTable(RD))
2699        VTables.GenerateClassData(RD);
2700    }
2701    OpportunisticVTables.clear();
2702  }
2703  
2704  void CodeGenModule::EmitGlobalAnnotations() {
2705    if (Annotations.empty())
2706      return;
2707  
2708    // Create a new global variable for the ConstantStruct in the Module.
2709    llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2710      Annotations[0]->getType(), Annotations.size()), Annotations);
2711    auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2712                                        llvm::GlobalValue::AppendingLinkage,
2713                                        Array, "llvm.global.annotations");
2714    gv->setSection(AnnotationSection);
2715  }
2716  
2717  llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2718    llvm::Constant *&AStr = AnnotationStrings[Str];
2719    if (AStr)
2720      return AStr;
2721  
2722    // Not found yet, create a new global.
2723    llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2724    auto *gv =
2725        new llvm::GlobalVariable(getModule(), s->getType(), true,
2726                                 llvm::GlobalValue::PrivateLinkage, s, ".str");
2727    gv->setSection(AnnotationSection);
2728    gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2729    AStr = gv;
2730    return gv;
2731  }
2732  
2733  llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2734    SourceManager &SM = getContext().getSourceManager();
2735    PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2736    if (PLoc.isValid())
2737      return EmitAnnotationString(PLoc.getFilename());
2738    return EmitAnnotationString(SM.getBufferName(Loc));
2739  }
2740  
2741  llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2742    SourceManager &SM = getContext().getSourceManager();
2743    PresumedLoc PLoc = SM.getPresumedLoc(L);
2744    unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2745      SM.getExpansionLineNumber(L);
2746    return llvm::ConstantInt::get(Int32Ty, LineNo);
2747  }
2748  
2749  llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2750    ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2751    if (Exprs.empty())
2752      return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2753  
2754    llvm::FoldingSetNodeID ID;
2755    for (Expr *E : Exprs) {
2756      ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2757    }
2758    llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2759    if (Lookup)
2760      return Lookup;
2761  
2762    llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2763    LLVMArgs.reserve(Exprs.size());
2764    ConstantEmitter ConstEmiter(*this);
2765    llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2766      const auto *CE = cast<clang::ConstantExpr>(E);
2767      return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2768                                      CE->getType());
2769    });
2770    auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2771    auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2772                                        llvm::GlobalValue::PrivateLinkage, Struct,
2773                                        ".args");
2774    GV->setSection(AnnotationSection);
2775    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2776    auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2777  
2778    Lookup = Bitcasted;
2779    return Bitcasted;
2780  }
2781  
2782  llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2783                                                  const AnnotateAttr *AA,
2784                                                  SourceLocation L) {
2785    // Get the globals for file name, annotation, and the line number.
2786    llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2787                   *UnitGV = EmitAnnotationUnit(L),
2788                   *LineNoCst = EmitAnnotationLineNo(L),
2789                   *Args = EmitAnnotationArgs(AA);
2790  
2791    llvm::Constant *GVInGlobalsAS = GV;
2792    if (GV->getAddressSpace() !=
2793        getDataLayout().getDefaultGlobalsAddressSpace()) {
2794      GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2795          GV, GV->getValueType()->getPointerTo(
2796                  getDataLayout().getDefaultGlobalsAddressSpace()));
2797    }
2798  
2799    // Create the ConstantStruct for the global annotation.
2800    llvm::Constant *Fields[] = {
2801        llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2802        llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2803        llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2804        LineNoCst,
2805        Args,
2806    };
2807    return llvm::ConstantStruct::getAnon(Fields);
2808  }
2809  
2810  void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2811                                           llvm::GlobalValue *GV) {
2812    assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2813    // Get the struct elements for these annotations.
2814    for (const auto *I : D->specific_attrs<AnnotateAttr>())
2815      Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2816  }
2817  
2818  bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2819                                         SourceLocation Loc) const {
2820    const auto &NoSanitizeL = getContext().getNoSanitizeList();
2821    // NoSanitize by function name.
2822    if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2823      return true;
2824    // NoSanitize by location. Check "mainfile" prefix.
2825    auto &SM = Context.getSourceManager();
2826    const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2827    if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2828      return true;
2829  
2830    // Check "src" prefix.
2831    if (Loc.isValid())
2832      return NoSanitizeL.containsLocation(Kind, Loc);
2833    // If location is unknown, this may be a compiler-generated function. Assume
2834    // it's located in the main file.
2835    return NoSanitizeL.containsFile(Kind, MainFile.getName());
2836  }
2837  
2838  bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2839                                         llvm::GlobalVariable *GV,
2840                                         SourceLocation Loc, QualType Ty,
2841                                         StringRef Category) const {
2842    const auto &NoSanitizeL = getContext().getNoSanitizeList();
2843    if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2844      return true;
2845    auto &SM = Context.getSourceManager();
2846    if (NoSanitizeL.containsMainFile(
2847            Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2848      return true;
2849    if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2850      return true;
2851  
2852    // Check global type.
2853    if (!Ty.isNull()) {
2854      // Drill down the array types: if global variable of a fixed type is
2855      // not sanitized, we also don't instrument arrays of them.
2856      while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2857        Ty = AT->getElementType();
2858      Ty = Ty.getCanonicalType().getUnqualifiedType();
2859      // Only record types (classes, structs etc.) are ignored.
2860      if (Ty->isRecordType()) {
2861        std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2862        if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2863          return true;
2864      }
2865    }
2866    return false;
2867  }
2868  
2869  bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2870                                     StringRef Category) const {
2871    const auto &XRayFilter = getContext().getXRayFilter();
2872    using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2873    auto Attr = ImbueAttr::NONE;
2874    if (Loc.isValid())
2875      Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2876    if (Attr == ImbueAttr::NONE)
2877      Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2878    switch (Attr) {
2879    case ImbueAttr::NONE:
2880      return false;
2881    case ImbueAttr::ALWAYS:
2882      Fn->addFnAttr("function-instrument", "xray-always");
2883      break;
2884    case ImbueAttr::ALWAYS_ARG1:
2885      Fn->addFnAttr("function-instrument", "xray-always");
2886      Fn->addFnAttr("xray-log-args", "1");
2887      break;
2888    case ImbueAttr::NEVER:
2889      Fn->addFnAttr("function-instrument", "xray-never");
2890      break;
2891    }
2892    return true;
2893  }
2894  
2895  bool CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2896                                                     SourceLocation Loc) const {
2897    const auto &ProfileList = getContext().getProfileList();
2898    // If the profile list is empty, then instrument everything.
2899    if (ProfileList.isEmpty())
2900      return false;
2901    CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2902    // First, check the function name.
2903    Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2904    if (V)
2905      return *V;
2906    // Next, check the source location.
2907    if (Loc.isValid()) {
2908      Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2909      if (V)
2910        return *V;
2911    }
2912    // If location is unknown, this may be a compiler-generated function. Assume
2913    // it's located in the main file.
2914    auto &SM = Context.getSourceManager();
2915    if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2916      Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2917      if (V)
2918        return *V;
2919    }
2920    return ProfileList.getDefault();
2921  }
2922  
2923  bool CodeGenModule::isFunctionBlockedFromProfileInstr(
2924      llvm::Function *Fn, SourceLocation Loc) const {
2925    if (isFunctionBlockedByProfileList(Fn, Loc))
2926      return true;
2927  
2928    auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
2929    if (NumGroups > 1) {
2930      auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
2931      if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
2932        return true;
2933    }
2934    return false;
2935  }
2936  
2937  bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2938    // Never defer when EmitAllDecls is specified.
2939    if (LangOpts.EmitAllDecls)
2940      return true;
2941  
2942    if (CodeGenOpts.KeepStaticConsts) {
2943      const auto *VD = dyn_cast<VarDecl>(Global);
2944      if (VD && VD->getType().isConstQualified() &&
2945          VD->getStorageDuration() == SD_Static)
2946        return true;
2947    }
2948  
2949    return getContext().DeclMustBeEmitted(Global);
2950  }
2951  
2952  bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2953    // In OpenMP 5.0 variables and function may be marked as
2954    // device_type(host/nohost) and we should not emit them eagerly unless we sure
2955    // that they must be emitted on the host/device. To be sure we need to have
2956    // seen a declare target with an explicit mentioning of the function, we know
2957    // we have if the level of the declare target attribute is -1. Note that we
2958    // check somewhere else if we should emit this at all.
2959    if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2960      llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2961          OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2962      if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2963        return false;
2964    }
2965  
2966    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2967      if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2968        // Implicit template instantiations may change linkage if they are later
2969        // explicitly instantiated, so they should not be emitted eagerly.
2970        return false;
2971    }
2972    if (const auto *VD = dyn_cast<VarDecl>(Global)) {
2973      if (Context.getInlineVariableDefinitionKind(VD) ==
2974          ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2975        // A definition of an inline constexpr static data member may change
2976        // linkage later if it's redeclared outside the class.
2977        return false;
2978      if (CXX20ModuleInits && VD->getOwningModule() &&
2979          !VD->getOwningModule()->isModuleMapModule()) {
2980        // For CXX20, module-owned initializers need to be deferred, since it is
2981        // not known at this point if they will be run for the current module or
2982        // as part of the initializer for an imported one.
2983        return false;
2984      }
2985    }
2986    // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2987    // codegen for global variables, because they may be marked as threadprivate.
2988    if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2989        getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2990        !isTypeConstant(Global->getType(), false) &&
2991        !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2992      return false;
2993  
2994    return true;
2995  }
2996  
2997  ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2998    StringRef Name = getMangledName(GD);
2999  
3000    // The UUID descriptor should be pointer aligned.
3001    CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3002  
3003    // Look for an existing global.
3004    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3005      return ConstantAddress(GV, GV->getValueType(), Alignment);
3006  
3007    ConstantEmitter Emitter(*this);
3008    llvm::Constant *Init;
3009  
3010    APValue &V = GD->getAsAPValue();
3011    if (!V.isAbsent()) {
3012      // If possible, emit the APValue version of the initializer. In particular,
3013      // this gets the type of the constant right.
3014      Init = Emitter.emitForInitializer(
3015          GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3016    } else {
3017      // As a fallback, directly construct the constant.
3018      // FIXME: This may get padding wrong under esoteric struct layout rules.
3019      // MSVC appears to create a complete type 'struct __s_GUID' that it
3020      // presumably uses to represent these constants.
3021      MSGuidDecl::Parts Parts = GD->getParts();
3022      llvm::Constant *Fields[4] = {
3023          llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3024          llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3025          llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3026          llvm::ConstantDataArray::getRaw(
3027              StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3028              Int8Ty)};
3029      Init = llvm::ConstantStruct::getAnon(Fields);
3030    }
3031  
3032    auto *GV = new llvm::GlobalVariable(
3033        getModule(), Init->getType(),
3034        /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3035    if (supportsCOMDAT())
3036      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3037    setDSOLocal(GV);
3038  
3039    if (!V.isAbsent()) {
3040      Emitter.finalize(GV);
3041      return ConstantAddress(GV, GV->getValueType(), Alignment);
3042    }
3043  
3044    llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3045    llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3046        GV, Ty->getPointerTo(GV->getAddressSpace()));
3047    return ConstantAddress(Addr, Ty, Alignment);
3048  }
3049  
3050  ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3051      const UnnamedGlobalConstantDecl *GCD) {
3052    CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3053  
3054    llvm::GlobalVariable **Entry = nullptr;
3055    Entry = &UnnamedGlobalConstantDeclMap[GCD];
3056    if (*Entry)
3057      return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3058  
3059    ConstantEmitter Emitter(*this);
3060    llvm::Constant *Init;
3061  
3062    const APValue &V = GCD->getValue();
3063  
3064    assert(!V.isAbsent());
3065    Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3066                                      GCD->getType());
3067  
3068    auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3069                                        /*isConstant=*/true,
3070                                        llvm::GlobalValue::PrivateLinkage, Init,
3071                                        ".constant");
3072    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3073    GV->setAlignment(Alignment.getAsAlign());
3074  
3075    Emitter.finalize(GV);
3076  
3077    *Entry = GV;
3078    return ConstantAddress(GV, GV->getValueType(), Alignment);
3079  }
3080  
3081  ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3082      const TemplateParamObjectDecl *TPO) {
3083    StringRef Name = getMangledName(TPO);
3084    CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3085  
3086    if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3087      return ConstantAddress(GV, GV->getValueType(), Alignment);
3088  
3089    ConstantEmitter Emitter(*this);
3090    llvm::Constant *Init = Emitter.emitForInitializer(
3091          TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3092  
3093    if (!Init) {
3094      ErrorUnsupported(TPO, "template parameter object");
3095      return ConstantAddress::invalid();
3096    }
3097  
3098    auto *GV = new llvm::GlobalVariable(
3099        getModule(), Init->getType(),
3100        /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3101    if (supportsCOMDAT())
3102      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3103    Emitter.finalize(GV);
3104  
3105    return ConstantAddress(GV, GV->getValueType(), Alignment);
3106  }
3107  
3108  ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3109    const AliasAttr *AA = VD->getAttr<AliasAttr>();
3110    assert(AA && "No alias?");
3111  
3112    CharUnits Alignment = getContext().getDeclAlign(VD);
3113    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3114  
3115    // See if there is already something with the target's name in the module.
3116    llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3117    if (Entry) {
3118      unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3119      auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3120      return ConstantAddress(Ptr, DeclTy, Alignment);
3121    }
3122  
3123    llvm::Constant *Aliasee;
3124    if (isa<llvm::FunctionType>(DeclTy))
3125      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3126                                        GlobalDecl(cast<FunctionDecl>(VD)),
3127                                        /*ForVTable=*/false);
3128    else
3129      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3130                                      nullptr);
3131  
3132    auto *F = cast<llvm::GlobalValue>(Aliasee);
3133    F->setLinkage(llvm::Function::ExternalWeakLinkage);
3134    WeakRefReferences.insert(F);
3135  
3136    return ConstantAddress(Aliasee, DeclTy, Alignment);
3137  }
3138  
3139  void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3140    const auto *Global = cast<ValueDecl>(GD.getDecl());
3141  
3142    // Weak references don't produce any output by themselves.
3143    if (Global->hasAttr<WeakRefAttr>())
3144      return;
3145  
3146    // If this is an alias definition (which otherwise looks like a declaration)
3147    // emit it now.
3148    if (Global->hasAttr<AliasAttr>())
3149      return EmitAliasDefinition(GD);
3150  
3151    // IFunc like an alias whose value is resolved at runtime by calling resolver.
3152    if (Global->hasAttr<IFuncAttr>())
3153      return emitIFuncDefinition(GD);
3154  
3155    // If this is a cpu_dispatch multiversion function, emit the resolver.
3156    if (Global->hasAttr<CPUDispatchAttr>())
3157      return emitCPUDispatchDefinition(GD);
3158  
3159    // If this is CUDA, be selective about which declarations we emit.
3160    if (LangOpts.CUDA) {
3161      if (LangOpts.CUDAIsDevice) {
3162        if (!Global->hasAttr<CUDADeviceAttr>() &&
3163            !Global->hasAttr<CUDAGlobalAttr>() &&
3164            !Global->hasAttr<CUDAConstantAttr>() &&
3165            !Global->hasAttr<CUDASharedAttr>() &&
3166            !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3167            !Global->getType()->isCUDADeviceBuiltinTextureType())
3168          return;
3169      } else {
3170        // We need to emit host-side 'shadows' for all global
3171        // device-side variables because the CUDA runtime needs their
3172        // size and host-side address in order to provide access to
3173        // their device-side incarnations.
3174  
3175        // So device-only functions are the only things we skip.
3176        if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3177            Global->hasAttr<CUDADeviceAttr>())
3178          return;
3179  
3180        assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3181               "Expected Variable or Function");
3182      }
3183    }
3184  
3185    if (LangOpts.OpenMP) {
3186      // If this is OpenMP, check if it is legal to emit this global normally.
3187      if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3188        return;
3189      if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3190        if (MustBeEmitted(Global))
3191          EmitOMPDeclareReduction(DRD);
3192        return;
3193      } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3194        if (MustBeEmitted(Global))
3195          EmitOMPDeclareMapper(DMD);
3196        return;
3197      }
3198    }
3199  
3200    // Ignore declarations, they will be emitted on their first use.
3201    if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3202      // Forward declarations are emitted lazily on first use.
3203      if (!FD->doesThisDeclarationHaveABody()) {
3204        if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3205          return;
3206  
3207        StringRef MangledName = getMangledName(GD);
3208  
3209        // Compute the function info and LLVM type.
3210        const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3211        llvm::Type *Ty = getTypes().GetFunctionType(FI);
3212  
3213        GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3214                                /*DontDefer=*/false);
3215        return;
3216      }
3217    } else {
3218      const auto *VD = cast<VarDecl>(Global);
3219      assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3220      if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3221          !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3222        if (LangOpts.OpenMP) {
3223          // Emit declaration of the must-be-emitted declare target variable.
3224          if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3225                  OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3226            bool UnifiedMemoryEnabled =
3227                getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3228            if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3229                !UnifiedMemoryEnabled) {
3230              (void)GetAddrOfGlobalVar(VD);
3231            } else {
3232              assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3233                      (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3234                       UnifiedMemoryEnabled)) &&
3235                     "Link clause or to clause with unified memory expected.");
3236              (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3237            }
3238  
3239            return;
3240          }
3241        }
3242        // If this declaration may have caused an inline variable definition to
3243        // change linkage, make sure that it's emitted.
3244        if (Context.getInlineVariableDefinitionKind(VD) ==
3245            ASTContext::InlineVariableDefinitionKind::Strong)
3246          GetAddrOfGlobalVar(VD);
3247        return;
3248      }
3249    }
3250  
3251    // Defer code generation to first use when possible, e.g. if this is an inline
3252    // function. If the global must always be emitted, do it eagerly if possible
3253    // to benefit from cache locality.
3254    if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3255      // Emit the definition if it can't be deferred.
3256      EmitGlobalDefinition(GD);
3257      return;
3258    }
3259  
3260    // If we're deferring emission of a C++ variable with an
3261    // initializer, remember the order in which it appeared in the file.
3262    if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3263        cast<VarDecl>(Global)->hasInit()) {
3264      DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3265      CXXGlobalInits.push_back(nullptr);
3266    }
3267  
3268    StringRef MangledName = getMangledName(GD);
3269    if (GetGlobalValue(MangledName) != nullptr) {
3270      // The value has already been used and should therefore be emitted.
3271      addDeferredDeclToEmit(GD);
3272    } else if (MustBeEmitted(Global)) {
3273      // The value must be emitted, but cannot be emitted eagerly.
3274      assert(!MayBeEmittedEagerly(Global));
3275      addDeferredDeclToEmit(GD);
3276    } else {
3277      // Otherwise, remember that we saw a deferred decl with this name.  The
3278      // first use of the mangled name will cause it to move into
3279      // DeferredDeclsToEmit.
3280      DeferredDecls[MangledName] = GD;
3281    }
3282  }
3283  
3284  // Check if T is a class type with a destructor that's not dllimport.
3285  static bool HasNonDllImportDtor(QualType T) {
3286    if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3287      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3288        if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3289          return true;
3290  
3291    return false;
3292  }
3293  
3294  namespace {
3295    struct FunctionIsDirectlyRecursive
3296        : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3297      const StringRef Name;
3298      const Builtin::Context &BI;
3299      FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3300          : Name(N), BI(C) {}
3301  
3302      bool VisitCallExpr(const CallExpr *E) {
3303        const FunctionDecl *FD = E->getDirectCallee();
3304        if (!FD)
3305          return false;
3306        AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3307        if (Attr && Name == Attr->getLabel())
3308          return true;
3309        unsigned BuiltinID = FD->getBuiltinID();
3310        if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3311          return false;
3312        StringRef BuiltinName = BI.getName(BuiltinID);
3313        if (BuiltinName.startswith("__builtin_") &&
3314            Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3315          return true;
3316        }
3317        return false;
3318      }
3319  
3320      bool VisitStmt(const Stmt *S) {
3321        for (const Stmt *Child : S->children())
3322          if (Child && this->Visit(Child))
3323            return true;
3324        return false;
3325      }
3326    };
3327  
3328    // Make sure we're not referencing non-imported vars or functions.
3329    struct DLLImportFunctionVisitor
3330        : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3331      bool SafeToInline = true;
3332  
3333      bool shouldVisitImplicitCode() const { return true; }
3334  
3335      bool VisitVarDecl(VarDecl *VD) {
3336        if (VD->getTLSKind()) {
3337          // A thread-local variable cannot be imported.
3338          SafeToInline = false;
3339          return SafeToInline;
3340        }
3341  
3342        // A variable definition might imply a destructor call.
3343        if (VD->isThisDeclarationADefinition())
3344          SafeToInline = !HasNonDllImportDtor(VD->getType());
3345  
3346        return SafeToInline;
3347      }
3348  
3349      bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3350        if (const auto *D = E->getTemporary()->getDestructor())
3351          SafeToInline = D->hasAttr<DLLImportAttr>();
3352        return SafeToInline;
3353      }
3354  
3355      bool VisitDeclRefExpr(DeclRefExpr *E) {
3356        ValueDecl *VD = E->getDecl();
3357        if (isa<FunctionDecl>(VD))
3358          SafeToInline = VD->hasAttr<DLLImportAttr>();
3359        else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3360          SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3361        return SafeToInline;
3362      }
3363  
3364      bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3365        SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3366        return SafeToInline;
3367      }
3368  
3369      bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3370        CXXMethodDecl *M = E->getMethodDecl();
3371        if (!M) {
3372          // Call through a pointer to member function. This is safe to inline.
3373          SafeToInline = true;
3374        } else {
3375          SafeToInline = M->hasAttr<DLLImportAttr>();
3376        }
3377        return SafeToInline;
3378      }
3379  
3380      bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3381        SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3382        return SafeToInline;
3383      }
3384  
3385      bool VisitCXXNewExpr(CXXNewExpr *E) {
3386        SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3387        return SafeToInline;
3388      }
3389    };
3390  }
3391  
3392  // isTriviallyRecursive - Check if this function calls another
3393  // decl that, because of the asm attribute or the other decl being a builtin,
3394  // ends up pointing to itself.
3395  bool
3396  CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3397    StringRef Name;
3398    if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3399      // asm labels are a special kind of mangling we have to support.
3400      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3401      if (!Attr)
3402        return false;
3403      Name = Attr->getLabel();
3404    } else {
3405      Name = FD->getName();
3406    }
3407  
3408    FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3409    const Stmt *Body = FD->getBody();
3410    return Body ? Walker.Visit(Body) : false;
3411  }
3412  
3413  bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3414    if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3415      return true;
3416    const auto *F = cast<FunctionDecl>(GD.getDecl());
3417    if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3418      return false;
3419  
3420    if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3421      // Check whether it would be safe to inline this dllimport function.
3422      DLLImportFunctionVisitor Visitor;
3423      Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3424      if (!Visitor.SafeToInline)
3425        return false;
3426  
3427      if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3428        // Implicit destructor invocations aren't captured in the AST, so the
3429        // check above can't see them. Check for them manually here.
3430        for (const Decl *Member : Dtor->getParent()->decls())
3431          if (isa<FieldDecl>(Member))
3432            if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3433              return false;
3434        for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3435          if (HasNonDllImportDtor(B.getType()))
3436            return false;
3437      }
3438    }
3439  
3440    // Inline builtins declaration must be emitted. They often are fortified
3441    // functions.
3442    if (F->isInlineBuiltinDeclaration())
3443      return true;
3444  
3445    // PR9614. Avoid cases where the source code is lying to us. An available
3446    // externally function should have an equivalent function somewhere else,
3447    // but a function that calls itself through asm label/`__builtin_` trickery is
3448    // clearly not equivalent to the real implementation.
3449    // This happens in glibc's btowc and in some configure checks.
3450    return !isTriviallyRecursive(F);
3451  }
3452  
3453  bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3454    return CodeGenOpts.OptimizationLevel > 0;
3455  }
3456  
3457  void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3458                                                         llvm::GlobalValue *GV) {
3459    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3460  
3461    if (FD->isCPUSpecificMultiVersion()) {
3462      auto *Spec = FD->getAttr<CPUSpecificAttr>();
3463      for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3464        EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3465    } else if (FD->isTargetClonesMultiVersion()) {
3466      auto *Clone = FD->getAttr<TargetClonesAttr>();
3467      for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3468        if (Clone->isFirstOfVersion(I))
3469          EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3470      // Ensure that the resolver function is also emitted.
3471      GetOrCreateMultiVersionResolver(GD);
3472    } else
3473      EmitGlobalFunctionDefinition(GD, GV);
3474  }
3475  
3476  void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3477    const auto *D = cast<ValueDecl>(GD.getDecl());
3478  
3479    PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3480                                   Context.getSourceManager(),
3481                                   "Generating code for declaration");
3482  
3483    if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3484      // At -O0, don't generate IR for functions with available_externally
3485      // linkage.
3486      if (!shouldEmitFunction(GD))
3487        return;
3488  
3489      llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3490        std::string Name;
3491        llvm::raw_string_ostream OS(Name);
3492        FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3493                                 /*Qualified=*/true);
3494        return Name;
3495      });
3496  
3497      if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3498        // Make sure to emit the definition(s) before we emit the thunks.
3499        // This is necessary for the generation of certain thunks.
3500        if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3501          ABI->emitCXXStructor(GD);
3502        else if (FD->isMultiVersion())
3503          EmitMultiVersionFunctionDefinition(GD, GV);
3504        else
3505          EmitGlobalFunctionDefinition(GD, GV);
3506  
3507        if (Method->isVirtual())
3508          getVTables().EmitThunks(GD);
3509  
3510        return;
3511      }
3512  
3513      if (FD->isMultiVersion())
3514        return EmitMultiVersionFunctionDefinition(GD, GV);
3515      return EmitGlobalFunctionDefinition(GD, GV);
3516    }
3517  
3518    if (const auto *VD = dyn_cast<VarDecl>(D))
3519      return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3520  
3521    llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3522  }
3523  
3524  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3525                                                        llvm::Function *NewFn);
3526  
3527  static unsigned
3528  TargetMVPriority(const TargetInfo &TI,
3529                   const CodeGenFunction::MultiVersionResolverOption &RO) {
3530    unsigned Priority = 0;
3531    for (StringRef Feat : RO.Conditions.Features)
3532      Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3533  
3534    if (!RO.Conditions.Architecture.empty())
3535      Priority = std::max(
3536          Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3537    return Priority;
3538  }
3539  
3540  // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3541  // TU can forward declare the function without causing problems.  Particularly
3542  // in the cases of CPUDispatch, this causes issues. This also makes sure we
3543  // work with internal linkage functions, so that the same function name can be
3544  // used with internal linkage in multiple TUs.
3545  llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3546                                                         GlobalDecl GD) {
3547    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3548    if (FD->getFormalLinkage() == InternalLinkage)
3549      return llvm::GlobalValue::InternalLinkage;
3550    return llvm::GlobalValue::WeakODRLinkage;
3551  }
3552  
3553  void CodeGenModule::emitMultiVersionFunctions() {
3554    std::vector<GlobalDecl> MVFuncsToEmit;
3555    MultiVersionFuncs.swap(MVFuncsToEmit);
3556    for (GlobalDecl GD : MVFuncsToEmit) {
3557      const auto *FD = cast<FunctionDecl>(GD.getDecl());
3558      assert(FD && "Expected a FunctionDecl");
3559  
3560      SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3561      if (FD->isTargetMultiVersion()) {
3562        getContext().forEachMultiversionedFunctionVersion(
3563            FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3564              GlobalDecl CurGD{
3565                  (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3566              StringRef MangledName = getMangledName(CurGD);
3567              llvm::Constant *Func = GetGlobalValue(MangledName);
3568              if (!Func) {
3569                if (CurFD->isDefined()) {
3570                  EmitGlobalFunctionDefinition(CurGD, nullptr);
3571                  Func = GetGlobalValue(MangledName);
3572                } else {
3573                  const CGFunctionInfo &FI =
3574                      getTypes().arrangeGlobalDeclaration(GD);
3575                  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3576                  Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3577                                           /*DontDefer=*/false, ForDefinition);
3578                }
3579                assert(Func && "This should have just been created");
3580              }
3581  
3582              const auto *TA = CurFD->getAttr<TargetAttr>();
3583              llvm::SmallVector<StringRef, 8> Feats;
3584              TA->getAddedFeatures(Feats);
3585  
3586              Options.emplace_back(cast<llvm::Function>(Func),
3587                                   TA->getArchitecture(), Feats);
3588            });
3589      } else if (FD->isTargetClonesMultiVersion()) {
3590        const auto *TC = FD->getAttr<TargetClonesAttr>();
3591        for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3592             ++VersionIndex) {
3593          if (!TC->isFirstOfVersion(VersionIndex))
3594            continue;
3595          GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3596                           VersionIndex};
3597          StringRef Version = TC->getFeatureStr(VersionIndex);
3598          StringRef MangledName = getMangledName(CurGD);
3599          llvm::Constant *Func = GetGlobalValue(MangledName);
3600          if (!Func) {
3601            if (FD->isDefined()) {
3602              EmitGlobalFunctionDefinition(CurGD, nullptr);
3603              Func = GetGlobalValue(MangledName);
3604            } else {
3605              const CGFunctionInfo &FI =
3606                  getTypes().arrangeGlobalDeclaration(CurGD);
3607              llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3608              Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3609                                       /*DontDefer=*/false, ForDefinition);
3610            }
3611            assert(Func && "This should have just been created");
3612          }
3613  
3614          StringRef Architecture;
3615          llvm::SmallVector<StringRef, 1> Feature;
3616  
3617          if (Version.startswith("arch="))
3618            Architecture = Version.drop_front(sizeof("arch=") - 1);
3619          else if (Version != "default")
3620            Feature.push_back(Version);
3621  
3622          Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3623        }
3624      } else {
3625        assert(0 && "Expected a target or target_clones multiversion function");
3626        continue;
3627      }
3628  
3629      llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3630      if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3631        ResolverConstant = IFunc->getResolver();
3632      llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3633  
3634      ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3635  
3636      if (supportsCOMDAT())
3637        ResolverFunc->setComdat(
3638            getModule().getOrInsertComdat(ResolverFunc->getName()));
3639  
3640      const TargetInfo &TI = getTarget();
3641      llvm::stable_sort(
3642          Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3643                         const CodeGenFunction::MultiVersionResolverOption &RHS) {
3644            return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3645          });
3646      CodeGenFunction CGF(*this);
3647      CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3648    }
3649  
3650    // Ensure that any additions to the deferred decls list caused by emitting a
3651    // variant are emitted.  This can happen when the variant itself is inline and
3652    // calls a function without linkage.
3653    if (!MVFuncsToEmit.empty())
3654      EmitDeferred();
3655  
3656    // Ensure that any additions to the multiversion funcs list from either the
3657    // deferred decls or the multiversion functions themselves are emitted.
3658    if (!MultiVersionFuncs.empty())
3659      emitMultiVersionFunctions();
3660  }
3661  
3662  void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3663    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3664    assert(FD && "Not a FunctionDecl?");
3665    assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3666    const auto *DD = FD->getAttr<CPUDispatchAttr>();
3667    assert(DD && "Not a cpu_dispatch Function?");
3668  
3669    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3670    llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3671  
3672    StringRef ResolverName = getMangledName(GD);
3673    UpdateMultiVersionNames(GD, FD, ResolverName);
3674  
3675    llvm::Type *ResolverType;
3676    GlobalDecl ResolverGD;
3677    if (getTarget().supportsIFunc()) {
3678      ResolverType = llvm::FunctionType::get(
3679          llvm::PointerType::get(DeclTy,
3680                                 Context.getTargetAddressSpace(FD->getType())),
3681          false);
3682    }
3683    else {
3684      ResolverType = DeclTy;
3685      ResolverGD = GD;
3686    }
3687  
3688    auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3689        ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3690    ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3691    if (supportsCOMDAT())
3692      ResolverFunc->setComdat(
3693          getModule().getOrInsertComdat(ResolverFunc->getName()));
3694  
3695    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3696    const TargetInfo &Target = getTarget();
3697    unsigned Index = 0;
3698    for (const IdentifierInfo *II : DD->cpus()) {
3699      // Get the name of the target function so we can look it up/create it.
3700      std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3701                                getCPUSpecificMangling(*this, II->getName());
3702  
3703      llvm::Constant *Func = GetGlobalValue(MangledName);
3704  
3705      if (!Func) {
3706        GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3707        if (ExistingDecl.getDecl() &&
3708            ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3709          EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3710          Func = GetGlobalValue(MangledName);
3711        } else {
3712          if (!ExistingDecl.getDecl())
3713            ExistingDecl = GD.getWithMultiVersionIndex(Index);
3714  
3715        Func = GetOrCreateLLVMFunction(
3716            MangledName, DeclTy, ExistingDecl,
3717            /*ForVTable=*/false, /*DontDefer=*/true,
3718            /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3719        }
3720      }
3721  
3722      llvm::SmallVector<StringRef, 32> Features;
3723      Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3724      llvm::transform(Features, Features.begin(),
3725                      [](StringRef Str) { return Str.substr(1); });
3726      llvm::erase_if(Features, [&Target](StringRef Feat) {
3727        return !Target.validateCpuSupports(Feat);
3728      });
3729      Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3730      ++Index;
3731    }
3732  
3733    llvm::stable_sort(
3734        Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3735                    const CodeGenFunction::MultiVersionResolverOption &RHS) {
3736          return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3737                 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3738        });
3739  
3740    // If the list contains multiple 'default' versions, such as when it contains
3741    // 'pentium' and 'generic', don't emit the call to the generic one (since we
3742    // always run on at least a 'pentium'). We do this by deleting the 'least
3743    // advanced' (read, lowest mangling letter).
3744    while (Options.size() > 1 &&
3745           llvm::X86::getCpuSupportsMask(
3746               (Options.end() - 2)->Conditions.Features) == 0) {
3747      StringRef LHSName = (Options.end() - 2)->Function->getName();
3748      StringRef RHSName = (Options.end() - 1)->Function->getName();
3749      if (LHSName.compare(RHSName) < 0)
3750        Options.erase(Options.end() - 2);
3751      else
3752        Options.erase(Options.end() - 1);
3753    }
3754  
3755    CodeGenFunction CGF(*this);
3756    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3757  
3758    if (getTarget().supportsIFunc()) {
3759      llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3760      auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3761  
3762      // Fix up function declarations that were created for cpu_specific before
3763      // cpu_dispatch was known
3764      if (!isa<llvm::GlobalIFunc>(IFunc)) {
3765        assert(cast<llvm::Function>(IFunc)->isDeclaration());
3766        auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3767                                             &getModule());
3768        GI->takeName(IFunc);
3769        IFunc->replaceAllUsesWith(GI);
3770        IFunc->eraseFromParent();
3771        IFunc = GI;
3772      }
3773  
3774      std::string AliasName = getMangledNameImpl(
3775          *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3776      llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3777      if (!AliasFunc) {
3778        auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3779                                             &getModule());
3780        SetCommonAttributes(GD, GA);
3781      }
3782    }
3783  }
3784  
3785  /// If a dispatcher for the specified mangled name is not in the module, create
3786  /// and return an llvm Function with the specified type.
3787  llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3788    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3789    assert(FD && "Not a FunctionDecl?");
3790  
3791    std::string MangledName =
3792        getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3793  
3794    // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3795    // a separate resolver).
3796    std::string ResolverName = MangledName;
3797    if (getTarget().supportsIFunc())
3798      ResolverName += ".ifunc";
3799    else if (FD->isTargetMultiVersion())
3800      ResolverName += ".resolver";
3801  
3802    // If the resolver has already been created, just return it.
3803    if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3804      return ResolverGV;
3805  
3806    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3807    llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3808  
3809    // The resolver needs to be created. For target and target_clones, defer
3810    // creation until the end of the TU.
3811    if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3812      MultiVersionFuncs.push_back(GD);
3813  
3814    // For cpu_specific, don't create an ifunc yet because we don't know if the
3815    // cpu_dispatch will be emitted in this translation unit.
3816    if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3817      llvm::Type *ResolverType = llvm::FunctionType::get(
3818          llvm::PointerType::get(
3819              DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3820          false);
3821      llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3822          MangledName + ".resolver", ResolverType, GlobalDecl{},
3823          /*ForVTable=*/false);
3824      llvm::GlobalIFunc *GIF =
3825          llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3826                                    "", Resolver, &getModule());
3827      GIF->setName(ResolverName);
3828      SetCommonAttributes(FD, GIF);
3829  
3830      return GIF;
3831    }
3832  
3833    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3834        ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3835    assert(isa<llvm::GlobalValue>(Resolver) &&
3836           "Resolver should be created for the first time");
3837    SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3838    return Resolver;
3839  }
3840  
3841  /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3842  /// module, create and return an llvm Function with the specified type. If there
3843  /// is something in the module with the specified name, return it potentially
3844  /// bitcasted to the right type.
3845  ///
3846  /// If D is non-null, it specifies a decl that correspond to this.  This is used
3847  /// to set the attributes on the function when it is first created.
3848  llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3849      StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3850      bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3851      ForDefinition_t IsForDefinition) {
3852    const Decl *D = GD.getDecl();
3853  
3854    // Any attempts to use a MultiVersion function should result in retrieving
3855    // the iFunc instead. Name Mangling will handle the rest of the changes.
3856    if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3857      // For the device mark the function as one that should be emitted.
3858      if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3859          !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3860          !DontDefer && !IsForDefinition) {
3861        if (const FunctionDecl *FDDef = FD->getDefinition()) {
3862          GlobalDecl GDDef;
3863          if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3864            GDDef = GlobalDecl(CD, GD.getCtorType());
3865          else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3866            GDDef = GlobalDecl(DD, GD.getDtorType());
3867          else
3868            GDDef = GlobalDecl(FDDef);
3869          EmitGlobal(GDDef);
3870        }
3871      }
3872  
3873      if (FD->isMultiVersion()) {
3874        UpdateMultiVersionNames(GD, FD, MangledName);
3875        if (!IsForDefinition)
3876          return GetOrCreateMultiVersionResolver(GD);
3877      }
3878    }
3879  
3880    // Lookup the entry, lazily creating it if necessary.
3881    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3882    if (Entry) {
3883      if (WeakRefReferences.erase(Entry)) {
3884        const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3885        if (FD && !FD->hasAttr<WeakAttr>())
3886          Entry->setLinkage(llvm::Function::ExternalLinkage);
3887      }
3888  
3889      // Handle dropped DLL attributes.
3890      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3891          !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3892        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3893        setDSOLocal(Entry);
3894      }
3895  
3896      // If there are two attempts to define the same mangled name, issue an
3897      // error.
3898      if (IsForDefinition && !Entry->isDeclaration()) {
3899        GlobalDecl OtherGD;
3900        // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3901        // to make sure that we issue an error only once.
3902        if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3903            (GD.getCanonicalDecl().getDecl() !=
3904             OtherGD.getCanonicalDecl().getDecl()) &&
3905            DiagnosedConflictingDefinitions.insert(GD).second) {
3906          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3907              << MangledName;
3908          getDiags().Report(OtherGD.getDecl()->getLocation(),
3909                            diag::note_previous_definition);
3910        }
3911      }
3912  
3913      if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3914          (Entry->getValueType() == Ty)) {
3915        return Entry;
3916      }
3917  
3918      // Make sure the result is of the correct type.
3919      // (If function is requested for a definition, we always need to create a new
3920      // function, not just return a bitcast.)
3921      if (!IsForDefinition)
3922        return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3923    }
3924  
3925    // This function doesn't have a complete type (for example, the return
3926    // type is an incomplete struct). Use a fake type instead, and make
3927    // sure not to try to set attributes.
3928    bool IsIncompleteFunction = false;
3929  
3930    llvm::FunctionType *FTy;
3931    if (isa<llvm::FunctionType>(Ty)) {
3932      FTy = cast<llvm::FunctionType>(Ty);
3933    } else {
3934      FTy = llvm::FunctionType::get(VoidTy, false);
3935      IsIncompleteFunction = true;
3936    }
3937  
3938    llvm::Function *F =
3939        llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3940                               Entry ? StringRef() : MangledName, &getModule());
3941  
3942    // If we already created a function with the same mangled name (but different
3943    // type) before, take its name and add it to the list of functions to be
3944    // replaced with F at the end of CodeGen.
3945    //
3946    // This happens if there is a prototype for a function (e.g. "int f()") and
3947    // then a definition of a different type (e.g. "int f(int x)").
3948    if (Entry) {
3949      F->takeName(Entry);
3950  
3951      // This might be an implementation of a function without a prototype, in
3952      // which case, try to do special replacement of calls which match the new
3953      // prototype.  The really key thing here is that we also potentially drop
3954      // arguments from the call site so as to make a direct call, which makes the
3955      // inliner happier and suppresses a number of optimizer warnings (!) about
3956      // dropping arguments.
3957      if (!Entry->use_empty()) {
3958        ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3959        Entry->removeDeadConstantUsers();
3960      }
3961  
3962      llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3963          F, Entry->getValueType()->getPointerTo());
3964      addGlobalValReplacement(Entry, BC);
3965    }
3966  
3967    assert(F->getName() == MangledName && "name was uniqued!");
3968    if (D)
3969      SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3970    if (ExtraAttrs.hasFnAttrs()) {
3971      llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3972      F->addFnAttrs(B);
3973    }
3974  
3975    if (!DontDefer) {
3976      // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3977      // each other bottoming out with the base dtor.  Therefore we emit non-base
3978      // dtors on usage, even if there is no dtor definition in the TU.
3979      if (D && isa<CXXDestructorDecl>(D) &&
3980          getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3981                                             GD.getDtorType()))
3982        addDeferredDeclToEmit(GD);
3983  
3984      // This is the first use or definition of a mangled name.  If there is a
3985      // deferred decl with this name, remember that we need to emit it at the end
3986      // of the file.
3987      auto DDI = DeferredDecls.find(MangledName);
3988      if (DDI != DeferredDecls.end()) {
3989        // Move the potentially referenced deferred decl to the
3990        // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3991        // don't need it anymore).
3992        addDeferredDeclToEmit(DDI->second);
3993        DeferredDecls.erase(DDI);
3994  
3995        // Otherwise, there are cases we have to worry about where we're
3996        // using a declaration for which we must emit a definition but where
3997        // we might not find a top-level definition:
3998        //   - member functions defined inline in their classes
3999        //   - friend functions defined inline in some class
4000        //   - special member functions with implicit definitions
4001        // If we ever change our AST traversal to walk into class methods,
4002        // this will be unnecessary.
4003        //
4004        // We also don't emit a definition for a function if it's going to be an
4005        // entry in a vtable, unless it's already marked as used.
4006      } else if (getLangOpts().CPlusPlus && D) {
4007        // Look for a declaration that's lexically in a record.
4008        for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4009             FD = FD->getPreviousDecl()) {
4010          if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4011            if (FD->doesThisDeclarationHaveABody()) {
4012              addDeferredDeclToEmit(GD.getWithDecl(FD));
4013              break;
4014            }
4015          }
4016        }
4017      }
4018    }
4019  
4020    // Make sure the result is of the requested type.
4021    if (!IsIncompleteFunction) {
4022      assert(F->getFunctionType() == Ty);
4023      return F;
4024    }
4025  
4026    llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4027    return llvm::ConstantExpr::getBitCast(F, PTy);
4028  }
4029  
4030  /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4031  /// non-null, then this function will use the specified type if it has to
4032  /// create it (this occurs when we see a definition of the function).
4033  llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4034                                                   llvm::Type *Ty,
4035                                                   bool ForVTable,
4036                                                   bool DontDefer,
4037                                                ForDefinition_t IsForDefinition) {
4038    assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4039           "consteval function should never be emitted");
4040    // If there was no specific requested type, just convert it now.
4041    if (!Ty) {
4042      const auto *FD = cast<FunctionDecl>(GD.getDecl());
4043      Ty = getTypes().ConvertType(FD->getType());
4044    }
4045  
4046    // Devirtualized destructor calls may come through here instead of via
4047    // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4048    // of the complete destructor when necessary.
4049    if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4050      if (getTarget().getCXXABI().isMicrosoft() &&
4051          GD.getDtorType() == Dtor_Complete &&
4052          DD->getParent()->getNumVBases() == 0)
4053        GD = GlobalDecl(DD, Dtor_Base);
4054    }
4055  
4056    StringRef MangledName = getMangledName(GD);
4057    auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4058                                      /*IsThunk=*/false, llvm::AttributeList(),
4059                                      IsForDefinition);
4060    // Returns kernel handle for HIP kernel stub function.
4061    if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4062        cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4063      auto *Handle = getCUDARuntime().getKernelHandle(
4064          cast<llvm::Function>(F->stripPointerCasts()), GD);
4065      if (IsForDefinition)
4066        return F;
4067      return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4068    }
4069    return F;
4070  }
4071  
4072  llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4073    llvm::GlobalValue *F =
4074        cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4075  
4076    return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4077                                          llvm::Type::getInt8PtrTy(VMContext));
4078  }
4079  
4080  static const FunctionDecl *
4081  GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4082    TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4083    DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4084  
4085    IdentifierInfo &CII = C.Idents.get(Name);
4086    for (const auto *Result : DC->lookup(&CII))
4087      if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4088        return FD;
4089  
4090    if (!C.getLangOpts().CPlusPlus)
4091      return nullptr;
4092  
4093    // Demangle the premangled name from getTerminateFn()
4094    IdentifierInfo &CXXII =
4095        (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4096            ? C.Idents.get("terminate")
4097            : C.Idents.get(Name);
4098  
4099    for (const auto &N : {"__cxxabiv1", "std"}) {
4100      IdentifierInfo &NS = C.Idents.get(N);
4101      for (const auto *Result : DC->lookup(&NS)) {
4102        const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4103        if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4104          for (const auto *Result : LSD->lookup(&NS))
4105            if ((ND = dyn_cast<NamespaceDecl>(Result)))
4106              break;
4107  
4108        if (ND)
4109          for (const auto *Result : ND->lookup(&CXXII))
4110            if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4111              return FD;
4112      }
4113    }
4114  
4115    return nullptr;
4116  }
4117  
4118  /// CreateRuntimeFunction - Create a new runtime function with the specified
4119  /// type and name.
4120  llvm::FunctionCallee
4121  CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4122                                       llvm::AttributeList ExtraAttrs, bool Local,
4123                                       bool AssumeConvergent) {
4124    if (AssumeConvergent) {
4125      ExtraAttrs =
4126          ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4127    }
4128  
4129    llvm::Constant *C =
4130        GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4131                                /*DontDefer=*/false, /*IsThunk=*/false,
4132                                ExtraAttrs);
4133  
4134    if (auto *F = dyn_cast<llvm::Function>(C)) {
4135      if (F->empty()) {
4136        F->setCallingConv(getRuntimeCC());
4137  
4138        // In Windows Itanium environments, try to mark runtime functions
4139        // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4140        // will link their standard library statically or dynamically. Marking
4141        // functions imported when they are not imported can cause linker errors
4142        // and warnings.
4143        if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4144            !getCodeGenOpts().LTOVisibilityPublicStd) {
4145          const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4146          if (!FD || FD->hasAttr<DLLImportAttr>()) {
4147            F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4148            F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4149          }
4150        }
4151        setDSOLocal(F);
4152      }
4153    }
4154  
4155    return {FTy, C};
4156  }
4157  
4158  /// isTypeConstant - Determine whether an object of this type can be emitted
4159  /// as a constant.
4160  ///
4161  /// If ExcludeCtor is true, the duration when the object's constructor runs
4162  /// will not be considered. The caller will need to verify that the object is
4163  /// not written to during its construction.
4164  bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4165    if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4166      return false;
4167  
4168    if (Context.getLangOpts().CPlusPlus) {
4169      if (const CXXRecordDecl *Record
4170            = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4171        return ExcludeCtor && !Record->hasMutableFields() &&
4172               Record->hasTrivialDestructor();
4173    }
4174  
4175    return true;
4176  }
4177  
4178  /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4179  /// create and return an llvm GlobalVariable with the specified type and address
4180  /// space. If there is something in the module with the specified name, return
4181  /// it potentially bitcasted to the right type.
4182  ///
4183  /// If D is non-null, it specifies a decl that correspond to this.  This is used
4184  /// to set the attributes on the global when it is first created.
4185  ///
4186  /// If IsForDefinition is true, it is guaranteed that an actual global with
4187  /// type Ty will be returned, not conversion of a variable with the same
4188  /// mangled name but some other type.
4189  llvm::Constant *
4190  CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4191                                       LangAS AddrSpace, const VarDecl *D,
4192                                       ForDefinition_t IsForDefinition) {
4193    // Lookup the entry, lazily creating it if necessary.
4194    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4195    unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4196    if (Entry) {
4197      if (WeakRefReferences.erase(Entry)) {
4198        if (D && !D->hasAttr<WeakAttr>())
4199          Entry->setLinkage(llvm::Function::ExternalLinkage);
4200      }
4201  
4202      // Handle dropped DLL attributes.
4203      if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4204          !shouldMapVisibilityToDLLExport(D))
4205        Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4206  
4207      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4208        getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4209  
4210      if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4211        return Entry;
4212  
4213      // If there are two attempts to define the same mangled name, issue an
4214      // error.
4215      if (IsForDefinition && !Entry->isDeclaration()) {
4216        GlobalDecl OtherGD;
4217        const VarDecl *OtherD;
4218  
4219        // Check that D is not yet in DiagnosedConflictingDefinitions is required
4220        // to make sure that we issue an error only once.
4221        if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4222            (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4223            (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4224            OtherD->hasInit() &&
4225            DiagnosedConflictingDefinitions.insert(D).second) {
4226          getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4227              << MangledName;
4228          getDiags().Report(OtherGD.getDecl()->getLocation(),
4229                            diag::note_previous_definition);
4230        }
4231      }
4232  
4233      // Make sure the result is of the correct type.
4234      if (Entry->getType()->getAddressSpace() != TargetAS) {
4235        return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4236                                                    Ty->getPointerTo(TargetAS));
4237      }
4238  
4239      // (If global is requested for a definition, we always need to create a new
4240      // global, not just return a bitcast.)
4241      if (!IsForDefinition)
4242        return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4243    }
4244  
4245    auto DAddrSpace = GetGlobalVarAddressSpace(D);
4246  
4247    auto *GV = new llvm::GlobalVariable(
4248        getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4249        MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4250        getContext().getTargetAddressSpace(DAddrSpace));
4251  
4252    // If we already created a global with the same mangled name (but different
4253    // type) before, take its name and remove it from its parent.
4254    if (Entry) {
4255      GV->takeName(Entry);
4256  
4257      if (!Entry->use_empty()) {
4258        llvm::Constant *NewPtrForOldDecl =
4259            llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4260        Entry->replaceAllUsesWith(NewPtrForOldDecl);
4261      }
4262  
4263      Entry->eraseFromParent();
4264    }
4265  
4266    // This is the first use or definition of a mangled name.  If there is a
4267    // deferred decl with this name, remember that we need to emit it at the end
4268    // of the file.
4269    auto DDI = DeferredDecls.find(MangledName);
4270    if (DDI != DeferredDecls.end()) {
4271      // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4272      // list, and remove it from DeferredDecls (since we don't need it anymore).
4273      addDeferredDeclToEmit(DDI->second);
4274      DeferredDecls.erase(DDI);
4275    }
4276  
4277    // Handle things which are present even on external declarations.
4278    if (D) {
4279      if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4280        getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4281  
4282      // FIXME: This code is overly simple and should be merged with other global
4283      // handling.
4284      GV->setConstant(isTypeConstant(D->getType(), false));
4285  
4286      GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4287  
4288      setLinkageForGV(GV, D);
4289  
4290      if (D->getTLSKind()) {
4291        if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4292          CXXThreadLocals.push_back(D);
4293        setTLSMode(GV, *D);
4294      }
4295  
4296      setGVProperties(GV, D);
4297  
4298      // If required by the ABI, treat declarations of static data members with
4299      // inline initializers as definitions.
4300      if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4301        EmitGlobalVarDefinition(D);
4302      }
4303  
4304      // Emit section information for extern variables.
4305      if (D->hasExternalStorage()) {
4306        if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4307          GV->setSection(SA->getName());
4308      }
4309  
4310      // Handle XCore specific ABI requirements.
4311      if (getTriple().getArch() == llvm::Triple::xcore &&
4312          D->getLanguageLinkage() == CLanguageLinkage &&
4313          D->getType().isConstant(Context) &&
4314          isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4315        GV->setSection(".cp.rodata");
4316  
4317      // Check if we a have a const declaration with an initializer, we may be
4318      // able to emit it as available_externally to expose it's value to the
4319      // optimizer.
4320      if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4321          D->getType().isConstQualified() && !GV->hasInitializer() &&
4322          !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4323        const auto *Record =
4324            Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4325        bool HasMutableFields = Record && Record->hasMutableFields();
4326        if (!HasMutableFields) {
4327          const VarDecl *InitDecl;
4328          const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4329          if (InitExpr) {
4330            ConstantEmitter emitter(*this);
4331            llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4332            if (Init) {
4333              auto *InitType = Init->getType();
4334              if (GV->getValueType() != InitType) {
4335                // The type of the initializer does not match the definition.
4336                // This happens when an initializer has a different type from
4337                // the type of the global (because of padding at the end of a
4338                // structure for instance).
4339                GV->setName(StringRef());
4340                // Make a new global with the correct type, this is now guaranteed
4341                // to work.
4342                auto *NewGV = cast<llvm::GlobalVariable>(
4343                    GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4344                        ->stripPointerCasts());
4345  
4346                // Erase the old global, since it is no longer used.
4347                GV->eraseFromParent();
4348                GV = NewGV;
4349              } else {
4350                GV->setInitializer(Init);
4351                GV->setConstant(true);
4352                GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4353              }
4354              emitter.finalize(GV);
4355            }
4356          }
4357        }
4358      }
4359    }
4360  
4361    if (GV->isDeclaration()) {
4362      getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4363      // External HIP managed variables needed to be recorded for transformation
4364      // in both device and host compilations.
4365      if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4366          D->hasExternalStorage())
4367        getCUDARuntime().handleVarRegistration(D, *GV);
4368    }
4369  
4370    if (D)
4371      SanitizerMD->reportGlobal(GV, *D);
4372  
4373    LangAS ExpectedAS =
4374        D ? D->getType().getAddressSpace()
4375          : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4376    assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4377    if (DAddrSpace != ExpectedAS) {
4378      return getTargetCodeGenInfo().performAddrSpaceCast(
4379          *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4380    }
4381  
4382    return GV;
4383  }
4384  
4385  llvm::Constant *
4386  CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4387    const Decl *D = GD.getDecl();
4388  
4389    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4390      return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4391                                  /*DontDefer=*/false, IsForDefinition);
4392  
4393    if (isa<CXXMethodDecl>(D)) {
4394      auto FInfo =
4395          &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4396      auto Ty = getTypes().GetFunctionType(*FInfo);
4397      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4398                               IsForDefinition);
4399    }
4400  
4401    if (isa<FunctionDecl>(D)) {
4402      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4403      llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4404      return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4405                               IsForDefinition);
4406    }
4407  
4408    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4409  }
4410  
4411  llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4412      StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4413      unsigned Alignment) {
4414    llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4415    llvm::GlobalVariable *OldGV = nullptr;
4416  
4417    if (GV) {
4418      // Check if the variable has the right type.
4419      if (GV->getValueType() == Ty)
4420        return GV;
4421  
4422      // Because C++ name mangling, the only way we can end up with an already
4423      // existing global with the same name is if it has been declared extern "C".
4424      assert(GV->isDeclaration() && "Declaration has wrong type!");
4425      OldGV = GV;
4426    }
4427  
4428    // Create a new variable.
4429    GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4430                                  Linkage, nullptr, Name);
4431  
4432    if (OldGV) {
4433      // Replace occurrences of the old variable if needed.
4434      GV->takeName(OldGV);
4435  
4436      if (!OldGV->use_empty()) {
4437        llvm::Constant *NewPtrForOldDecl =
4438        llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4439        OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4440      }
4441  
4442      OldGV->eraseFromParent();
4443    }
4444  
4445    if (supportsCOMDAT() && GV->isWeakForLinker() &&
4446        !GV->hasAvailableExternallyLinkage())
4447      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4448  
4449    GV->setAlignment(llvm::MaybeAlign(Alignment));
4450  
4451    return GV;
4452  }
4453  
4454  /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4455  /// given global variable.  If Ty is non-null and if the global doesn't exist,
4456  /// then it will be created with the specified type instead of whatever the
4457  /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4458  /// that an actual global with type Ty will be returned, not conversion of a
4459  /// variable with the same mangled name but some other type.
4460  llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4461                                                    llvm::Type *Ty,
4462                                             ForDefinition_t IsForDefinition) {
4463    assert(D->hasGlobalStorage() && "Not a global variable");
4464    QualType ASTTy = D->getType();
4465    if (!Ty)
4466      Ty = getTypes().ConvertTypeForMem(ASTTy);
4467  
4468    StringRef MangledName = getMangledName(D);
4469    return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4470                                 IsForDefinition);
4471  }
4472  
4473  /// CreateRuntimeVariable - Create a new runtime global variable with the
4474  /// specified type and name.
4475  llvm::Constant *
4476  CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4477                                       StringRef Name) {
4478    LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4479                                                         : LangAS::Default;
4480    auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4481    setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4482    return Ret;
4483  }
4484  
4485  void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4486    assert(!D->getInit() && "Cannot emit definite definitions here!");
4487  
4488    StringRef MangledName = getMangledName(D);
4489    llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4490  
4491    // We already have a definition, not declaration, with the same mangled name.
4492    // Emitting of declaration is not required (and actually overwrites emitted
4493    // definition).
4494    if (GV && !GV->isDeclaration())
4495      return;
4496  
4497    // If we have not seen a reference to this variable yet, place it into the
4498    // deferred declarations table to be emitted if needed later.
4499    if (!MustBeEmitted(D) && !GV) {
4500        DeferredDecls[MangledName] = D;
4501        return;
4502    }
4503  
4504    // The tentative definition is the only definition.
4505    EmitGlobalVarDefinition(D);
4506  }
4507  
4508  void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4509    EmitExternalVarDeclaration(D);
4510  }
4511  
4512  CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4513    return Context.toCharUnitsFromBits(
4514        getDataLayout().getTypeStoreSizeInBits(Ty));
4515  }
4516  
4517  LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4518    if (LangOpts.OpenCL) {
4519      LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4520      assert(AS == LangAS::opencl_global ||
4521             AS == LangAS::opencl_global_device ||
4522             AS == LangAS::opencl_global_host ||
4523             AS == LangAS::opencl_constant ||
4524             AS == LangAS::opencl_local ||
4525             AS >= LangAS::FirstTargetAddressSpace);
4526      return AS;
4527    }
4528  
4529    if (LangOpts.SYCLIsDevice &&
4530        (!D || D->getType().getAddressSpace() == LangAS::Default))
4531      return LangAS::sycl_global;
4532  
4533    if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4534      if (D && D->hasAttr<CUDAConstantAttr>())
4535        return LangAS::cuda_constant;
4536      else if (D && D->hasAttr<CUDASharedAttr>())
4537        return LangAS::cuda_shared;
4538      else if (D && D->hasAttr<CUDADeviceAttr>())
4539        return LangAS::cuda_device;
4540      else if (D && D->getType().isConstQualified())
4541        return LangAS::cuda_constant;
4542      else
4543        return LangAS::cuda_device;
4544    }
4545  
4546    if (LangOpts.OpenMP) {
4547      LangAS AS;
4548      if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4549        return AS;
4550    }
4551    return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4552  }
4553  
4554  LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4555    // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4556    if (LangOpts.OpenCL)
4557      return LangAS::opencl_constant;
4558    if (LangOpts.SYCLIsDevice)
4559      return LangAS::sycl_global;
4560    if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4561      // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4562      // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4563      // with OpVariable instructions with Generic storage class which is not
4564      // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4565      // UniformConstant storage class is not viable as pointers to it may not be
4566      // casted to Generic pointers which are used to model HIP's "flat" pointers.
4567      return LangAS::cuda_device;
4568    if (auto AS = getTarget().getConstantAddressSpace())
4569      return *AS;
4570    return LangAS::Default;
4571  }
4572  
4573  // In address space agnostic languages, string literals are in default address
4574  // space in AST. However, certain targets (e.g. amdgcn) request them to be
4575  // emitted in constant address space in LLVM IR. To be consistent with other
4576  // parts of AST, string literal global variables in constant address space
4577  // need to be casted to default address space before being put into address
4578  // map and referenced by other part of CodeGen.
4579  // In OpenCL, string literals are in constant address space in AST, therefore
4580  // they should not be casted to default address space.
4581  static llvm::Constant *
4582  castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4583                                         llvm::GlobalVariable *GV) {
4584    llvm::Constant *Cast = GV;
4585    if (!CGM.getLangOpts().OpenCL) {
4586      auto AS = CGM.GetGlobalConstantAddressSpace();
4587      if (AS != LangAS::Default)
4588        Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4589            CGM, GV, AS, LangAS::Default,
4590            GV->getValueType()->getPointerTo(
4591                CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4592    }
4593    return Cast;
4594  }
4595  
4596  template<typename SomeDecl>
4597  void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4598                                                 llvm::GlobalValue *GV) {
4599    if (!getLangOpts().CPlusPlus)
4600      return;
4601  
4602    // Must have 'used' attribute, or else inline assembly can't rely on
4603    // the name existing.
4604    if (!D->template hasAttr<UsedAttr>())
4605      return;
4606  
4607    // Must have internal linkage and an ordinary name.
4608    if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4609      return;
4610  
4611    // Must be in an extern "C" context. Entities declared directly within
4612    // a record are not extern "C" even if the record is in such a context.
4613    const SomeDecl *First = D->getFirstDecl();
4614    if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4615      return;
4616  
4617    // OK, this is an internal linkage entity inside an extern "C" linkage
4618    // specification. Make a note of that so we can give it the "expected"
4619    // mangled name if nothing else is using that name.
4620    std::pair<StaticExternCMap::iterator, bool> R =
4621        StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4622  
4623    // If we have multiple internal linkage entities with the same name
4624    // in extern "C" regions, none of them gets that name.
4625    if (!R.second)
4626      R.first->second = nullptr;
4627  }
4628  
4629  static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4630    if (!CGM.supportsCOMDAT())
4631      return false;
4632  
4633    if (D.hasAttr<SelectAnyAttr>())
4634      return true;
4635  
4636    GVALinkage Linkage;
4637    if (auto *VD = dyn_cast<VarDecl>(&D))
4638      Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4639    else
4640      Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4641  
4642    switch (Linkage) {
4643    case GVA_Internal:
4644    case GVA_AvailableExternally:
4645    case GVA_StrongExternal:
4646      return false;
4647    case GVA_DiscardableODR:
4648    case GVA_StrongODR:
4649      return true;
4650    }
4651    llvm_unreachable("No such linkage");
4652  }
4653  
4654  void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4655                                            llvm::GlobalObject &GO) {
4656    if (!shouldBeInCOMDAT(*this, D))
4657      return;
4658    GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4659  }
4660  
4661  /// Pass IsTentative as true if you want to create a tentative definition.
4662  void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4663                                              bool IsTentative) {
4664    // OpenCL global variables of sampler type are translated to function calls,
4665    // therefore no need to be translated.
4666    QualType ASTTy = D->getType();
4667    if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4668      return;
4669  
4670    // If this is OpenMP device, check if it is legal to emit this global
4671    // normally.
4672    if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4673        OpenMPRuntime->emitTargetGlobalVariable(D))
4674      return;
4675  
4676    llvm::TrackingVH<llvm::Constant> Init;
4677    bool NeedsGlobalCtor = false;
4678    bool NeedsGlobalDtor =
4679        D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4680  
4681    const VarDecl *InitDecl;
4682    const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4683  
4684    Optional<ConstantEmitter> emitter;
4685  
4686    // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4687    // as part of their declaration."  Sema has already checked for
4688    // error cases, so we just need to set Init to UndefValue.
4689    bool IsCUDASharedVar =
4690        getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4691    // Shadows of initialized device-side global variables are also left
4692    // undefined.
4693    // Managed Variables should be initialized on both host side and device side.
4694    bool IsCUDAShadowVar =
4695        !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4696        (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4697         D->hasAttr<CUDASharedAttr>());
4698    bool IsCUDADeviceShadowVar =
4699        getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4700        (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4701         D->getType()->isCUDADeviceBuiltinTextureType());
4702    if (getLangOpts().CUDA &&
4703        (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4704      Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4705    else if (D->hasAttr<LoaderUninitializedAttr>())
4706      Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4707    else if (!InitExpr) {
4708      // This is a tentative definition; tentative definitions are
4709      // implicitly initialized with { 0 }.
4710      //
4711      // Note that tentative definitions are only emitted at the end of
4712      // a translation unit, so they should never have incomplete
4713      // type. In addition, EmitTentativeDefinition makes sure that we
4714      // never attempt to emit a tentative definition if a real one
4715      // exists. A use may still exists, however, so we still may need
4716      // to do a RAUW.
4717      assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4718      Init = EmitNullConstant(D->getType());
4719    } else {
4720      initializedGlobalDecl = GlobalDecl(D);
4721      emitter.emplace(*this);
4722      llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4723      if (!Initializer) {
4724        QualType T = InitExpr->getType();
4725        if (D->getType()->isReferenceType())
4726          T = D->getType();
4727  
4728        if (getLangOpts().CPlusPlus) {
4729          if (InitDecl->hasFlexibleArrayInit(getContext()))
4730            ErrorUnsupported(D, "flexible array initializer");
4731          Init = EmitNullConstant(T);
4732          NeedsGlobalCtor = true;
4733        } else {
4734          ErrorUnsupported(D, "static initializer");
4735          Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4736        }
4737      } else {
4738        Init = Initializer;
4739        // We don't need an initializer, so remove the entry for the delayed
4740        // initializer position (just in case this entry was delayed) if we
4741        // also don't need to register a destructor.
4742        if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4743          DelayedCXXInitPosition.erase(D);
4744  
4745  #ifndef NDEBUG
4746        CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4747                            InitDecl->getFlexibleArrayInitChars(getContext());
4748        CharUnits CstSize = CharUnits::fromQuantity(
4749            getDataLayout().getTypeAllocSize(Init->getType()));
4750        assert(VarSize == CstSize && "Emitted constant has unexpected size");
4751  #endif
4752      }
4753    }
4754  
4755    llvm::Type* InitType = Init->getType();
4756    llvm::Constant *Entry =
4757        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4758  
4759    // Strip off pointer casts if we got them.
4760    Entry = Entry->stripPointerCasts();
4761  
4762    // Entry is now either a Function or GlobalVariable.
4763    auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4764  
4765    // We have a definition after a declaration with the wrong type.
4766    // We must make a new GlobalVariable* and update everything that used OldGV
4767    // (a declaration or tentative definition) with the new GlobalVariable*
4768    // (which will be a definition).
4769    //
4770    // This happens if there is a prototype for a global (e.g.
4771    // "extern int x[];") and then a definition of a different type (e.g.
4772    // "int x[10];"). This also happens when an initializer has a different type
4773    // from the type of the global (this happens with unions).
4774    if (!GV || GV->getValueType() != InitType ||
4775        GV->getType()->getAddressSpace() !=
4776            getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4777  
4778      // Move the old entry aside so that we'll create a new one.
4779      Entry->setName(StringRef());
4780  
4781      // Make a new global with the correct type, this is now guaranteed to work.
4782      GV = cast<llvm::GlobalVariable>(
4783          GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4784              ->stripPointerCasts());
4785  
4786      // Replace all uses of the old global with the new global
4787      llvm::Constant *NewPtrForOldDecl =
4788          llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4789                                                               Entry->getType());
4790      Entry->replaceAllUsesWith(NewPtrForOldDecl);
4791  
4792      // Erase the old global, since it is no longer used.
4793      cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4794    }
4795  
4796    MaybeHandleStaticInExternC(D, GV);
4797  
4798    if (D->hasAttr<AnnotateAttr>())
4799      AddGlobalAnnotations(D, GV);
4800  
4801    // Set the llvm linkage type as appropriate.
4802    llvm::GlobalValue::LinkageTypes Linkage =
4803        getLLVMLinkageVarDefinition(D, GV->isConstant());
4804  
4805    // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4806    // the device. [...]"
4807    // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4808    // __device__, declares a variable that: [...]
4809    // Is accessible from all the threads within the grid and from the host
4810    // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4811    // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4812    if (GV && LangOpts.CUDA) {
4813      if (LangOpts.CUDAIsDevice) {
4814        if (Linkage != llvm::GlobalValue::InternalLinkage &&
4815            (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4816             D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4817             D->getType()->isCUDADeviceBuiltinTextureType()))
4818          GV->setExternallyInitialized(true);
4819      } else {
4820        getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4821      }
4822      getCUDARuntime().handleVarRegistration(D, *GV);
4823    }
4824  
4825    GV->setInitializer(Init);
4826    if (emitter)
4827      emitter->finalize(GV);
4828  
4829    // If it is safe to mark the global 'constant', do so now.
4830    GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4831                    isTypeConstant(D->getType(), true));
4832  
4833    // If it is in a read-only section, mark it 'constant'.
4834    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4835      const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4836      if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4837        GV->setConstant(true);
4838    }
4839  
4840    CharUnits AlignVal = getContext().getDeclAlign(D);
4841    // Check for alignment specifed in an 'omp allocate' directive.
4842    if (llvm::Optional<CharUnits> AlignValFromAllocate =
4843            getOMPAllocateAlignment(D))
4844      AlignVal = *AlignValFromAllocate;
4845    GV->setAlignment(AlignVal.getAsAlign());
4846  
4847    // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4848    // function is only defined alongside the variable, not also alongside
4849    // callers. Normally, all accesses to a thread_local go through the
4850    // thread-wrapper in order to ensure initialization has occurred, underlying
4851    // variable will never be used other than the thread-wrapper, so it can be
4852    // converted to internal linkage.
4853    //
4854    // However, if the variable has the 'constinit' attribute, it _can_ be
4855    // referenced directly, without calling the thread-wrapper, so the linkage
4856    // must not be changed.
4857    //
4858    // Additionally, if the variable isn't plain external linkage, e.g. if it's
4859    // weak or linkonce, the de-duplication semantics are important to preserve,
4860    // so we don't change the linkage.
4861    if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4862        Linkage == llvm::GlobalValue::ExternalLinkage &&
4863        Context.getTargetInfo().getTriple().isOSDarwin() &&
4864        !D->hasAttr<ConstInitAttr>())
4865      Linkage = llvm::GlobalValue::InternalLinkage;
4866  
4867    GV->setLinkage(Linkage);
4868    if (D->hasAttr<DLLImportAttr>())
4869      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4870    else if (D->hasAttr<DLLExportAttr>())
4871      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4872    else
4873      GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4874  
4875    if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4876      // common vars aren't constant even if declared const.
4877      GV->setConstant(false);
4878      // Tentative definition of global variables may be initialized with
4879      // non-zero null pointers. In this case they should have weak linkage
4880      // since common linkage must have zero initializer and must not have
4881      // explicit section therefore cannot have non-zero initial value.
4882      if (!GV->getInitializer()->isNullValue())
4883        GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4884    }
4885  
4886    setNonAliasAttributes(D, GV);
4887  
4888    if (D->getTLSKind() && !GV->isThreadLocal()) {
4889      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4890        CXXThreadLocals.push_back(D);
4891      setTLSMode(GV, *D);
4892    }
4893  
4894    maybeSetTrivialComdat(*D, *GV);
4895  
4896    // Emit the initializer function if necessary.
4897    if (NeedsGlobalCtor || NeedsGlobalDtor)
4898      EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4899  
4900    SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4901  
4902    // Emit global variable debug information.
4903    if (CGDebugInfo *DI = getModuleDebugInfo())
4904      if (getCodeGenOpts().hasReducedDebugInfo())
4905        DI->EmitGlobalVariable(GV, D);
4906  }
4907  
4908  void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4909    if (CGDebugInfo *DI = getModuleDebugInfo())
4910      if (getCodeGenOpts().hasReducedDebugInfo()) {
4911        QualType ASTTy = D->getType();
4912        llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4913        llvm::Constant *GV =
4914            GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4915        DI->EmitExternalVariable(
4916            cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4917      }
4918  }
4919  
4920  static bool isVarDeclStrongDefinition(const ASTContext &Context,
4921                                        CodeGenModule &CGM, const VarDecl *D,
4922                                        bool NoCommon) {
4923    // Don't give variables common linkage if -fno-common was specified unless it
4924    // was overridden by a NoCommon attribute.
4925    if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4926      return true;
4927  
4928    // C11 6.9.2/2:
4929    //   A declaration of an identifier for an object that has file scope without
4930    //   an initializer, and without a storage-class specifier or with the
4931    //   storage-class specifier static, constitutes a tentative definition.
4932    if (D->getInit() || D->hasExternalStorage())
4933      return true;
4934  
4935    // A variable cannot be both common and exist in a section.
4936    if (D->hasAttr<SectionAttr>())
4937      return true;
4938  
4939    // A variable cannot be both common and exist in a section.
4940    // We don't try to determine which is the right section in the front-end.
4941    // If no specialized section name is applicable, it will resort to default.
4942    if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4943        D->hasAttr<PragmaClangDataSectionAttr>() ||
4944        D->hasAttr<PragmaClangRelroSectionAttr>() ||
4945        D->hasAttr<PragmaClangRodataSectionAttr>())
4946      return true;
4947  
4948    // Thread local vars aren't considered common linkage.
4949    if (D->getTLSKind())
4950      return true;
4951  
4952    // Tentative definitions marked with WeakImportAttr are true definitions.
4953    if (D->hasAttr<WeakImportAttr>())
4954      return true;
4955  
4956    // A variable cannot be both common and exist in a comdat.
4957    if (shouldBeInCOMDAT(CGM, *D))
4958      return true;
4959  
4960    // Declarations with a required alignment do not have common linkage in MSVC
4961    // mode.
4962    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4963      if (D->hasAttr<AlignedAttr>())
4964        return true;
4965      QualType VarType = D->getType();
4966      if (Context.isAlignmentRequired(VarType))
4967        return true;
4968  
4969      if (const auto *RT = VarType->getAs<RecordType>()) {
4970        const RecordDecl *RD = RT->getDecl();
4971        for (const FieldDecl *FD : RD->fields()) {
4972          if (FD->isBitField())
4973            continue;
4974          if (FD->hasAttr<AlignedAttr>())
4975            return true;
4976          if (Context.isAlignmentRequired(FD->getType()))
4977            return true;
4978        }
4979      }
4980    }
4981  
4982    // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4983    // common symbols, so symbols with greater alignment requirements cannot be
4984    // common.
4985    // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4986    // alignments for common symbols via the aligncomm directive, so this
4987    // restriction only applies to MSVC environments.
4988    if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4989        Context.getTypeAlignIfKnown(D->getType()) >
4990            Context.toBits(CharUnits::fromQuantity(32)))
4991      return true;
4992  
4993    return false;
4994  }
4995  
4996  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4997      const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4998    if (Linkage == GVA_Internal)
4999      return llvm::Function::InternalLinkage;
5000  
5001    if (D->hasAttr<WeakAttr>())
5002      return llvm::GlobalVariable::WeakAnyLinkage;
5003  
5004    if (const auto *FD = D->getAsFunction())
5005      if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5006        return llvm::GlobalVariable::LinkOnceAnyLinkage;
5007  
5008    // We are guaranteed to have a strong definition somewhere else,
5009    // so we can use available_externally linkage.
5010    if (Linkage == GVA_AvailableExternally)
5011      return llvm::GlobalValue::AvailableExternallyLinkage;
5012  
5013    // Note that Apple's kernel linker doesn't support symbol
5014    // coalescing, so we need to avoid linkonce and weak linkages there.
5015    // Normally, this means we just map to internal, but for explicit
5016    // instantiations we'll map to external.
5017  
5018    // In C++, the compiler has to emit a definition in every translation unit
5019    // that references the function.  We should use linkonce_odr because
5020    // a) if all references in this translation unit are optimized away, we
5021    // don't need to codegen it.  b) if the function persists, it needs to be
5022    // merged with other definitions. c) C++ has the ODR, so we know the
5023    // definition is dependable.
5024    if (Linkage == GVA_DiscardableODR)
5025      return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5026                                              : llvm::Function::InternalLinkage;
5027  
5028    // An explicit instantiation of a template has weak linkage, since
5029    // explicit instantiations can occur in multiple translation units
5030    // and must all be equivalent. However, we are not allowed to
5031    // throw away these explicit instantiations.
5032    //
5033    // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5034    // so say that CUDA templates are either external (for kernels) or internal.
5035    // This lets llvm perform aggressive inter-procedural optimizations. For
5036    // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5037    // therefore we need to follow the normal linkage paradigm.
5038    if (Linkage == GVA_StrongODR) {
5039      if (getLangOpts().AppleKext)
5040        return llvm::Function::ExternalLinkage;
5041      if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5042          !getLangOpts().GPURelocatableDeviceCode)
5043        return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5044                                            : llvm::Function::InternalLinkage;
5045      return llvm::Function::WeakODRLinkage;
5046    }
5047  
5048    // C++ doesn't have tentative definitions and thus cannot have common
5049    // linkage.
5050    if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5051        !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5052                                   CodeGenOpts.NoCommon))
5053      return llvm::GlobalVariable::CommonLinkage;
5054  
5055    // selectany symbols are externally visible, so use weak instead of
5056    // linkonce.  MSVC optimizes away references to const selectany globals, so
5057    // all definitions should be the same and ODR linkage should be used.
5058    // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5059    if (D->hasAttr<SelectAnyAttr>())
5060      return llvm::GlobalVariable::WeakODRLinkage;
5061  
5062    // Otherwise, we have strong external linkage.
5063    assert(Linkage == GVA_StrongExternal);
5064    return llvm::GlobalVariable::ExternalLinkage;
5065  }
5066  
5067  llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5068      const VarDecl *VD, bool IsConstant) {
5069    GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5070    return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5071  }
5072  
5073  /// Replace the uses of a function that was declared with a non-proto type.
5074  /// We want to silently drop extra arguments from call sites
5075  static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5076                                            llvm::Function *newFn) {
5077    // Fast path.
5078    if (old->use_empty()) return;
5079  
5080    llvm::Type *newRetTy = newFn->getReturnType();
5081    SmallVector<llvm::Value*, 4> newArgs;
5082  
5083    for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5084           ui != ue; ) {
5085      llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5086      llvm::User *user = use->getUser();
5087  
5088      // Recognize and replace uses of bitcasts.  Most calls to
5089      // unprototyped functions will use bitcasts.
5090      if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5091        if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5092          replaceUsesOfNonProtoConstant(bitcast, newFn);
5093        continue;
5094      }
5095  
5096      // Recognize calls to the function.
5097      llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5098      if (!callSite) continue;
5099      if (!callSite->isCallee(&*use))
5100        continue;
5101  
5102      // If the return types don't match exactly, then we can't
5103      // transform this call unless it's dead.
5104      if (callSite->getType() != newRetTy && !callSite->use_empty())
5105        continue;
5106  
5107      // Get the call site's attribute list.
5108      SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5109      llvm::AttributeList oldAttrs = callSite->getAttributes();
5110  
5111      // If the function was passed too few arguments, don't transform.
5112      unsigned newNumArgs = newFn->arg_size();
5113      if (callSite->arg_size() < newNumArgs)
5114        continue;
5115  
5116      // If extra arguments were passed, we silently drop them.
5117      // If any of the types mismatch, we don't transform.
5118      unsigned argNo = 0;
5119      bool dontTransform = false;
5120      for (llvm::Argument &A : newFn->args()) {
5121        if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5122          dontTransform = true;
5123          break;
5124        }
5125  
5126        // Add any parameter attributes.
5127        newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5128        argNo++;
5129      }
5130      if (dontTransform)
5131        continue;
5132  
5133      // Okay, we can transform this.  Create the new call instruction and copy
5134      // over the required information.
5135      newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5136  
5137      // Copy over any operand bundles.
5138      SmallVector<llvm::OperandBundleDef, 1> newBundles;
5139      callSite->getOperandBundlesAsDefs(newBundles);
5140  
5141      llvm::CallBase *newCall;
5142      if (isa<llvm::CallInst>(callSite)) {
5143        newCall =
5144            llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5145      } else {
5146        auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5147        newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5148                                           oldInvoke->getUnwindDest(), newArgs,
5149                                           newBundles, "", callSite);
5150      }
5151      newArgs.clear(); // for the next iteration
5152  
5153      if (!newCall->getType()->isVoidTy())
5154        newCall->takeName(callSite);
5155      newCall->setAttributes(
5156          llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5157                                   oldAttrs.getRetAttrs(), newArgAttrs));
5158      newCall->setCallingConv(callSite->getCallingConv());
5159  
5160      // Finally, remove the old call, replacing any uses with the new one.
5161      if (!callSite->use_empty())
5162        callSite->replaceAllUsesWith(newCall);
5163  
5164      // Copy debug location attached to CI.
5165      if (callSite->getDebugLoc())
5166        newCall->setDebugLoc(callSite->getDebugLoc());
5167  
5168      callSite->eraseFromParent();
5169    }
5170  }
5171  
5172  /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5173  /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5174  /// existing call uses of the old function in the module, this adjusts them to
5175  /// call the new function directly.
5176  ///
5177  /// This is not just a cleanup: the always_inline pass requires direct calls to
5178  /// functions to be able to inline them.  If there is a bitcast in the way, it
5179  /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5180  /// run at -O0.
5181  static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5182                                                        llvm::Function *NewFn) {
5183    // If we're redefining a global as a function, don't transform it.
5184    if (!isa<llvm::Function>(Old)) return;
5185  
5186    replaceUsesOfNonProtoConstant(Old, NewFn);
5187  }
5188  
5189  void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5190    auto DK = VD->isThisDeclarationADefinition();
5191    if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5192      return;
5193  
5194    TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5195    // If we have a definition, this might be a deferred decl. If the
5196    // instantiation is explicit, make sure we emit it at the end.
5197    if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5198      GetAddrOfGlobalVar(VD);
5199  
5200    EmitTopLevelDecl(VD);
5201  }
5202  
5203  void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5204                                                   llvm::GlobalValue *GV) {
5205    const auto *D = cast<FunctionDecl>(GD.getDecl());
5206  
5207    // Compute the function info and LLVM type.
5208    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5209    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5210  
5211    // Get or create the prototype for the function.
5212    if (!GV || (GV->getValueType() != Ty))
5213      GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5214                                                     /*DontDefer=*/true,
5215                                                     ForDefinition));
5216  
5217    // Already emitted.
5218    if (!GV->isDeclaration())
5219      return;
5220  
5221    // We need to set linkage and visibility on the function before
5222    // generating code for it because various parts of IR generation
5223    // want to propagate this information down (e.g. to local static
5224    // declarations).
5225    auto *Fn = cast<llvm::Function>(GV);
5226    setFunctionLinkage(GD, Fn);
5227  
5228    // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5229    setGVProperties(Fn, GD);
5230  
5231    MaybeHandleStaticInExternC(D, Fn);
5232  
5233    maybeSetTrivialComdat(*D, *Fn);
5234  
5235    // Set CodeGen attributes that represent floating point environment.
5236    setLLVMFunctionFEnvAttributes(D, Fn);
5237  
5238    CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5239  
5240    setNonAliasAttributes(GD, Fn);
5241    SetLLVMFunctionAttributesForDefinition(D, Fn);
5242  
5243    if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5244      AddGlobalCtor(Fn, CA->getPriority());
5245    if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5246      AddGlobalDtor(Fn, DA->getPriority(), true);
5247    if (D->hasAttr<AnnotateAttr>())
5248      AddGlobalAnnotations(D, Fn);
5249  }
5250  
5251  void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5252    const auto *D = cast<ValueDecl>(GD.getDecl());
5253    const AliasAttr *AA = D->getAttr<AliasAttr>();
5254    assert(AA && "Not an alias?");
5255  
5256    StringRef MangledName = getMangledName(GD);
5257  
5258    if (AA->getAliasee() == MangledName) {
5259      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5260      return;
5261    }
5262  
5263    // If there is a definition in the module, then it wins over the alias.
5264    // This is dubious, but allow it to be safe.  Just ignore the alias.
5265    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5266    if (Entry && !Entry->isDeclaration())
5267      return;
5268  
5269    Aliases.push_back(GD);
5270  
5271    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5272  
5273    // Create a reference to the named value.  This ensures that it is emitted
5274    // if a deferred decl.
5275    llvm::Constant *Aliasee;
5276    llvm::GlobalValue::LinkageTypes LT;
5277    if (isa<llvm::FunctionType>(DeclTy)) {
5278      Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5279                                        /*ForVTable=*/false);
5280      LT = getFunctionLinkage(GD);
5281    } else {
5282      Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5283                                      /*D=*/nullptr);
5284      if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5285        LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5286      else
5287        LT = getFunctionLinkage(GD);
5288    }
5289  
5290    // Create the new alias itself, but don't set a name yet.
5291    unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5292    auto *GA =
5293        llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5294  
5295    if (Entry) {
5296      if (GA->getAliasee() == Entry) {
5297        Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5298        return;
5299      }
5300  
5301      assert(Entry->isDeclaration());
5302  
5303      // If there is a declaration in the module, then we had an extern followed
5304      // by the alias, as in:
5305      //   extern int test6();
5306      //   ...
5307      //   int test6() __attribute__((alias("test7")));
5308      //
5309      // Remove it and replace uses of it with the alias.
5310      GA->takeName(Entry);
5311  
5312      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5313                                                            Entry->getType()));
5314      Entry->eraseFromParent();
5315    } else {
5316      GA->setName(MangledName);
5317    }
5318  
5319    // Set attributes which are particular to an alias; this is a
5320    // specialization of the attributes which may be set on a global
5321    // variable/function.
5322    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5323        D->isWeakImported()) {
5324      GA->setLinkage(llvm::Function::WeakAnyLinkage);
5325    }
5326  
5327    if (const auto *VD = dyn_cast<VarDecl>(D))
5328      if (VD->getTLSKind())
5329        setTLSMode(GA, *VD);
5330  
5331    SetCommonAttributes(GD, GA);
5332  
5333    // Emit global alias debug information.
5334    if (isa<VarDecl>(D))
5335      if (CGDebugInfo *DI = getModuleDebugInfo())
5336        DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5337  }
5338  
5339  void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5340    const auto *D = cast<ValueDecl>(GD.getDecl());
5341    const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5342    assert(IFA && "Not an ifunc?");
5343  
5344    StringRef MangledName = getMangledName(GD);
5345  
5346    if (IFA->getResolver() == MangledName) {
5347      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5348      return;
5349    }
5350  
5351    // Report an error if some definition overrides ifunc.
5352    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5353    if (Entry && !Entry->isDeclaration()) {
5354      GlobalDecl OtherGD;
5355      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5356          DiagnosedConflictingDefinitions.insert(GD).second) {
5357        Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5358            << MangledName;
5359        Diags.Report(OtherGD.getDecl()->getLocation(),
5360                     diag::note_previous_definition);
5361      }
5362      return;
5363    }
5364  
5365    Aliases.push_back(GD);
5366  
5367    llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5368    llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5369    llvm::Constant *Resolver =
5370        GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5371                                /*ForVTable=*/false);
5372    llvm::GlobalIFunc *GIF =
5373        llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5374                                  "", Resolver, &getModule());
5375    if (Entry) {
5376      if (GIF->getResolver() == Entry) {
5377        Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5378        return;
5379      }
5380      assert(Entry->isDeclaration());
5381  
5382      // If there is a declaration in the module, then we had an extern followed
5383      // by the ifunc, as in:
5384      //   extern int test();
5385      //   ...
5386      //   int test() __attribute__((ifunc("resolver")));
5387      //
5388      // Remove it and replace uses of it with the ifunc.
5389      GIF->takeName(Entry);
5390  
5391      Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5392                                                            Entry->getType()));
5393      Entry->eraseFromParent();
5394    } else
5395      GIF->setName(MangledName);
5396  
5397    SetCommonAttributes(GD, GIF);
5398  }
5399  
5400  llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5401                                              ArrayRef<llvm::Type*> Tys) {
5402    return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5403                                           Tys);
5404  }
5405  
5406  static llvm::StringMapEntry<llvm::GlobalVariable *> &
5407  GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5408                           const StringLiteral *Literal, bool TargetIsLSB,
5409                           bool &IsUTF16, unsigned &StringLength) {
5410    StringRef String = Literal->getString();
5411    unsigned NumBytes = String.size();
5412  
5413    // Check for simple case.
5414    if (!Literal->containsNonAsciiOrNull()) {
5415      StringLength = NumBytes;
5416      return *Map.insert(std::make_pair(String, nullptr)).first;
5417    }
5418  
5419    // Otherwise, convert the UTF8 literals into a string of shorts.
5420    IsUTF16 = true;
5421  
5422    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5423    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5424    llvm::UTF16 *ToPtr = &ToBuf[0];
5425  
5426    (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5427                                   ToPtr + NumBytes, llvm::strictConversion);
5428  
5429    // ConvertUTF8toUTF16 returns the length in ToPtr.
5430    StringLength = ToPtr - &ToBuf[0];
5431  
5432    // Add an explicit null.
5433    *ToPtr = 0;
5434    return *Map.insert(std::make_pair(
5435                           StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5436                                     (StringLength + 1) * 2),
5437                           nullptr)).first;
5438  }
5439  
5440  ConstantAddress
5441  CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5442    unsigned StringLength = 0;
5443    bool isUTF16 = false;
5444    llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5445        GetConstantCFStringEntry(CFConstantStringMap, Literal,
5446                                 getDataLayout().isLittleEndian(), isUTF16,
5447                                 StringLength);
5448  
5449    if (auto *C = Entry.second)
5450      return ConstantAddress(
5451          C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5452  
5453    llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5454    llvm::Constant *Zeros[] = { Zero, Zero };
5455  
5456    const ASTContext &Context = getContext();
5457    const llvm::Triple &Triple = getTriple();
5458  
5459    const auto CFRuntime = getLangOpts().CFRuntime;
5460    const bool IsSwiftABI =
5461        static_cast<unsigned>(CFRuntime) >=
5462        static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5463    const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5464  
5465    // If we don't already have it, get __CFConstantStringClassReference.
5466    if (!CFConstantStringClassRef) {
5467      const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5468      llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5469      Ty = llvm::ArrayType::get(Ty, 0);
5470  
5471      switch (CFRuntime) {
5472      default: break;
5473      case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5474      case LangOptions::CoreFoundationABI::Swift5_0:
5475        CFConstantStringClassName =
5476            Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5477                                : "$s10Foundation19_NSCFConstantStringCN";
5478        Ty = IntPtrTy;
5479        break;
5480      case LangOptions::CoreFoundationABI::Swift4_2:
5481        CFConstantStringClassName =
5482            Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5483                                : "$S10Foundation19_NSCFConstantStringCN";
5484        Ty = IntPtrTy;
5485        break;
5486      case LangOptions::CoreFoundationABI::Swift4_1:
5487        CFConstantStringClassName =
5488            Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5489                                : "__T010Foundation19_NSCFConstantStringCN";
5490        Ty = IntPtrTy;
5491        break;
5492      }
5493  
5494      llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5495  
5496      if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5497        llvm::GlobalValue *GV = nullptr;
5498  
5499        if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5500          IdentifierInfo &II = Context.Idents.get(GV->getName());
5501          TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5502          DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5503  
5504          const VarDecl *VD = nullptr;
5505          for (const auto *Result : DC->lookup(&II))
5506            if ((VD = dyn_cast<VarDecl>(Result)))
5507              break;
5508  
5509          if (Triple.isOSBinFormatELF()) {
5510            if (!VD)
5511              GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5512          } else {
5513            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5514            if (!VD || !VD->hasAttr<DLLExportAttr>())
5515              GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5516            else
5517              GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5518          }
5519  
5520          setDSOLocal(GV);
5521        }
5522      }
5523  
5524      // Decay array -> ptr
5525      CFConstantStringClassRef =
5526          IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5527                     : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5528    }
5529  
5530    QualType CFTy = Context.getCFConstantStringType();
5531  
5532    auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5533  
5534    ConstantInitBuilder Builder(*this);
5535    auto Fields = Builder.beginStruct(STy);
5536  
5537    // Class pointer.
5538    Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5539  
5540    // Flags.
5541    if (IsSwiftABI) {
5542      Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5543      Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5544    } else {
5545      Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5546    }
5547  
5548    // String pointer.
5549    llvm::Constant *C = nullptr;
5550    if (isUTF16) {
5551      auto Arr = llvm::makeArrayRef(
5552          reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5553          Entry.first().size() / 2);
5554      C = llvm::ConstantDataArray::get(VMContext, Arr);
5555    } else {
5556      C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5557    }
5558  
5559    // Note: -fwritable-strings doesn't make the backing store strings of
5560    // CFStrings writable. (See <rdar://problem/10657500>)
5561    auto *GV =
5562        new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5563                                 llvm::GlobalValue::PrivateLinkage, C, ".str");
5564    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5565    // Don't enforce the target's minimum global alignment, since the only use
5566    // of the string is via this class initializer.
5567    CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5568                              : Context.getTypeAlignInChars(Context.CharTy);
5569    GV->setAlignment(Align.getAsAlign());
5570  
5571    // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5572    // Without it LLVM can merge the string with a non unnamed_addr one during
5573    // LTO.  Doing that changes the section it ends in, which surprises ld64.
5574    if (Triple.isOSBinFormatMachO())
5575      GV->setSection(isUTF16 ? "__TEXT,__ustring"
5576                             : "__TEXT,__cstring,cstring_literals");
5577    // Make sure the literal ends up in .rodata to allow for safe ICF and for
5578    // the static linker to adjust permissions to read-only later on.
5579    else if (Triple.isOSBinFormatELF())
5580      GV->setSection(".rodata");
5581  
5582    // String.
5583    llvm::Constant *Str =
5584        llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5585  
5586    if (isUTF16)
5587      // Cast the UTF16 string to the correct type.
5588      Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5589    Fields.add(Str);
5590  
5591    // String length.
5592    llvm::IntegerType *LengthTy =
5593        llvm::IntegerType::get(getModule().getContext(),
5594                               Context.getTargetInfo().getLongWidth());
5595    if (IsSwiftABI) {
5596      if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5597          CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5598        LengthTy = Int32Ty;
5599      else
5600        LengthTy = IntPtrTy;
5601    }
5602    Fields.addInt(LengthTy, StringLength);
5603  
5604    // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5605    // properly aligned on 32-bit platforms.
5606    CharUnits Alignment =
5607        IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5608  
5609    // The struct.
5610    GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5611                                      /*isConstant=*/false,
5612                                      llvm::GlobalVariable::PrivateLinkage);
5613    GV->addAttribute("objc_arc_inert");
5614    switch (Triple.getObjectFormat()) {
5615    case llvm::Triple::UnknownObjectFormat:
5616      llvm_unreachable("unknown file format");
5617    case llvm::Triple::DXContainer:
5618    case llvm::Triple::GOFF:
5619    case llvm::Triple::SPIRV:
5620    case llvm::Triple::XCOFF:
5621      llvm_unreachable("unimplemented");
5622    case llvm::Triple::COFF:
5623    case llvm::Triple::ELF:
5624    case llvm::Triple::Wasm:
5625      GV->setSection("cfstring");
5626      break;
5627    case llvm::Triple::MachO:
5628      GV->setSection("__DATA,__cfstring");
5629      break;
5630    }
5631    Entry.second = GV;
5632  
5633    return ConstantAddress(GV, GV->getValueType(), Alignment);
5634  }
5635  
5636  bool CodeGenModule::getExpressionLocationsEnabled() const {
5637    return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5638  }
5639  
5640  QualType CodeGenModule::getObjCFastEnumerationStateType() {
5641    if (ObjCFastEnumerationStateType.isNull()) {
5642      RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5643      D->startDefinition();
5644  
5645      QualType FieldTypes[] = {
5646        Context.UnsignedLongTy,
5647        Context.getPointerType(Context.getObjCIdType()),
5648        Context.getPointerType(Context.UnsignedLongTy),
5649        Context.getConstantArrayType(Context.UnsignedLongTy,
5650                             llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5651      };
5652  
5653      for (size_t i = 0; i < 4; ++i) {
5654        FieldDecl *Field = FieldDecl::Create(Context,
5655                                             D,
5656                                             SourceLocation(),
5657                                             SourceLocation(), nullptr,
5658                                             FieldTypes[i], /*TInfo=*/nullptr,
5659                                             /*BitWidth=*/nullptr,
5660                                             /*Mutable=*/false,
5661                                             ICIS_NoInit);
5662        Field->setAccess(AS_public);
5663        D->addDecl(Field);
5664      }
5665  
5666      D->completeDefinition();
5667      ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5668    }
5669  
5670    return ObjCFastEnumerationStateType;
5671  }
5672  
5673  llvm::Constant *
5674  CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5675    assert(!E->getType()->isPointerType() && "Strings are always arrays");
5676  
5677    // Don't emit it as the address of the string, emit the string data itself
5678    // as an inline array.
5679    if (E->getCharByteWidth() == 1) {
5680      SmallString<64> Str(E->getString());
5681  
5682      // Resize the string to the right size, which is indicated by its type.
5683      const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5684      Str.resize(CAT->getSize().getZExtValue());
5685      return llvm::ConstantDataArray::getString(VMContext, Str, false);
5686    }
5687  
5688    auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5689    llvm::Type *ElemTy = AType->getElementType();
5690    unsigned NumElements = AType->getNumElements();
5691  
5692    // Wide strings have either 2-byte or 4-byte elements.
5693    if (ElemTy->getPrimitiveSizeInBits() == 16) {
5694      SmallVector<uint16_t, 32> Elements;
5695      Elements.reserve(NumElements);
5696  
5697      for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5698        Elements.push_back(E->getCodeUnit(i));
5699      Elements.resize(NumElements);
5700      return llvm::ConstantDataArray::get(VMContext, Elements);
5701    }
5702  
5703    assert(ElemTy->getPrimitiveSizeInBits() == 32);
5704    SmallVector<uint32_t, 32> Elements;
5705    Elements.reserve(NumElements);
5706  
5707    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5708      Elements.push_back(E->getCodeUnit(i));
5709    Elements.resize(NumElements);
5710    return llvm::ConstantDataArray::get(VMContext, Elements);
5711  }
5712  
5713  static llvm::GlobalVariable *
5714  GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5715                        CodeGenModule &CGM, StringRef GlobalName,
5716                        CharUnits Alignment) {
5717    unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5718        CGM.GetGlobalConstantAddressSpace());
5719  
5720    llvm::Module &M = CGM.getModule();
5721    // Create a global variable for this string
5722    auto *GV = new llvm::GlobalVariable(
5723        M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5724        nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5725    GV->setAlignment(Alignment.getAsAlign());
5726    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5727    if (GV->isWeakForLinker()) {
5728      assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5729      GV->setComdat(M.getOrInsertComdat(GV->getName()));
5730    }
5731    CGM.setDSOLocal(GV);
5732  
5733    return GV;
5734  }
5735  
5736  /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5737  /// constant array for the given string literal.
5738  ConstantAddress
5739  CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5740                                                    StringRef Name) {
5741    CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5742  
5743    llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5744    llvm::GlobalVariable **Entry = nullptr;
5745    if (!LangOpts.WritableStrings) {
5746      Entry = &ConstantStringMap[C];
5747      if (auto GV = *Entry) {
5748        if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5749          GV->setAlignment(Alignment.getAsAlign());
5750        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5751                               GV->getValueType(), Alignment);
5752      }
5753    }
5754  
5755    SmallString<256> MangledNameBuffer;
5756    StringRef GlobalVariableName;
5757    llvm::GlobalValue::LinkageTypes LT;
5758  
5759    // Mangle the string literal if that's how the ABI merges duplicate strings.
5760    // Don't do it if they are writable, since we don't want writes in one TU to
5761    // affect strings in another.
5762    if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5763        !LangOpts.WritableStrings) {
5764      llvm::raw_svector_ostream Out(MangledNameBuffer);
5765      getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5766      LT = llvm::GlobalValue::LinkOnceODRLinkage;
5767      GlobalVariableName = MangledNameBuffer;
5768    } else {
5769      LT = llvm::GlobalValue::PrivateLinkage;
5770      GlobalVariableName = Name;
5771    }
5772  
5773    auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5774  
5775    CGDebugInfo *DI = getModuleDebugInfo();
5776    if (DI && getCodeGenOpts().hasReducedDebugInfo())
5777      DI->AddStringLiteralDebugInfo(GV, S);
5778  
5779    if (Entry)
5780      *Entry = GV;
5781  
5782    SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5783  
5784    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5785                           GV->getValueType(), Alignment);
5786  }
5787  
5788  /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5789  /// array for the given ObjCEncodeExpr node.
5790  ConstantAddress
5791  CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5792    std::string Str;
5793    getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5794  
5795    return GetAddrOfConstantCString(Str);
5796  }
5797  
5798  /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5799  /// the literal and a terminating '\0' character.
5800  /// The result has pointer to array type.
5801  ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5802      const std::string &Str, const char *GlobalName) {
5803    StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5804    CharUnits Alignment =
5805      getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5806  
5807    llvm::Constant *C =
5808        llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5809  
5810    // Don't share any string literals if strings aren't constant.
5811    llvm::GlobalVariable **Entry = nullptr;
5812    if (!LangOpts.WritableStrings) {
5813      Entry = &ConstantStringMap[C];
5814      if (auto GV = *Entry) {
5815        if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5816          GV->setAlignment(Alignment.getAsAlign());
5817        return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5818                               GV->getValueType(), Alignment);
5819      }
5820    }
5821  
5822    // Get the default prefix if a name wasn't specified.
5823    if (!GlobalName)
5824      GlobalName = ".str";
5825    // Create a global variable for this.
5826    auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5827                                    GlobalName, Alignment);
5828    if (Entry)
5829      *Entry = GV;
5830  
5831    return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5832                           GV->getValueType(), Alignment);
5833  }
5834  
5835  ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5836      const MaterializeTemporaryExpr *E, const Expr *Init) {
5837    assert((E->getStorageDuration() == SD_Static ||
5838            E->getStorageDuration() == SD_Thread) && "not a global temporary");
5839    const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5840  
5841    // If we're not materializing a subobject of the temporary, keep the
5842    // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5843    QualType MaterializedType = Init->getType();
5844    if (Init == E->getSubExpr())
5845      MaterializedType = E->getType();
5846  
5847    CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5848  
5849    auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5850    if (!InsertResult.second) {
5851      // We've seen this before: either we already created it or we're in the
5852      // process of doing so.
5853      if (!InsertResult.first->second) {
5854        // We recursively re-entered this function, probably during emission of
5855        // the initializer. Create a placeholder. We'll clean this up in the
5856        // outer call, at the end of this function.
5857        llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5858        InsertResult.first->second = new llvm::GlobalVariable(
5859            getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5860            nullptr);
5861      }
5862      return ConstantAddress(InsertResult.first->second,
5863                             llvm::cast<llvm::GlobalVariable>(
5864                                 InsertResult.first->second->stripPointerCasts())
5865                                 ->getValueType(),
5866                             Align);
5867    }
5868  
5869    // FIXME: If an externally-visible declaration extends multiple temporaries,
5870    // we need to give each temporary the same name in every translation unit (and
5871    // we also need to make the temporaries externally-visible).
5872    SmallString<256> Name;
5873    llvm::raw_svector_ostream Out(Name);
5874    getCXXABI().getMangleContext().mangleReferenceTemporary(
5875        VD, E->getManglingNumber(), Out);
5876  
5877    APValue *Value = nullptr;
5878    if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5879      // If the initializer of the extending declaration is a constant
5880      // initializer, we should have a cached constant initializer for this
5881      // temporary. Note that this might have a different value from the value
5882      // computed by evaluating the initializer if the surrounding constant
5883      // expression modifies the temporary.
5884      Value = E->getOrCreateValue(false);
5885    }
5886  
5887    // Try evaluating it now, it might have a constant initializer.
5888    Expr::EvalResult EvalResult;
5889    if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5890        !EvalResult.hasSideEffects())
5891      Value = &EvalResult.Val;
5892  
5893    LangAS AddrSpace =
5894        VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5895  
5896    Optional<ConstantEmitter> emitter;
5897    llvm::Constant *InitialValue = nullptr;
5898    bool Constant = false;
5899    llvm::Type *Type;
5900    if (Value) {
5901      // The temporary has a constant initializer, use it.
5902      emitter.emplace(*this);
5903      InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5904                                                 MaterializedType);
5905      Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5906      Type = InitialValue->getType();
5907    } else {
5908      // No initializer, the initialization will be provided when we
5909      // initialize the declaration which performed lifetime extension.
5910      Type = getTypes().ConvertTypeForMem(MaterializedType);
5911    }
5912  
5913    // Create a global variable for this lifetime-extended temporary.
5914    llvm::GlobalValue::LinkageTypes Linkage =
5915        getLLVMLinkageVarDefinition(VD, Constant);
5916    if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5917      const VarDecl *InitVD;
5918      if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5919          isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5920        // Temporaries defined inside a class get linkonce_odr linkage because the
5921        // class can be defined in multiple translation units.
5922        Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5923      } else {
5924        // There is no need for this temporary to have external linkage if the
5925        // VarDecl has external linkage.
5926        Linkage = llvm::GlobalVariable::InternalLinkage;
5927      }
5928    }
5929    auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5930    auto *GV = new llvm::GlobalVariable(
5931        getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5932        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5933    if (emitter) emitter->finalize(GV);
5934    setGVProperties(GV, VD);
5935    if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5936      // The reference temporary should never be dllexport.
5937      GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5938    GV->setAlignment(Align.getAsAlign());
5939    if (supportsCOMDAT() && GV->isWeakForLinker())
5940      GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5941    if (VD->getTLSKind())
5942      setTLSMode(GV, *VD);
5943    llvm::Constant *CV = GV;
5944    if (AddrSpace != LangAS::Default)
5945      CV = getTargetCodeGenInfo().performAddrSpaceCast(
5946          *this, GV, AddrSpace, LangAS::Default,
5947          Type->getPointerTo(
5948              getContext().getTargetAddressSpace(LangAS::Default)));
5949  
5950    // Update the map with the new temporary. If we created a placeholder above,
5951    // replace it with the new global now.
5952    llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5953    if (Entry) {
5954      Entry->replaceAllUsesWith(
5955          llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5956      llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5957    }
5958    Entry = CV;
5959  
5960    return ConstantAddress(CV, Type, Align);
5961  }
5962  
5963  /// EmitObjCPropertyImplementations - Emit information for synthesized
5964  /// properties for an implementation.
5965  void CodeGenModule::EmitObjCPropertyImplementations(const
5966                                                      ObjCImplementationDecl *D) {
5967    for (const auto *PID : D->property_impls()) {
5968      // Dynamic is just for type-checking.
5969      if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5970        ObjCPropertyDecl *PD = PID->getPropertyDecl();
5971  
5972        // Determine which methods need to be implemented, some may have
5973        // been overridden. Note that ::isPropertyAccessor is not the method
5974        // we want, that just indicates if the decl came from a
5975        // property. What we want to know is if the method is defined in
5976        // this implementation.
5977        auto *Getter = PID->getGetterMethodDecl();
5978        if (!Getter || Getter->isSynthesizedAccessorStub())
5979          CodeGenFunction(*this).GenerateObjCGetter(
5980              const_cast<ObjCImplementationDecl *>(D), PID);
5981        auto *Setter = PID->getSetterMethodDecl();
5982        if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5983          CodeGenFunction(*this).GenerateObjCSetter(
5984                                   const_cast<ObjCImplementationDecl *>(D), PID);
5985      }
5986    }
5987  }
5988  
5989  static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5990    const ObjCInterfaceDecl *iface = impl->getClassInterface();
5991    for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5992         ivar; ivar = ivar->getNextIvar())
5993      if (ivar->getType().isDestructedType())
5994        return true;
5995  
5996    return false;
5997  }
5998  
5999  static bool AllTrivialInitializers(CodeGenModule &CGM,
6000                                     ObjCImplementationDecl *D) {
6001    CodeGenFunction CGF(CGM);
6002    for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6003         E = D->init_end(); B != E; ++B) {
6004      CXXCtorInitializer *CtorInitExp = *B;
6005      Expr *Init = CtorInitExp->getInit();
6006      if (!CGF.isTrivialInitializer(Init))
6007        return false;
6008    }
6009    return true;
6010  }
6011  
6012  /// EmitObjCIvarInitializations - Emit information for ivar initialization
6013  /// for an implementation.
6014  void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6015    // We might need a .cxx_destruct even if we don't have any ivar initializers.
6016    if (needsDestructMethod(D)) {
6017      IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6018      Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6019      ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6020          getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6021          getContext().VoidTy, nullptr, D,
6022          /*isInstance=*/true, /*isVariadic=*/false,
6023          /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6024          /*isImplicitlyDeclared=*/true,
6025          /*isDefined=*/false, ObjCMethodDecl::Required);
6026      D->addInstanceMethod(DTORMethod);
6027      CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6028      D->setHasDestructors(true);
6029    }
6030  
6031    // If the implementation doesn't have any ivar initializers, we don't need
6032    // a .cxx_construct.
6033    if (D->getNumIvarInitializers() == 0 ||
6034        AllTrivialInitializers(*this, D))
6035      return;
6036  
6037    IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6038    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6039    // The constructor returns 'self'.
6040    ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6041        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6042        getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6043        /*isVariadic=*/false,
6044        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6045        /*isImplicitlyDeclared=*/true,
6046        /*isDefined=*/false, ObjCMethodDecl::Required);
6047    D->addInstanceMethod(CTORMethod);
6048    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6049    D->setHasNonZeroConstructors(true);
6050  }
6051  
6052  // EmitLinkageSpec - Emit all declarations in a linkage spec.
6053  void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6054    if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6055        LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6056      ErrorUnsupported(LSD, "linkage spec");
6057      return;
6058    }
6059  
6060    EmitDeclContext(LSD);
6061  }
6062  
6063  void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6064    for (auto *I : DC->decls()) {
6065      // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6066      // are themselves considered "top-level", so EmitTopLevelDecl on an
6067      // ObjCImplDecl does not recursively visit them. We need to do that in
6068      // case they're nested inside another construct (LinkageSpecDecl /
6069      // ExportDecl) that does stop them from being considered "top-level".
6070      if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6071        for (auto *M : OID->methods())
6072          EmitTopLevelDecl(M);
6073      }
6074  
6075      EmitTopLevelDecl(I);
6076    }
6077  }
6078  
6079  /// EmitTopLevelDecl - Emit code for a single top level declaration.
6080  void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6081    // Ignore dependent declarations.
6082    if (D->isTemplated())
6083      return;
6084  
6085    // Consteval function shouldn't be emitted.
6086    if (auto *FD = dyn_cast<FunctionDecl>(D))
6087      if (FD->isConsteval())
6088        return;
6089  
6090    switch (D->getKind()) {
6091    case Decl::CXXConversion:
6092    case Decl::CXXMethod:
6093    case Decl::Function:
6094      EmitGlobal(cast<FunctionDecl>(D));
6095      // Always provide some coverage mapping
6096      // even for the functions that aren't emitted.
6097      AddDeferredUnusedCoverageMapping(D);
6098      break;
6099  
6100    case Decl::CXXDeductionGuide:
6101      // Function-like, but does not result in code emission.
6102      break;
6103  
6104    case Decl::Var:
6105    case Decl::Decomposition:
6106    case Decl::VarTemplateSpecialization:
6107      EmitGlobal(cast<VarDecl>(D));
6108      if (auto *DD = dyn_cast<DecompositionDecl>(D))
6109        for (auto *B : DD->bindings())
6110          if (auto *HD = B->getHoldingVar())
6111            EmitGlobal(HD);
6112      break;
6113  
6114    // Indirect fields from global anonymous structs and unions can be
6115    // ignored; only the actual variable requires IR gen support.
6116    case Decl::IndirectField:
6117      break;
6118  
6119    // C++ Decls
6120    case Decl::Namespace:
6121      EmitDeclContext(cast<NamespaceDecl>(D));
6122      break;
6123    case Decl::ClassTemplateSpecialization: {
6124      const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6125      if (CGDebugInfo *DI = getModuleDebugInfo())
6126        if (Spec->getSpecializationKind() ==
6127                TSK_ExplicitInstantiationDefinition &&
6128            Spec->hasDefinition())
6129          DI->completeTemplateDefinition(*Spec);
6130    } LLVM_FALLTHROUGH;
6131    case Decl::CXXRecord: {
6132      CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6133      if (CGDebugInfo *DI = getModuleDebugInfo()) {
6134        if (CRD->hasDefinition())
6135          DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6136        if (auto *ES = D->getASTContext().getExternalSource())
6137          if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6138            DI->completeUnusedClass(*CRD);
6139      }
6140      // Emit any static data members, they may be definitions.
6141      for (auto *I : CRD->decls())
6142        if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6143          EmitTopLevelDecl(I);
6144      break;
6145    }
6146      // No code generation needed.
6147    case Decl::UsingShadow:
6148    case Decl::ClassTemplate:
6149    case Decl::VarTemplate:
6150    case Decl::Concept:
6151    case Decl::VarTemplatePartialSpecialization:
6152    case Decl::FunctionTemplate:
6153    case Decl::TypeAliasTemplate:
6154    case Decl::Block:
6155    case Decl::Empty:
6156    case Decl::Binding:
6157      break;
6158    case Decl::Using:          // using X; [C++]
6159      if (CGDebugInfo *DI = getModuleDebugInfo())
6160          DI->EmitUsingDecl(cast<UsingDecl>(*D));
6161      break;
6162    case Decl::UsingEnum: // using enum X; [C++]
6163      if (CGDebugInfo *DI = getModuleDebugInfo())
6164        DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6165      break;
6166    case Decl::NamespaceAlias:
6167      if (CGDebugInfo *DI = getModuleDebugInfo())
6168          DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6169      break;
6170    case Decl::UsingDirective: // using namespace X; [C++]
6171      if (CGDebugInfo *DI = getModuleDebugInfo())
6172        DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6173      break;
6174    case Decl::CXXConstructor:
6175      getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6176      break;
6177    case Decl::CXXDestructor:
6178      getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6179      break;
6180  
6181    case Decl::StaticAssert:
6182      // Nothing to do.
6183      break;
6184  
6185    // Objective-C Decls
6186  
6187    // Forward declarations, no (immediate) code generation.
6188    case Decl::ObjCInterface:
6189    case Decl::ObjCCategory:
6190      break;
6191  
6192    case Decl::ObjCProtocol: {
6193      auto *Proto = cast<ObjCProtocolDecl>(D);
6194      if (Proto->isThisDeclarationADefinition())
6195        ObjCRuntime->GenerateProtocol(Proto);
6196      break;
6197    }
6198  
6199    case Decl::ObjCCategoryImpl:
6200      // Categories have properties but don't support synthesize so we
6201      // can ignore them here.
6202      ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6203      break;
6204  
6205    case Decl::ObjCImplementation: {
6206      auto *OMD = cast<ObjCImplementationDecl>(D);
6207      EmitObjCPropertyImplementations(OMD);
6208      EmitObjCIvarInitializations(OMD);
6209      ObjCRuntime->GenerateClass(OMD);
6210      // Emit global variable debug information.
6211      if (CGDebugInfo *DI = getModuleDebugInfo())
6212        if (getCodeGenOpts().hasReducedDebugInfo())
6213          DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6214              OMD->getClassInterface()), OMD->getLocation());
6215      break;
6216    }
6217    case Decl::ObjCMethod: {
6218      auto *OMD = cast<ObjCMethodDecl>(D);
6219      // If this is not a prototype, emit the body.
6220      if (OMD->getBody())
6221        CodeGenFunction(*this).GenerateObjCMethod(OMD);
6222      break;
6223    }
6224    case Decl::ObjCCompatibleAlias:
6225      ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6226      break;
6227  
6228    case Decl::PragmaComment: {
6229      const auto *PCD = cast<PragmaCommentDecl>(D);
6230      switch (PCD->getCommentKind()) {
6231      case PCK_Unknown:
6232        llvm_unreachable("unexpected pragma comment kind");
6233      case PCK_Linker:
6234        AppendLinkerOptions(PCD->getArg());
6235        break;
6236      case PCK_Lib:
6237          AddDependentLib(PCD->getArg());
6238        break;
6239      case PCK_Compiler:
6240      case PCK_ExeStr:
6241      case PCK_User:
6242        break; // We ignore all of these.
6243      }
6244      break;
6245    }
6246  
6247    case Decl::PragmaDetectMismatch: {
6248      const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6249      AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6250      break;
6251    }
6252  
6253    case Decl::LinkageSpec:
6254      EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6255      break;
6256  
6257    case Decl::FileScopeAsm: {
6258      // File-scope asm is ignored during device-side CUDA compilation.
6259      if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6260        break;
6261      // File-scope asm is ignored during device-side OpenMP compilation.
6262      if (LangOpts.OpenMPIsDevice)
6263        break;
6264      // File-scope asm is ignored during device-side SYCL compilation.
6265      if (LangOpts.SYCLIsDevice)
6266        break;
6267      auto *AD = cast<FileScopeAsmDecl>(D);
6268      getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6269      break;
6270    }
6271  
6272    case Decl::Import: {
6273      auto *Import = cast<ImportDecl>(D);
6274  
6275      // If we've already imported this module, we're done.
6276      if (!ImportedModules.insert(Import->getImportedModule()))
6277        break;
6278  
6279      // Emit debug information for direct imports.
6280      if (!Import->getImportedOwningModule()) {
6281        if (CGDebugInfo *DI = getModuleDebugInfo())
6282          DI->EmitImportDecl(*Import);
6283      }
6284  
6285      // For C++ standard modules we are done - we will call the module
6286      // initializer for imported modules, and that will likewise call those for
6287      // any imports it has.
6288      if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6289          !Import->getImportedOwningModule()->isModuleMapModule())
6290        break;
6291  
6292      // For clang C++ module map modules the initializers for sub-modules are
6293      // emitted here.
6294  
6295      // Find all of the submodules and emit the module initializers.
6296      llvm::SmallPtrSet<clang::Module *, 16> Visited;
6297      SmallVector<clang::Module *, 16> Stack;
6298      Visited.insert(Import->getImportedModule());
6299      Stack.push_back(Import->getImportedModule());
6300  
6301      while (!Stack.empty()) {
6302        clang::Module *Mod = Stack.pop_back_val();
6303        if (!EmittedModuleInitializers.insert(Mod).second)
6304          continue;
6305  
6306        for (auto *D : Context.getModuleInitializers(Mod))
6307          EmitTopLevelDecl(D);
6308  
6309        // Visit the submodules of this module.
6310        for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6311                                               SubEnd = Mod->submodule_end();
6312             Sub != SubEnd; ++Sub) {
6313          // Skip explicit children; they need to be explicitly imported to emit
6314          // the initializers.
6315          if ((*Sub)->IsExplicit)
6316            continue;
6317  
6318          if (Visited.insert(*Sub).second)
6319            Stack.push_back(*Sub);
6320        }
6321      }
6322      break;
6323    }
6324  
6325    case Decl::Export:
6326      EmitDeclContext(cast<ExportDecl>(D));
6327      break;
6328  
6329    case Decl::OMPThreadPrivate:
6330      EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6331      break;
6332  
6333    case Decl::OMPAllocate:
6334      EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6335      break;
6336  
6337    case Decl::OMPDeclareReduction:
6338      EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6339      break;
6340  
6341    case Decl::OMPDeclareMapper:
6342      EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6343      break;
6344  
6345    case Decl::OMPRequires:
6346      EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6347      break;
6348  
6349    case Decl::Typedef:
6350    case Decl::TypeAlias: // using foo = bar; [C++11]
6351      if (CGDebugInfo *DI = getModuleDebugInfo())
6352        DI->EmitAndRetainType(
6353            getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6354      break;
6355  
6356    case Decl::Record:
6357      if (CGDebugInfo *DI = getModuleDebugInfo())
6358        if (cast<RecordDecl>(D)->getDefinition())
6359          DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6360      break;
6361  
6362    case Decl::Enum:
6363      if (CGDebugInfo *DI = getModuleDebugInfo())
6364        if (cast<EnumDecl>(D)->getDefinition())
6365          DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6366      break;
6367  
6368    default:
6369      // Make sure we handled everything we should, every other kind is a
6370      // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6371      // function. Need to recode Decl::Kind to do that easily.
6372      assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6373      break;
6374    }
6375  }
6376  
6377  void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6378    // Do we need to generate coverage mapping?
6379    if (!CodeGenOpts.CoverageMapping)
6380      return;
6381    switch (D->getKind()) {
6382    case Decl::CXXConversion:
6383    case Decl::CXXMethod:
6384    case Decl::Function:
6385    case Decl::ObjCMethod:
6386    case Decl::CXXConstructor:
6387    case Decl::CXXDestructor: {
6388      if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6389        break;
6390      SourceManager &SM = getContext().getSourceManager();
6391      if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6392        break;
6393      auto I = DeferredEmptyCoverageMappingDecls.find(D);
6394      if (I == DeferredEmptyCoverageMappingDecls.end())
6395        DeferredEmptyCoverageMappingDecls[D] = true;
6396      break;
6397    }
6398    default:
6399      break;
6400    };
6401  }
6402  
6403  void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6404    // Do we need to generate coverage mapping?
6405    if (!CodeGenOpts.CoverageMapping)
6406      return;
6407    if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6408      if (Fn->isTemplateInstantiation())
6409        ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6410    }
6411    auto I = DeferredEmptyCoverageMappingDecls.find(D);
6412    if (I == DeferredEmptyCoverageMappingDecls.end())
6413      DeferredEmptyCoverageMappingDecls[D] = false;
6414    else
6415      I->second = false;
6416  }
6417  
6418  void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6419    // We call takeVector() here to avoid use-after-free.
6420    // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6421    // we deserialize function bodies to emit coverage info for them, and that
6422    // deserializes more declarations. How should we handle that case?
6423    for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6424      if (!Entry.second)
6425        continue;
6426      const Decl *D = Entry.first;
6427      switch (D->getKind()) {
6428      case Decl::CXXConversion:
6429      case Decl::CXXMethod:
6430      case Decl::Function:
6431      case Decl::ObjCMethod: {
6432        CodeGenPGO PGO(*this);
6433        GlobalDecl GD(cast<FunctionDecl>(D));
6434        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6435                                    getFunctionLinkage(GD));
6436        break;
6437      }
6438      case Decl::CXXConstructor: {
6439        CodeGenPGO PGO(*this);
6440        GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6441        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6442                                    getFunctionLinkage(GD));
6443        break;
6444      }
6445      case Decl::CXXDestructor: {
6446        CodeGenPGO PGO(*this);
6447        GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6448        PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6449                                    getFunctionLinkage(GD));
6450        break;
6451      }
6452      default:
6453        break;
6454      };
6455    }
6456  }
6457  
6458  void CodeGenModule::EmitMainVoidAlias() {
6459    // In order to transition away from "__original_main" gracefully, emit an
6460    // alias for "main" in the no-argument case so that libc can detect when
6461    // new-style no-argument main is in used.
6462    if (llvm::Function *F = getModule().getFunction("main")) {
6463      if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6464          F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6465        auto *GA = llvm::GlobalAlias::create("__main_void", F);
6466        GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6467      }
6468    }
6469  }
6470  
6471  /// Turns the given pointer into a constant.
6472  static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6473                                            const void *Ptr) {
6474    uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6475    llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6476    return llvm::ConstantInt::get(i64, PtrInt);
6477  }
6478  
6479  static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6480                                     llvm::NamedMDNode *&GlobalMetadata,
6481                                     GlobalDecl D,
6482                                     llvm::GlobalValue *Addr) {
6483    if (!GlobalMetadata)
6484      GlobalMetadata =
6485        CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6486  
6487    // TODO: should we report variant information for ctors/dtors?
6488    llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6489                             llvm::ConstantAsMetadata::get(GetPointerConstant(
6490                                 CGM.getLLVMContext(), D.getDecl()))};
6491    GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6492  }
6493  
6494  bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6495                                                   llvm::GlobalValue *CppFunc) {
6496    // Store the list of ifuncs we need to replace uses in.
6497    llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6498    // List of ConstantExprs that we should be able to delete when we're done
6499    // here.
6500    llvm::SmallVector<llvm::ConstantExpr *> CEs;
6501  
6502    // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6503    if (Elem == CppFunc)
6504      return false;
6505  
6506    // First make sure that all users of this are ifuncs (or ifuncs via a
6507    // bitcast), and collect the list of ifuncs and CEs so we can work on them
6508    // later.
6509    for (llvm::User *User : Elem->users()) {
6510      // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6511      // ifunc directly. In any other case, just give up, as we don't know what we
6512      // could break by changing those.
6513      if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6514        if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6515          return false;
6516  
6517        for (llvm::User *CEUser : ConstExpr->users()) {
6518          if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6519            IFuncs.push_back(IFunc);
6520          } else {
6521            return false;
6522          }
6523        }
6524        CEs.push_back(ConstExpr);
6525      } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6526        IFuncs.push_back(IFunc);
6527      } else {
6528        // This user is one we don't know how to handle, so fail redirection. This
6529        // will result in an ifunc retaining a resolver name that will ultimately
6530        // fail to be resolved to a defined function.
6531        return false;
6532      }
6533    }
6534  
6535    // Now we know this is a valid case where we can do this alias replacement, we
6536    // need to remove all of the references to Elem (and the bitcasts!) so we can
6537    // delete it.
6538    for (llvm::GlobalIFunc *IFunc : IFuncs)
6539      IFunc->setResolver(nullptr);
6540    for (llvm::ConstantExpr *ConstExpr : CEs)
6541      ConstExpr->destroyConstant();
6542  
6543    // We should now be out of uses for the 'old' version of this function, so we
6544    // can erase it as well.
6545    Elem->eraseFromParent();
6546  
6547    for (llvm::GlobalIFunc *IFunc : IFuncs) {
6548      // The type of the resolver is always just a function-type that returns the
6549      // type of the IFunc, so create that here. If the type of the actual
6550      // resolver doesn't match, it just gets bitcast to the right thing.
6551      auto *ResolverTy =
6552          llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6553      llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6554          CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6555      IFunc->setResolver(Resolver);
6556    }
6557    return true;
6558  }
6559  
6560  /// For each function which is declared within an extern "C" region and marked
6561  /// as 'used', but has internal linkage, create an alias from the unmangled
6562  /// name to the mangled name if possible. People expect to be able to refer
6563  /// to such functions with an unmangled name from inline assembly within the
6564  /// same translation unit.
6565  void CodeGenModule::EmitStaticExternCAliases() {
6566    if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6567      return;
6568    for (auto &I : StaticExternCValues) {
6569      IdentifierInfo *Name = I.first;
6570      llvm::GlobalValue *Val = I.second;
6571  
6572      // If Val is null, that implies there were multiple declarations that each
6573      // had a claim to the unmangled name. In this case, generation of the alias
6574      // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6575      if (!Val)
6576        break;
6577  
6578      llvm::GlobalValue *ExistingElem =
6579          getModule().getNamedValue(Name->getName());
6580  
6581      // If there is either not something already by this name, or we were able to
6582      // replace all uses from IFuncs, create the alias.
6583      if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6584        addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6585    }
6586  }
6587  
6588  bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6589                                               GlobalDecl &Result) const {
6590    auto Res = Manglings.find(MangledName);
6591    if (Res == Manglings.end())
6592      return false;
6593    Result = Res->getValue();
6594    return true;
6595  }
6596  
6597  /// Emits metadata nodes associating all the global values in the
6598  /// current module with the Decls they came from.  This is useful for
6599  /// projects using IR gen as a subroutine.
6600  ///
6601  /// Since there's currently no way to associate an MDNode directly
6602  /// with an llvm::GlobalValue, we create a global named metadata
6603  /// with the name 'clang.global.decl.ptrs'.
6604  void CodeGenModule::EmitDeclMetadata() {
6605    llvm::NamedMDNode *GlobalMetadata = nullptr;
6606  
6607    for (auto &I : MangledDeclNames) {
6608      llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6609      // Some mangled names don't necessarily have an associated GlobalValue
6610      // in this module, e.g. if we mangled it for DebugInfo.
6611      if (Addr)
6612        EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6613    }
6614  }
6615  
6616  /// Emits metadata nodes for all the local variables in the current
6617  /// function.
6618  void CodeGenFunction::EmitDeclMetadata() {
6619    if (LocalDeclMap.empty()) return;
6620  
6621    llvm::LLVMContext &Context = getLLVMContext();
6622  
6623    // Find the unique metadata ID for this name.
6624    unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6625  
6626    llvm::NamedMDNode *GlobalMetadata = nullptr;
6627  
6628    for (auto &I : LocalDeclMap) {
6629      const Decl *D = I.first;
6630      llvm::Value *Addr = I.second.getPointer();
6631      if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6632        llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6633        Alloca->setMetadata(
6634            DeclPtrKind, llvm::MDNode::get(
6635                             Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6636      } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6637        GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6638        EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6639      }
6640    }
6641  }
6642  
6643  void CodeGenModule::EmitVersionIdentMetadata() {
6644    llvm::NamedMDNode *IdentMetadata =
6645      TheModule.getOrInsertNamedMetadata("llvm.ident");
6646    std::string Version = getClangFullVersion();
6647    llvm::LLVMContext &Ctx = TheModule.getContext();
6648  
6649    llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6650    IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6651  }
6652  
6653  void CodeGenModule::EmitCommandLineMetadata() {
6654    llvm::NamedMDNode *CommandLineMetadata =
6655      TheModule.getOrInsertNamedMetadata("llvm.commandline");
6656    std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6657    llvm::LLVMContext &Ctx = TheModule.getContext();
6658  
6659    llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6660    CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6661  }
6662  
6663  void CodeGenModule::EmitCoverageFile() {
6664    if (getCodeGenOpts().CoverageDataFile.empty() &&
6665        getCodeGenOpts().CoverageNotesFile.empty())
6666      return;
6667  
6668    llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6669    if (!CUNode)
6670      return;
6671  
6672    llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6673    llvm::LLVMContext &Ctx = TheModule.getContext();
6674    auto *CoverageDataFile =
6675        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6676    auto *CoverageNotesFile =
6677        llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6678    for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6679      llvm::MDNode *CU = CUNode->getOperand(i);
6680      llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6681      GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6682    }
6683  }
6684  
6685  llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6686                                                         bool ForEH) {
6687    // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6688    // FIXME: should we even be calling this method if RTTI is disabled
6689    // and it's not for EH?
6690    if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6691        (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6692         getTriple().isNVPTX()))
6693      return llvm::Constant::getNullValue(Int8PtrTy);
6694  
6695    if (ForEH && Ty->isObjCObjectPointerType() &&
6696        LangOpts.ObjCRuntime.isGNUFamily())
6697      return ObjCRuntime->GetEHType(Ty);
6698  
6699    return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6700  }
6701  
6702  void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6703    // Do not emit threadprivates in simd-only mode.
6704    if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6705      return;
6706    for (auto RefExpr : D->varlists()) {
6707      auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6708      bool PerformInit =
6709          VD->getAnyInitializer() &&
6710          !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6711                                                          /*ForRef=*/false);
6712  
6713      Address Addr(GetAddrOfGlobalVar(VD),
6714                   getTypes().ConvertTypeForMem(VD->getType()),
6715                   getContext().getDeclAlign(VD));
6716      if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6717              VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6718        CXXGlobalInits.push_back(InitFunction);
6719    }
6720  }
6721  
6722  llvm::Metadata *
6723  CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6724                                              StringRef Suffix) {
6725    if (auto *FnType = T->getAs<FunctionProtoType>())
6726      T = getContext().getFunctionType(
6727          FnType->getReturnType(), FnType->getParamTypes(),
6728          FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6729  
6730    llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6731    if (InternalId)
6732      return InternalId;
6733  
6734    if (isExternallyVisible(T->getLinkage())) {
6735      std::string OutName;
6736      llvm::raw_string_ostream Out(OutName);
6737      getCXXABI().getMangleContext().mangleTypeName(T, Out);
6738      Out << Suffix;
6739  
6740      InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6741    } else {
6742      InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6743                                             llvm::ArrayRef<llvm::Metadata *>());
6744    }
6745  
6746    return InternalId;
6747  }
6748  
6749  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6750    return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6751  }
6752  
6753  llvm::Metadata *
6754  CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6755    return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6756  }
6757  
6758  // Generalize pointer types to a void pointer with the qualifiers of the
6759  // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6760  // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6761  // 'void *'.
6762  static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6763    if (!Ty->isPointerType())
6764      return Ty;
6765  
6766    return Ctx.getPointerType(
6767        QualType(Ctx.VoidTy).withCVRQualifiers(
6768            Ty->getPointeeType().getCVRQualifiers()));
6769  }
6770  
6771  // Apply type generalization to a FunctionType's return and argument types
6772  static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6773    if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6774      SmallVector<QualType, 8> GeneralizedParams;
6775      for (auto &Param : FnType->param_types())
6776        GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6777  
6778      return Ctx.getFunctionType(
6779          GeneralizeType(Ctx, FnType->getReturnType()),
6780          GeneralizedParams, FnType->getExtProtoInfo());
6781    }
6782  
6783    if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6784      return Ctx.getFunctionNoProtoType(
6785          GeneralizeType(Ctx, FnType->getReturnType()));
6786  
6787    llvm_unreachable("Encountered unknown FunctionType");
6788  }
6789  
6790  llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6791    return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6792                                        GeneralizedMetadataIdMap, ".generalized");
6793  }
6794  
6795  /// Returns whether this module needs the "all-vtables" type identifier.
6796  bool CodeGenModule::NeedAllVtablesTypeId() const {
6797    // Returns true if at least one of vtable-based CFI checkers is enabled and
6798    // is not in the trapping mode.
6799    return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6800             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6801            (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6802             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6803            (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6804             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6805            (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6806             !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6807  }
6808  
6809  void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6810                                            CharUnits Offset,
6811                                            const CXXRecordDecl *RD) {
6812    llvm::Metadata *MD =
6813        CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6814    VTable->addTypeMetadata(Offset.getQuantity(), MD);
6815  
6816    if (CodeGenOpts.SanitizeCfiCrossDso)
6817      if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6818        VTable->addTypeMetadata(Offset.getQuantity(),
6819                                llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6820  
6821    if (NeedAllVtablesTypeId()) {
6822      llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6823      VTable->addTypeMetadata(Offset.getQuantity(), MD);
6824    }
6825  }
6826  
6827  llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6828    if (!SanStats)
6829      SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6830  
6831    return *SanStats;
6832  }
6833  
6834  llvm::Value *
6835  CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6836                                                    CodeGenFunction &CGF) {
6837    llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6838    auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6839    auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6840    auto *Call = CGF.EmitRuntimeCall(
6841        CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6842    return Call;
6843  }
6844  
6845  CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6846      QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6847    return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6848                                   /* forPointeeType= */ true);
6849  }
6850  
6851  CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6852                                                   LValueBaseInfo *BaseInfo,
6853                                                   TBAAAccessInfo *TBAAInfo,
6854                                                   bool forPointeeType) {
6855    if (TBAAInfo)
6856      *TBAAInfo = getTBAAAccessInfo(T);
6857  
6858    // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6859    // that doesn't return the information we need to compute BaseInfo.
6860  
6861    // Honor alignment typedef attributes even on incomplete types.
6862    // We also honor them straight for C++ class types, even as pointees;
6863    // there's an expressivity gap here.
6864    if (auto TT = T->getAs<TypedefType>()) {
6865      if (auto Align = TT->getDecl()->getMaxAlignment()) {
6866        if (BaseInfo)
6867          *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6868        return getContext().toCharUnitsFromBits(Align);
6869      }
6870    }
6871  
6872    bool AlignForArray = T->isArrayType();
6873  
6874    // Analyze the base element type, so we don't get confused by incomplete
6875    // array types.
6876    T = getContext().getBaseElementType(T);
6877  
6878    if (T->isIncompleteType()) {
6879      // We could try to replicate the logic from
6880      // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6881      // type is incomplete, so it's impossible to test. We could try to reuse
6882      // getTypeAlignIfKnown, but that doesn't return the information we need
6883      // to set BaseInfo.  So just ignore the possibility that the alignment is
6884      // greater than one.
6885      if (BaseInfo)
6886        *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6887      return CharUnits::One();
6888    }
6889  
6890    if (BaseInfo)
6891      *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6892  
6893    CharUnits Alignment;
6894    const CXXRecordDecl *RD;
6895    if (T.getQualifiers().hasUnaligned()) {
6896      Alignment = CharUnits::One();
6897    } else if (forPointeeType && !AlignForArray &&
6898               (RD = T->getAsCXXRecordDecl())) {
6899      // For C++ class pointees, we don't know whether we're pointing at a
6900      // base or a complete object, so we generally need to use the
6901      // non-virtual alignment.
6902      Alignment = getClassPointerAlignment(RD);
6903    } else {
6904      Alignment = getContext().getTypeAlignInChars(T);
6905    }
6906  
6907    // Cap to the global maximum type alignment unless the alignment
6908    // was somehow explicit on the type.
6909    if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6910      if (Alignment.getQuantity() > MaxAlign &&
6911          !getContext().isAlignmentRequired(T))
6912        Alignment = CharUnits::fromQuantity(MaxAlign);
6913    }
6914    return Alignment;
6915  }
6916  
6917  bool CodeGenModule::stopAutoInit() {
6918    unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6919    if (StopAfter) {
6920      // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6921      // used
6922      if (NumAutoVarInit >= StopAfter) {
6923        return true;
6924      }
6925      if (!NumAutoVarInit) {
6926        unsigned DiagID = getDiags().getCustomDiagID(
6927            DiagnosticsEngine::Warning,
6928            "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6929            "number of times ftrivial-auto-var-init=%1 gets applied.");
6930        getDiags().Report(DiagID)
6931            << StopAfter
6932            << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6933                        LangOptions::TrivialAutoVarInitKind::Zero
6934                    ? "zero"
6935                    : "pattern");
6936      }
6937      ++NumAutoVarInit;
6938    }
6939    return false;
6940  }
6941  
6942  void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6943                                                      const Decl *D) const {
6944    // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6945    // postfix beginning with '.' since the symbol name can be demangled.
6946    if (LangOpts.HIP)
6947      OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6948    else
6949      OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6950  
6951    // If the CUID is not specified we try to generate a unique postfix.
6952    if (getLangOpts().CUID.empty()) {
6953      SourceManager &SM = getContext().getSourceManager();
6954      PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6955      assert(PLoc.isValid() && "Source location is expected to be valid.");
6956  
6957      // Get the hash of the user defined macros.
6958      llvm::MD5 Hash;
6959      llvm::MD5::MD5Result Result;
6960      for (const auto &Arg : PreprocessorOpts.Macros)
6961        Hash.update(Arg.first);
6962      Hash.final(Result);
6963  
6964      // Get the UniqueID for the file containing the decl.
6965      llvm::sys::fs::UniqueID ID;
6966      if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6967        PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6968        assert(PLoc.isValid() && "Source location is expected to be valid.");
6969        if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6970          SM.getDiagnostics().Report(diag::err_cannot_open_file)
6971              << PLoc.getFilename() << EC.message();
6972      }
6973      OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6974         << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6975    } else {
6976      OS << getContext().getCUIDHash();
6977    }
6978  }
6979  
6980  void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
6981    assert(DeferredDeclsToEmit.empty() &&
6982           "Should have emitted all decls deferred to emit.");
6983    assert(NewBuilder->DeferredDecls.empty() &&
6984           "Newly created module should not have deferred decls");
6985    NewBuilder->DeferredDecls = std::move(DeferredDecls);
6986  
6987    assert(NewBuilder->DeferredVTables.empty() &&
6988           "Newly created module should not have deferred vtables");
6989    NewBuilder->DeferredVTables = std::move(DeferredVTables);
6990  
6991    assert(NewBuilder->MangledDeclNames.empty() &&
6992           "Newly created module should not have mangled decl names");
6993    assert(NewBuilder->Manglings.empty() &&
6994           "Newly created module should not have manglings");
6995    NewBuilder->Manglings = std::move(Manglings);
6996  
6997    assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
6998    NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
6999  
7000    NewBuilder->TBAA = std::move(TBAA);
7001  
7002    assert(NewBuilder->EmittedDeferredDecls.empty() &&
7003           "Still have (unmerged) EmittedDeferredDecls deferred decls");
7004  
7005    NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7006  
7007    NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7008  }
7009