xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 0b37c1590418417c894529d371800dfac71ef887)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ProfileSummary.h"
57 #include "llvm/ProfileData/InstrProfReader.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/ConvertUTF.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MD5.h"
63 #include "llvm/Support/TimeProfiler.h"
64 
65 using namespace clang;
66 using namespace CodeGen;
67 
68 static llvm::cl::opt<bool> LimitedCoverage(
69     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71     llvm::cl::init(false));
72 
73 static const char AnnotationSection[] = "llvm.metadata";
74 
75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76   switch (CGM.getTarget().getCXXABI().getKind()) {
77   case TargetCXXABI::Fuchsia:
78   case TargetCXXABI::GenericAArch64:
79   case TargetCXXABI::GenericARM:
80   case TargetCXXABI::iOS:
81   case TargetCXXABI::iOS64:
82   case TargetCXXABI::WatchOS:
83   case TargetCXXABI::GenericMIPS:
84   case TargetCXXABI::GenericItanium:
85   case TargetCXXABI::WebAssembly:
86     return CreateItaniumCXXABI(CGM);
87   case TargetCXXABI::Microsoft:
88     return CreateMicrosoftCXXABI(CGM);
89   }
90 
91   llvm_unreachable("invalid C++ ABI kind");
92 }
93 
94 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
95                              const PreprocessorOptions &PPO,
96                              const CodeGenOptions &CGO, llvm::Module &M,
97                              DiagnosticsEngine &diags,
98                              CoverageSourceInfo *CoverageInfo)
99     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
100       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
101       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
102       VMContext(M.getContext()), Types(*this), VTables(*this),
103       SanitizerMD(new SanitizerMetadata(*this)) {
104 
105   // Initialize the type cache.
106   llvm::LLVMContext &LLVMContext = M.getContext();
107   VoidTy = llvm::Type::getVoidTy(LLVMContext);
108   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
109   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
110   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
111   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
112   HalfTy = llvm::Type::getHalfTy(LLVMContext);
113   FloatTy = llvm::Type::getFloatTy(LLVMContext);
114   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
115   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
116   PointerAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
118   SizeSizeInBytes =
119     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
120   IntAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
122   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
123   IntPtrTy = llvm::IntegerType::get(LLVMContext,
124     C.getTargetInfo().getMaxPointerWidth());
125   Int8PtrTy = Int8Ty->getPointerTo(0);
126   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
127   AllocaInt8PtrTy = Int8Ty->getPointerTo(
128       M.getDataLayout().getAllocaAddrSpace());
129   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
130 
131   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
132 
133   if (LangOpts.ObjC)
134     createObjCRuntime();
135   if (LangOpts.OpenCL)
136     createOpenCLRuntime();
137   if (LangOpts.OpenMP)
138     createOpenMPRuntime();
139   if (LangOpts.CUDA)
140     createCUDARuntime();
141 
142   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
143   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
144       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
145     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
146                                getCXXABI().getMangleContext()));
147 
148   // If debug info or coverage generation is enabled, create the CGDebugInfo
149   // object.
150   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
151       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
152     DebugInfo.reset(new CGDebugInfo(*this));
153 
154   Block.GlobalUniqueCount = 0;
155 
156   if (C.getLangOpts().ObjC)
157     ObjCData.reset(new ObjCEntrypoints());
158 
159   if (CodeGenOpts.hasProfileClangUse()) {
160     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
161         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
162     if (auto E = ReaderOrErr.takeError()) {
163       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
164                                               "Could not read profile %0: %1");
165       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
166         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
167                                   << EI.message();
168       });
169     } else
170       PGOReader = std::move(ReaderOrErr.get());
171   }
172 
173   // If coverage mapping generation is enabled, create the
174   // CoverageMappingModuleGen object.
175   if (CodeGenOpts.CoverageMapping)
176     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
177 }
178 
179 CodeGenModule::~CodeGenModule() {}
180 
181 void CodeGenModule::createObjCRuntime() {
182   // This is just isGNUFamily(), but we want to force implementors of
183   // new ABIs to decide how best to do this.
184   switch (LangOpts.ObjCRuntime.getKind()) {
185   case ObjCRuntime::GNUstep:
186   case ObjCRuntime::GCC:
187   case ObjCRuntime::ObjFW:
188     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
189     return;
190 
191   case ObjCRuntime::FragileMacOSX:
192   case ObjCRuntime::MacOSX:
193   case ObjCRuntime::iOS:
194   case ObjCRuntime::WatchOS:
195     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
196     return;
197   }
198   llvm_unreachable("bad runtime kind");
199 }
200 
201 void CodeGenModule::createOpenCLRuntime() {
202   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
203 }
204 
205 void CodeGenModule::createOpenMPRuntime() {
206   // Select a specialized code generation class based on the target, if any.
207   // If it does not exist use the default implementation.
208   switch (getTriple().getArch()) {
209   case llvm::Triple::nvptx:
210   case llvm::Triple::nvptx64:
211     assert(getLangOpts().OpenMPIsDevice &&
212            "OpenMP NVPTX is only prepared to deal with device code.");
213     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
214     break;
215   default:
216     if (LangOpts.OpenMPSimd)
217       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
218     else
219       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
220     break;
221   }
222 
223   // The OpenMP-IR-Builder should eventually replace the above runtime codegens
224   // but we are not there yet so they both reside in CGModule for now and the
225   // OpenMP-IR-Builder is opt-in only.
226   if (LangOpts.OpenMPIRBuilder) {
227     OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
228     OMPBuilder->initialize();
229   }
230 }
231 
232 void CodeGenModule::createCUDARuntime() {
233   CUDARuntime.reset(CreateNVCUDARuntime(*this));
234 }
235 
236 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
237   Replacements[Name] = C;
238 }
239 
240 void CodeGenModule::applyReplacements() {
241   for (auto &I : Replacements) {
242     StringRef MangledName = I.first();
243     llvm::Constant *Replacement = I.second;
244     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
245     if (!Entry)
246       continue;
247     auto *OldF = cast<llvm::Function>(Entry);
248     auto *NewF = dyn_cast<llvm::Function>(Replacement);
249     if (!NewF) {
250       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
251         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
252       } else {
253         auto *CE = cast<llvm::ConstantExpr>(Replacement);
254         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
255                CE->getOpcode() == llvm::Instruction::GetElementPtr);
256         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
257       }
258     }
259 
260     // Replace old with new, but keep the old order.
261     OldF->replaceAllUsesWith(Replacement);
262     if (NewF) {
263       NewF->removeFromParent();
264       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
265                                                        NewF);
266     }
267     OldF->eraseFromParent();
268   }
269 }
270 
271 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
272   GlobalValReplacements.push_back(std::make_pair(GV, C));
273 }
274 
275 void CodeGenModule::applyGlobalValReplacements() {
276   for (auto &I : GlobalValReplacements) {
277     llvm::GlobalValue *GV = I.first;
278     llvm::Constant *C = I.second;
279 
280     GV->replaceAllUsesWith(C);
281     GV->eraseFromParent();
282   }
283 }
284 
285 // This is only used in aliases that we created and we know they have a
286 // linear structure.
287 static const llvm::GlobalObject *getAliasedGlobal(
288     const llvm::GlobalIndirectSymbol &GIS) {
289   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
290   const llvm::Constant *C = &GIS;
291   for (;;) {
292     C = C->stripPointerCasts();
293     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
294       return GO;
295     // stripPointerCasts will not walk over weak aliases.
296     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
297     if (!GIS2)
298       return nullptr;
299     if (!Visited.insert(GIS2).second)
300       return nullptr;
301     C = GIS2->getIndirectSymbol();
302   }
303 }
304 
305 void CodeGenModule::checkAliases() {
306   // Check if the constructed aliases are well formed. It is really unfortunate
307   // that we have to do this in CodeGen, but we only construct mangled names
308   // and aliases during codegen.
309   bool Error = false;
310   DiagnosticsEngine &Diags = getDiags();
311   for (const GlobalDecl &GD : Aliases) {
312     const auto *D = cast<ValueDecl>(GD.getDecl());
313     SourceLocation Location;
314     bool IsIFunc = D->hasAttr<IFuncAttr>();
315     if (const Attr *A = D->getDefiningAttr())
316       Location = A->getLocation();
317     else
318       llvm_unreachable("Not an alias or ifunc?");
319     StringRef MangledName = getMangledName(GD);
320     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
321     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
322     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
323     if (!GV) {
324       Error = true;
325       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
326     } else if (GV->isDeclaration()) {
327       Error = true;
328       Diags.Report(Location, diag::err_alias_to_undefined)
329           << IsIFunc << IsIFunc;
330     } else if (IsIFunc) {
331       // Check resolver function type.
332       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
333           GV->getType()->getPointerElementType());
334       assert(FTy);
335       if (!FTy->getReturnType()->isPointerTy())
336         Diags.Report(Location, diag::err_ifunc_resolver_return);
337     }
338 
339     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
340     llvm::GlobalValue *AliaseeGV;
341     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
342       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
343     else
344       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
345 
346     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
347       StringRef AliasSection = SA->getName();
348       if (AliasSection != AliaseeGV->getSection())
349         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
350             << AliasSection << IsIFunc << IsIFunc;
351     }
352 
353     // We have to handle alias to weak aliases in here. LLVM itself disallows
354     // this since the object semantics would not match the IL one. For
355     // compatibility with gcc we implement it by just pointing the alias
356     // to its aliasee's aliasee. We also warn, since the user is probably
357     // expecting the link to be weak.
358     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
359       if (GA->isInterposable()) {
360         Diags.Report(Location, diag::warn_alias_to_weak_alias)
361             << GV->getName() << GA->getName() << IsIFunc;
362         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
363             GA->getIndirectSymbol(), Alias->getType());
364         Alias->setIndirectSymbol(Aliasee);
365       }
366     }
367   }
368   if (!Error)
369     return;
370 
371   for (const GlobalDecl &GD : Aliases) {
372     StringRef MangledName = getMangledName(GD);
373     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
374     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
375     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
376     Alias->eraseFromParent();
377   }
378 }
379 
380 void CodeGenModule::clear() {
381   DeferredDeclsToEmit.clear();
382   if (OpenMPRuntime)
383     OpenMPRuntime->clear();
384 }
385 
386 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
387                                        StringRef MainFile) {
388   if (!hasDiagnostics())
389     return;
390   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
391     if (MainFile.empty())
392       MainFile = "<stdin>";
393     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
394   } else {
395     if (Mismatched > 0)
396       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
397 
398     if (Missing > 0)
399       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
400   }
401 }
402 
403 void CodeGenModule::Release() {
404   EmitDeferred();
405   EmitVTablesOpportunistically();
406   applyGlobalValReplacements();
407   applyReplacements();
408   checkAliases();
409   emitMultiVersionFunctions();
410   EmitCXXGlobalInitFunc();
411   EmitCXXGlobalDtorFunc();
412   registerGlobalDtorsWithAtExit();
413   EmitCXXThreadLocalInitFunc();
414   if (ObjCRuntime)
415     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
416       AddGlobalCtor(ObjCInitFunction);
417   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
418       CUDARuntime) {
419     if (llvm::Function *CudaCtorFunction =
420             CUDARuntime->makeModuleCtorFunction())
421       AddGlobalCtor(CudaCtorFunction);
422   }
423   if (OpenMPRuntime) {
424     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
425             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
426       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
427     }
428     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
429     OpenMPRuntime->clear();
430   }
431   if (PGOReader) {
432     getModule().setProfileSummary(
433         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
434         llvm::ProfileSummary::PSK_Instr);
435     if (PGOStats.hasDiagnostics())
436       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
437   }
438   EmitCtorList(GlobalCtors, "llvm.global_ctors");
439   EmitCtorList(GlobalDtors, "llvm.global_dtors");
440   EmitGlobalAnnotations();
441   EmitStaticExternCAliases();
442   EmitDeferredUnusedCoverageMappings();
443   if (CoverageMapping)
444     CoverageMapping->emit();
445   if (CodeGenOpts.SanitizeCfiCrossDso) {
446     CodeGenFunction(*this).EmitCfiCheckFail();
447     CodeGenFunction(*this).EmitCfiCheckStub();
448   }
449   emitAtAvailableLinkGuard();
450   emitLLVMUsed();
451   if (SanStats)
452     SanStats->finish();
453 
454   if (CodeGenOpts.Autolink &&
455       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
456     EmitModuleLinkOptions();
457   }
458 
459   // On ELF we pass the dependent library specifiers directly to the linker
460   // without manipulating them. This is in contrast to other platforms where
461   // they are mapped to a specific linker option by the compiler. This
462   // difference is a result of the greater variety of ELF linkers and the fact
463   // that ELF linkers tend to handle libraries in a more complicated fashion
464   // than on other platforms. This forces us to defer handling the dependent
465   // libs to the linker.
466   //
467   // CUDA/HIP device and host libraries are different. Currently there is no
468   // way to differentiate dependent libraries for host or device. Existing
469   // usage of #pragma comment(lib, *) is intended for host libraries on
470   // Windows. Therefore emit llvm.dependent-libraries only for host.
471   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
472     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
473     for (auto *MD : ELFDependentLibraries)
474       NMD->addOperand(MD);
475   }
476 
477   // Record mregparm value now so it is visible through rest of codegen.
478   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
479     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
480                               CodeGenOpts.NumRegisterParameters);
481 
482   if (CodeGenOpts.DwarfVersion) {
483     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
484                               CodeGenOpts.DwarfVersion);
485   }
486   if (CodeGenOpts.EmitCodeView) {
487     // Indicate that we want CodeView in the metadata.
488     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
489   }
490   if (CodeGenOpts.CodeViewGHash) {
491     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
492   }
493   if (CodeGenOpts.ControlFlowGuard) {
494     // Function ID tables and checks for Control Flow Guard (cfguard=2).
495     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
496   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
497     // Function ID tables for Control Flow Guard (cfguard=1).
498     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
499   }
500   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
501     // We don't support LTO with 2 with different StrictVTablePointers
502     // FIXME: we could support it by stripping all the information introduced
503     // by StrictVTablePointers.
504 
505     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
506 
507     llvm::Metadata *Ops[2] = {
508               llvm::MDString::get(VMContext, "StrictVTablePointers"),
509               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
510                   llvm::Type::getInt32Ty(VMContext), 1))};
511 
512     getModule().addModuleFlag(llvm::Module::Require,
513                               "StrictVTablePointersRequirement",
514                               llvm::MDNode::get(VMContext, Ops));
515   }
516   if (DebugInfo)
517     // We support a single version in the linked module. The LLVM
518     // parser will drop debug info with a different version number
519     // (and warn about it, too).
520     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
521                               llvm::DEBUG_METADATA_VERSION);
522 
523   // We need to record the widths of enums and wchar_t, so that we can generate
524   // the correct build attributes in the ARM backend. wchar_size is also used by
525   // TargetLibraryInfo.
526   uint64_t WCharWidth =
527       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
528   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
529 
530   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
531   if (   Arch == llvm::Triple::arm
532       || Arch == llvm::Triple::armeb
533       || Arch == llvm::Triple::thumb
534       || Arch == llvm::Triple::thumbeb) {
535     // The minimum width of an enum in bytes
536     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
537     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
538   }
539 
540   if (CodeGenOpts.SanitizeCfiCrossDso) {
541     // Indicate that we want cross-DSO control flow integrity checks.
542     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
543   }
544 
545   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
546     getModule().addModuleFlag(llvm::Module::Override,
547                               "CFI Canonical Jump Tables",
548                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
549   }
550 
551   if (CodeGenOpts.CFProtectionReturn &&
552       Target.checkCFProtectionReturnSupported(getDiags())) {
553     // Indicate that we want to instrument return control flow protection.
554     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
555                               1);
556   }
557 
558   if (CodeGenOpts.CFProtectionBranch &&
559       Target.checkCFProtectionBranchSupported(getDiags())) {
560     // Indicate that we want to instrument branch control flow protection.
561     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
562                               1);
563   }
564 
565   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
566     // Indicate whether __nvvm_reflect should be configured to flush denormal
567     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
568     // property.)
569     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
570                               CodeGenOpts.FlushDenorm ? 1 : 0);
571   }
572 
573   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
574   if (LangOpts.OpenCL) {
575     EmitOpenCLMetadata();
576     // Emit SPIR version.
577     if (getTriple().isSPIR()) {
578       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
579       // opencl.spir.version named metadata.
580       // C++ is backwards compatible with OpenCL v2.0.
581       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
582       llvm::Metadata *SPIRVerElts[] = {
583           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584               Int32Ty, Version / 100)),
585           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
587       llvm::NamedMDNode *SPIRVerMD =
588           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
589       llvm::LLVMContext &Ctx = TheModule.getContext();
590       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
591     }
592   }
593 
594   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
595     assert(PLevel < 3 && "Invalid PIC Level");
596     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
597     if (Context.getLangOpts().PIE)
598       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
599   }
600 
601   if (getCodeGenOpts().CodeModel.size() > 0) {
602     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
603                   .Case("tiny", llvm::CodeModel::Tiny)
604                   .Case("small", llvm::CodeModel::Small)
605                   .Case("kernel", llvm::CodeModel::Kernel)
606                   .Case("medium", llvm::CodeModel::Medium)
607                   .Case("large", llvm::CodeModel::Large)
608                   .Default(~0u);
609     if (CM != ~0u) {
610       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
611       getModule().setCodeModel(codeModel);
612     }
613   }
614 
615   if (CodeGenOpts.NoPLT)
616     getModule().setRtLibUseGOT();
617 
618   SimplifyPersonality();
619 
620   if (getCodeGenOpts().EmitDeclMetadata)
621     EmitDeclMetadata();
622 
623   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
624     EmitCoverageFile();
625 
626   if (DebugInfo)
627     DebugInfo->finalize();
628 
629   if (getCodeGenOpts().EmitVersionIdentMetadata)
630     EmitVersionIdentMetadata();
631 
632   if (!getCodeGenOpts().RecordCommandLine.empty())
633     EmitCommandLineMetadata();
634 
635   EmitTargetMetadata();
636 }
637 
638 void CodeGenModule::EmitOpenCLMetadata() {
639   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
640   // opencl.ocl.version named metadata node.
641   // C++ is backwards compatible with OpenCL v2.0.
642   // FIXME: We might need to add CXX version at some point too?
643   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
644   llvm::Metadata *OCLVerElts[] = {
645       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
646           Int32Ty, Version / 100)),
647       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
648           Int32Ty, (Version % 100) / 10))};
649   llvm::NamedMDNode *OCLVerMD =
650       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
651   llvm::LLVMContext &Ctx = TheModule.getContext();
652   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
653 }
654 
655 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
656   // Make sure that this type is translated.
657   Types.UpdateCompletedType(TD);
658 }
659 
660 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
661   // Make sure that this type is translated.
662   Types.RefreshTypeCacheForClass(RD);
663 }
664 
665 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
666   if (!TBAA)
667     return nullptr;
668   return TBAA->getTypeInfo(QTy);
669 }
670 
671 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
672   if (!TBAA)
673     return TBAAAccessInfo();
674   return TBAA->getAccessInfo(AccessType);
675 }
676 
677 TBAAAccessInfo
678 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
679   if (!TBAA)
680     return TBAAAccessInfo();
681   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
682 }
683 
684 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
685   if (!TBAA)
686     return nullptr;
687   return TBAA->getTBAAStructInfo(QTy);
688 }
689 
690 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
691   if (!TBAA)
692     return nullptr;
693   return TBAA->getBaseTypeInfo(QTy);
694 }
695 
696 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
697   if (!TBAA)
698     return nullptr;
699   return TBAA->getAccessTagInfo(Info);
700 }
701 
702 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
703                                                    TBAAAccessInfo TargetInfo) {
704   if (!TBAA)
705     return TBAAAccessInfo();
706   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
707 }
708 
709 TBAAAccessInfo
710 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
711                                                    TBAAAccessInfo InfoB) {
712   if (!TBAA)
713     return TBAAAccessInfo();
714   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
715 }
716 
717 TBAAAccessInfo
718 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
719                                               TBAAAccessInfo SrcInfo) {
720   if (!TBAA)
721     return TBAAAccessInfo();
722   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
723 }
724 
725 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
726                                                 TBAAAccessInfo TBAAInfo) {
727   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
728     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
729 }
730 
731 void CodeGenModule::DecorateInstructionWithInvariantGroup(
732     llvm::Instruction *I, const CXXRecordDecl *RD) {
733   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
734                  llvm::MDNode::get(getLLVMContext(), {}));
735 }
736 
737 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
738   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
739   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
740 }
741 
742 /// ErrorUnsupported - Print out an error that codegen doesn't support the
743 /// specified stmt yet.
744 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
745   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
746                                                "cannot compile this %0 yet");
747   std::string Msg = Type;
748   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
749       << Msg << S->getSourceRange();
750 }
751 
752 /// ErrorUnsupported - Print out an error that codegen doesn't support the
753 /// specified decl yet.
754 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
755   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
756                                                "cannot compile this %0 yet");
757   std::string Msg = Type;
758   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
759 }
760 
761 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
762   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
763 }
764 
765 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
766                                         const NamedDecl *D) const {
767   if (GV->hasDLLImportStorageClass())
768     return;
769   // Internal definitions always have default visibility.
770   if (GV->hasLocalLinkage()) {
771     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
772     return;
773   }
774   if (!D)
775     return;
776   // Set visibility for definitions, and for declarations if requested globally
777   // or set explicitly.
778   LinkageInfo LV = D->getLinkageAndVisibility();
779   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
780       !GV->isDeclarationForLinker())
781     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
782 }
783 
784 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
785                                  llvm::GlobalValue *GV) {
786   if (GV->hasLocalLinkage())
787     return true;
788 
789   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
790     return true;
791 
792   // DLLImport explicitly marks the GV as external.
793   if (GV->hasDLLImportStorageClass())
794     return false;
795 
796   const llvm::Triple &TT = CGM.getTriple();
797   if (TT.isWindowsGNUEnvironment()) {
798     // In MinGW, variables without DLLImport can still be automatically
799     // imported from a DLL by the linker; don't mark variables that
800     // potentially could come from another DLL as DSO local.
801     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
802         !GV->isThreadLocal())
803       return false;
804   }
805 
806   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
807   // remain unresolved in the link, they can be resolved to zero, which is
808   // outside the current DSO.
809   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
810     return false;
811 
812   // Every other GV is local on COFF.
813   // Make an exception for windows OS in the triple: Some firmware builds use
814   // *-win32-macho triples. This (accidentally?) produced windows relocations
815   // without GOT tables in older clang versions; Keep this behaviour.
816   // FIXME: even thread local variables?
817   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
818     return true;
819 
820   // Only handle COFF and ELF for now.
821   if (!TT.isOSBinFormatELF())
822     return false;
823 
824   // If this is not an executable, don't assume anything is local.
825   const auto &CGOpts = CGM.getCodeGenOpts();
826   llvm::Reloc::Model RM = CGOpts.RelocationModel;
827   const auto &LOpts = CGM.getLangOpts();
828   if (RM != llvm::Reloc::Static && !LOpts.PIE)
829     return false;
830 
831   // A definition cannot be preempted from an executable.
832   if (!GV->isDeclarationForLinker())
833     return true;
834 
835   // Most PIC code sequences that assume that a symbol is local cannot produce a
836   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
837   // depended, it seems worth it to handle it here.
838   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
839     return false;
840 
841   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
842   llvm::Triple::ArchType Arch = TT.getArch();
843   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
844       Arch == llvm::Triple::ppc64le)
845     return false;
846 
847   // If we can use copy relocations we can assume it is local.
848   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
849     if (!Var->isThreadLocal() &&
850         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
851       return true;
852 
853   // If we can use a plt entry as the symbol address we can assume it
854   // is local.
855   // FIXME: This should work for PIE, but the gold linker doesn't support it.
856   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
857     return true;
858 
859   // Otherwise don't assue it is local.
860   return false;
861 }
862 
863 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
864   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
865 }
866 
867 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
868                                           GlobalDecl GD) const {
869   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
870   // C++ destructors have a few C++ ABI specific special cases.
871   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
872     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
873     return;
874   }
875   setDLLImportDLLExport(GV, D);
876 }
877 
878 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
879                                           const NamedDecl *D) const {
880   if (D && D->isExternallyVisible()) {
881     if (D->hasAttr<DLLImportAttr>())
882       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
883     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
884       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
885   }
886 }
887 
888 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
889                                     GlobalDecl GD) const {
890   setDLLImportDLLExport(GV, GD);
891   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
892 }
893 
894 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
895                                     const NamedDecl *D) const {
896   setDLLImportDLLExport(GV, D);
897   setGVPropertiesAux(GV, D);
898 }
899 
900 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
901                                        const NamedDecl *D) const {
902   setGlobalVisibility(GV, D);
903   setDSOLocal(GV);
904   GV->setPartition(CodeGenOpts.SymbolPartition);
905 }
906 
907 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
908   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
909       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
910       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
911       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
912       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
913 }
914 
915 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
916     CodeGenOptions::TLSModel M) {
917   switch (M) {
918   case CodeGenOptions::GeneralDynamicTLSModel:
919     return llvm::GlobalVariable::GeneralDynamicTLSModel;
920   case CodeGenOptions::LocalDynamicTLSModel:
921     return llvm::GlobalVariable::LocalDynamicTLSModel;
922   case CodeGenOptions::InitialExecTLSModel:
923     return llvm::GlobalVariable::InitialExecTLSModel;
924   case CodeGenOptions::LocalExecTLSModel:
925     return llvm::GlobalVariable::LocalExecTLSModel;
926   }
927   llvm_unreachable("Invalid TLS model!");
928 }
929 
930 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
931   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
932 
933   llvm::GlobalValue::ThreadLocalMode TLM;
934   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
935 
936   // Override the TLS model if it is explicitly specified.
937   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
938     TLM = GetLLVMTLSModel(Attr->getModel());
939   }
940 
941   GV->setThreadLocalMode(TLM);
942 }
943 
944 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
945                                           StringRef Name) {
946   const TargetInfo &Target = CGM.getTarget();
947   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
948 }
949 
950 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
951                                                  const CPUSpecificAttr *Attr,
952                                                  unsigned CPUIndex,
953                                                  raw_ostream &Out) {
954   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
955   // supported.
956   if (Attr)
957     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
958   else if (CGM.getTarget().supportsIFunc())
959     Out << ".resolver";
960 }
961 
962 static void AppendTargetMangling(const CodeGenModule &CGM,
963                                  const TargetAttr *Attr, raw_ostream &Out) {
964   if (Attr->isDefaultVersion())
965     return;
966 
967   Out << '.';
968   const TargetInfo &Target = CGM.getTarget();
969   ParsedTargetAttr Info =
970       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
971         // Multiversioning doesn't allow "no-${feature}", so we can
972         // only have "+" prefixes here.
973         assert(LHS.startswith("+") && RHS.startswith("+") &&
974                "Features should always have a prefix.");
975         return Target.multiVersionSortPriority(LHS.substr(1)) >
976                Target.multiVersionSortPriority(RHS.substr(1));
977       });
978 
979   bool IsFirst = true;
980 
981   if (!Info.Architecture.empty()) {
982     IsFirst = false;
983     Out << "arch_" << Info.Architecture;
984   }
985 
986   for (StringRef Feat : Info.Features) {
987     if (!IsFirst)
988       Out << '_';
989     IsFirst = false;
990     Out << Feat.substr(1);
991   }
992 }
993 
994 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
995                                       const NamedDecl *ND,
996                                       bool OmitMultiVersionMangling = false) {
997   SmallString<256> Buffer;
998   llvm::raw_svector_ostream Out(Buffer);
999   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1000   if (MC.shouldMangleDeclName(ND)) {
1001     llvm::raw_svector_ostream Out(Buffer);
1002     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
1003       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
1004     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
1005       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
1006     else
1007       MC.mangleName(ND, Out);
1008   } else {
1009     IdentifierInfo *II = ND->getIdentifier();
1010     assert(II && "Attempt to mangle unnamed decl.");
1011     const auto *FD = dyn_cast<FunctionDecl>(ND);
1012 
1013     if (FD &&
1014         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1015       llvm::raw_svector_ostream Out(Buffer);
1016       Out << "__regcall3__" << II->getName();
1017     } else {
1018       Out << II->getName();
1019     }
1020   }
1021 
1022   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1023     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1024       switch (FD->getMultiVersionKind()) {
1025       case MultiVersionKind::CPUDispatch:
1026       case MultiVersionKind::CPUSpecific:
1027         AppendCPUSpecificCPUDispatchMangling(CGM,
1028                                              FD->getAttr<CPUSpecificAttr>(),
1029                                              GD.getMultiVersionIndex(), Out);
1030         break;
1031       case MultiVersionKind::Target:
1032         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1033         break;
1034       case MultiVersionKind::None:
1035         llvm_unreachable("None multiversion type isn't valid here");
1036       }
1037     }
1038 
1039   return Out.str();
1040 }
1041 
1042 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1043                                             const FunctionDecl *FD) {
1044   if (!FD->isMultiVersion())
1045     return;
1046 
1047   // Get the name of what this would be without the 'target' attribute.  This
1048   // allows us to lookup the version that was emitted when this wasn't a
1049   // multiversion function.
1050   std::string NonTargetName =
1051       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1052   GlobalDecl OtherGD;
1053   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1054     assert(OtherGD.getCanonicalDecl()
1055                .getDecl()
1056                ->getAsFunction()
1057                ->isMultiVersion() &&
1058            "Other GD should now be a multiversioned function");
1059     // OtherFD is the version of this function that was mangled BEFORE
1060     // becoming a MultiVersion function.  It potentially needs to be updated.
1061     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1062                                       .getDecl()
1063                                       ->getAsFunction()
1064                                       ->getMostRecentDecl();
1065     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1066     // This is so that if the initial version was already the 'default'
1067     // version, we don't try to update it.
1068     if (OtherName != NonTargetName) {
1069       // Remove instead of erase, since others may have stored the StringRef
1070       // to this.
1071       const auto ExistingRecord = Manglings.find(NonTargetName);
1072       if (ExistingRecord != std::end(Manglings))
1073         Manglings.remove(&(*ExistingRecord));
1074       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1075       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1076       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1077         Entry->setName(OtherName);
1078     }
1079   }
1080 }
1081 
1082 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1083   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1084 
1085   // Some ABIs don't have constructor variants.  Make sure that base and
1086   // complete constructors get mangled the same.
1087   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1088     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1089       CXXCtorType OrigCtorType = GD.getCtorType();
1090       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1091       if (OrigCtorType == Ctor_Base)
1092         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1093     }
1094   }
1095 
1096   auto FoundName = MangledDeclNames.find(CanonicalGD);
1097   if (FoundName != MangledDeclNames.end())
1098     return FoundName->second;
1099 
1100   // Keep the first result in the case of a mangling collision.
1101   const auto *ND = cast<NamedDecl>(GD.getDecl());
1102   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1103 
1104   // Adjust kernel stub mangling as we may need to be able to differentiate
1105   // them from the kernel itself (e.g., for HIP).
1106   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1107     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1108       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1109 
1110   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1111   return MangledDeclNames[CanonicalGD] = Result.first->first();
1112 }
1113 
1114 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1115                                              const BlockDecl *BD) {
1116   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1117   const Decl *D = GD.getDecl();
1118 
1119   SmallString<256> Buffer;
1120   llvm::raw_svector_ostream Out(Buffer);
1121   if (!D)
1122     MangleCtx.mangleGlobalBlock(BD,
1123       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1124   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1125     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1126   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1127     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1128   else
1129     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1130 
1131   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1132   return Result.first->first();
1133 }
1134 
1135 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1136   return getModule().getNamedValue(Name);
1137 }
1138 
1139 /// AddGlobalCtor - Add a function to the list that will be called before
1140 /// main() runs.
1141 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1142                                   llvm::Constant *AssociatedData) {
1143   // FIXME: Type coercion of void()* types.
1144   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1145 }
1146 
1147 /// AddGlobalDtor - Add a function to the list that will be called
1148 /// when the module is unloaded.
1149 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1150   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1151     DtorsUsingAtExit[Priority].push_back(Dtor);
1152     return;
1153   }
1154 
1155   // FIXME: Type coercion of void()* types.
1156   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1157 }
1158 
1159 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1160   if (Fns.empty()) return;
1161 
1162   // Ctor function type is void()*.
1163   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1164   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1165       TheModule.getDataLayout().getProgramAddressSpace());
1166 
1167   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1168   llvm::StructType *CtorStructTy = llvm::StructType::get(
1169       Int32Ty, CtorPFTy, VoidPtrTy);
1170 
1171   // Construct the constructor and destructor arrays.
1172   ConstantInitBuilder builder(*this);
1173   auto ctors = builder.beginArray(CtorStructTy);
1174   for (const auto &I : Fns) {
1175     auto ctor = ctors.beginStruct(CtorStructTy);
1176     ctor.addInt(Int32Ty, I.Priority);
1177     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1178     if (I.AssociatedData)
1179       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1180     else
1181       ctor.addNullPointer(VoidPtrTy);
1182     ctor.finishAndAddTo(ctors);
1183   }
1184 
1185   auto list =
1186     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1187                                 /*constant*/ false,
1188                                 llvm::GlobalValue::AppendingLinkage);
1189 
1190   // The LTO linker doesn't seem to like it when we set an alignment
1191   // on appending variables.  Take it off as a workaround.
1192   list->setAlignment(llvm::None);
1193 
1194   Fns.clear();
1195 }
1196 
1197 llvm::GlobalValue::LinkageTypes
1198 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1199   const auto *D = cast<FunctionDecl>(GD.getDecl());
1200 
1201   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1202 
1203   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1204     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1205 
1206   if (isa<CXXConstructorDecl>(D) &&
1207       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1208       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1209     // Our approach to inheriting constructors is fundamentally different from
1210     // that used by the MS ABI, so keep our inheriting constructor thunks
1211     // internal rather than trying to pick an unambiguous mangling for them.
1212     return llvm::GlobalValue::InternalLinkage;
1213   }
1214 
1215   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1216 }
1217 
1218 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1219   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1220   if (!MDS) return nullptr;
1221 
1222   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1223 }
1224 
1225 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1226                                               const CGFunctionInfo &Info,
1227                                               llvm::Function *F) {
1228   unsigned CallingConv;
1229   llvm::AttributeList PAL;
1230   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1231   F->setAttributes(PAL);
1232   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1233 }
1234 
1235 static void removeImageAccessQualifier(std::string& TyName) {
1236   std::string ReadOnlyQual("__read_only");
1237   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1238   if (ReadOnlyPos != std::string::npos)
1239     // "+ 1" for the space after access qualifier.
1240     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1241   else {
1242     std::string WriteOnlyQual("__write_only");
1243     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1244     if (WriteOnlyPos != std::string::npos)
1245       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1246     else {
1247       std::string ReadWriteQual("__read_write");
1248       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1249       if (ReadWritePos != std::string::npos)
1250         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1251     }
1252   }
1253 }
1254 
1255 // Returns the address space id that should be produced to the
1256 // kernel_arg_addr_space metadata. This is always fixed to the ids
1257 // as specified in the SPIR 2.0 specification in order to differentiate
1258 // for example in clGetKernelArgInfo() implementation between the address
1259 // spaces with targets without unique mapping to the OpenCL address spaces
1260 // (basically all single AS CPUs).
1261 static unsigned ArgInfoAddressSpace(LangAS AS) {
1262   switch (AS) {
1263   case LangAS::opencl_global:   return 1;
1264   case LangAS::opencl_constant: return 2;
1265   case LangAS::opencl_local:    return 3;
1266   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1267   default:
1268     return 0; // Assume private.
1269   }
1270 }
1271 
1272 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1273                                          const FunctionDecl *FD,
1274                                          CodeGenFunction *CGF) {
1275   assert(((FD && CGF) || (!FD && !CGF)) &&
1276          "Incorrect use - FD and CGF should either be both null or not!");
1277   // Create MDNodes that represent the kernel arg metadata.
1278   // Each MDNode is a list in the form of "key", N number of values which is
1279   // the same number of values as their are kernel arguments.
1280 
1281   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1282 
1283   // MDNode for the kernel argument address space qualifiers.
1284   SmallVector<llvm::Metadata *, 8> addressQuals;
1285 
1286   // MDNode for the kernel argument access qualifiers (images only).
1287   SmallVector<llvm::Metadata *, 8> accessQuals;
1288 
1289   // MDNode for the kernel argument type names.
1290   SmallVector<llvm::Metadata *, 8> argTypeNames;
1291 
1292   // MDNode for the kernel argument base type names.
1293   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1294 
1295   // MDNode for the kernel argument type qualifiers.
1296   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1297 
1298   // MDNode for the kernel argument names.
1299   SmallVector<llvm::Metadata *, 8> argNames;
1300 
1301   if (FD && CGF)
1302     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1303       const ParmVarDecl *parm = FD->getParamDecl(i);
1304       QualType ty = parm->getType();
1305       std::string typeQuals;
1306 
1307       if (ty->isPointerType()) {
1308         QualType pointeeTy = ty->getPointeeType();
1309 
1310         // Get address qualifier.
1311         addressQuals.push_back(
1312             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1313                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1314 
1315         // Get argument type name.
1316         std::string typeName =
1317             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1318 
1319         // Turn "unsigned type" to "utype"
1320         std::string::size_type pos = typeName.find("unsigned");
1321         if (pointeeTy.isCanonical() && pos != std::string::npos)
1322           typeName.erase(pos + 1, 8);
1323 
1324         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1325 
1326         std::string baseTypeName =
1327             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1328                 Policy) +
1329             "*";
1330 
1331         // Turn "unsigned type" to "utype"
1332         pos = baseTypeName.find("unsigned");
1333         if (pos != std::string::npos)
1334           baseTypeName.erase(pos + 1, 8);
1335 
1336         argBaseTypeNames.push_back(
1337             llvm::MDString::get(VMContext, baseTypeName));
1338 
1339         // Get argument type qualifiers:
1340         if (ty.isRestrictQualified())
1341           typeQuals = "restrict";
1342         if (pointeeTy.isConstQualified() ||
1343             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1344           typeQuals += typeQuals.empty() ? "const" : " const";
1345         if (pointeeTy.isVolatileQualified())
1346           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1347       } else {
1348         uint32_t AddrSpc = 0;
1349         bool isPipe = ty->isPipeType();
1350         if (ty->isImageType() || isPipe)
1351           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1352 
1353         addressQuals.push_back(
1354             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1355 
1356         // Get argument type name.
1357         std::string typeName;
1358         if (isPipe)
1359           typeName = ty.getCanonicalType()
1360                          ->getAs<PipeType>()
1361                          ->getElementType()
1362                          .getAsString(Policy);
1363         else
1364           typeName = ty.getUnqualifiedType().getAsString(Policy);
1365 
1366         // Turn "unsigned type" to "utype"
1367         std::string::size_type pos = typeName.find("unsigned");
1368         if (ty.isCanonical() && pos != std::string::npos)
1369           typeName.erase(pos + 1, 8);
1370 
1371         std::string baseTypeName;
1372         if (isPipe)
1373           baseTypeName = ty.getCanonicalType()
1374                              ->getAs<PipeType>()
1375                              ->getElementType()
1376                              .getCanonicalType()
1377                              .getAsString(Policy);
1378         else
1379           baseTypeName =
1380               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1381 
1382         // Remove access qualifiers on images
1383         // (as they are inseparable from type in clang implementation,
1384         // but OpenCL spec provides a special query to get access qualifier
1385         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1386         if (ty->isImageType()) {
1387           removeImageAccessQualifier(typeName);
1388           removeImageAccessQualifier(baseTypeName);
1389         }
1390 
1391         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1392 
1393         // Turn "unsigned type" to "utype"
1394         pos = baseTypeName.find("unsigned");
1395         if (pos != std::string::npos)
1396           baseTypeName.erase(pos + 1, 8);
1397 
1398         argBaseTypeNames.push_back(
1399             llvm::MDString::get(VMContext, baseTypeName));
1400 
1401         if (isPipe)
1402           typeQuals = "pipe";
1403       }
1404 
1405       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1406 
1407       // Get image and pipe access qualifier:
1408       if (ty->isImageType() || ty->isPipeType()) {
1409         const Decl *PDecl = parm;
1410         if (auto *TD = dyn_cast<TypedefType>(ty))
1411           PDecl = TD->getDecl();
1412         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1413         if (A && A->isWriteOnly())
1414           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1415         else if (A && A->isReadWrite())
1416           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1417         else
1418           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1419       } else
1420         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1421 
1422       // Get argument name.
1423       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1424     }
1425 
1426   Fn->setMetadata("kernel_arg_addr_space",
1427                   llvm::MDNode::get(VMContext, addressQuals));
1428   Fn->setMetadata("kernel_arg_access_qual",
1429                   llvm::MDNode::get(VMContext, accessQuals));
1430   Fn->setMetadata("kernel_arg_type",
1431                   llvm::MDNode::get(VMContext, argTypeNames));
1432   Fn->setMetadata("kernel_arg_base_type",
1433                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1434   Fn->setMetadata("kernel_arg_type_qual",
1435                   llvm::MDNode::get(VMContext, argTypeQuals));
1436   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1437     Fn->setMetadata("kernel_arg_name",
1438                     llvm::MDNode::get(VMContext, argNames));
1439 }
1440 
1441 /// Determines whether the language options require us to model
1442 /// unwind exceptions.  We treat -fexceptions as mandating this
1443 /// except under the fragile ObjC ABI with only ObjC exceptions
1444 /// enabled.  This means, for example, that C with -fexceptions
1445 /// enables this.
1446 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1447   // If exceptions are completely disabled, obviously this is false.
1448   if (!LangOpts.Exceptions) return false;
1449 
1450   // If C++ exceptions are enabled, this is true.
1451   if (LangOpts.CXXExceptions) return true;
1452 
1453   // If ObjC exceptions are enabled, this depends on the ABI.
1454   if (LangOpts.ObjCExceptions) {
1455     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1456   }
1457 
1458   return true;
1459 }
1460 
1461 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1462                                                       const CXXMethodDecl *MD) {
1463   // Check that the type metadata can ever actually be used by a call.
1464   if (!CGM.getCodeGenOpts().LTOUnit ||
1465       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1466     return false;
1467 
1468   // Only functions whose address can be taken with a member function pointer
1469   // need this sort of type metadata.
1470   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1471          !isa<CXXDestructorDecl>(MD);
1472 }
1473 
1474 std::vector<const CXXRecordDecl *>
1475 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1476   llvm::SetVector<const CXXRecordDecl *> MostBases;
1477 
1478   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1479   CollectMostBases = [&](const CXXRecordDecl *RD) {
1480     if (RD->getNumBases() == 0)
1481       MostBases.insert(RD);
1482     for (const CXXBaseSpecifier &B : RD->bases())
1483       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1484   };
1485   CollectMostBases(RD);
1486   return MostBases.takeVector();
1487 }
1488 
1489 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1490                                                            llvm::Function *F) {
1491   llvm::AttrBuilder B;
1492 
1493   if (CodeGenOpts.UnwindTables)
1494     B.addAttribute(llvm::Attribute::UWTable);
1495 
1496   if (!hasUnwindExceptions(LangOpts))
1497     B.addAttribute(llvm::Attribute::NoUnwind);
1498 
1499   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1500     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1501       B.addAttribute(llvm::Attribute::StackProtect);
1502     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1503       B.addAttribute(llvm::Attribute::StackProtectStrong);
1504     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1505       B.addAttribute(llvm::Attribute::StackProtectReq);
1506   }
1507 
1508   if (!D) {
1509     // If we don't have a declaration to control inlining, the function isn't
1510     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1511     // disabled, mark the function as noinline.
1512     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1513         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1514       B.addAttribute(llvm::Attribute::NoInline);
1515 
1516     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1517     return;
1518   }
1519 
1520   // Track whether we need to add the optnone LLVM attribute,
1521   // starting with the default for this optimization level.
1522   bool ShouldAddOptNone =
1523       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1524   // We can't add optnone in the following cases, it won't pass the verifier.
1525   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1526   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1527 
1528   // Add optnone, but do so only if the function isn't always_inline.
1529   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1530       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1531     B.addAttribute(llvm::Attribute::OptimizeNone);
1532 
1533     // OptimizeNone implies noinline; we should not be inlining such functions.
1534     B.addAttribute(llvm::Attribute::NoInline);
1535 
1536     // We still need to handle naked functions even though optnone subsumes
1537     // much of their semantics.
1538     if (D->hasAttr<NakedAttr>())
1539       B.addAttribute(llvm::Attribute::Naked);
1540 
1541     // OptimizeNone wins over OptimizeForSize and MinSize.
1542     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1543     F->removeFnAttr(llvm::Attribute::MinSize);
1544   } else if (D->hasAttr<NakedAttr>()) {
1545     // Naked implies noinline: we should not be inlining such functions.
1546     B.addAttribute(llvm::Attribute::Naked);
1547     B.addAttribute(llvm::Attribute::NoInline);
1548   } else if (D->hasAttr<NoDuplicateAttr>()) {
1549     B.addAttribute(llvm::Attribute::NoDuplicate);
1550   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1551     // Add noinline if the function isn't always_inline.
1552     B.addAttribute(llvm::Attribute::NoInline);
1553   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1554              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1555     // (noinline wins over always_inline, and we can't specify both in IR)
1556     B.addAttribute(llvm::Attribute::AlwaysInline);
1557   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1558     // If we're not inlining, then force everything that isn't always_inline to
1559     // carry an explicit noinline attribute.
1560     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1561       B.addAttribute(llvm::Attribute::NoInline);
1562   } else {
1563     // Otherwise, propagate the inline hint attribute and potentially use its
1564     // absence to mark things as noinline.
1565     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1566       // Search function and template pattern redeclarations for inline.
1567       auto CheckForInline = [](const FunctionDecl *FD) {
1568         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1569           return Redecl->isInlineSpecified();
1570         };
1571         if (any_of(FD->redecls(), CheckRedeclForInline))
1572           return true;
1573         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1574         if (!Pattern)
1575           return false;
1576         return any_of(Pattern->redecls(), CheckRedeclForInline);
1577       };
1578       if (CheckForInline(FD)) {
1579         B.addAttribute(llvm::Attribute::InlineHint);
1580       } else if (CodeGenOpts.getInlining() ==
1581                      CodeGenOptions::OnlyHintInlining &&
1582                  !FD->isInlined() &&
1583                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1584         B.addAttribute(llvm::Attribute::NoInline);
1585       }
1586     }
1587   }
1588 
1589   // Add other optimization related attributes if we are optimizing this
1590   // function.
1591   if (!D->hasAttr<OptimizeNoneAttr>()) {
1592     if (D->hasAttr<ColdAttr>()) {
1593       if (!ShouldAddOptNone)
1594         B.addAttribute(llvm::Attribute::OptimizeForSize);
1595       B.addAttribute(llvm::Attribute::Cold);
1596     }
1597 
1598     if (D->hasAttr<MinSizeAttr>())
1599       B.addAttribute(llvm::Attribute::MinSize);
1600   }
1601 
1602   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1603 
1604   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1605   if (alignment)
1606     F->setAlignment(llvm::Align(alignment));
1607 
1608   if (!D->hasAttr<AlignedAttr>())
1609     if (LangOpts.FunctionAlignment)
1610       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1611 
1612   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1613   // reserve a bit for differentiating between virtual and non-virtual member
1614   // functions. If the current target's C++ ABI requires this and this is a
1615   // member function, set its alignment accordingly.
1616   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1617     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1618       F->setAlignment(llvm::Align(2));
1619   }
1620 
1621   // In the cross-dso CFI mode with canonical jump tables, we want !type
1622   // attributes on definitions only.
1623   if (CodeGenOpts.SanitizeCfiCrossDso &&
1624       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1625     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1626       // Skip available_externally functions. They won't be codegen'ed in the
1627       // current module anyway.
1628       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1629         CreateFunctionTypeMetadataForIcall(FD, F);
1630     }
1631   }
1632 
1633   // Emit type metadata on member functions for member function pointer checks.
1634   // These are only ever necessary on definitions; we're guaranteed that the
1635   // definition will be present in the LTO unit as a result of LTO visibility.
1636   auto *MD = dyn_cast<CXXMethodDecl>(D);
1637   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1638     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1639       llvm::Metadata *Id =
1640           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1641               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1642       F->addTypeMetadata(0, Id);
1643     }
1644   }
1645 }
1646 
1647 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1648   const Decl *D = GD.getDecl();
1649   if (dyn_cast_or_null<NamedDecl>(D))
1650     setGVProperties(GV, GD);
1651   else
1652     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1653 
1654   if (D && D->hasAttr<UsedAttr>())
1655     addUsedGlobal(GV);
1656 
1657   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1658     const auto *VD = cast<VarDecl>(D);
1659     if (VD->getType().isConstQualified() &&
1660         VD->getStorageDuration() == SD_Static)
1661       addUsedGlobal(GV);
1662   }
1663 }
1664 
1665 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1666                                                 llvm::AttrBuilder &Attrs) {
1667   // Add target-cpu and target-features attributes to functions. If
1668   // we have a decl for the function and it has a target attribute then
1669   // parse that and add it to the feature set.
1670   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1671   std::vector<std::string> Features;
1672   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1673   FD = FD ? FD->getMostRecentDecl() : FD;
1674   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1675   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1676   bool AddedAttr = false;
1677   if (TD || SD) {
1678     llvm::StringMap<bool> FeatureMap;
1679     getContext().getFunctionFeatureMap(FeatureMap, GD);
1680 
1681     // Produce the canonical string for this set of features.
1682     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1683       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1684 
1685     // Now add the target-cpu and target-features to the function.
1686     // While we populated the feature map above, we still need to
1687     // get and parse the target attribute so we can get the cpu for
1688     // the function.
1689     if (TD) {
1690       ParsedTargetAttr ParsedAttr = TD->parse();
1691       if (ParsedAttr.Architecture != "" &&
1692           getTarget().isValidCPUName(ParsedAttr.Architecture))
1693         TargetCPU = ParsedAttr.Architecture;
1694     }
1695   } else {
1696     // Otherwise just add the existing target cpu and target features to the
1697     // function.
1698     Features = getTarget().getTargetOpts().Features;
1699   }
1700 
1701   if (TargetCPU != "") {
1702     Attrs.addAttribute("target-cpu", TargetCPU);
1703     AddedAttr = true;
1704   }
1705   if (!Features.empty()) {
1706     llvm::sort(Features);
1707     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1708     AddedAttr = true;
1709   }
1710 
1711   return AddedAttr;
1712 }
1713 
1714 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1715                                           llvm::GlobalObject *GO) {
1716   const Decl *D = GD.getDecl();
1717   SetCommonAttributes(GD, GO);
1718 
1719   if (D) {
1720     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1721       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1722         GV->addAttribute("bss-section", SA->getName());
1723       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1724         GV->addAttribute("data-section", SA->getName());
1725       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1726         GV->addAttribute("rodata-section", SA->getName());
1727       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1728         GV->addAttribute("relro-section", SA->getName());
1729     }
1730 
1731     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1732       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1733         if (!D->getAttr<SectionAttr>())
1734           F->addFnAttr("implicit-section-name", SA->getName());
1735 
1736       llvm::AttrBuilder Attrs;
1737       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1738         // We know that GetCPUAndFeaturesAttributes will always have the
1739         // newest set, since it has the newest possible FunctionDecl, so the
1740         // new ones should replace the old.
1741         F->removeFnAttr("target-cpu");
1742         F->removeFnAttr("target-features");
1743         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1744       }
1745     }
1746 
1747     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1748       GO->setSection(CSA->getName());
1749     else if (const auto *SA = D->getAttr<SectionAttr>())
1750       GO->setSection(SA->getName());
1751   }
1752 
1753   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1754 }
1755 
1756 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1757                                                   llvm::Function *F,
1758                                                   const CGFunctionInfo &FI) {
1759   const Decl *D = GD.getDecl();
1760   SetLLVMFunctionAttributes(GD, FI, F);
1761   SetLLVMFunctionAttributesForDefinition(D, F);
1762 
1763   F->setLinkage(llvm::Function::InternalLinkage);
1764 
1765   setNonAliasAttributes(GD, F);
1766 }
1767 
1768 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1769   // Set linkage and visibility in case we never see a definition.
1770   LinkageInfo LV = ND->getLinkageAndVisibility();
1771   // Don't set internal linkage on declarations.
1772   // "extern_weak" is overloaded in LLVM; we probably should have
1773   // separate linkage types for this.
1774   if (isExternallyVisible(LV.getLinkage()) &&
1775       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1776     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1777 }
1778 
1779 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1780                                                        llvm::Function *F) {
1781   // Only if we are checking indirect calls.
1782   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1783     return;
1784 
1785   // Non-static class methods are handled via vtable or member function pointer
1786   // checks elsewhere.
1787   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1788     return;
1789 
1790   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1791   F->addTypeMetadata(0, MD);
1792   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1793 
1794   // Emit a hash-based bit set entry for cross-DSO calls.
1795   if (CodeGenOpts.SanitizeCfiCrossDso)
1796     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1797       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1798 }
1799 
1800 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1801                                           bool IsIncompleteFunction,
1802                                           bool IsThunk) {
1803 
1804   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1805     // If this is an intrinsic function, set the function's attributes
1806     // to the intrinsic's attributes.
1807     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1808     return;
1809   }
1810 
1811   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1812 
1813   if (!IsIncompleteFunction)
1814     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1815 
1816   // Add the Returned attribute for "this", except for iOS 5 and earlier
1817   // where substantial code, including the libstdc++ dylib, was compiled with
1818   // GCC and does not actually return "this".
1819   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1820       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1821     assert(!F->arg_empty() &&
1822            F->arg_begin()->getType()
1823              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1824            "unexpected this return");
1825     F->addAttribute(1, llvm::Attribute::Returned);
1826   }
1827 
1828   // Only a few attributes are set on declarations; these may later be
1829   // overridden by a definition.
1830 
1831   setLinkageForGV(F, FD);
1832   setGVProperties(F, FD);
1833 
1834   // Setup target-specific attributes.
1835   if (!IsIncompleteFunction && F->isDeclaration())
1836     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1837 
1838   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1839     F->setSection(CSA->getName());
1840   else if (const auto *SA = FD->getAttr<SectionAttr>())
1841      F->setSection(SA->getName());
1842 
1843   if (FD->isInlineBuiltinDeclaration()) {
1844     F->addAttribute(llvm::AttributeList::FunctionIndex,
1845                     llvm::Attribute::NoBuiltin);
1846   }
1847 
1848   if (FD->isReplaceableGlobalAllocationFunction()) {
1849     // A replaceable global allocation function does not act like a builtin by
1850     // default, only if it is invoked by a new-expression or delete-expression.
1851     F->addAttribute(llvm::AttributeList::FunctionIndex,
1852                     llvm::Attribute::NoBuiltin);
1853 
1854     // A sane operator new returns a non-aliasing pointer.
1855     // FIXME: Also add NonNull attribute to the return value
1856     // for the non-nothrow forms?
1857     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1858     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1859         (Kind == OO_New || Kind == OO_Array_New))
1860       F->addAttribute(llvm::AttributeList::ReturnIndex,
1861                       llvm::Attribute::NoAlias);
1862   }
1863 
1864   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1865     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1866   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1867     if (MD->isVirtual())
1868       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1869 
1870   // Don't emit entries for function declarations in the cross-DSO mode. This
1871   // is handled with better precision by the receiving DSO. But if jump tables
1872   // are non-canonical then we need type metadata in order to produce the local
1873   // jump table.
1874   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1875       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1876     CreateFunctionTypeMetadataForIcall(FD, F);
1877 
1878   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1879     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1880 
1881   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1882     // Annotate the callback behavior as metadata:
1883     //  - The callback callee (as argument number).
1884     //  - The callback payloads (as argument numbers).
1885     llvm::LLVMContext &Ctx = F->getContext();
1886     llvm::MDBuilder MDB(Ctx);
1887 
1888     // The payload indices are all but the first one in the encoding. The first
1889     // identifies the callback callee.
1890     int CalleeIdx = *CB->encoding_begin();
1891     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1892     F->addMetadata(llvm::LLVMContext::MD_callback,
1893                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1894                                                CalleeIdx, PayloadIndices,
1895                                                /* VarArgsArePassed */ false)}));
1896   }
1897 }
1898 
1899 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1900   assert(!GV->isDeclaration() &&
1901          "Only globals with definition can force usage.");
1902   LLVMUsed.emplace_back(GV);
1903 }
1904 
1905 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1906   assert(!GV->isDeclaration() &&
1907          "Only globals with definition can force usage.");
1908   LLVMCompilerUsed.emplace_back(GV);
1909 }
1910 
1911 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1912                      std::vector<llvm::WeakTrackingVH> &List) {
1913   // Don't create llvm.used if there is no need.
1914   if (List.empty())
1915     return;
1916 
1917   // Convert List to what ConstantArray needs.
1918   SmallVector<llvm::Constant*, 8> UsedArray;
1919   UsedArray.resize(List.size());
1920   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1921     UsedArray[i] =
1922         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1923             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1924   }
1925 
1926   if (UsedArray.empty())
1927     return;
1928   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1929 
1930   auto *GV = new llvm::GlobalVariable(
1931       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1932       llvm::ConstantArray::get(ATy, UsedArray), Name);
1933 
1934   GV->setSection("llvm.metadata");
1935 }
1936 
1937 void CodeGenModule::emitLLVMUsed() {
1938   emitUsed(*this, "llvm.used", LLVMUsed);
1939   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1940 }
1941 
1942 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1943   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1944   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1945 }
1946 
1947 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1948   llvm::SmallString<32> Opt;
1949   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1950   if (Opt.empty())
1951     return;
1952   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1953   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1954 }
1955 
1956 void CodeGenModule::AddDependentLib(StringRef Lib) {
1957   auto &C = getLLVMContext();
1958   if (getTarget().getTriple().isOSBinFormatELF()) {
1959       ELFDependentLibraries.push_back(
1960         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1961     return;
1962   }
1963 
1964   llvm::SmallString<24> Opt;
1965   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1966   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1967   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1968 }
1969 
1970 /// Add link options implied by the given module, including modules
1971 /// it depends on, using a postorder walk.
1972 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1973                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1974                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1975   // Import this module's parent.
1976   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1977     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1978   }
1979 
1980   // Import this module's dependencies.
1981   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1982     if (Visited.insert(Mod->Imports[I - 1]).second)
1983       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1984   }
1985 
1986   // Add linker options to link against the libraries/frameworks
1987   // described by this module.
1988   llvm::LLVMContext &Context = CGM.getLLVMContext();
1989   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1990 
1991   // For modules that use export_as for linking, use that module
1992   // name instead.
1993   if (Mod->UseExportAsModuleLinkName)
1994     return;
1995 
1996   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1997     // Link against a framework.  Frameworks are currently Darwin only, so we
1998     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1999     if (Mod->LinkLibraries[I-1].IsFramework) {
2000       llvm::Metadata *Args[2] = {
2001           llvm::MDString::get(Context, "-framework"),
2002           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2003 
2004       Metadata.push_back(llvm::MDNode::get(Context, Args));
2005       continue;
2006     }
2007 
2008     // Link against a library.
2009     if (IsELF) {
2010       llvm::Metadata *Args[2] = {
2011           llvm::MDString::get(Context, "lib"),
2012           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2013       };
2014       Metadata.push_back(llvm::MDNode::get(Context, Args));
2015     } else {
2016       llvm::SmallString<24> Opt;
2017       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2018           Mod->LinkLibraries[I - 1].Library, Opt);
2019       auto *OptString = llvm::MDString::get(Context, Opt);
2020       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2021     }
2022   }
2023 }
2024 
2025 void CodeGenModule::EmitModuleLinkOptions() {
2026   // Collect the set of all of the modules we want to visit to emit link
2027   // options, which is essentially the imported modules and all of their
2028   // non-explicit child modules.
2029   llvm::SetVector<clang::Module *> LinkModules;
2030   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2031   SmallVector<clang::Module *, 16> Stack;
2032 
2033   // Seed the stack with imported modules.
2034   for (Module *M : ImportedModules) {
2035     // Do not add any link flags when an implementation TU of a module imports
2036     // a header of that same module.
2037     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2038         !getLangOpts().isCompilingModule())
2039       continue;
2040     if (Visited.insert(M).second)
2041       Stack.push_back(M);
2042   }
2043 
2044   // Find all of the modules to import, making a little effort to prune
2045   // non-leaf modules.
2046   while (!Stack.empty()) {
2047     clang::Module *Mod = Stack.pop_back_val();
2048 
2049     bool AnyChildren = false;
2050 
2051     // Visit the submodules of this module.
2052     for (const auto &SM : Mod->submodules()) {
2053       // Skip explicit children; they need to be explicitly imported to be
2054       // linked against.
2055       if (SM->IsExplicit)
2056         continue;
2057 
2058       if (Visited.insert(SM).second) {
2059         Stack.push_back(SM);
2060         AnyChildren = true;
2061       }
2062     }
2063 
2064     // We didn't find any children, so add this module to the list of
2065     // modules to link against.
2066     if (!AnyChildren) {
2067       LinkModules.insert(Mod);
2068     }
2069   }
2070 
2071   // Add link options for all of the imported modules in reverse topological
2072   // order.  We don't do anything to try to order import link flags with respect
2073   // to linker options inserted by things like #pragma comment().
2074   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2075   Visited.clear();
2076   for (Module *M : LinkModules)
2077     if (Visited.insert(M).second)
2078       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2079   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2080   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2081 
2082   // Add the linker options metadata flag.
2083   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2084   for (auto *MD : LinkerOptionsMetadata)
2085     NMD->addOperand(MD);
2086 }
2087 
2088 void CodeGenModule::EmitDeferred() {
2089   // Emit deferred declare target declarations.
2090   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2091     getOpenMPRuntime().emitDeferredTargetDecls();
2092 
2093   // Emit code for any potentially referenced deferred decls.  Since a
2094   // previously unused static decl may become used during the generation of code
2095   // for a static function, iterate until no changes are made.
2096 
2097   if (!DeferredVTables.empty()) {
2098     EmitDeferredVTables();
2099 
2100     // Emitting a vtable doesn't directly cause more vtables to
2101     // become deferred, although it can cause functions to be
2102     // emitted that then need those vtables.
2103     assert(DeferredVTables.empty());
2104   }
2105 
2106   // Stop if we're out of both deferred vtables and deferred declarations.
2107   if (DeferredDeclsToEmit.empty())
2108     return;
2109 
2110   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2111   // work, it will not interfere with this.
2112   std::vector<GlobalDecl> CurDeclsToEmit;
2113   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2114 
2115   for (GlobalDecl &D : CurDeclsToEmit) {
2116     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2117     // to get GlobalValue with exactly the type we need, not something that
2118     // might had been created for another decl with the same mangled name but
2119     // different type.
2120     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2121         GetAddrOfGlobal(D, ForDefinition));
2122 
2123     // In case of different address spaces, we may still get a cast, even with
2124     // IsForDefinition equal to true. Query mangled names table to get
2125     // GlobalValue.
2126     if (!GV)
2127       GV = GetGlobalValue(getMangledName(D));
2128 
2129     // Make sure GetGlobalValue returned non-null.
2130     assert(GV);
2131 
2132     // Check to see if we've already emitted this.  This is necessary
2133     // for a couple of reasons: first, decls can end up in the
2134     // deferred-decls queue multiple times, and second, decls can end
2135     // up with definitions in unusual ways (e.g. by an extern inline
2136     // function acquiring a strong function redefinition).  Just
2137     // ignore these cases.
2138     if (!GV->isDeclaration())
2139       continue;
2140 
2141     // If this is OpenMP, check if it is legal to emit this global normally.
2142     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2143       continue;
2144 
2145     // Otherwise, emit the definition and move on to the next one.
2146     EmitGlobalDefinition(D, GV);
2147 
2148     // If we found out that we need to emit more decls, do that recursively.
2149     // This has the advantage that the decls are emitted in a DFS and related
2150     // ones are close together, which is convenient for testing.
2151     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2152       EmitDeferred();
2153       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2154     }
2155   }
2156 }
2157 
2158 void CodeGenModule::EmitVTablesOpportunistically() {
2159   // Try to emit external vtables as available_externally if they have emitted
2160   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2161   // is not allowed to create new references to things that need to be emitted
2162   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2163 
2164   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2165          && "Only emit opportunistic vtables with optimizations");
2166 
2167   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2168     assert(getVTables().isVTableExternal(RD) &&
2169            "This queue should only contain external vtables");
2170     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2171       VTables.GenerateClassData(RD);
2172   }
2173   OpportunisticVTables.clear();
2174 }
2175 
2176 void CodeGenModule::EmitGlobalAnnotations() {
2177   if (Annotations.empty())
2178     return;
2179 
2180   // Create a new global variable for the ConstantStruct in the Module.
2181   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2182     Annotations[0]->getType(), Annotations.size()), Annotations);
2183   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2184                                       llvm::GlobalValue::AppendingLinkage,
2185                                       Array, "llvm.global.annotations");
2186   gv->setSection(AnnotationSection);
2187 }
2188 
2189 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2190   llvm::Constant *&AStr = AnnotationStrings[Str];
2191   if (AStr)
2192     return AStr;
2193 
2194   // Not found yet, create a new global.
2195   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2196   auto *gv =
2197       new llvm::GlobalVariable(getModule(), s->getType(), true,
2198                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2199   gv->setSection(AnnotationSection);
2200   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2201   AStr = gv;
2202   return gv;
2203 }
2204 
2205 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2206   SourceManager &SM = getContext().getSourceManager();
2207   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2208   if (PLoc.isValid())
2209     return EmitAnnotationString(PLoc.getFilename());
2210   return EmitAnnotationString(SM.getBufferName(Loc));
2211 }
2212 
2213 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2214   SourceManager &SM = getContext().getSourceManager();
2215   PresumedLoc PLoc = SM.getPresumedLoc(L);
2216   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2217     SM.getExpansionLineNumber(L);
2218   return llvm::ConstantInt::get(Int32Ty, LineNo);
2219 }
2220 
2221 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2222                                                 const AnnotateAttr *AA,
2223                                                 SourceLocation L) {
2224   // Get the globals for file name, annotation, and the line number.
2225   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2226                  *UnitGV = EmitAnnotationUnit(L),
2227                  *LineNoCst = EmitAnnotationLineNo(L);
2228 
2229   llvm::Constant *ASZeroGV = GV;
2230   if (GV->getAddressSpace() != 0) {
2231     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2232                    GV, GV->getValueType()->getPointerTo(0));
2233   }
2234 
2235   // Create the ConstantStruct for the global annotation.
2236   llvm::Constant *Fields[4] = {
2237     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2238     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2239     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2240     LineNoCst
2241   };
2242   return llvm::ConstantStruct::getAnon(Fields);
2243 }
2244 
2245 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2246                                          llvm::GlobalValue *GV) {
2247   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2248   // Get the struct elements for these annotations.
2249   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2250     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2251 }
2252 
2253 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2254                                            llvm::Function *Fn,
2255                                            SourceLocation Loc) const {
2256   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2257   // Blacklist by function name.
2258   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2259     return true;
2260   // Blacklist by location.
2261   if (Loc.isValid())
2262     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2263   // If location is unknown, this may be a compiler-generated function. Assume
2264   // it's located in the main file.
2265   auto &SM = Context.getSourceManager();
2266   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2267     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2268   }
2269   return false;
2270 }
2271 
2272 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2273                                            SourceLocation Loc, QualType Ty,
2274                                            StringRef Category) const {
2275   // For now globals can be blacklisted only in ASan and KASan.
2276   const SanitizerMask EnabledAsanMask =
2277       LangOpts.Sanitize.Mask &
2278       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2279        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2280        SanitizerKind::MemTag);
2281   if (!EnabledAsanMask)
2282     return false;
2283   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2284   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2285     return true;
2286   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2287     return true;
2288   // Check global type.
2289   if (!Ty.isNull()) {
2290     // Drill down the array types: if global variable of a fixed type is
2291     // blacklisted, we also don't instrument arrays of them.
2292     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2293       Ty = AT->getElementType();
2294     Ty = Ty.getCanonicalType().getUnqualifiedType();
2295     // We allow to blacklist only record types (classes, structs etc.)
2296     if (Ty->isRecordType()) {
2297       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2298       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2299         return true;
2300     }
2301   }
2302   return false;
2303 }
2304 
2305 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2306                                    StringRef Category) const {
2307   const auto &XRayFilter = getContext().getXRayFilter();
2308   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2309   auto Attr = ImbueAttr::NONE;
2310   if (Loc.isValid())
2311     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2312   if (Attr == ImbueAttr::NONE)
2313     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2314   switch (Attr) {
2315   case ImbueAttr::NONE:
2316     return false;
2317   case ImbueAttr::ALWAYS:
2318     Fn->addFnAttr("function-instrument", "xray-always");
2319     break;
2320   case ImbueAttr::ALWAYS_ARG1:
2321     Fn->addFnAttr("function-instrument", "xray-always");
2322     Fn->addFnAttr("xray-log-args", "1");
2323     break;
2324   case ImbueAttr::NEVER:
2325     Fn->addFnAttr("function-instrument", "xray-never");
2326     break;
2327   }
2328   return true;
2329 }
2330 
2331 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2332   // Never defer when EmitAllDecls is specified.
2333   if (LangOpts.EmitAllDecls)
2334     return true;
2335 
2336   if (CodeGenOpts.KeepStaticConsts) {
2337     const auto *VD = dyn_cast<VarDecl>(Global);
2338     if (VD && VD->getType().isConstQualified() &&
2339         VD->getStorageDuration() == SD_Static)
2340       return true;
2341   }
2342 
2343   return getContext().DeclMustBeEmitted(Global);
2344 }
2345 
2346 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2347   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2348     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2349       // Implicit template instantiations may change linkage if they are later
2350       // explicitly instantiated, so they should not be emitted eagerly.
2351       return false;
2352     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2353     // not emit them eagerly unless we sure that the function must be emitted on
2354     // the host.
2355     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2356         !LangOpts.OpenMPIsDevice &&
2357         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2358         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2359       return false;
2360   }
2361   if (const auto *VD = dyn_cast<VarDecl>(Global))
2362     if (Context.getInlineVariableDefinitionKind(VD) ==
2363         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2364       // A definition of an inline constexpr static data member may change
2365       // linkage later if it's redeclared outside the class.
2366       return false;
2367   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2368   // codegen for global variables, because they may be marked as threadprivate.
2369   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2370       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2371       !isTypeConstant(Global->getType(), false) &&
2372       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2373     return false;
2374 
2375   return true;
2376 }
2377 
2378 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2379     const CXXUuidofExpr* E) {
2380   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2381   // well-formed.
2382   StringRef Uuid = E->getUuidStr();
2383   std::string Name = "_GUID_" + Uuid.lower();
2384   std::replace(Name.begin(), Name.end(), '-', '_');
2385 
2386   // The UUID descriptor should be pointer aligned.
2387   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2388 
2389   // Look for an existing global.
2390   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2391     return ConstantAddress(GV, Alignment);
2392 
2393   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2394   assert(Init && "failed to initialize as constant");
2395 
2396   auto *GV = new llvm::GlobalVariable(
2397       getModule(), Init->getType(),
2398       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2399   if (supportsCOMDAT())
2400     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2401   setDSOLocal(GV);
2402   return ConstantAddress(GV, Alignment);
2403 }
2404 
2405 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2406   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2407   assert(AA && "No alias?");
2408 
2409   CharUnits Alignment = getContext().getDeclAlign(VD);
2410   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2411 
2412   // See if there is already something with the target's name in the module.
2413   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2414   if (Entry) {
2415     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2416     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2417     return ConstantAddress(Ptr, Alignment);
2418   }
2419 
2420   llvm::Constant *Aliasee;
2421   if (isa<llvm::FunctionType>(DeclTy))
2422     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2423                                       GlobalDecl(cast<FunctionDecl>(VD)),
2424                                       /*ForVTable=*/false);
2425   else
2426     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2427                                     llvm::PointerType::getUnqual(DeclTy),
2428                                     nullptr);
2429 
2430   auto *F = cast<llvm::GlobalValue>(Aliasee);
2431   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2432   WeakRefReferences.insert(F);
2433 
2434   return ConstantAddress(Aliasee, Alignment);
2435 }
2436 
2437 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2438   const auto *Global = cast<ValueDecl>(GD.getDecl());
2439 
2440   // Weak references don't produce any output by themselves.
2441   if (Global->hasAttr<WeakRefAttr>())
2442     return;
2443 
2444   // If this is an alias definition (which otherwise looks like a declaration)
2445   // emit it now.
2446   if (Global->hasAttr<AliasAttr>())
2447     return EmitAliasDefinition(GD);
2448 
2449   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2450   if (Global->hasAttr<IFuncAttr>())
2451     return emitIFuncDefinition(GD);
2452 
2453   // If this is a cpu_dispatch multiversion function, emit the resolver.
2454   if (Global->hasAttr<CPUDispatchAttr>())
2455     return emitCPUDispatchDefinition(GD);
2456 
2457   // If this is CUDA, be selective about which declarations we emit.
2458   if (LangOpts.CUDA) {
2459     if (LangOpts.CUDAIsDevice) {
2460       if (!Global->hasAttr<CUDADeviceAttr>() &&
2461           !Global->hasAttr<CUDAGlobalAttr>() &&
2462           !Global->hasAttr<CUDAConstantAttr>() &&
2463           !Global->hasAttr<CUDASharedAttr>() &&
2464           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2465         return;
2466     } else {
2467       // We need to emit host-side 'shadows' for all global
2468       // device-side variables because the CUDA runtime needs their
2469       // size and host-side address in order to provide access to
2470       // their device-side incarnations.
2471 
2472       // So device-only functions are the only things we skip.
2473       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2474           Global->hasAttr<CUDADeviceAttr>())
2475         return;
2476 
2477       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2478              "Expected Variable or Function");
2479     }
2480   }
2481 
2482   if (LangOpts.OpenMP) {
2483     // If this is OpenMP, check if it is legal to emit this global normally.
2484     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2485       return;
2486     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2487       if (MustBeEmitted(Global))
2488         EmitOMPDeclareReduction(DRD);
2489       return;
2490     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2491       if (MustBeEmitted(Global))
2492         EmitOMPDeclareMapper(DMD);
2493       return;
2494     }
2495   }
2496 
2497   // Ignore declarations, they will be emitted on their first use.
2498   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2499     // Forward declarations are emitted lazily on first use.
2500     if (!FD->doesThisDeclarationHaveABody()) {
2501       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2502         return;
2503 
2504       StringRef MangledName = getMangledName(GD);
2505 
2506       // Compute the function info and LLVM type.
2507       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2508       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2509 
2510       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2511                               /*DontDefer=*/false);
2512       return;
2513     }
2514   } else {
2515     const auto *VD = cast<VarDecl>(Global);
2516     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2517     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2518         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2519       if (LangOpts.OpenMP) {
2520         // Emit declaration of the must-be-emitted declare target variable.
2521         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2522                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2523           bool UnifiedMemoryEnabled =
2524               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2525           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2526               !UnifiedMemoryEnabled) {
2527             (void)GetAddrOfGlobalVar(VD);
2528           } else {
2529             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2530                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2531                      UnifiedMemoryEnabled)) &&
2532                    "Link clause or to clause with unified memory expected.");
2533             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2534           }
2535 
2536           return;
2537         }
2538       }
2539       // If this declaration may have caused an inline variable definition to
2540       // change linkage, make sure that it's emitted.
2541       if (Context.getInlineVariableDefinitionKind(VD) ==
2542           ASTContext::InlineVariableDefinitionKind::Strong)
2543         GetAddrOfGlobalVar(VD);
2544       return;
2545     }
2546   }
2547 
2548   // Defer code generation to first use when possible, e.g. if this is an inline
2549   // function. If the global must always be emitted, do it eagerly if possible
2550   // to benefit from cache locality.
2551   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2552     // Emit the definition if it can't be deferred.
2553     EmitGlobalDefinition(GD);
2554     return;
2555   }
2556 
2557     // Check if this must be emitted as declare variant.
2558   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2559       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2560     return;
2561 
2562   // If we're deferring emission of a C++ variable with an
2563   // initializer, remember the order in which it appeared in the file.
2564   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2565       cast<VarDecl>(Global)->hasInit()) {
2566     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2567     CXXGlobalInits.push_back(nullptr);
2568   }
2569 
2570   StringRef MangledName = getMangledName(GD);
2571   if (GetGlobalValue(MangledName) != nullptr) {
2572     // The value has already been used and should therefore be emitted.
2573     addDeferredDeclToEmit(GD);
2574   } else if (MustBeEmitted(Global)) {
2575     // The value must be emitted, but cannot be emitted eagerly.
2576     assert(!MayBeEmittedEagerly(Global));
2577     addDeferredDeclToEmit(GD);
2578   } else {
2579     // Otherwise, remember that we saw a deferred decl with this name.  The
2580     // first use of the mangled name will cause it to move into
2581     // DeferredDeclsToEmit.
2582     DeferredDecls[MangledName] = GD;
2583   }
2584 }
2585 
2586 // Check if T is a class type with a destructor that's not dllimport.
2587 static bool HasNonDllImportDtor(QualType T) {
2588   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2589     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2590       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2591         return true;
2592 
2593   return false;
2594 }
2595 
2596 namespace {
2597   struct FunctionIsDirectlyRecursive
2598       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2599     const StringRef Name;
2600     const Builtin::Context &BI;
2601     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2602         : Name(N), BI(C) {}
2603 
2604     bool VisitCallExpr(const CallExpr *E) {
2605       const FunctionDecl *FD = E->getDirectCallee();
2606       if (!FD)
2607         return false;
2608       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2609       if (Attr && Name == Attr->getLabel())
2610         return true;
2611       unsigned BuiltinID = FD->getBuiltinID();
2612       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2613         return false;
2614       StringRef BuiltinName = BI.getName(BuiltinID);
2615       if (BuiltinName.startswith("__builtin_") &&
2616           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2617         return true;
2618       }
2619       return false;
2620     }
2621 
2622     bool VisitStmt(const Stmt *S) {
2623       for (const Stmt *Child : S->children())
2624         if (Child && this->Visit(Child))
2625           return true;
2626       return false;
2627     }
2628   };
2629 
2630   // Make sure we're not referencing non-imported vars or functions.
2631   struct DLLImportFunctionVisitor
2632       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2633     bool SafeToInline = true;
2634 
2635     bool shouldVisitImplicitCode() const { return true; }
2636 
2637     bool VisitVarDecl(VarDecl *VD) {
2638       if (VD->getTLSKind()) {
2639         // A thread-local variable cannot be imported.
2640         SafeToInline = false;
2641         return SafeToInline;
2642       }
2643 
2644       // A variable definition might imply a destructor call.
2645       if (VD->isThisDeclarationADefinition())
2646         SafeToInline = !HasNonDllImportDtor(VD->getType());
2647 
2648       return SafeToInline;
2649     }
2650 
2651     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2652       if (const auto *D = E->getTemporary()->getDestructor())
2653         SafeToInline = D->hasAttr<DLLImportAttr>();
2654       return SafeToInline;
2655     }
2656 
2657     bool VisitDeclRefExpr(DeclRefExpr *E) {
2658       ValueDecl *VD = E->getDecl();
2659       if (isa<FunctionDecl>(VD))
2660         SafeToInline = VD->hasAttr<DLLImportAttr>();
2661       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2662         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2663       return SafeToInline;
2664     }
2665 
2666     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2667       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2668       return SafeToInline;
2669     }
2670 
2671     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2672       CXXMethodDecl *M = E->getMethodDecl();
2673       if (!M) {
2674         // Call through a pointer to member function. This is safe to inline.
2675         SafeToInline = true;
2676       } else {
2677         SafeToInline = M->hasAttr<DLLImportAttr>();
2678       }
2679       return SafeToInline;
2680     }
2681 
2682     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2683       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2684       return SafeToInline;
2685     }
2686 
2687     bool VisitCXXNewExpr(CXXNewExpr *E) {
2688       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2689       return SafeToInline;
2690     }
2691   };
2692 }
2693 
2694 // isTriviallyRecursive - Check if this function calls another
2695 // decl that, because of the asm attribute or the other decl being a builtin,
2696 // ends up pointing to itself.
2697 bool
2698 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2699   StringRef Name;
2700   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2701     // asm labels are a special kind of mangling we have to support.
2702     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2703     if (!Attr)
2704       return false;
2705     Name = Attr->getLabel();
2706   } else {
2707     Name = FD->getName();
2708   }
2709 
2710   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2711   const Stmt *Body = FD->getBody();
2712   return Body ? Walker.Visit(Body) : false;
2713 }
2714 
2715 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2716   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2717     return true;
2718   const auto *F = cast<FunctionDecl>(GD.getDecl());
2719   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2720     return false;
2721 
2722   if (F->hasAttr<DLLImportAttr>()) {
2723     // Check whether it would be safe to inline this dllimport function.
2724     DLLImportFunctionVisitor Visitor;
2725     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2726     if (!Visitor.SafeToInline)
2727       return false;
2728 
2729     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2730       // Implicit destructor invocations aren't captured in the AST, so the
2731       // check above can't see them. Check for them manually here.
2732       for (const Decl *Member : Dtor->getParent()->decls())
2733         if (isa<FieldDecl>(Member))
2734           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2735             return false;
2736       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2737         if (HasNonDllImportDtor(B.getType()))
2738           return false;
2739     }
2740   }
2741 
2742   // PR9614. Avoid cases where the source code is lying to us. An available
2743   // externally function should have an equivalent function somewhere else,
2744   // but a function that calls itself is clearly not equivalent to the real
2745   // implementation.
2746   // This happens in glibc's btowc and in some configure checks.
2747   return !isTriviallyRecursive(F);
2748 }
2749 
2750 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2751   return CodeGenOpts.OptimizationLevel > 0;
2752 }
2753 
2754 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2755                                                        llvm::GlobalValue *GV) {
2756   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2757 
2758   if (FD->isCPUSpecificMultiVersion()) {
2759     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2760     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2761       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2762     // Requires multiple emits.
2763   } else
2764     EmitGlobalFunctionDefinition(GD, GV);
2765 }
2766 
2767 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2768     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2769   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2770          OpenMPRuntime && "Expected OpenMP device mode.");
2771   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2772 
2773   // Compute the function info and LLVM type.
2774   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2775   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2776 
2777   // Get or create the prototype for the function.
2778   if (!GV || (GV->getType()->getElementType() != Ty)) {
2779     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2780         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2781         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2782         ForDefinition));
2783     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2784                           /*IsIncompleteFunction=*/false,
2785                           /*IsThunk=*/false);
2786   }
2787   // We need to set linkage and visibility on the function before
2788   // generating code for it because various parts of IR generation
2789   // want to propagate this information down (e.g. to local static
2790   // declarations).
2791   auto *Fn = cast<llvm::Function>(GV);
2792   setFunctionLinkage(OldGD, Fn);
2793 
2794   // FIXME: this is redundant with part of
2795   // setFunctionDefinitionAttributes
2796   setGVProperties(Fn, OldGD);
2797 
2798   MaybeHandleStaticInExternC(D, Fn);
2799 
2800   maybeSetTrivialComdat(*D, *Fn);
2801 
2802   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2803 
2804   setNonAliasAttributes(OldGD, Fn);
2805   SetLLVMFunctionAttributesForDefinition(D, Fn);
2806 
2807   if (D->hasAttr<AnnotateAttr>())
2808     AddGlobalAnnotations(D, Fn);
2809 }
2810 
2811 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2812   const auto *D = cast<ValueDecl>(GD.getDecl());
2813 
2814   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2815                                  Context.getSourceManager(),
2816                                  "Generating code for declaration");
2817 
2818   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2819     // At -O0, don't generate IR for functions with available_externally
2820     // linkage.
2821     if (!shouldEmitFunction(GD))
2822       return;
2823 
2824     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2825       std::string Name;
2826       llvm::raw_string_ostream OS(Name);
2827       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2828                                /*Qualified=*/true);
2829       return Name;
2830     });
2831 
2832     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2833       // Make sure to emit the definition(s) before we emit the thunks.
2834       // This is necessary for the generation of certain thunks.
2835       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2836         ABI->emitCXXStructor(GD);
2837       else if (FD->isMultiVersion())
2838         EmitMultiVersionFunctionDefinition(GD, GV);
2839       else
2840         EmitGlobalFunctionDefinition(GD, GV);
2841 
2842       if (Method->isVirtual())
2843         getVTables().EmitThunks(GD);
2844 
2845       return;
2846     }
2847 
2848     if (FD->isMultiVersion())
2849       return EmitMultiVersionFunctionDefinition(GD, GV);
2850     return EmitGlobalFunctionDefinition(GD, GV);
2851   }
2852 
2853   if (const auto *VD = dyn_cast<VarDecl>(D))
2854     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2855 
2856   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2857 }
2858 
2859 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2860                                                       llvm::Function *NewFn);
2861 
2862 static unsigned
2863 TargetMVPriority(const TargetInfo &TI,
2864                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2865   unsigned Priority = 0;
2866   for (StringRef Feat : RO.Conditions.Features)
2867     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2868 
2869   if (!RO.Conditions.Architecture.empty())
2870     Priority = std::max(
2871         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2872   return Priority;
2873 }
2874 
2875 void CodeGenModule::emitMultiVersionFunctions() {
2876   for (GlobalDecl GD : MultiVersionFuncs) {
2877     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2878     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2879     getContext().forEachMultiversionedFunctionVersion(
2880         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2881           GlobalDecl CurGD{
2882               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2883           StringRef MangledName = getMangledName(CurGD);
2884           llvm::Constant *Func = GetGlobalValue(MangledName);
2885           if (!Func) {
2886             if (CurFD->isDefined()) {
2887               EmitGlobalFunctionDefinition(CurGD, nullptr);
2888               Func = GetGlobalValue(MangledName);
2889             } else {
2890               const CGFunctionInfo &FI =
2891                   getTypes().arrangeGlobalDeclaration(GD);
2892               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2893               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2894                                        /*DontDefer=*/false, ForDefinition);
2895             }
2896             assert(Func && "This should have just been created");
2897           }
2898 
2899           const auto *TA = CurFD->getAttr<TargetAttr>();
2900           llvm::SmallVector<StringRef, 8> Feats;
2901           TA->getAddedFeatures(Feats);
2902 
2903           Options.emplace_back(cast<llvm::Function>(Func),
2904                                TA->getArchitecture(), Feats);
2905         });
2906 
2907     llvm::Function *ResolverFunc;
2908     const TargetInfo &TI = getTarget();
2909 
2910     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2911       ResolverFunc = cast<llvm::Function>(
2912           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2913       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2914     } else {
2915       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2916     }
2917 
2918     if (supportsCOMDAT())
2919       ResolverFunc->setComdat(
2920           getModule().getOrInsertComdat(ResolverFunc->getName()));
2921 
2922     llvm::stable_sort(
2923         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2924                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2925           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2926         });
2927     CodeGenFunction CGF(*this);
2928     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2929   }
2930 }
2931 
2932 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2933   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2934   assert(FD && "Not a FunctionDecl?");
2935   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2936   assert(DD && "Not a cpu_dispatch Function?");
2937   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2938 
2939   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2940     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2941     DeclTy = getTypes().GetFunctionType(FInfo);
2942   }
2943 
2944   StringRef ResolverName = getMangledName(GD);
2945 
2946   llvm::Type *ResolverType;
2947   GlobalDecl ResolverGD;
2948   if (getTarget().supportsIFunc())
2949     ResolverType = llvm::FunctionType::get(
2950         llvm::PointerType::get(DeclTy,
2951                                Context.getTargetAddressSpace(FD->getType())),
2952         false);
2953   else {
2954     ResolverType = DeclTy;
2955     ResolverGD = GD;
2956   }
2957 
2958   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2959       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2960   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2961   if (supportsCOMDAT())
2962     ResolverFunc->setComdat(
2963         getModule().getOrInsertComdat(ResolverFunc->getName()));
2964 
2965   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2966   const TargetInfo &Target = getTarget();
2967   unsigned Index = 0;
2968   for (const IdentifierInfo *II : DD->cpus()) {
2969     // Get the name of the target function so we can look it up/create it.
2970     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2971                               getCPUSpecificMangling(*this, II->getName());
2972 
2973     llvm::Constant *Func = GetGlobalValue(MangledName);
2974 
2975     if (!Func) {
2976       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2977       if (ExistingDecl.getDecl() &&
2978           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2979         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2980         Func = GetGlobalValue(MangledName);
2981       } else {
2982         if (!ExistingDecl.getDecl())
2983           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2984 
2985       Func = GetOrCreateLLVMFunction(
2986           MangledName, DeclTy, ExistingDecl,
2987           /*ForVTable=*/false, /*DontDefer=*/true,
2988           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2989       }
2990     }
2991 
2992     llvm::SmallVector<StringRef, 32> Features;
2993     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2994     llvm::transform(Features, Features.begin(),
2995                     [](StringRef Str) { return Str.substr(1); });
2996     Features.erase(std::remove_if(
2997         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2998           return !Target.validateCpuSupports(Feat);
2999         }), Features.end());
3000     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3001     ++Index;
3002   }
3003 
3004   llvm::sort(
3005       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3006                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3007         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3008                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3009       });
3010 
3011   // If the list contains multiple 'default' versions, such as when it contains
3012   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3013   // always run on at least a 'pentium'). We do this by deleting the 'least
3014   // advanced' (read, lowest mangling letter).
3015   while (Options.size() > 1 &&
3016          CodeGenFunction::GetX86CpuSupportsMask(
3017              (Options.end() - 2)->Conditions.Features) == 0) {
3018     StringRef LHSName = (Options.end() - 2)->Function->getName();
3019     StringRef RHSName = (Options.end() - 1)->Function->getName();
3020     if (LHSName.compare(RHSName) < 0)
3021       Options.erase(Options.end() - 2);
3022     else
3023       Options.erase(Options.end() - 1);
3024   }
3025 
3026   CodeGenFunction CGF(*this);
3027   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3028 
3029   if (getTarget().supportsIFunc()) {
3030     std::string AliasName = getMangledNameImpl(
3031         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3032     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3033     if (!AliasFunc) {
3034       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3035           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3036           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3037       auto *GA = llvm::GlobalAlias::create(
3038          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3039       GA->setLinkage(llvm::Function::WeakODRLinkage);
3040       SetCommonAttributes(GD, GA);
3041     }
3042   }
3043 }
3044 
3045 /// If a dispatcher for the specified mangled name is not in the module, create
3046 /// and return an llvm Function with the specified type.
3047 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3048     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3049   std::string MangledName =
3050       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3051 
3052   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3053   // a separate resolver).
3054   std::string ResolverName = MangledName;
3055   if (getTarget().supportsIFunc())
3056     ResolverName += ".ifunc";
3057   else if (FD->isTargetMultiVersion())
3058     ResolverName += ".resolver";
3059 
3060   // If this already exists, just return that one.
3061   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3062     return ResolverGV;
3063 
3064   // Since this is the first time we've created this IFunc, make sure
3065   // that we put this multiversioned function into the list to be
3066   // replaced later if necessary (target multiversioning only).
3067   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3068     MultiVersionFuncs.push_back(GD);
3069 
3070   if (getTarget().supportsIFunc()) {
3071     llvm::Type *ResolverType = llvm::FunctionType::get(
3072         llvm::PointerType::get(
3073             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3074         false);
3075     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3076         MangledName + ".resolver", ResolverType, GlobalDecl{},
3077         /*ForVTable=*/false);
3078     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3079         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3080     GIF->setName(ResolverName);
3081     SetCommonAttributes(FD, GIF);
3082 
3083     return GIF;
3084   }
3085 
3086   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3087       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3088   assert(isa<llvm::GlobalValue>(Resolver) &&
3089          "Resolver should be created for the first time");
3090   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3091   return Resolver;
3092 }
3093 
3094 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3095 /// module, create and return an llvm Function with the specified type. If there
3096 /// is something in the module with the specified name, return it potentially
3097 /// bitcasted to the right type.
3098 ///
3099 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3100 /// to set the attributes on the function when it is first created.
3101 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3102     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3103     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3104     ForDefinition_t IsForDefinition) {
3105   const Decl *D = GD.getDecl();
3106 
3107   // Any attempts to use a MultiVersion function should result in retrieving
3108   // the iFunc instead. Name Mangling will handle the rest of the changes.
3109   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3110     // For the device mark the function as one that should be emitted.
3111     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3112         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3113         !DontDefer && !IsForDefinition) {
3114       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3115         GlobalDecl GDDef;
3116         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3117           GDDef = GlobalDecl(CD, GD.getCtorType());
3118         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3119           GDDef = GlobalDecl(DD, GD.getDtorType());
3120         else
3121           GDDef = GlobalDecl(FDDef);
3122         EmitGlobal(GDDef);
3123       }
3124     }
3125     // Check if this must be emitted as declare variant and emit reference to
3126     // the the declare variant function.
3127     if (LangOpts.OpenMP && OpenMPRuntime)
3128       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3129 
3130     if (FD->isMultiVersion()) {
3131       const auto *TA = FD->getAttr<TargetAttr>();
3132       if (TA && TA->isDefaultVersion())
3133         UpdateMultiVersionNames(GD, FD);
3134       if (!IsForDefinition)
3135         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3136     }
3137   }
3138 
3139   // Lookup the entry, lazily creating it if necessary.
3140   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3141   if (Entry) {
3142     if (WeakRefReferences.erase(Entry)) {
3143       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3144       if (FD && !FD->hasAttr<WeakAttr>())
3145         Entry->setLinkage(llvm::Function::ExternalLinkage);
3146     }
3147 
3148     // Handle dropped DLL attributes.
3149     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3150       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3151       setDSOLocal(Entry);
3152     }
3153 
3154     // If there are two attempts to define the same mangled name, issue an
3155     // error.
3156     if (IsForDefinition && !Entry->isDeclaration()) {
3157       GlobalDecl OtherGD;
3158       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3159       // to make sure that we issue an error only once.
3160       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3161           (GD.getCanonicalDecl().getDecl() !=
3162            OtherGD.getCanonicalDecl().getDecl()) &&
3163           DiagnosedConflictingDefinitions.insert(GD).second) {
3164         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3165             << MangledName;
3166         getDiags().Report(OtherGD.getDecl()->getLocation(),
3167                           diag::note_previous_definition);
3168       }
3169     }
3170 
3171     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3172         (Entry->getType()->getElementType() == Ty)) {
3173       return Entry;
3174     }
3175 
3176     // Make sure the result is of the correct type.
3177     // (If function is requested for a definition, we always need to create a new
3178     // function, not just return a bitcast.)
3179     if (!IsForDefinition)
3180       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3181   }
3182 
3183   // This function doesn't have a complete type (for example, the return
3184   // type is an incomplete struct). Use a fake type instead, and make
3185   // sure not to try to set attributes.
3186   bool IsIncompleteFunction = false;
3187 
3188   llvm::FunctionType *FTy;
3189   if (isa<llvm::FunctionType>(Ty)) {
3190     FTy = cast<llvm::FunctionType>(Ty);
3191   } else {
3192     FTy = llvm::FunctionType::get(VoidTy, false);
3193     IsIncompleteFunction = true;
3194   }
3195 
3196   llvm::Function *F =
3197       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3198                              Entry ? StringRef() : MangledName, &getModule());
3199 
3200   // If we already created a function with the same mangled name (but different
3201   // type) before, take its name and add it to the list of functions to be
3202   // replaced with F at the end of CodeGen.
3203   //
3204   // This happens if there is a prototype for a function (e.g. "int f()") and
3205   // then a definition of a different type (e.g. "int f(int x)").
3206   if (Entry) {
3207     F->takeName(Entry);
3208 
3209     // This might be an implementation of a function without a prototype, in
3210     // which case, try to do special replacement of calls which match the new
3211     // prototype.  The really key thing here is that we also potentially drop
3212     // arguments from the call site so as to make a direct call, which makes the
3213     // inliner happier and suppresses a number of optimizer warnings (!) about
3214     // dropping arguments.
3215     if (!Entry->use_empty()) {
3216       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3217       Entry->removeDeadConstantUsers();
3218     }
3219 
3220     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3221         F, Entry->getType()->getElementType()->getPointerTo());
3222     addGlobalValReplacement(Entry, BC);
3223   }
3224 
3225   assert(F->getName() == MangledName && "name was uniqued!");
3226   if (D)
3227     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3228   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3229     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3230     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3231   }
3232 
3233   if (!DontDefer) {
3234     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3235     // each other bottoming out with the base dtor.  Therefore we emit non-base
3236     // dtors on usage, even if there is no dtor definition in the TU.
3237     if (D && isa<CXXDestructorDecl>(D) &&
3238         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3239                                            GD.getDtorType()))
3240       addDeferredDeclToEmit(GD);
3241 
3242     // This is the first use or definition of a mangled name.  If there is a
3243     // deferred decl with this name, remember that we need to emit it at the end
3244     // of the file.
3245     auto DDI = DeferredDecls.find(MangledName);
3246     if (DDI != DeferredDecls.end()) {
3247       // Move the potentially referenced deferred decl to the
3248       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3249       // don't need it anymore).
3250       addDeferredDeclToEmit(DDI->second);
3251       DeferredDecls.erase(DDI);
3252 
3253       // Otherwise, there are cases we have to worry about where we're
3254       // using a declaration for which we must emit a definition but where
3255       // we might not find a top-level definition:
3256       //   - member functions defined inline in their classes
3257       //   - friend functions defined inline in some class
3258       //   - special member functions with implicit definitions
3259       // If we ever change our AST traversal to walk into class methods,
3260       // this will be unnecessary.
3261       //
3262       // We also don't emit a definition for a function if it's going to be an
3263       // entry in a vtable, unless it's already marked as used.
3264     } else if (getLangOpts().CPlusPlus && D) {
3265       // Look for a declaration that's lexically in a record.
3266       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3267            FD = FD->getPreviousDecl()) {
3268         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3269           if (FD->doesThisDeclarationHaveABody()) {
3270             addDeferredDeclToEmit(GD.getWithDecl(FD));
3271             break;
3272           }
3273         }
3274       }
3275     }
3276   }
3277 
3278   // Make sure the result is of the requested type.
3279   if (!IsIncompleteFunction) {
3280     assert(F->getType()->getElementType() == Ty);
3281     return F;
3282   }
3283 
3284   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3285   return llvm::ConstantExpr::getBitCast(F, PTy);
3286 }
3287 
3288 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3289 /// non-null, then this function will use the specified type if it has to
3290 /// create it (this occurs when we see a definition of the function).
3291 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3292                                                  llvm::Type *Ty,
3293                                                  bool ForVTable,
3294                                                  bool DontDefer,
3295                                               ForDefinition_t IsForDefinition) {
3296   // If there was no specific requested type, just convert it now.
3297   if (!Ty) {
3298     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3299     Ty = getTypes().ConvertType(FD->getType());
3300   }
3301 
3302   // Devirtualized destructor calls may come through here instead of via
3303   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3304   // of the complete destructor when necessary.
3305   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3306     if (getTarget().getCXXABI().isMicrosoft() &&
3307         GD.getDtorType() == Dtor_Complete &&
3308         DD->getParent()->getNumVBases() == 0)
3309       GD = GlobalDecl(DD, Dtor_Base);
3310   }
3311 
3312   StringRef MangledName = getMangledName(GD);
3313   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3314                                  /*IsThunk=*/false, llvm::AttributeList(),
3315                                  IsForDefinition);
3316 }
3317 
3318 static const FunctionDecl *
3319 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3320   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3321   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3322 
3323   IdentifierInfo &CII = C.Idents.get(Name);
3324   for (const auto &Result : DC->lookup(&CII))
3325     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3326       return FD;
3327 
3328   if (!C.getLangOpts().CPlusPlus)
3329     return nullptr;
3330 
3331   // Demangle the premangled name from getTerminateFn()
3332   IdentifierInfo &CXXII =
3333       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3334           ? C.Idents.get("terminate")
3335           : C.Idents.get(Name);
3336 
3337   for (const auto &N : {"__cxxabiv1", "std"}) {
3338     IdentifierInfo &NS = C.Idents.get(N);
3339     for (const auto &Result : DC->lookup(&NS)) {
3340       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3341       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3342         for (const auto &Result : LSD->lookup(&NS))
3343           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3344             break;
3345 
3346       if (ND)
3347         for (const auto &Result : ND->lookup(&CXXII))
3348           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3349             return FD;
3350     }
3351   }
3352 
3353   return nullptr;
3354 }
3355 
3356 /// CreateRuntimeFunction - Create a new runtime function with the specified
3357 /// type and name.
3358 llvm::FunctionCallee
3359 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3360                                      llvm::AttributeList ExtraAttrs, bool Local,
3361                                      bool AssumeConvergent) {
3362   if (AssumeConvergent) {
3363     ExtraAttrs =
3364         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3365                                 llvm::Attribute::Convergent);
3366   }
3367 
3368   llvm::Constant *C =
3369       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3370                               /*DontDefer=*/false, /*IsThunk=*/false,
3371                               ExtraAttrs);
3372 
3373   if (auto *F = dyn_cast<llvm::Function>(C)) {
3374     if (F->empty()) {
3375       F->setCallingConv(getRuntimeCC());
3376 
3377       // In Windows Itanium environments, try to mark runtime functions
3378       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3379       // will link their standard library statically or dynamically. Marking
3380       // functions imported when they are not imported can cause linker errors
3381       // and warnings.
3382       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3383           !getCodeGenOpts().LTOVisibilityPublicStd) {
3384         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3385         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3386           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3387           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3388         }
3389       }
3390       setDSOLocal(F);
3391     }
3392   }
3393 
3394   return {FTy, C};
3395 }
3396 
3397 /// isTypeConstant - Determine whether an object of this type can be emitted
3398 /// as a constant.
3399 ///
3400 /// If ExcludeCtor is true, the duration when the object's constructor runs
3401 /// will not be considered. The caller will need to verify that the object is
3402 /// not written to during its construction.
3403 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3404   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3405     return false;
3406 
3407   if (Context.getLangOpts().CPlusPlus) {
3408     if (const CXXRecordDecl *Record
3409           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3410       return ExcludeCtor && !Record->hasMutableFields() &&
3411              Record->hasTrivialDestructor();
3412   }
3413 
3414   return true;
3415 }
3416 
3417 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3418 /// create and return an llvm GlobalVariable with the specified type.  If there
3419 /// is something in the module with the specified name, return it potentially
3420 /// bitcasted to the right type.
3421 ///
3422 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3423 /// to set the attributes on the global when it is first created.
3424 ///
3425 /// If IsForDefinition is true, it is guaranteed that an actual global with
3426 /// type Ty will be returned, not conversion of a variable with the same
3427 /// mangled name but some other type.
3428 llvm::Constant *
3429 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3430                                      llvm::PointerType *Ty,
3431                                      const VarDecl *D,
3432                                      ForDefinition_t IsForDefinition) {
3433   // Lookup the entry, lazily creating it if necessary.
3434   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3435   if (Entry) {
3436     if (WeakRefReferences.erase(Entry)) {
3437       if (D && !D->hasAttr<WeakAttr>())
3438         Entry->setLinkage(llvm::Function::ExternalLinkage);
3439     }
3440 
3441     // Handle dropped DLL attributes.
3442     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3443       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3444 
3445     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3446       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3447 
3448     if (Entry->getType() == Ty)
3449       return Entry;
3450 
3451     // If there are two attempts to define the same mangled name, issue an
3452     // error.
3453     if (IsForDefinition && !Entry->isDeclaration()) {
3454       GlobalDecl OtherGD;
3455       const VarDecl *OtherD;
3456 
3457       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3458       // to make sure that we issue an error only once.
3459       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3460           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3461           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3462           OtherD->hasInit() &&
3463           DiagnosedConflictingDefinitions.insert(D).second) {
3464         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3465             << MangledName;
3466         getDiags().Report(OtherGD.getDecl()->getLocation(),
3467                           diag::note_previous_definition);
3468       }
3469     }
3470 
3471     // Make sure the result is of the correct type.
3472     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3473       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3474 
3475     // (If global is requested for a definition, we always need to create a new
3476     // global, not just return a bitcast.)
3477     if (!IsForDefinition)
3478       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3479   }
3480 
3481   auto AddrSpace = GetGlobalVarAddressSpace(D);
3482   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3483 
3484   auto *GV = new llvm::GlobalVariable(
3485       getModule(), Ty->getElementType(), false,
3486       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3487       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3488 
3489   // If we already created a global with the same mangled name (but different
3490   // type) before, take its name and remove it from its parent.
3491   if (Entry) {
3492     GV->takeName(Entry);
3493 
3494     if (!Entry->use_empty()) {
3495       llvm::Constant *NewPtrForOldDecl =
3496           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3497       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3498     }
3499 
3500     Entry->eraseFromParent();
3501   }
3502 
3503   // This is the first use or definition of a mangled name.  If there is a
3504   // deferred decl with this name, remember that we need to emit it at the end
3505   // of the file.
3506   auto DDI = DeferredDecls.find(MangledName);
3507   if (DDI != DeferredDecls.end()) {
3508     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3509     // list, and remove it from DeferredDecls (since we don't need it anymore).
3510     addDeferredDeclToEmit(DDI->second);
3511     DeferredDecls.erase(DDI);
3512   }
3513 
3514   // Handle things which are present even on external declarations.
3515   if (D) {
3516     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3517       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3518 
3519     // FIXME: This code is overly simple and should be merged with other global
3520     // handling.
3521     GV->setConstant(isTypeConstant(D->getType(), false));
3522 
3523     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3524 
3525     setLinkageForGV(GV, D);
3526 
3527     if (D->getTLSKind()) {
3528       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3529         CXXThreadLocals.push_back(D);
3530       setTLSMode(GV, *D);
3531     }
3532 
3533     setGVProperties(GV, D);
3534 
3535     // If required by the ABI, treat declarations of static data members with
3536     // inline initializers as definitions.
3537     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3538       EmitGlobalVarDefinition(D);
3539     }
3540 
3541     // Emit section information for extern variables.
3542     if (D->hasExternalStorage()) {
3543       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3544         GV->setSection(SA->getName());
3545     }
3546 
3547     // Handle XCore specific ABI requirements.
3548     if (getTriple().getArch() == llvm::Triple::xcore &&
3549         D->getLanguageLinkage() == CLanguageLinkage &&
3550         D->getType().isConstant(Context) &&
3551         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3552       GV->setSection(".cp.rodata");
3553 
3554     // Check if we a have a const declaration with an initializer, we may be
3555     // able to emit it as available_externally to expose it's value to the
3556     // optimizer.
3557     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3558         D->getType().isConstQualified() && !GV->hasInitializer() &&
3559         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3560       const auto *Record =
3561           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3562       bool HasMutableFields = Record && Record->hasMutableFields();
3563       if (!HasMutableFields) {
3564         const VarDecl *InitDecl;
3565         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3566         if (InitExpr) {
3567           ConstantEmitter emitter(*this);
3568           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3569           if (Init) {
3570             auto *InitType = Init->getType();
3571             if (GV->getType()->getElementType() != InitType) {
3572               // The type of the initializer does not match the definition.
3573               // This happens when an initializer has a different type from
3574               // the type of the global (because of padding at the end of a
3575               // structure for instance).
3576               GV->setName(StringRef());
3577               // Make a new global with the correct type, this is now guaranteed
3578               // to work.
3579               auto *NewGV = cast<llvm::GlobalVariable>(
3580                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3581                       ->stripPointerCasts());
3582 
3583               // Erase the old global, since it is no longer used.
3584               GV->eraseFromParent();
3585               GV = NewGV;
3586             } else {
3587               GV->setInitializer(Init);
3588               GV->setConstant(true);
3589               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3590             }
3591             emitter.finalize(GV);
3592           }
3593         }
3594       }
3595     }
3596   }
3597 
3598   if (GV->isDeclaration())
3599     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3600 
3601   LangAS ExpectedAS =
3602       D ? D->getType().getAddressSpace()
3603         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3604   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3605          Ty->getPointerAddressSpace());
3606   if (AddrSpace != ExpectedAS)
3607     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3608                                                        ExpectedAS, Ty);
3609 
3610   return GV;
3611 }
3612 
3613 llvm::Constant *
3614 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3615                                ForDefinition_t IsForDefinition) {
3616   const Decl *D = GD.getDecl();
3617   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3618     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3619                                 /*DontDefer=*/false, IsForDefinition);
3620   else if (isa<CXXMethodDecl>(D)) {
3621     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3622         cast<CXXMethodDecl>(D));
3623     auto Ty = getTypes().GetFunctionType(*FInfo);
3624     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3625                              IsForDefinition);
3626   } else if (isa<FunctionDecl>(D)) {
3627     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3628     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3629     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3630                              IsForDefinition);
3631   } else
3632     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3633                               IsForDefinition);
3634 }
3635 
3636 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3637     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3638     unsigned Alignment) {
3639   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3640   llvm::GlobalVariable *OldGV = nullptr;
3641 
3642   if (GV) {
3643     // Check if the variable has the right type.
3644     if (GV->getType()->getElementType() == Ty)
3645       return GV;
3646 
3647     // Because C++ name mangling, the only way we can end up with an already
3648     // existing global with the same name is if it has been declared extern "C".
3649     assert(GV->isDeclaration() && "Declaration has wrong type!");
3650     OldGV = GV;
3651   }
3652 
3653   // Create a new variable.
3654   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3655                                 Linkage, nullptr, Name);
3656 
3657   if (OldGV) {
3658     // Replace occurrences of the old variable if needed.
3659     GV->takeName(OldGV);
3660 
3661     if (!OldGV->use_empty()) {
3662       llvm::Constant *NewPtrForOldDecl =
3663       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3664       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3665     }
3666 
3667     OldGV->eraseFromParent();
3668   }
3669 
3670   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3671       !GV->hasAvailableExternallyLinkage())
3672     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3673 
3674   GV->setAlignment(llvm::MaybeAlign(Alignment));
3675 
3676   return GV;
3677 }
3678 
3679 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3680 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3681 /// then it will be created with the specified type instead of whatever the
3682 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3683 /// that an actual global with type Ty will be returned, not conversion of a
3684 /// variable with the same mangled name but some other type.
3685 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3686                                                   llvm::Type *Ty,
3687                                            ForDefinition_t IsForDefinition) {
3688   assert(D->hasGlobalStorage() && "Not a global variable");
3689   QualType ASTTy = D->getType();
3690   if (!Ty)
3691     Ty = getTypes().ConvertTypeForMem(ASTTy);
3692 
3693   llvm::PointerType *PTy =
3694     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3695 
3696   StringRef MangledName = getMangledName(D);
3697   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3698 }
3699 
3700 /// CreateRuntimeVariable - Create a new runtime global variable with the
3701 /// specified type and name.
3702 llvm::Constant *
3703 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3704                                      StringRef Name) {
3705   auto PtrTy =
3706       getContext().getLangOpts().OpenCL
3707           ? llvm::PointerType::get(
3708                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3709           : llvm::PointerType::getUnqual(Ty);
3710   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3711   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3712   return Ret;
3713 }
3714 
3715 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3716   assert(!D->getInit() && "Cannot emit definite definitions here!");
3717 
3718   StringRef MangledName = getMangledName(D);
3719   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3720 
3721   // We already have a definition, not declaration, with the same mangled name.
3722   // Emitting of declaration is not required (and actually overwrites emitted
3723   // definition).
3724   if (GV && !GV->isDeclaration())
3725     return;
3726 
3727   // If we have not seen a reference to this variable yet, place it into the
3728   // deferred declarations table to be emitted if needed later.
3729   if (!MustBeEmitted(D) && !GV) {
3730       DeferredDecls[MangledName] = D;
3731       return;
3732   }
3733 
3734   // The tentative definition is the only definition.
3735   EmitGlobalVarDefinition(D);
3736 }
3737 
3738 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3739   EmitExternalVarDeclaration(D);
3740 }
3741 
3742 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3743   return Context.toCharUnitsFromBits(
3744       getDataLayout().getTypeStoreSizeInBits(Ty));
3745 }
3746 
3747 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3748   LangAS AddrSpace = LangAS::Default;
3749   if (LangOpts.OpenCL) {
3750     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3751     assert(AddrSpace == LangAS::opencl_global ||
3752            AddrSpace == LangAS::opencl_constant ||
3753            AddrSpace == LangAS::opencl_local ||
3754            AddrSpace >= LangAS::FirstTargetAddressSpace);
3755     return AddrSpace;
3756   }
3757 
3758   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3759     if (D && D->hasAttr<CUDAConstantAttr>())
3760       return LangAS::cuda_constant;
3761     else if (D && D->hasAttr<CUDASharedAttr>())
3762       return LangAS::cuda_shared;
3763     else if (D && D->hasAttr<CUDADeviceAttr>())
3764       return LangAS::cuda_device;
3765     else if (D && D->getType().isConstQualified())
3766       return LangAS::cuda_constant;
3767     else
3768       return LangAS::cuda_device;
3769   }
3770 
3771   if (LangOpts.OpenMP) {
3772     LangAS AS;
3773     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3774       return AS;
3775   }
3776   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3777 }
3778 
3779 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3780   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3781   if (LangOpts.OpenCL)
3782     return LangAS::opencl_constant;
3783   if (auto AS = getTarget().getConstantAddressSpace())
3784     return AS.getValue();
3785   return LangAS::Default;
3786 }
3787 
3788 // In address space agnostic languages, string literals are in default address
3789 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3790 // emitted in constant address space in LLVM IR. To be consistent with other
3791 // parts of AST, string literal global variables in constant address space
3792 // need to be casted to default address space before being put into address
3793 // map and referenced by other part of CodeGen.
3794 // In OpenCL, string literals are in constant address space in AST, therefore
3795 // they should not be casted to default address space.
3796 static llvm::Constant *
3797 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3798                                        llvm::GlobalVariable *GV) {
3799   llvm::Constant *Cast = GV;
3800   if (!CGM.getLangOpts().OpenCL) {
3801     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3802       if (AS != LangAS::Default)
3803         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3804             CGM, GV, AS.getValue(), LangAS::Default,
3805             GV->getValueType()->getPointerTo(
3806                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3807     }
3808   }
3809   return Cast;
3810 }
3811 
3812 template<typename SomeDecl>
3813 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3814                                                llvm::GlobalValue *GV) {
3815   if (!getLangOpts().CPlusPlus)
3816     return;
3817 
3818   // Must have 'used' attribute, or else inline assembly can't rely on
3819   // the name existing.
3820   if (!D->template hasAttr<UsedAttr>())
3821     return;
3822 
3823   // Must have internal linkage and an ordinary name.
3824   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3825     return;
3826 
3827   // Must be in an extern "C" context. Entities declared directly within
3828   // a record are not extern "C" even if the record is in such a context.
3829   const SomeDecl *First = D->getFirstDecl();
3830   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3831     return;
3832 
3833   // OK, this is an internal linkage entity inside an extern "C" linkage
3834   // specification. Make a note of that so we can give it the "expected"
3835   // mangled name if nothing else is using that name.
3836   std::pair<StaticExternCMap::iterator, bool> R =
3837       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3838 
3839   // If we have multiple internal linkage entities with the same name
3840   // in extern "C" regions, none of them gets that name.
3841   if (!R.second)
3842     R.first->second = nullptr;
3843 }
3844 
3845 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3846   if (!CGM.supportsCOMDAT())
3847     return false;
3848 
3849   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3850   // them being "merged" by the COMDAT Folding linker optimization.
3851   if (D.hasAttr<CUDAGlobalAttr>())
3852     return false;
3853 
3854   if (D.hasAttr<SelectAnyAttr>())
3855     return true;
3856 
3857   GVALinkage Linkage;
3858   if (auto *VD = dyn_cast<VarDecl>(&D))
3859     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3860   else
3861     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3862 
3863   switch (Linkage) {
3864   case GVA_Internal:
3865   case GVA_AvailableExternally:
3866   case GVA_StrongExternal:
3867     return false;
3868   case GVA_DiscardableODR:
3869   case GVA_StrongODR:
3870     return true;
3871   }
3872   llvm_unreachable("No such linkage");
3873 }
3874 
3875 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3876                                           llvm::GlobalObject &GO) {
3877   if (!shouldBeInCOMDAT(*this, D))
3878     return;
3879   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3880 }
3881 
3882 /// Pass IsTentative as true if you want to create a tentative definition.
3883 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3884                                             bool IsTentative) {
3885   // OpenCL global variables of sampler type are translated to function calls,
3886   // therefore no need to be translated.
3887   QualType ASTTy = D->getType();
3888   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3889     return;
3890 
3891   // If this is OpenMP device, check if it is legal to emit this global
3892   // normally.
3893   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3894       OpenMPRuntime->emitTargetGlobalVariable(D))
3895     return;
3896 
3897   llvm::Constant *Init = nullptr;
3898   bool NeedsGlobalCtor = false;
3899   bool NeedsGlobalDtor =
3900       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3901 
3902   const VarDecl *InitDecl;
3903   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3904 
3905   Optional<ConstantEmitter> emitter;
3906 
3907   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3908   // as part of their declaration."  Sema has already checked for
3909   // error cases, so we just need to set Init to UndefValue.
3910   bool IsCUDASharedVar =
3911       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3912   // Shadows of initialized device-side global variables are also left
3913   // undefined.
3914   bool IsCUDAShadowVar =
3915       !getLangOpts().CUDAIsDevice &&
3916       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3917        D->hasAttr<CUDASharedAttr>());
3918   // HIP pinned shadow of initialized host-side global variables are also
3919   // left undefined.
3920   bool IsHIPPinnedShadowVar =
3921       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3922   if (getLangOpts().CUDA &&
3923       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3924     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3925   else if (!InitExpr) {
3926     // This is a tentative definition; tentative definitions are
3927     // implicitly initialized with { 0 }.
3928     //
3929     // Note that tentative definitions are only emitted at the end of
3930     // a translation unit, so they should never have incomplete
3931     // type. In addition, EmitTentativeDefinition makes sure that we
3932     // never attempt to emit a tentative definition if a real one
3933     // exists. A use may still exists, however, so we still may need
3934     // to do a RAUW.
3935     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3936     Init = EmitNullConstant(D->getType());
3937   } else {
3938     initializedGlobalDecl = GlobalDecl(D);
3939     emitter.emplace(*this);
3940     Init = emitter->tryEmitForInitializer(*InitDecl);
3941 
3942     if (!Init) {
3943       QualType T = InitExpr->getType();
3944       if (D->getType()->isReferenceType())
3945         T = D->getType();
3946 
3947       if (getLangOpts().CPlusPlus) {
3948         Init = EmitNullConstant(T);
3949         NeedsGlobalCtor = true;
3950       } else {
3951         ErrorUnsupported(D, "static initializer");
3952         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3953       }
3954     } else {
3955       // We don't need an initializer, so remove the entry for the delayed
3956       // initializer position (just in case this entry was delayed) if we
3957       // also don't need to register a destructor.
3958       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3959         DelayedCXXInitPosition.erase(D);
3960     }
3961   }
3962 
3963   llvm::Type* InitType = Init->getType();
3964   llvm::Constant *Entry =
3965       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3966 
3967   // Strip off pointer casts if we got them.
3968   Entry = Entry->stripPointerCasts();
3969 
3970   // Entry is now either a Function or GlobalVariable.
3971   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3972 
3973   // We have a definition after a declaration with the wrong type.
3974   // We must make a new GlobalVariable* and update everything that used OldGV
3975   // (a declaration or tentative definition) with the new GlobalVariable*
3976   // (which will be a definition).
3977   //
3978   // This happens if there is a prototype for a global (e.g.
3979   // "extern int x[];") and then a definition of a different type (e.g.
3980   // "int x[10];"). This also happens when an initializer has a different type
3981   // from the type of the global (this happens with unions).
3982   if (!GV || GV->getType()->getElementType() != InitType ||
3983       GV->getType()->getAddressSpace() !=
3984           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3985 
3986     // Move the old entry aside so that we'll create a new one.
3987     Entry->setName(StringRef());
3988 
3989     // Make a new global with the correct type, this is now guaranteed to work.
3990     GV = cast<llvm::GlobalVariable>(
3991         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3992             ->stripPointerCasts());
3993 
3994     // Replace all uses of the old global with the new global
3995     llvm::Constant *NewPtrForOldDecl =
3996         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3997     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3998 
3999     // Erase the old global, since it is no longer used.
4000     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4001   }
4002 
4003   MaybeHandleStaticInExternC(D, GV);
4004 
4005   if (D->hasAttr<AnnotateAttr>())
4006     AddGlobalAnnotations(D, GV);
4007 
4008   // Set the llvm linkage type as appropriate.
4009   llvm::GlobalValue::LinkageTypes Linkage =
4010       getLLVMLinkageVarDefinition(D, GV->isConstant());
4011 
4012   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4013   // the device. [...]"
4014   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4015   // __device__, declares a variable that: [...]
4016   // Is accessible from all the threads within the grid and from the host
4017   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4018   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4019   if (GV && LangOpts.CUDA) {
4020     if (LangOpts.CUDAIsDevice) {
4021       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4022           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4023         GV->setExternallyInitialized(true);
4024     } else {
4025       // Host-side shadows of external declarations of device-side
4026       // global variables become internal definitions. These have to
4027       // be internal in order to prevent name conflicts with global
4028       // host variables with the same name in a different TUs.
4029       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4030           D->hasAttr<HIPPinnedShadowAttr>()) {
4031         Linkage = llvm::GlobalValue::InternalLinkage;
4032 
4033         // Shadow variables and their properties must be registered
4034         // with CUDA runtime.
4035         unsigned Flags = 0;
4036         if (!D->hasDefinition())
4037           Flags |= CGCUDARuntime::ExternDeviceVar;
4038         if (D->hasAttr<CUDAConstantAttr>())
4039           Flags |= CGCUDARuntime::ConstantDeviceVar;
4040         // Extern global variables will be registered in the TU where they are
4041         // defined.
4042         if (!D->hasExternalStorage())
4043           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4044       } else if (D->hasAttr<CUDASharedAttr>())
4045         // __shared__ variables are odd. Shadows do get created, but
4046         // they are not registered with the CUDA runtime, so they
4047         // can't really be used to access their device-side
4048         // counterparts. It's not clear yet whether it's nvcc's bug or
4049         // a feature, but we've got to do the same for compatibility.
4050         Linkage = llvm::GlobalValue::InternalLinkage;
4051     }
4052   }
4053 
4054   if (!IsHIPPinnedShadowVar)
4055     GV->setInitializer(Init);
4056   if (emitter) emitter->finalize(GV);
4057 
4058   // If it is safe to mark the global 'constant', do so now.
4059   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4060                   isTypeConstant(D->getType(), true));
4061 
4062   // If it is in a read-only section, mark it 'constant'.
4063   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4064     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4065     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4066       GV->setConstant(true);
4067   }
4068 
4069   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4070 
4071   // On Darwin, if the normal linkage of a C++ thread_local variable is
4072   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4073   // copies within a linkage unit; otherwise, the backing variable has
4074   // internal linkage and all accesses should just be calls to the
4075   // Itanium-specified entry point, which has the normal linkage of the
4076   // variable. This is to preserve the ability to change the implementation
4077   // behind the scenes.
4078   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4079       Context.getTargetInfo().getTriple().isOSDarwin() &&
4080       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4081       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4082     Linkage = llvm::GlobalValue::InternalLinkage;
4083 
4084   GV->setLinkage(Linkage);
4085   if (D->hasAttr<DLLImportAttr>())
4086     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4087   else if (D->hasAttr<DLLExportAttr>())
4088     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4089   else
4090     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4091 
4092   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4093     // common vars aren't constant even if declared const.
4094     GV->setConstant(false);
4095     // Tentative definition of global variables may be initialized with
4096     // non-zero null pointers. In this case they should have weak linkage
4097     // since common linkage must have zero initializer and must not have
4098     // explicit section therefore cannot have non-zero initial value.
4099     if (!GV->getInitializer()->isNullValue())
4100       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4101   }
4102 
4103   setNonAliasAttributes(D, GV);
4104 
4105   if (D->getTLSKind() && !GV->isThreadLocal()) {
4106     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4107       CXXThreadLocals.push_back(D);
4108     setTLSMode(GV, *D);
4109   }
4110 
4111   maybeSetTrivialComdat(*D, *GV);
4112 
4113   // Emit the initializer function if necessary.
4114   if (NeedsGlobalCtor || NeedsGlobalDtor)
4115     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4116 
4117   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4118 
4119   // Emit global variable debug information.
4120   if (CGDebugInfo *DI = getModuleDebugInfo())
4121     if (getCodeGenOpts().hasReducedDebugInfo())
4122       DI->EmitGlobalVariable(GV, D);
4123 }
4124 
4125 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4126   if (CGDebugInfo *DI = getModuleDebugInfo())
4127     if (getCodeGenOpts().hasReducedDebugInfo()) {
4128       QualType ASTTy = D->getType();
4129       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4130       llvm::PointerType *PTy =
4131           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4132       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4133       DI->EmitExternalVariable(
4134           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4135     }
4136 }
4137 
4138 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4139                                       CodeGenModule &CGM, const VarDecl *D,
4140                                       bool NoCommon) {
4141   // Don't give variables common linkage if -fno-common was specified unless it
4142   // was overridden by a NoCommon attribute.
4143   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4144     return true;
4145 
4146   // C11 6.9.2/2:
4147   //   A declaration of an identifier for an object that has file scope without
4148   //   an initializer, and without a storage-class specifier or with the
4149   //   storage-class specifier static, constitutes a tentative definition.
4150   if (D->getInit() || D->hasExternalStorage())
4151     return true;
4152 
4153   // A variable cannot be both common and exist in a section.
4154   if (D->hasAttr<SectionAttr>())
4155     return true;
4156 
4157   // A variable cannot be both common and exist in a section.
4158   // We don't try to determine which is the right section in the front-end.
4159   // If no specialized section name is applicable, it will resort to default.
4160   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4161       D->hasAttr<PragmaClangDataSectionAttr>() ||
4162       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4163       D->hasAttr<PragmaClangRodataSectionAttr>())
4164     return true;
4165 
4166   // Thread local vars aren't considered common linkage.
4167   if (D->getTLSKind())
4168     return true;
4169 
4170   // Tentative definitions marked with WeakImportAttr are true definitions.
4171   if (D->hasAttr<WeakImportAttr>())
4172     return true;
4173 
4174   // A variable cannot be both common and exist in a comdat.
4175   if (shouldBeInCOMDAT(CGM, *D))
4176     return true;
4177 
4178   // Declarations with a required alignment do not have common linkage in MSVC
4179   // mode.
4180   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4181     if (D->hasAttr<AlignedAttr>())
4182       return true;
4183     QualType VarType = D->getType();
4184     if (Context.isAlignmentRequired(VarType))
4185       return true;
4186 
4187     if (const auto *RT = VarType->getAs<RecordType>()) {
4188       const RecordDecl *RD = RT->getDecl();
4189       for (const FieldDecl *FD : RD->fields()) {
4190         if (FD->isBitField())
4191           continue;
4192         if (FD->hasAttr<AlignedAttr>())
4193           return true;
4194         if (Context.isAlignmentRequired(FD->getType()))
4195           return true;
4196       }
4197     }
4198   }
4199 
4200   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4201   // common symbols, so symbols with greater alignment requirements cannot be
4202   // common.
4203   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4204   // alignments for common symbols via the aligncomm directive, so this
4205   // restriction only applies to MSVC environments.
4206   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4207       Context.getTypeAlignIfKnown(D->getType()) >
4208           Context.toBits(CharUnits::fromQuantity(32)))
4209     return true;
4210 
4211   return false;
4212 }
4213 
4214 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4215     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4216   if (Linkage == GVA_Internal)
4217     return llvm::Function::InternalLinkage;
4218 
4219   if (D->hasAttr<WeakAttr>()) {
4220     if (IsConstantVariable)
4221       return llvm::GlobalVariable::WeakODRLinkage;
4222     else
4223       return llvm::GlobalVariable::WeakAnyLinkage;
4224   }
4225 
4226   if (const auto *FD = D->getAsFunction())
4227     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4228       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4229 
4230   // We are guaranteed to have a strong definition somewhere else,
4231   // so we can use available_externally linkage.
4232   if (Linkage == GVA_AvailableExternally)
4233     return llvm::GlobalValue::AvailableExternallyLinkage;
4234 
4235   // Note that Apple's kernel linker doesn't support symbol
4236   // coalescing, so we need to avoid linkonce and weak linkages there.
4237   // Normally, this means we just map to internal, but for explicit
4238   // instantiations we'll map to external.
4239 
4240   // In C++, the compiler has to emit a definition in every translation unit
4241   // that references the function.  We should use linkonce_odr because
4242   // a) if all references in this translation unit are optimized away, we
4243   // don't need to codegen it.  b) if the function persists, it needs to be
4244   // merged with other definitions. c) C++ has the ODR, so we know the
4245   // definition is dependable.
4246   if (Linkage == GVA_DiscardableODR)
4247     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4248                                             : llvm::Function::InternalLinkage;
4249 
4250   // An explicit instantiation of a template has weak linkage, since
4251   // explicit instantiations can occur in multiple translation units
4252   // and must all be equivalent. However, we are not allowed to
4253   // throw away these explicit instantiations.
4254   //
4255   // We don't currently support CUDA device code spread out across multiple TUs,
4256   // so say that CUDA templates are either external (for kernels) or internal.
4257   // This lets llvm perform aggressive inter-procedural optimizations.
4258   if (Linkage == GVA_StrongODR) {
4259     if (Context.getLangOpts().AppleKext)
4260       return llvm::Function::ExternalLinkage;
4261     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4262       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4263                                           : llvm::Function::InternalLinkage;
4264     return llvm::Function::WeakODRLinkage;
4265   }
4266 
4267   // C++ doesn't have tentative definitions and thus cannot have common
4268   // linkage.
4269   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4270       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4271                                  CodeGenOpts.NoCommon))
4272     return llvm::GlobalVariable::CommonLinkage;
4273 
4274   // selectany symbols are externally visible, so use weak instead of
4275   // linkonce.  MSVC optimizes away references to const selectany globals, so
4276   // all definitions should be the same and ODR linkage should be used.
4277   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4278   if (D->hasAttr<SelectAnyAttr>())
4279     return llvm::GlobalVariable::WeakODRLinkage;
4280 
4281   // Otherwise, we have strong external linkage.
4282   assert(Linkage == GVA_StrongExternal);
4283   return llvm::GlobalVariable::ExternalLinkage;
4284 }
4285 
4286 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4287     const VarDecl *VD, bool IsConstant) {
4288   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4289   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4290 }
4291 
4292 /// Replace the uses of a function that was declared with a non-proto type.
4293 /// We want to silently drop extra arguments from call sites
4294 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4295                                           llvm::Function *newFn) {
4296   // Fast path.
4297   if (old->use_empty()) return;
4298 
4299   llvm::Type *newRetTy = newFn->getReturnType();
4300   SmallVector<llvm::Value*, 4> newArgs;
4301   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4302 
4303   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4304          ui != ue; ) {
4305     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4306     llvm::User *user = use->getUser();
4307 
4308     // Recognize and replace uses of bitcasts.  Most calls to
4309     // unprototyped functions will use bitcasts.
4310     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4311       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4312         replaceUsesOfNonProtoConstant(bitcast, newFn);
4313       continue;
4314     }
4315 
4316     // Recognize calls to the function.
4317     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4318     if (!callSite) continue;
4319     if (!callSite->isCallee(&*use))
4320       continue;
4321 
4322     // If the return types don't match exactly, then we can't
4323     // transform this call unless it's dead.
4324     if (callSite->getType() != newRetTy && !callSite->use_empty())
4325       continue;
4326 
4327     // Get the call site's attribute list.
4328     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4329     llvm::AttributeList oldAttrs = callSite->getAttributes();
4330 
4331     // If the function was passed too few arguments, don't transform.
4332     unsigned newNumArgs = newFn->arg_size();
4333     if (callSite->arg_size() < newNumArgs)
4334       continue;
4335 
4336     // If extra arguments were passed, we silently drop them.
4337     // If any of the types mismatch, we don't transform.
4338     unsigned argNo = 0;
4339     bool dontTransform = false;
4340     for (llvm::Argument &A : newFn->args()) {
4341       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4342         dontTransform = true;
4343         break;
4344       }
4345 
4346       // Add any parameter attributes.
4347       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4348       argNo++;
4349     }
4350     if (dontTransform)
4351       continue;
4352 
4353     // Okay, we can transform this.  Create the new call instruction and copy
4354     // over the required information.
4355     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4356 
4357     // Copy over any operand bundles.
4358     callSite->getOperandBundlesAsDefs(newBundles);
4359 
4360     llvm::CallBase *newCall;
4361     if (dyn_cast<llvm::CallInst>(callSite)) {
4362       newCall =
4363           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4364     } else {
4365       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4366       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4367                                          oldInvoke->getUnwindDest(), newArgs,
4368                                          newBundles, "", callSite);
4369     }
4370     newArgs.clear(); // for the next iteration
4371 
4372     if (!newCall->getType()->isVoidTy())
4373       newCall->takeName(callSite);
4374     newCall->setAttributes(llvm::AttributeList::get(
4375         newFn->getContext(), oldAttrs.getFnAttributes(),
4376         oldAttrs.getRetAttributes(), newArgAttrs));
4377     newCall->setCallingConv(callSite->getCallingConv());
4378 
4379     // Finally, remove the old call, replacing any uses with the new one.
4380     if (!callSite->use_empty())
4381       callSite->replaceAllUsesWith(newCall);
4382 
4383     // Copy debug location attached to CI.
4384     if (callSite->getDebugLoc())
4385       newCall->setDebugLoc(callSite->getDebugLoc());
4386 
4387     callSite->eraseFromParent();
4388   }
4389 }
4390 
4391 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4392 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4393 /// existing call uses of the old function in the module, this adjusts them to
4394 /// call the new function directly.
4395 ///
4396 /// This is not just a cleanup: the always_inline pass requires direct calls to
4397 /// functions to be able to inline them.  If there is a bitcast in the way, it
4398 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4399 /// run at -O0.
4400 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4401                                                       llvm::Function *NewFn) {
4402   // If we're redefining a global as a function, don't transform it.
4403   if (!isa<llvm::Function>(Old)) return;
4404 
4405   replaceUsesOfNonProtoConstant(Old, NewFn);
4406 }
4407 
4408 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4409   auto DK = VD->isThisDeclarationADefinition();
4410   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4411     return;
4412 
4413   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4414   // If we have a definition, this might be a deferred decl. If the
4415   // instantiation is explicit, make sure we emit it at the end.
4416   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4417     GetAddrOfGlobalVar(VD);
4418 
4419   EmitTopLevelDecl(VD);
4420 }
4421 
4422 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4423                                                  llvm::GlobalValue *GV) {
4424   // Check if this must be emitted as declare variant.
4425   if (LangOpts.OpenMP && OpenMPRuntime &&
4426       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4427     return;
4428 
4429   const auto *D = cast<FunctionDecl>(GD.getDecl());
4430 
4431   // Compute the function info and LLVM type.
4432   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4433   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4434 
4435   // Get or create the prototype for the function.
4436   if (!GV || (GV->getType()->getElementType() != Ty))
4437     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4438                                                    /*DontDefer=*/true,
4439                                                    ForDefinition));
4440 
4441   // Already emitted.
4442   if (!GV->isDeclaration())
4443     return;
4444 
4445   // We need to set linkage and visibility on the function before
4446   // generating code for it because various parts of IR generation
4447   // want to propagate this information down (e.g. to local static
4448   // declarations).
4449   auto *Fn = cast<llvm::Function>(GV);
4450   setFunctionLinkage(GD, Fn);
4451 
4452   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4453   setGVProperties(Fn, GD);
4454 
4455   MaybeHandleStaticInExternC(D, Fn);
4456 
4457 
4458   maybeSetTrivialComdat(*D, *Fn);
4459 
4460   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4461 
4462   setNonAliasAttributes(GD, Fn);
4463   SetLLVMFunctionAttributesForDefinition(D, Fn);
4464 
4465   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4466     AddGlobalCtor(Fn, CA->getPriority());
4467   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4468     AddGlobalDtor(Fn, DA->getPriority());
4469   if (D->hasAttr<AnnotateAttr>())
4470     AddGlobalAnnotations(D, Fn);
4471 }
4472 
4473 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4474   const auto *D = cast<ValueDecl>(GD.getDecl());
4475   const AliasAttr *AA = D->getAttr<AliasAttr>();
4476   assert(AA && "Not an alias?");
4477 
4478   StringRef MangledName = getMangledName(GD);
4479 
4480   if (AA->getAliasee() == MangledName) {
4481     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4482     return;
4483   }
4484 
4485   // If there is a definition in the module, then it wins over the alias.
4486   // This is dubious, but allow it to be safe.  Just ignore the alias.
4487   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4488   if (Entry && !Entry->isDeclaration())
4489     return;
4490 
4491   Aliases.push_back(GD);
4492 
4493   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4494 
4495   // Create a reference to the named value.  This ensures that it is emitted
4496   // if a deferred decl.
4497   llvm::Constant *Aliasee;
4498   llvm::GlobalValue::LinkageTypes LT;
4499   if (isa<llvm::FunctionType>(DeclTy)) {
4500     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4501                                       /*ForVTable=*/false);
4502     LT = getFunctionLinkage(GD);
4503   } else {
4504     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4505                                     llvm::PointerType::getUnqual(DeclTy),
4506                                     /*D=*/nullptr);
4507     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4508                                      D->getType().isConstQualified());
4509   }
4510 
4511   // Create the new alias itself, but don't set a name yet.
4512   auto *GA =
4513       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4514 
4515   if (Entry) {
4516     if (GA->getAliasee() == Entry) {
4517       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4518       return;
4519     }
4520 
4521     assert(Entry->isDeclaration());
4522 
4523     // If there is a declaration in the module, then we had an extern followed
4524     // by the alias, as in:
4525     //   extern int test6();
4526     //   ...
4527     //   int test6() __attribute__((alias("test7")));
4528     //
4529     // Remove it and replace uses of it with the alias.
4530     GA->takeName(Entry);
4531 
4532     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4533                                                           Entry->getType()));
4534     Entry->eraseFromParent();
4535   } else {
4536     GA->setName(MangledName);
4537   }
4538 
4539   // Set attributes which are particular to an alias; this is a
4540   // specialization of the attributes which may be set on a global
4541   // variable/function.
4542   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4543       D->isWeakImported()) {
4544     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4545   }
4546 
4547   if (const auto *VD = dyn_cast<VarDecl>(D))
4548     if (VD->getTLSKind())
4549       setTLSMode(GA, *VD);
4550 
4551   SetCommonAttributes(GD, GA);
4552 }
4553 
4554 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4555   const auto *D = cast<ValueDecl>(GD.getDecl());
4556   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4557   assert(IFA && "Not an ifunc?");
4558 
4559   StringRef MangledName = getMangledName(GD);
4560 
4561   if (IFA->getResolver() == MangledName) {
4562     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4563     return;
4564   }
4565 
4566   // Report an error if some definition overrides ifunc.
4567   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4568   if (Entry && !Entry->isDeclaration()) {
4569     GlobalDecl OtherGD;
4570     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4571         DiagnosedConflictingDefinitions.insert(GD).second) {
4572       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4573           << MangledName;
4574       Diags.Report(OtherGD.getDecl()->getLocation(),
4575                    diag::note_previous_definition);
4576     }
4577     return;
4578   }
4579 
4580   Aliases.push_back(GD);
4581 
4582   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4583   llvm::Constant *Resolver =
4584       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4585                               /*ForVTable=*/false);
4586   llvm::GlobalIFunc *GIF =
4587       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4588                                 "", Resolver, &getModule());
4589   if (Entry) {
4590     if (GIF->getResolver() == Entry) {
4591       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4592       return;
4593     }
4594     assert(Entry->isDeclaration());
4595 
4596     // If there is a declaration in the module, then we had an extern followed
4597     // by the ifunc, as in:
4598     //   extern int test();
4599     //   ...
4600     //   int test() __attribute__((ifunc("resolver")));
4601     //
4602     // Remove it and replace uses of it with the ifunc.
4603     GIF->takeName(Entry);
4604 
4605     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4606                                                           Entry->getType()));
4607     Entry->eraseFromParent();
4608   } else
4609     GIF->setName(MangledName);
4610 
4611   SetCommonAttributes(GD, GIF);
4612 }
4613 
4614 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4615                                             ArrayRef<llvm::Type*> Tys) {
4616   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4617                                          Tys);
4618 }
4619 
4620 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4621 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4622                          const StringLiteral *Literal, bool TargetIsLSB,
4623                          bool &IsUTF16, unsigned &StringLength) {
4624   StringRef String = Literal->getString();
4625   unsigned NumBytes = String.size();
4626 
4627   // Check for simple case.
4628   if (!Literal->containsNonAsciiOrNull()) {
4629     StringLength = NumBytes;
4630     return *Map.insert(std::make_pair(String, nullptr)).first;
4631   }
4632 
4633   // Otherwise, convert the UTF8 literals into a string of shorts.
4634   IsUTF16 = true;
4635 
4636   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4637   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4638   llvm::UTF16 *ToPtr = &ToBuf[0];
4639 
4640   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4641                                  ToPtr + NumBytes, llvm::strictConversion);
4642 
4643   // ConvertUTF8toUTF16 returns the length in ToPtr.
4644   StringLength = ToPtr - &ToBuf[0];
4645 
4646   // Add an explicit null.
4647   *ToPtr = 0;
4648   return *Map.insert(std::make_pair(
4649                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4650                                    (StringLength + 1) * 2),
4651                          nullptr)).first;
4652 }
4653 
4654 ConstantAddress
4655 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4656   unsigned StringLength = 0;
4657   bool isUTF16 = false;
4658   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4659       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4660                                getDataLayout().isLittleEndian(), isUTF16,
4661                                StringLength);
4662 
4663   if (auto *C = Entry.second)
4664     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4665 
4666   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4667   llvm::Constant *Zeros[] = { Zero, Zero };
4668 
4669   const ASTContext &Context = getContext();
4670   const llvm::Triple &Triple = getTriple();
4671 
4672   const auto CFRuntime = getLangOpts().CFRuntime;
4673   const bool IsSwiftABI =
4674       static_cast<unsigned>(CFRuntime) >=
4675       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4676   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4677 
4678   // If we don't already have it, get __CFConstantStringClassReference.
4679   if (!CFConstantStringClassRef) {
4680     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4681     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4682     Ty = llvm::ArrayType::get(Ty, 0);
4683 
4684     switch (CFRuntime) {
4685     default: break;
4686     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4687     case LangOptions::CoreFoundationABI::Swift5_0:
4688       CFConstantStringClassName =
4689           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4690                               : "$s10Foundation19_NSCFConstantStringCN";
4691       Ty = IntPtrTy;
4692       break;
4693     case LangOptions::CoreFoundationABI::Swift4_2:
4694       CFConstantStringClassName =
4695           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4696                               : "$S10Foundation19_NSCFConstantStringCN";
4697       Ty = IntPtrTy;
4698       break;
4699     case LangOptions::CoreFoundationABI::Swift4_1:
4700       CFConstantStringClassName =
4701           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4702                               : "__T010Foundation19_NSCFConstantStringCN";
4703       Ty = IntPtrTy;
4704       break;
4705     }
4706 
4707     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4708 
4709     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4710       llvm::GlobalValue *GV = nullptr;
4711 
4712       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4713         IdentifierInfo &II = Context.Idents.get(GV->getName());
4714         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4715         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4716 
4717         const VarDecl *VD = nullptr;
4718         for (const auto &Result : DC->lookup(&II))
4719           if ((VD = dyn_cast<VarDecl>(Result)))
4720             break;
4721 
4722         if (Triple.isOSBinFormatELF()) {
4723           if (!VD)
4724             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4725         } else {
4726           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4727           if (!VD || !VD->hasAttr<DLLExportAttr>())
4728             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4729           else
4730             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4731         }
4732 
4733         setDSOLocal(GV);
4734       }
4735     }
4736 
4737     // Decay array -> ptr
4738     CFConstantStringClassRef =
4739         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4740                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4741   }
4742 
4743   QualType CFTy = Context.getCFConstantStringType();
4744 
4745   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4746 
4747   ConstantInitBuilder Builder(*this);
4748   auto Fields = Builder.beginStruct(STy);
4749 
4750   // Class pointer.
4751   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4752 
4753   // Flags.
4754   if (IsSwiftABI) {
4755     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4756     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4757   } else {
4758     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4759   }
4760 
4761   // String pointer.
4762   llvm::Constant *C = nullptr;
4763   if (isUTF16) {
4764     auto Arr = llvm::makeArrayRef(
4765         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4766         Entry.first().size() / 2);
4767     C = llvm::ConstantDataArray::get(VMContext, Arr);
4768   } else {
4769     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4770   }
4771 
4772   // Note: -fwritable-strings doesn't make the backing store strings of
4773   // CFStrings writable. (See <rdar://problem/10657500>)
4774   auto *GV =
4775       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4776                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4777   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4778   // Don't enforce the target's minimum global alignment, since the only use
4779   // of the string is via this class initializer.
4780   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4781                             : Context.getTypeAlignInChars(Context.CharTy);
4782   GV->setAlignment(Align.getAsAlign());
4783 
4784   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4785   // Without it LLVM can merge the string with a non unnamed_addr one during
4786   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4787   if (Triple.isOSBinFormatMachO())
4788     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4789                            : "__TEXT,__cstring,cstring_literals");
4790   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4791   // the static linker to adjust permissions to read-only later on.
4792   else if (Triple.isOSBinFormatELF())
4793     GV->setSection(".rodata");
4794 
4795   // String.
4796   llvm::Constant *Str =
4797       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4798 
4799   if (isUTF16)
4800     // Cast the UTF16 string to the correct type.
4801     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4802   Fields.add(Str);
4803 
4804   // String length.
4805   llvm::IntegerType *LengthTy =
4806       llvm::IntegerType::get(getModule().getContext(),
4807                              Context.getTargetInfo().getLongWidth());
4808   if (IsSwiftABI) {
4809     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4810         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4811       LengthTy = Int32Ty;
4812     else
4813       LengthTy = IntPtrTy;
4814   }
4815   Fields.addInt(LengthTy, StringLength);
4816 
4817   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4818   // properly aligned on 32-bit platforms.
4819   CharUnits Alignment =
4820       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4821 
4822   // The struct.
4823   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4824                                     /*isConstant=*/false,
4825                                     llvm::GlobalVariable::PrivateLinkage);
4826   GV->addAttribute("objc_arc_inert");
4827   switch (Triple.getObjectFormat()) {
4828   case llvm::Triple::UnknownObjectFormat:
4829     llvm_unreachable("unknown file format");
4830   case llvm::Triple::XCOFF:
4831     llvm_unreachable("XCOFF is not yet implemented");
4832   case llvm::Triple::COFF:
4833   case llvm::Triple::ELF:
4834   case llvm::Triple::Wasm:
4835     GV->setSection("cfstring");
4836     break;
4837   case llvm::Triple::MachO:
4838     GV->setSection("__DATA,__cfstring");
4839     break;
4840   }
4841   Entry.second = GV;
4842 
4843   return ConstantAddress(GV, Alignment);
4844 }
4845 
4846 bool CodeGenModule::getExpressionLocationsEnabled() const {
4847   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4848 }
4849 
4850 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4851   if (ObjCFastEnumerationStateType.isNull()) {
4852     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4853     D->startDefinition();
4854 
4855     QualType FieldTypes[] = {
4856       Context.UnsignedLongTy,
4857       Context.getPointerType(Context.getObjCIdType()),
4858       Context.getPointerType(Context.UnsignedLongTy),
4859       Context.getConstantArrayType(Context.UnsignedLongTy,
4860                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4861     };
4862 
4863     for (size_t i = 0; i < 4; ++i) {
4864       FieldDecl *Field = FieldDecl::Create(Context,
4865                                            D,
4866                                            SourceLocation(),
4867                                            SourceLocation(), nullptr,
4868                                            FieldTypes[i], /*TInfo=*/nullptr,
4869                                            /*BitWidth=*/nullptr,
4870                                            /*Mutable=*/false,
4871                                            ICIS_NoInit);
4872       Field->setAccess(AS_public);
4873       D->addDecl(Field);
4874     }
4875 
4876     D->completeDefinition();
4877     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4878   }
4879 
4880   return ObjCFastEnumerationStateType;
4881 }
4882 
4883 llvm::Constant *
4884 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4885   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4886 
4887   // Don't emit it as the address of the string, emit the string data itself
4888   // as an inline array.
4889   if (E->getCharByteWidth() == 1) {
4890     SmallString<64> Str(E->getString());
4891 
4892     // Resize the string to the right size, which is indicated by its type.
4893     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4894     Str.resize(CAT->getSize().getZExtValue());
4895     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4896   }
4897 
4898   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4899   llvm::Type *ElemTy = AType->getElementType();
4900   unsigned NumElements = AType->getNumElements();
4901 
4902   // Wide strings have either 2-byte or 4-byte elements.
4903   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4904     SmallVector<uint16_t, 32> Elements;
4905     Elements.reserve(NumElements);
4906 
4907     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4908       Elements.push_back(E->getCodeUnit(i));
4909     Elements.resize(NumElements);
4910     return llvm::ConstantDataArray::get(VMContext, Elements);
4911   }
4912 
4913   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4914   SmallVector<uint32_t, 32> Elements;
4915   Elements.reserve(NumElements);
4916 
4917   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4918     Elements.push_back(E->getCodeUnit(i));
4919   Elements.resize(NumElements);
4920   return llvm::ConstantDataArray::get(VMContext, Elements);
4921 }
4922 
4923 static llvm::GlobalVariable *
4924 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4925                       CodeGenModule &CGM, StringRef GlobalName,
4926                       CharUnits Alignment) {
4927   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4928       CGM.getStringLiteralAddressSpace());
4929 
4930   llvm::Module &M = CGM.getModule();
4931   // Create a global variable for this string
4932   auto *GV = new llvm::GlobalVariable(
4933       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4934       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4935   GV->setAlignment(Alignment.getAsAlign());
4936   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4937   if (GV->isWeakForLinker()) {
4938     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4939     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4940   }
4941   CGM.setDSOLocal(GV);
4942 
4943   return GV;
4944 }
4945 
4946 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4947 /// constant array for the given string literal.
4948 ConstantAddress
4949 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4950                                                   StringRef Name) {
4951   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4952 
4953   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4954   llvm::GlobalVariable **Entry = nullptr;
4955   if (!LangOpts.WritableStrings) {
4956     Entry = &ConstantStringMap[C];
4957     if (auto GV = *Entry) {
4958       if (Alignment.getQuantity() > GV->getAlignment())
4959         GV->setAlignment(Alignment.getAsAlign());
4960       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4961                              Alignment);
4962     }
4963   }
4964 
4965   SmallString<256> MangledNameBuffer;
4966   StringRef GlobalVariableName;
4967   llvm::GlobalValue::LinkageTypes LT;
4968 
4969   // Mangle the string literal if that's how the ABI merges duplicate strings.
4970   // Don't do it if they are writable, since we don't want writes in one TU to
4971   // affect strings in another.
4972   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4973       !LangOpts.WritableStrings) {
4974     llvm::raw_svector_ostream Out(MangledNameBuffer);
4975     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4976     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4977     GlobalVariableName = MangledNameBuffer;
4978   } else {
4979     LT = llvm::GlobalValue::PrivateLinkage;
4980     GlobalVariableName = Name;
4981   }
4982 
4983   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4984   if (Entry)
4985     *Entry = GV;
4986 
4987   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4988                                   QualType());
4989 
4990   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4991                          Alignment);
4992 }
4993 
4994 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4995 /// array for the given ObjCEncodeExpr node.
4996 ConstantAddress
4997 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4998   std::string Str;
4999   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5000 
5001   return GetAddrOfConstantCString(Str);
5002 }
5003 
5004 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5005 /// the literal and a terminating '\0' character.
5006 /// The result has pointer to array type.
5007 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5008     const std::string &Str, const char *GlobalName) {
5009   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5010   CharUnits Alignment =
5011     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5012 
5013   llvm::Constant *C =
5014       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5015 
5016   // Don't share any string literals if strings aren't constant.
5017   llvm::GlobalVariable **Entry = nullptr;
5018   if (!LangOpts.WritableStrings) {
5019     Entry = &ConstantStringMap[C];
5020     if (auto GV = *Entry) {
5021       if (Alignment.getQuantity() > GV->getAlignment())
5022         GV->setAlignment(Alignment.getAsAlign());
5023       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5024                              Alignment);
5025     }
5026   }
5027 
5028   // Get the default prefix if a name wasn't specified.
5029   if (!GlobalName)
5030     GlobalName = ".str";
5031   // Create a global variable for this.
5032   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5033                                   GlobalName, Alignment);
5034   if (Entry)
5035     *Entry = GV;
5036 
5037   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5038                          Alignment);
5039 }
5040 
5041 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5042     const MaterializeTemporaryExpr *E, const Expr *Init) {
5043   assert((E->getStorageDuration() == SD_Static ||
5044           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5045   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5046 
5047   // If we're not materializing a subobject of the temporary, keep the
5048   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5049   QualType MaterializedType = Init->getType();
5050   if (Init == E->getSubExpr())
5051     MaterializedType = E->getType();
5052 
5053   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5054 
5055   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5056     return ConstantAddress(Slot, Align);
5057 
5058   // FIXME: If an externally-visible declaration extends multiple temporaries,
5059   // we need to give each temporary the same name in every translation unit (and
5060   // we also need to make the temporaries externally-visible).
5061   SmallString<256> Name;
5062   llvm::raw_svector_ostream Out(Name);
5063   getCXXABI().getMangleContext().mangleReferenceTemporary(
5064       VD, E->getManglingNumber(), Out);
5065 
5066   APValue *Value = nullptr;
5067   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5068     // If the initializer of the extending declaration is a constant
5069     // initializer, we should have a cached constant initializer for this
5070     // temporary. Note that this might have a different value from the value
5071     // computed by evaluating the initializer if the surrounding constant
5072     // expression modifies the temporary.
5073     Value = E->getOrCreateValue(false);
5074   }
5075 
5076   // Try evaluating it now, it might have a constant initializer.
5077   Expr::EvalResult EvalResult;
5078   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5079       !EvalResult.hasSideEffects())
5080     Value = &EvalResult.Val;
5081 
5082   LangAS AddrSpace =
5083       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5084 
5085   Optional<ConstantEmitter> emitter;
5086   llvm::Constant *InitialValue = nullptr;
5087   bool Constant = false;
5088   llvm::Type *Type;
5089   if (Value) {
5090     // The temporary has a constant initializer, use it.
5091     emitter.emplace(*this);
5092     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5093                                                MaterializedType);
5094     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5095     Type = InitialValue->getType();
5096   } else {
5097     // No initializer, the initialization will be provided when we
5098     // initialize the declaration which performed lifetime extension.
5099     Type = getTypes().ConvertTypeForMem(MaterializedType);
5100   }
5101 
5102   // Create a global variable for this lifetime-extended temporary.
5103   llvm::GlobalValue::LinkageTypes Linkage =
5104       getLLVMLinkageVarDefinition(VD, Constant);
5105   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5106     const VarDecl *InitVD;
5107     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5108         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5109       // Temporaries defined inside a class get linkonce_odr linkage because the
5110       // class can be defined in multiple translation units.
5111       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5112     } else {
5113       // There is no need for this temporary to have external linkage if the
5114       // VarDecl has external linkage.
5115       Linkage = llvm::GlobalVariable::InternalLinkage;
5116     }
5117   }
5118   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5119   auto *GV = new llvm::GlobalVariable(
5120       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5121       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5122   if (emitter) emitter->finalize(GV);
5123   setGVProperties(GV, VD);
5124   GV->setAlignment(Align.getAsAlign());
5125   if (supportsCOMDAT() && GV->isWeakForLinker())
5126     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5127   if (VD->getTLSKind())
5128     setTLSMode(GV, *VD);
5129   llvm::Constant *CV = GV;
5130   if (AddrSpace != LangAS::Default)
5131     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5132         *this, GV, AddrSpace, LangAS::Default,
5133         Type->getPointerTo(
5134             getContext().getTargetAddressSpace(LangAS::Default)));
5135   MaterializedGlobalTemporaryMap[E] = CV;
5136   return ConstantAddress(CV, Align);
5137 }
5138 
5139 /// EmitObjCPropertyImplementations - Emit information for synthesized
5140 /// properties for an implementation.
5141 void CodeGenModule::EmitObjCPropertyImplementations(const
5142                                                     ObjCImplementationDecl *D) {
5143   for (const auto *PID : D->property_impls()) {
5144     // Dynamic is just for type-checking.
5145     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5146       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5147 
5148       // Determine which methods need to be implemented, some may have
5149       // been overridden. Note that ::isPropertyAccessor is not the method
5150       // we want, that just indicates if the decl came from a
5151       // property. What we want to know is if the method is defined in
5152       // this implementation.
5153       auto *Getter = PID->getGetterMethodDecl();
5154       if (!Getter || Getter->isSynthesizedAccessorStub())
5155         CodeGenFunction(*this).GenerateObjCGetter(
5156             const_cast<ObjCImplementationDecl *>(D), PID);
5157       auto *Setter = PID->getSetterMethodDecl();
5158       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5159         CodeGenFunction(*this).GenerateObjCSetter(
5160                                  const_cast<ObjCImplementationDecl *>(D), PID);
5161     }
5162   }
5163 }
5164 
5165 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5166   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5167   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5168        ivar; ivar = ivar->getNextIvar())
5169     if (ivar->getType().isDestructedType())
5170       return true;
5171 
5172   return false;
5173 }
5174 
5175 static bool AllTrivialInitializers(CodeGenModule &CGM,
5176                                    ObjCImplementationDecl *D) {
5177   CodeGenFunction CGF(CGM);
5178   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5179        E = D->init_end(); B != E; ++B) {
5180     CXXCtorInitializer *CtorInitExp = *B;
5181     Expr *Init = CtorInitExp->getInit();
5182     if (!CGF.isTrivialInitializer(Init))
5183       return false;
5184   }
5185   return true;
5186 }
5187 
5188 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5189 /// for an implementation.
5190 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5191   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5192   if (needsDestructMethod(D)) {
5193     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5194     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5195     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5196         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5197         getContext().VoidTy, nullptr, D,
5198         /*isInstance=*/true, /*isVariadic=*/false,
5199         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5200         /*isImplicitlyDeclared=*/true,
5201         /*isDefined=*/false, ObjCMethodDecl::Required);
5202     D->addInstanceMethod(DTORMethod);
5203     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5204     D->setHasDestructors(true);
5205   }
5206 
5207   // If the implementation doesn't have any ivar initializers, we don't need
5208   // a .cxx_construct.
5209   if (D->getNumIvarInitializers() == 0 ||
5210       AllTrivialInitializers(*this, D))
5211     return;
5212 
5213   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5214   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5215   // The constructor returns 'self'.
5216   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5217       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5218       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5219       /*isVariadic=*/false,
5220       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5221       /*isImplicitlyDeclared=*/true,
5222       /*isDefined=*/false, ObjCMethodDecl::Required);
5223   D->addInstanceMethod(CTORMethod);
5224   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5225   D->setHasNonZeroConstructors(true);
5226 }
5227 
5228 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5229 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5230   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5231       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5232     ErrorUnsupported(LSD, "linkage spec");
5233     return;
5234   }
5235 
5236   EmitDeclContext(LSD);
5237 }
5238 
5239 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5240   for (auto *I : DC->decls()) {
5241     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5242     // are themselves considered "top-level", so EmitTopLevelDecl on an
5243     // ObjCImplDecl does not recursively visit them. We need to do that in
5244     // case they're nested inside another construct (LinkageSpecDecl /
5245     // ExportDecl) that does stop them from being considered "top-level".
5246     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5247       for (auto *M : OID->methods())
5248         EmitTopLevelDecl(M);
5249     }
5250 
5251     EmitTopLevelDecl(I);
5252   }
5253 }
5254 
5255 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5256 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5257   // Ignore dependent declarations.
5258   if (D->isTemplated())
5259     return;
5260 
5261   switch (D->getKind()) {
5262   case Decl::CXXConversion:
5263   case Decl::CXXMethod:
5264   case Decl::Function:
5265     EmitGlobal(cast<FunctionDecl>(D));
5266     // Always provide some coverage mapping
5267     // even for the functions that aren't emitted.
5268     AddDeferredUnusedCoverageMapping(D);
5269     break;
5270 
5271   case Decl::CXXDeductionGuide:
5272     // Function-like, but does not result in code emission.
5273     break;
5274 
5275   case Decl::Var:
5276   case Decl::Decomposition:
5277   case Decl::VarTemplateSpecialization:
5278     EmitGlobal(cast<VarDecl>(D));
5279     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5280       for (auto *B : DD->bindings())
5281         if (auto *HD = B->getHoldingVar())
5282           EmitGlobal(HD);
5283     break;
5284 
5285   // Indirect fields from global anonymous structs and unions can be
5286   // ignored; only the actual variable requires IR gen support.
5287   case Decl::IndirectField:
5288     break;
5289 
5290   // C++ Decls
5291   case Decl::Namespace:
5292     EmitDeclContext(cast<NamespaceDecl>(D));
5293     break;
5294   case Decl::ClassTemplateSpecialization: {
5295     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5296     if (DebugInfo &&
5297         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5298         Spec->hasDefinition())
5299       DebugInfo->completeTemplateDefinition(*Spec);
5300   } LLVM_FALLTHROUGH;
5301   case Decl::CXXRecord:
5302     if (DebugInfo) {
5303       if (auto *ES = D->getASTContext().getExternalSource())
5304         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5305           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5306     }
5307     // Emit any static data members, they may be definitions.
5308     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5309       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5310         EmitTopLevelDecl(I);
5311     break;
5312     // No code generation needed.
5313   case Decl::UsingShadow:
5314   case Decl::ClassTemplate:
5315   case Decl::VarTemplate:
5316   case Decl::Concept:
5317   case Decl::VarTemplatePartialSpecialization:
5318   case Decl::FunctionTemplate:
5319   case Decl::TypeAliasTemplate:
5320   case Decl::Block:
5321   case Decl::Empty:
5322   case Decl::Binding:
5323     break;
5324   case Decl::Using:          // using X; [C++]
5325     if (CGDebugInfo *DI = getModuleDebugInfo())
5326         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5327     return;
5328   case Decl::NamespaceAlias:
5329     if (CGDebugInfo *DI = getModuleDebugInfo())
5330         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5331     return;
5332   case Decl::UsingDirective: // using namespace X; [C++]
5333     if (CGDebugInfo *DI = getModuleDebugInfo())
5334       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5335     return;
5336   case Decl::CXXConstructor:
5337     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5338     break;
5339   case Decl::CXXDestructor:
5340     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5341     break;
5342 
5343   case Decl::StaticAssert:
5344     // Nothing to do.
5345     break;
5346 
5347   // Objective-C Decls
5348 
5349   // Forward declarations, no (immediate) code generation.
5350   case Decl::ObjCInterface:
5351   case Decl::ObjCCategory:
5352     break;
5353 
5354   case Decl::ObjCProtocol: {
5355     auto *Proto = cast<ObjCProtocolDecl>(D);
5356     if (Proto->isThisDeclarationADefinition())
5357       ObjCRuntime->GenerateProtocol(Proto);
5358     break;
5359   }
5360 
5361   case Decl::ObjCCategoryImpl:
5362     // Categories have properties but don't support synthesize so we
5363     // can ignore them here.
5364     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5365     break;
5366 
5367   case Decl::ObjCImplementation: {
5368     auto *OMD = cast<ObjCImplementationDecl>(D);
5369     EmitObjCPropertyImplementations(OMD);
5370     EmitObjCIvarInitializations(OMD);
5371     ObjCRuntime->GenerateClass(OMD);
5372     // Emit global variable debug information.
5373     if (CGDebugInfo *DI = getModuleDebugInfo())
5374       if (getCodeGenOpts().hasReducedDebugInfo())
5375         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5376             OMD->getClassInterface()), OMD->getLocation());
5377     break;
5378   }
5379   case Decl::ObjCMethod: {
5380     auto *OMD = cast<ObjCMethodDecl>(D);
5381     // If this is not a prototype, emit the body.
5382     if (OMD->getBody())
5383       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5384     break;
5385   }
5386   case Decl::ObjCCompatibleAlias:
5387     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5388     break;
5389 
5390   case Decl::PragmaComment: {
5391     const auto *PCD = cast<PragmaCommentDecl>(D);
5392     switch (PCD->getCommentKind()) {
5393     case PCK_Unknown:
5394       llvm_unreachable("unexpected pragma comment kind");
5395     case PCK_Linker:
5396       AppendLinkerOptions(PCD->getArg());
5397       break;
5398     case PCK_Lib:
5399         AddDependentLib(PCD->getArg());
5400       break;
5401     case PCK_Compiler:
5402     case PCK_ExeStr:
5403     case PCK_User:
5404       break; // We ignore all of these.
5405     }
5406     break;
5407   }
5408 
5409   case Decl::PragmaDetectMismatch: {
5410     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5411     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5412     break;
5413   }
5414 
5415   case Decl::LinkageSpec:
5416     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5417     break;
5418 
5419   case Decl::FileScopeAsm: {
5420     // File-scope asm is ignored during device-side CUDA compilation.
5421     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5422       break;
5423     // File-scope asm is ignored during device-side OpenMP compilation.
5424     if (LangOpts.OpenMPIsDevice)
5425       break;
5426     auto *AD = cast<FileScopeAsmDecl>(D);
5427     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5428     break;
5429   }
5430 
5431   case Decl::Import: {
5432     auto *Import = cast<ImportDecl>(D);
5433 
5434     // If we've already imported this module, we're done.
5435     if (!ImportedModules.insert(Import->getImportedModule()))
5436       break;
5437 
5438     // Emit debug information for direct imports.
5439     if (!Import->getImportedOwningModule()) {
5440       if (CGDebugInfo *DI = getModuleDebugInfo())
5441         DI->EmitImportDecl(*Import);
5442     }
5443 
5444     // Find all of the submodules and emit the module initializers.
5445     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5446     SmallVector<clang::Module *, 16> Stack;
5447     Visited.insert(Import->getImportedModule());
5448     Stack.push_back(Import->getImportedModule());
5449 
5450     while (!Stack.empty()) {
5451       clang::Module *Mod = Stack.pop_back_val();
5452       if (!EmittedModuleInitializers.insert(Mod).second)
5453         continue;
5454 
5455       for (auto *D : Context.getModuleInitializers(Mod))
5456         EmitTopLevelDecl(D);
5457 
5458       // Visit the submodules of this module.
5459       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5460                                              SubEnd = Mod->submodule_end();
5461            Sub != SubEnd; ++Sub) {
5462         // Skip explicit children; they need to be explicitly imported to emit
5463         // the initializers.
5464         if ((*Sub)->IsExplicit)
5465           continue;
5466 
5467         if (Visited.insert(*Sub).second)
5468           Stack.push_back(*Sub);
5469       }
5470     }
5471     break;
5472   }
5473 
5474   case Decl::Export:
5475     EmitDeclContext(cast<ExportDecl>(D));
5476     break;
5477 
5478   case Decl::OMPThreadPrivate:
5479     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5480     break;
5481 
5482   case Decl::OMPAllocate:
5483     break;
5484 
5485   case Decl::OMPDeclareReduction:
5486     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5487     break;
5488 
5489   case Decl::OMPDeclareMapper:
5490     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5491     break;
5492 
5493   case Decl::OMPRequires:
5494     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5495     break;
5496 
5497   default:
5498     // Make sure we handled everything we should, every other kind is a
5499     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5500     // function. Need to recode Decl::Kind to do that easily.
5501     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5502     break;
5503   }
5504 }
5505 
5506 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5507   // Do we need to generate coverage mapping?
5508   if (!CodeGenOpts.CoverageMapping)
5509     return;
5510   switch (D->getKind()) {
5511   case Decl::CXXConversion:
5512   case Decl::CXXMethod:
5513   case Decl::Function:
5514   case Decl::ObjCMethod:
5515   case Decl::CXXConstructor:
5516   case Decl::CXXDestructor: {
5517     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5518       return;
5519     SourceManager &SM = getContext().getSourceManager();
5520     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5521       return;
5522     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5523     if (I == DeferredEmptyCoverageMappingDecls.end())
5524       DeferredEmptyCoverageMappingDecls[D] = true;
5525     break;
5526   }
5527   default:
5528     break;
5529   };
5530 }
5531 
5532 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5533   // Do we need to generate coverage mapping?
5534   if (!CodeGenOpts.CoverageMapping)
5535     return;
5536   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5537     if (Fn->isTemplateInstantiation())
5538       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5539   }
5540   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5541   if (I == DeferredEmptyCoverageMappingDecls.end())
5542     DeferredEmptyCoverageMappingDecls[D] = false;
5543   else
5544     I->second = false;
5545 }
5546 
5547 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5548   // We call takeVector() here to avoid use-after-free.
5549   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5550   // we deserialize function bodies to emit coverage info for them, and that
5551   // deserializes more declarations. How should we handle that case?
5552   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5553     if (!Entry.second)
5554       continue;
5555     const Decl *D = Entry.first;
5556     switch (D->getKind()) {
5557     case Decl::CXXConversion:
5558     case Decl::CXXMethod:
5559     case Decl::Function:
5560     case Decl::ObjCMethod: {
5561       CodeGenPGO PGO(*this);
5562       GlobalDecl GD(cast<FunctionDecl>(D));
5563       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5564                                   getFunctionLinkage(GD));
5565       break;
5566     }
5567     case Decl::CXXConstructor: {
5568       CodeGenPGO PGO(*this);
5569       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5570       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5571                                   getFunctionLinkage(GD));
5572       break;
5573     }
5574     case Decl::CXXDestructor: {
5575       CodeGenPGO PGO(*this);
5576       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5577       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5578                                   getFunctionLinkage(GD));
5579       break;
5580     }
5581     default:
5582       break;
5583     };
5584   }
5585 }
5586 
5587 /// Turns the given pointer into a constant.
5588 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5589                                           const void *Ptr) {
5590   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5591   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5592   return llvm::ConstantInt::get(i64, PtrInt);
5593 }
5594 
5595 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5596                                    llvm::NamedMDNode *&GlobalMetadata,
5597                                    GlobalDecl D,
5598                                    llvm::GlobalValue *Addr) {
5599   if (!GlobalMetadata)
5600     GlobalMetadata =
5601       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5602 
5603   // TODO: should we report variant information for ctors/dtors?
5604   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5605                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5606                                CGM.getLLVMContext(), D.getDecl()))};
5607   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5608 }
5609 
5610 /// For each function which is declared within an extern "C" region and marked
5611 /// as 'used', but has internal linkage, create an alias from the unmangled
5612 /// name to the mangled name if possible. People expect to be able to refer
5613 /// to such functions with an unmangled name from inline assembly within the
5614 /// same translation unit.
5615 void CodeGenModule::EmitStaticExternCAliases() {
5616   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5617     return;
5618   for (auto &I : StaticExternCValues) {
5619     IdentifierInfo *Name = I.first;
5620     llvm::GlobalValue *Val = I.second;
5621     if (Val && !getModule().getNamedValue(Name->getName()))
5622       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5623   }
5624 }
5625 
5626 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5627                                              GlobalDecl &Result) const {
5628   auto Res = Manglings.find(MangledName);
5629   if (Res == Manglings.end())
5630     return false;
5631   Result = Res->getValue();
5632   return true;
5633 }
5634 
5635 /// Emits metadata nodes associating all the global values in the
5636 /// current module with the Decls they came from.  This is useful for
5637 /// projects using IR gen as a subroutine.
5638 ///
5639 /// Since there's currently no way to associate an MDNode directly
5640 /// with an llvm::GlobalValue, we create a global named metadata
5641 /// with the name 'clang.global.decl.ptrs'.
5642 void CodeGenModule::EmitDeclMetadata() {
5643   llvm::NamedMDNode *GlobalMetadata = nullptr;
5644 
5645   for (auto &I : MangledDeclNames) {
5646     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5647     // Some mangled names don't necessarily have an associated GlobalValue
5648     // in this module, e.g. if we mangled it for DebugInfo.
5649     if (Addr)
5650       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5651   }
5652 }
5653 
5654 /// Emits metadata nodes for all the local variables in the current
5655 /// function.
5656 void CodeGenFunction::EmitDeclMetadata() {
5657   if (LocalDeclMap.empty()) return;
5658 
5659   llvm::LLVMContext &Context = getLLVMContext();
5660 
5661   // Find the unique metadata ID for this name.
5662   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5663 
5664   llvm::NamedMDNode *GlobalMetadata = nullptr;
5665 
5666   for (auto &I : LocalDeclMap) {
5667     const Decl *D = I.first;
5668     llvm::Value *Addr = I.second.getPointer();
5669     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5670       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5671       Alloca->setMetadata(
5672           DeclPtrKind, llvm::MDNode::get(
5673                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5674     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5675       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5676       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5677     }
5678   }
5679 }
5680 
5681 void CodeGenModule::EmitVersionIdentMetadata() {
5682   llvm::NamedMDNode *IdentMetadata =
5683     TheModule.getOrInsertNamedMetadata("llvm.ident");
5684   std::string Version = getClangFullVersion();
5685   llvm::LLVMContext &Ctx = TheModule.getContext();
5686 
5687   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5688   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5689 }
5690 
5691 void CodeGenModule::EmitCommandLineMetadata() {
5692   llvm::NamedMDNode *CommandLineMetadata =
5693     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5694   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5695   llvm::LLVMContext &Ctx = TheModule.getContext();
5696 
5697   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5698   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5699 }
5700 
5701 void CodeGenModule::EmitTargetMetadata() {
5702   // Warning, new MangledDeclNames may be appended within this loop.
5703   // We rely on MapVector insertions adding new elements to the end
5704   // of the container.
5705   // FIXME: Move this loop into the one target that needs it, and only
5706   // loop over those declarations for which we couldn't emit the target
5707   // metadata when we emitted the declaration.
5708   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5709     auto Val = *(MangledDeclNames.begin() + I);
5710     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5711     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5712     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5713   }
5714 }
5715 
5716 void CodeGenModule::EmitCoverageFile() {
5717   if (getCodeGenOpts().CoverageDataFile.empty() &&
5718       getCodeGenOpts().CoverageNotesFile.empty())
5719     return;
5720 
5721   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5722   if (!CUNode)
5723     return;
5724 
5725   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5726   llvm::LLVMContext &Ctx = TheModule.getContext();
5727   auto *CoverageDataFile =
5728       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5729   auto *CoverageNotesFile =
5730       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5731   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5732     llvm::MDNode *CU = CUNode->getOperand(i);
5733     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5734     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5735   }
5736 }
5737 
5738 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5739   // Sema has checked that all uuid strings are of the form
5740   // "12345678-1234-1234-1234-1234567890ab".
5741   assert(Uuid.size() == 36);
5742   for (unsigned i = 0; i < 36; ++i) {
5743     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5744     else                                         assert(isHexDigit(Uuid[i]));
5745   }
5746 
5747   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5748   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5749 
5750   llvm::Constant *Field3[8];
5751   for (unsigned Idx = 0; Idx < 8; ++Idx)
5752     Field3[Idx] = llvm::ConstantInt::get(
5753         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5754 
5755   llvm::Constant *Fields[4] = {
5756     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5757     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5758     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5759     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5760   };
5761 
5762   return llvm::ConstantStruct::getAnon(Fields);
5763 }
5764 
5765 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5766                                                        bool ForEH) {
5767   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5768   // FIXME: should we even be calling this method if RTTI is disabled
5769   // and it's not for EH?
5770   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5771     return llvm::Constant::getNullValue(Int8PtrTy);
5772 
5773   if (ForEH && Ty->isObjCObjectPointerType() &&
5774       LangOpts.ObjCRuntime.isGNUFamily())
5775     return ObjCRuntime->GetEHType(Ty);
5776 
5777   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5778 }
5779 
5780 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5781   // Do not emit threadprivates in simd-only mode.
5782   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5783     return;
5784   for (auto RefExpr : D->varlists()) {
5785     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5786     bool PerformInit =
5787         VD->getAnyInitializer() &&
5788         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5789                                                         /*ForRef=*/false);
5790 
5791     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5792     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5793             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5794       CXXGlobalInits.push_back(InitFunction);
5795   }
5796 }
5797 
5798 llvm::Metadata *
5799 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5800                                             StringRef Suffix) {
5801   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5802   if (InternalId)
5803     return InternalId;
5804 
5805   if (isExternallyVisible(T->getLinkage())) {
5806     std::string OutName;
5807     llvm::raw_string_ostream Out(OutName);
5808     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5809     Out << Suffix;
5810 
5811     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5812   } else {
5813     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5814                                            llvm::ArrayRef<llvm::Metadata *>());
5815   }
5816 
5817   return InternalId;
5818 }
5819 
5820 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5821   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5822 }
5823 
5824 llvm::Metadata *
5825 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5826   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5827 }
5828 
5829 // Generalize pointer types to a void pointer with the qualifiers of the
5830 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5831 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5832 // 'void *'.
5833 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5834   if (!Ty->isPointerType())
5835     return Ty;
5836 
5837   return Ctx.getPointerType(
5838       QualType(Ctx.VoidTy).withCVRQualifiers(
5839           Ty->getPointeeType().getCVRQualifiers()));
5840 }
5841 
5842 // Apply type generalization to a FunctionType's return and argument types
5843 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5844   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5845     SmallVector<QualType, 8> GeneralizedParams;
5846     for (auto &Param : FnType->param_types())
5847       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5848 
5849     return Ctx.getFunctionType(
5850         GeneralizeType(Ctx, FnType->getReturnType()),
5851         GeneralizedParams, FnType->getExtProtoInfo());
5852   }
5853 
5854   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5855     return Ctx.getFunctionNoProtoType(
5856         GeneralizeType(Ctx, FnType->getReturnType()));
5857 
5858   llvm_unreachable("Encountered unknown FunctionType");
5859 }
5860 
5861 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5862   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5863                                       GeneralizedMetadataIdMap, ".generalized");
5864 }
5865 
5866 /// Returns whether this module needs the "all-vtables" type identifier.
5867 bool CodeGenModule::NeedAllVtablesTypeId() const {
5868   // Returns true if at least one of vtable-based CFI checkers is enabled and
5869   // is not in the trapping mode.
5870   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5871            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5872           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5873            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5874           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5875            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5876           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5877            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5878 }
5879 
5880 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5881                                           CharUnits Offset,
5882                                           const CXXRecordDecl *RD) {
5883   llvm::Metadata *MD =
5884       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5885   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5886 
5887   if (CodeGenOpts.SanitizeCfiCrossDso)
5888     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5889       VTable->addTypeMetadata(Offset.getQuantity(),
5890                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5891 
5892   if (NeedAllVtablesTypeId()) {
5893     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5894     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5895   }
5896 }
5897 
5898 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5899   if (!SanStats)
5900     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5901 
5902   return *SanStats;
5903 }
5904 llvm::Value *
5905 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5906                                                   CodeGenFunction &CGF) {
5907   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5908   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5909   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5910   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5911                                 "__translate_sampler_initializer"),
5912                                 {C});
5913 }
5914