1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ProfileSummary.h" 57 #include "llvm/ProfileData/InstrProfReader.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/ConvertUTF.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MD5.h" 63 #include "llvm/Support/TimeProfiler.h" 64 65 using namespace clang; 66 using namespace CodeGen; 67 68 static llvm::cl::opt<bool> LimitedCoverage( 69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 71 llvm::cl::init(false)); 72 73 static const char AnnotationSection[] = "llvm.metadata"; 74 75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 76 switch (CGM.getTarget().getCXXABI().getKind()) { 77 case TargetCXXABI::Fuchsia: 78 case TargetCXXABI::GenericAArch64: 79 case TargetCXXABI::GenericARM: 80 case TargetCXXABI::iOS: 81 case TargetCXXABI::iOS64: 82 case TargetCXXABI::WatchOS: 83 case TargetCXXABI::GenericMIPS: 84 case TargetCXXABI::GenericItanium: 85 case TargetCXXABI::WebAssembly: 86 return CreateItaniumCXXABI(CGM); 87 case TargetCXXABI::Microsoft: 88 return CreateMicrosoftCXXABI(CGM); 89 } 90 91 llvm_unreachable("invalid C++ ABI kind"); 92 } 93 94 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 95 const PreprocessorOptions &PPO, 96 const CodeGenOptions &CGO, llvm::Module &M, 97 DiagnosticsEngine &diags, 98 CoverageSourceInfo *CoverageInfo) 99 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 100 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 101 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 102 VMContext(M.getContext()), Types(*this), VTables(*this), 103 SanitizerMD(new SanitizerMetadata(*this)) { 104 105 // Initialize the type cache. 106 llvm::LLVMContext &LLVMContext = M.getContext(); 107 VoidTy = llvm::Type::getVoidTy(LLVMContext); 108 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 109 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 110 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 111 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 112 HalfTy = llvm::Type::getHalfTy(LLVMContext); 113 FloatTy = llvm::Type::getFloatTy(LLVMContext); 114 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 115 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 116 PointerAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 118 SizeSizeInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 120 IntAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 122 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 123 IntPtrTy = llvm::IntegerType::get(LLVMContext, 124 C.getTargetInfo().getMaxPointerWidth()); 125 Int8PtrTy = Int8Ty->getPointerTo(0); 126 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 127 AllocaInt8PtrTy = Int8Ty->getPointerTo( 128 M.getDataLayout().getAllocaAddrSpace()); 129 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 130 131 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 132 133 if (LangOpts.ObjC) 134 createObjCRuntime(); 135 if (LangOpts.OpenCL) 136 createOpenCLRuntime(); 137 if (LangOpts.OpenMP) 138 createOpenMPRuntime(); 139 if (LangOpts.CUDA) 140 createCUDARuntime(); 141 142 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 143 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 144 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 145 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 146 getCXXABI().getMangleContext())); 147 148 // If debug info or coverage generation is enabled, create the CGDebugInfo 149 // object. 150 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 151 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 152 DebugInfo.reset(new CGDebugInfo(*this)); 153 154 Block.GlobalUniqueCount = 0; 155 156 if (C.getLangOpts().ObjC) 157 ObjCData.reset(new ObjCEntrypoints()); 158 159 if (CodeGenOpts.hasProfileClangUse()) { 160 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 161 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 162 if (auto E = ReaderOrErr.takeError()) { 163 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 164 "Could not read profile %0: %1"); 165 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 166 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 167 << EI.message(); 168 }); 169 } else 170 PGOReader = std::move(ReaderOrErr.get()); 171 } 172 173 // If coverage mapping generation is enabled, create the 174 // CoverageMappingModuleGen object. 175 if (CodeGenOpts.CoverageMapping) 176 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 177 } 178 179 CodeGenModule::~CodeGenModule() {} 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTriple().getArch()) { 209 case llvm::Triple::nvptx: 210 case llvm::Triple::nvptx64: 211 assert(getLangOpts().OpenMPIsDevice && 212 "OpenMP NVPTX is only prepared to deal with device code."); 213 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 214 break; 215 default: 216 if (LangOpts.OpenMPSimd) 217 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 218 else 219 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 220 break; 221 } 222 223 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 224 // but we are not there yet so they both reside in CGModule for now and the 225 // OpenMP-IR-Builder is opt-in only. 226 if (LangOpts.OpenMPIRBuilder) { 227 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 228 OMPBuilder->initialize(); 229 } 230 } 231 232 void CodeGenModule::createCUDARuntime() { 233 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 234 } 235 236 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 237 Replacements[Name] = C; 238 } 239 240 void CodeGenModule::applyReplacements() { 241 for (auto &I : Replacements) { 242 StringRef MangledName = I.first(); 243 llvm::Constant *Replacement = I.second; 244 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 245 if (!Entry) 246 continue; 247 auto *OldF = cast<llvm::Function>(Entry); 248 auto *NewF = dyn_cast<llvm::Function>(Replacement); 249 if (!NewF) { 250 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 251 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 252 } else { 253 auto *CE = cast<llvm::ConstantExpr>(Replacement); 254 assert(CE->getOpcode() == llvm::Instruction::BitCast || 255 CE->getOpcode() == llvm::Instruction::GetElementPtr); 256 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 257 } 258 } 259 260 // Replace old with new, but keep the old order. 261 OldF->replaceAllUsesWith(Replacement); 262 if (NewF) { 263 NewF->removeFromParent(); 264 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 265 NewF); 266 } 267 OldF->eraseFromParent(); 268 } 269 } 270 271 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 272 GlobalValReplacements.push_back(std::make_pair(GV, C)); 273 } 274 275 void CodeGenModule::applyGlobalValReplacements() { 276 for (auto &I : GlobalValReplacements) { 277 llvm::GlobalValue *GV = I.first; 278 llvm::Constant *C = I.second; 279 280 GV->replaceAllUsesWith(C); 281 GV->eraseFromParent(); 282 } 283 } 284 285 // This is only used in aliases that we created and we know they have a 286 // linear structure. 287 static const llvm::GlobalObject *getAliasedGlobal( 288 const llvm::GlobalIndirectSymbol &GIS) { 289 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 290 const llvm::Constant *C = &GIS; 291 for (;;) { 292 C = C->stripPointerCasts(); 293 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 294 return GO; 295 // stripPointerCasts will not walk over weak aliases. 296 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 297 if (!GIS2) 298 return nullptr; 299 if (!Visited.insert(GIS2).second) 300 return nullptr; 301 C = GIS2->getIndirectSymbol(); 302 } 303 } 304 305 void CodeGenModule::checkAliases() { 306 // Check if the constructed aliases are well formed. It is really unfortunate 307 // that we have to do this in CodeGen, but we only construct mangled names 308 // and aliases during codegen. 309 bool Error = false; 310 DiagnosticsEngine &Diags = getDiags(); 311 for (const GlobalDecl &GD : Aliases) { 312 const auto *D = cast<ValueDecl>(GD.getDecl()); 313 SourceLocation Location; 314 bool IsIFunc = D->hasAttr<IFuncAttr>(); 315 if (const Attr *A = D->getDefiningAttr()) 316 Location = A->getLocation(); 317 else 318 llvm_unreachable("Not an alias or ifunc?"); 319 StringRef MangledName = getMangledName(GD); 320 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 321 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 322 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 323 if (!GV) { 324 Error = true; 325 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 326 } else if (GV->isDeclaration()) { 327 Error = true; 328 Diags.Report(Location, diag::err_alias_to_undefined) 329 << IsIFunc << IsIFunc; 330 } else if (IsIFunc) { 331 // Check resolver function type. 332 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 333 GV->getType()->getPointerElementType()); 334 assert(FTy); 335 if (!FTy->getReturnType()->isPointerTy()) 336 Diags.Report(Location, diag::err_ifunc_resolver_return); 337 } 338 339 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 340 llvm::GlobalValue *AliaseeGV; 341 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 342 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 343 else 344 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 345 346 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 347 StringRef AliasSection = SA->getName(); 348 if (AliasSection != AliaseeGV->getSection()) 349 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 350 << AliasSection << IsIFunc << IsIFunc; 351 } 352 353 // We have to handle alias to weak aliases in here. LLVM itself disallows 354 // this since the object semantics would not match the IL one. For 355 // compatibility with gcc we implement it by just pointing the alias 356 // to its aliasee's aliasee. We also warn, since the user is probably 357 // expecting the link to be weak. 358 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 359 if (GA->isInterposable()) { 360 Diags.Report(Location, diag::warn_alias_to_weak_alias) 361 << GV->getName() << GA->getName() << IsIFunc; 362 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 363 GA->getIndirectSymbol(), Alias->getType()); 364 Alias->setIndirectSymbol(Aliasee); 365 } 366 } 367 } 368 if (!Error) 369 return; 370 371 for (const GlobalDecl &GD : Aliases) { 372 StringRef MangledName = getMangledName(GD); 373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 374 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 375 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 376 Alias->eraseFromParent(); 377 } 378 } 379 380 void CodeGenModule::clear() { 381 DeferredDeclsToEmit.clear(); 382 if (OpenMPRuntime) 383 OpenMPRuntime->clear(); 384 } 385 386 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 387 StringRef MainFile) { 388 if (!hasDiagnostics()) 389 return; 390 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 391 if (MainFile.empty()) 392 MainFile = "<stdin>"; 393 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 394 } else { 395 if (Mismatched > 0) 396 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 397 398 if (Missing > 0) 399 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 400 } 401 } 402 403 void CodeGenModule::Release() { 404 EmitDeferred(); 405 EmitVTablesOpportunistically(); 406 applyGlobalValReplacements(); 407 applyReplacements(); 408 checkAliases(); 409 emitMultiVersionFunctions(); 410 EmitCXXGlobalInitFunc(); 411 EmitCXXGlobalDtorFunc(); 412 registerGlobalDtorsWithAtExit(); 413 EmitCXXThreadLocalInitFunc(); 414 if (ObjCRuntime) 415 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 416 AddGlobalCtor(ObjCInitFunction); 417 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 418 CUDARuntime) { 419 if (llvm::Function *CudaCtorFunction = 420 CUDARuntime->makeModuleCtorFunction()) 421 AddGlobalCtor(CudaCtorFunction); 422 } 423 if (OpenMPRuntime) { 424 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 425 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 426 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 427 } 428 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 429 OpenMPRuntime->clear(); 430 } 431 if (PGOReader) { 432 getModule().setProfileSummary( 433 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 434 llvm::ProfileSummary::PSK_Instr); 435 if (PGOStats.hasDiagnostics()) 436 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 437 } 438 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 439 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 440 EmitGlobalAnnotations(); 441 EmitStaticExternCAliases(); 442 EmitDeferredUnusedCoverageMappings(); 443 if (CoverageMapping) 444 CoverageMapping->emit(); 445 if (CodeGenOpts.SanitizeCfiCrossDso) { 446 CodeGenFunction(*this).EmitCfiCheckFail(); 447 CodeGenFunction(*this).EmitCfiCheckStub(); 448 } 449 emitAtAvailableLinkGuard(); 450 emitLLVMUsed(); 451 if (SanStats) 452 SanStats->finish(); 453 454 if (CodeGenOpts.Autolink && 455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 456 EmitModuleLinkOptions(); 457 } 458 459 // On ELF we pass the dependent library specifiers directly to the linker 460 // without manipulating them. This is in contrast to other platforms where 461 // they are mapped to a specific linker option by the compiler. This 462 // difference is a result of the greater variety of ELF linkers and the fact 463 // that ELF linkers tend to handle libraries in a more complicated fashion 464 // than on other platforms. This forces us to defer handling the dependent 465 // libs to the linker. 466 // 467 // CUDA/HIP device and host libraries are different. Currently there is no 468 // way to differentiate dependent libraries for host or device. Existing 469 // usage of #pragma comment(lib, *) is intended for host libraries on 470 // Windows. Therefore emit llvm.dependent-libraries only for host. 471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 473 for (auto *MD : ELFDependentLibraries) 474 NMD->addOperand(MD); 475 } 476 477 // Record mregparm value now so it is visible through rest of codegen. 478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 480 CodeGenOpts.NumRegisterParameters); 481 482 if (CodeGenOpts.DwarfVersion) { 483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 484 CodeGenOpts.DwarfVersion); 485 } 486 if (CodeGenOpts.EmitCodeView) { 487 // Indicate that we want CodeView in the metadata. 488 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 489 } 490 if (CodeGenOpts.CodeViewGHash) { 491 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 492 } 493 if (CodeGenOpts.ControlFlowGuard) { 494 // Function ID tables and checks for Control Flow Guard (cfguard=2). 495 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 496 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 497 // Function ID tables for Control Flow Guard (cfguard=1). 498 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 499 } 500 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 501 // We don't support LTO with 2 with different StrictVTablePointers 502 // FIXME: we could support it by stripping all the information introduced 503 // by StrictVTablePointers. 504 505 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 506 507 llvm::Metadata *Ops[2] = { 508 llvm::MDString::get(VMContext, "StrictVTablePointers"), 509 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 510 llvm::Type::getInt32Ty(VMContext), 1))}; 511 512 getModule().addModuleFlag(llvm::Module::Require, 513 "StrictVTablePointersRequirement", 514 llvm::MDNode::get(VMContext, Ops)); 515 } 516 if (DebugInfo) 517 // We support a single version in the linked module. The LLVM 518 // parser will drop debug info with a different version number 519 // (and warn about it, too). 520 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 521 llvm::DEBUG_METADATA_VERSION); 522 523 // We need to record the widths of enums and wchar_t, so that we can generate 524 // the correct build attributes in the ARM backend. wchar_size is also used by 525 // TargetLibraryInfo. 526 uint64_t WCharWidth = 527 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 528 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 529 530 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 531 if ( Arch == llvm::Triple::arm 532 || Arch == llvm::Triple::armeb 533 || Arch == llvm::Triple::thumb 534 || Arch == llvm::Triple::thumbeb) { 535 // The minimum width of an enum in bytes 536 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 537 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 538 } 539 540 if (CodeGenOpts.SanitizeCfiCrossDso) { 541 // Indicate that we want cross-DSO control flow integrity checks. 542 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 543 } 544 545 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 546 getModule().addModuleFlag(llvm::Module::Override, 547 "CFI Canonical Jump Tables", 548 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 549 } 550 551 if (CodeGenOpts.CFProtectionReturn && 552 Target.checkCFProtectionReturnSupported(getDiags())) { 553 // Indicate that we want to instrument return control flow protection. 554 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 555 1); 556 } 557 558 if (CodeGenOpts.CFProtectionBranch && 559 Target.checkCFProtectionBranchSupported(getDiags())) { 560 // Indicate that we want to instrument branch control flow protection. 561 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 562 1); 563 } 564 565 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 566 // Indicate whether __nvvm_reflect should be configured to flush denormal 567 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 568 // property.) 569 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 570 CodeGenOpts.FlushDenorm ? 1 : 0); 571 } 572 573 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 574 if (LangOpts.OpenCL) { 575 EmitOpenCLMetadata(); 576 // Emit SPIR version. 577 if (getTriple().isSPIR()) { 578 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 579 // opencl.spir.version named metadata. 580 // C++ is backwards compatible with OpenCL v2.0. 581 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 582 llvm::Metadata *SPIRVerElts[] = { 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, Version / 100)), 585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 586 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 587 llvm::NamedMDNode *SPIRVerMD = 588 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 589 llvm::LLVMContext &Ctx = TheModule.getContext(); 590 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 591 } 592 } 593 594 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 595 assert(PLevel < 3 && "Invalid PIC Level"); 596 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 597 if (Context.getLangOpts().PIE) 598 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 599 } 600 601 if (getCodeGenOpts().CodeModel.size() > 0) { 602 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 603 .Case("tiny", llvm::CodeModel::Tiny) 604 .Case("small", llvm::CodeModel::Small) 605 .Case("kernel", llvm::CodeModel::Kernel) 606 .Case("medium", llvm::CodeModel::Medium) 607 .Case("large", llvm::CodeModel::Large) 608 .Default(~0u); 609 if (CM != ~0u) { 610 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 611 getModule().setCodeModel(codeModel); 612 } 613 } 614 615 if (CodeGenOpts.NoPLT) 616 getModule().setRtLibUseGOT(); 617 618 SimplifyPersonality(); 619 620 if (getCodeGenOpts().EmitDeclMetadata) 621 EmitDeclMetadata(); 622 623 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 624 EmitCoverageFile(); 625 626 if (DebugInfo) 627 DebugInfo->finalize(); 628 629 if (getCodeGenOpts().EmitVersionIdentMetadata) 630 EmitVersionIdentMetadata(); 631 632 if (!getCodeGenOpts().RecordCommandLine.empty()) 633 EmitCommandLineMetadata(); 634 635 EmitTargetMetadata(); 636 } 637 638 void CodeGenModule::EmitOpenCLMetadata() { 639 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 640 // opencl.ocl.version named metadata node. 641 // C++ is backwards compatible with OpenCL v2.0. 642 // FIXME: We might need to add CXX version at some point too? 643 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 644 llvm::Metadata *OCLVerElts[] = { 645 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 646 Int32Ty, Version / 100)), 647 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 648 Int32Ty, (Version % 100) / 10))}; 649 llvm::NamedMDNode *OCLVerMD = 650 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 651 llvm::LLVMContext &Ctx = TheModule.getContext(); 652 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 653 } 654 655 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 656 // Make sure that this type is translated. 657 Types.UpdateCompletedType(TD); 658 } 659 660 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 661 // Make sure that this type is translated. 662 Types.RefreshTypeCacheForClass(RD); 663 } 664 665 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 666 if (!TBAA) 667 return nullptr; 668 return TBAA->getTypeInfo(QTy); 669 } 670 671 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->getAccessInfo(AccessType); 675 } 676 677 TBAAAccessInfo 678 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 679 if (!TBAA) 680 return TBAAAccessInfo(); 681 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 682 } 683 684 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 685 if (!TBAA) 686 return nullptr; 687 return TBAA->getTBAAStructInfo(QTy); 688 } 689 690 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 691 if (!TBAA) 692 return nullptr; 693 return TBAA->getBaseTypeInfo(QTy); 694 } 695 696 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 697 if (!TBAA) 698 return nullptr; 699 return TBAA->getAccessTagInfo(Info); 700 } 701 702 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 703 TBAAAccessInfo TargetInfo) { 704 if (!TBAA) 705 return TBAAAccessInfo(); 706 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 707 } 708 709 TBAAAccessInfo 710 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 711 TBAAAccessInfo InfoB) { 712 if (!TBAA) 713 return TBAAAccessInfo(); 714 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 715 } 716 717 TBAAAccessInfo 718 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 719 TBAAAccessInfo SrcInfo) { 720 if (!TBAA) 721 return TBAAAccessInfo(); 722 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 723 } 724 725 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 726 TBAAAccessInfo TBAAInfo) { 727 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 728 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 729 } 730 731 void CodeGenModule::DecorateInstructionWithInvariantGroup( 732 llvm::Instruction *I, const CXXRecordDecl *RD) { 733 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 734 llvm::MDNode::get(getLLVMContext(), {})); 735 } 736 737 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 738 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 739 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 740 } 741 742 /// ErrorUnsupported - Print out an error that codegen doesn't support the 743 /// specified stmt yet. 744 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 745 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 746 "cannot compile this %0 yet"); 747 std::string Msg = Type; 748 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 749 << Msg << S->getSourceRange(); 750 } 751 752 /// ErrorUnsupported - Print out an error that codegen doesn't support the 753 /// specified decl yet. 754 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 755 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 756 "cannot compile this %0 yet"); 757 std::string Msg = Type; 758 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 759 } 760 761 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 762 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 763 } 764 765 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 766 const NamedDecl *D) const { 767 if (GV->hasDLLImportStorageClass()) 768 return; 769 // Internal definitions always have default visibility. 770 if (GV->hasLocalLinkage()) { 771 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 772 return; 773 } 774 if (!D) 775 return; 776 // Set visibility for definitions, and for declarations if requested globally 777 // or set explicitly. 778 LinkageInfo LV = D->getLinkageAndVisibility(); 779 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 780 !GV->isDeclarationForLinker()) 781 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 782 } 783 784 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 785 llvm::GlobalValue *GV) { 786 if (GV->hasLocalLinkage()) 787 return true; 788 789 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 790 return true; 791 792 // DLLImport explicitly marks the GV as external. 793 if (GV->hasDLLImportStorageClass()) 794 return false; 795 796 const llvm::Triple &TT = CGM.getTriple(); 797 if (TT.isWindowsGNUEnvironment()) { 798 // In MinGW, variables without DLLImport can still be automatically 799 // imported from a DLL by the linker; don't mark variables that 800 // potentially could come from another DLL as DSO local. 801 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 802 !GV->isThreadLocal()) 803 return false; 804 } 805 806 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 807 // remain unresolved in the link, they can be resolved to zero, which is 808 // outside the current DSO. 809 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 810 return false; 811 812 // Every other GV is local on COFF. 813 // Make an exception for windows OS in the triple: Some firmware builds use 814 // *-win32-macho triples. This (accidentally?) produced windows relocations 815 // without GOT tables in older clang versions; Keep this behaviour. 816 // FIXME: even thread local variables? 817 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 818 return true; 819 820 // Only handle COFF and ELF for now. 821 if (!TT.isOSBinFormatELF()) 822 return false; 823 824 // If this is not an executable, don't assume anything is local. 825 const auto &CGOpts = CGM.getCodeGenOpts(); 826 llvm::Reloc::Model RM = CGOpts.RelocationModel; 827 const auto &LOpts = CGM.getLangOpts(); 828 if (RM != llvm::Reloc::Static && !LOpts.PIE) 829 return false; 830 831 // A definition cannot be preempted from an executable. 832 if (!GV->isDeclarationForLinker()) 833 return true; 834 835 // Most PIC code sequences that assume that a symbol is local cannot produce a 836 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 837 // depended, it seems worth it to handle it here. 838 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 839 return false; 840 841 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 842 llvm::Triple::ArchType Arch = TT.getArch(); 843 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 844 Arch == llvm::Triple::ppc64le) 845 return false; 846 847 // If we can use copy relocations we can assume it is local. 848 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 849 if (!Var->isThreadLocal() && 850 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 851 return true; 852 853 // If we can use a plt entry as the symbol address we can assume it 854 // is local. 855 // FIXME: This should work for PIE, but the gold linker doesn't support it. 856 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 857 return true; 858 859 // Otherwise don't assue it is local. 860 return false; 861 } 862 863 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 864 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 865 } 866 867 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 868 GlobalDecl GD) const { 869 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 870 // C++ destructors have a few C++ ABI specific special cases. 871 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 872 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 873 return; 874 } 875 setDLLImportDLLExport(GV, D); 876 } 877 878 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 879 const NamedDecl *D) const { 880 if (D && D->isExternallyVisible()) { 881 if (D->hasAttr<DLLImportAttr>()) 882 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 883 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 884 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 885 } 886 } 887 888 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 889 GlobalDecl GD) const { 890 setDLLImportDLLExport(GV, GD); 891 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 892 } 893 894 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 895 const NamedDecl *D) const { 896 setDLLImportDLLExport(GV, D); 897 setGVPropertiesAux(GV, D); 898 } 899 900 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 901 const NamedDecl *D) const { 902 setGlobalVisibility(GV, D); 903 setDSOLocal(GV); 904 GV->setPartition(CodeGenOpts.SymbolPartition); 905 } 906 907 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 908 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 909 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 910 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 911 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 912 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 913 } 914 915 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 916 CodeGenOptions::TLSModel M) { 917 switch (M) { 918 case CodeGenOptions::GeneralDynamicTLSModel: 919 return llvm::GlobalVariable::GeneralDynamicTLSModel; 920 case CodeGenOptions::LocalDynamicTLSModel: 921 return llvm::GlobalVariable::LocalDynamicTLSModel; 922 case CodeGenOptions::InitialExecTLSModel: 923 return llvm::GlobalVariable::InitialExecTLSModel; 924 case CodeGenOptions::LocalExecTLSModel: 925 return llvm::GlobalVariable::LocalExecTLSModel; 926 } 927 llvm_unreachable("Invalid TLS model!"); 928 } 929 930 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 931 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 932 933 llvm::GlobalValue::ThreadLocalMode TLM; 934 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 935 936 // Override the TLS model if it is explicitly specified. 937 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 938 TLM = GetLLVMTLSModel(Attr->getModel()); 939 } 940 941 GV->setThreadLocalMode(TLM); 942 } 943 944 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 945 StringRef Name) { 946 const TargetInfo &Target = CGM.getTarget(); 947 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 948 } 949 950 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 951 const CPUSpecificAttr *Attr, 952 unsigned CPUIndex, 953 raw_ostream &Out) { 954 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 955 // supported. 956 if (Attr) 957 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 958 else if (CGM.getTarget().supportsIFunc()) 959 Out << ".resolver"; 960 } 961 962 static void AppendTargetMangling(const CodeGenModule &CGM, 963 const TargetAttr *Attr, raw_ostream &Out) { 964 if (Attr->isDefaultVersion()) 965 return; 966 967 Out << '.'; 968 const TargetInfo &Target = CGM.getTarget(); 969 ParsedTargetAttr Info = 970 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 971 // Multiversioning doesn't allow "no-${feature}", so we can 972 // only have "+" prefixes here. 973 assert(LHS.startswith("+") && RHS.startswith("+") && 974 "Features should always have a prefix."); 975 return Target.multiVersionSortPriority(LHS.substr(1)) > 976 Target.multiVersionSortPriority(RHS.substr(1)); 977 }); 978 979 bool IsFirst = true; 980 981 if (!Info.Architecture.empty()) { 982 IsFirst = false; 983 Out << "arch_" << Info.Architecture; 984 } 985 986 for (StringRef Feat : Info.Features) { 987 if (!IsFirst) 988 Out << '_'; 989 IsFirst = false; 990 Out << Feat.substr(1); 991 } 992 } 993 994 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 995 const NamedDecl *ND, 996 bool OmitMultiVersionMangling = false) { 997 SmallString<256> Buffer; 998 llvm::raw_svector_ostream Out(Buffer); 999 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1000 if (MC.shouldMangleDeclName(ND)) { 1001 llvm::raw_svector_ostream Out(Buffer); 1002 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 1003 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 1004 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 1005 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 1006 else 1007 MC.mangleName(ND, Out); 1008 } else { 1009 IdentifierInfo *II = ND->getIdentifier(); 1010 assert(II && "Attempt to mangle unnamed decl."); 1011 const auto *FD = dyn_cast<FunctionDecl>(ND); 1012 1013 if (FD && 1014 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1015 llvm::raw_svector_ostream Out(Buffer); 1016 Out << "__regcall3__" << II->getName(); 1017 } else { 1018 Out << II->getName(); 1019 } 1020 } 1021 1022 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1023 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1024 switch (FD->getMultiVersionKind()) { 1025 case MultiVersionKind::CPUDispatch: 1026 case MultiVersionKind::CPUSpecific: 1027 AppendCPUSpecificCPUDispatchMangling(CGM, 1028 FD->getAttr<CPUSpecificAttr>(), 1029 GD.getMultiVersionIndex(), Out); 1030 break; 1031 case MultiVersionKind::Target: 1032 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1033 break; 1034 case MultiVersionKind::None: 1035 llvm_unreachable("None multiversion type isn't valid here"); 1036 } 1037 } 1038 1039 return Out.str(); 1040 } 1041 1042 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1043 const FunctionDecl *FD) { 1044 if (!FD->isMultiVersion()) 1045 return; 1046 1047 // Get the name of what this would be without the 'target' attribute. This 1048 // allows us to lookup the version that was emitted when this wasn't a 1049 // multiversion function. 1050 std::string NonTargetName = 1051 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1052 GlobalDecl OtherGD; 1053 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1054 assert(OtherGD.getCanonicalDecl() 1055 .getDecl() 1056 ->getAsFunction() 1057 ->isMultiVersion() && 1058 "Other GD should now be a multiversioned function"); 1059 // OtherFD is the version of this function that was mangled BEFORE 1060 // becoming a MultiVersion function. It potentially needs to be updated. 1061 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1062 .getDecl() 1063 ->getAsFunction() 1064 ->getMostRecentDecl(); 1065 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1066 // This is so that if the initial version was already the 'default' 1067 // version, we don't try to update it. 1068 if (OtherName != NonTargetName) { 1069 // Remove instead of erase, since others may have stored the StringRef 1070 // to this. 1071 const auto ExistingRecord = Manglings.find(NonTargetName); 1072 if (ExistingRecord != std::end(Manglings)) 1073 Manglings.remove(&(*ExistingRecord)); 1074 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1075 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1076 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1077 Entry->setName(OtherName); 1078 } 1079 } 1080 } 1081 1082 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1083 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1084 1085 // Some ABIs don't have constructor variants. Make sure that base and 1086 // complete constructors get mangled the same. 1087 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1088 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1089 CXXCtorType OrigCtorType = GD.getCtorType(); 1090 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1091 if (OrigCtorType == Ctor_Base) 1092 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1093 } 1094 } 1095 1096 auto FoundName = MangledDeclNames.find(CanonicalGD); 1097 if (FoundName != MangledDeclNames.end()) 1098 return FoundName->second; 1099 1100 // Keep the first result in the case of a mangling collision. 1101 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1102 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1103 1104 // Adjust kernel stub mangling as we may need to be able to differentiate 1105 // them from the kernel itself (e.g., for HIP). 1106 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1107 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1108 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1109 1110 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1111 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1112 } 1113 1114 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1115 const BlockDecl *BD) { 1116 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1117 const Decl *D = GD.getDecl(); 1118 1119 SmallString<256> Buffer; 1120 llvm::raw_svector_ostream Out(Buffer); 1121 if (!D) 1122 MangleCtx.mangleGlobalBlock(BD, 1123 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1124 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1125 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1126 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1127 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1128 else 1129 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1130 1131 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1132 return Result.first->first(); 1133 } 1134 1135 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1136 return getModule().getNamedValue(Name); 1137 } 1138 1139 /// AddGlobalCtor - Add a function to the list that will be called before 1140 /// main() runs. 1141 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1142 llvm::Constant *AssociatedData) { 1143 // FIXME: Type coercion of void()* types. 1144 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1145 } 1146 1147 /// AddGlobalDtor - Add a function to the list that will be called 1148 /// when the module is unloaded. 1149 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1150 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1151 DtorsUsingAtExit[Priority].push_back(Dtor); 1152 return; 1153 } 1154 1155 // FIXME: Type coercion of void()* types. 1156 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1157 } 1158 1159 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1160 if (Fns.empty()) return; 1161 1162 // Ctor function type is void()*. 1163 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1164 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1165 TheModule.getDataLayout().getProgramAddressSpace()); 1166 1167 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1168 llvm::StructType *CtorStructTy = llvm::StructType::get( 1169 Int32Ty, CtorPFTy, VoidPtrTy); 1170 1171 // Construct the constructor and destructor arrays. 1172 ConstantInitBuilder builder(*this); 1173 auto ctors = builder.beginArray(CtorStructTy); 1174 for (const auto &I : Fns) { 1175 auto ctor = ctors.beginStruct(CtorStructTy); 1176 ctor.addInt(Int32Ty, I.Priority); 1177 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1178 if (I.AssociatedData) 1179 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1180 else 1181 ctor.addNullPointer(VoidPtrTy); 1182 ctor.finishAndAddTo(ctors); 1183 } 1184 1185 auto list = 1186 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1187 /*constant*/ false, 1188 llvm::GlobalValue::AppendingLinkage); 1189 1190 // The LTO linker doesn't seem to like it when we set an alignment 1191 // on appending variables. Take it off as a workaround. 1192 list->setAlignment(llvm::None); 1193 1194 Fns.clear(); 1195 } 1196 1197 llvm::GlobalValue::LinkageTypes 1198 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1199 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1200 1201 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1202 1203 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1204 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1205 1206 if (isa<CXXConstructorDecl>(D) && 1207 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1208 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1209 // Our approach to inheriting constructors is fundamentally different from 1210 // that used by the MS ABI, so keep our inheriting constructor thunks 1211 // internal rather than trying to pick an unambiguous mangling for them. 1212 return llvm::GlobalValue::InternalLinkage; 1213 } 1214 1215 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1216 } 1217 1218 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1219 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1220 if (!MDS) return nullptr; 1221 1222 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1223 } 1224 1225 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1226 const CGFunctionInfo &Info, 1227 llvm::Function *F) { 1228 unsigned CallingConv; 1229 llvm::AttributeList PAL; 1230 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1231 F->setAttributes(PAL); 1232 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1233 } 1234 1235 static void removeImageAccessQualifier(std::string& TyName) { 1236 std::string ReadOnlyQual("__read_only"); 1237 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1238 if (ReadOnlyPos != std::string::npos) 1239 // "+ 1" for the space after access qualifier. 1240 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1241 else { 1242 std::string WriteOnlyQual("__write_only"); 1243 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1244 if (WriteOnlyPos != std::string::npos) 1245 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1246 else { 1247 std::string ReadWriteQual("__read_write"); 1248 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1249 if (ReadWritePos != std::string::npos) 1250 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1251 } 1252 } 1253 } 1254 1255 // Returns the address space id that should be produced to the 1256 // kernel_arg_addr_space metadata. This is always fixed to the ids 1257 // as specified in the SPIR 2.0 specification in order to differentiate 1258 // for example in clGetKernelArgInfo() implementation between the address 1259 // spaces with targets without unique mapping to the OpenCL address spaces 1260 // (basically all single AS CPUs). 1261 static unsigned ArgInfoAddressSpace(LangAS AS) { 1262 switch (AS) { 1263 case LangAS::opencl_global: return 1; 1264 case LangAS::opencl_constant: return 2; 1265 case LangAS::opencl_local: return 3; 1266 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1267 default: 1268 return 0; // Assume private. 1269 } 1270 } 1271 1272 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1273 const FunctionDecl *FD, 1274 CodeGenFunction *CGF) { 1275 assert(((FD && CGF) || (!FD && !CGF)) && 1276 "Incorrect use - FD and CGF should either be both null or not!"); 1277 // Create MDNodes that represent the kernel arg metadata. 1278 // Each MDNode is a list in the form of "key", N number of values which is 1279 // the same number of values as their are kernel arguments. 1280 1281 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1282 1283 // MDNode for the kernel argument address space qualifiers. 1284 SmallVector<llvm::Metadata *, 8> addressQuals; 1285 1286 // MDNode for the kernel argument access qualifiers (images only). 1287 SmallVector<llvm::Metadata *, 8> accessQuals; 1288 1289 // MDNode for the kernel argument type names. 1290 SmallVector<llvm::Metadata *, 8> argTypeNames; 1291 1292 // MDNode for the kernel argument base type names. 1293 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1294 1295 // MDNode for the kernel argument type qualifiers. 1296 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1297 1298 // MDNode for the kernel argument names. 1299 SmallVector<llvm::Metadata *, 8> argNames; 1300 1301 if (FD && CGF) 1302 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1303 const ParmVarDecl *parm = FD->getParamDecl(i); 1304 QualType ty = parm->getType(); 1305 std::string typeQuals; 1306 1307 if (ty->isPointerType()) { 1308 QualType pointeeTy = ty->getPointeeType(); 1309 1310 // Get address qualifier. 1311 addressQuals.push_back( 1312 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1313 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1314 1315 // Get argument type name. 1316 std::string typeName = 1317 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1318 1319 // Turn "unsigned type" to "utype" 1320 std::string::size_type pos = typeName.find("unsigned"); 1321 if (pointeeTy.isCanonical() && pos != std::string::npos) 1322 typeName.erase(pos + 1, 8); 1323 1324 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1325 1326 std::string baseTypeName = 1327 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1328 Policy) + 1329 "*"; 1330 1331 // Turn "unsigned type" to "utype" 1332 pos = baseTypeName.find("unsigned"); 1333 if (pos != std::string::npos) 1334 baseTypeName.erase(pos + 1, 8); 1335 1336 argBaseTypeNames.push_back( 1337 llvm::MDString::get(VMContext, baseTypeName)); 1338 1339 // Get argument type qualifiers: 1340 if (ty.isRestrictQualified()) 1341 typeQuals = "restrict"; 1342 if (pointeeTy.isConstQualified() || 1343 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1344 typeQuals += typeQuals.empty() ? "const" : " const"; 1345 if (pointeeTy.isVolatileQualified()) 1346 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1347 } else { 1348 uint32_t AddrSpc = 0; 1349 bool isPipe = ty->isPipeType(); 1350 if (ty->isImageType() || isPipe) 1351 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1352 1353 addressQuals.push_back( 1354 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1355 1356 // Get argument type name. 1357 std::string typeName; 1358 if (isPipe) 1359 typeName = ty.getCanonicalType() 1360 ->getAs<PipeType>() 1361 ->getElementType() 1362 .getAsString(Policy); 1363 else 1364 typeName = ty.getUnqualifiedType().getAsString(Policy); 1365 1366 // Turn "unsigned type" to "utype" 1367 std::string::size_type pos = typeName.find("unsigned"); 1368 if (ty.isCanonical() && pos != std::string::npos) 1369 typeName.erase(pos + 1, 8); 1370 1371 std::string baseTypeName; 1372 if (isPipe) 1373 baseTypeName = ty.getCanonicalType() 1374 ->getAs<PipeType>() 1375 ->getElementType() 1376 .getCanonicalType() 1377 .getAsString(Policy); 1378 else 1379 baseTypeName = 1380 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1381 1382 // Remove access qualifiers on images 1383 // (as they are inseparable from type in clang implementation, 1384 // but OpenCL spec provides a special query to get access qualifier 1385 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1386 if (ty->isImageType()) { 1387 removeImageAccessQualifier(typeName); 1388 removeImageAccessQualifier(baseTypeName); 1389 } 1390 1391 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1392 1393 // Turn "unsigned type" to "utype" 1394 pos = baseTypeName.find("unsigned"); 1395 if (pos != std::string::npos) 1396 baseTypeName.erase(pos + 1, 8); 1397 1398 argBaseTypeNames.push_back( 1399 llvm::MDString::get(VMContext, baseTypeName)); 1400 1401 if (isPipe) 1402 typeQuals = "pipe"; 1403 } 1404 1405 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1406 1407 // Get image and pipe access qualifier: 1408 if (ty->isImageType() || ty->isPipeType()) { 1409 const Decl *PDecl = parm; 1410 if (auto *TD = dyn_cast<TypedefType>(ty)) 1411 PDecl = TD->getDecl(); 1412 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1413 if (A && A->isWriteOnly()) 1414 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1415 else if (A && A->isReadWrite()) 1416 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1417 else 1418 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1419 } else 1420 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1421 1422 // Get argument name. 1423 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1424 } 1425 1426 Fn->setMetadata("kernel_arg_addr_space", 1427 llvm::MDNode::get(VMContext, addressQuals)); 1428 Fn->setMetadata("kernel_arg_access_qual", 1429 llvm::MDNode::get(VMContext, accessQuals)); 1430 Fn->setMetadata("kernel_arg_type", 1431 llvm::MDNode::get(VMContext, argTypeNames)); 1432 Fn->setMetadata("kernel_arg_base_type", 1433 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1434 Fn->setMetadata("kernel_arg_type_qual", 1435 llvm::MDNode::get(VMContext, argTypeQuals)); 1436 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1437 Fn->setMetadata("kernel_arg_name", 1438 llvm::MDNode::get(VMContext, argNames)); 1439 } 1440 1441 /// Determines whether the language options require us to model 1442 /// unwind exceptions. We treat -fexceptions as mandating this 1443 /// except under the fragile ObjC ABI with only ObjC exceptions 1444 /// enabled. This means, for example, that C with -fexceptions 1445 /// enables this. 1446 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1447 // If exceptions are completely disabled, obviously this is false. 1448 if (!LangOpts.Exceptions) return false; 1449 1450 // If C++ exceptions are enabled, this is true. 1451 if (LangOpts.CXXExceptions) return true; 1452 1453 // If ObjC exceptions are enabled, this depends on the ABI. 1454 if (LangOpts.ObjCExceptions) { 1455 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1456 } 1457 1458 return true; 1459 } 1460 1461 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1462 const CXXMethodDecl *MD) { 1463 // Check that the type metadata can ever actually be used by a call. 1464 if (!CGM.getCodeGenOpts().LTOUnit || 1465 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1466 return false; 1467 1468 // Only functions whose address can be taken with a member function pointer 1469 // need this sort of type metadata. 1470 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1471 !isa<CXXDestructorDecl>(MD); 1472 } 1473 1474 std::vector<const CXXRecordDecl *> 1475 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1476 llvm::SetVector<const CXXRecordDecl *> MostBases; 1477 1478 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1479 CollectMostBases = [&](const CXXRecordDecl *RD) { 1480 if (RD->getNumBases() == 0) 1481 MostBases.insert(RD); 1482 for (const CXXBaseSpecifier &B : RD->bases()) 1483 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1484 }; 1485 CollectMostBases(RD); 1486 return MostBases.takeVector(); 1487 } 1488 1489 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1490 llvm::Function *F) { 1491 llvm::AttrBuilder B; 1492 1493 if (CodeGenOpts.UnwindTables) 1494 B.addAttribute(llvm::Attribute::UWTable); 1495 1496 if (!hasUnwindExceptions(LangOpts)) 1497 B.addAttribute(llvm::Attribute::NoUnwind); 1498 1499 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1500 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1501 B.addAttribute(llvm::Attribute::StackProtect); 1502 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1503 B.addAttribute(llvm::Attribute::StackProtectStrong); 1504 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1505 B.addAttribute(llvm::Attribute::StackProtectReq); 1506 } 1507 1508 if (!D) { 1509 // If we don't have a declaration to control inlining, the function isn't 1510 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1511 // disabled, mark the function as noinline. 1512 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1513 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1514 B.addAttribute(llvm::Attribute::NoInline); 1515 1516 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1517 return; 1518 } 1519 1520 // Track whether we need to add the optnone LLVM attribute, 1521 // starting with the default for this optimization level. 1522 bool ShouldAddOptNone = 1523 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1524 // We can't add optnone in the following cases, it won't pass the verifier. 1525 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1526 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1527 1528 // Add optnone, but do so only if the function isn't always_inline. 1529 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1530 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1531 B.addAttribute(llvm::Attribute::OptimizeNone); 1532 1533 // OptimizeNone implies noinline; we should not be inlining such functions. 1534 B.addAttribute(llvm::Attribute::NoInline); 1535 1536 // We still need to handle naked functions even though optnone subsumes 1537 // much of their semantics. 1538 if (D->hasAttr<NakedAttr>()) 1539 B.addAttribute(llvm::Attribute::Naked); 1540 1541 // OptimizeNone wins over OptimizeForSize and MinSize. 1542 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1543 F->removeFnAttr(llvm::Attribute::MinSize); 1544 } else if (D->hasAttr<NakedAttr>()) { 1545 // Naked implies noinline: we should not be inlining such functions. 1546 B.addAttribute(llvm::Attribute::Naked); 1547 B.addAttribute(llvm::Attribute::NoInline); 1548 } else if (D->hasAttr<NoDuplicateAttr>()) { 1549 B.addAttribute(llvm::Attribute::NoDuplicate); 1550 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1551 // Add noinline if the function isn't always_inline. 1552 B.addAttribute(llvm::Attribute::NoInline); 1553 } else if (D->hasAttr<AlwaysInlineAttr>() && 1554 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1555 // (noinline wins over always_inline, and we can't specify both in IR) 1556 B.addAttribute(llvm::Attribute::AlwaysInline); 1557 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1558 // If we're not inlining, then force everything that isn't always_inline to 1559 // carry an explicit noinline attribute. 1560 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1561 B.addAttribute(llvm::Attribute::NoInline); 1562 } else { 1563 // Otherwise, propagate the inline hint attribute and potentially use its 1564 // absence to mark things as noinline. 1565 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1566 // Search function and template pattern redeclarations for inline. 1567 auto CheckForInline = [](const FunctionDecl *FD) { 1568 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1569 return Redecl->isInlineSpecified(); 1570 }; 1571 if (any_of(FD->redecls(), CheckRedeclForInline)) 1572 return true; 1573 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1574 if (!Pattern) 1575 return false; 1576 return any_of(Pattern->redecls(), CheckRedeclForInline); 1577 }; 1578 if (CheckForInline(FD)) { 1579 B.addAttribute(llvm::Attribute::InlineHint); 1580 } else if (CodeGenOpts.getInlining() == 1581 CodeGenOptions::OnlyHintInlining && 1582 !FD->isInlined() && 1583 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1584 B.addAttribute(llvm::Attribute::NoInline); 1585 } 1586 } 1587 } 1588 1589 // Add other optimization related attributes if we are optimizing this 1590 // function. 1591 if (!D->hasAttr<OptimizeNoneAttr>()) { 1592 if (D->hasAttr<ColdAttr>()) { 1593 if (!ShouldAddOptNone) 1594 B.addAttribute(llvm::Attribute::OptimizeForSize); 1595 B.addAttribute(llvm::Attribute::Cold); 1596 } 1597 1598 if (D->hasAttr<MinSizeAttr>()) 1599 B.addAttribute(llvm::Attribute::MinSize); 1600 } 1601 1602 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1603 1604 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1605 if (alignment) 1606 F->setAlignment(llvm::Align(alignment)); 1607 1608 if (!D->hasAttr<AlignedAttr>()) 1609 if (LangOpts.FunctionAlignment) 1610 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1611 1612 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1613 // reserve a bit for differentiating between virtual and non-virtual member 1614 // functions. If the current target's C++ ABI requires this and this is a 1615 // member function, set its alignment accordingly. 1616 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1617 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1618 F->setAlignment(llvm::Align(2)); 1619 } 1620 1621 // In the cross-dso CFI mode with canonical jump tables, we want !type 1622 // attributes on definitions only. 1623 if (CodeGenOpts.SanitizeCfiCrossDso && 1624 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1625 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1626 // Skip available_externally functions. They won't be codegen'ed in the 1627 // current module anyway. 1628 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1629 CreateFunctionTypeMetadataForIcall(FD, F); 1630 } 1631 } 1632 1633 // Emit type metadata on member functions for member function pointer checks. 1634 // These are only ever necessary on definitions; we're guaranteed that the 1635 // definition will be present in the LTO unit as a result of LTO visibility. 1636 auto *MD = dyn_cast<CXXMethodDecl>(D); 1637 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1638 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1639 llvm::Metadata *Id = 1640 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1641 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1642 F->addTypeMetadata(0, Id); 1643 } 1644 } 1645 } 1646 1647 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1648 const Decl *D = GD.getDecl(); 1649 if (dyn_cast_or_null<NamedDecl>(D)) 1650 setGVProperties(GV, GD); 1651 else 1652 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1653 1654 if (D && D->hasAttr<UsedAttr>()) 1655 addUsedGlobal(GV); 1656 1657 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1658 const auto *VD = cast<VarDecl>(D); 1659 if (VD->getType().isConstQualified() && 1660 VD->getStorageDuration() == SD_Static) 1661 addUsedGlobal(GV); 1662 } 1663 } 1664 1665 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1666 llvm::AttrBuilder &Attrs) { 1667 // Add target-cpu and target-features attributes to functions. If 1668 // we have a decl for the function and it has a target attribute then 1669 // parse that and add it to the feature set. 1670 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1671 std::vector<std::string> Features; 1672 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1673 FD = FD ? FD->getMostRecentDecl() : FD; 1674 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1675 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1676 bool AddedAttr = false; 1677 if (TD || SD) { 1678 llvm::StringMap<bool> FeatureMap; 1679 getContext().getFunctionFeatureMap(FeatureMap, GD); 1680 1681 // Produce the canonical string for this set of features. 1682 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1683 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1684 1685 // Now add the target-cpu and target-features to the function. 1686 // While we populated the feature map above, we still need to 1687 // get and parse the target attribute so we can get the cpu for 1688 // the function. 1689 if (TD) { 1690 ParsedTargetAttr ParsedAttr = TD->parse(); 1691 if (ParsedAttr.Architecture != "" && 1692 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1693 TargetCPU = ParsedAttr.Architecture; 1694 } 1695 } else { 1696 // Otherwise just add the existing target cpu and target features to the 1697 // function. 1698 Features = getTarget().getTargetOpts().Features; 1699 } 1700 1701 if (TargetCPU != "") { 1702 Attrs.addAttribute("target-cpu", TargetCPU); 1703 AddedAttr = true; 1704 } 1705 if (!Features.empty()) { 1706 llvm::sort(Features); 1707 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1708 AddedAttr = true; 1709 } 1710 1711 return AddedAttr; 1712 } 1713 1714 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1715 llvm::GlobalObject *GO) { 1716 const Decl *D = GD.getDecl(); 1717 SetCommonAttributes(GD, GO); 1718 1719 if (D) { 1720 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1721 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1722 GV->addAttribute("bss-section", SA->getName()); 1723 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1724 GV->addAttribute("data-section", SA->getName()); 1725 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1726 GV->addAttribute("rodata-section", SA->getName()); 1727 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1728 GV->addAttribute("relro-section", SA->getName()); 1729 } 1730 1731 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1732 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1733 if (!D->getAttr<SectionAttr>()) 1734 F->addFnAttr("implicit-section-name", SA->getName()); 1735 1736 llvm::AttrBuilder Attrs; 1737 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1738 // We know that GetCPUAndFeaturesAttributes will always have the 1739 // newest set, since it has the newest possible FunctionDecl, so the 1740 // new ones should replace the old. 1741 F->removeFnAttr("target-cpu"); 1742 F->removeFnAttr("target-features"); 1743 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1744 } 1745 } 1746 1747 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1748 GO->setSection(CSA->getName()); 1749 else if (const auto *SA = D->getAttr<SectionAttr>()) 1750 GO->setSection(SA->getName()); 1751 } 1752 1753 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1754 } 1755 1756 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1757 llvm::Function *F, 1758 const CGFunctionInfo &FI) { 1759 const Decl *D = GD.getDecl(); 1760 SetLLVMFunctionAttributes(GD, FI, F); 1761 SetLLVMFunctionAttributesForDefinition(D, F); 1762 1763 F->setLinkage(llvm::Function::InternalLinkage); 1764 1765 setNonAliasAttributes(GD, F); 1766 } 1767 1768 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1769 // Set linkage and visibility in case we never see a definition. 1770 LinkageInfo LV = ND->getLinkageAndVisibility(); 1771 // Don't set internal linkage on declarations. 1772 // "extern_weak" is overloaded in LLVM; we probably should have 1773 // separate linkage types for this. 1774 if (isExternallyVisible(LV.getLinkage()) && 1775 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1776 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1777 } 1778 1779 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1780 llvm::Function *F) { 1781 // Only if we are checking indirect calls. 1782 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1783 return; 1784 1785 // Non-static class methods are handled via vtable or member function pointer 1786 // checks elsewhere. 1787 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1788 return; 1789 1790 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1791 F->addTypeMetadata(0, MD); 1792 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1793 1794 // Emit a hash-based bit set entry for cross-DSO calls. 1795 if (CodeGenOpts.SanitizeCfiCrossDso) 1796 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1797 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1798 } 1799 1800 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1801 bool IsIncompleteFunction, 1802 bool IsThunk) { 1803 1804 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1805 // If this is an intrinsic function, set the function's attributes 1806 // to the intrinsic's attributes. 1807 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1808 return; 1809 } 1810 1811 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1812 1813 if (!IsIncompleteFunction) 1814 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1815 1816 // Add the Returned attribute for "this", except for iOS 5 and earlier 1817 // where substantial code, including the libstdc++ dylib, was compiled with 1818 // GCC and does not actually return "this". 1819 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1820 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1821 assert(!F->arg_empty() && 1822 F->arg_begin()->getType() 1823 ->canLosslesslyBitCastTo(F->getReturnType()) && 1824 "unexpected this return"); 1825 F->addAttribute(1, llvm::Attribute::Returned); 1826 } 1827 1828 // Only a few attributes are set on declarations; these may later be 1829 // overridden by a definition. 1830 1831 setLinkageForGV(F, FD); 1832 setGVProperties(F, FD); 1833 1834 // Setup target-specific attributes. 1835 if (!IsIncompleteFunction && F->isDeclaration()) 1836 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1837 1838 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1839 F->setSection(CSA->getName()); 1840 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1841 F->setSection(SA->getName()); 1842 1843 if (FD->isInlineBuiltinDeclaration()) { 1844 F->addAttribute(llvm::AttributeList::FunctionIndex, 1845 llvm::Attribute::NoBuiltin); 1846 } 1847 1848 if (FD->isReplaceableGlobalAllocationFunction()) { 1849 // A replaceable global allocation function does not act like a builtin by 1850 // default, only if it is invoked by a new-expression or delete-expression. 1851 F->addAttribute(llvm::AttributeList::FunctionIndex, 1852 llvm::Attribute::NoBuiltin); 1853 1854 // A sane operator new returns a non-aliasing pointer. 1855 // FIXME: Also add NonNull attribute to the return value 1856 // for the non-nothrow forms? 1857 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1858 if (getCodeGenOpts().AssumeSaneOperatorNew && 1859 (Kind == OO_New || Kind == OO_Array_New)) 1860 F->addAttribute(llvm::AttributeList::ReturnIndex, 1861 llvm::Attribute::NoAlias); 1862 } 1863 1864 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1865 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1866 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1867 if (MD->isVirtual()) 1868 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1869 1870 // Don't emit entries for function declarations in the cross-DSO mode. This 1871 // is handled with better precision by the receiving DSO. But if jump tables 1872 // are non-canonical then we need type metadata in order to produce the local 1873 // jump table. 1874 if (!CodeGenOpts.SanitizeCfiCrossDso || 1875 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1876 CreateFunctionTypeMetadataForIcall(FD, F); 1877 1878 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1879 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1880 1881 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1882 // Annotate the callback behavior as metadata: 1883 // - The callback callee (as argument number). 1884 // - The callback payloads (as argument numbers). 1885 llvm::LLVMContext &Ctx = F->getContext(); 1886 llvm::MDBuilder MDB(Ctx); 1887 1888 // The payload indices are all but the first one in the encoding. The first 1889 // identifies the callback callee. 1890 int CalleeIdx = *CB->encoding_begin(); 1891 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1892 F->addMetadata(llvm::LLVMContext::MD_callback, 1893 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1894 CalleeIdx, PayloadIndices, 1895 /* VarArgsArePassed */ false)})); 1896 } 1897 } 1898 1899 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1900 assert(!GV->isDeclaration() && 1901 "Only globals with definition can force usage."); 1902 LLVMUsed.emplace_back(GV); 1903 } 1904 1905 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1906 assert(!GV->isDeclaration() && 1907 "Only globals with definition can force usage."); 1908 LLVMCompilerUsed.emplace_back(GV); 1909 } 1910 1911 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1912 std::vector<llvm::WeakTrackingVH> &List) { 1913 // Don't create llvm.used if there is no need. 1914 if (List.empty()) 1915 return; 1916 1917 // Convert List to what ConstantArray needs. 1918 SmallVector<llvm::Constant*, 8> UsedArray; 1919 UsedArray.resize(List.size()); 1920 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1921 UsedArray[i] = 1922 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1923 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1924 } 1925 1926 if (UsedArray.empty()) 1927 return; 1928 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1929 1930 auto *GV = new llvm::GlobalVariable( 1931 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1932 llvm::ConstantArray::get(ATy, UsedArray), Name); 1933 1934 GV->setSection("llvm.metadata"); 1935 } 1936 1937 void CodeGenModule::emitLLVMUsed() { 1938 emitUsed(*this, "llvm.used", LLVMUsed); 1939 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1940 } 1941 1942 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1943 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1944 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1945 } 1946 1947 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1948 llvm::SmallString<32> Opt; 1949 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1950 if (Opt.empty()) 1951 return; 1952 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1953 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1954 } 1955 1956 void CodeGenModule::AddDependentLib(StringRef Lib) { 1957 auto &C = getLLVMContext(); 1958 if (getTarget().getTriple().isOSBinFormatELF()) { 1959 ELFDependentLibraries.push_back( 1960 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1961 return; 1962 } 1963 1964 llvm::SmallString<24> Opt; 1965 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1966 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1968 } 1969 1970 /// Add link options implied by the given module, including modules 1971 /// it depends on, using a postorder walk. 1972 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1973 SmallVectorImpl<llvm::MDNode *> &Metadata, 1974 llvm::SmallPtrSet<Module *, 16> &Visited) { 1975 // Import this module's parent. 1976 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1977 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1978 } 1979 1980 // Import this module's dependencies. 1981 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1982 if (Visited.insert(Mod->Imports[I - 1]).second) 1983 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1984 } 1985 1986 // Add linker options to link against the libraries/frameworks 1987 // described by this module. 1988 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1989 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1990 1991 // For modules that use export_as for linking, use that module 1992 // name instead. 1993 if (Mod->UseExportAsModuleLinkName) 1994 return; 1995 1996 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1997 // Link against a framework. Frameworks are currently Darwin only, so we 1998 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1999 if (Mod->LinkLibraries[I-1].IsFramework) { 2000 llvm::Metadata *Args[2] = { 2001 llvm::MDString::get(Context, "-framework"), 2002 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2003 2004 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2005 continue; 2006 } 2007 2008 // Link against a library. 2009 if (IsELF) { 2010 llvm::Metadata *Args[2] = { 2011 llvm::MDString::get(Context, "lib"), 2012 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2013 }; 2014 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2015 } else { 2016 llvm::SmallString<24> Opt; 2017 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2018 Mod->LinkLibraries[I - 1].Library, Opt); 2019 auto *OptString = llvm::MDString::get(Context, Opt); 2020 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2021 } 2022 } 2023 } 2024 2025 void CodeGenModule::EmitModuleLinkOptions() { 2026 // Collect the set of all of the modules we want to visit to emit link 2027 // options, which is essentially the imported modules and all of their 2028 // non-explicit child modules. 2029 llvm::SetVector<clang::Module *> LinkModules; 2030 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2031 SmallVector<clang::Module *, 16> Stack; 2032 2033 // Seed the stack with imported modules. 2034 for (Module *M : ImportedModules) { 2035 // Do not add any link flags when an implementation TU of a module imports 2036 // a header of that same module. 2037 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2038 !getLangOpts().isCompilingModule()) 2039 continue; 2040 if (Visited.insert(M).second) 2041 Stack.push_back(M); 2042 } 2043 2044 // Find all of the modules to import, making a little effort to prune 2045 // non-leaf modules. 2046 while (!Stack.empty()) { 2047 clang::Module *Mod = Stack.pop_back_val(); 2048 2049 bool AnyChildren = false; 2050 2051 // Visit the submodules of this module. 2052 for (const auto &SM : Mod->submodules()) { 2053 // Skip explicit children; they need to be explicitly imported to be 2054 // linked against. 2055 if (SM->IsExplicit) 2056 continue; 2057 2058 if (Visited.insert(SM).second) { 2059 Stack.push_back(SM); 2060 AnyChildren = true; 2061 } 2062 } 2063 2064 // We didn't find any children, so add this module to the list of 2065 // modules to link against. 2066 if (!AnyChildren) { 2067 LinkModules.insert(Mod); 2068 } 2069 } 2070 2071 // Add link options for all of the imported modules in reverse topological 2072 // order. We don't do anything to try to order import link flags with respect 2073 // to linker options inserted by things like #pragma comment(). 2074 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2075 Visited.clear(); 2076 for (Module *M : LinkModules) 2077 if (Visited.insert(M).second) 2078 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2079 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2080 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2081 2082 // Add the linker options metadata flag. 2083 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2084 for (auto *MD : LinkerOptionsMetadata) 2085 NMD->addOperand(MD); 2086 } 2087 2088 void CodeGenModule::EmitDeferred() { 2089 // Emit deferred declare target declarations. 2090 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2091 getOpenMPRuntime().emitDeferredTargetDecls(); 2092 2093 // Emit code for any potentially referenced deferred decls. Since a 2094 // previously unused static decl may become used during the generation of code 2095 // for a static function, iterate until no changes are made. 2096 2097 if (!DeferredVTables.empty()) { 2098 EmitDeferredVTables(); 2099 2100 // Emitting a vtable doesn't directly cause more vtables to 2101 // become deferred, although it can cause functions to be 2102 // emitted that then need those vtables. 2103 assert(DeferredVTables.empty()); 2104 } 2105 2106 // Stop if we're out of both deferred vtables and deferred declarations. 2107 if (DeferredDeclsToEmit.empty()) 2108 return; 2109 2110 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2111 // work, it will not interfere with this. 2112 std::vector<GlobalDecl> CurDeclsToEmit; 2113 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2114 2115 for (GlobalDecl &D : CurDeclsToEmit) { 2116 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2117 // to get GlobalValue with exactly the type we need, not something that 2118 // might had been created for another decl with the same mangled name but 2119 // different type. 2120 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2121 GetAddrOfGlobal(D, ForDefinition)); 2122 2123 // In case of different address spaces, we may still get a cast, even with 2124 // IsForDefinition equal to true. Query mangled names table to get 2125 // GlobalValue. 2126 if (!GV) 2127 GV = GetGlobalValue(getMangledName(D)); 2128 2129 // Make sure GetGlobalValue returned non-null. 2130 assert(GV); 2131 2132 // Check to see if we've already emitted this. This is necessary 2133 // for a couple of reasons: first, decls can end up in the 2134 // deferred-decls queue multiple times, and second, decls can end 2135 // up with definitions in unusual ways (e.g. by an extern inline 2136 // function acquiring a strong function redefinition). Just 2137 // ignore these cases. 2138 if (!GV->isDeclaration()) 2139 continue; 2140 2141 // If this is OpenMP, check if it is legal to emit this global normally. 2142 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2143 continue; 2144 2145 // Otherwise, emit the definition and move on to the next one. 2146 EmitGlobalDefinition(D, GV); 2147 2148 // If we found out that we need to emit more decls, do that recursively. 2149 // This has the advantage that the decls are emitted in a DFS and related 2150 // ones are close together, which is convenient for testing. 2151 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2152 EmitDeferred(); 2153 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2154 } 2155 } 2156 } 2157 2158 void CodeGenModule::EmitVTablesOpportunistically() { 2159 // Try to emit external vtables as available_externally if they have emitted 2160 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2161 // is not allowed to create new references to things that need to be emitted 2162 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2163 2164 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2165 && "Only emit opportunistic vtables with optimizations"); 2166 2167 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2168 assert(getVTables().isVTableExternal(RD) && 2169 "This queue should only contain external vtables"); 2170 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2171 VTables.GenerateClassData(RD); 2172 } 2173 OpportunisticVTables.clear(); 2174 } 2175 2176 void CodeGenModule::EmitGlobalAnnotations() { 2177 if (Annotations.empty()) 2178 return; 2179 2180 // Create a new global variable for the ConstantStruct in the Module. 2181 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2182 Annotations[0]->getType(), Annotations.size()), Annotations); 2183 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2184 llvm::GlobalValue::AppendingLinkage, 2185 Array, "llvm.global.annotations"); 2186 gv->setSection(AnnotationSection); 2187 } 2188 2189 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2190 llvm::Constant *&AStr = AnnotationStrings[Str]; 2191 if (AStr) 2192 return AStr; 2193 2194 // Not found yet, create a new global. 2195 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2196 auto *gv = 2197 new llvm::GlobalVariable(getModule(), s->getType(), true, 2198 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2199 gv->setSection(AnnotationSection); 2200 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2201 AStr = gv; 2202 return gv; 2203 } 2204 2205 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2206 SourceManager &SM = getContext().getSourceManager(); 2207 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2208 if (PLoc.isValid()) 2209 return EmitAnnotationString(PLoc.getFilename()); 2210 return EmitAnnotationString(SM.getBufferName(Loc)); 2211 } 2212 2213 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2214 SourceManager &SM = getContext().getSourceManager(); 2215 PresumedLoc PLoc = SM.getPresumedLoc(L); 2216 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2217 SM.getExpansionLineNumber(L); 2218 return llvm::ConstantInt::get(Int32Ty, LineNo); 2219 } 2220 2221 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2222 const AnnotateAttr *AA, 2223 SourceLocation L) { 2224 // Get the globals for file name, annotation, and the line number. 2225 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2226 *UnitGV = EmitAnnotationUnit(L), 2227 *LineNoCst = EmitAnnotationLineNo(L); 2228 2229 llvm::Constant *ASZeroGV = GV; 2230 if (GV->getAddressSpace() != 0) { 2231 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2232 GV, GV->getValueType()->getPointerTo(0)); 2233 } 2234 2235 // Create the ConstantStruct for the global annotation. 2236 llvm::Constant *Fields[4] = { 2237 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2238 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2239 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2240 LineNoCst 2241 }; 2242 return llvm::ConstantStruct::getAnon(Fields); 2243 } 2244 2245 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2246 llvm::GlobalValue *GV) { 2247 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2248 // Get the struct elements for these annotations. 2249 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2250 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2251 } 2252 2253 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2254 llvm::Function *Fn, 2255 SourceLocation Loc) const { 2256 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2257 // Blacklist by function name. 2258 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2259 return true; 2260 // Blacklist by location. 2261 if (Loc.isValid()) 2262 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2263 // If location is unknown, this may be a compiler-generated function. Assume 2264 // it's located in the main file. 2265 auto &SM = Context.getSourceManager(); 2266 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2267 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2268 } 2269 return false; 2270 } 2271 2272 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2273 SourceLocation Loc, QualType Ty, 2274 StringRef Category) const { 2275 // For now globals can be blacklisted only in ASan and KASan. 2276 const SanitizerMask EnabledAsanMask = 2277 LangOpts.Sanitize.Mask & 2278 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2279 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2280 SanitizerKind::MemTag); 2281 if (!EnabledAsanMask) 2282 return false; 2283 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2284 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2285 return true; 2286 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2287 return true; 2288 // Check global type. 2289 if (!Ty.isNull()) { 2290 // Drill down the array types: if global variable of a fixed type is 2291 // blacklisted, we also don't instrument arrays of them. 2292 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2293 Ty = AT->getElementType(); 2294 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2295 // We allow to blacklist only record types (classes, structs etc.) 2296 if (Ty->isRecordType()) { 2297 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2298 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2299 return true; 2300 } 2301 } 2302 return false; 2303 } 2304 2305 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2306 StringRef Category) const { 2307 const auto &XRayFilter = getContext().getXRayFilter(); 2308 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2309 auto Attr = ImbueAttr::NONE; 2310 if (Loc.isValid()) 2311 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2312 if (Attr == ImbueAttr::NONE) 2313 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2314 switch (Attr) { 2315 case ImbueAttr::NONE: 2316 return false; 2317 case ImbueAttr::ALWAYS: 2318 Fn->addFnAttr("function-instrument", "xray-always"); 2319 break; 2320 case ImbueAttr::ALWAYS_ARG1: 2321 Fn->addFnAttr("function-instrument", "xray-always"); 2322 Fn->addFnAttr("xray-log-args", "1"); 2323 break; 2324 case ImbueAttr::NEVER: 2325 Fn->addFnAttr("function-instrument", "xray-never"); 2326 break; 2327 } 2328 return true; 2329 } 2330 2331 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2332 // Never defer when EmitAllDecls is specified. 2333 if (LangOpts.EmitAllDecls) 2334 return true; 2335 2336 if (CodeGenOpts.KeepStaticConsts) { 2337 const auto *VD = dyn_cast<VarDecl>(Global); 2338 if (VD && VD->getType().isConstQualified() && 2339 VD->getStorageDuration() == SD_Static) 2340 return true; 2341 } 2342 2343 return getContext().DeclMustBeEmitted(Global); 2344 } 2345 2346 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2347 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2348 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2349 // Implicit template instantiations may change linkage if they are later 2350 // explicitly instantiated, so they should not be emitted eagerly. 2351 return false; 2352 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2353 // not emit them eagerly unless we sure that the function must be emitted on 2354 // the host. 2355 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2356 !LangOpts.OpenMPIsDevice && 2357 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2358 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2359 return false; 2360 } 2361 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2362 if (Context.getInlineVariableDefinitionKind(VD) == 2363 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2364 // A definition of an inline constexpr static data member may change 2365 // linkage later if it's redeclared outside the class. 2366 return false; 2367 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2368 // codegen for global variables, because they may be marked as threadprivate. 2369 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2370 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2371 !isTypeConstant(Global->getType(), false) && 2372 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2373 return false; 2374 2375 return true; 2376 } 2377 2378 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2379 const CXXUuidofExpr* E) { 2380 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2381 // well-formed. 2382 StringRef Uuid = E->getUuidStr(); 2383 std::string Name = "_GUID_" + Uuid.lower(); 2384 std::replace(Name.begin(), Name.end(), '-', '_'); 2385 2386 // The UUID descriptor should be pointer aligned. 2387 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2388 2389 // Look for an existing global. 2390 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2391 return ConstantAddress(GV, Alignment); 2392 2393 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2394 assert(Init && "failed to initialize as constant"); 2395 2396 auto *GV = new llvm::GlobalVariable( 2397 getModule(), Init->getType(), 2398 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2399 if (supportsCOMDAT()) 2400 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2401 setDSOLocal(GV); 2402 return ConstantAddress(GV, Alignment); 2403 } 2404 2405 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2406 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2407 assert(AA && "No alias?"); 2408 2409 CharUnits Alignment = getContext().getDeclAlign(VD); 2410 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2411 2412 // See if there is already something with the target's name in the module. 2413 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2414 if (Entry) { 2415 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2416 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2417 return ConstantAddress(Ptr, Alignment); 2418 } 2419 2420 llvm::Constant *Aliasee; 2421 if (isa<llvm::FunctionType>(DeclTy)) 2422 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2423 GlobalDecl(cast<FunctionDecl>(VD)), 2424 /*ForVTable=*/false); 2425 else 2426 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2427 llvm::PointerType::getUnqual(DeclTy), 2428 nullptr); 2429 2430 auto *F = cast<llvm::GlobalValue>(Aliasee); 2431 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2432 WeakRefReferences.insert(F); 2433 2434 return ConstantAddress(Aliasee, Alignment); 2435 } 2436 2437 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2438 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2439 2440 // Weak references don't produce any output by themselves. 2441 if (Global->hasAttr<WeakRefAttr>()) 2442 return; 2443 2444 // If this is an alias definition (which otherwise looks like a declaration) 2445 // emit it now. 2446 if (Global->hasAttr<AliasAttr>()) 2447 return EmitAliasDefinition(GD); 2448 2449 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2450 if (Global->hasAttr<IFuncAttr>()) 2451 return emitIFuncDefinition(GD); 2452 2453 // If this is a cpu_dispatch multiversion function, emit the resolver. 2454 if (Global->hasAttr<CPUDispatchAttr>()) 2455 return emitCPUDispatchDefinition(GD); 2456 2457 // If this is CUDA, be selective about which declarations we emit. 2458 if (LangOpts.CUDA) { 2459 if (LangOpts.CUDAIsDevice) { 2460 if (!Global->hasAttr<CUDADeviceAttr>() && 2461 !Global->hasAttr<CUDAGlobalAttr>() && 2462 !Global->hasAttr<CUDAConstantAttr>() && 2463 !Global->hasAttr<CUDASharedAttr>() && 2464 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2465 return; 2466 } else { 2467 // We need to emit host-side 'shadows' for all global 2468 // device-side variables because the CUDA runtime needs their 2469 // size and host-side address in order to provide access to 2470 // their device-side incarnations. 2471 2472 // So device-only functions are the only things we skip. 2473 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2474 Global->hasAttr<CUDADeviceAttr>()) 2475 return; 2476 2477 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2478 "Expected Variable or Function"); 2479 } 2480 } 2481 2482 if (LangOpts.OpenMP) { 2483 // If this is OpenMP, check if it is legal to emit this global normally. 2484 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2485 return; 2486 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2487 if (MustBeEmitted(Global)) 2488 EmitOMPDeclareReduction(DRD); 2489 return; 2490 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2491 if (MustBeEmitted(Global)) 2492 EmitOMPDeclareMapper(DMD); 2493 return; 2494 } 2495 } 2496 2497 // Ignore declarations, they will be emitted on their first use. 2498 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2499 // Forward declarations are emitted lazily on first use. 2500 if (!FD->doesThisDeclarationHaveABody()) { 2501 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2502 return; 2503 2504 StringRef MangledName = getMangledName(GD); 2505 2506 // Compute the function info and LLVM type. 2507 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2508 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2509 2510 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2511 /*DontDefer=*/false); 2512 return; 2513 } 2514 } else { 2515 const auto *VD = cast<VarDecl>(Global); 2516 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2517 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2518 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2519 if (LangOpts.OpenMP) { 2520 // Emit declaration of the must-be-emitted declare target variable. 2521 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2522 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2523 bool UnifiedMemoryEnabled = 2524 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2525 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2526 !UnifiedMemoryEnabled) { 2527 (void)GetAddrOfGlobalVar(VD); 2528 } else { 2529 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2530 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2531 UnifiedMemoryEnabled)) && 2532 "Link clause or to clause with unified memory expected."); 2533 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2534 } 2535 2536 return; 2537 } 2538 } 2539 // If this declaration may have caused an inline variable definition to 2540 // change linkage, make sure that it's emitted. 2541 if (Context.getInlineVariableDefinitionKind(VD) == 2542 ASTContext::InlineVariableDefinitionKind::Strong) 2543 GetAddrOfGlobalVar(VD); 2544 return; 2545 } 2546 } 2547 2548 // Defer code generation to first use when possible, e.g. if this is an inline 2549 // function. If the global must always be emitted, do it eagerly if possible 2550 // to benefit from cache locality. 2551 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2552 // Emit the definition if it can't be deferred. 2553 EmitGlobalDefinition(GD); 2554 return; 2555 } 2556 2557 // Check if this must be emitted as declare variant. 2558 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2559 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2560 return; 2561 2562 // If we're deferring emission of a C++ variable with an 2563 // initializer, remember the order in which it appeared in the file. 2564 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2565 cast<VarDecl>(Global)->hasInit()) { 2566 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2567 CXXGlobalInits.push_back(nullptr); 2568 } 2569 2570 StringRef MangledName = getMangledName(GD); 2571 if (GetGlobalValue(MangledName) != nullptr) { 2572 // The value has already been used and should therefore be emitted. 2573 addDeferredDeclToEmit(GD); 2574 } else if (MustBeEmitted(Global)) { 2575 // The value must be emitted, but cannot be emitted eagerly. 2576 assert(!MayBeEmittedEagerly(Global)); 2577 addDeferredDeclToEmit(GD); 2578 } else { 2579 // Otherwise, remember that we saw a deferred decl with this name. The 2580 // first use of the mangled name will cause it to move into 2581 // DeferredDeclsToEmit. 2582 DeferredDecls[MangledName] = GD; 2583 } 2584 } 2585 2586 // Check if T is a class type with a destructor that's not dllimport. 2587 static bool HasNonDllImportDtor(QualType T) { 2588 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2589 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2590 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2591 return true; 2592 2593 return false; 2594 } 2595 2596 namespace { 2597 struct FunctionIsDirectlyRecursive 2598 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2599 const StringRef Name; 2600 const Builtin::Context &BI; 2601 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2602 : Name(N), BI(C) {} 2603 2604 bool VisitCallExpr(const CallExpr *E) { 2605 const FunctionDecl *FD = E->getDirectCallee(); 2606 if (!FD) 2607 return false; 2608 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2609 if (Attr && Name == Attr->getLabel()) 2610 return true; 2611 unsigned BuiltinID = FD->getBuiltinID(); 2612 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2613 return false; 2614 StringRef BuiltinName = BI.getName(BuiltinID); 2615 if (BuiltinName.startswith("__builtin_") && 2616 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2617 return true; 2618 } 2619 return false; 2620 } 2621 2622 bool VisitStmt(const Stmt *S) { 2623 for (const Stmt *Child : S->children()) 2624 if (Child && this->Visit(Child)) 2625 return true; 2626 return false; 2627 } 2628 }; 2629 2630 // Make sure we're not referencing non-imported vars or functions. 2631 struct DLLImportFunctionVisitor 2632 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2633 bool SafeToInline = true; 2634 2635 bool shouldVisitImplicitCode() const { return true; } 2636 2637 bool VisitVarDecl(VarDecl *VD) { 2638 if (VD->getTLSKind()) { 2639 // A thread-local variable cannot be imported. 2640 SafeToInline = false; 2641 return SafeToInline; 2642 } 2643 2644 // A variable definition might imply a destructor call. 2645 if (VD->isThisDeclarationADefinition()) 2646 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2647 2648 return SafeToInline; 2649 } 2650 2651 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2652 if (const auto *D = E->getTemporary()->getDestructor()) 2653 SafeToInline = D->hasAttr<DLLImportAttr>(); 2654 return SafeToInline; 2655 } 2656 2657 bool VisitDeclRefExpr(DeclRefExpr *E) { 2658 ValueDecl *VD = E->getDecl(); 2659 if (isa<FunctionDecl>(VD)) 2660 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2661 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2662 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2663 return SafeToInline; 2664 } 2665 2666 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2667 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2668 return SafeToInline; 2669 } 2670 2671 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2672 CXXMethodDecl *M = E->getMethodDecl(); 2673 if (!M) { 2674 // Call through a pointer to member function. This is safe to inline. 2675 SafeToInline = true; 2676 } else { 2677 SafeToInline = M->hasAttr<DLLImportAttr>(); 2678 } 2679 return SafeToInline; 2680 } 2681 2682 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2683 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2684 return SafeToInline; 2685 } 2686 2687 bool VisitCXXNewExpr(CXXNewExpr *E) { 2688 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2689 return SafeToInline; 2690 } 2691 }; 2692 } 2693 2694 // isTriviallyRecursive - Check if this function calls another 2695 // decl that, because of the asm attribute or the other decl being a builtin, 2696 // ends up pointing to itself. 2697 bool 2698 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2699 StringRef Name; 2700 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2701 // asm labels are a special kind of mangling we have to support. 2702 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2703 if (!Attr) 2704 return false; 2705 Name = Attr->getLabel(); 2706 } else { 2707 Name = FD->getName(); 2708 } 2709 2710 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2711 const Stmt *Body = FD->getBody(); 2712 return Body ? Walker.Visit(Body) : false; 2713 } 2714 2715 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2716 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2717 return true; 2718 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2719 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2720 return false; 2721 2722 if (F->hasAttr<DLLImportAttr>()) { 2723 // Check whether it would be safe to inline this dllimport function. 2724 DLLImportFunctionVisitor Visitor; 2725 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2726 if (!Visitor.SafeToInline) 2727 return false; 2728 2729 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2730 // Implicit destructor invocations aren't captured in the AST, so the 2731 // check above can't see them. Check for them manually here. 2732 for (const Decl *Member : Dtor->getParent()->decls()) 2733 if (isa<FieldDecl>(Member)) 2734 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2735 return false; 2736 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2737 if (HasNonDllImportDtor(B.getType())) 2738 return false; 2739 } 2740 } 2741 2742 // PR9614. Avoid cases where the source code is lying to us. An available 2743 // externally function should have an equivalent function somewhere else, 2744 // but a function that calls itself is clearly not equivalent to the real 2745 // implementation. 2746 // This happens in glibc's btowc and in some configure checks. 2747 return !isTriviallyRecursive(F); 2748 } 2749 2750 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2751 return CodeGenOpts.OptimizationLevel > 0; 2752 } 2753 2754 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2755 llvm::GlobalValue *GV) { 2756 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2757 2758 if (FD->isCPUSpecificMultiVersion()) { 2759 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2760 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2761 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2762 // Requires multiple emits. 2763 } else 2764 EmitGlobalFunctionDefinition(GD, GV); 2765 } 2766 2767 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2768 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2769 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2770 OpenMPRuntime && "Expected OpenMP device mode."); 2771 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2772 2773 // Compute the function info and LLVM type. 2774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2775 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2776 2777 // Get or create the prototype for the function. 2778 if (!GV || (GV->getType()->getElementType() != Ty)) { 2779 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2780 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2781 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2782 ForDefinition)); 2783 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2784 /*IsIncompleteFunction=*/false, 2785 /*IsThunk=*/false); 2786 } 2787 // We need to set linkage and visibility on the function before 2788 // generating code for it because various parts of IR generation 2789 // want to propagate this information down (e.g. to local static 2790 // declarations). 2791 auto *Fn = cast<llvm::Function>(GV); 2792 setFunctionLinkage(OldGD, Fn); 2793 2794 // FIXME: this is redundant with part of 2795 // setFunctionDefinitionAttributes 2796 setGVProperties(Fn, OldGD); 2797 2798 MaybeHandleStaticInExternC(D, Fn); 2799 2800 maybeSetTrivialComdat(*D, *Fn); 2801 2802 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2803 2804 setNonAliasAttributes(OldGD, Fn); 2805 SetLLVMFunctionAttributesForDefinition(D, Fn); 2806 2807 if (D->hasAttr<AnnotateAttr>()) 2808 AddGlobalAnnotations(D, Fn); 2809 } 2810 2811 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2812 const auto *D = cast<ValueDecl>(GD.getDecl()); 2813 2814 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2815 Context.getSourceManager(), 2816 "Generating code for declaration"); 2817 2818 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2819 // At -O0, don't generate IR for functions with available_externally 2820 // linkage. 2821 if (!shouldEmitFunction(GD)) 2822 return; 2823 2824 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2825 std::string Name; 2826 llvm::raw_string_ostream OS(Name); 2827 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2828 /*Qualified=*/true); 2829 return Name; 2830 }); 2831 2832 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2833 // Make sure to emit the definition(s) before we emit the thunks. 2834 // This is necessary for the generation of certain thunks. 2835 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2836 ABI->emitCXXStructor(GD); 2837 else if (FD->isMultiVersion()) 2838 EmitMultiVersionFunctionDefinition(GD, GV); 2839 else 2840 EmitGlobalFunctionDefinition(GD, GV); 2841 2842 if (Method->isVirtual()) 2843 getVTables().EmitThunks(GD); 2844 2845 return; 2846 } 2847 2848 if (FD->isMultiVersion()) 2849 return EmitMultiVersionFunctionDefinition(GD, GV); 2850 return EmitGlobalFunctionDefinition(GD, GV); 2851 } 2852 2853 if (const auto *VD = dyn_cast<VarDecl>(D)) 2854 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2855 2856 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2857 } 2858 2859 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2860 llvm::Function *NewFn); 2861 2862 static unsigned 2863 TargetMVPriority(const TargetInfo &TI, 2864 const CodeGenFunction::MultiVersionResolverOption &RO) { 2865 unsigned Priority = 0; 2866 for (StringRef Feat : RO.Conditions.Features) 2867 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2868 2869 if (!RO.Conditions.Architecture.empty()) 2870 Priority = std::max( 2871 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2872 return Priority; 2873 } 2874 2875 void CodeGenModule::emitMultiVersionFunctions() { 2876 for (GlobalDecl GD : MultiVersionFuncs) { 2877 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2878 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2879 getContext().forEachMultiversionedFunctionVersion( 2880 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2881 GlobalDecl CurGD{ 2882 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2883 StringRef MangledName = getMangledName(CurGD); 2884 llvm::Constant *Func = GetGlobalValue(MangledName); 2885 if (!Func) { 2886 if (CurFD->isDefined()) { 2887 EmitGlobalFunctionDefinition(CurGD, nullptr); 2888 Func = GetGlobalValue(MangledName); 2889 } else { 2890 const CGFunctionInfo &FI = 2891 getTypes().arrangeGlobalDeclaration(GD); 2892 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2893 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2894 /*DontDefer=*/false, ForDefinition); 2895 } 2896 assert(Func && "This should have just been created"); 2897 } 2898 2899 const auto *TA = CurFD->getAttr<TargetAttr>(); 2900 llvm::SmallVector<StringRef, 8> Feats; 2901 TA->getAddedFeatures(Feats); 2902 2903 Options.emplace_back(cast<llvm::Function>(Func), 2904 TA->getArchitecture(), Feats); 2905 }); 2906 2907 llvm::Function *ResolverFunc; 2908 const TargetInfo &TI = getTarget(); 2909 2910 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2911 ResolverFunc = cast<llvm::Function>( 2912 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2913 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2914 } else { 2915 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2916 } 2917 2918 if (supportsCOMDAT()) 2919 ResolverFunc->setComdat( 2920 getModule().getOrInsertComdat(ResolverFunc->getName())); 2921 2922 llvm::stable_sort( 2923 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2924 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2925 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2926 }); 2927 CodeGenFunction CGF(*this); 2928 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2929 } 2930 } 2931 2932 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2933 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2934 assert(FD && "Not a FunctionDecl?"); 2935 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2936 assert(DD && "Not a cpu_dispatch Function?"); 2937 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2938 2939 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2940 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2941 DeclTy = getTypes().GetFunctionType(FInfo); 2942 } 2943 2944 StringRef ResolverName = getMangledName(GD); 2945 2946 llvm::Type *ResolverType; 2947 GlobalDecl ResolverGD; 2948 if (getTarget().supportsIFunc()) 2949 ResolverType = llvm::FunctionType::get( 2950 llvm::PointerType::get(DeclTy, 2951 Context.getTargetAddressSpace(FD->getType())), 2952 false); 2953 else { 2954 ResolverType = DeclTy; 2955 ResolverGD = GD; 2956 } 2957 2958 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2959 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2960 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2961 if (supportsCOMDAT()) 2962 ResolverFunc->setComdat( 2963 getModule().getOrInsertComdat(ResolverFunc->getName())); 2964 2965 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2966 const TargetInfo &Target = getTarget(); 2967 unsigned Index = 0; 2968 for (const IdentifierInfo *II : DD->cpus()) { 2969 // Get the name of the target function so we can look it up/create it. 2970 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2971 getCPUSpecificMangling(*this, II->getName()); 2972 2973 llvm::Constant *Func = GetGlobalValue(MangledName); 2974 2975 if (!Func) { 2976 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2977 if (ExistingDecl.getDecl() && 2978 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2979 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2980 Func = GetGlobalValue(MangledName); 2981 } else { 2982 if (!ExistingDecl.getDecl()) 2983 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2984 2985 Func = GetOrCreateLLVMFunction( 2986 MangledName, DeclTy, ExistingDecl, 2987 /*ForVTable=*/false, /*DontDefer=*/true, 2988 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2989 } 2990 } 2991 2992 llvm::SmallVector<StringRef, 32> Features; 2993 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2994 llvm::transform(Features, Features.begin(), 2995 [](StringRef Str) { return Str.substr(1); }); 2996 Features.erase(std::remove_if( 2997 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2998 return !Target.validateCpuSupports(Feat); 2999 }), Features.end()); 3000 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3001 ++Index; 3002 } 3003 3004 llvm::sort( 3005 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3006 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3007 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3008 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3009 }); 3010 3011 // If the list contains multiple 'default' versions, such as when it contains 3012 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3013 // always run on at least a 'pentium'). We do this by deleting the 'least 3014 // advanced' (read, lowest mangling letter). 3015 while (Options.size() > 1 && 3016 CodeGenFunction::GetX86CpuSupportsMask( 3017 (Options.end() - 2)->Conditions.Features) == 0) { 3018 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3019 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3020 if (LHSName.compare(RHSName) < 0) 3021 Options.erase(Options.end() - 2); 3022 else 3023 Options.erase(Options.end() - 1); 3024 } 3025 3026 CodeGenFunction CGF(*this); 3027 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3028 3029 if (getTarget().supportsIFunc()) { 3030 std::string AliasName = getMangledNameImpl( 3031 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3032 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3033 if (!AliasFunc) { 3034 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3035 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3036 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3037 auto *GA = llvm::GlobalAlias::create( 3038 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3039 GA->setLinkage(llvm::Function::WeakODRLinkage); 3040 SetCommonAttributes(GD, GA); 3041 } 3042 } 3043 } 3044 3045 /// If a dispatcher for the specified mangled name is not in the module, create 3046 /// and return an llvm Function with the specified type. 3047 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3048 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3049 std::string MangledName = 3050 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3051 3052 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3053 // a separate resolver). 3054 std::string ResolverName = MangledName; 3055 if (getTarget().supportsIFunc()) 3056 ResolverName += ".ifunc"; 3057 else if (FD->isTargetMultiVersion()) 3058 ResolverName += ".resolver"; 3059 3060 // If this already exists, just return that one. 3061 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3062 return ResolverGV; 3063 3064 // Since this is the first time we've created this IFunc, make sure 3065 // that we put this multiversioned function into the list to be 3066 // replaced later if necessary (target multiversioning only). 3067 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3068 MultiVersionFuncs.push_back(GD); 3069 3070 if (getTarget().supportsIFunc()) { 3071 llvm::Type *ResolverType = llvm::FunctionType::get( 3072 llvm::PointerType::get( 3073 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3074 false); 3075 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3076 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3077 /*ForVTable=*/false); 3078 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3079 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3080 GIF->setName(ResolverName); 3081 SetCommonAttributes(FD, GIF); 3082 3083 return GIF; 3084 } 3085 3086 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3087 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3088 assert(isa<llvm::GlobalValue>(Resolver) && 3089 "Resolver should be created for the first time"); 3090 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3091 return Resolver; 3092 } 3093 3094 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3095 /// module, create and return an llvm Function with the specified type. If there 3096 /// is something in the module with the specified name, return it potentially 3097 /// bitcasted to the right type. 3098 /// 3099 /// If D is non-null, it specifies a decl that correspond to this. This is used 3100 /// to set the attributes on the function when it is first created. 3101 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3102 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3103 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3104 ForDefinition_t IsForDefinition) { 3105 const Decl *D = GD.getDecl(); 3106 3107 // Any attempts to use a MultiVersion function should result in retrieving 3108 // the iFunc instead. Name Mangling will handle the rest of the changes. 3109 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3110 // For the device mark the function as one that should be emitted. 3111 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3112 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3113 !DontDefer && !IsForDefinition) { 3114 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3115 GlobalDecl GDDef; 3116 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3117 GDDef = GlobalDecl(CD, GD.getCtorType()); 3118 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3119 GDDef = GlobalDecl(DD, GD.getDtorType()); 3120 else 3121 GDDef = GlobalDecl(FDDef); 3122 EmitGlobal(GDDef); 3123 } 3124 } 3125 // Check if this must be emitted as declare variant and emit reference to 3126 // the the declare variant function. 3127 if (LangOpts.OpenMP && OpenMPRuntime) 3128 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3129 3130 if (FD->isMultiVersion()) { 3131 const auto *TA = FD->getAttr<TargetAttr>(); 3132 if (TA && TA->isDefaultVersion()) 3133 UpdateMultiVersionNames(GD, FD); 3134 if (!IsForDefinition) 3135 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3136 } 3137 } 3138 3139 // Lookup the entry, lazily creating it if necessary. 3140 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3141 if (Entry) { 3142 if (WeakRefReferences.erase(Entry)) { 3143 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3144 if (FD && !FD->hasAttr<WeakAttr>()) 3145 Entry->setLinkage(llvm::Function::ExternalLinkage); 3146 } 3147 3148 // Handle dropped DLL attributes. 3149 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3150 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3151 setDSOLocal(Entry); 3152 } 3153 3154 // If there are two attempts to define the same mangled name, issue an 3155 // error. 3156 if (IsForDefinition && !Entry->isDeclaration()) { 3157 GlobalDecl OtherGD; 3158 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3159 // to make sure that we issue an error only once. 3160 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3161 (GD.getCanonicalDecl().getDecl() != 3162 OtherGD.getCanonicalDecl().getDecl()) && 3163 DiagnosedConflictingDefinitions.insert(GD).second) { 3164 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3165 << MangledName; 3166 getDiags().Report(OtherGD.getDecl()->getLocation(), 3167 diag::note_previous_definition); 3168 } 3169 } 3170 3171 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3172 (Entry->getType()->getElementType() == Ty)) { 3173 return Entry; 3174 } 3175 3176 // Make sure the result is of the correct type. 3177 // (If function is requested for a definition, we always need to create a new 3178 // function, not just return a bitcast.) 3179 if (!IsForDefinition) 3180 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3181 } 3182 3183 // This function doesn't have a complete type (for example, the return 3184 // type is an incomplete struct). Use a fake type instead, and make 3185 // sure not to try to set attributes. 3186 bool IsIncompleteFunction = false; 3187 3188 llvm::FunctionType *FTy; 3189 if (isa<llvm::FunctionType>(Ty)) { 3190 FTy = cast<llvm::FunctionType>(Ty); 3191 } else { 3192 FTy = llvm::FunctionType::get(VoidTy, false); 3193 IsIncompleteFunction = true; 3194 } 3195 3196 llvm::Function *F = 3197 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3198 Entry ? StringRef() : MangledName, &getModule()); 3199 3200 // If we already created a function with the same mangled name (but different 3201 // type) before, take its name and add it to the list of functions to be 3202 // replaced with F at the end of CodeGen. 3203 // 3204 // This happens if there is a prototype for a function (e.g. "int f()") and 3205 // then a definition of a different type (e.g. "int f(int x)"). 3206 if (Entry) { 3207 F->takeName(Entry); 3208 3209 // This might be an implementation of a function without a prototype, in 3210 // which case, try to do special replacement of calls which match the new 3211 // prototype. The really key thing here is that we also potentially drop 3212 // arguments from the call site so as to make a direct call, which makes the 3213 // inliner happier and suppresses a number of optimizer warnings (!) about 3214 // dropping arguments. 3215 if (!Entry->use_empty()) { 3216 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3217 Entry->removeDeadConstantUsers(); 3218 } 3219 3220 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3221 F, Entry->getType()->getElementType()->getPointerTo()); 3222 addGlobalValReplacement(Entry, BC); 3223 } 3224 3225 assert(F->getName() == MangledName && "name was uniqued!"); 3226 if (D) 3227 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3228 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3229 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3230 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3231 } 3232 3233 if (!DontDefer) { 3234 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3235 // each other bottoming out with the base dtor. Therefore we emit non-base 3236 // dtors on usage, even if there is no dtor definition in the TU. 3237 if (D && isa<CXXDestructorDecl>(D) && 3238 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3239 GD.getDtorType())) 3240 addDeferredDeclToEmit(GD); 3241 3242 // This is the first use or definition of a mangled name. If there is a 3243 // deferred decl with this name, remember that we need to emit it at the end 3244 // of the file. 3245 auto DDI = DeferredDecls.find(MangledName); 3246 if (DDI != DeferredDecls.end()) { 3247 // Move the potentially referenced deferred decl to the 3248 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3249 // don't need it anymore). 3250 addDeferredDeclToEmit(DDI->second); 3251 DeferredDecls.erase(DDI); 3252 3253 // Otherwise, there are cases we have to worry about where we're 3254 // using a declaration for which we must emit a definition but where 3255 // we might not find a top-level definition: 3256 // - member functions defined inline in their classes 3257 // - friend functions defined inline in some class 3258 // - special member functions with implicit definitions 3259 // If we ever change our AST traversal to walk into class methods, 3260 // this will be unnecessary. 3261 // 3262 // We also don't emit a definition for a function if it's going to be an 3263 // entry in a vtable, unless it's already marked as used. 3264 } else if (getLangOpts().CPlusPlus && D) { 3265 // Look for a declaration that's lexically in a record. 3266 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3267 FD = FD->getPreviousDecl()) { 3268 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3269 if (FD->doesThisDeclarationHaveABody()) { 3270 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3271 break; 3272 } 3273 } 3274 } 3275 } 3276 } 3277 3278 // Make sure the result is of the requested type. 3279 if (!IsIncompleteFunction) { 3280 assert(F->getType()->getElementType() == Ty); 3281 return F; 3282 } 3283 3284 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3285 return llvm::ConstantExpr::getBitCast(F, PTy); 3286 } 3287 3288 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3289 /// non-null, then this function will use the specified type if it has to 3290 /// create it (this occurs when we see a definition of the function). 3291 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3292 llvm::Type *Ty, 3293 bool ForVTable, 3294 bool DontDefer, 3295 ForDefinition_t IsForDefinition) { 3296 // If there was no specific requested type, just convert it now. 3297 if (!Ty) { 3298 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3299 Ty = getTypes().ConvertType(FD->getType()); 3300 } 3301 3302 // Devirtualized destructor calls may come through here instead of via 3303 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3304 // of the complete destructor when necessary. 3305 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3306 if (getTarget().getCXXABI().isMicrosoft() && 3307 GD.getDtorType() == Dtor_Complete && 3308 DD->getParent()->getNumVBases() == 0) 3309 GD = GlobalDecl(DD, Dtor_Base); 3310 } 3311 3312 StringRef MangledName = getMangledName(GD); 3313 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3314 /*IsThunk=*/false, llvm::AttributeList(), 3315 IsForDefinition); 3316 } 3317 3318 static const FunctionDecl * 3319 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3320 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3321 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3322 3323 IdentifierInfo &CII = C.Idents.get(Name); 3324 for (const auto &Result : DC->lookup(&CII)) 3325 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3326 return FD; 3327 3328 if (!C.getLangOpts().CPlusPlus) 3329 return nullptr; 3330 3331 // Demangle the premangled name from getTerminateFn() 3332 IdentifierInfo &CXXII = 3333 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3334 ? C.Idents.get("terminate") 3335 : C.Idents.get(Name); 3336 3337 for (const auto &N : {"__cxxabiv1", "std"}) { 3338 IdentifierInfo &NS = C.Idents.get(N); 3339 for (const auto &Result : DC->lookup(&NS)) { 3340 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3341 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3342 for (const auto &Result : LSD->lookup(&NS)) 3343 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3344 break; 3345 3346 if (ND) 3347 for (const auto &Result : ND->lookup(&CXXII)) 3348 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3349 return FD; 3350 } 3351 } 3352 3353 return nullptr; 3354 } 3355 3356 /// CreateRuntimeFunction - Create a new runtime function with the specified 3357 /// type and name. 3358 llvm::FunctionCallee 3359 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3360 llvm::AttributeList ExtraAttrs, bool Local, 3361 bool AssumeConvergent) { 3362 if (AssumeConvergent) { 3363 ExtraAttrs = 3364 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3365 llvm::Attribute::Convergent); 3366 } 3367 3368 llvm::Constant *C = 3369 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3370 /*DontDefer=*/false, /*IsThunk=*/false, 3371 ExtraAttrs); 3372 3373 if (auto *F = dyn_cast<llvm::Function>(C)) { 3374 if (F->empty()) { 3375 F->setCallingConv(getRuntimeCC()); 3376 3377 // In Windows Itanium environments, try to mark runtime functions 3378 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3379 // will link their standard library statically or dynamically. Marking 3380 // functions imported when they are not imported can cause linker errors 3381 // and warnings. 3382 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3383 !getCodeGenOpts().LTOVisibilityPublicStd) { 3384 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3385 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3386 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3387 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3388 } 3389 } 3390 setDSOLocal(F); 3391 } 3392 } 3393 3394 return {FTy, C}; 3395 } 3396 3397 /// isTypeConstant - Determine whether an object of this type can be emitted 3398 /// as a constant. 3399 /// 3400 /// If ExcludeCtor is true, the duration when the object's constructor runs 3401 /// will not be considered. The caller will need to verify that the object is 3402 /// not written to during its construction. 3403 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3404 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3405 return false; 3406 3407 if (Context.getLangOpts().CPlusPlus) { 3408 if (const CXXRecordDecl *Record 3409 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3410 return ExcludeCtor && !Record->hasMutableFields() && 3411 Record->hasTrivialDestructor(); 3412 } 3413 3414 return true; 3415 } 3416 3417 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3418 /// create and return an llvm GlobalVariable with the specified type. If there 3419 /// is something in the module with the specified name, return it potentially 3420 /// bitcasted to the right type. 3421 /// 3422 /// If D is non-null, it specifies a decl that correspond to this. This is used 3423 /// to set the attributes on the global when it is first created. 3424 /// 3425 /// If IsForDefinition is true, it is guaranteed that an actual global with 3426 /// type Ty will be returned, not conversion of a variable with the same 3427 /// mangled name but some other type. 3428 llvm::Constant * 3429 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3430 llvm::PointerType *Ty, 3431 const VarDecl *D, 3432 ForDefinition_t IsForDefinition) { 3433 // Lookup the entry, lazily creating it if necessary. 3434 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3435 if (Entry) { 3436 if (WeakRefReferences.erase(Entry)) { 3437 if (D && !D->hasAttr<WeakAttr>()) 3438 Entry->setLinkage(llvm::Function::ExternalLinkage); 3439 } 3440 3441 // Handle dropped DLL attributes. 3442 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3443 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3444 3445 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3446 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3447 3448 if (Entry->getType() == Ty) 3449 return Entry; 3450 3451 // If there are two attempts to define the same mangled name, issue an 3452 // error. 3453 if (IsForDefinition && !Entry->isDeclaration()) { 3454 GlobalDecl OtherGD; 3455 const VarDecl *OtherD; 3456 3457 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3458 // to make sure that we issue an error only once. 3459 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3460 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3461 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3462 OtherD->hasInit() && 3463 DiagnosedConflictingDefinitions.insert(D).second) { 3464 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3465 << MangledName; 3466 getDiags().Report(OtherGD.getDecl()->getLocation(), 3467 diag::note_previous_definition); 3468 } 3469 } 3470 3471 // Make sure the result is of the correct type. 3472 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3473 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3474 3475 // (If global is requested for a definition, we always need to create a new 3476 // global, not just return a bitcast.) 3477 if (!IsForDefinition) 3478 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3479 } 3480 3481 auto AddrSpace = GetGlobalVarAddressSpace(D); 3482 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3483 3484 auto *GV = new llvm::GlobalVariable( 3485 getModule(), Ty->getElementType(), false, 3486 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3487 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3488 3489 // If we already created a global with the same mangled name (but different 3490 // type) before, take its name and remove it from its parent. 3491 if (Entry) { 3492 GV->takeName(Entry); 3493 3494 if (!Entry->use_empty()) { 3495 llvm::Constant *NewPtrForOldDecl = 3496 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3497 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3498 } 3499 3500 Entry->eraseFromParent(); 3501 } 3502 3503 // This is the first use or definition of a mangled name. If there is a 3504 // deferred decl with this name, remember that we need to emit it at the end 3505 // of the file. 3506 auto DDI = DeferredDecls.find(MangledName); 3507 if (DDI != DeferredDecls.end()) { 3508 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3509 // list, and remove it from DeferredDecls (since we don't need it anymore). 3510 addDeferredDeclToEmit(DDI->second); 3511 DeferredDecls.erase(DDI); 3512 } 3513 3514 // Handle things which are present even on external declarations. 3515 if (D) { 3516 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3517 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3518 3519 // FIXME: This code is overly simple and should be merged with other global 3520 // handling. 3521 GV->setConstant(isTypeConstant(D->getType(), false)); 3522 3523 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3524 3525 setLinkageForGV(GV, D); 3526 3527 if (D->getTLSKind()) { 3528 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3529 CXXThreadLocals.push_back(D); 3530 setTLSMode(GV, *D); 3531 } 3532 3533 setGVProperties(GV, D); 3534 3535 // If required by the ABI, treat declarations of static data members with 3536 // inline initializers as definitions. 3537 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3538 EmitGlobalVarDefinition(D); 3539 } 3540 3541 // Emit section information for extern variables. 3542 if (D->hasExternalStorage()) { 3543 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3544 GV->setSection(SA->getName()); 3545 } 3546 3547 // Handle XCore specific ABI requirements. 3548 if (getTriple().getArch() == llvm::Triple::xcore && 3549 D->getLanguageLinkage() == CLanguageLinkage && 3550 D->getType().isConstant(Context) && 3551 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3552 GV->setSection(".cp.rodata"); 3553 3554 // Check if we a have a const declaration with an initializer, we may be 3555 // able to emit it as available_externally to expose it's value to the 3556 // optimizer. 3557 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3558 D->getType().isConstQualified() && !GV->hasInitializer() && 3559 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3560 const auto *Record = 3561 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3562 bool HasMutableFields = Record && Record->hasMutableFields(); 3563 if (!HasMutableFields) { 3564 const VarDecl *InitDecl; 3565 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3566 if (InitExpr) { 3567 ConstantEmitter emitter(*this); 3568 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3569 if (Init) { 3570 auto *InitType = Init->getType(); 3571 if (GV->getType()->getElementType() != InitType) { 3572 // The type of the initializer does not match the definition. 3573 // This happens when an initializer has a different type from 3574 // the type of the global (because of padding at the end of a 3575 // structure for instance). 3576 GV->setName(StringRef()); 3577 // Make a new global with the correct type, this is now guaranteed 3578 // to work. 3579 auto *NewGV = cast<llvm::GlobalVariable>( 3580 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3581 ->stripPointerCasts()); 3582 3583 // Erase the old global, since it is no longer used. 3584 GV->eraseFromParent(); 3585 GV = NewGV; 3586 } else { 3587 GV->setInitializer(Init); 3588 GV->setConstant(true); 3589 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3590 } 3591 emitter.finalize(GV); 3592 } 3593 } 3594 } 3595 } 3596 } 3597 3598 if (GV->isDeclaration()) 3599 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3600 3601 LangAS ExpectedAS = 3602 D ? D->getType().getAddressSpace() 3603 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3604 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3605 Ty->getPointerAddressSpace()); 3606 if (AddrSpace != ExpectedAS) 3607 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3608 ExpectedAS, Ty); 3609 3610 return GV; 3611 } 3612 3613 llvm::Constant * 3614 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3615 ForDefinition_t IsForDefinition) { 3616 const Decl *D = GD.getDecl(); 3617 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3618 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3619 /*DontDefer=*/false, IsForDefinition); 3620 else if (isa<CXXMethodDecl>(D)) { 3621 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3622 cast<CXXMethodDecl>(D)); 3623 auto Ty = getTypes().GetFunctionType(*FInfo); 3624 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3625 IsForDefinition); 3626 } else if (isa<FunctionDecl>(D)) { 3627 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3628 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3629 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3630 IsForDefinition); 3631 } else 3632 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3633 IsForDefinition); 3634 } 3635 3636 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3637 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3638 unsigned Alignment) { 3639 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3640 llvm::GlobalVariable *OldGV = nullptr; 3641 3642 if (GV) { 3643 // Check if the variable has the right type. 3644 if (GV->getType()->getElementType() == Ty) 3645 return GV; 3646 3647 // Because C++ name mangling, the only way we can end up with an already 3648 // existing global with the same name is if it has been declared extern "C". 3649 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3650 OldGV = GV; 3651 } 3652 3653 // Create a new variable. 3654 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3655 Linkage, nullptr, Name); 3656 3657 if (OldGV) { 3658 // Replace occurrences of the old variable if needed. 3659 GV->takeName(OldGV); 3660 3661 if (!OldGV->use_empty()) { 3662 llvm::Constant *NewPtrForOldDecl = 3663 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3664 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3665 } 3666 3667 OldGV->eraseFromParent(); 3668 } 3669 3670 if (supportsCOMDAT() && GV->isWeakForLinker() && 3671 !GV->hasAvailableExternallyLinkage()) 3672 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3673 3674 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3675 3676 return GV; 3677 } 3678 3679 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3680 /// given global variable. If Ty is non-null and if the global doesn't exist, 3681 /// then it will be created with the specified type instead of whatever the 3682 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3683 /// that an actual global with type Ty will be returned, not conversion of a 3684 /// variable with the same mangled name but some other type. 3685 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3686 llvm::Type *Ty, 3687 ForDefinition_t IsForDefinition) { 3688 assert(D->hasGlobalStorage() && "Not a global variable"); 3689 QualType ASTTy = D->getType(); 3690 if (!Ty) 3691 Ty = getTypes().ConvertTypeForMem(ASTTy); 3692 3693 llvm::PointerType *PTy = 3694 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3695 3696 StringRef MangledName = getMangledName(D); 3697 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3698 } 3699 3700 /// CreateRuntimeVariable - Create a new runtime global variable with the 3701 /// specified type and name. 3702 llvm::Constant * 3703 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3704 StringRef Name) { 3705 auto PtrTy = 3706 getContext().getLangOpts().OpenCL 3707 ? llvm::PointerType::get( 3708 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3709 : llvm::PointerType::getUnqual(Ty); 3710 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3711 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3712 return Ret; 3713 } 3714 3715 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3716 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3717 3718 StringRef MangledName = getMangledName(D); 3719 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3720 3721 // We already have a definition, not declaration, with the same mangled name. 3722 // Emitting of declaration is not required (and actually overwrites emitted 3723 // definition). 3724 if (GV && !GV->isDeclaration()) 3725 return; 3726 3727 // If we have not seen a reference to this variable yet, place it into the 3728 // deferred declarations table to be emitted if needed later. 3729 if (!MustBeEmitted(D) && !GV) { 3730 DeferredDecls[MangledName] = D; 3731 return; 3732 } 3733 3734 // The tentative definition is the only definition. 3735 EmitGlobalVarDefinition(D); 3736 } 3737 3738 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3739 EmitExternalVarDeclaration(D); 3740 } 3741 3742 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3743 return Context.toCharUnitsFromBits( 3744 getDataLayout().getTypeStoreSizeInBits(Ty)); 3745 } 3746 3747 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3748 LangAS AddrSpace = LangAS::Default; 3749 if (LangOpts.OpenCL) { 3750 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3751 assert(AddrSpace == LangAS::opencl_global || 3752 AddrSpace == LangAS::opencl_constant || 3753 AddrSpace == LangAS::opencl_local || 3754 AddrSpace >= LangAS::FirstTargetAddressSpace); 3755 return AddrSpace; 3756 } 3757 3758 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3759 if (D && D->hasAttr<CUDAConstantAttr>()) 3760 return LangAS::cuda_constant; 3761 else if (D && D->hasAttr<CUDASharedAttr>()) 3762 return LangAS::cuda_shared; 3763 else if (D && D->hasAttr<CUDADeviceAttr>()) 3764 return LangAS::cuda_device; 3765 else if (D && D->getType().isConstQualified()) 3766 return LangAS::cuda_constant; 3767 else 3768 return LangAS::cuda_device; 3769 } 3770 3771 if (LangOpts.OpenMP) { 3772 LangAS AS; 3773 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3774 return AS; 3775 } 3776 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3777 } 3778 3779 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3780 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3781 if (LangOpts.OpenCL) 3782 return LangAS::opencl_constant; 3783 if (auto AS = getTarget().getConstantAddressSpace()) 3784 return AS.getValue(); 3785 return LangAS::Default; 3786 } 3787 3788 // In address space agnostic languages, string literals are in default address 3789 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3790 // emitted in constant address space in LLVM IR. To be consistent with other 3791 // parts of AST, string literal global variables in constant address space 3792 // need to be casted to default address space before being put into address 3793 // map and referenced by other part of CodeGen. 3794 // In OpenCL, string literals are in constant address space in AST, therefore 3795 // they should not be casted to default address space. 3796 static llvm::Constant * 3797 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3798 llvm::GlobalVariable *GV) { 3799 llvm::Constant *Cast = GV; 3800 if (!CGM.getLangOpts().OpenCL) { 3801 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3802 if (AS != LangAS::Default) 3803 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3804 CGM, GV, AS.getValue(), LangAS::Default, 3805 GV->getValueType()->getPointerTo( 3806 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3807 } 3808 } 3809 return Cast; 3810 } 3811 3812 template<typename SomeDecl> 3813 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3814 llvm::GlobalValue *GV) { 3815 if (!getLangOpts().CPlusPlus) 3816 return; 3817 3818 // Must have 'used' attribute, or else inline assembly can't rely on 3819 // the name existing. 3820 if (!D->template hasAttr<UsedAttr>()) 3821 return; 3822 3823 // Must have internal linkage and an ordinary name. 3824 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3825 return; 3826 3827 // Must be in an extern "C" context. Entities declared directly within 3828 // a record are not extern "C" even if the record is in such a context. 3829 const SomeDecl *First = D->getFirstDecl(); 3830 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3831 return; 3832 3833 // OK, this is an internal linkage entity inside an extern "C" linkage 3834 // specification. Make a note of that so we can give it the "expected" 3835 // mangled name if nothing else is using that name. 3836 std::pair<StaticExternCMap::iterator, bool> R = 3837 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3838 3839 // If we have multiple internal linkage entities with the same name 3840 // in extern "C" regions, none of them gets that name. 3841 if (!R.second) 3842 R.first->second = nullptr; 3843 } 3844 3845 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3846 if (!CGM.supportsCOMDAT()) 3847 return false; 3848 3849 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3850 // them being "merged" by the COMDAT Folding linker optimization. 3851 if (D.hasAttr<CUDAGlobalAttr>()) 3852 return false; 3853 3854 if (D.hasAttr<SelectAnyAttr>()) 3855 return true; 3856 3857 GVALinkage Linkage; 3858 if (auto *VD = dyn_cast<VarDecl>(&D)) 3859 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3860 else 3861 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3862 3863 switch (Linkage) { 3864 case GVA_Internal: 3865 case GVA_AvailableExternally: 3866 case GVA_StrongExternal: 3867 return false; 3868 case GVA_DiscardableODR: 3869 case GVA_StrongODR: 3870 return true; 3871 } 3872 llvm_unreachable("No such linkage"); 3873 } 3874 3875 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3876 llvm::GlobalObject &GO) { 3877 if (!shouldBeInCOMDAT(*this, D)) 3878 return; 3879 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3880 } 3881 3882 /// Pass IsTentative as true if you want to create a tentative definition. 3883 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3884 bool IsTentative) { 3885 // OpenCL global variables of sampler type are translated to function calls, 3886 // therefore no need to be translated. 3887 QualType ASTTy = D->getType(); 3888 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3889 return; 3890 3891 // If this is OpenMP device, check if it is legal to emit this global 3892 // normally. 3893 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3894 OpenMPRuntime->emitTargetGlobalVariable(D)) 3895 return; 3896 3897 llvm::Constant *Init = nullptr; 3898 bool NeedsGlobalCtor = false; 3899 bool NeedsGlobalDtor = 3900 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3901 3902 const VarDecl *InitDecl; 3903 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3904 3905 Optional<ConstantEmitter> emitter; 3906 3907 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3908 // as part of their declaration." Sema has already checked for 3909 // error cases, so we just need to set Init to UndefValue. 3910 bool IsCUDASharedVar = 3911 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3912 // Shadows of initialized device-side global variables are also left 3913 // undefined. 3914 bool IsCUDAShadowVar = 3915 !getLangOpts().CUDAIsDevice && 3916 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3917 D->hasAttr<CUDASharedAttr>()); 3918 // HIP pinned shadow of initialized host-side global variables are also 3919 // left undefined. 3920 bool IsHIPPinnedShadowVar = 3921 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3922 if (getLangOpts().CUDA && 3923 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3924 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3925 else if (!InitExpr) { 3926 // This is a tentative definition; tentative definitions are 3927 // implicitly initialized with { 0 }. 3928 // 3929 // Note that tentative definitions are only emitted at the end of 3930 // a translation unit, so they should never have incomplete 3931 // type. In addition, EmitTentativeDefinition makes sure that we 3932 // never attempt to emit a tentative definition if a real one 3933 // exists. A use may still exists, however, so we still may need 3934 // to do a RAUW. 3935 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3936 Init = EmitNullConstant(D->getType()); 3937 } else { 3938 initializedGlobalDecl = GlobalDecl(D); 3939 emitter.emplace(*this); 3940 Init = emitter->tryEmitForInitializer(*InitDecl); 3941 3942 if (!Init) { 3943 QualType T = InitExpr->getType(); 3944 if (D->getType()->isReferenceType()) 3945 T = D->getType(); 3946 3947 if (getLangOpts().CPlusPlus) { 3948 Init = EmitNullConstant(T); 3949 NeedsGlobalCtor = true; 3950 } else { 3951 ErrorUnsupported(D, "static initializer"); 3952 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3953 } 3954 } else { 3955 // We don't need an initializer, so remove the entry for the delayed 3956 // initializer position (just in case this entry was delayed) if we 3957 // also don't need to register a destructor. 3958 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3959 DelayedCXXInitPosition.erase(D); 3960 } 3961 } 3962 3963 llvm::Type* InitType = Init->getType(); 3964 llvm::Constant *Entry = 3965 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3966 3967 // Strip off pointer casts if we got them. 3968 Entry = Entry->stripPointerCasts(); 3969 3970 // Entry is now either a Function or GlobalVariable. 3971 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3972 3973 // We have a definition after a declaration with the wrong type. 3974 // We must make a new GlobalVariable* and update everything that used OldGV 3975 // (a declaration or tentative definition) with the new GlobalVariable* 3976 // (which will be a definition). 3977 // 3978 // This happens if there is a prototype for a global (e.g. 3979 // "extern int x[];") and then a definition of a different type (e.g. 3980 // "int x[10];"). This also happens when an initializer has a different type 3981 // from the type of the global (this happens with unions). 3982 if (!GV || GV->getType()->getElementType() != InitType || 3983 GV->getType()->getAddressSpace() != 3984 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3985 3986 // Move the old entry aside so that we'll create a new one. 3987 Entry->setName(StringRef()); 3988 3989 // Make a new global with the correct type, this is now guaranteed to work. 3990 GV = cast<llvm::GlobalVariable>( 3991 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 3992 ->stripPointerCasts()); 3993 3994 // Replace all uses of the old global with the new global 3995 llvm::Constant *NewPtrForOldDecl = 3996 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3997 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3998 3999 // Erase the old global, since it is no longer used. 4000 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4001 } 4002 4003 MaybeHandleStaticInExternC(D, GV); 4004 4005 if (D->hasAttr<AnnotateAttr>()) 4006 AddGlobalAnnotations(D, GV); 4007 4008 // Set the llvm linkage type as appropriate. 4009 llvm::GlobalValue::LinkageTypes Linkage = 4010 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4011 4012 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4013 // the device. [...]" 4014 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4015 // __device__, declares a variable that: [...] 4016 // Is accessible from all the threads within the grid and from the host 4017 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4018 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4019 if (GV && LangOpts.CUDA) { 4020 if (LangOpts.CUDAIsDevice) { 4021 if (Linkage != llvm::GlobalValue::InternalLinkage && 4022 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4023 GV->setExternallyInitialized(true); 4024 } else { 4025 // Host-side shadows of external declarations of device-side 4026 // global variables become internal definitions. These have to 4027 // be internal in order to prevent name conflicts with global 4028 // host variables with the same name in a different TUs. 4029 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4030 D->hasAttr<HIPPinnedShadowAttr>()) { 4031 Linkage = llvm::GlobalValue::InternalLinkage; 4032 4033 // Shadow variables and their properties must be registered 4034 // with CUDA runtime. 4035 unsigned Flags = 0; 4036 if (!D->hasDefinition()) 4037 Flags |= CGCUDARuntime::ExternDeviceVar; 4038 if (D->hasAttr<CUDAConstantAttr>()) 4039 Flags |= CGCUDARuntime::ConstantDeviceVar; 4040 // Extern global variables will be registered in the TU where they are 4041 // defined. 4042 if (!D->hasExternalStorage()) 4043 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4044 } else if (D->hasAttr<CUDASharedAttr>()) 4045 // __shared__ variables are odd. Shadows do get created, but 4046 // they are not registered with the CUDA runtime, so they 4047 // can't really be used to access their device-side 4048 // counterparts. It's not clear yet whether it's nvcc's bug or 4049 // a feature, but we've got to do the same for compatibility. 4050 Linkage = llvm::GlobalValue::InternalLinkage; 4051 } 4052 } 4053 4054 if (!IsHIPPinnedShadowVar) 4055 GV->setInitializer(Init); 4056 if (emitter) emitter->finalize(GV); 4057 4058 // If it is safe to mark the global 'constant', do so now. 4059 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4060 isTypeConstant(D->getType(), true)); 4061 4062 // If it is in a read-only section, mark it 'constant'. 4063 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4064 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4065 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4066 GV->setConstant(true); 4067 } 4068 4069 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4070 4071 // On Darwin, if the normal linkage of a C++ thread_local variable is 4072 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4073 // copies within a linkage unit; otherwise, the backing variable has 4074 // internal linkage and all accesses should just be calls to the 4075 // Itanium-specified entry point, which has the normal linkage of the 4076 // variable. This is to preserve the ability to change the implementation 4077 // behind the scenes. 4078 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4079 Context.getTargetInfo().getTriple().isOSDarwin() && 4080 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4081 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4082 Linkage = llvm::GlobalValue::InternalLinkage; 4083 4084 GV->setLinkage(Linkage); 4085 if (D->hasAttr<DLLImportAttr>()) 4086 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4087 else if (D->hasAttr<DLLExportAttr>()) 4088 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4089 else 4090 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4091 4092 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4093 // common vars aren't constant even if declared const. 4094 GV->setConstant(false); 4095 // Tentative definition of global variables may be initialized with 4096 // non-zero null pointers. In this case they should have weak linkage 4097 // since common linkage must have zero initializer and must not have 4098 // explicit section therefore cannot have non-zero initial value. 4099 if (!GV->getInitializer()->isNullValue()) 4100 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4101 } 4102 4103 setNonAliasAttributes(D, GV); 4104 4105 if (D->getTLSKind() && !GV->isThreadLocal()) { 4106 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4107 CXXThreadLocals.push_back(D); 4108 setTLSMode(GV, *D); 4109 } 4110 4111 maybeSetTrivialComdat(*D, *GV); 4112 4113 // Emit the initializer function if necessary. 4114 if (NeedsGlobalCtor || NeedsGlobalDtor) 4115 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4116 4117 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4118 4119 // Emit global variable debug information. 4120 if (CGDebugInfo *DI = getModuleDebugInfo()) 4121 if (getCodeGenOpts().hasReducedDebugInfo()) 4122 DI->EmitGlobalVariable(GV, D); 4123 } 4124 4125 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4126 if (CGDebugInfo *DI = getModuleDebugInfo()) 4127 if (getCodeGenOpts().hasReducedDebugInfo()) { 4128 QualType ASTTy = D->getType(); 4129 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4130 llvm::PointerType *PTy = 4131 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4132 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4133 DI->EmitExternalVariable( 4134 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4135 } 4136 } 4137 4138 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4139 CodeGenModule &CGM, const VarDecl *D, 4140 bool NoCommon) { 4141 // Don't give variables common linkage if -fno-common was specified unless it 4142 // was overridden by a NoCommon attribute. 4143 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4144 return true; 4145 4146 // C11 6.9.2/2: 4147 // A declaration of an identifier for an object that has file scope without 4148 // an initializer, and without a storage-class specifier or with the 4149 // storage-class specifier static, constitutes a tentative definition. 4150 if (D->getInit() || D->hasExternalStorage()) 4151 return true; 4152 4153 // A variable cannot be both common and exist in a section. 4154 if (D->hasAttr<SectionAttr>()) 4155 return true; 4156 4157 // A variable cannot be both common and exist in a section. 4158 // We don't try to determine which is the right section in the front-end. 4159 // If no specialized section name is applicable, it will resort to default. 4160 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4161 D->hasAttr<PragmaClangDataSectionAttr>() || 4162 D->hasAttr<PragmaClangRelroSectionAttr>() || 4163 D->hasAttr<PragmaClangRodataSectionAttr>()) 4164 return true; 4165 4166 // Thread local vars aren't considered common linkage. 4167 if (D->getTLSKind()) 4168 return true; 4169 4170 // Tentative definitions marked with WeakImportAttr are true definitions. 4171 if (D->hasAttr<WeakImportAttr>()) 4172 return true; 4173 4174 // A variable cannot be both common and exist in a comdat. 4175 if (shouldBeInCOMDAT(CGM, *D)) 4176 return true; 4177 4178 // Declarations with a required alignment do not have common linkage in MSVC 4179 // mode. 4180 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4181 if (D->hasAttr<AlignedAttr>()) 4182 return true; 4183 QualType VarType = D->getType(); 4184 if (Context.isAlignmentRequired(VarType)) 4185 return true; 4186 4187 if (const auto *RT = VarType->getAs<RecordType>()) { 4188 const RecordDecl *RD = RT->getDecl(); 4189 for (const FieldDecl *FD : RD->fields()) { 4190 if (FD->isBitField()) 4191 continue; 4192 if (FD->hasAttr<AlignedAttr>()) 4193 return true; 4194 if (Context.isAlignmentRequired(FD->getType())) 4195 return true; 4196 } 4197 } 4198 } 4199 4200 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4201 // common symbols, so symbols with greater alignment requirements cannot be 4202 // common. 4203 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4204 // alignments for common symbols via the aligncomm directive, so this 4205 // restriction only applies to MSVC environments. 4206 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4207 Context.getTypeAlignIfKnown(D->getType()) > 4208 Context.toBits(CharUnits::fromQuantity(32))) 4209 return true; 4210 4211 return false; 4212 } 4213 4214 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4215 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4216 if (Linkage == GVA_Internal) 4217 return llvm::Function::InternalLinkage; 4218 4219 if (D->hasAttr<WeakAttr>()) { 4220 if (IsConstantVariable) 4221 return llvm::GlobalVariable::WeakODRLinkage; 4222 else 4223 return llvm::GlobalVariable::WeakAnyLinkage; 4224 } 4225 4226 if (const auto *FD = D->getAsFunction()) 4227 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4228 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4229 4230 // We are guaranteed to have a strong definition somewhere else, 4231 // so we can use available_externally linkage. 4232 if (Linkage == GVA_AvailableExternally) 4233 return llvm::GlobalValue::AvailableExternallyLinkage; 4234 4235 // Note that Apple's kernel linker doesn't support symbol 4236 // coalescing, so we need to avoid linkonce and weak linkages there. 4237 // Normally, this means we just map to internal, but for explicit 4238 // instantiations we'll map to external. 4239 4240 // In C++, the compiler has to emit a definition in every translation unit 4241 // that references the function. We should use linkonce_odr because 4242 // a) if all references in this translation unit are optimized away, we 4243 // don't need to codegen it. b) if the function persists, it needs to be 4244 // merged with other definitions. c) C++ has the ODR, so we know the 4245 // definition is dependable. 4246 if (Linkage == GVA_DiscardableODR) 4247 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4248 : llvm::Function::InternalLinkage; 4249 4250 // An explicit instantiation of a template has weak linkage, since 4251 // explicit instantiations can occur in multiple translation units 4252 // and must all be equivalent. However, we are not allowed to 4253 // throw away these explicit instantiations. 4254 // 4255 // We don't currently support CUDA device code spread out across multiple TUs, 4256 // so say that CUDA templates are either external (for kernels) or internal. 4257 // This lets llvm perform aggressive inter-procedural optimizations. 4258 if (Linkage == GVA_StrongODR) { 4259 if (Context.getLangOpts().AppleKext) 4260 return llvm::Function::ExternalLinkage; 4261 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4262 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4263 : llvm::Function::InternalLinkage; 4264 return llvm::Function::WeakODRLinkage; 4265 } 4266 4267 // C++ doesn't have tentative definitions and thus cannot have common 4268 // linkage. 4269 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4270 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4271 CodeGenOpts.NoCommon)) 4272 return llvm::GlobalVariable::CommonLinkage; 4273 4274 // selectany symbols are externally visible, so use weak instead of 4275 // linkonce. MSVC optimizes away references to const selectany globals, so 4276 // all definitions should be the same and ODR linkage should be used. 4277 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4278 if (D->hasAttr<SelectAnyAttr>()) 4279 return llvm::GlobalVariable::WeakODRLinkage; 4280 4281 // Otherwise, we have strong external linkage. 4282 assert(Linkage == GVA_StrongExternal); 4283 return llvm::GlobalVariable::ExternalLinkage; 4284 } 4285 4286 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4287 const VarDecl *VD, bool IsConstant) { 4288 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4289 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4290 } 4291 4292 /// Replace the uses of a function that was declared with a non-proto type. 4293 /// We want to silently drop extra arguments from call sites 4294 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4295 llvm::Function *newFn) { 4296 // Fast path. 4297 if (old->use_empty()) return; 4298 4299 llvm::Type *newRetTy = newFn->getReturnType(); 4300 SmallVector<llvm::Value*, 4> newArgs; 4301 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4302 4303 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4304 ui != ue; ) { 4305 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4306 llvm::User *user = use->getUser(); 4307 4308 // Recognize and replace uses of bitcasts. Most calls to 4309 // unprototyped functions will use bitcasts. 4310 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4311 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4312 replaceUsesOfNonProtoConstant(bitcast, newFn); 4313 continue; 4314 } 4315 4316 // Recognize calls to the function. 4317 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4318 if (!callSite) continue; 4319 if (!callSite->isCallee(&*use)) 4320 continue; 4321 4322 // If the return types don't match exactly, then we can't 4323 // transform this call unless it's dead. 4324 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4325 continue; 4326 4327 // Get the call site's attribute list. 4328 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4329 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4330 4331 // If the function was passed too few arguments, don't transform. 4332 unsigned newNumArgs = newFn->arg_size(); 4333 if (callSite->arg_size() < newNumArgs) 4334 continue; 4335 4336 // If extra arguments were passed, we silently drop them. 4337 // If any of the types mismatch, we don't transform. 4338 unsigned argNo = 0; 4339 bool dontTransform = false; 4340 for (llvm::Argument &A : newFn->args()) { 4341 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4342 dontTransform = true; 4343 break; 4344 } 4345 4346 // Add any parameter attributes. 4347 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4348 argNo++; 4349 } 4350 if (dontTransform) 4351 continue; 4352 4353 // Okay, we can transform this. Create the new call instruction and copy 4354 // over the required information. 4355 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4356 4357 // Copy over any operand bundles. 4358 callSite->getOperandBundlesAsDefs(newBundles); 4359 4360 llvm::CallBase *newCall; 4361 if (dyn_cast<llvm::CallInst>(callSite)) { 4362 newCall = 4363 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4364 } else { 4365 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4366 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4367 oldInvoke->getUnwindDest(), newArgs, 4368 newBundles, "", callSite); 4369 } 4370 newArgs.clear(); // for the next iteration 4371 4372 if (!newCall->getType()->isVoidTy()) 4373 newCall->takeName(callSite); 4374 newCall->setAttributes(llvm::AttributeList::get( 4375 newFn->getContext(), oldAttrs.getFnAttributes(), 4376 oldAttrs.getRetAttributes(), newArgAttrs)); 4377 newCall->setCallingConv(callSite->getCallingConv()); 4378 4379 // Finally, remove the old call, replacing any uses with the new one. 4380 if (!callSite->use_empty()) 4381 callSite->replaceAllUsesWith(newCall); 4382 4383 // Copy debug location attached to CI. 4384 if (callSite->getDebugLoc()) 4385 newCall->setDebugLoc(callSite->getDebugLoc()); 4386 4387 callSite->eraseFromParent(); 4388 } 4389 } 4390 4391 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4392 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4393 /// existing call uses of the old function in the module, this adjusts them to 4394 /// call the new function directly. 4395 /// 4396 /// This is not just a cleanup: the always_inline pass requires direct calls to 4397 /// functions to be able to inline them. If there is a bitcast in the way, it 4398 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4399 /// run at -O0. 4400 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4401 llvm::Function *NewFn) { 4402 // If we're redefining a global as a function, don't transform it. 4403 if (!isa<llvm::Function>(Old)) return; 4404 4405 replaceUsesOfNonProtoConstant(Old, NewFn); 4406 } 4407 4408 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4409 auto DK = VD->isThisDeclarationADefinition(); 4410 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4411 return; 4412 4413 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4414 // If we have a definition, this might be a deferred decl. If the 4415 // instantiation is explicit, make sure we emit it at the end. 4416 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4417 GetAddrOfGlobalVar(VD); 4418 4419 EmitTopLevelDecl(VD); 4420 } 4421 4422 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4423 llvm::GlobalValue *GV) { 4424 // Check if this must be emitted as declare variant. 4425 if (LangOpts.OpenMP && OpenMPRuntime && 4426 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4427 return; 4428 4429 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4430 4431 // Compute the function info and LLVM type. 4432 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4433 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4434 4435 // Get or create the prototype for the function. 4436 if (!GV || (GV->getType()->getElementType() != Ty)) 4437 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4438 /*DontDefer=*/true, 4439 ForDefinition)); 4440 4441 // Already emitted. 4442 if (!GV->isDeclaration()) 4443 return; 4444 4445 // We need to set linkage and visibility on the function before 4446 // generating code for it because various parts of IR generation 4447 // want to propagate this information down (e.g. to local static 4448 // declarations). 4449 auto *Fn = cast<llvm::Function>(GV); 4450 setFunctionLinkage(GD, Fn); 4451 4452 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4453 setGVProperties(Fn, GD); 4454 4455 MaybeHandleStaticInExternC(D, Fn); 4456 4457 4458 maybeSetTrivialComdat(*D, *Fn); 4459 4460 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4461 4462 setNonAliasAttributes(GD, Fn); 4463 SetLLVMFunctionAttributesForDefinition(D, Fn); 4464 4465 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4466 AddGlobalCtor(Fn, CA->getPriority()); 4467 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4468 AddGlobalDtor(Fn, DA->getPriority()); 4469 if (D->hasAttr<AnnotateAttr>()) 4470 AddGlobalAnnotations(D, Fn); 4471 } 4472 4473 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4474 const auto *D = cast<ValueDecl>(GD.getDecl()); 4475 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4476 assert(AA && "Not an alias?"); 4477 4478 StringRef MangledName = getMangledName(GD); 4479 4480 if (AA->getAliasee() == MangledName) { 4481 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4482 return; 4483 } 4484 4485 // If there is a definition in the module, then it wins over the alias. 4486 // This is dubious, but allow it to be safe. Just ignore the alias. 4487 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4488 if (Entry && !Entry->isDeclaration()) 4489 return; 4490 4491 Aliases.push_back(GD); 4492 4493 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4494 4495 // Create a reference to the named value. This ensures that it is emitted 4496 // if a deferred decl. 4497 llvm::Constant *Aliasee; 4498 llvm::GlobalValue::LinkageTypes LT; 4499 if (isa<llvm::FunctionType>(DeclTy)) { 4500 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4501 /*ForVTable=*/false); 4502 LT = getFunctionLinkage(GD); 4503 } else { 4504 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4505 llvm::PointerType::getUnqual(DeclTy), 4506 /*D=*/nullptr); 4507 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4508 D->getType().isConstQualified()); 4509 } 4510 4511 // Create the new alias itself, but don't set a name yet. 4512 auto *GA = 4513 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4514 4515 if (Entry) { 4516 if (GA->getAliasee() == Entry) { 4517 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4518 return; 4519 } 4520 4521 assert(Entry->isDeclaration()); 4522 4523 // If there is a declaration in the module, then we had an extern followed 4524 // by the alias, as in: 4525 // extern int test6(); 4526 // ... 4527 // int test6() __attribute__((alias("test7"))); 4528 // 4529 // Remove it and replace uses of it with the alias. 4530 GA->takeName(Entry); 4531 4532 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4533 Entry->getType())); 4534 Entry->eraseFromParent(); 4535 } else { 4536 GA->setName(MangledName); 4537 } 4538 4539 // Set attributes which are particular to an alias; this is a 4540 // specialization of the attributes which may be set on a global 4541 // variable/function. 4542 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4543 D->isWeakImported()) { 4544 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4545 } 4546 4547 if (const auto *VD = dyn_cast<VarDecl>(D)) 4548 if (VD->getTLSKind()) 4549 setTLSMode(GA, *VD); 4550 4551 SetCommonAttributes(GD, GA); 4552 } 4553 4554 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4555 const auto *D = cast<ValueDecl>(GD.getDecl()); 4556 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4557 assert(IFA && "Not an ifunc?"); 4558 4559 StringRef MangledName = getMangledName(GD); 4560 4561 if (IFA->getResolver() == MangledName) { 4562 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4563 return; 4564 } 4565 4566 // Report an error if some definition overrides ifunc. 4567 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4568 if (Entry && !Entry->isDeclaration()) { 4569 GlobalDecl OtherGD; 4570 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4571 DiagnosedConflictingDefinitions.insert(GD).second) { 4572 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4573 << MangledName; 4574 Diags.Report(OtherGD.getDecl()->getLocation(), 4575 diag::note_previous_definition); 4576 } 4577 return; 4578 } 4579 4580 Aliases.push_back(GD); 4581 4582 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4583 llvm::Constant *Resolver = 4584 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4585 /*ForVTable=*/false); 4586 llvm::GlobalIFunc *GIF = 4587 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4588 "", Resolver, &getModule()); 4589 if (Entry) { 4590 if (GIF->getResolver() == Entry) { 4591 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4592 return; 4593 } 4594 assert(Entry->isDeclaration()); 4595 4596 // If there is a declaration in the module, then we had an extern followed 4597 // by the ifunc, as in: 4598 // extern int test(); 4599 // ... 4600 // int test() __attribute__((ifunc("resolver"))); 4601 // 4602 // Remove it and replace uses of it with the ifunc. 4603 GIF->takeName(Entry); 4604 4605 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4606 Entry->getType())); 4607 Entry->eraseFromParent(); 4608 } else 4609 GIF->setName(MangledName); 4610 4611 SetCommonAttributes(GD, GIF); 4612 } 4613 4614 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4615 ArrayRef<llvm::Type*> Tys) { 4616 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4617 Tys); 4618 } 4619 4620 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4621 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4622 const StringLiteral *Literal, bool TargetIsLSB, 4623 bool &IsUTF16, unsigned &StringLength) { 4624 StringRef String = Literal->getString(); 4625 unsigned NumBytes = String.size(); 4626 4627 // Check for simple case. 4628 if (!Literal->containsNonAsciiOrNull()) { 4629 StringLength = NumBytes; 4630 return *Map.insert(std::make_pair(String, nullptr)).first; 4631 } 4632 4633 // Otherwise, convert the UTF8 literals into a string of shorts. 4634 IsUTF16 = true; 4635 4636 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4637 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4638 llvm::UTF16 *ToPtr = &ToBuf[0]; 4639 4640 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4641 ToPtr + NumBytes, llvm::strictConversion); 4642 4643 // ConvertUTF8toUTF16 returns the length in ToPtr. 4644 StringLength = ToPtr - &ToBuf[0]; 4645 4646 // Add an explicit null. 4647 *ToPtr = 0; 4648 return *Map.insert(std::make_pair( 4649 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4650 (StringLength + 1) * 2), 4651 nullptr)).first; 4652 } 4653 4654 ConstantAddress 4655 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4656 unsigned StringLength = 0; 4657 bool isUTF16 = false; 4658 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4659 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4660 getDataLayout().isLittleEndian(), isUTF16, 4661 StringLength); 4662 4663 if (auto *C = Entry.second) 4664 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4665 4666 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4667 llvm::Constant *Zeros[] = { Zero, Zero }; 4668 4669 const ASTContext &Context = getContext(); 4670 const llvm::Triple &Triple = getTriple(); 4671 4672 const auto CFRuntime = getLangOpts().CFRuntime; 4673 const bool IsSwiftABI = 4674 static_cast<unsigned>(CFRuntime) >= 4675 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4676 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4677 4678 // If we don't already have it, get __CFConstantStringClassReference. 4679 if (!CFConstantStringClassRef) { 4680 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4681 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4682 Ty = llvm::ArrayType::get(Ty, 0); 4683 4684 switch (CFRuntime) { 4685 default: break; 4686 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4687 case LangOptions::CoreFoundationABI::Swift5_0: 4688 CFConstantStringClassName = 4689 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4690 : "$s10Foundation19_NSCFConstantStringCN"; 4691 Ty = IntPtrTy; 4692 break; 4693 case LangOptions::CoreFoundationABI::Swift4_2: 4694 CFConstantStringClassName = 4695 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4696 : "$S10Foundation19_NSCFConstantStringCN"; 4697 Ty = IntPtrTy; 4698 break; 4699 case LangOptions::CoreFoundationABI::Swift4_1: 4700 CFConstantStringClassName = 4701 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4702 : "__T010Foundation19_NSCFConstantStringCN"; 4703 Ty = IntPtrTy; 4704 break; 4705 } 4706 4707 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4708 4709 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4710 llvm::GlobalValue *GV = nullptr; 4711 4712 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4713 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4714 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4715 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4716 4717 const VarDecl *VD = nullptr; 4718 for (const auto &Result : DC->lookup(&II)) 4719 if ((VD = dyn_cast<VarDecl>(Result))) 4720 break; 4721 4722 if (Triple.isOSBinFormatELF()) { 4723 if (!VD) 4724 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4725 } else { 4726 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4727 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4728 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4729 else 4730 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4731 } 4732 4733 setDSOLocal(GV); 4734 } 4735 } 4736 4737 // Decay array -> ptr 4738 CFConstantStringClassRef = 4739 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4740 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4741 } 4742 4743 QualType CFTy = Context.getCFConstantStringType(); 4744 4745 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4746 4747 ConstantInitBuilder Builder(*this); 4748 auto Fields = Builder.beginStruct(STy); 4749 4750 // Class pointer. 4751 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4752 4753 // Flags. 4754 if (IsSwiftABI) { 4755 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4756 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4757 } else { 4758 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4759 } 4760 4761 // String pointer. 4762 llvm::Constant *C = nullptr; 4763 if (isUTF16) { 4764 auto Arr = llvm::makeArrayRef( 4765 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4766 Entry.first().size() / 2); 4767 C = llvm::ConstantDataArray::get(VMContext, Arr); 4768 } else { 4769 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4770 } 4771 4772 // Note: -fwritable-strings doesn't make the backing store strings of 4773 // CFStrings writable. (See <rdar://problem/10657500>) 4774 auto *GV = 4775 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4776 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4777 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4778 // Don't enforce the target's minimum global alignment, since the only use 4779 // of the string is via this class initializer. 4780 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4781 : Context.getTypeAlignInChars(Context.CharTy); 4782 GV->setAlignment(Align.getAsAlign()); 4783 4784 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4785 // Without it LLVM can merge the string with a non unnamed_addr one during 4786 // LTO. Doing that changes the section it ends in, which surprises ld64. 4787 if (Triple.isOSBinFormatMachO()) 4788 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4789 : "__TEXT,__cstring,cstring_literals"); 4790 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4791 // the static linker to adjust permissions to read-only later on. 4792 else if (Triple.isOSBinFormatELF()) 4793 GV->setSection(".rodata"); 4794 4795 // String. 4796 llvm::Constant *Str = 4797 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4798 4799 if (isUTF16) 4800 // Cast the UTF16 string to the correct type. 4801 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4802 Fields.add(Str); 4803 4804 // String length. 4805 llvm::IntegerType *LengthTy = 4806 llvm::IntegerType::get(getModule().getContext(), 4807 Context.getTargetInfo().getLongWidth()); 4808 if (IsSwiftABI) { 4809 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4810 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4811 LengthTy = Int32Ty; 4812 else 4813 LengthTy = IntPtrTy; 4814 } 4815 Fields.addInt(LengthTy, StringLength); 4816 4817 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4818 // properly aligned on 32-bit platforms. 4819 CharUnits Alignment = 4820 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4821 4822 // The struct. 4823 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4824 /*isConstant=*/false, 4825 llvm::GlobalVariable::PrivateLinkage); 4826 GV->addAttribute("objc_arc_inert"); 4827 switch (Triple.getObjectFormat()) { 4828 case llvm::Triple::UnknownObjectFormat: 4829 llvm_unreachable("unknown file format"); 4830 case llvm::Triple::XCOFF: 4831 llvm_unreachable("XCOFF is not yet implemented"); 4832 case llvm::Triple::COFF: 4833 case llvm::Triple::ELF: 4834 case llvm::Triple::Wasm: 4835 GV->setSection("cfstring"); 4836 break; 4837 case llvm::Triple::MachO: 4838 GV->setSection("__DATA,__cfstring"); 4839 break; 4840 } 4841 Entry.second = GV; 4842 4843 return ConstantAddress(GV, Alignment); 4844 } 4845 4846 bool CodeGenModule::getExpressionLocationsEnabled() const { 4847 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4848 } 4849 4850 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4851 if (ObjCFastEnumerationStateType.isNull()) { 4852 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4853 D->startDefinition(); 4854 4855 QualType FieldTypes[] = { 4856 Context.UnsignedLongTy, 4857 Context.getPointerType(Context.getObjCIdType()), 4858 Context.getPointerType(Context.UnsignedLongTy), 4859 Context.getConstantArrayType(Context.UnsignedLongTy, 4860 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4861 }; 4862 4863 for (size_t i = 0; i < 4; ++i) { 4864 FieldDecl *Field = FieldDecl::Create(Context, 4865 D, 4866 SourceLocation(), 4867 SourceLocation(), nullptr, 4868 FieldTypes[i], /*TInfo=*/nullptr, 4869 /*BitWidth=*/nullptr, 4870 /*Mutable=*/false, 4871 ICIS_NoInit); 4872 Field->setAccess(AS_public); 4873 D->addDecl(Field); 4874 } 4875 4876 D->completeDefinition(); 4877 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4878 } 4879 4880 return ObjCFastEnumerationStateType; 4881 } 4882 4883 llvm::Constant * 4884 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4885 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4886 4887 // Don't emit it as the address of the string, emit the string data itself 4888 // as an inline array. 4889 if (E->getCharByteWidth() == 1) { 4890 SmallString<64> Str(E->getString()); 4891 4892 // Resize the string to the right size, which is indicated by its type. 4893 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4894 Str.resize(CAT->getSize().getZExtValue()); 4895 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4896 } 4897 4898 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4899 llvm::Type *ElemTy = AType->getElementType(); 4900 unsigned NumElements = AType->getNumElements(); 4901 4902 // Wide strings have either 2-byte or 4-byte elements. 4903 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4904 SmallVector<uint16_t, 32> Elements; 4905 Elements.reserve(NumElements); 4906 4907 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4908 Elements.push_back(E->getCodeUnit(i)); 4909 Elements.resize(NumElements); 4910 return llvm::ConstantDataArray::get(VMContext, Elements); 4911 } 4912 4913 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4914 SmallVector<uint32_t, 32> Elements; 4915 Elements.reserve(NumElements); 4916 4917 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4918 Elements.push_back(E->getCodeUnit(i)); 4919 Elements.resize(NumElements); 4920 return llvm::ConstantDataArray::get(VMContext, Elements); 4921 } 4922 4923 static llvm::GlobalVariable * 4924 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4925 CodeGenModule &CGM, StringRef GlobalName, 4926 CharUnits Alignment) { 4927 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4928 CGM.getStringLiteralAddressSpace()); 4929 4930 llvm::Module &M = CGM.getModule(); 4931 // Create a global variable for this string 4932 auto *GV = new llvm::GlobalVariable( 4933 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4934 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4935 GV->setAlignment(Alignment.getAsAlign()); 4936 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4937 if (GV->isWeakForLinker()) { 4938 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4939 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4940 } 4941 CGM.setDSOLocal(GV); 4942 4943 return GV; 4944 } 4945 4946 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4947 /// constant array for the given string literal. 4948 ConstantAddress 4949 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4950 StringRef Name) { 4951 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4952 4953 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4954 llvm::GlobalVariable **Entry = nullptr; 4955 if (!LangOpts.WritableStrings) { 4956 Entry = &ConstantStringMap[C]; 4957 if (auto GV = *Entry) { 4958 if (Alignment.getQuantity() > GV->getAlignment()) 4959 GV->setAlignment(Alignment.getAsAlign()); 4960 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4961 Alignment); 4962 } 4963 } 4964 4965 SmallString<256> MangledNameBuffer; 4966 StringRef GlobalVariableName; 4967 llvm::GlobalValue::LinkageTypes LT; 4968 4969 // Mangle the string literal if that's how the ABI merges duplicate strings. 4970 // Don't do it if they are writable, since we don't want writes in one TU to 4971 // affect strings in another. 4972 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4973 !LangOpts.WritableStrings) { 4974 llvm::raw_svector_ostream Out(MangledNameBuffer); 4975 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4976 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4977 GlobalVariableName = MangledNameBuffer; 4978 } else { 4979 LT = llvm::GlobalValue::PrivateLinkage; 4980 GlobalVariableName = Name; 4981 } 4982 4983 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4984 if (Entry) 4985 *Entry = GV; 4986 4987 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4988 QualType()); 4989 4990 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4991 Alignment); 4992 } 4993 4994 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4995 /// array for the given ObjCEncodeExpr node. 4996 ConstantAddress 4997 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4998 std::string Str; 4999 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5000 5001 return GetAddrOfConstantCString(Str); 5002 } 5003 5004 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5005 /// the literal and a terminating '\0' character. 5006 /// The result has pointer to array type. 5007 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5008 const std::string &Str, const char *GlobalName) { 5009 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5010 CharUnits Alignment = 5011 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5012 5013 llvm::Constant *C = 5014 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5015 5016 // Don't share any string literals if strings aren't constant. 5017 llvm::GlobalVariable **Entry = nullptr; 5018 if (!LangOpts.WritableStrings) { 5019 Entry = &ConstantStringMap[C]; 5020 if (auto GV = *Entry) { 5021 if (Alignment.getQuantity() > GV->getAlignment()) 5022 GV->setAlignment(Alignment.getAsAlign()); 5023 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5024 Alignment); 5025 } 5026 } 5027 5028 // Get the default prefix if a name wasn't specified. 5029 if (!GlobalName) 5030 GlobalName = ".str"; 5031 // Create a global variable for this. 5032 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5033 GlobalName, Alignment); 5034 if (Entry) 5035 *Entry = GV; 5036 5037 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5038 Alignment); 5039 } 5040 5041 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5042 const MaterializeTemporaryExpr *E, const Expr *Init) { 5043 assert((E->getStorageDuration() == SD_Static || 5044 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5045 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5046 5047 // If we're not materializing a subobject of the temporary, keep the 5048 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5049 QualType MaterializedType = Init->getType(); 5050 if (Init == E->getSubExpr()) 5051 MaterializedType = E->getType(); 5052 5053 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5054 5055 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5056 return ConstantAddress(Slot, Align); 5057 5058 // FIXME: If an externally-visible declaration extends multiple temporaries, 5059 // we need to give each temporary the same name in every translation unit (and 5060 // we also need to make the temporaries externally-visible). 5061 SmallString<256> Name; 5062 llvm::raw_svector_ostream Out(Name); 5063 getCXXABI().getMangleContext().mangleReferenceTemporary( 5064 VD, E->getManglingNumber(), Out); 5065 5066 APValue *Value = nullptr; 5067 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5068 // If the initializer of the extending declaration is a constant 5069 // initializer, we should have a cached constant initializer for this 5070 // temporary. Note that this might have a different value from the value 5071 // computed by evaluating the initializer if the surrounding constant 5072 // expression modifies the temporary. 5073 Value = E->getOrCreateValue(false); 5074 } 5075 5076 // Try evaluating it now, it might have a constant initializer. 5077 Expr::EvalResult EvalResult; 5078 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5079 !EvalResult.hasSideEffects()) 5080 Value = &EvalResult.Val; 5081 5082 LangAS AddrSpace = 5083 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5084 5085 Optional<ConstantEmitter> emitter; 5086 llvm::Constant *InitialValue = nullptr; 5087 bool Constant = false; 5088 llvm::Type *Type; 5089 if (Value) { 5090 // The temporary has a constant initializer, use it. 5091 emitter.emplace(*this); 5092 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5093 MaterializedType); 5094 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5095 Type = InitialValue->getType(); 5096 } else { 5097 // No initializer, the initialization will be provided when we 5098 // initialize the declaration which performed lifetime extension. 5099 Type = getTypes().ConvertTypeForMem(MaterializedType); 5100 } 5101 5102 // Create a global variable for this lifetime-extended temporary. 5103 llvm::GlobalValue::LinkageTypes Linkage = 5104 getLLVMLinkageVarDefinition(VD, Constant); 5105 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5106 const VarDecl *InitVD; 5107 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5108 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5109 // Temporaries defined inside a class get linkonce_odr linkage because the 5110 // class can be defined in multiple translation units. 5111 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5112 } else { 5113 // There is no need for this temporary to have external linkage if the 5114 // VarDecl has external linkage. 5115 Linkage = llvm::GlobalVariable::InternalLinkage; 5116 } 5117 } 5118 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5119 auto *GV = new llvm::GlobalVariable( 5120 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5121 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5122 if (emitter) emitter->finalize(GV); 5123 setGVProperties(GV, VD); 5124 GV->setAlignment(Align.getAsAlign()); 5125 if (supportsCOMDAT() && GV->isWeakForLinker()) 5126 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5127 if (VD->getTLSKind()) 5128 setTLSMode(GV, *VD); 5129 llvm::Constant *CV = GV; 5130 if (AddrSpace != LangAS::Default) 5131 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5132 *this, GV, AddrSpace, LangAS::Default, 5133 Type->getPointerTo( 5134 getContext().getTargetAddressSpace(LangAS::Default))); 5135 MaterializedGlobalTemporaryMap[E] = CV; 5136 return ConstantAddress(CV, Align); 5137 } 5138 5139 /// EmitObjCPropertyImplementations - Emit information for synthesized 5140 /// properties for an implementation. 5141 void CodeGenModule::EmitObjCPropertyImplementations(const 5142 ObjCImplementationDecl *D) { 5143 for (const auto *PID : D->property_impls()) { 5144 // Dynamic is just for type-checking. 5145 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5146 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5147 5148 // Determine which methods need to be implemented, some may have 5149 // been overridden. Note that ::isPropertyAccessor is not the method 5150 // we want, that just indicates if the decl came from a 5151 // property. What we want to know is if the method is defined in 5152 // this implementation. 5153 auto *Getter = PID->getGetterMethodDecl(); 5154 if (!Getter || Getter->isSynthesizedAccessorStub()) 5155 CodeGenFunction(*this).GenerateObjCGetter( 5156 const_cast<ObjCImplementationDecl *>(D), PID); 5157 auto *Setter = PID->getSetterMethodDecl(); 5158 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5159 CodeGenFunction(*this).GenerateObjCSetter( 5160 const_cast<ObjCImplementationDecl *>(D), PID); 5161 } 5162 } 5163 } 5164 5165 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5166 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5167 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5168 ivar; ivar = ivar->getNextIvar()) 5169 if (ivar->getType().isDestructedType()) 5170 return true; 5171 5172 return false; 5173 } 5174 5175 static bool AllTrivialInitializers(CodeGenModule &CGM, 5176 ObjCImplementationDecl *D) { 5177 CodeGenFunction CGF(CGM); 5178 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5179 E = D->init_end(); B != E; ++B) { 5180 CXXCtorInitializer *CtorInitExp = *B; 5181 Expr *Init = CtorInitExp->getInit(); 5182 if (!CGF.isTrivialInitializer(Init)) 5183 return false; 5184 } 5185 return true; 5186 } 5187 5188 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5189 /// for an implementation. 5190 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5191 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5192 if (needsDestructMethod(D)) { 5193 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5194 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5195 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5196 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5197 getContext().VoidTy, nullptr, D, 5198 /*isInstance=*/true, /*isVariadic=*/false, 5199 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5200 /*isImplicitlyDeclared=*/true, 5201 /*isDefined=*/false, ObjCMethodDecl::Required); 5202 D->addInstanceMethod(DTORMethod); 5203 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5204 D->setHasDestructors(true); 5205 } 5206 5207 // If the implementation doesn't have any ivar initializers, we don't need 5208 // a .cxx_construct. 5209 if (D->getNumIvarInitializers() == 0 || 5210 AllTrivialInitializers(*this, D)) 5211 return; 5212 5213 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5214 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5215 // The constructor returns 'self'. 5216 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5217 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5218 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5219 /*isVariadic=*/false, 5220 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5221 /*isImplicitlyDeclared=*/true, 5222 /*isDefined=*/false, ObjCMethodDecl::Required); 5223 D->addInstanceMethod(CTORMethod); 5224 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5225 D->setHasNonZeroConstructors(true); 5226 } 5227 5228 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5229 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5230 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5231 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5232 ErrorUnsupported(LSD, "linkage spec"); 5233 return; 5234 } 5235 5236 EmitDeclContext(LSD); 5237 } 5238 5239 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5240 for (auto *I : DC->decls()) { 5241 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5242 // are themselves considered "top-level", so EmitTopLevelDecl on an 5243 // ObjCImplDecl does not recursively visit them. We need to do that in 5244 // case they're nested inside another construct (LinkageSpecDecl / 5245 // ExportDecl) that does stop them from being considered "top-level". 5246 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5247 for (auto *M : OID->methods()) 5248 EmitTopLevelDecl(M); 5249 } 5250 5251 EmitTopLevelDecl(I); 5252 } 5253 } 5254 5255 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5256 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5257 // Ignore dependent declarations. 5258 if (D->isTemplated()) 5259 return; 5260 5261 switch (D->getKind()) { 5262 case Decl::CXXConversion: 5263 case Decl::CXXMethod: 5264 case Decl::Function: 5265 EmitGlobal(cast<FunctionDecl>(D)); 5266 // Always provide some coverage mapping 5267 // even for the functions that aren't emitted. 5268 AddDeferredUnusedCoverageMapping(D); 5269 break; 5270 5271 case Decl::CXXDeductionGuide: 5272 // Function-like, but does not result in code emission. 5273 break; 5274 5275 case Decl::Var: 5276 case Decl::Decomposition: 5277 case Decl::VarTemplateSpecialization: 5278 EmitGlobal(cast<VarDecl>(D)); 5279 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5280 for (auto *B : DD->bindings()) 5281 if (auto *HD = B->getHoldingVar()) 5282 EmitGlobal(HD); 5283 break; 5284 5285 // Indirect fields from global anonymous structs and unions can be 5286 // ignored; only the actual variable requires IR gen support. 5287 case Decl::IndirectField: 5288 break; 5289 5290 // C++ Decls 5291 case Decl::Namespace: 5292 EmitDeclContext(cast<NamespaceDecl>(D)); 5293 break; 5294 case Decl::ClassTemplateSpecialization: { 5295 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5296 if (DebugInfo && 5297 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5298 Spec->hasDefinition()) 5299 DebugInfo->completeTemplateDefinition(*Spec); 5300 } LLVM_FALLTHROUGH; 5301 case Decl::CXXRecord: 5302 if (DebugInfo) { 5303 if (auto *ES = D->getASTContext().getExternalSource()) 5304 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5305 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5306 } 5307 // Emit any static data members, they may be definitions. 5308 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5309 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5310 EmitTopLevelDecl(I); 5311 break; 5312 // No code generation needed. 5313 case Decl::UsingShadow: 5314 case Decl::ClassTemplate: 5315 case Decl::VarTemplate: 5316 case Decl::Concept: 5317 case Decl::VarTemplatePartialSpecialization: 5318 case Decl::FunctionTemplate: 5319 case Decl::TypeAliasTemplate: 5320 case Decl::Block: 5321 case Decl::Empty: 5322 case Decl::Binding: 5323 break; 5324 case Decl::Using: // using X; [C++] 5325 if (CGDebugInfo *DI = getModuleDebugInfo()) 5326 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5327 return; 5328 case Decl::NamespaceAlias: 5329 if (CGDebugInfo *DI = getModuleDebugInfo()) 5330 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5331 return; 5332 case Decl::UsingDirective: // using namespace X; [C++] 5333 if (CGDebugInfo *DI = getModuleDebugInfo()) 5334 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5335 return; 5336 case Decl::CXXConstructor: 5337 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5338 break; 5339 case Decl::CXXDestructor: 5340 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5341 break; 5342 5343 case Decl::StaticAssert: 5344 // Nothing to do. 5345 break; 5346 5347 // Objective-C Decls 5348 5349 // Forward declarations, no (immediate) code generation. 5350 case Decl::ObjCInterface: 5351 case Decl::ObjCCategory: 5352 break; 5353 5354 case Decl::ObjCProtocol: { 5355 auto *Proto = cast<ObjCProtocolDecl>(D); 5356 if (Proto->isThisDeclarationADefinition()) 5357 ObjCRuntime->GenerateProtocol(Proto); 5358 break; 5359 } 5360 5361 case Decl::ObjCCategoryImpl: 5362 // Categories have properties but don't support synthesize so we 5363 // can ignore them here. 5364 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5365 break; 5366 5367 case Decl::ObjCImplementation: { 5368 auto *OMD = cast<ObjCImplementationDecl>(D); 5369 EmitObjCPropertyImplementations(OMD); 5370 EmitObjCIvarInitializations(OMD); 5371 ObjCRuntime->GenerateClass(OMD); 5372 // Emit global variable debug information. 5373 if (CGDebugInfo *DI = getModuleDebugInfo()) 5374 if (getCodeGenOpts().hasReducedDebugInfo()) 5375 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5376 OMD->getClassInterface()), OMD->getLocation()); 5377 break; 5378 } 5379 case Decl::ObjCMethod: { 5380 auto *OMD = cast<ObjCMethodDecl>(D); 5381 // If this is not a prototype, emit the body. 5382 if (OMD->getBody()) 5383 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5384 break; 5385 } 5386 case Decl::ObjCCompatibleAlias: 5387 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5388 break; 5389 5390 case Decl::PragmaComment: { 5391 const auto *PCD = cast<PragmaCommentDecl>(D); 5392 switch (PCD->getCommentKind()) { 5393 case PCK_Unknown: 5394 llvm_unreachable("unexpected pragma comment kind"); 5395 case PCK_Linker: 5396 AppendLinkerOptions(PCD->getArg()); 5397 break; 5398 case PCK_Lib: 5399 AddDependentLib(PCD->getArg()); 5400 break; 5401 case PCK_Compiler: 5402 case PCK_ExeStr: 5403 case PCK_User: 5404 break; // We ignore all of these. 5405 } 5406 break; 5407 } 5408 5409 case Decl::PragmaDetectMismatch: { 5410 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5411 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5412 break; 5413 } 5414 5415 case Decl::LinkageSpec: 5416 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5417 break; 5418 5419 case Decl::FileScopeAsm: { 5420 // File-scope asm is ignored during device-side CUDA compilation. 5421 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5422 break; 5423 // File-scope asm is ignored during device-side OpenMP compilation. 5424 if (LangOpts.OpenMPIsDevice) 5425 break; 5426 auto *AD = cast<FileScopeAsmDecl>(D); 5427 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5428 break; 5429 } 5430 5431 case Decl::Import: { 5432 auto *Import = cast<ImportDecl>(D); 5433 5434 // If we've already imported this module, we're done. 5435 if (!ImportedModules.insert(Import->getImportedModule())) 5436 break; 5437 5438 // Emit debug information for direct imports. 5439 if (!Import->getImportedOwningModule()) { 5440 if (CGDebugInfo *DI = getModuleDebugInfo()) 5441 DI->EmitImportDecl(*Import); 5442 } 5443 5444 // Find all of the submodules and emit the module initializers. 5445 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5446 SmallVector<clang::Module *, 16> Stack; 5447 Visited.insert(Import->getImportedModule()); 5448 Stack.push_back(Import->getImportedModule()); 5449 5450 while (!Stack.empty()) { 5451 clang::Module *Mod = Stack.pop_back_val(); 5452 if (!EmittedModuleInitializers.insert(Mod).second) 5453 continue; 5454 5455 for (auto *D : Context.getModuleInitializers(Mod)) 5456 EmitTopLevelDecl(D); 5457 5458 // Visit the submodules of this module. 5459 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5460 SubEnd = Mod->submodule_end(); 5461 Sub != SubEnd; ++Sub) { 5462 // Skip explicit children; they need to be explicitly imported to emit 5463 // the initializers. 5464 if ((*Sub)->IsExplicit) 5465 continue; 5466 5467 if (Visited.insert(*Sub).second) 5468 Stack.push_back(*Sub); 5469 } 5470 } 5471 break; 5472 } 5473 5474 case Decl::Export: 5475 EmitDeclContext(cast<ExportDecl>(D)); 5476 break; 5477 5478 case Decl::OMPThreadPrivate: 5479 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5480 break; 5481 5482 case Decl::OMPAllocate: 5483 break; 5484 5485 case Decl::OMPDeclareReduction: 5486 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5487 break; 5488 5489 case Decl::OMPDeclareMapper: 5490 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5491 break; 5492 5493 case Decl::OMPRequires: 5494 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5495 break; 5496 5497 default: 5498 // Make sure we handled everything we should, every other kind is a 5499 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5500 // function. Need to recode Decl::Kind to do that easily. 5501 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5502 break; 5503 } 5504 } 5505 5506 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5507 // Do we need to generate coverage mapping? 5508 if (!CodeGenOpts.CoverageMapping) 5509 return; 5510 switch (D->getKind()) { 5511 case Decl::CXXConversion: 5512 case Decl::CXXMethod: 5513 case Decl::Function: 5514 case Decl::ObjCMethod: 5515 case Decl::CXXConstructor: 5516 case Decl::CXXDestructor: { 5517 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5518 return; 5519 SourceManager &SM = getContext().getSourceManager(); 5520 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5521 return; 5522 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5523 if (I == DeferredEmptyCoverageMappingDecls.end()) 5524 DeferredEmptyCoverageMappingDecls[D] = true; 5525 break; 5526 } 5527 default: 5528 break; 5529 }; 5530 } 5531 5532 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5533 // Do we need to generate coverage mapping? 5534 if (!CodeGenOpts.CoverageMapping) 5535 return; 5536 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5537 if (Fn->isTemplateInstantiation()) 5538 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5539 } 5540 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5541 if (I == DeferredEmptyCoverageMappingDecls.end()) 5542 DeferredEmptyCoverageMappingDecls[D] = false; 5543 else 5544 I->second = false; 5545 } 5546 5547 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5548 // We call takeVector() here to avoid use-after-free. 5549 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5550 // we deserialize function bodies to emit coverage info for them, and that 5551 // deserializes more declarations. How should we handle that case? 5552 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5553 if (!Entry.second) 5554 continue; 5555 const Decl *D = Entry.first; 5556 switch (D->getKind()) { 5557 case Decl::CXXConversion: 5558 case Decl::CXXMethod: 5559 case Decl::Function: 5560 case Decl::ObjCMethod: { 5561 CodeGenPGO PGO(*this); 5562 GlobalDecl GD(cast<FunctionDecl>(D)); 5563 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5564 getFunctionLinkage(GD)); 5565 break; 5566 } 5567 case Decl::CXXConstructor: { 5568 CodeGenPGO PGO(*this); 5569 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5570 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5571 getFunctionLinkage(GD)); 5572 break; 5573 } 5574 case Decl::CXXDestructor: { 5575 CodeGenPGO PGO(*this); 5576 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5577 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5578 getFunctionLinkage(GD)); 5579 break; 5580 } 5581 default: 5582 break; 5583 }; 5584 } 5585 } 5586 5587 /// Turns the given pointer into a constant. 5588 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5589 const void *Ptr) { 5590 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5591 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5592 return llvm::ConstantInt::get(i64, PtrInt); 5593 } 5594 5595 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5596 llvm::NamedMDNode *&GlobalMetadata, 5597 GlobalDecl D, 5598 llvm::GlobalValue *Addr) { 5599 if (!GlobalMetadata) 5600 GlobalMetadata = 5601 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5602 5603 // TODO: should we report variant information for ctors/dtors? 5604 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5605 llvm::ConstantAsMetadata::get(GetPointerConstant( 5606 CGM.getLLVMContext(), D.getDecl()))}; 5607 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5608 } 5609 5610 /// For each function which is declared within an extern "C" region and marked 5611 /// as 'used', but has internal linkage, create an alias from the unmangled 5612 /// name to the mangled name if possible. People expect to be able to refer 5613 /// to such functions with an unmangled name from inline assembly within the 5614 /// same translation unit. 5615 void CodeGenModule::EmitStaticExternCAliases() { 5616 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5617 return; 5618 for (auto &I : StaticExternCValues) { 5619 IdentifierInfo *Name = I.first; 5620 llvm::GlobalValue *Val = I.second; 5621 if (Val && !getModule().getNamedValue(Name->getName())) 5622 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5623 } 5624 } 5625 5626 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5627 GlobalDecl &Result) const { 5628 auto Res = Manglings.find(MangledName); 5629 if (Res == Manglings.end()) 5630 return false; 5631 Result = Res->getValue(); 5632 return true; 5633 } 5634 5635 /// Emits metadata nodes associating all the global values in the 5636 /// current module with the Decls they came from. This is useful for 5637 /// projects using IR gen as a subroutine. 5638 /// 5639 /// Since there's currently no way to associate an MDNode directly 5640 /// with an llvm::GlobalValue, we create a global named metadata 5641 /// with the name 'clang.global.decl.ptrs'. 5642 void CodeGenModule::EmitDeclMetadata() { 5643 llvm::NamedMDNode *GlobalMetadata = nullptr; 5644 5645 for (auto &I : MangledDeclNames) { 5646 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5647 // Some mangled names don't necessarily have an associated GlobalValue 5648 // in this module, e.g. if we mangled it for DebugInfo. 5649 if (Addr) 5650 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5651 } 5652 } 5653 5654 /// Emits metadata nodes for all the local variables in the current 5655 /// function. 5656 void CodeGenFunction::EmitDeclMetadata() { 5657 if (LocalDeclMap.empty()) return; 5658 5659 llvm::LLVMContext &Context = getLLVMContext(); 5660 5661 // Find the unique metadata ID for this name. 5662 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5663 5664 llvm::NamedMDNode *GlobalMetadata = nullptr; 5665 5666 for (auto &I : LocalDeclMap) { 5667 const Decl *D = I.first; 5668 llvm::Value *Addr = I.second.getPointer(); 5669 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5670 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5671 Alloca->setMetadata( 5672 DeclPtrKind, llvm::MDNode::get( 5673 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5674 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5675 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5676 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5677 } 5678 } 5679 } 5680 5681 void CodeGenModule::EmitVersionIdentMetadata() { 5682 llvm::NamedMDNode *IdentMetadata = 5683 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5684 std::string Version = getClangFullVersion(); 5685 llvm::LLVMContext &Ctx = TheModule.getContext(); 5686 5687 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5688 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5689 } 5690 5691 void CodeGenModule::EmitCommandLineMetadata() { 5692 llvm::NamedMDNode *CommandLineMetadata = 5693 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5694 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5695 llvm::LLVMContext &Ctx = TheModule.getContext(); 5696 5697 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5698 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5699 } 5700 5701 void CodeGenModule::EmitTargetMetadata() { 5702 // Warning, new MangledDeclNames may be appended within this loop. 5703 // We rely on MapVector insertions adding new elements to the end 5704 // of the container. 5705 // FIXME: Move this loop into the one target that needs it, and only 5706 // loop over those declarations for which we couldn't emit the target 5707 // metadata when we emitted the declaration. 5708 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5709 auto Val = *(MangledDeclNames.begin() + I); 5710 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5711 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5712 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5713 } 5714 } 5715 5716 void CodeGenModule::EmitCoverageFile() { 5717 if (getCodeGenOpts().CoverageDataFile.empty() && 5718 getCodeGenOpts().CoverageNotesFile.empty()) 5719 return; 5720 5721 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5722 if (!CUNode) 5723 return; 5724 5725 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5726 llvm::LLVMContext &Ctx = TheModule.getContext(); 5727 auto *CoverageDataFile = 5728 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5729 auto *CoverageNotesFile = 5730 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5731 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5732 llvm::MDNode *CU = CUNode->getOperand(i); 5733 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5734 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5735 } 5736 } 5737 5738 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5739 // Sema has checked that all uuid strings are of the form 5740 // "12345678-1234-1234-1234-1234567890ab". 5741 assert(Uuid.size() == 36); 5742 for (unsigned i = 0; i < 36; ++i) { 5743 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5744 else assert(isHexDigit(Uuid[i])); 5745 } 5746 5747 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5748 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5749 5750 llvm::Constant *Field3[8]; 5751 for (unsigned Idx = 0; Idx < 8; ++Idx) 5752 Field3[Idx] = llvm::ConstantInt::get( 5753 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5754 5755 llvm::Constant *Fields[4] = { 5756 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5757 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5758 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5759 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5760 }; 5761 5762 return llvm::ConstantStruct::getAnon(Fields); 5763 } 5764 5765 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5766 bool ForEH) { 5767 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5768 // FIXME: should we even be calling this method if RTTI is disabled 5769 // and it's not for EH? 5770 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5771 return llvm::Constant::getNullValue(Int8PtrTy); 5772 5773 if (ForEH && Ty->isObjCObjectPointerType() && 5774 LangOpts.ObjCRuntime.isGNUFamily()) 5775 return ObjCRuntime->GetEHType(Ty); 5776 5777 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5778 } 5779 5780 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5781 // Do not emit threadprivates in simd-only mode. 5782 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5783 return; 5784 for (auto RefExpr : D->varlists()) { 5785 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5786 bool PerformInit = 5787 VD->getAnyInitializer() && 5788 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5789 /*ForRef=*/false); 5790 5791 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5792 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5793 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5794 CXXGlobalInits.push_back(InitFunction); 5795 } 5796 } 5797 5798 llvm::Metadata * 5799 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5800 StringRef Suffix) { 5801 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5802 if (InternalId) 5803 return InternalId; 5804 5805 if (isExternallyVisible(T->getLinkage())) { 5806 std::string OutName; 5807 llvm::raw_string_ostream Out(OutName); 5808 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5809 Out << Suffix; 5810 5811 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5812 } else { 5813 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5814 llvm::ArrayRef<llvm::Metadata *>()); 5815 } 5816 5817 return InternalId; 5818 } 5819 5820 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5821 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5822 } 5823 5824 llvm::Metadata * 5825 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5826 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5827 } 5828 5829 // Generalize pointer types to a void pointer with the qualifiers of the 5830 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5831 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5832 // 'void *'. 5833 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5834 if (!Ty->isPointerType()) 5835 return Ty; 5836 5837 return Ctx.getPointerType( 5838 QualType(Ctx.VoidTy).withCVRQualifiers( 5839 Ty->getPointeeType().getCVRQualifiers())); 5840 } 5841 5842 // Apply type generalization to a FunctionType's return and argument types 5843 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5844 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5845 SmallVector<QualType, 8> GeneralizedParams; 5846 for (auto &Param : FnType->param_types()) 5847 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5848 5849 return Ctx.getFunctionType( 5850 GeneralizeType(Ctx, FnType->getReturnType()), 5851 GeneralizedParams, FnType->getExtProtoInfo()); 5852 } 5853 5854 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5855 return Ctx.getFunctionNoProtoType( 5856 GeneralizeType(Ctx, FnType->getReturnType())); 5857 5858 llvm_unreachable("Encountered unknown FunctionType"); 5859 } 5860 5861 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5862 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5863 GeneralizedMetadataIdMap, ".generalized"); 5864 } 5865 5866 /// Returns whether this module needs the "all-vtables" type identifier. 5867 bool CodeGenModule::NeedAllVtablesTypeId() const { 5868 // Returns true if at least one of vtable-based CFI checkers is enabled and 5869 // is not in the trapping mode. 5870 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5871 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5872 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5873 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5874 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5875 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5876 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5877 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5878 } 5879 5880 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5881 CharUnits Offset, 5882 const CXXRecordDecl *RD) { 5883 llvm::Metadata *MD = 5884 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5885 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5886 5887 if (CodeGenOpts.SanitizeCfiCrossDso) 5888 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5889 VTable->addTypeMetadata(Offset.getQuantity(), 5890 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5891 5892 if (NeedAllVtablesTypeId()) { 5893 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5894 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5895 } 5896 } 5897 5898 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5899 if (!SanStats) 5900 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5901 5902 return *SanStats; 5903 } 5904 llvm::Value * 5905 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5906 CodeGenFunction &CGF) { 5907 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5908 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5909 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5910 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5911 "__translate_sampler_initializer"), 5912 {C}); 5913 } 5914