xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenACC.h"
30 #include "clang/AST/StmtOpenMP.h"
31 #include "clang/AST/Type.h"
32 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/CapturedStmt.h"
34 #include "clang/Basic/CodeGenOptions.h"
35 #include "clang/Basic/OpenMPKinds.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/MapVector.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/ValueHandle.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Transforms/Utils/SanitizerStats.h"
46 #include <optional>
47 
48 namespace llvm {
49 class BasicBlock;
50 class LLVMContext;
51 class MDNode;
52 class SwitchInst;
53 class Twine;
54 class Value;
55 class CanonicalLoopInfo;
56 }
57 
58 namespace clang {
59 class ASTContext;
60 class CXXDestructorDecl;
61 class CXXForRangeStmt;
62 class CXXTryStmt;
63 class Decl;
64 class LabelDecl;
65 class FunctionDecl;
66 class FunctionProtoType;
67 class LabelStmt;
68 class ObjCContainerDecl;
69 class ObjCInterfaceDecl;
70 class ObjCIvarDecl;
71 class ObjCMethodDecl;
72 class ObjCImplementationDecl;
73 class ObjCPropertyImplDecl;
74 class TargetInfo;
75 class VarDecl;
76 class ObjCForCollectionStmt;
77 class ObjCAtTryStmt;
78 class ObjCAtThrowStmt;
79 class ObjCAtSynchronizedStmt;
80 class ObjCAutoreleasePoolStmt;
81 class OMPUseDevicePtrClause;
82 class OMPUseDeviceAddrClause;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGBlockInfo;
95 class CGCXXABI;
96 class BlockByrefHelpers;
97 class BlockByrefInfo;
98 class BlockFieldFlags;
99 class RegionCodeGenTy;
100 class TargetCodeGenInfo;
101 struct OMPTaskDataTy;
102 struct CGCoroData;
103 
104 /// The kind of evaluation to perform on values of a particular
105 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
106 /// CGExprAgg?
107 ///
108 /// TODO: should vectors maybe be split out into their own thing?
109 enum TypeEvaluationKind {
110   TEK_Scalar,
111   TEK_Complex,
112   TEK_Aggregate
113 };
114 
115 #define LIST_SANITIZER_CHECKS                                                  \
116   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
117   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
118   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
119   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
120   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
121   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
122   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
123   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
124   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
125   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
126   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
127   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
128   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
129   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
130   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
131   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
132   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
133   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
134   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
135   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
136   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
137   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
138   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
139   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
140   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)              \
141   SANITIZER_CHECK(BoundsSafety, bounds_safety, 0)
142 
143 enum SanitizerHandler {
144 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
145   LIST_SANITIZER_CHECKS
146 #undef SANITIZER_CHECK
147 };
148 
149 /// Helper class with most of the code for saving a value for a
150 /// conditional expression cleanup.
151 struct DominatingLLVMValue {
152   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
153 
154   /// Answer whether the given value needs extra work to be saved.
155   static bool needsSaving(llvm::Value *value) {
156     if (!value)
157       return false;
158 
159     // If it's not an instruction, we don't need to save.
160     if (!isa<llvm::Instruction>(value)) return false;
161 
162     // If it's an instruction in the entry block, we don't need to save.
163     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
164     return (block != &block->getParent()->getEntryBlock());
165   }
166 
167   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
168   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
169 };
170 
171 /// A partial specialization of DominatingValue for llvm::Values that
172 /// might be llvm::Instructions.
173 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
174   typedef T *type;
175   static type restore(CodeGenFunction &CGF, saved_type value) {
176     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
177   }
178 };
179 
180 /// A specialization of DominatingValue for Address.
181 template <> struct DominatingValue<Address> {
182   typedef Address type;
183 
184   struct saved_type {
185     DominatingLLVMValue::saved_type BasePtr;
186     llvm::Type *ElementType;
187     CharUnits Alignment;
188     DominatingLLVMValue::saved_type Offset;
189     llvm::PointerType *EffectiveType;
190   };
191 
192   static bool needsSaving(type value) {
193     if (DominatingLLVMValue::needsSaving(value.getBasePointer()) ||
194         DominatingLLVMValue::needsSaving(value.getOffset()))
195       return true;
196     return false;
197   }
198   static saved_type save(CodeGenFunction &CGF, type value) {
199     return {DominatingLLVMValue::save(CGF, value.getBasePointer()),
200             value.getElementType(), value.getAlignment(),
201             DominatingLLVMValue::save(CGF, value.getOffset()), value.getType()};
202   }
203   static type restore(CodeGenFunction &CGF, saved_type value) {
204     return Address(DominatingLLVMValue::restore(CGF, value.BasePtr),
205                    value.ElementType, value.Alignment, CGPointerAuthInfo(),
206                    DominatingLLVMValue::restore(CGF, value.Offset));
207   }
208 };
209 
210 /// A specialization of DominatingValue for RValue.
211 template <> struct DominatingValue<RValue> {
212   typedef RValue type;
213   class saved_type {
214     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
215                 AggregateAddress, ComplexAddress };
216     union {
217       struct {
218         DominatingLLVMValue::saved_type first, second;
219       } Vals;
220       DominatingValue<Address>::saved_type AggregateAddr;
221     };
222     LLVM_PREFERRED_TYPE(Kind)
223     unsigned K : 3;
224 
225     saved_type(DominatingLLVMValue::saved_type Val1, unsigned K)
226         : Vals{Val1, DominatingLLVMValue::saved_type()}, K(K) {}
227 
228     saved_type(DominatingLLVMValue::saved_type Val1,
229                DominatingLLVMValue::saved_type Val2)
230         : Vals{Val1, Val2}, K(ComplexAddress) {}
231 
232     saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K)
233         : AggregateAddr(AggregateAddr), K(K) {}
234 
235   public:
236     static bool needsSaving(RValue value);
237     static saved_type save(CodeGenFunction &CGF, RValue value);
238     RValue restore(CodeGenFunction &CGF);
239 
240     // implementations in CGCleanup.cpp
241   };
242 
243   static bool needsSaving(type value) {
244     return saved_type::needsSaving(value);
245   }
246   static saved_type save(CodeGenFunction &CGF, type value) {
247     return saved_type::save(CGF, value);
248   }
249   static type restore(CodeGenFunction &CGF, saved_type value) {
250     return value.restore(CGF);
251   }
252 };
253 
254 /// CodeGenFunction - This class organizes the per-function state that is used
255 /// while generating LLVM code.
256 class CodeGenFunction : public CodeGenTypeCache {
257   CodeGenFunction(const CodeGenFunction &) = delete;
258   void operator=(const CodeGenFunction &) = delete;
259 
260   friend class CGCXXABI;
261 public:
262   /// A jump destination is an abstract label, branching to which may
263   /// require a jump out through normal cleanups.
264   struct JumpDest {
265     JumpDest() : Block(nullptr), Index(0) {}
266     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
267              unsigned Index)
268         : Block(Block), ScopeDepth(Depth), Index(Index) {}
269 
270     bool isValid() const { return Block != nullptr; }
271     llvm::BasicBlock *getBlock() const { return Block; }
272     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
273     unsigned getDestIndex() const { return Index; }
274 
275     // This should be used cautiously.
276     void setScopeDepth(EHScopeStack::stable_iterator depth) {
277       ScopeDepth = depth;
278     }
279 
280   private:
281     llvm::BasicBlock *Block;
282     EHScopeStack::stable_iterator ScopeDepth;
283     unsigned Index;
284   };
285 
286   CodeGenModule &CGM;  // Per-module state.
287   const TargetInfo &Target;
288 
289   // For EH/SEH outlined funclets, this field points to parent's CGF
290   CodeGenFunction *ParentCGF = nullptr;
291 
292   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
293   LoopInfoStack LoopStack;
294   CGBuilderTy Builder;
295 
296   // Stores variables for which we can't generate correct lifetime markers
297   // because of jumps.
298   VarBypassDetector Bypasses;
299 
300   /// List of recently emitted OMPCanonicalLoops.
301   ///
302   /// Since OMPCanonicalLoops are nested inside other statements (in particular
303   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
304   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
305   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
306   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
307   /// this stack when done. Entering a new loop requires clearing this list; it
308   /// either means we start parsing a new loop nest (in which case the previous
309   /// loop nest goes out of scope) or a second loop in the same level in which
310   /// case it would be ambiguous into which of the two (or more) loops the loop
311   /// nest would extend.
312   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
313 
314   /// Stack to track the Logical Operator recursion nest for MC/DC.
315   SmallVector<const BinaryOperator *, 16> MCDCLogOpStack;
316 
317   /// Stack to track the controlled convergence tokens.
318   SmallVector<llvm::IntrinsicInst *, 4> ConvergenceTokenStack;
319 
320   /// Number of nested loop to be consumed by the last surrounding
321   /// loop-associated directive.
322   int ExpectedOMPLoopDepth = 0;
323 
324   // CodeGen lambda for loops and support for ordered clause
325   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
326                                   JumpDest)>
327       CodeGenLoopTy;
328   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
329                                   const unsigned, const bool)>
330       CodeGenOrderedTy;
331 
332   // Codegen lambda for loop bounds in worksharing loop constructs
333   typedef llvm::function_ref<std::pair<LValue, LValue>(
334       CodeGenFunction &, const OMPExecutableDirective &S)>
335       CodeGenLoopBoundsTy;
336 
337   // Codegen lambda for loop bounds in dispatch-based loop implementation
338   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
339       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
340       Address UB)>
341       CodeGenDispatchBoundsTy;
342 
343   /// CGBuilder insert helper. This function is called after an
344   /// instruction is created using Builder.
345   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
346                     llvm::BasicBlock::iterator InsertPt) const;
347 
348   /// CurFuncDecl - Holds the Decl for the current outermost
349   /// non-closure context.
350   const Decl *CurFuncDecl = nullptr;
351   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
352   const Decl *CurCodeDecl = nullptr;
353   const CGFunctionInfo *CurFnInfo = nullptr;
354   QualType FnRetTy;
355   llvm::Function *CurFn = nullptr;
356 
357   /// Save Parameter Decl for coroutine.
358   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
359 
360   // Holds coroutine data if the current function is a coroutine. We use a
361   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
362   // in this header.
363   struct CGCoroInfo {
364     std::unique_ptr<CGCoroData> Data;
365     bool InSuspendBlock = false;
366     CGCoroInfo();
367     ~CGCoroInfo();
368   };
369   CGCoroInfo CurCoro;
370 
371   bool isCoroutine() const {
372     return CurCoro.Data != nullptr;
373   }
374 
375   bool inSuspendBlock() const {
376     return isCoroutine() && CurCoro.InSuspendBlock;
377   }
378 
379   // Holds FramePtr for await_suspend wrapper generation,
380   // so that __builtin_coro_frame call can be lowered
381   // directly to value of its second argument
382   struct AwaitSuspendWrapperInfo {
383     llvm::Value *FramePtr = nullptr;
384   };
385   AwaitSuspendWrapperInfo CurAwaitSuspendWrapper;
386 
387   // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics.
388   // It encapsulates SuspendExpr in a function, to separate it's body
389   // from the main coroutine to avoid miscompilations. Intrinisic
390   // is lowered to this function call in CoroSplit pass
391   // Function signature is:
392   // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl)
393   // where type is one of (void, i1, ptr)
394   llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName,
395                                               Twine const &SuspendPointName,
396                                               CoroutineSuspendExpr const &S);
397 
398   /// CurGD - The GlobalDecl for the current function being compiled.
399   GlobalDecl CurGD;
400 
401   /// PrologueCleanupDepth - The cleanup depth enclosing all the
402   /// cleanups associated with the parameters.
403   EHScopeStack::stable_iterator PrologueCleanupDepth;
404 
405   /// ReturnBlock - Unified return block.
406   JumpDest ReturnBlock;
407 
408   /// ReturnValue - The temporary alloca to hold the return
409   /// value. This is invalid iff the function has no return value.
410   Address ReturnValue = Address::invalid();
411 
412   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
413   /// This is invalid if sret is not in use.
414   Address ReturnValuePointer = Address::invalid();
415 
416   /// If a return statement is being visited, this holds the return statment's
417   /// result expression.
418   const Expr *RetExpr = nullptr;
419 
420   /// Return true if a label was seen in the current scope.
421   bool hasLabelBeenSeenInCurrentScope() const {
422     if (CurLexicalScope)
423       return CurLexicalScope->hasLabels();
424     return !LabelMap.empty();
425   }
426 
427   /// AllocaInsertPoint - This is an instruction in the entry block before which
428   /// we prefer to insert allocas.
429   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
430 
431 private:
432   /// PostAllocaInsertPt - This is a place in the prologue where code can be
433   /// inserted that will be dominated by all the static allocas. This helps
434   /// achieve two things:
435   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
436   ///   2. All other prologue code (which are dominated by static allocas) do
437   ///      appear in the source order immediately after all static allocas.
438   ///
439   /// PostAllocaInsertPt will be lazily created when it is *really* required.
440   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
441 
442 public:
443   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
444   /// immediately after AllocaInsertPt.
445   llvm::Instruction *getPostAllocaInsertPoint() {
446     if (!PostAllocaInsertPt) {
447       assert(AllocaInsertPt &&
448              "Expected static alloca insertion point at function prologue");
449       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
450              "EBB should be entry block of the current code gen function");
451       PostAllocaInsertPt = AllocaInsertPt->clone();
452       PostAllocaInsertPt->setName("postallocapt");
453       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
454     }
455 
456     return PostAllocaInsertPt;
457   }
458 
459   /// API for captured statement code generation.
460   class CGCapturedStmtInfo {
461   public:
462     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
463         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
464     explicit CGCapturedStmtInfo(const CapturedStmt &S,
465                                 CapturedRegionKind K = CR_Default)
466       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
467 
468       RecordDecl::field_iterator Field =
469         S.getCapturedRecordDecl()->field_begin();
470       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
471                                                 E = S.capture_end();
472            I != E; ++I, ++Field) {
473         if (I->capturesThis())
474           CXXThisFieldDecl = *Field;
475         else if (I->capturesVariable())
476           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
477         else if (I->capturesVariableByCopy())
478           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
479       }
480     }
481 
482     virtual ~CGCapturedStmtInfo();
483 
484     CapturedRegionKind getKind() const { return Kind; }
485 
486     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
487     // Retrieve the value of the context parameter.
488     virtual llvm::Value *getContextValue() const { return ThisValue; }
489 
490     /// Lookup the captured field decl for a variable.
491     virtual const FieldDecl *lookup(const VarDecl *VD) const {
492       return CaptureFields.lookup(VD->getCanonicalDecl());
493     }
494 
495     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
496     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
497 
498     static bool classof(const CGCapturedStmtInfo *) {
499       return true;
500     }
501 
502     /// Emit the captured statement body.
503     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
504       CGF.incrementProfileCounter(S);
505       CGF.EmitStmt(S);
506     }
507 
508     /// Get the name of the capture helper.
509     virtual StringRef getHelperName() const { return "__captured_stmt"; }
510 
511     /// Get the CaptureFields
512     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
513       return CaptureFields;
514     }
515 
516   private:
517     /// The kind of captured statement being generated.
518     CapturedRegionKind Kind;
519 
520     /// Keep the map between VarDecl and FieldDecl.
521     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
522 
523     /// The base address of the captured record, passed in as the first
524     /// argument of the parallel region function.
525     llvm::Value *ThisValue;
526 
527     /// Captured 'this' type.
528     FieldDecl *CXXThisFieldDecl;
529   };
530   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
531 
532   /// RAII for correct setting/restoring of CapturedStmtInfo.
533   class CGCapturedStmtRAII {
534   private:
535     CodeGenFunction &CGF;
536     CGCapturedStmtInfo *PrevCapturedStmtInfo;
537   public:
538     CGCapturedStmtRAII(CodeGenFunction &CGF,
539                        CGCapturedStmtInfo *NewCapturedStmtInfo)
540         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
541       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
542     }
543     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
544   };
545 
546   /// An abstract representation of regular/ObjC call/message targets.
547   class AbstractCallee {
548     /// The function declaration of the callee.
549     const Decl *CalleeDecl;
550 
551   public:
552     AbstractCallee() : CalleeDecl(nullptr) {}
553     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
554     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
555     bool hasFunctionDecl() const {
556       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
557     }
558     const Decl *getDecl() const { return CalleeDecl; }
559     unsigned getNumParams() const {
560       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
561         return FD->getNumParams();
562       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
563     }
564     const ParmVarDecl *getParamDecl(unsigned I) const {
565       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
566         return FD->getParamDecl(I);
567       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
568     }
569   };
570 
571   /// Sanitizers enabled for this function.
572   SanitizerSet SanOpts;
573 
574   /// True if CodeGen currently emits code implementing sanitizer checks.
575   bool IsSanitizerScope = false;
576 
577   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
578   class SanitizerScope {
579     CodeGenFunction *CGF;
580   public:
581     SanitizerScope(CodeGenFunction *CGF);
582     ~SanitizerScope();
583   };
584 
585   /// In C++, whether we are code generating a thunk.  This controls whether we
586   /// should emit cleanups.
587   bool CurFuncIsThunk = false;
588 
589   /// In ARC, whether we should autorelease the return value.
590   bool AutoreleaseResult = false;
591 
592   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
593   /// potentially set the return value.
594   bool SawAsmBlock = false;
595 
596   GlobalDecl CurSEHParent;
597 
598   /// True if the current function is an outlined SEH helper. This can be a
599   /// finally block or filter expression.
600   bool IsOutlinedSEHHelper = false;
601 
602   /// True if CodeGen currently emits code inside presereved access index
603   /// region.
604   bool IsInPreservedAIRegion = false;
605 
606   /// True if the current statement has nomerge attribute.
607   bool InNoMergeAttributedStmt = false;
608 
609   /// True if the current statement has noinline attribute.
610   bool InNoInlineAttributedStmt = false;
611 
612   /// True if the current statement has always_inline attribute.
613   bool InAlwaysInlineAttributedStmt = false;
614 
615   // The CallExpr within the current statement that the musttail attribute
616   // applies to.  nullptr if there is no 'musttail' on the current statement.
617   const CallExpr *MustTailCall = nullptr;
618 
619   /// Returns true if a function must make progress, which means the
620   /// mustprogress attribute can be added.
621   bool checkIfFunctionMustProgress() {
622     if (CGM.getCodeGenOpts().getFiniteLoops() ==
623         CodeGenOptions::FiniteLoopsKind::Never)
624       return false;
625 
626     // C++11 and later guarantees that a thread eventually will do one of the
627     // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
628     // - terminate,
629     //  - make a call to a library I/O function,
630     //  - perform an access through a volatile glvalue, or
631     //  - perform a synchronization operation or an atomic operation.
632     //
633     // Hence each function is 'mustprogress' in C++11 or later.
634     return getLangOpts().CPlusPlus11;
635   }
636 
637   /// Returns true if a loop must make progress, which means the mustprogress
638   /// attribute can be added. \p HasConstantCond indicates whether the branch
639   /// condition is a known constant.
640   bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody);
641 
642   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
643   llvm::Value *BlockPointer = nullptr;
644 
645   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
646   FieldDecl *LambdaThisCaptureField = nullptr;
647 
648   /// A mapping from NRVO variables to the flags used to indicate
649   /// when the NRVO has been applied to this variable.
650   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
651 
652   EHScopeStack EHStack;
653   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
654 
655   // A stack of cleanups which were added to EHStack but have to be deactivated
656   // later before being popped or emitted. These are usually deactivated on
657   // exiting a `CleanupDeactivationScope` scope. For instance, after a
658   // full-expr.
659   //
660   // These are specially useful for correctly emitting cleanups while
661   // encountering branches out of expression (through stmt-expr or coroutine
662   // suspensions).
663   struct DeferredDeactivateCleanup {
664     EHScopeStack::stable_iterator Cleanup;
665     llvm::Instruction *DominatingIP;
666   };
667   llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack;
668 
669   // Enters a new scope for capturing cleanups which are deferred to be
670   // deactivated, all of which will be deactivated once the scope is exited.
671   struct CleanupDeactivationScope {
672     CodeGenFunction &CGF;
673     size_t OldDeactivateCleanupStackSize;
674     bool Deactivated;
675     CleanupDeactivationScope(CodeGenFunction &CGF)
676         : CGF(CGF), OldDeactivateCleanupStackSize(
677                         CGF.DeferredDeactivationCleanupStack.size()),
678           Deactivated(false) {}
679 
680     void ForceDeactivate() {
681       assert(!Deactivated && "Deactivating already deactivated scope");
682       auto &Stack = CGF.DeferredDeactivationCleanupStack;
683       for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) {
684         CGF.DeactivateCleanupBlock(Stack[I - 1].Cleanup,
685                                    Stack[I - 1].DominatingIP);
686         Stack[I - 1].DominatingIP->eraseFromParent();
687       }
688       Stack.resize(OldDeactivateCleanupStackSize);
689       Deactivated = true;
690     }
691 
692     ~CleanupDeactivationScope() {
693       if (Deactivated)
694         return;
695       ForceDeactivate();
696     }
697   };
698 
699   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
700 
701   llvm::Instruction *CurrentFuncletPad = nullptr;
702 
703   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
704     bool isRedundantBeforeReturn() override { return true; }
705 
706     llvm::Value *Addr;
707     llvm::Value *Size;
708 
709   public:
710     CallLifetimeEnd(RawAddress addr, llvm::Value *size)
711         : Addr(addr.getPointer()), Size(size) {}
712 
713     void Emit(CodeGenFunction &CGF, Flags flags) override {
714       CGF.EmitLifetimeEnd(Size, Addr);
715     }
716   };
717 
718   /// Header for data within LifetimeExtendedCleanupStack.
719   struct LifetimeExtendedCleanupHeader {
720     /// The size of the following cleanup object.
721     unsigned Size;
722     /// The kind of cleanup to push.
723     LLVM_PREFERRED_TYPE(CleanupKind)
724     unsigned Kind : 31;
725     /// Whether this is a conditional cleanup.
726     LLVM_PREFERRED_TYPE(bool)
727     unsigned IsConditional : 1;
728 
729     size_t getSize() const { return Size; }
730     CleanupKind getKind() const { return (CleanupKind)Kind; }
731     bool isConditional() const { return IsConditional; }
732   };
733 
734   /// i32s containing the indexes of the cleanup destinations.
735   RawAddress NormalCleanupDest = RawAddress::invalid();
736 
737   unsigned NextCleanupDestIndex = 1;
738 
739   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
740   llvm::BasicBlock *EHResumeBlock = nullptr;
741 
742   /// The exception slot.  All landing pads write the current exception pointer
743   /// into this alloca.
744   llvm::Value *ExceptionSlot = nullptr;
745 
746   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
747   /// write the current selector value into this alloca.
748   llvm::AllocaInst *EHSelectorSlot = nullptr;
749 
750   /// A stack of exception code slots. Entering an __except block pushes a slot
751   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
752   /// a value from the top of the stack.
753   SmallVector<Address, 1> SEHCodeSlotStack;
754 
755   /// Value returned by __exception_info intrinsic.
756   llvm::Value *SEHInfo = nullptr;
757 
758   /// Emits a landing pad for the current EH stack.
759   llvm::BasicBlock *EmitLandingPad();
760 
761   llvm::BasicBlock *getInvokeDestImpl();
762 
763   /// Parent loop-based directive for scan directive.
764   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
765   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
766   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
767   llvm::BasicBlock *OMPScanExitBlock = nullptr;
768   llvm::BasicBlock *OMPScanDispatch = nullptr;
769   bool OMPFirstScanLoop = false;
770 
771   /// Manages parent directive for scan directives.
772   class ParentLoopDirectiveForScanRegion {
773     CodeGenFunction &CGF;
774     const OMPExecutableDirective *ParentLoopDirectiveForScan;
775 
776   public:
777     ParentLoopDirectiveForScanRegion(
778         CodeGenFunction &CGF,
779         const OMPExecutableDirective &ParentLoopDirectiveForScan)
780         : CGF(CGF),
781           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
782       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
783     }
784     ~ParentLoopDirectiveForScanRegion() {
785       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
786     }
787   };
788 
789   template <class T>
790   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
791     return DominatingValue<T>::save(*this, value);
792   }
793 
794   class CGFPOptionsRAII {
795   public:
796     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
797     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
798     ~CGFPOptionsRAII();
799 
800   private:
801     void ConstructorHelper(FPOptions FPFeatures);
802     CodeGenFunction &CGF;
803     FPOptions OldFPFeatures;
804     llvm::fp::ExceptionBehavior OldExcept;
805     llvm::RoundingMode OldRounding;
806     std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
807   };
808   FPOptions CurFPFeatures;
809 
810 public:
811   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
812   /// rethrows.
813   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
814 
815   /// A class controlling the emission of a finally block.
816   class FinallyInfo {
817     /// Where the catchall's edge through the cleanup should go.
818     JumpDest RethrowDest;
819 
820     /// A function to call to enter the catch.
821     llvm::FunctionCallee BeginCatchFn;
822 
823     /// An i1 variable indicating whether or not the @finally is
824     /// running for an exception.
825     llvm::AllocaInst *ForEHVar = nullptr;
826 
827     /// An i8* variable into which the exception pointer to rethrow
828     /// has been saved.
829     llvm::AllocaInst *SavedExnVar = nullptr;
830 
831   public:
832     void enter(CodeGenFunction &CGF, const Stmt *Finally,
833                llvm::FunctionCallee beginCatchFn,
834                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
835     void exit(CodeGenFunction &CGF);
836   };
837 
838   /// Returns true inside SEH __try blocks.
839   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
840 
841   /// Returns true while emitting a cleanuppad.
842   bool isCleanupPadScope() const {
843     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
844   }
845 
846   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
847   /// current full-expression.  Safe against the possibility that
848   /// we're currently inside a conditionally-evaluated expression.
849   template <class T, class... As>
850   void pushFullExprCleanup(CleanupKind kind, As... A) {
851     // If we're not in a conditional branch, or if none of the
852     // arguments requires saving, then use the unconditional cleanup.
853     if (!isInConditionalBranch())
854       return EHStack.pushCleanup<T>(kind, A...);
855 
856     // Stash values in a tuple so we can guarantee the order of saves.
857     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
858     SavedTuple Saved{saveValueInCond(A)...};
859 
860     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
861     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
862     initFullExprCleanup();
863   }
864 
865   /// Queue a cleanup to be pushed after finishing the current full-expression,
866   /// potentially with an active flag.
867   template <class T, class... As>
868   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
869     if (!isInConditionalBranch())
870       return pushCleanupAfterFullExprWithActiveFlag<T>(
871           Kind, RawAddress::invalid(), A...);
872 
873     RawAddress ActiveFlag = createCleanupActiveFlag();
874     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
875            "cleanup active flag should never need saving");
876 
877     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
878     SavedTuple Saved{saveValueInCond(A)...};
879 
880     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
881     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
882   }
883 
884   template <class T, class... As>
885   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
886                                               RawAddress ActiveFlag, As... A) {
887     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
888                                             ActiveFlag.isValid()};
889 
890     size_t OldSize = LifetimeExtendedCleanupStack.size();
891     LifetimeExtendedCleanupStack.resize(
892         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
893         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
894 
895     static_assert(sizeof(Header) % alignof(T) == 0,
896                   "Cleanup will be allocated on misaligned address");
897     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
898     new (Buffer) LifetimeExtendedCleanupHeader(Header);
899     new (Buffer + sizeof(Header)) T(A...);
900     if (Header.IsConditional)
901       new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag);
902   }
903 
904   // Push a cleanup onto EHStack and deactivate it later. It is usually
905   // deactivated when exiting a `CleanupDeactivationScope` (for example: after a
906   // full expression).
907   template <class T, class... As>
908   void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) {
909     // Placeholder dominating IP for this cleanup.
910     llvm::Instruction *DominatingIP =
911         Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
912     EHStack.pushCleanup<T>(Kind, A...);
913     DeferredDeactivationCleanupStack.push_back(
914         {EHStack.stable_begin(), DominatingIP});
915   }
916 
917   /// Set up the last cleanup that was pushed as a conditional
918   /// full-expression cleanup.
919   void initFullExprCleanup() {
920     initFullExprCleanupWithFlag(createCleanupActiveFlag());
921   }
922 
923   void initFullExprCleanupWithFlag(RawAddress ActiveFlag);
924   RawAddress createCleanupActiveFlag();
925 
926   /// PushDestructorCleanup - Push a cleanup to call the
927   /// complete-object destructor of an object of the given type at the
928   /// given address.  Does nothing if T is not a C++ class type with a
929   /// non-trivial destructor.
930   void PushDestructorCleanup(QualType T, Address Addr);
931 
932   /// PushDestructorCleanup - Push a cleanup to call the
933   /// complete-object variant of the given destructor on the object at
934   /// the given address.
935   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
936                              Address Addr);
937 
938   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
939   /// process all branch fixups.
940   void PopCleanupBlock(bool FallThroughIsBranchThrough = false,
941                        bool ForDeactivation = false);
942 
943   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
944   /// The block cannot be reactivated.  Pops it if it's the top of the
945   /// stack.
946   ///
947   /// \param DominatingIP - An instruction which is known to
948   ///   dominate the current IP (if set) and which lies along
949   ///   all paths of execution between the current IP and the
950   ///   the point at which the cleanup comes into scope.
951   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
952                               llvm::Instruction *DominatingIP);
953 
954   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
955   /// Cannot be used to resurrect a deactivated cleanup.
956   ///
957   /// \param DominatingIP - An instruction which is known to
958   ///   dominate the current IP (if set) and which lies along
959   ///   all paths of execution between the current IP and the
960   ///   the point at which the cleanup comes into scope.
961   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
962                             llvm::Instruction *DominatingIP);
963 
964   /// Enters a new scope for capturing cleanups, all of which
965   /// will be executed once the scope is exited.
966   class RunCleanupsScope {
967     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
968     size_t LifetimeExtendedCleanupStackSize;
969     CleanupDeactivationScope DeactivateCleanups;
970     bool OldDidCallStackSave;
971   protected:
972     bool PerformCleanup;
973   private:
974 
975     RunCleanupsScope(const RunCleanupsScope &) = delete;
976     void operator=(const RunCleanupsScope &) = delete;
977 
978   protected:
979     CodeGenFunction& CGF;
980 
981   public:
982     /// Enter a new cleanup scope.
983     explicit RunCleanupsScope(CodeGenFunction &CGF)
984         : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) {
985       CleanupStackDepth = CGF.EHStack.stable_begin();
986       LifetimeExtendedCleanupStackSize =
987           CGF.LifetimeExtendedCleanupStack.size();
988       OldDidCallStackSave = CGF.DidCallStackSave;
989       CGF.DidCallStackSave = false;
990       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
991       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
992     }
993 
994     /// Exit this cleanup scope, emitting any accumulated cleanups.
995     ~RunCleanupsScope() {
996       if (PerformCleanup)
997         ForceCleanup();
998     }
999 
1000     /// Determine whether this scope requires any cleanups.
1001     bool requiresCleanups() const {
1002       return CGF.EHStack.stable_begin() != CleanupStackDepth;
1003     }
1004 
1005     /// Force the emission of cleanups now, instead of waiting
1006     /// until this object is destroyed.
1007     /// \param ValuesToReload - A list of values that need to be available at
1008     /// the insertion point after cleanup emission. If cleanup emission created
1009     /// a shared cleanup block, these value pointers will be rewritten.
1010     /// Otherwise, they not will be modified.
1011     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
1012       assert(PerformCleanup && "Already forced cleanup");
1013       CGF.DidCallStackSave = OldDidCallStackSave;
1014       DeactivateCleanups.ForceDeactivate();
1015       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
1016                            ValuesToReload);
1017       PerformCleanup = false;
1018       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
1019     }
1020   };
1021 
1022   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
1023   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
1024       EHScopeStack::stable_end();
1025 
1026   class LexicalScope : public RunCleanupsScope {
1027     SourceRange Range;
1028     SmallVector<const LabelDecl*, 4> Labels;
1029     LexicalScope *ParentScope;
1030 
1031     LexicalScope(const LexicalScope &) = delete;
1032     void operator=(const LexicalScope &) = delete;
1033 
1034   public:
1035     /// Enter a new cleanup scope.
1036     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
1037       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
1038       CGF.CurLexicalScope = this;
1039       if (CGDebugInfo *DI = CGF.getDebugInfo())
1040         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
1041     }
1042 
1043     void addLabel(const LabelDecl *label) {
1044       assert(PerformCleanup && "adding label to dead scope?");
1045       Labels.push_back(label);
1046     }
1047 
1048     /// Exit this cleanup scope, emitting any accumulated
1049     /// cleanups.
1050     ~LexicalScope() {
1051       if (CGDebugInfo *DI = CGF.getDebugInfo())
1052         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
1053 
1054       // If we should perform a cleanup, force them now.  Note that
1055       // this ends the cleanup scope before rescoping any labels.
1056       if (PerformCleanup) {
1057         ApplyDebugLocation DL(CGF, Range.getEnd());
1058         ForceCleanup();
1059       }
1060     }
1061 
1062     /// Force the emission of cleanups now, instead of waiting
1063     /// until this object is destroyed.
1064     void ForceCleanup() {
1065       CGF.CurLexicalScope = ParentScope;
1066       RunCleanupsScope::ForceCleanup();
1067 
1068       if (!Labels.empty())
1069         rescopeLabels();
1070     }
1071 
1072     bool hasLabels() const {
1073       return !Labels.empty();
1074     }
1075 
1076     void rescopeLabels();
1077   };
1078 
1079   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
1080 
1081   /// The class used to assign some variables some temporarily addresses.
1082   class OMPMapVars {
1083     DeclMapTy SavedLocals;
1084     DeclMapTy SavedTempAddresses;
1085     OMPMapVars(const OMPMapVars &) = delete;
1086     void operator=(const OMPMapVars &) = delete;
1087 
1088   public:
1089     explicit OMPMapVars() = default;
1090     ~OMPMapVars() {
1091       assert(SavedLocals.empty() && "Did not restored original addresses.");
1092     };
1093 
1094     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1095     /// function \p CGF.
1096     /// \return true if at least one variable was set already, false otherwise.
1097     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1098                     Address TempAddr) {
1099       LocalVD = LocalVD->getCanonicalDecl();
1100       // Only save it once.
1101       if (SavedLocals.count(LocalVD)) return false;
1102 
1103       // Copy the existing local entry to SavedLocals.
1104       auto it = CGF.LocalDeclMap.find(LocalVD);
1105       if (it != CGF.LocalDeclMap.end())
1106         SavedLocals.try_emplace(LocalVD, it->second);
1107       else
1108         SavedLocals.try_emplace(LocalVD, Address::invalid());
1109 
1110       // Generate the private entry.
1111       QualType VarTy = LocalVD->getType();
1112       if (VarTy->isReferenceType()) {
1113         Address Temp = CGF.CreateMemTemp(VarTy);
1114         CGF.Builder.CreateStore(TempAddr.emitRawPointer(CGF), Temp);
1115         TempAddr = Temp;
1116       }
1117       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1118 
1119       return true;
1120     }
1121 
1122     /// Applies new addresses to the list of the variables.
1123     /// \return true if at least one variable is using new address, false
1124     /// otherwise.
1125     bool apply(CodeGenFunction &CGF) {
1126       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1127       SavedTempAddresses.clear();
1128       return !SavedLocals.empty();
1129     }
1130 
1131     /// Restores original addresses of the variables.
1132     void restore(CodeGenFunction &CGF) {
1133       if (!SavedLocals.empty()) {
1134         copyInto(SavedLocals, CGF.LocalDeclMap);
1135         SavedLocals.clear();
1136       }
1137     }
1138 
1139   private:
1140     /// Copy all the entries in the source map over the corresponding
1141     /// entries in the destination, which must exist.
1142     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1143       for (auto &Pair : Src) {
1144         if (!Pair.second.isValid()) {
1145           Dest.erase(Pair.first);
1146           continue;
1147         }
1148 
1149         auto I = Dest.find(Pair.first);
1150         if (I != Dest.end())
1151           I->second = Pair.second;
1152         else
1153           Dest.insert(Pair);
1154       }
1155     }
1156   };
1157 
1158   /// The scope used to remap some variables as private in the OpenMP loop body
1159   /// (or other captured region emitted without outlining), and to restore old
1160   /// vars back on exit.
1161   class OMPPrivateScope : public RunCleanupsScope {
1162     OMPMapVars MappedVars;
1163     OMPPrivateScope(const OMPPrivateScope &) = delete;
1164     void operator=(const OMPPrivateScope &) = delete;
1165 
1166   public:
1167     /// Enter a new OpenMP private scope.
1168     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1169 
1170     /// Registers \p LocalVD variable as a private with \p Addr as the address
1171     /// of the corresponding private variable. \p
1172     /// PrivateGen is the address of the generated private variable.
1173     /// \return true if the variable is registered as private, false if it has
1174     /// been privatized already.
1175     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1176       assert(PerformCleanup && "adding private to dead scope");
1177       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1178     }
1179 
1180     /// Privatizes local variables previously registered as private.
1181     /// Registration is separate from the actual privatization to allow
1182     /// initializers use values of the original variables, not the private one.
1183     /// This is important, for example, if the private variable is a class
1184     /// variable initialized by a constructor that references other private
1185     /// variables. But at initialization original variables must be used, not
1186     /// private copies.
1187     /// \return true if at least one variable was privatized, false otherwise.
1188     bool Privatize() { return MappedVars.apply(CGF); }
1189 
1190     void ForceCleanup() {
1191       RunCleanupsScope::ForceCleanup();
1192       restoreMap();
1193     }
1194 
1195     /// Exit scope - all the mapped variables are restored.
1196     ~OMPPrivateScope() {
1197       if (PerformCleanup)
1198         ForceCleanup();
1199     }
1200 
1201     /// Checks if the global variable is captured in current function.
1202     bool isGlobalVarCaptured(const VarDecl *VD) const {
1203       VD = VD->getCanonicalDecl();
1204       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1205     }
1206 
1207     /// Restore all mapped variables w/o clean up. This is usefully when we want
1208     /// to reference the original variables but don't want the clean up because
1209     /// that could emit lifetime end too early, causing backend issue #56913.
1210     void restoreMap() { MappedVars.restore(CGF); }
1211   };
1212 
1213   /// Save/restore original map of previously emitted local vars in case when we
1214   /// need to duplicate emission of the same code several times in the same
1215   /// function for OpenMP code.
1216   class OMPLocalDeclMapRAII {
1217     CodeGenFunction &CGF;
1218     DeclMapTy SavedMap;
1219 
1220   public:
1221     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1222         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1223     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1224   };
1225 
1226   /// Takes the old cleanup stack size and emits the cleanup blocks
1227   /// that have been added.
1228   void
1229   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1230                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1231 
1232   /// Takes the old cleanup stack size and emits the cleanup blocks
1233   /// that have been added, then adds all lifetime-extended cleanups from
1234   /// the given position to the stack.
1235   void
1236   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1237                    size_t OldLifetimeExtendedStackSize,
1238                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1239 
1240   void ResolveBranchFixups(llvm::BasicBlock *Target);
1241 
1242   /// The given basic block lies in the current EH scope, but may be a
1243   /// target of a potentially scope-crossing jump; get a stable handle
1244   /// to which we can perform this jump later.
1245   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1246     return JumpDest(Target,
1247                     EHStack.getInnermostNormalCleanup(),
1248                     NextCleanupDestIndex++);
1249   }
1250 
1251   /// The given basic block lies in the current EH scope, but may be a
1252   /// target of a potentially scope-crossing jump; get a stable handle
1253   /// to which we can perform this jump later.
1254   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1255     return getJumpDestInCurrentScope(createBasicBlock(Name));
1256   }
1257 
1258   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1259   /// block through the normal cleanup handling code (if any) and then
1260   /// on to \arg Dest.
1261   void EmitBranchThroughCleanup(JumpDest Dest);
1262 
1263   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1264   /// specified destination obviously has no cleanups to run.  'false' is always
1265   /// a conservatively correct answer for this method.
1266   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1267 
1268   /// popCatchScope - Pops the catch scope at the top of the EHScope
1269   /// stack, emitting any required code (other than the catch handlers
1270   /// themselves).
1271   void popCatchScope();
1272 
1273   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1274   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1275   llvm::BasicBlock *
1276   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1277 
1278   /// An object to manage conditionally-evaluated expressions.
1279   class ConditionalEvaluation {
1280     llvm::BasicBlock *StartBB;
1281 
1282   public:
1283     ConditionalEvaluation(CodeGenFunction &CGF)
1284       : StartBB(CGF.Builder.GetInsertBlock()) {}
1285 
1286     void begin(CodeGenFunction &CGF) {
1287       assert(CGF.OutermostConditional != this);
1288       if (!CGF.OutermostConditional)
1289         CGF.OutermostConditional = this;
1290     }
1291 
1292     void end(CodeGenFunction &CGF) {
1293       assert(CGF.OutermostConditional != nullptr);
1294       if (CGF.OutermostConditional == this)
1295         CGF.OutermostConditional = nullptr;
1296     }
1297 
1298     /// Returns a block which will be executed prior to each
1299     /// evaluation of the conditional code.
1300     llvm::BasicBlock *getStartingBlock() const {
1301       return StartBB;
1302     }
1303   };
1304 
1305   /// isInConditionalBranch - Return true if we're currently emitting
1306   /// one branch or the other of a conditional expression.
1307   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1308 
1309   void setBeforeOutermostConditional(llvm::Value *value, Address addr,
1310                                      CodeGenFunction &CGF) {
1311     assert(isInConditionalBranch());
1312     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1313     auto store =
1314         new llvm::StoreInst(value, addr.emitRawPointer(CGF), &block->back());
1315     store->setAlignment(addr.getAlignment().getAsAlign());
1316   }
1317 
1318   /// An RAII object to record that we're evaluating a statement
1319   /// expression.
1320   class StmtExprEvaluation {
1321     CodeGenFunction &CGF;
1322 
1323     /// We have to save the outermost conditional: cleanups in a
1324     /// statement expression aren't conditional just because the
1325     /// StmtExpr is.
1326     ConditionalEvaluation *SavedOutermostConditional;
1327 
1328   public:
1329     StmtExprEvaluation(CodeGenFunction &CGF)
1330       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1331       CGF.OutermostConditional = nullptr;
1332     }
1333 
1334     ~StmtExprEvaluation() {
1335       CGF.OutermostConditional = SavedOutermostConditional;
1336       CGF.EnsureInsertPoint();
1337     }
1338   };
1339 
1340   /// An object which temporarily prevents a value from being
1341   /// destroyed by aggressive peephole optimizations that assume that
1342   /// all uses of a value have been realized in the IR.
1343   class PeepholeProtection {
1344     llvm::Instruction *Inst = nullptr;
1345     friend class CodeGenFunction;
1346 
1347   public:
1348     PeepholeProtection() = default;
1349   };
1350 
1351   /// A non-RAII class containing all the information about a bound
1352   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1353   /// this which makes individual mappings very simple; using this
1354   /// class directly is useful when you have a variable number of
1355   /// opaque values or don't want the RAII functionality for some
1356   /// reason.
1357   class OpaqueValueMappingData {
1358     const OpaqueValueExpr *OpaqueValue;
1359     bool BoundLValue;
1360     CodeGenFunction::PeepholeProtection Protection;
1361 
1362     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1363                            bool boundLValue)
1364       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1365   public:
1366     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1367 
1368     static bool shouldBindAsLValue(const Expr *expr) {
1369       // gl-values should be bound as l-values for obvious reasons.
1370       // Records should be bound as l-values because IR generation
1371       // always keeps them in memory.  Expressions of function type
1372       // act exactly like l-values but are formally required to be
1373       // r-values in C.
1374       return expr->isGLValue() ||
1375              expr->getType()->isFunctionType() ||
1376              hasAggregateEvaluationKind(expr->getType());
1377     }
1378 
1379     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1380                                        const OpaqueValueExpr *ov,
1381                                        const Expr *e) {
1382       if (shouldBindAsLValue(ov))
1383         return bind(CGF, ov, CGF.EmitLValue(e));
1384       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1385     }
1386 
1387     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1388                                        const OpaqueValueExpr *ov,
1389                                        const LValue &lv) {
1390       assert(shouldBindAsLValue(ov));
1391       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1392       return OpaqueValueMappingData(ov, true);
1393     }
1394 
1395     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1396                                        const OpaqueValueExpr *ov,
1397                                        const RValue &rv) {
1398       assert(!shouldBindAsLValue(ov));
1399       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1400 
1401       OpaqueValueMappingData data(ov, false);
1402 
1403       // Work around an extremely aggressive peephole optimization in
1404       // EmitScalarConversion which assumes that all other uses of a
1405       // value are extant.
1406       data.Protection = CGF.protectFromPeepholes(rv);
1407 
1408       return data;
1409     }
1410 
1411     bool isValid() const { return OpaqueValue != nullptr; }
1412     void clear() { OpaqueValue = nullptr; }
1413 
1414     void unbind(CodeGenFunction &CGF) {
1415       assert(OpaqueValue && "no data to unbind!");
1416 
1417       if (BoundLValue) {
1418         CGF.OpaqueLValues.erase(OpaqueValue);
1419       } else {
1420         CGF.OpaqueRValues.erase(OpaqueValue);
1421         CGF.unprotectFromPeepholes(Protection);
1422       }
1423     }
1424   };
1425 
1426   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1427   class OpaqueValueMapping {
1428     CodeGenFunction &CGF;
1429     OpaqueValueMappingData Data;
1430 
1431   public:
1432     static bool shouldBindAsLValue(const Expr *expr) {
1433       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1434     }
1435 
1436     /// Build the opaque value mapping for the given conditional
1437     /// operator if it's the GNU ?: extension.  This is a common
1438     /// enough pattern that the convenience operator is really
1439     /// helpful.
1440     ///
1441     OpaqueValueMapping(CodeGenFunction &CGF,
1442                        const AbstractConditionalOperator *op) : CGF(CGF) {
1443       if (isa<ConditionalOperator>(op))
1444         // Leave Data empty.
1445         return;
1446 
1447       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1448       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1449                                           e->getCommon());
1450     }
1451 
1452     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1453     /// expression is set to the expression the OVE represents.
1454     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1455         : CGF(CGF) {
1456       if (OV) {
1457         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1458                                       "for OVE with no source expression");
1459         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1460       }
1461     }
1462 
1463     OpaqueValueMapping(CodeGenFunction &CGF,
1464                        const OpaqueValueExpr *opaqueValue,
1465                        LValue lvalue)
1466       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1467     }
1468 
1469     OpaqueValueMapping(CodeGenFunction &CGF,
1470                        const OpaqueValueExpr *opaqueValue,
1471                        RValue rvalue)
1472       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1473     }
1474 
1475     void pop() {
1476       Data.unbind(CGF);
1477       Data.clear();
1478     }
1479 
1480     ~OpaqueValueMapping() {
1481       if (Data.isValid()) Data.unbind(CGF);
1482     }
1483   };
1484 
1485 private:
1486   CGDebugInfo *DebugInfo;
1487   /// Used to create unique names for artificial VLA size debug info variables.
1488   unsigned VLAExprCounter = 0;
1489   bool DisableDebugInfo = false;
1490 
1491   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1492   /// calling llvm.stacksave for multiple VLAs in the same scope.
1493   bool DidCallStackSave = false;
1494 
1495   /// IndirectBranch - The first time an indirect goto is seen we create a block
1496   /// with an indirect branch.  Every time we see the address of a label taken,
1497   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1498   /// codegen'd as a jump to the IndirectBranch's basic block.
1499   llvm::IndirectBrInst *IndirectBranch = nullptr;
1500 
1501   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1502   /// decls.
1503   DeclMapTy LocalDeclMap;
1504 
1505   // Keep track of the cleanups for callee-destructed parameters pushed to the
1506   // cleanup stack so that they can be deactivated later.
1507   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1508       CalleeDestructedParamCleanups;
1509 
1510   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1511   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1512   /// parameter.
1513   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1514       SizeArguments;
1515 
1516   /// Track escaped local variables with auto storage. Used during SEH
1517   /// outlining to produce a call to llvm.localescape.
1518   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1519 
1520   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1521   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1522 
1523   // BreakContinueStack - This keeps track of where break and continue
1524   // statements should jump to.
1525   struct BreakContinue {
1526     BreakContinue(JumpDest Break, JumpDest Continue)
1527       : BreakBlock(Break), ContinueBlock(Continue) {}
1528 
1529     JumpDest BreakBlock;
1530     JumpDest ContinueBlock;
1531   };
1532   SmallVector<BreakContinue, 8> BreakContinueStack;
1533 
1534   /// Handles cancellation exit points in OpenMP-related constructs.
1535   class OpenMPCancelExitStack {
1536     /// Tracks cancellation exit point and join point for cancel-related exit
1537     /// and normal exit.
1538     struct CancelExit {
1539       CancelExit() = default;
1540       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1541                  JumpDest ContBlock)
1542           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1543       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1544       /// true if the exit block has been emitted already by the special
1545       /// emitExit() call, false if the default codegen is used.
1546       bool HasBeenEmitted = false;
1547       JumpDest ExitBlock;
1548       JumpDest ContBlock;
1549     };
1550 
1551     SmallVector<CancelExit, 8> Stack;
1552 
1553   public:
1554     OpenMPCancelExitStack() : Stack(1) {}
1555     ~OpenMPCancelExitStack() = default;
1556     /// Fetches the exit block for the current OpenMP construct.
1557     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1558     /// Emits exit block with special codegen procedure specific for the related
1559     /// OpenMP construct + emits code for normal construct cleanup.
1560     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1561                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1562       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1563         assert(CGF.getOMPCancelDestination(Kind).isValid());
1564         assert(CGF.HaveInsertPoint());
1565         assert(!Stack.back().HasBeenEmitted);
1566         auto IP = CGF.Builder.saveAndClearIP();
1567         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1568         CodeGen(CGF);
1569         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1570         CGF.Builder.restoreIP(IP);
1571         Stack.back().HasBeenEmitted = true;
1572       }
1573       CodeGen(CGF);
1574     }
1575     /// Enter the cancel supporting \a Kind construct.
1576     /// \param Kind OpenMP directive that supports cancel constructs.
1577     /// \param HasCancel true, if the construct has inner cancel directive,
1578     /// false otherwise.
1579     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1580       Stack.push_back({Kind,
1581                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1582                                  : JumpDest(),
1583                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1584                                  : JumpDest()});
1585     }
1586     /// Emits default exit point for the cancel construct (if the special one
1587     /// has not be used) + join point for cancel/normal exits.
1588     void exit(CodeGenFunction &CGF) {
1589       if (getExitBlock().isValid()) {
1590         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1591         bool HaveIP = CGF.HaveInsertPoint();
1592         if (!Stack.back().HasBeenEmitted) {
1593           if (HaveIP)
1594             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1595           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1596           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1597         }
1598         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1599         if (!HaveIP) {
1600           CGF.Builder.CreateUnreachable();
1601           CGF.Builder.ClearInsertionPoint();
1602         }
1603       }
1604       Stack.pop_back();
1605     }
1606   };
1607   OpenMPCancelExitStack OMPCancelStack;
1608 
1609   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1610   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1611                                                     Stmt::Likelihood LH);
1612 
1613   CodeGenPGO PGO;
1614 
1615   /// Bitmap used by MC/DC to track condition outcomes of a boolean expression.
1616   Address MCDCCondBitmapAddr = Address::invalid();
1617 
1618   /// Calculate branch weights appropriate for PGO data
1619   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1620                                      uint64_t FalseCount) const;
1621   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1622   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1623                                             uint64_t LoopCount) const;
1624 
1625 public:
1626   /// Increment the profiler's counter for the given statement by \p StepV.
1627   /// If \p StepV is null, the default increment is 1.
1628   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1629     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1630         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1631         !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) {
1632       auto AL = ApplyDebugLocation::CreateArtificial(*this);
1633       PGO.emitCounterSetOrIncrement(Builder, S, StepV);
1634     }
1635     PGO.setCurrentStmt(S);
1636   }
1637 
1638   bool isMCDCCoverageEnabled() const {
1639     return (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1640             CGM.getCodeGenOpts().MCDCCoverage &&
1641             !CurFn->hasFnAttribute(llvm::Attribute::NoProfile));
1642   }
1643 
1644   /// Allocate a temp value on the stack that MCDC can use to track condition
1645   /// results.
1646   void maybeCreateMCDCCondBitmap() {
1647     if (isMCDCCoverageEnabled()) {
1648       PGO.emitMCDCParameters(Builder);
1649       MCDCCondBitmapAddr =
1650           CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr");
1651     }
1652   }
1653 
1654   bool isBinaryLogicalOp(const Expr *E) const {
1655     const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens());
1656     return (BOp && BOp->isLogicalOp());
1657   }
1658 
1659   /// Zero-init the MCDC temp value.
1660   void maybeResetMCDCCondBitmap(const Expr *E) {
1661     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1662       PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr);
1663       PGO.setCurrentStmt(E);
1664     }
1665   }
1666 
1667   /// Increment the profiler's counter for the given expression by \p StepV.
1668   /// If \p StepV is null, the default increment is 1.
1669   void maybeUpdateMCDCTestVectorBitmap(const Expr *E) {
1670     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1671       PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr, *this);
1672       PGO.setCurrentStmt(E);
1673     }
1674   }
1675 
1676   /// Update the MCDC temp value with the condition's evaluated result.
1677   void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) {
1678     if (isMCDCCoverageEnabled()) {
1679       PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val, *this);
1680       PGO.setCurrentStmt(E);
1681     }
1682   }
1683 
1684   /// Get the profiler's count for the given statement.
1685   uint64_t getProfileCount(const Stmt *S) {
1686     return PGO.getStmtCount(S).value_or(0);
1687   }
1688 
1689   /// Set the profiler's current count.
1690   void setCurrentProfileCount(uint64_t Count) {
1691     PGO.setCurrentRegionCount(Count);
1692   }
1693 
1694   /// Get the profiler's current count. This is generally the count for the most
1695   /// recently incremented counter.
1696   uint64_t getCurrentProfileCount() {
1697     return PGO.getCurrentRegionCount();
1698   }
1699 
1700 private:
1701 
1702   /// SwitchInsn - This is nearest current switch instruction. It is null if
1703   /// current context is not in a switch.
1704   llvm::SwitchInst *SwitchInsn = nullptr;
1705   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1706   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1707 
1708   /// The likelihood attributes of the SwitchCase.
1709   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1710 
1711   /// CaseRangeBlock - This block holds if condition check for last case
1712   /// statement range in current switch instruction.
1713   llvm::BasicBlock *CaseRangeBlock = nullptr;
1714 
1715   /// OpaqueLValues - Keeps track of the current set of opaque value
1716   /// expressions.
1717   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1718   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1719 
1720   // VLASizeMap - This keeps track of the associated size for each VLA type.
1721   // We track this by the size expression rather than the type itself because
1722   // in certain situations, like a const qualifier applied to an VLA typedef,
1723   // multiple VLA types can share the same size expression.
1724   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1725   // enter/leave scopes.
1726   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1727 
1728   /// A block containing a single 'unreachable' instruction.  Created
1729   /// lazily by getUnreachableBlock().
1730   llvm::BasicBlock *UnreachableBlock = nullptr;
1731 
1732   /// Counts of the number return expressions in the function.
1733   unsigned NumReturnExprs = 0;
1734 
1735   /// Count the number of simple (constant) return expressions in the function.
1736   unsigned NumSimpleReturnExprs = 0;
1737 
1738   /// The last regular (non-return) debug location (breakpoint) in the function.
1739   SourceLocation LastStopPoint;
1740 
1741 public:
1742   /// Source location information about the default argument or member
1743   /// initializer expression we're evaluating, if any.
1744   CurrentSourceLocExprScope CurSourceLocExprScope;
1745   using SourceLocExprScopeGuard =
1746       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1747 
1748   /// A scope within which we are constructing the fields of an object which
1749   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1750   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1751   class FieldConstructionScope {
1752   public:
1753     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1754         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1755       CGF.CXXDefaultInitExprThis = This;
1756     }
1757     ~FieldConstructionScope() {
1758       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1759     }
1760 
1761   private:
1762     CodeGenFunction &CGF;
1763     Address OldCXXDefaultInitExprThis;
1764   };
1765 
1766   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1767   /// is overridden to be the object under construction.
1768   class CXXDefaultInitExprScope  {
1769   public:
1770     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1771         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1772           OldCXXThisAlignment(CGF.CXXThisAlignment),
1773           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1774       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer();
1775       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1776     }
1777     ~CXXDefaultInitExprScope() {
1778       CGF.CXXThisValue = OldCXXThisValue;
1779       CGF.CXXThisAlignment = OldCXXThisAlignment;
1780     }
1781 
1782   public:
1783     CodeGenFunction &CGF;
1784     llvm::Value *OldCXXThisValue;
1785     CharUnits OldCXXThisAlignment;
1786     SourceLocExprScopeGuard SourceLocScope;
1787   };
1788 
1789   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1790     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1791         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1792   };
1793 
1794   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1795   /// current loop index is overridden.
1796   class ArrayInitLoopExprScope {
1797   public:
1798     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1799       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1800       CGF.ArrayInitIndex = Index;
1801     }
1802     ~ArrayInitLoopExprScope() {
1803       CGF.ArrayInitIndex = OldArrayInitIndex;
1804     }
1805 
1806   private:
1807     CodeGenFunction &CGF;
1808     llvm::Value *OldArrayInitIndex;
1809   };
1810 
1811   class InlinedInheritingConstructorScope {
1812   public:
1813     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1814         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1815           OldCurCodeDecl(CGF.CurCodeDecl),
1816           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1817           OldCXXABIThisValue(CGF.CXXABIThisValue),
1818           OldCXXThisValue(CGF.CXXThisValue),
1819           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1820           OldCXXThisAlignment(CGF.CXXThisAlignment),
1821           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1822           OldCXXInheritedCtorInitExprArgs(
1823               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1824       CGF.CurGD = GD;
1825       CGF.CurFuncDecl = CGF.CurCodeDecl =
1826           cast<CXXConstructorDecl>(GD.getDecl());
1827       CGF.CXXABIThisDecl = nullptr;
1828       CGF.CXXABIThisValue = nullptr;
1829       CGF.CXXThisValue = nullptr;
1830       CGF.CXXABIThisAlignment = CharUnits();
1831       CGF.CXXThisAlignment = CharUnits();
1832       CGF.ReturnValue = Address::invalid();
1833       CGF.FnRetTy = QualType();
1834       CGF.CXXInheritedCtorInitExprArgs.clear();
1835     }
1836     ~InlinedInheritingConstructorScope() {
1837       CGF.CurGD = OldCurGD;
1838       CGF.CurFuncDecl = OldCurFuncDecl;
1839       CGF.CurCodeDecl = OldCurCodeDecl;
1840       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1841       CGF.CXXABIThisValue = OldCXXABIThisValue;
1842       CGF.CXXThisValue = OldCXXThisValue;
1843       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1844       CGF.CXXThisAlignment = OldCXXThisAlignment;
1845       CGF.ReturnValue = OldReturnValue;
1846       CGF.FnRetTy = OldFnRetTy;
1847       CGF.CXXInheritedCtorInitExprArgs =
1848           std::move(OldCXXInheritedCtorInitExprArgs);
1849     }
1850 
1851   private:
1852     CodeGenFunction &CGF;
1853     GlobalDecl OldCurGD;
1854     const Decl *OldCurFuncDecl;
1855     const Decl *OldCurCodeDecl;
1856     ImplicitParamDecl *OldCXXABIThisDecl;
1857     llvm::Value *OldCXXABIThisValue;
1858     llvm::Value *OldCXXThisValue;
1859     CharUnits OldCXXABIThisAlignment;
1860     CharUnits OldCXXThisAlignment;
1861     Address OldReturnValue;
1862     QualType OldFnRetTy;
1863     CallArgList OldCXXInheritedCtorInitExprArgs;
1864   };
1865 
1866   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1867   // region body, and finalization codegen callbacks. This will class will also
1868   // contain privatization functions used by the privatization call backs
1869   //
1870   // TODO: this is temporary class for things that are being moved out of
1871   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1872   // utility function for use with the OMPBuilder. Once that move to use the
1873   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1874   // directly, or a new helper class that will contain functions used by both
1875   // this and the OMPBuilder
1876 
1877   struct OMPBuilderCBHelpers {
1878 
1879     OMPBuilderCBHelpers() = delete;
1880     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1881     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1882 
1883     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1884 
1885     /// Cleanup action for allocate support.
1886     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1887 
1888     private:
1889       llvm::CallInst *RTLFnCI;
1890 
1891     public:
1892       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1893         RLFnCI->removeFromParent();
1894       }
1895 
1896       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1897         if (!CGF.HaveInsertPoint())
1898           return;
1899         CGF.Builder.Insert(RTLFnCI);
1900       }
1901     };
1902 
1903     /// Returns address of the threadprivate variable for the current
1904     /// thread. This Also create any necessary OMP runtime calls.
1905     ///
1906     /// \param VD VarDecl for Threadprivate variable.
1907     /// \param VDAddr Address of the Vardecl
1908     /// \param Loc  The location where the barrier directive was encountered
1909     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1910                                           const VarDecl *VD, Address VDAddr,
1911                                           SourceLocation Loc);
1912 
1913     /// Gets the OpenMP-specific address of the local variable /p VD.
1914     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1915                                              const VarDecl *VD);
1916     /// Get the platform-specific name separator.
1917     /// \param Parts different parts of the final name that needs separation
1918     /// \param FirstSeparator First separator used between the initial two
1919     ///        parts of the name.
1920     /// \param Separator separator used between all of the rest consecutinve
1921     ///        parts of the name
1922     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1923                                              StringRef FirstSeparator = ".",
1924                                              StringRef Separator = ".");
1925     /// Emit the Finalization for an OMP region
1926     /// \param CGF	The Codegen function this belongs to
1927     /// \param IP	Insertion point for generating the finalization code.
1928     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1929       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1930       assert(IP.getBlock()->end() != IP.getPoint() &&
1931              "OpenMP IR Builder should cause terminated block!");
1932 
1933       llvm::BasicBlock *IPBB = IP.getBlock();
1934       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1935       assert(DestBB && "Finalization block should have one successor!");
1936 
1937       // erase and replace with cleanup branch.
1938       IPBB->getTerminator()->eraseFromParent();
1939       CGF.Builder.SetInsertPoint(IPBB);
1940       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1941       CGF.EmitBranchThroughCleanup(Dest);
1942     }
1943 
1944     /// Emit the body of an OMP region
1945     /// \param CGF	          The Codegen function this belongs to
1946     /// \param RegionBodyStmt The body statement for the OpenMP region being
1947     ///                       generated
1948     /// \param AllocaIP       Where to insert alloca instructions
1949     /// \param CodeGenIP      Where to insert the region code
1950     /// \param RegionName     Name to be used for new blocks
1951     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1952                                          const Stmt *RegionBodyStmt,
1953                                          InsertPointTy AllocaIP,
1954                                          InsertPointTy CodeGenIP,
1955                                          Twine RegionName);
1956 
1957     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1958                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1959                                 ArrayRef<llvm::Value *> Args) {
1960       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1961       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1962         CodeGenIPBBTI->eraseFromParent();
1963 
1964       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1965 
1966       if (Fn->doesNotThrow())
1967         CGF.EmitNounwindRuntimeCall(Fn, Args);
1968       else
1969         CGF.EmitRuntimeCall(Fn, Args);
1970 
1971       if (CGF.Builder.saveIP().isSet())
1972         CGF.Builder.CreateBr(&FiniBB);
1973     }
1974 
1975     /// Emit the body of an OMP region that will be outlined in
1976     /// OpenMPIRBuilder::finalize().
1977     /// \param CGF	          The Codegen function this belongs to
1978     /// \param RegionBodyStmt The body statement for the OpenMP region being
1979     ///                       generated
1980     /// \param AllocaIP       Where to insert alloca instructions
1981     /// \param CodeGenIP      Where to insert the region code
1982     /// \param RegionName     Name to be used for new blocks
1983     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1984                                           const Stmt *RegionBodyStmt,
1985                                           InsertPointTy AllocaIP,
1986                                           InsertPointTy CodeGenIP,
1987                                           Twine RegionName);
1988 
1989     /// RAII for preserving necessary info during Outlined region body codegen.
1990     class OutlinedRegionBodyRAII {
1991 
1992       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1993       CodeGenFunction::JumpDest OldReturnBlock;
1994       CodeGenFunction &CGF;
1995 
1996     public:
1997       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1998                              llvm::BasicBlock &RetBB)
1999           : CGF(cgf) {
2000         assert(AllocaIP.isSet() &&
2001                "Must specify Insertion point for allocas of outlined function");
2002         OldAllocaIP = CGF.AllocaInsertPt;
2003         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2004 
2005         OldReturnBlock = CGF.ReturnBlock;
2006         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
2007       }
2008 
2009       ~OutlinedRegionBodyRAII() {
2010         CGF.AllocaInsertPt = OldAllocaIP;
2011         CGF.ReturnBlock = OldReturnBlock;
2012       }
2013     };
2014 
2015     /// RAII for preserving necessary info during inlined region body codegen.
2016     class InlinedRegionBodyRAII {
2017 
2018       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
2019       CodeGenFunction &CGF;
2020 
2021     public:
2022       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
2023                             llvm::BasicBlock &FiniBB)
2024           : CGF(cgf) {
2025         // Alloca insertion block should be in the entry block of the containing
2026         // function so it expects an empty AllocaIP in which case will reuse the
2027         // old alloca insertion point, or a new AllocaIP in the same block as
2028         // the old one
2029         assert((!AllocaIP.isSet() ||
2030                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
2031                "Insertion point should be in the entry block of containing "
2032                "function!");
2033         OldAllocaIP = CGF.AllocaInsertPt;
2034         if (AllocaIP.isSet())
2035           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
2036 
2037         // TODO: Remove the call, after making sure the counter is not used by
2038         //       the EHStack.
2039         // Since this is an inlined region, it should not modify the
2040         // ReturnBlock, and should reuse the one for the enclosing outlined
2041         // region. So, the JumpDest being return by the function is discarded
2042         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
2043       }
2044 
2045       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
2046     };
2047   };
2048 
2049 private:
2050   /// CXXThisDecl - When generating code for a C++ member function,
2051   /// this will hold the implicit 'this' declaration.
2052   ImplicitParamDecl *CXXABIThisDecl = nullptr;
2053   llvm::Value *CXXABIThisValue = nullptr;
2054   llvm::Value *CXXThisValue = nullptr;
2055   CharUnits CXXABIThisAlignment;
2056   CharUnits CXXThisAlignment;
2057 
2058   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
2059   /// this expression.
2060   Address CXXDefaultInitExprThis = Address::invalid();
2061 
2062   /// The current array initialization index when evaluating an
2063   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
2064   llvm::Value *ArrayInitIndex = nullptr;
2065 
2066   /// The values of function arguments to use when evaluating
2067   /// CXXInheritedCtorInitExprs within this context.
2068   CallArgList CXXInheritedCtorInitExprArgs;
2069 
2070   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
2071   /// destructor, this will hold the implicit argument (e.g. VTT).
2072   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
2073   llvm::Value *CXXStructorImplicitParamValue = nullptr;
2074 
2075   /// OutermostConditional - Points to the outermost active
2076   /// conditional control.  This is used so that we know if a
2077   /// temporary should be destroyed conditionally.
2078   ConditionalEvaluation *OutermostConditional = nullptr;
2079 
2080   /// The current lexical scope.
2081   LexicalScope *CurLexicalScope = nullptr;
2082 
2083   /// The current source location that should be used for exception
2084   /// handling code.
2085   SourceLocation CurEHLocation;
2086 
2087   /// BlockByrefInfos - For each __block variable, contains
2088   /// information about the layout of the variable.
2089   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
2090 
2091   /// Used by -fsanitize=nullability-return to determine whether the return
2092   /// value can be checked.
2093   llvm::Value *RetValNullabilityPrecondition = nullptr;
2094 
2095   /// Check if -fsanitize=nullability-return instrumentation is required for
2096   /// this function.
2097   bool requiresReturnValueNullabilityCheck() const {
2098     return RetValNullabilityPrecondition;
2099   }
2100 
2101   /// Used to store precise source locations for return statements by the
2102   /// runtime return value checks.
2103   Address ReturnLocation = Address::invalid();
2104 
2105   /// Check if the return value of this function requires sanitization.
2106   bool requiresReturnValueCheck() const;
2107 
2108   bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty);
2109   bool hasInAllocaArg(const CXXMethodDecl *MD);
2110 
2111   llvm::BasicBlock *TerminateLandingPad = nullptr;
2112   llvm::BasicBlock *TerminateHandler = nullptr;
2113   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
2114 
2115   /// Terminate funclets keyed by parent funclet pad.
2116   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
2117 
2118   /// Largest vector width used in ths function. Will be used to create a
2119   /// function attribute.
2120   unsigned LargestVectorWidth = 0;
2121 
2122   /// True if we need emit the life-time markers. This is initially set in
2123   /// the constructor, but could be overwritten to true if this is a coroutine.
2124   bool ShouldEmitLifetimeMarkers;
2125 
2126   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
2127   /// the function metadata.
2128   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
2129 
2130 public:
2131   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
2132   ~CodeGenFunction();
2133 
2134   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
2135   ASTContext &getContext() const { return CGM.getContext(); }
2136   CGDebugInfo *getDebugInfo() {
2137     if (DisableDebugInfo)
2138       return nullptr;
2139     return DebugInfo;
2140   }
2141   void disableDebugInfo() { DisableDebugInfo = true; }
2142   void enableDebugInfo() { DisableDebugInfo = false; }
2143 
2144   bool shouldUseFusedARCCalls() {
2145     return CGM.getCodeGenOpts().OptimizationLevel == 0;
2146   }
2147 
2148   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
2149 
2150   /// Returns a pointer to the function's exception object and selector slot,
2151   /// which is assigned in every landing pad.
2152   Address getExceptionSlot();
2153   Address getEHSelectorSlot();
2154 
2155   /// Returns the contents of the function's exception object and selector
2156   /// slots.
2157   llvm::Value *getExceptionFromSlot();
2158   llvm::Value *getSelectorFromSlot();
2159 
2160   RawAddress getNormalCleanupDestSlot();
2161 
2162   llvm::BasicBlock *getUnreachableBlock() {
2163     if (!UnreachableBlock) {
2164       UnreachableBlock = createBasicBlock("unreachable");
2165       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2166     }
2167     return UnreachableBlock;
2168   }
2169 
2170   llvm::BasicBlock *getInvokeDest() {
2171     if (!EHStack.requiresLandingPad()) return nullptr;
2172     return getInvokeDestImpl();
2173   }
2174 
2175   bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2176 
2177   const TargetInfo &getTarget() const { return Target; }
2178   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2179   const TargetCodeGenInfo &getTargetHooks() const {
2180     return CGM.getTargetCodeGenInfo();
2181   }
2182 
2183   //===--------------------------------------------------------------------===//
2184   //                                  Cleanups
2185   //===--------------------------------------------------------------------===//
2186 
2187   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2188 
2189   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2190                                         Address arrayEndPointer,
2191                                         QualType elementType,
2192                                         CharUnits elementAlignment,
2193                                         Destroyer *destroyer);
2194   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2195                                       llvm::Value *arrayEnd,
2196                                       QualType elementType,
2197                                       CharUnits elementAlignment,
2198                                       Destroyer *destroyer);
2199 
2200   void pushDestroy(QualType::DestructionKind dtorKind,
2201                    Address addr, QualType type);
2202   void pushEHDestroy(QualType::DestructionKind dtorKind,
2203                      Address addr, QualType type);
2204   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2205                    Destroyer *destroyer, bool useEHCleanupForArray);
2206   void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind,
2207                                        Address addr, QualType type);
2208   void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr,
2209                                        QualType type, Destroyer *destroyer,
2210                                        bool useEHCleanupForArray);
2211   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2212                                    QualType type, Destroyer *destroyer,
2213                                    bool useEHCleanupForArray);
2214   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2215                                    llvm::Value *CompletePtr,
2216                                    QualType ElementType);
2217   void pushStackRestore(CleanupKind kind, Address SPMem);
2218   void pushKmpcAllocFree(CleanupKind Kind,
2219                          std::pair<llvm::Value *, llvm::Value *> AddrSizePair);
2220   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2221                    bool useEHCleanupForArray);
2222   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2223                                         Destroyer *destroyer,
2224                                         bool useEHCleanupForArray,
2225                                         const VarDecl *VD);
2226   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2227                         QualType elementType, CharUnits elementAlign,
2228                         Destroyer *destroyer,
2229                         bool checkZeroLength, bool useEHCleanup);
2230 
2231   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2232 
2233   /// Determines whether an EH cleanup is required to destroy a type
2234   /// with the given destruction kind.
2235   bool needsEHCleanup(QualType::DestructionKind kind) {
2236     switch (kind) {
2237     case QualType::DK_none:
2238       return false;
2239     case QualType::DK_cxx_destructor:
2240     case QualType::DK_objc_weak_lifetime:
2241     case QualType::DK_nontrivial_c_struct:
2242       return getLangOpts().Exceptions;
2243     case QualType::DK_objc_strong_lifetime:
2244       return getLangOpts().Exceptions &&
2245              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2246     }
2247     llvm_unreachable("bad destruction kind");
2248   }
2249 
2250   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2251     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2252   }
2253 
2254   //===--------------------------------------------------------------------===//
2255   //                                  Objective-C
2256   //===--------------------------------------------------------------------===//
2257 
2258   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2259 
2260   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2261 
2262   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2263   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2264                           const ObjCPropertyImplDecl *PID);
2265   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2266                               const ObjCPropertyImplDecl *propImpl,
2267                               const ObjCMethodDecl *GetterMothodDecl,
2268                               llvm::Constant *AtomicHelperFn);
2269 
2270   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2271                                   ObjCMethodDecl *MD, bool ctor);
2272 
2273   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2274   /// for the given property.
2275   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2276                           const ObjCPropertyImplDecl *PID);
2277   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2278                               const ObjCPropertyImplDecl *propImpl,
2279                               llvm::Constant *AtomicHelperFn);
2280 
2281   //===--------------------------------------------------------------------===//
2282   //                                  Block Bits
2283   //===--------------------------------------------------------------------===//
2284 
2285   /// Emit block literal.
2286   /// \return an LLVM value which is a pointer to a struct which contains
2287   /// information about the block, including the block invoke function, the
2288   /// captured variables, etc.
2289   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2290 
2291   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2292                                         const CGBlockInfo &Info,
2293                                         const DeclMapTy &ldm,
2294                                         bool IsLambdaConversionToBlock,
2295                                         bool BuildGlobalBlock);
2296 
2297   /// Check if \p T is a C++ class that has a destructor that can throw.
2298   static bool cxxDestructorCanThrow(QualType T);
2299 
2300   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2301   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2302   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2303                                              const ObjCPropertyImplDecl *PID);
2304   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2305                                              const ObjCPropertyImplDecl *PID);
2306   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2307 
2308   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2309                          bool CanThrow);
2310 
2311   class AutoVarEmission;
2312 
2313   void emitByrefStructureInit(const AutoVarEmission &emission);
2314 
2315   /// Enter a cleanup to destroy a __block variable.  Note that this
2316   /// cleanup should be a no-op if the variable hasn't left the stack
2317   /// yet; if a cleanup is required for the variable itself, that needs
2318   /// to be done externally.
2319   ///
2320   /// \param Kind Cleanup kind.
2321   ///
2322   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2323   /// structure that will be passed to _Block_object_dispose. When
2324   /// \p LoadBlockVarAddr is true, the address of the field of the block
2325   /// structure that holds the address of the __block structure.
2326   ///
2327   /// \param Flags The flag that will be passed to _Block_object_dispose.
2328   ///
2329   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2330   /// \p Addr to get the address of the __block structure.
2331   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2332                          bool LoadBlockVarAddr, bool CanThrow);
2333 
2334   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2335                                 llvm::Value *ptr);
2336 
2337   Address LoadBlockStruct();
2338   Address GetAddrOfBlockDecl(const VarDecl *var);
2339 
2340   /// BuildBlockByrefAddress - Computes the location of the
2341   /// data in a variable which is declared as __block.
2342   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2343                                 bool followForward = true);
2344   Address emitBlockByrefAddress(Address baseAddr,
2345                                 const BlockByrefInfo &info,
2346                                 bool followForward,
2347                                 const llvm::Twine &name);
2348 
2349   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2350 
2351   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2352 
2353   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2354                     const CGFunctionInfo &FnInfo);
2355 
2356   /// Annotate the function with an attribute that disables TSan checking at
2357   /// runtime.
2358   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2359 
2360   /// Emit code for the start of a function.
2361   /// \param Loc       The location to be associated with the function.
2362   /// \param StartLoc  The location of the function body.
2363   void StartFunction(GlobalDecl GD,
2364                      QualType RetTy,
2365                      llvm::Function *Fn,
2366                      const CGFunctionInfo &FnInfo,
2367                      const FunctionArgList &Args,
2368                      SourceLocation Loc = SourceLocation(),
2369                      SourceLocation StartLoc = SourceLocation());
2370 
2371   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2372 
2373   void EmitConstructorBody(FunctionArgList &Args);
2374   void EmitDestructorBody(FunctionArgList &Args);
2375   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2376   void EmitFunctionBody(const Stmt *Body);
2377   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2378 
2379   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2380                                   CallArgList &CallArgs,
2381                                   const CGFunctionInfo *CallOpFnInfo = nullptr,
2382                                   llvm::Constant *CallOpFn = nullptr);
2383   void EmitLambdaBlockInvokeBody();
2384   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2385   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
2386                                       CallArgList &CallArgs);
2387   void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp,
2388                                 const CGFunctionInfo **ImplFnInfo,
2389                                 llvm::Function **ImplFn);
2390   void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD);
2391   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2392     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2393   }
2394   void EmitAsanPrologueOrEpilogue(bool Prologue);
2395 
2396   /// Emit the unified return block, trying to avoid its emission when
2397   /// possible.
2398   /// \return The debug location of the user written return statement if the
2399   /// return block is avoided.
2400   llvm::DebugLoc EmitReturnBlock();
2401 
2402   /// FinishFunction - Complete IR generation of the current function. It is
2403   /// legal to call this function even if there is no current insertion point.
2404   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2405 
2406   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2407                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2408 
2409   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2410                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2411 
2412   void FinishThunk();
2413 
2414   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2415   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2416                          llvm::FunctionCallee Callee);
2417 
2418   /// Generate a thunk for the given method.
2419   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2420                      GlobalDecl GD, const ThunkInfo &Thunk,
2421                      bool IsUnprototyped);
2422 
2423   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2424                                        const CGFunctionInfo &FnInfo,
2425                                        GlobalDecl GD, const ThunkInfo &Thunk);
2426 
2427   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2428                         FunctionArgList &Args);
2429 
2430   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2431 
2432   /// Struct with all information about dynamic [sub]class needed to set vptr.
2433   struct VPtr {
2434     BaseSubobject Base;
2435     const CXXRecordDecl *NearestVBase;
2436     CharUnits OffsetFromNearestVBase;
2437     const CXXRecordDecl *VTableClass;
2438   };
2439 
2440   /// Initialize the vtable pointer of the given subobject.
2441   void InitializeVTablePointer(const VPtr &vptr);
2442 
2443   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2444 
2445   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2446   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2447 
2448   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2449                          CharUnits OffsetFromNearestVBase,
2450                          bool BaseIsNonVirtualPrimaryBase,
2451                          const CXXRecordDecl *VTableClass,
2452                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2453 
2454   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2455 
2456   // VTableTrapMode - whether we guarantee that loading the
2457   // vtable is guaranteed to trap on authentication failure,
2458   // even if the resulting vtable pointer is unused.
2459   enum class VTableAuthMode {
2460     Authenticate,
2461     MustTrap,
2462     UnsafeUbsanStrip // Should only be used for Vptr UBSan check
2463   };
2464   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2465   /// to by This.
2466   llvm::Value *
2467   GetVTablePtr(Address This, llvm::Type *VTableTy,
2468                const CXXRecordDecl *VTableClass,
2469                VTableAuthMode AuthMode = VTableAuthMode::Authenticate);
2470 
2471   enum CFITypeCheckKind {
2472     CFITCK_VCall,
2473     CFITCK_NVCall,
2474     CFITCK_DerivedCast,
2475     CFITCK_UnrelatedCast,
2476     CFITCK_ICall,
2477     CFITCK_NVMFCall,
2478     CFITCK_VMFCall,
2479   };
2480 
2481   /// Derived is the presumed address of an object of type T after a
2482   /// cast. If T is a polymorphic class type, emit a check that the virtual
2483   /// table for Derived belongs to a class derived from T.
2484   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2485                                  CFITypeCheckKind TCK, SourceLocation Loc);
2486 
2487   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2488   /// If vptr CFI is enabled, emit a check that VTable is valid.
2489   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2490                                  CFITypeCheckKind TCK, SourceLocation Loc);
2491 
2492   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2493   /// RD using llvm.type.test.
2494   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2495                           CFITypeCheckKind TCK, SourceLocation Loc);
2496 
2497   /// If whole-program virtual table optimization is enabled, emit an assumption
2498   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2499   /// enabled, emit a check that VTable is a member of RD's type identifier.
2500   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2501                                     llvm::Value *VTable, SourceLocation Loc);
2502 
2503   /// Returns whether we should perform a type checked load when loading a
2504   /// virtual function for virtual calls to members of RD. This is generally
2505   /// true when both vcall CFI and whole-program-vtables are enabled.
2506   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2507 
2508   /// Emit a type checked load from the given vtable.
2509   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2510                                          llvm::Value *VTable,
2511                                          llvm::Type *VTableTy,
2512                                          uint64_t VTableByteOffset);
2513 
2514   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2515   /// given phase of destruction for a destructor.  The end result
2516   /// should call destructors on members and base classes in reverse
2517   /// order of their construction.
2518   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2519 
2520   /// ShouldInstrumentFunction - Return true if the current function should be
2521   /// instrumented with __cyg_profile_func_* calls
2522   bool ShouldInstrumentFunction();
2523 
2524   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2525   /// should not be instrumented with sanitizers.
2526   bool ShouldSkipSanitizerInstrumentation();
2527 
2528   /// ShouldXRayInstrument - Return true if the current function should be
2529   /// instrumented with XRay nop sleds.
2530   bool ShouldXRayInstrumentFunction() const;
2531 
2532   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2533   /// XRay custom event handling calls.
2534   bool AlwaysEmitXRayCustomEvents() const;
2535 
2536   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2537   /// XRay typed event handling calls.
2538   bool AlwaysEmitXRayTypedEvents() const;
2539 
2540   /// Return a type hash constant for a function instrumented by
2541   /// -fsanitize=function.
2542   llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const;
2543 
2544   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2545   /// arguments for the given function. This is also responsible for naming the
2546   /// LLVM function arguments.
2547   void EmitFunctionProlog(const CGFunctionInfo &FI,
2548                           llvm::Function *Fn,
2549                           const FunctionArgList &Args);
2550 
2551   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2552   /// given temporary.
2553   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2554                           SourceLocation EndLoc);
2555 
2556   /// Emit a test that checks if the return value \p RV is nonnull.
2557   void EmitReturnValueCheck(llvm::Value *RV);
2558 
2559   /// EmitStartEHSpec - Emit the start of the exception spec.
2560   void EmitStartEHSpec(const Decl *D);
2561 
2562   /// EmitEndEHSpec - Emit the end of the exception spec.
2563   void EmitEndEHSpec(const Decl *D);
2564 
2565   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2566   llvm::BasicBlock *getTerminateLandingPad();
2567 
2568   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2569   /// terminate.
2570   llvm::BasicBlock *getTerminateFunclet();
2571 
2572   /// getTerminateHandler - Return a handler (not a landing pad, just
2573   /// a catch handler) that just calls terminate.  This is used when
2574   /// a terminate scope encloses a try.
2575   llvm::BasicBlock *getTerminateHandler();
2576 
2577   llvm::Type *ConvertTypeForMem(QualType T);
2578   llvm::Type *ConvertType(QualType T);
2579   llvm::Type *convertTypeForLoadStore(QualType ASTTy,
2580                                       llvm::Type *LLVMTy = nullptr);
2581   llvm::Type *ConvertType(const TypeDecl *T) {
2582     return ConvertType(getContext().getTypeDeclType(T));
2583   }
2584 
2585   /// LoadObjCSelf - Load the value of self. This function is only valid while
2586   /// generating code for an Objective-C method.
2587   llvm::Value *LoadObjCSelf();
2588 
2589   /// TypeOfSelfObject - Return type of object that this self represents.
2590   QualType TypeOfSelfObject();
2591 
2592   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2593   static TypeEvaluationKind getEvaluationKind(QualType T);
2594 
2595   static bool hasScalarEvaluationKind(QualType T) {
2596     return getEvaluationKind(T) == TEK_Scalar;
2597   }
2598 
2599   static bool hasAggregateEvaluationKind(QualType T) {
2600     return getEvaluationKind(T) == TEK_Aggregate;
2601   }
2602 
2603   /// createBasicBlock - Create an LLVM basic block.
2604   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2605                                      llvm::Function *parent = nullptr,
2606                                      llvm::BasicBlock *before = nullptr) {
2607     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2608   }
2609 
2610   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2611   /// label maps to.
2612   JumpDest getJumpDestForLabel(const LabelDecl *S);
2613 
2614   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2615   /// another basic block, simplify it. This assumes that no other code could
2616   /// potentially reference the basic block.
2617   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2618 
2619   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2620   /// adding a fall-through branch from the current insert block if
2621   /// necessary. It is legal to call this function even if there is no current
2622   /// insertion point.
2623   ///
2624   /// IsFinished - If true, indicates that the caller has finished emitting
2625   /// branches to the given block and does not expect to emit code into it. This
2626   /// means the block can be ignored if it is unreachable.
2627   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2628 
2629   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2630   /// near its uses, and leave the insertion point in it.
2631   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2632 
2633   /// EmitBranch - Emit a branch to the specified basic block from the current
2634   /// insert block, taking care to avoid creation of branches from dummy
2635   /// blocks. It is legal to call this function even if there is no current
2636   /// insertion point.
2637   ///
2638   /// This function clears the current insertion point. The caller should follow
2639   /// calls to this function with calls to Emit*Block prior to generation new
2640   /// code.
2641   void EmitBranch(llvm::BasicBlock *Block);
2642 
2643   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2644   /// indicates that the current code being emitted is unreachable.
2645   bool HaveInsertPoint() const {
2646     return Builder.GetInsertBlock() != nullptr;
2647   }
2648 
2649   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2650   /// emitted IR has a place to go. Note that by definition, if this function
2651   /// creates a block then that block is unreachable; callers may do better to
2652   /// detect when no insertion point is defined and simply skip IR generation.
2653   void EnsureInsertPoint() {
2654     if (!HaveInsertPoint())
2655       EmitBlock(createBasicBlock());
2656   }
2657 
2658   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2659   /// specified stmt yet.
2660   void ErrorUnsupported(const Stmt *S, const char *Type);
2661 
2662   //===--------------------------------------------------------------------===//
2663   //                                  Helpers
2664   //===--------------------------------------------------------------------===//
2665 
2666   Address mergeAddressesInConditionalExpr(Address LHS, Address RHS,
2667                                           llvm::BasicBlock *LHSBlock,
2668                                           llvm::BasicBlock *RHSBlock,
2669                                           llvm::BasicBlock *MergeBlock,
2670                                           QualType MergedType) {
2671     Builder.SetInsertPoint(MergeBlock);
2672     llvm::PHINode *PtrPhi = Builder.CreatePHI(LHS.getType(), 2, "cond");
2673     PtrPhi->addIncoming(LHS.getBasePointer(), LHSBlock);
2674     PtrPhi->addIncoming(RHS.getBasePointer(), RHSBlock);
2675     LHS.replaceBasePointer(PtrPhi);
2676     LHS.setAlignment(std::min(LHS.getAlignment(), RHS.getAlignment()));
2677     return LHS;
2678   }
2679 
2680   /// Construct an address with the natural alignment of T. If a pointer to T
2681   /// is expected to be signed, the pointer passed to this function must have
2682   /// been signed, and the returned Address will have the pointer authentication
2683   /// information needed to authenticate the signed pointer.
2684   Address makeNaturalAddressForPointer(
2685       llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(),
2686       bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr,
2687       TBAAAccessInfo *TBAAInfo = nullptr,
2688       KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
2689     if (Alignment.isZero())
2690       Alignment =
2691           CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, ForPointeeType);
2692     return Address(Ptr, ConvertTypeForMem(T), Alignment,
2693                    CGM.getPointerAuthInfoForPointeeType(T), /*Offset=*/nullptr,
2694                    IsKnownNonNull);
2695   }
2696 
2697   LValue MakeAddrLValue(Address Addr, QualType T,
2698                         AlignmentSource Source = AlignmentSource::Type) {
2699     return MakeAddrLValue(Addr, T, LValueBaseInfo(Source),
2700                           CGM.getTBAAAccessInfo(T));
2701   }
2702 
2703   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2704                         TBAAAccessInfo TBAAInfo) {
2705     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2706   }
2707 
2708   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2709                         AlignmentSource Source = AlignmentSource::Type) {
2710     return MakeAddrLValue(makeNaturalAddressForPointer(V, T, Alignment), T,
2711                           LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2712   }
2713 
2714   /// Same as MakeAddrLValue above except that the pointer is known to be
2715   /// unsigned.
2716   LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2717                            AlignmentSource Source = AlignmentSource::Type) {
2718     Address Addr(V, ConvertTypeForMem(T), Alignment);
2719     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2720                             CGM.getTBAAAccessInfo(T));
2721   }
2722 
2723   LValue
2724   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2725                             AlignmentSource Source = AlignmentSource::Type) {
2726     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2727                             TBAAAccessInfo());
2728   }
2729 
2730   /// Given a value of type T* that may not be to a complete object, construct
2731   /// an l-value with the natural pointee alignment of T.
2732   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2733 
2734   LValue
2735   MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T,
2736                              KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
2737 
2738   /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known
2739   /// to be unsigned.
2740   LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T);
2741 
2742   LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T);
2743 
2744   Address EmitLoadOfReference(LValue RefLVal,
2745                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2746                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2747   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2748   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2749                                    AlignmentSource Source =
2750                                        AlignmentSource::Type) {
2751     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2752                                     CGM.getTBAAAccessInfo(RefTy));
2753     return EmitLoadOfReferenceLValue(RefLVal);
2754   }
2755 
2756   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2757   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2758   /// it is loaded from.
2759   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2760                             LValueBaseInfo *BaseInfo = nullptr,
2761                             TBAAAccessInfo *TBAAInfo = nullptr);
2762   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2763 
2764 private:
2765   struct AllocaTracker {
2766     void Add(llvm::AllocaInst *I) { Allocas.push_back(I); }
2767     llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); }
2768 
2769   private:
2770     llvm::SmallVector<llvm::AllocaInst *> Allocas;
2771   };
2772   AllocaTracker *Allocas = nullptr;
2773 
2774 public:
2775   // Captures all the allocas created during the scope of its RAII object.
2776   struct AllocaTrackerRAII {
2777     AllocaTrackerRAII(CodeGenFunction &CGF)
2778         : CGF(CGF), OldTracker(CGF.Allocas) {
2779       CGF.Allocas = &Tracker;
2780     }
2781     ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; }
2782 
2783     llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); }
2784 
2785   private:
2786     CodeGenFunction &CGF;
2787     AllocaTracker *OldTracker;
2788     AllocaTracker Tracker;
2789   };
2790 
2791   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2792   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2793   /// insertion point of the builder. The caller is responsible for setting an
2794   /// appropriate alignment on
2795   /// the alloca.
2796   ///
2797   /// \p ArraySize is the number of array elements to be allocated if it
2798   ///    is not nullptr.
2799   ///
2800   /// LangAS::Default is the address space of pointers to local variables and
2801   /// temporaries, as exposed in the source language. In certain
2802   /// configurations, this is not the same as the alloca address space, and a
2803   /// cast is needed to lift the pointer from the alloca AS into
2804   /// LangAS::Default. This can happen when the target uses a restricted
2805   /// address space for the stack but the source language requires
2806   /// LangAS::Default to be a generic address space. The latter condition is
2807   /// common for most programming languages; OpenCL is an exception in that
2808   /// LangAS::Default is the private address space, which naturally maps
2809   /// to the stack.
2810   ///
2811   /// Because the address of a temporary is often exposed to the program in
2812   /// various ways, this function will perform the cast. The original alloca
2813   /// instruction is returned through \p Alloca if it is not nullptr.
2814   ///
2815   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2816   /// more efficient if the caller knows that the address will not be exposed.
2817   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2818                                      llvm::Value *ArraySize = nullptr);
2819   RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2820                               const Twine &Name = "tmp",
2821                               llvm::Value *ArraySize = nullptr,
2822                               RawAddress *Alloca = nullptr);
2823   RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2824                                          const Twine &Name = "tmp",
2825                                          llvm::Value *ArraySize = nullptr);
2826 
2827   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2828   /// default ABI alignment of the given LLVM type.
2829   ///
2830   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2831   /// any given AST type that happens to have been lowered to the
2832   /// given IR type.  This should only ever be used for function-local,
2833   /// IR-driven manipulations like saving and restoring a value.  Do
2834   /// not hand this address off to arbitrary IRGen routines, and especially
2835   /// do not pass it as an argument to a function that might expect a
2836   /// properly ABI-aligned value.
2837   RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2838                                           const Twine &Name = "tmp");
2839 
2840   /// CreateIRTemp - Create a temporary IR object of the given type, with
2841   /// appropriate alignment. This routine should only be used when an temporary
2842   /// value needs to be stored into an alloca (for example, to avoid explicit
2843   /// PHI construction), but the type is the IR type, not the type appropriate
2844   /// for storing in memory.
2845   ///
2846   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2847   /// ConvertType instead of ConvertTypeForMem.
2848   RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp");
2849 
2850   /// CreateMemTemp - Create a temporary memory object of the given type, with
2851   /// appropriate alignmen and cast it to the default address space. Returns
2852   /// the original alloca instruction by \p Alloca if it is not nullptr.
2853   RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp",
2854                            RawAddress *Alloca = nullptr);
2855   RawAddress CreateMemTemp(QualType T, CharUnits Align,
2856                            const Twine &Name = "tmp",
2857                            RawAddress *Alloca = nullptr);
2858 
2859   /// CreateMemTemp - Create a temporary memory object of the given type, with
2860   /// appropriate alignmen without casting it to the default address space.
2861   RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2862   RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align,
2863                                       const Twine &Name = "tmp");
2864 
2865   /// CreateAggTemp - Create a temporary memory object for the given
2866   /// aggregate type.
2867   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2868                              RawAddress *Alloca = nullptr) {
2869     return AggValueSlot::forAddr(
2870         CreateMemTemp(T, Name, Alloca), T.getQualifiers(),
2871         AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers,
2872         AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap);
2873   }
2874 
2875   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2876   /// expression and compare the result against zero, returning an Int1Ty value.
2877   llvm::Value *EvaluateExprAsBool(const Expr *E);
2878 
2879   /// Retrieve the implicit cast expression of the rhs in a binary operator
2880   /// expression by passing pointers to Value and QualType
2881   /// This is used for implicit bitfield conversion checks, which
2882   /// must compare with the value before potential truncation.
2883   llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E,
2884                                                      llvm::Value **Previous,
2885                                                      QualType *SrcType);
2886 
2887   /// Emit a check that an [implicit] conversion of a bitfield. It is not UB,
2888   /// so we use the value after conversion.
2889   void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType,
2890                                    llvm::Value *Dst, QualType DstType,
2891                                    const CGBitFieldInfo &Info,
2892                                    SourceLocation Loc);
2893 
2894   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2895   void EmitIgnoredExpr(const Expr *E);
2896 
2897   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2898   /// any type.  The result is returned as an RValue struct.  If this is an
2899   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2900   /// the result should be returned.
2901   ///
2902   /// \param ignoreResult True if the resulting value isn't used.
2903   RValue EmitAnyExpr(const Expr *E,
2904                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2905                      bool ignoreResult = false);
2906 
2907   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2908   // or the value of the expression, depending on how va_list is defined.
2909   Address EmitVAListRef(const Expr *E);
2910 
2911   /// Emit a "reference" to a __builtin_ms_va_list; this is
2912   /// always the value of the expression, because a __builtin_ms_va_list is a
2913   /// pointer to a char.
2914   Address EmitMSVAListRef(const Expr *E);
2915 
2916   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2917   /// always be accessible even if no aggregate location is provided.
2918   RValue EmitAnyExprToTemp(const Expr *E);
2919 
2920   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2921   /// arbitrary expression into the given memory location.
2922   void EmitAnyExprToMem(const Expr *E, Address Location,
2923                         Qualifiers Quals, bool IsInitializer);
2924 
2925   void EmitAnyExprToExn(const Expr *E, Address Addr);
2926 
2927   /// EmitExprAsInit - Emits the code necessary to initialize a
2928   /// location in memory with the given initializer.
2929   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2930                       bool capturedByInit);
2931 
2932   /// hasVolatileMember - returns true if aggregate type has a volatile
2933   /// member.
2934   bool hasVolatileMember(QualType T) {
2935     if (const RecordType *RT = T->getAs<RecordType>()) {
2936       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2937       return RD->hasVolatileMember();
2938     }
2939     return false;
2940   }
2941 
2942   /// Determine whether a return value slot may overlap some other object.
2943   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2944     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2945     // class subobjects. These cases may need to be revisited depending on the
2946     // resolution of the relevant core issue.
2947     return AggValueSlot::DoesNotOverlap;
2948   }
2949 
2950   /// Determine whether a field initialization may overlap some other object.
2951   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2952 
2953   /// Determine whether a base class initialization may overlap some other
2954   /// object.
2955   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2956                                                 const CXXRecordDecl *BaseRD,
2957                                                 bool IsVirtual);
2958 
2959   /// Emit an aggregate assignment.
2960   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2961     bool IsVolatile = hasVolatileMember(EltTy);
2962     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2963   }
2964 
2965   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2966                              AggValueSlot::Overlap_t MayOverlap) {
2967     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2968   }
2969 
2970   /// EmitAggregateCopy - Emit an aggregate copy.
2971   ///
2972   /// \param isVolatile \c true iff either the source or the destination is
2973   ///        volatile.
2974   /// \param MayOverlap Whether the tail padding of the destination might be
2975   ///        occupied by some other object. More efficient code can often be
2976   ///        generated if not.
2977   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2978                          AggValueSlot::Overlap_t MayOverlap,
2979                          bool isVolatile = false);
2980 
2981   /// GetAddrOfLocalVar - Return the address of a local variable.
2982   Address GetAddrOfLocalVar(const VarDecl *VD) {
2983     auto it = LocalDeclMap.find(VD);
2984     assert(it != LocalDeclMap.end() &&
2985            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2986     return it->second;
2987   }
2988 
2989   /// Given an opaque value expression, return its LValue mapping if it exists,
2990   /// otherwise create one.
2991   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2992 
2993   /// Given an opaque value expression, return its RValue mapping if it exists,
2994   /// otherwise create one.
2995   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2996 
2997   /// Get the index of the current ArrayInitLoopExpr, if any.
2998   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2999 
3000   /// getAccessedFieldNo - Given an encoded value and a result number, return
3001   /// the input field number being accessed.
3002   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
3003 
3004   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
3005   llvm::BasicBlock *GetIndirectGotoBlock();
3006 
3007   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
3008   static bool IsWrappedCXXThis(const Expr *E);
3009 
3010   /// EmitNullInitialization - Generate code to set a value of the given type to
3011   /// null, If the type contains data member pointers, they will be initialized
3012   /// to -1 in accordance with the Itanium C++ ABI.
3013   void EmitNullInitialization(Address DestPtr, QualType Ty);
3014 
3015   /// Emits a call to an LLVM variable-argument intrinsic, either
3016   /// \c llvm.va_start or \c llvm.va_end.
3017   /// \param ArgValue A reference to the \c va_list as emitted by either
3018   /// \c EmitVAListRef or \c EmitMSVAListRef.
3019   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
3020   /// calls \c llvm.va_end.
3021   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
3022 
3023   /// Generate code to get an argument from the passed in pointer
3024   /// and update it accordingly.
3025   /// \param VE The \c VAArgExpr for which to generate code.
3026   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
3027   /// either \c EmitVAListRef or \c EmitMSVAListRef.
3028   /// \returns A pointer to the argument.
3029   // FIXME: We should be able to get rid of this method and use the va_arg
3030   // instruction in LLVM instead once it works well enough.
3031   RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr,
3032                    AggValueSlot Slot = AggValueSlot::ignored());
3033 
3034   /// emitArrayLength - Compute the length of an array, even if it's a
3035   /// VLA, and drill down to the base element type.
3036   llvm::Value *emitArrayLength(const ArrayType *arrayType,
3037                                QualType &baseType,
3038                                Address &addr);
3039 
3040   /// EmitVLASize - Capture all the sizes for the VLA expressions in
3041   /// the given variably-modified type and store them in the VLASizeMap.
3042   ///
3043   /// This function can be called with a null (unreachable) insert point.
3044   void EmitVariablyModifiedType(QualType Ty);
3045 
3046   struct VlaSizePair {
3047     llvm::Value *NumElts;
3048     QualType Type;
3049 
3050     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
3051   };
3052 
3053   /// Return the number of elements for a single dimension
3054   /// for the given array type.
3055   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
3056   VlaSizePair getVLAElements1D(QualType vla);
3057 
3058   /// Returns an LLVM value that corresponds to the size,
3059   /// in non-variably-sized elements, of a variable length array type,
3060   /// plus that largest non-variably-sized element type.  Assumes that
3061   /// the type has already been emitted with EmitVariablyModifiedType.
3062   VlaSizePair getVLASize(const VariableArrayType *vla);
3063   VlaSizePair getVLASize(QualType vla);
3064 
3065   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
3066   /// generating code for an C++ member function.
3067   llvm::Value *LoadCXXThis() {
3068     assert(CXXThisValue && "no 'this' value for this function");
3069     return CXXThisValue;
3070   }
3071   Address LoadCXXThisAddress();
3072 
3073   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
3074   /// virtual bases.
3075   // FIXME: Every place that calls LoadCXXVTT is something
3076   // that needs to be abstracted properly.
3077   llvm::Value *LoadCXXVTT() {
3078     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
3079     return CXXStructorImplicitParamValue;
3080   }
3081 
3082   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
3083   /// complete class to the given direct base.
3084   Address
3085   GetAddressOfDirectBaseInCompleteClass(Address Value,
3086                                         const CXXRecordDecl *Derived,
3087                                         const CXXRecordDecl *Base,
3088                                         bool BaseIsVirtual);
3089 
3090   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
3091 
3092   /// GetAddressOfBaseClass - This function will add the necessary delta to the
3093   /// load of 'this' and returns address of the base class.
3094   Address GetAddressOfBaseClass(Address Value,
3095                                 const CXXRecordDecl *Derived,
3096                                 CastExpr::path_const_iterator PathBegin,
3097                                 CastExpr::path_const_iterator PathEnd,
3098                                 bool NullCheckValue, SourceLocation Loc);
3099 
3100   Address GetAddressOfDerivedClass(Address Value,
3101                                    const CXXRecordDecl *Derived,
3102                                    CastExpr::path_const_iterator PathBegin,
3103                                    CastExpr::path_const_iterator PathEnd,
3104                                    bool NullCheckValue);
3105 
3106   /// GetVTTParameter - Return the VTT parameter that should be passed to a
3107   /// base constructor/destructor with virtual bases.
3108   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
3109   /// to ItaniumCXXABI.cpp together with all the references to VTT.
3110   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
3111                                bool Delegating);
3112 
3113   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
3114                                       CXXCtorType CtorType,
3115                                       const FunctionArgList &Args,
3116                                       SourceLocation Loc);
3117   // It's important not to confuse this and the previous function. Delegating
3118   // constructors are the C++0x feature. The constructor delegate optimization
3119   // is used to reduce duplication in the base and complete consturctors where
3120   // they are substantially the same.
3121   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3122                                         const FunctionArgList &Args);
3123 
3124   /// Emit a call to an inheriting constructor (that is, one that invokes a
3125   /// constructor inherited from a base class) by inlining its definition. This
3126   /// is necessary if the ABI does not support forwarding the arguments to the
3127   /// base class constructor (because they're variadic or similar).
3128   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
3129                                                CXXCtorType CtorType,
3130                                                bool ForVirtualBase,
3131                                                bool Delegating,
3132                                                CallArgList &Args);
3133 
3134   /// Emit a call to a constructor inherited from a base class, passing the
3135   /// current constructor's arguments along unmodified (without even making
3136   /// a copy).
3137   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
3138                                        bool ForVirtualBase, Address This,
3139                                        bool InheritedFromVBase,
3140                                        const CXXInheritedCtorInitExpr *E);
3141 
3142   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3143                               bool ForVirtualBase, bool Delegating,
3144                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
3145 
3146   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
3147                               bool ForVirtualBase, bool Delegating,
3148                               Address This, CallArgList &Args,
3149                               AggValueSlot::Overlap_t Overlap,
3150                               SourceLocation Loc, bool NewPointerIsChecked);
3151 
3152   /// Emit assumption load for all bases. Requires to be called only on
3153   /// most-derived class and not under construction of the object.
3154   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
3155 
3156   /// Emit assumption that vptr load == global vtable.
3157   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
3158 
3159   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
3160                                       Address This, Address Src,
3161                                       const CXXConstructExpr *E);
3162 
3163   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3164                                   const ArrayType *ArrayTy,
3165                                   Address ArrayPtr,
3166                                   const CXXConstructExpr *E,
3167                                   bool NewPointerIsChecked,
3168                                   bool ZeroInitialization = false);
3169 
3170   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
3171                                   llvm::Value *NumElements,
3172                                   Address ArrayPtr,
3173                                   const CXXConstructExpr *E,
3174                                   bool NewPointerIsChecked,
3175                                   bool ZeroInitialization = false);
3176 
3177   static Destroyer destroyCXXObject;
3178 
3179   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
3180                              bool ForVirtualBase, bool Delegating, Address This,
3181                              QualType ThisTy);
3182 
3183   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
3184                                llvm::Type *ElementTy, Address NewPtr,
3185                                llvm::Value *NumElements,
3186                                llvm::Value *AllocSizeWithoutCookie);
3187 
3188   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
3189                         Address Ptr);
3190 
3191   void EmitSehCppScopeBegin();
3192   void EmitSehCppScopeEnd();
3193   void EmitSehTryScopeBegin();
3194   void EmitSehTryScopeEnd();
3195 
3196   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
3197   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
3198 
3199   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
3200   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
3201 
3202   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
3203                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
3204                       CharUnits CookieSize = CharUnits());
3205 
3206   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
3207                                   const CallExpr *TheCallExpr, bool IsDelete);
3208 
3209   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
3210   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
3211   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
3212 
3213   /// Situations in which we might emit a check for the suitability of a
3214   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
3215   /// compiler-rt.
3216   enum TypeCheckKind {
3217     /// Checking the operand of a load. Must be suitably sized and aligned.
3218     TCK_Load,
3219     /// Checking the destination of a store. Must be suitably sized and aligned.
3220     TCK_Store,
3221     /// Checking the bound value in a reference binding. Must be suitably sized
3222     /// and aligned, but is not required to refer to an object (until the
3223     /// reference is used), per core issue 453.
3224     TCK_ReferenceBinding,
3225     /// Checking the object expression in a non-static data member access. Must
3226     /// be an object within its lifetime.
3227     TCK_MemberAccess,
3228     /// Checking the 'this' pointer for a call to a non-static member function.
3229     /// Must be an object within its lifetime.
3230     TCK_MemberCall,
3231     /// Checking the 'this' pointer for a constructor call.
3232     TCK_ConstructorCall,
3233     /// Checking the operand of a static_cast to a derived pointer type. Must be
3234     /// null or an object within its lifetime.
3235     TCK_DowncastPointer,
3236     /// Checking the operand of a static_cast to a derived reference type. Must
3237     /// be an object within its lifetime.
3238     TCK_DowncastReference,
3239     /// Checking the operand of a cast to a base object. Must be suitably sized
3240     /// and aligned.
3241     TCK_Upcast,
3242     /// Checking the operand of a cast to a virtual base object. Must be an
3243     /// object within its lifetime.
3244     TCK_UpcastToVirtualBase,
3245     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
3246     TCK_NonnullAssign,
3247     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
3248     /// null or an object within its lifetime.
3249     TCK_DynamicOperation
3250   };
3251 
3252   /// Determine whether the pointer type check \p TCK permits null pointers.
3253   static bool isNullPointerAllowed(TypeCheckKind TCK);
3254 
3255   /// Determine whether the pointer type check \p TCK requires a vptr check.
3256   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
3257 
3258   /// Whether any type-checking sanitizers are enabled. If \c false,
3259   /// calls to EmitTypeCheck can be skipped.
3260   bool sanitizePerformTypeCheck() const;
3261 
3262   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV,
3263                      QualType Type, SanitizerSet SkippedChecks = SanitizerSet(),
3264                      llvm::Value *ArraySize = nullptr) {
3265     if (!sanitizePerformTypeCheck())
3266       return;
3267     EmitTypeCheck(TCK, Loc, LV.emitRawPointer(*this), Type, LV.getAlignment(),
3268                   SkippedChecks, ArraySize);
3269   }
3270 
3271   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr,
3272                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3273                      SanitizerSet SkippedChecks = SanitizerSet(),
3274                      llvm::Value *ArraySize = nullptr) {
3275     if (!sanitizePerformTypeCheck())
3276       return;
3277     EmitTypeCheck(TCK, Loc, Addr.emitRawPointer(*this), Type, Alignment,
3278                   SkippedChecks, ArraySize);
3279   }
3280 
3281   /// Emit a check that \p V is the address of storage of the
3282   /// appropriate size and alignment for an object of type \p Type
3283   /// (or if ArraySize is provided, for an array of that bound).
3284   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3285                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3286                      SanitizerSet SkippedChecks = SanitizerSet(),
3287                      llvm::Value *ArraySize = nullptr);
3288 
3289   /// Emit a check that \p Base points into an array object, which
3290   /// we can access at index \p Index. \p Accessed should be \c false if we
3291   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3292   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3293                        QualType IndexType, bool Accessed);
3294   void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
3295                            llvm::Value *Index, QualType IndexType,
3296                            QualType IndexedType, bool Accessed);
3297 
3298   // Find a struct's flexible array member and get its offset. It may be
3299   // embedded inside multiple sub-structs, but must still be the last field.
3300   const FieldDecl *
3301   FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD,
3302                                         const FieldDecl *FAMDecl,
3303                                         uint64_t &Offset);
3304 
3305   /// Find the FieldDecl specified in a FAM's "counted_by" attribute. Returns
3306   /// \p nullptr if either the attribute or the field doesn't exist.
3307   const FieldDecl *FindCountedByField(const FieldDecl *FD);
3308 
3309   /// Build an expression accessing the "counted_by" field.
3310   llvm::Value *EmitCountedByFieldExpr(const Expr *Base,
3311                                       const FieldDecl *FAMDecl,
3312                                       const FieldDecl *CountDecl);
3313 
3314   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3315                                        bool isInc, bool isPre);
3316   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3317                                          bool isInc, bool isPre);
3318 
3319   /// Converts Location to a DebugLoc, if debug information is enabled.
3320   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3321 
3322   /// Get the record field index as represented in debug info.
3323   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3324 
3325 
3326   //===--------------------------------------------------------------------===//
3327   //                            Declaration Emission
3328   //===--------------------------------------------------------------------===//
3329 
3330   /// EmitDecl - Emit a declaration.
3331   ///
3332   /// This function can be called with a null (unreachable) insert point.
3333   void EmitDecl(const Decl &D);
3334 
3335   /// EmitVarDecl - Emit a local variable declaration.
3336   ///
3337   /// This function can be called with a null (unreachable) insert point.
3338   void EmitVarDecl(const VarDecl &D);
3339 
3340   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3341                       bool capturedByInit);
3342 
3343   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3344                              llvm::Value *Address);
3345 
3346   /// Determine whether the given initializer is trivial in the sense
3347   /// that it requires no code to be generated.
3348   bool isTrivialInitializer(const Expr *Init);
3349 
3350   /// EmitAutoVarDecl - Emit an auto variable declaration.
3351   ///
3352   /// This function can be called with a null (unreachable) insert point.
3353   void EmitAutoVarDecl(const VarDecl &D);
3354 
3355   class AutoVarEmission {
3356     friend class CodeGenFunction;
3357 
3358     const VarDecl *Variable;
3359 
3360     /// The address of the alloca for languages with explicit address space
3361     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3362     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3363     /// as a global constant.
3364     Address Addr;
3365 
3366     llvm::Value *NRVOFlag;
3367 
3368     /// True if the variable is a __block variable that is captured by an
3369     /// escaping block.
3370     bool IsEscapingByRef;
3371 
3372     /// True if the variable is of aggregate type and has a constant
3373     /// initializer.
3374     bool IsConstantAggregate;
3375 
3376     /// Non-null if we should use lifetime annotations.
3377     llvm::Value *SizeForLifetimeMarkers;
3378 
3379     /// Address with original alloca instruction. Invalid if the variable was
3380     /// emitted as a global constant.
3381     RawAddress AllocaAddr;
3382 
3383     struct Invalid {};
3384     AutoVarEmission(Invalid)
3385         : Variable(nullptr), Addr(Address::invalid()),
3386           AllocaAddr(RawAddress::invalid()) {}
3387 
3388     AutoVarEmission(const VarDecl &variable)
3389         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3390           IsEscapingByRef(false), IsConstantAggregate(false),
3391           SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {}
3392 
3393     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3394 
3395   public:
3396     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3397 
3398     bool useLifetimeMarkers() const {
3399       return SizeForLifetimeMarkers != nullptr;
3400     }
3401     llvm::Value *getSizeForLifetimeMarkers() const {
3402       assert(useLifetimeMarkers());
3403       return SizeForLifetimeMarkers;
3404     }
3405 
3406     /// Returns the raw, allocated address, which is not necessarily
3407     /// the address of the object itself. It is casted to default
3408     /// address space for address space agnostic languages.
3409     Address getAllocatedAddress() const {
3410       return Addr;
3411     }
3412 
3413     /// Returns the address for the original alloca instruction.
3414     RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; }
3415 
3416     /// Returns the address of the object within this declaration.
3417     /// Note that this does not chase the forwarding pointer for
3418     /// __block decls.
3419     Address getObjectAddress(CodeGenFunction &CGF) const {
3420       if (!IsEscapingByRef) return Addr;
3421 
3422       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3423     }
3424   };
3425   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3426   void EmitAutoVarInit(const AutoVarEmission &emission);
3427   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3428   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3429                               QualType::DestructionKind dtorKind);
3430 
3431   /// Emits the alloca and debug information for the size expressions for each
3432   /// dimension of an array. It registers the association of its (1-dimensional)
3433   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3434   /// reference this node when creating the DISubrange object to describe the
3435   /// array types.
3436   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3437                                               const VarDecl &D,
3438                                               bool EmitDebugInfo);
3439 
3440   void EmitStaticVarDecl(const VarDecl &D,
3441                          llvm::GlobalValue::LinkageTypes Linkage);
3442 
3443   class ParamValue {
3444     union {
3445       Address Addr;
3446       llvm::Value *Value;
3447     };
3448 
3449     bool IsIndirect;
3450 
3451     ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {}
3452     ParamValue(Address A) : Addr(A), IsIndirect(true) {}
3453 
3454   public:
3455     static ParamValue forDirect(llvm::Value *value) {
3456       return ParamValue(value);
3457     }
3458     static ParamValue forIndirect(Address addr) {
3459       assert(!addr.getAlignment().isZero());
3460       return ParamValue(addr);
3461     }
3462 
3463     bool isIndirect() const { return IsIndirect; }
3464     llvm::Value *getAnyValue() const {
3465       if (!isIndirect())
3466         return Value;
3467       assert(!Addr.hasOffset() && "unexpected offset");
3468       return Addr.getBasePointer();
3469     }
3470 
3471     llvm::Value *getDirectValue() const {
3472       assert(!isIndirect());
3473       return Value;
3474     }
3475 
3476     Address getIndirectAddress() const {
3477       assert(isIndirect());
3478       return Addr;
3479     }
3480   };
3481 
3482   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3483   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3484 
3485   /// protectFromPeepholes - Protect a value that we're intending to
3486   /// store to the side, but which will probably be used later, from
3487   /// aggressive peepholing optimizations that might delete it.
3488   ///
3489   /// Pass the result to unprotectFromPeepholes to declare that
3490   /// protection is no longer required.
3491   ///
3492   /// There's no particular reason why this shouldn't apply to
3493   /// l-values, it's just that no existing peepholes work on pointers.
3494   PeepholeProtection protectFromPeepholes(RValue rvalue);
3495   void unprotectFromPeepholes(PeepholeProtection protection);
3496 
3497   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3498                                     SourceLocation Loc,
3499                                     SourceLocation AssumptionLoc,
3500                                     llvm::Value *Alignment,
3501                                     llvm::Value *OffsetValue,
3502                                     llvm::Value *TheCheck,
3503                                     llvm::Instruction *Assumption);
3504 
3505   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3506                                SourceLocation Loc, SourceLocation AssumptionLoc,
3507                                llvm::Value *Alignment,
3508                                llvm::Value *OffsetValue = nullptr);
3509 
3510   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3511                                SourceLocation AssumptionLoc,
3512                                llvm::Value *Alignment,
3513                                llvm::Value *OffsetValue = nullptr);
3514 
3515   //===--------------------------------------------------------------------===//
3516   //                             Statement Emission
3517   //===--------------------------------------------------------------------===//
3518 
3519   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3520   void EmitStopPoint(const Stmt *S);
3521 
3522   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3523   /// this function even if there is no current insertion point.
3524   ///
3525   /// This function may clear the current insertion point; callers should use
3526   /// EnsureInsertPoint if they wish to subsequently generate code without first
3527   /// calling EmitBlock, EmitBranch, or EmitStmt.
3528   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt);
3529 
3530   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3531   /// necessarily require an insertion point or debug information; typically
3532   /// because the statement amounts to a jump or a container of other
3533   /// statements.
3534   ///
3535   /// \return True if the statement was handled.
3536   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3537 
3538   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3539                            AggValueSlot AVS = AggValueSlot::ignored());
3540   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3541                                        bool GetLast = false,
3542                                        AggValueSlot AVS =
3543                                                 AggValueSlot::ignored());
3544 
3545   /// EmitLabel - Emit the block for the given label. It is legal to call this
3546   /// function even if there is no current insertion point.
3547   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3548 
3549   void EmitLabelStmt(const LabelStmt &S);
3550   void EmitAttributedStmt(const AttributedStmt &S);
3551   void EmitGotoStmt(const GotoStmt &S);
3552   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3553   void EmitIfStmt(const IfStmt &S);
3554 
3555   void EmitWhileStmt(const WhileStmt &S,
3556                      ArrayRef<const Attr *> Attrs = std::nullopt);
3557   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt);
3558   void EmitForStmt(const ForStmt &S,
3559                    ArrayRef<const Attr *> Attrs = std::nullopt);
3560   void EmitReturnStmt(const ReturnStmt &S);
3561   void EmitDeclStmt(const DeclStmt &S);
3562   void EmitBreakStmt(const BreakStmt &S);
3563   void EmitContinueStmt(const ContinueStmt &S);
3564   void EmitSwitchStmt(const SwitchStmt &S);
3565   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3566   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3567   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3568   void EmitAsmStmt(const AsmStmt &S);
3569 
3570   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3571   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3572   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3573   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3574   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3575 
3576   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3577   void EmitCoreturnStmt(const CoreturnStmt &S);
3578   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3579                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3580                          bool ignoreResult = false);
3581   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3582   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3583                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3584                          bool ignoreResult = false);
3585   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3586   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3587 
3588   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3589   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3590 
3591   void EmitCXXTryStmt(const CXXTryStmt &S);
3592   void EmitSEHTryStmt(const SEHTryStmt &S);
3593   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3594   void EnterSEHTryStmt(const SEHTryStmt &S);
3595   void ExitSEHTryStmt(const SEHTryStmt &S);
3596   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3597                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3598 
3599   void pushSEHCleanup(CleanupKind kind,
3600                       llvm::Function *FinallyFunc);
3601   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3602                               const Stmt *OutlinedStmt);
3603 
3604   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3605                                             const SEHExceptStmt &Except);
3606 
3607   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3608                                              const SEHFinallyStmt &Finally);
3609 
3610   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3611                                 llvm::Value *ParentFP,
3612                                 llvm::Value *EntryEBP);
3613   llvm::Value *EmitSEHExceptionCode();
3614   llvm::Value *EmitSEHExceptionInfo();
3615   llvm::Value *EmitSEHAbnormalTermination();
3616 
3617   /// Emit simple code for OpenMP directives in Simd-only mode.
3618   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3619 
3620   /// Scan the outlined statement for captures from the parent function. For
3621   /// each capture, mark the capture as escaped and emit a call to
3622   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3623   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3624                           bool IsFilter);
3625 
3626   /// Recovers the address of a local in a parent function. ParentVar is the
3627   /// address of the variable used in the immediate parent function. It can
3628   /// either be an alloca or a call to llvm.localrecover if there are nested
3629   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3630   /// frame.
3631   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3632                                     Address ParentVar,
3633                                     llvm::Value *ParentFP);
3634 
3635   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3636                            ArrayRef<const Attr *> Attrs = std::nullopt);
3637 
3638   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3639   class OMPCancelStackRAII {
3640     CodeGenFunction &CGF;
3641 
3642   public:
3643     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3644                        bool HasCancel)
3645         : CGF(CGF) {
3646       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3647     }
3648     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3649   };
3650 
3651   /// Returns calculated size of the specified type.
3652   llvm::Value *getTypeSize(QualType Ty);
3653   LValue InitCapturedStruct(const CapturedStmt &S);
3654   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3655   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3656   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3657   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3658                                                      SourceLocation Loc);
3659   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3660                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3661   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3662                           SourceLocation Loc);
3663   /// Perform element by element copying of arrays with type \a
3664   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3665   /// generated by \a CopyGen.
3666   ///
3667   /// \param DestAddr Address of the destination array.
3668   /// \param SrcAddr Address of the source array.
3669   /// \param OriginalType Type of destination and source arrays.
3670   /// \param CopyGen Copying procedure that copies value of single array element
3671   /// to another single array element.
3672   void EmitOMPAggregateAssign(
3673       Address DestAddr, Address SrcAddr, QualType OriginalType,
3674       const llvm::function_ref<void(Address, Address)> CopyGen);
3675   /// Emit proper copying of data from one variable to another.
3676   ///
3677   /// \param OriginalType Original type of the copied variables.
3678   /// \param DestAddr Destination address.
3679   /// \param SrcAddr Source address.
3680   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3681   /// type of the base array element).
3682   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3683   /// the base array element).
3684   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3685   /// DestVD.
3686   void EmitOMPCopy(QualType OriginalType,
3687                    Address DestAddr, Address SrcAddr,
3688                    const VarDecl *DestVD, const VarDecl *SrcVD,
3689                    const Expr *Copy);
3690   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3691   /// \a X = \a E \a BO \a E.
3692   ///
3693   /// \param X Value to be updated.
3694   /// \param E Update value.
3695   /// \param BO Binary operation for update operation.
3696   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3697   /// expression, false otherwise.
3698   /// \param AO Atomic ordering of the generated atomic instructions.
3699   /// \param CommonGen Code generator for complex expressions that cannot be
3700   /// expressed through atomicrmw instruction.
3701   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3702   /// generated, <false, RValue::get(nullptr)> otherwise.
3703   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3704       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3705       llvm::AtomicOrdering AO, SourceLocation Loc,
3706       const llvm::function_ref<RValue(RValue)> CommonGen);
3707   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3708                                  OMPPrivateScope &PrivateScope);
3709   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3710                             OMPPrivateScope &PrivateScope);
3711   void EmitOMPUseDevicePtrClause(
3712       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3713       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3714           CaptureDeviceAddrMap);
3715   void EmitOMPUseDeviceAddrClause(
3716       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3717       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3718           CaptureDeviceAddrMap);
3719   /// Emit code for copyin clause in \a D directive. The next code is
3720   /// generated at the start of outlined functions for directives:
3721   /// \code
3722   /// threadprivate_var1 = master_threadprivate_var1;
3723   /// operator=(threadprivate_var2, master_threadprivate_var2);
3724   /// ...
3725   /// __kmpc_barrier(&loc, global_tid);
3726   /// \endcode
3727   ///
3728   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3729   /// \returns true if at least one copyin variable is found, false otherwise.
3730   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3731   /// Emit initial code for lastprivate variables. If some variable is
3732   /// not also firstprivate, then the default initialization is used. Otherwise
3733   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3734   /// method.
3735   ///
3736   /// \param D Directive that may have 'lastprivate' directives.
3737   /// \param PrivateScope Private scope for capturing lastprivate variables for
3738   /// proper codegen in internal captured statement.
3739   ///
3740   /// \returns true if there is at least one lastprivate variable, false
3741   /// otherwise.
3742   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3743                                     OMPPrivateScope &PrivateScope);
3744   /// Emit final copying of lastprivate values to original variables at
3745   /// the end of the worksharing or simd directive.
3746   ///
3747   /// \param D Directive that has at least one 'lastprivate' directives.
3748   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3749   /// it is the last iteration of the loop code in associated directive, or to
3750   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3751   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3752                                      bool NoFinals,
3753                                      llvm::Value *IsLastIterCond = nullptr);
3754   /// Emit initial code for linear clauses.
3755   void EmitOMPLinearClause(const OMPLoopDirective &D,
3756                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3757   /// Emit final code for linear clauses.
3758   /// \param CondGen Optional conditional code for final part of codegen for
3759   /// linear clause.
3760   void EmitOMPLinearClauseFinal(
3761       const OMPLoopDirective &D,
3762       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3763   /// Emit initial code for reduction variables. Creates reduction copies
3764   /// and initializes them with the values according to OpenMP standard.
3765   ///
3766   /// \param D Directive (possibly) with the 'reduction' clause.
3767   /// \param PrivateScope Private scope for capturing reduction variables for
3768   /// proper codegen in internal captured statement.
3769   ///
3770   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3771                                   OMPPrivateScope &PrivateScope,
3772                                   bool ForInscan = false);
3773   /// Emit final update of reduction values to original variables at
3774   /// the end of the directive.
3775   ///
3776   /// \param D Directive that has at least one 'reduction' directives.
3777   /// \param ReductionKind The kind of reduction to perform.
3778   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3779                                    const OpenMPDirectiveKind ReductionKind);
3780   /// Emit initial code for linear variables. Creates private copies
3781   /// and initializes them with the values according to OpenMP standard.
3782   ///
3783   /// \param D Directive (possibly) with the 'linear' clause.
3784   /// \return true if at least one linear variable is found that should be
3785   /// initialized with the value of the original variable, false otherwise.
3786   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3787 
3788   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3789                                         llvm::Function * /*OutlinedFn*/,
3790                                         const OMPTaskDataTy & /*Data*/)>
3791       TaskGenTy;
3792   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3793                                  const OpenMPDirectiveKind CapturedRegion,
3794                                  const RegionCodeGenTy &BodyGen,
3795                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3796   struct OMPTargetDataInfo {
3797     Address BasePointersArray = Address::invalid();
3798     Address PointersArray = Address::invalid();
3799     Address SizesArray = Address::invalid();
3800     Address MappersArray = Address::invalid();
3801     unsigned NumberOfTargetItems = 0;
3802     explicit OMPTargetDataInfo() = default;
3803     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3804                       Address SizesArray, Address MappersArray,
3805                       unsigned NumberOfTargetItems)
3806         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3807           SizesArray(SizesArray), MappersArray(MappersArray),
3808           NumberOfTargetItems(NumberOfTargetItems) {}
3809   };
3810   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3811                                        const RegionCodeGenTy &BodyGen,
3812                                        OMPTargetDataInfo &InputInfo);
3813   void processInReduction(const OMPExecutableDirective &S,
3814                           OMPTaskDataTy &Data,
3815                           CodeGenFunction &CGF,
3816                           const CapturedStmt *CS,
3817                           OMPPrivateScope &Scope);
3818   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3819   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3820   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3821   void EmitOMPTileDirective(const OMPTileDirective &S);
3822   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3823   void EmitOMPReverseDirective(const OMPReverseDirective &S);
3824   void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S);
3825   void EmitOMPForDirective(const OMPForDirective &S);
3826   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3827   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3828   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3829   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3830   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3831   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3832   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3833   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3834   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3835   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3836   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3837   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3838   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3839   void EmitOMPErrorDirective(const OMPErrorDirective &S);
3840   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3841   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3842   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3843   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3844   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3845   void EmitOMPScanDirective(const OMPScanDirective &S);
3846   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3847   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3848   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3849   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3850   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3851   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3852   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3853   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3854   void
3855   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3856   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3857   void
3858   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3859   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3860   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3861   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3862   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3863   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3864   void
3865   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3866   void EmitOMPParallelMasterTaskLoopDirective(
3867       const OMPParallelMasterTaskLoopDirective &S);
3868   void EmitOMPParallelMasterTaskLoopSimdDirective(
3869       const OMPParallelMasterTaskLoopSimdDirective &S);
3870   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3871   void EmitOMPDistributeParallelForDirective(
3872       const OMPDistributeParallelForDirective &S);
3873   void EmitOMPDistributeParallelForSimdDirective(
3874       const OMPDistributeParallelForSimdDirective &S);
3875   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3876   void EmitOMPTargetParallelForSimdDirective(
3877       const OMPTargetParallelForSimdDirective &S);
3878   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3879   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3880   void
3881   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3882   void EmitOMPTeamsDistributeParallelForSimdDirective(
3883       const OMPTeamsDistributeParallelForSimdDirective &S);
3884   void EmitOMPTeamsDistributeParallelForDirective(
3885       const OMPTeamsDistributeParallelForDirective &S);
3886   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3887   void EmitOMPTargetTeamsDistributeDirective(
3888       const OMPTargetTeamsDistributeDirective &S);
3889   void EmitOMPTargetTeamsDistributeParallelForDirective(
3890       const OMPTargetTeamsDistributeParallelForDirective &S);
3891   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3892       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3893   void EmitOMPTargetTeamsDistributeSimdDirective(
3894       const OMPTargetTeamsDistributeSimdDirective &S);
3895   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3896   void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S);
3897   void EmitOMPTargetParallelGenericLoopDirective(
3898       const OMPTargetParallelGenericLoopDirective &S);
3899   void EmitOMPTargetTeamsGenericLoopDirective(
3900       const OMPTargetTeamsGenericLoopDirective &S);
3901   void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S);
3902   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3903   void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S);
3904 
3905   /// Emit device code for the target directive.
3906   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3907                                           StringRef ParentName,
3908                                           const OMPTargetDirective &S);
3909   static void
3910   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3911                                       const OMPTargetParallelDirective &S);
3912   /// Emit device code for the target parallel for directive.
3913   static void EmitOMPTargetParallelForDeviceFunction(
3914       CodeGenModule &CGM, StringRef ParentName,
3915       const OMPTargetParallelForDirective &S);
3916   /// Emit device code for the target parallel for simd directive.
3917   static void EmitOMPTargetParallelForSimdDeviceFunction(
3918       CodeGenModule &CGM, StringRef ParentName,
3919       const OMPTargetParallelForSimdDirective &S);
3920   /// Emit device code for the target teams directive.
3921   static void
3922   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3923                                    const OMPTargetTeamsDirective &S);
3924   /// Emit device code for the target teams distribute directive.
3925   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3926       CodeGenModule &CGM, StringRef ParentName,
3927       const OMPTargetTeamsDistributeDirective &S);
3928   /// Emit device code for the target teams distribute simd directive.
3929   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3930       CodeGenModule &CGM, StringRef ParentName,
3931       const OMPTargetTeamsDistributeSimdDirective &S);
3932   /// Emit device code for the target simd directive.
3933   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3934                                               StringRef ParentName,
3935                                               const OMPTargetSimdDirective &S);
3936   /// Emit device code for the target teams distribute parallel for simd
3937   /// directive.
3938   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3939       CodeGenModule &CGM, StringRef ParentName,
3940       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3941 
3942   /// Emit device code for the target teams loop directive.
3943   static void EmitOMPTargetTeamsGenericLoopDeviceFunction(
3944       CodeGenModule &CGM, StringRef ParentName,
3945       const OMPTargetTeamsGenericLoopDirective &S);
3946 
3947   /// Emit device code for the target parallel loop directive.
3948   static void EmitOMPTargetParallelGenericLoopDeviceFunction(
3949       CodeGenModule &CGM, StringRef ParentName,
3950       const OMPTargetParallelGenericLoopDirective &S);
3951 
3952   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3953       CodeGenModule &CGM, StringRef ParentName,
3954       const OMPTargetTeamsDistributeParallelForDirective &S);
3955 
3956   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3957   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3958   /// future it is meant to be the number of loops expected in the loop nests
3959   /// (usually specified by the "collapse" clause) that are collapsed to a
3960   /// single loop by this function.
3961   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3962                                                              int Depth);
3963 
3964   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3965   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3966 
3967   /// Emit inner loop of the worksharing/simd construct.
3968   ///
3969   /// \param S Directive, for which the inner loop must be emitted.
3970   /// \param RequiresCleanup true, if directive has some associated private
3971   /// variables.
3972   /// \param LoopCond Bollean condition for loop continuation.
3973   /// \param IncExpr Increment expression for loop control variable.
3974   /// \param BodyGen Generator for the inner body of the inner loop.
3975   /// \param PostIncGen Genrator for post-increment code (required for ordered
3976   /// loop directvies).
3977   void EmitOMPInnerLoop(
3978       const OMPExecutableDirective &S, bool RequiresCleanup,
3979       const Expr *LoopCond, const Expr *IncExpr,
3980       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3981       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3982 
3983   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3984   /// Emit initial code for loop counters of loop-based directives.
3985   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3986                                   OMPPrivateScope &LoopScope);
3987 
3988   /// Helper for the OpenMP loop directives.
3989   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3990 
3991   /// Emit code for the worksharing loop-based directive.
3992   /// \return true, if this construct has any lastprivate clause, false -
3993   /// otherwise.
3994   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3995                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3996                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3997 
3998   /// Emit code for the distribute loop-based directive.
3999   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
4000                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
4001 
4002   /// Helpers for the OpenMP loop directives.
4003   void EmitOMPSimdInit(const OMPLoopDirective &D);
4004   void EmitOMPSimdFinal(
4005       const OMPLoopDirective &D,
4006       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
4007 
4008   /// Emits the lvalue for the expression with possibly captured variable.
4009   LValue EmitOMPSharedLValue(const Expr *E);
4010 
4011 private:
4012   /// Helpers for blocks.
4013   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
4014 
4015   /// struct with the values to be passed to the OpenMP loop-related functions
4016   struct OMPLoopArguments {
4017     /// loop lower bound
4018     Address LB = Address::invalid();
4019     /// loop upper bound
4020     Address UB = Address::invalid();
4021     /// loop stride
4022     Address ST = Address::invalid();
4023     /// isLastIteration argument for runtime functions
4024     Address IL = Address::invalid();
4025     /// Chunk value generated by sema
4026     llvm::Value *Chunk = nullptr;
4027     /// EnsureUpperBound
4028     Expr *EUB = nullptr;
4029     /// IncrementExpression
4030     Expr *IncExpr = nullptr;
4031     /// Loop initialization
4032     Expr *Init = nullptr;
4033     /// Loop exit condition
4034     Expr *Cond = nullptr;
4035     /// Update of LB after a whole chunk has been executed
4036     Expr *NextLB = nullptr;
4037     /// Update of UB after a whole chunk has been executed
4038     Expr *NextUB = nullptr;
4039     /// Distinguish between the for distribute and sections
4040     OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown;
4041     OMPLoopArguments() = default;
4042     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
4043                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
4044                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
4045                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
4046                      Expr *NextUB = nullptr)
4047         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
4048           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
4049           NextUB(NextUB) {}
4050   };
4051   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
4052                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
4053                         const OMPLoopArguments &LoopArgs,
4054                         const CodeGenLoopTy &CodeGenLoop,
4055                         const CodeGenOrderedTy &CodeGenOrdered);
4056   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
4057                            bool IsMonotonic, const OMPLoopDirective &S,
4058                            OMPPrivateScope &LoopScope, bool Ordered,
4059                            const OMPLoopArguments &LoopArgs,
4060                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
4061   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
4062                                   const OMPLoopDirective &S,
4063                                   OMPPrivateScope &LoopScope,
4064                                   const OMPLoopArguments &LoopArgs,
4065                                   const CodeGenLoopTy &CodeGenLoopContent);
4066   /// Emit code for sections directive.
4067   void EmitSections(const OMPExecutableDirective &S);
4068 
4069 public:
4070   //===--------------------------------------------------------------------===//
4071   //                         OpenACC Emission
4072   //===--------------------------------------------------------------------===//
4073   void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) {
4074     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4075     // simply emitting its structured block, but in the future we will implement
4076     // some sort of IR.
4077     EmitStmt(S.getStructuredBlock());
4078   }
4079 
4080   void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) {
4081     // TODO OpenACC: Implement this.  It is currently implemented as a 'no-op',
4082     // simply emitting its loop, but in the future we will implement
4083     // some sort of IR.
4084     EmitStmt(S.getLoop());
4085   }
4086 
4087   //===--------------------------------------------------------------------===//
4088   //                         LValue Expression Emission
4089   //===--------------------------------------------------------------------===//
4090 
4091   /// Create a check that a scalar RValue is non-null.
4092   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
4093 
4094   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
4095   RValue GetUndefRValue(QualType Ty);
4096 
4097   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
4098   /// and issue an ErrorUnsupported style diagnostic (using the
4099   /// provided Name).
4100   RValue EmitUnsupportedRValue(const Expr *E,
4101                                const char *Name);
4102 
4103   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
4104   /// an ErrorUnsupported style diagnostic (using the provided Name).
4105   LValue EmitUnsupportedLValue(const Expr *E,
4106                                const char *Name);
4107 
4108   /// EmitLValue - Emit code to compute a designator that specifies the location
4109   /// of the expression.
4110   ///
4111   /// This can return one of two things: a simple address or a bitfield
4112   /// reference.  In either case, the LLVM Value* in the LValue structure is
4113   /// guaranteed to be an LLVM pointer type.
4114   ///
4115   /// If this returns a bitfield reference, nothing about the pointee type of
4116   /// the LLVM value is known: For example, it may not be a pointer to an
4117   /// integer.
4118   ///
4119   /// If this returns a normal address, and if the lvalue's C type is fixed
4120   /// size, this method guarantees that the returned pointer type will point to
4121   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
4122   /// variable length type, this is not possible.
4123   ///
4124   LValue EmitLValue(const Expr *E,
4125                     KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
4126 
4127 private:
4128   LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull);
4129 
4130 public:
4131   /// Same as EmitLValue but additionally we generate checking code to
4132   /// guard against undefined behavior.  This is only suitable when we know
4133   /// that the address will be used to access the object.
4134   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
4135 
4136   RValue convertTempToRValue(Address addr, QualType type,
4137                              SourceLocation Loc);
4138 
4139   void EmitAtomicInit(Expr *E, LValue lvalue);
4140 
4141   bool LValueIsSuitableForInlineAtomic(LValue Src);
4142 
4143   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
4144                         AggValueSlot Slot = AggValueSlot::ignored());
4145 
4146   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
4147                         llvm::AtomicOrdering AO, bool IsVolatile = false,
4148                         AggValueSlot slot = AggValueSlot::ignored());
4149 
4150   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
4151 
4152   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
4153                        bool IsVolatile, bool isInit);
4154 
4155   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
4156       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
4157       llvm::AtomicOrdering Success =
4158           llvm::AtomicOrdering::SequentiallyConsistent,
4159       llvm::AtomicOrdering Failure =
4160           llvm::AtomicOrdering::SequentiallyConsistent,
4161       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
4162 
4163   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
4164                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
4165                         bool IsVolatile);
4166 
4167   /// EmitToMemory - Change a scalar value from its value
4168   /// representation to its in-memory representation.
4169   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
4170 
4171   /// EmitFromMemory - Change a scalar value from its memory
4172   /// representation to its value representation.
4173   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
4174 
4175   /// Check if the scalar \p Value is within the valid range for the given
4176   /// type \p Ty.
4177   ///
4178   /// Returns true if a check is needed (even if the range is unknown).
4179   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
4180                             SourceLocation Loc);
4181 
4182   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4183   /// care to appropriately convert from the memory representation to
4184   /// the LLVM value representation.
4185   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4186                                 SourceLocation Loc,
4187                                 AlignmentSource Source = AlignmentSource::Type,
4188                                 bool isNontemporal = false) {
4189     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
4190                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
4191   }
4192 
4193   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
4194                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
4195                                 TBAAAccessInfo TBAAInfo,
4196                                 bool isNontemporal = false);
4197 
4198   /// EmitLoadOfScalar - Load a scalar value from an address, taking
4199   /// care to appropriately convert from the memory representation to
4200   /// the LLVM value representation.  The l-value must be a simple
4201   /// l-value.
4202   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
4203 
4204   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4205   /// care to appropriately convert from the memory representation to
4206   /// the LLVM value representation.
4207   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4208                          bool Volatile, QualType Ty,
4209                          AlignmentSource Source = AlignmentSource::Type,
4210                          bool isInit = false, bool isNontemporal = false) {
4211     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
4212                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
4213   }
4214 
4215   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
4216                          bool Volatile, QualType Ty,
4217                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
4218                          bool isInit = false, bool isNontemporal = false);
4219 
4220   /// EmitStoreOfScalar - Store a scalar value to an address, taking
4221   /// care to appropriately convert from the memory representation to
4222   /// the LLVM value representation.  The l-value must be a simple
4223   /// l-value.  The isInit flag indicates whether this is an initialization.
4224   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
4225   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
4226 
4227   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
4228   /// this method emits the address of the lvalue, then loads the result as an
4229   /// rvalue, returning the rvalue.
4230   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
4231   RValue EmitLoadOfExtVectorElementLValue(LValue V);
4232   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
4233   RValue EmitLoadOfGlobalRegLValue(LValue LV);
4234 
4235   /// Like EmitLoadOfLValue but also handles complex and aggregate types.
4236   RValue EmitLoadOfAnyValue(LValue V,
4237                             AggValueSlot Slot = AggValueSlot::ignored(),
4238                             SourceLocation Loc = {});
4239 
4240   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
4241   /// lvalue, where both are guaranteed to the have the same type, and that type
4242   /// is 'Ty'.
4243   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
4244   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
4245   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
4246 
4247   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
4248   /// as EmitStoreThroughLValue.
4249   ///
4250   /// \param Result [out] - If non-null, this will be set to a Value* for the
4251   /// bit-field contents after the store, appropriate for use as the result of
4252   /// an assignment to the bit-field.
4253   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
4254                                       llvm::Value **Result=nullptr);
4255 
4256   /// Emit an l-value for an assignment (simple or compound) of complex type.
4257   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
4258   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
4259   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
4260                                              llvm::Value *&Result);
4261 
4262   // Note: only available for agg return types
4263   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
4264   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
4265   // Note: only available for agg return types
4266   LValue EmitCallExprLValue(const CallExpr *E);
4267   // Note: only available for agg return types
4268   LValue EmitVAArgExprLValue(const VAArgExpr *E);
4269   LValue EmitDeclRefLValue(const DeclRefExpr *E);
4270   LValue EmitStringLiteralLValue(const StringLiteral *E);
4271   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
4272   LValue EmitPredefinedLValue(const PredefinedExpr *E);
4273   LValue EmitUnaryOpLValue(const UnaryOperator *E);
4274   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4275                                 bool Accessed = false);
4276   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
4277   LValue EmitArraySectionExpr(const ArraySectionExpr *E,
4278                               bool IsLowerBound = true);
4279   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
4280   LValue EmitMemberExpr(const MemberExpr *E);
4281   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
4282   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
4283   LValue EmitInitListLValue(const InitListExpr *E);
4284   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
4285   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
4286   LValue EmitCastLValue(const CastExpr *E);
4287   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4288   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
4289 
4290   Address EmitExtVectorElementLValue(LValue V);
4291 
4292   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
4293 
4294   Address EmitArrayToPointerDecay(const Expr *Array,
4295                                   LValueBaseInfo *BaseInfo = nullptr,
4296                                   TBAAAccessInfo *TBAAInfo = nullptr);
4297 
4298   class ConstantEmission {
4299     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
4300     ConstantEmission(llvm::Constant *C, bool isReference)
4301       : ValueAndIsReference(C, isReference) {}
4302   public:
4303     ConstantEmission() {}
4304     static ConstantEmission forReference(llvm::Constant *C) {
4305       return ConstantEmission(C, true);
4306     }
4307     static ConstantEmission forValue(llvm::Constant *C) {
4308       return ConstantEmission(C, false);
4309     }
4310 
4311     explicit operator bool() const {
4312       return ValueAndIsReference.getOpaqueValue() != nullptr;
4313     }
4314 
4315     bool isReference() const { return ValueAndIsReference.getInt(); }
4316     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
4317       assert(isReference());
4318       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
4319                                             refExpr->getType());
4320     }
4321 
4322     llvm::Constant *getValue() const {
4323       assert(!isReference());
4324       return ValueAndIsReference.getPointer();
4325     }
4326   };
4327 
4328   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
4329   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
4330   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
4331 
4332   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
4333                                 AggValueSlot slot = AggValueSlot::ignored());
4334   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
4335 
4336   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4337                               const ObjCIvarDecl *Ivar);
4338   llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
4339                                            const ObjCIvarDecl *Ivar);
4340   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
4341   LValue EmitLValueForLambdaField(const FieldDecl *Field);
4342   LValue EmitLValueForLambdaField(const FieldDecl *Field,
4343                                   llvm::Value *ThisValue);
4344 
4345   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
4346   /// if the Field is a reference, this will return the address of the reference
4347   /// and not the address of the value stored in the reference.
4348   LValue EmitLValueForFieldInitialization(LValue Base,
4349                                           const FieldDecl* Field);
4350 
4351   LValue EmitLValueForIvar(QualType ObjectTy,
4352                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
4353                            unsigned CVRQualifiers);
4354 
4355   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
4356   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
4357   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
4358   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
4359 
4360   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
4361   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4362   LValue EmitStmtExprLValue(const StmtExpr *E);
4363   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4364   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4365   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4366 
4367   //===--------------------------------------------------------------------===//
4368   //                         Scalar Expression Emission
4369   //===--------------------------------------------------------------------===//
4370 
4371   /// EmitCall - Generate a call of the given function, expecting the given
4372   /// result type, and using the given argument list which specifies both the
4373   /// LLVM arguments and the types they were derived from.
4374   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4375                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4376                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4377                   SourceLocation Loc,
4378                   bool IsVirtualFunctionPointerThunk = false);
4379   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4380                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4381                   llvm::CallBase **callOrInvoke = nullptr,
4382                   bool IsMustTail = false) {
4383     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4384                     IsMustTail, SourceLocation());
4385   }
4386   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4387                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4388   RValue EmitCallExpr(const CallExpr *E,
4389                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4390   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4391   CGCallee EmitCallee(const Expr *E);
4392 
4393   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4394   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4395 
4396   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4397                                   const Twine &name = "");
4398   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4399                                   ArrayRef<llvm::Value *> args,
4400                                   const Twine &name = "");
4401   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4402                                           const Twine &name = "");
4403   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4404                                           ArrayRef<Address> args,
4405                                           const Twine &name = "");
4406   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4407                                           ArrayRef<llvm::Value *> args,
4408                                           const Twine &name = "");
4409 
4410   SmallVector<llvm::OperandBundleDef, 1>
4411   getBundlesForFunclet(llvm::Value *Callee);
4412 
4413   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4414                                    ArrayRef<llvm::Value *> Args,
4415                                    const Twine &Name = "");
4416   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4417                                           ArrayRef<llvm::Value *> args,
4418                                           const Twine &name = "");
4419   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4420                                           const Twine &name = "");
4421   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4422                                        ArrayRef<llvm::Value *> args);
4423 
4424   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4425                                      NestedNameSpecifier *Qual,
4426                                      llvm::Type *Ty);
4427 
4428   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4429                                                CXXDtorType Type,
4430                                                const CXXRecordDecl *RD);
4431 
4432   bool isPointerKnownNonNull(const Expr *E);
4433 
4434   /// Create the discriminator from the storage address and the entity hash.
4435   llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress,
4436                                                  llvm::Value *Discriminator);
4437   CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema,
4438                                         llvm::Value *StorageAddress,
4439                                         GlobalDecl SchemaDecl,
4440                                         QualType SchemaType);
4441 
4442   llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info,
4443                                    llvm::Value *Pointer);
4444 
4445   llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info,
4446                                    llvm::Value *Pointer);
4447 
4448   llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType,
4449                                      const CGPointerAuthInfo &CurAuthInfo,
4450                                      const CGPointerAuthInfo &NewAuthInfo,
4451                                      bool IsKnownNonNull);
4452   llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer,
4453                                          const CGPointerAuthInfo &CurInfo,
4454                                          const CGPointerAuthInfo &NewInfo);
4455 
4456   void EmitPointerAuthOperandBundle(
4457       const CGPointerAuthInfo &Info,
4458       SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4459 
4460   llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr,
4461                                         QualType SourceType, QualType DestType);
4462   Address authPointerToPointerCast(Address Ptr, QualType SourceType,
4463                                    QualType DestType);
4464 
4465   Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy);
4466 
4467   llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) {
4468     return getAsNaturalAddressOf(Addr, PointeeType).getBasePointer();
4469   }
4470 
4471   // Return the copy constructor name with the prefix "__copy_constructor_"
4472   // removed.
4473   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4474                                                      CharUnits Alignment,
4475                                                      bool IsVolatile,
4476                                                      ASTContext &Ctx);
4477 
4478   // Return the destructor name with the prefix "__destructor_" removed.
4479   static std::string getNonTrivialDestructorStr(QualType QT,
4480                                                 CharUnits Alignment,
4481                                                 bool IsVolatile,
4482                                                 ASTContext &Ctx);
4483 
4484   // These functions emit calls to the special functions of non-trivial C
4485   // structs.
4486   void defaultInitNonTrivialCStructVar(LValue Dst);
4487   void callCStructDefaultConstructor(LValue Dst);
4488   void callCStructDestructor(LValue Dst);
4489   void callCStructCopyConstructor(LValue Dst, LValue Src);
4490   void callCStructMoveConstructor(LValue Dst, LValue Src);
4491   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4492   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4493 
4494   RValue
4495   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4496                               const CGCallee &Callee,
4497                               ReturnValueSlot ReturnValue, llvm::Value *This,
4498                               llvm::Value *ImplicitParam,
4499                               QualType ImplicitParamTy, const CallExpr *E,
4500                               CallArgList *RtlArgs);
4501   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4502                                llvm::Value *This, QualType ThisTy,
4503                                llvm::Value *ImplicitParam,
4504                                QualType ImplicitParamTy, const CallExpr *E);
4505   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4506                                ReturnValueSlot ReturnValue);
4507   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4508                                                const CXXMethodDecl *MD,
4509                                                ReturnValueSlot ReturnValue,
4510                                                bool HasQualifier,
4511                                                NestedNameSpecifier *Qualifier,
4512                                                bool IsArrow, const Expr *Base);
4513   // Compute the object pointer.
4514   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4515                                           llvm::Value *memberPtr,
4516                                           const MemberPointerType *memberPtrType,
4517                                           LValueBaseInfo *BaseInfo = nullptr,
4518                                           TBAAAccessInfo *TBAAInfo = nullptr);
4519   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4520                                       ReturnValueSlot ReturnValue);
4521 
4522   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4523                                        const CXXMethodDecl *MD,
4524                                        ReturnValueSlot ReturnValue);
4525   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4526 
4527   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4528                                 ReturnValueSlot ReturnValue);
4529 
4530   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4531   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4532   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4533 
4534   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4535                          const CallExpr *E, ReturnValueSlot ReturnValue);
4536 
4537   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4538 
4539   /// Emit IR for __builtin_os_log_format.
4540   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4541 
4542   /// Emit IR for __builtin_is_aligned.
4543   RValue EmitBuiltinIsAligned(const CallExpr *E);
4544   /// Emit IR for __builtin_align_up/__builtin_align_down.
4545   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4546 
4547   llvm::Function *generateBuiltinOSLogHelperFunction(
4548       const analyze_os_log::OSLogBufferLayout &Layout,
4549       CharUnits BufferAlignment);
4550 
4551   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4552 
4553   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4554   /// is unhandled by the current target.
4555   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4556                                      ReturnValueSlot ReturnValue);
4557 
4558   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4559                                              const llvm::CmpInst::Predicate Fp,
4560                                              const llvm::CmpInst::Predicate Ip,
4561                                              const llvm::Twine &Name = "");
4562   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4563                                   ReturnValueSlot ReturnValue,
4564                                   llvm::Triple::ArchType Arch);
4565   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4566                                      ReturnValueSlot ReturnValue,
4567                                      llvm::Triple::ArchType Arch);
4568   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4569                                      ReturnValueSlot ReturnValue,
4570                                      llvm::Triple::ArchType Arch);
4571   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4572                                    QualType RTy);
4573   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4574                                    QualType RTy);
4575 
4576   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4577                                          unsigned LLVMIntrinsic,
4578                                          unsigned AltLLVMIntrinsic,
4579                                          const char *NameHint,
4580                                          unsigned Modifier,
4581                                          const CallExpr *E,
4582                                          SmallVectorImpl<llvm::Value *> &Ops,
4583                                          Address PtrOp0, Address PtrOp1,
4584                                          llvm::Triple::ArchType Arch);
4585 
4586   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4587                                           unsigned Modifier, llvm::Type *ArgTy,
4588                                           const CallExpr *E);
4589   llvm::Value *EmitNeonCall(llvm::Function *F,
4590                             SmallVectorImpl<llvm::Value*> &O,
4591                             const char *name,
4592                             unsigned shift = 0, bool rightshift = false);
4593   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4594                              const llvm::ElementCount &Count);
4595   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4596   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4597                                    bool negateForRightShift);
4598   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4599                                  llvm::Type *Ty, bool usgn, const char *name);
4600   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4601   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4602   /// access builtin.  Only required if it can't be inferred from the base
4603   /// pointer operand.
4604   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4605 
4606   SmallVector<llvm::Type *, 2>
4607   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4608                       ArrayRef<llvm::Value *> Ops);
4609   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4610   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4611   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4612   llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4613                                     llvm::Type *ReturnType,
4614                                     ArrayRef<llvm::Value *> Ops);
4615   llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4616                                   llvm::Type *ReturnType,
4617                                   ArrayRef<llvm::Value *> Ops);
4618   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4619   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4620   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4621   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4622   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4623                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4624                             unsigned BuiltinID);
4625   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4626                            llvm::ArrayRef<llvm::Value *> Ops,
4627                            unsigned BuiltinID);
4628   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4629                                     llvm::ScalableVectorType *VTy);
4630   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4631                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4632                                  unsigned IntID);
4633   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4634                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4635                                    unsigned IntID);
4636   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4637                                  SmallVectorImpl<llvm::Value *> &Ops,
4638                                  unsigned BuiltinID, bool IsZExtReturn);
4639   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4640                                   SmallVectorImpl<llvm::Value *> &Ops,
4641                                   unsigned BuiltinID);
4642   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4643                                    SmallVectorImpl<llvm::Value *> &Ops,
4644                                    unsigned BuiltinID);
4645   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4646                                      SmallVectorImpl<llvm::Value *> &Ops,
4647                                      unsigned IntID);
4648   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4649                                  SmallVectorImpl<llvm::Value *> &Ops,
4650                                  unsigned IntID);
4651   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4652                                   SmallVectorImpl<llvm::Value *> &Ops,
4653                                   unsigned IntID);
4654   /// FormSVEBuiltinResult - Returns the struct of scalable vectors as a wider
4655   /// vector. It extracts the scalable vector from the struct and inserts into
4656   /// the wider vector. This avoids the error when allocating space in llvm
4657   /// for struct of scalable vectors if a function returns struct.
4658   llvm::Value *FormSVEBuiltinResult(llvm::Value *Call);
4659 
4660   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4661 
4662   llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags,
4663                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4664                              unsigned IntID);
4665   llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
4666                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4667                                 unsigned IntID);
4668   llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags,
4669                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4670                            unsigned IntID);
4671   llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags,
4672                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4673                              unsigned IntID);
4674 
4675   void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E,
4676                                       SmallVectorImpl<llvm::Value *> &Ops,
4677                                       SVETypeFlags TypeFlags);
4678 
4679   llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4680 
4681   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4682                                       llvm::Triple::ArchType Arch);
4683   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4684 
4685   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4686   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4687   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4688   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4689   llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4690   llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx,
4691                                            const CallExpr *E);
4692   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4693   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4694   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4695                                           const CallExpr *E);
4696   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4697   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4698                                     ReturnValueSlot ReturnValue);
4699 
4700   void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst,
4701                                       const CallExpr *E);
4702   void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4703                                llvm::AtomicOrdering &AO,
4704                                llvm::SyncScope::ID &SSID);
4705 
4706   enum class MSVCIntrin;
4707   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4708 
4709   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4710 
4711   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4712   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4713   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4714   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4715   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4716   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4717                                 const ObjCMethodDecl *MethodWithObjects);
4718   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4719   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4720                              ReturnValueSlot Return = ReturnValueSlot());
4721 
4722   /// Retrieves the default cleanup kind for an ARC cleanup.
4723   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4724   CleanupKind getARCCleanupKind() {
4725     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4726              ? NormalAndEHCleanup : NormalCleanup;
4727   }
4728 
4729   // ARC primitives.
4730   void EmitARCInitWeak(Address addr, llvm::Value *value);
4731   void EmitARCDestroyWeak(Address addr);
4732   llvm::Value *EmitARCLoadWeak(Address addr);
4733   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4734   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4735   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4736   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4737   void EmitARCCopyWeak(Address dst, Address src);
4738   void EmitARCMoveWeak(Address dst, Address src);
4739   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4740   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4741   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4742                                   bool resultIgnored);
4743   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4744                                       bool resultIgnored);
4745   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4746   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4747   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4748   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4749   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4750   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4751   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4752   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4753   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4754   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4755 
4756   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4757   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4758                                       llvm::Type *returnType);
4759   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4760 
4761   std::pair<LValue,llvm::Value*>
4762   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4763   std::pair<LValue,llvm::Value*>
4764   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4765   std::pair<LValue,llvm::Value*>
4766   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4767 
4768   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4769                              llvm::Type *returnType);
4770   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4771                                      llvm::Type *returnType);
4772   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4773 
4774   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4775   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4776   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4777 
4778   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4779   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4780                                             bool allowUnsafeClaim);
4781   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4782   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4783   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4784 
4785   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4786 
4787   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4788 
4789   static Destroyer destroyARCStrongImprecise;
4790   static Destroyer destroyARCStrongPrecise;
4791   static Destroyer destroyARCWeak;
4792   static Destroyer emitARCIntrinsicUse;
4793   static Destroyer destroyNonTrivialCStruct;
4794 
4795   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4796   llvm::Value *EmitObjCAutoreleasePoolPush();
4797   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4798   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4799   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4800 
4801   /// Emits a reference binding to the passed in expression.
4802   RValue EmitReferenceBindingToExpr(const Expr *E);
4803 
4804   //===--------------------------------------------------------------------===//
4805   //                           Expression Emission
4806   //===--------------------------------------------------------------------===//
4807 
4808   // Expressions are broken into three classes: scalar, complex, aggregate.
4809 
4810   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4811   /// scalar type, returning the result.
4812   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4813 
4814   /// Emit a conversion from the specified type to the specified destination
4815   /// type, both of which are LLVM scalar types.
4816   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4817                                     QualType DstTy, SourceLocation Loc);
4818 
4819   /// Emit a conversion from the specified complex type to the specified
4820   /// destination type, where the destination type is an LLVM scalar type.
4821   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4822                                              QualType DstTy,
4823                                              SourceLocation Loc);
4824 
4825   /// EmitAggExpr - Emit the computation of the specified expression
4826   /// of aggregate type.  The result is computed into the given slot,
4827   /// which may be null to indicate that the value is not needed.
4828   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4829 
4830   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4831   /// aggregate type into a temporary LValue.
4832   LValue EmitAggExprToLValue(const Expr *E);
4833 
4834   enum ExprValueKind { EVK_RValue, EVK_NonRValue };
4835 
4836   /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into
4837   /// destination address.
4838   void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src,
4839                             ExprValueKind SrcKind);
4840 
4841   /// Create a store to \arg DstPtr from \arg Src, truncating the stored value
4842   /// to at most \arg DstSize bytes.
4843   void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize,
4844                           bool DstIsVolatile);
4845 
4846   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4847   /// make sure it survives garbage collection until this point.
4848   void EmitExtendGCLifetime(llvm::Value *object);
4849 
4850   /// EmitComplexExpr - Emit the computation of the specified expression of
4851   /// complex type, returning the result.
4852   ComplexPairTy EmitComplexExpr(const Expr *E,
4853                                 bool IgnoreReal = false,
4854                                 bool IgnoreImag = false);
4855 
4856   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4857   /// type and place its result into the specified l-value.
4858   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4859 
4860   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4861   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4862 
4863   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4864   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4865 
4866   ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4867   llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4868   ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4869   ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
4870 
4871   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4872   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4873 
4874   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4875   /// global variable that has already been created for it.  If the initializer
4876   /// has a different type than GV does, this may free GV and return a different
4877   /// one.  Otherwise it just returns GV.
4878   llvm::GlobalVariable *
4879   AddInitializerToStaticVarDecl(const VarDecl &D,
4880                                 llvm::GlobalVariable *GV);
4881 
4882   // Emit an @llvm.invariant.start call for the given memory region.
4883   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4884 
4885   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4886   /// variable with global storage.
4887   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4888                                 bool PerformInit);
4889 
4890   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4891                                    llvm::Constant *Addr);
4892 
4893   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4894                                       llvm::FunctionCallee Dtor,
4895                                       llvm::Constant *Addr,
4896                                       llvm::FunctionCallee &AtExit);
4897 
4898   /// Call atexit() with a function that passes the given argument to
4899   /// the given function.
4900   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4901                                     llvm::Constant *addr);
4902 
4903   /// Registers the dtor using 'llvm.global_dtors' for platforms that do not
4904   /// support an 'atexit()' function.
4905   void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn,
4906                                   llvm::Constant *addr);
4907 
4908   /// Call atexit() with function dtorStub.
4909   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4910 
4911   /// Call unatexit() with function dtorStub.
4912   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4913 
4914   /// Emit code in this function to perform a guarded variable
4915   /// initialization.  Guarded initializations are used when it's not
4916   /// possible to prove that an initialization will be done exactly
4917   /// once, e.g. with a static local variable or a static data member
4918   /// of a class template.
4919   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4920                           bool PerformInit);
4921 
4922   enum class GuardKind { VariableGuard, TlsGuard };
4923 
4924   /// Emit a branch to select whether or not to perform guarded initialization.
4925   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4926                                 llvm::BasicBlock *InitBlock,
4927                                 llvm::BasicBlock *NoInitBlock,
4928                                 GuardKind Kind, const VarDecl *D);
4929 
4930   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4931   /// variables.
4932   void
4933   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4934                             ArrayRef<llvm::Function *> CXXThreadLocals,
4935                             ConstantAddress Guard = ConstantAddress::invalid());
4936 
4937   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4938   /// variables.
4939   void GenerateCXXGlobalCleanUpFunc(
4940       llvm::Function *Fn,
4941       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4942                           llvm::Constant *>>
4943           DtorsOrStermFinalizers);
4944 
4945   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4946                                         const VarDecl *D,
4947                                         llvm::GlobalVariable *Addr,
4948                                         bool PerformInit);
4949 
4950   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4951 
4952   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4953 
4954   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4955 
4956   RValue EmitAtomicExpr(AtomicExpr *E);
4957 
4958   //===--------------------------------------------------------------------===//
4959   //                         Annotations Emission
4960   //===--------------------------------------------------------------------===//
4961 
4962   /// Emit an annotation call (intrinsic).
4963   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4964                                   llvm::Value *AnnotatedVal,
4965                                   StringRef AnnotationStr,
4966                                   SourceLocation Location,
4967                                   const AnnotateAttr *Attr);
4968 
4969   /// Emit local annotations for the local variable V, declared by D.
4970   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4971 
4972   /// Emit field annotations for the given field & value. Returns the
4973   /// annotation result.
4974   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4975 
4976   //===--------------------------------------------------------------------===//
4977   //                             Internal Helpers
4978   //===--------------------------------------------------------------------===//
4979 
4980   /// ContainsLabel - Return true if the statement contains a label in it.  If
4981   /// this statement is not executed normally, it not containing a label means
4982   /// that we can just remove the code.
4983   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4984 
4985   /// containsBreak - Return true if the statement contains a break out of it.
4986   /// If the statement (recursively) contains a switch or loop with a break
4987   /// inside of it, this is fine.
4988   static bool containsBreak(const Stmt *S);
4989 
4990   /// Determine if the given statement might introduce a declaration into the
4991   /// current scope, by being a (possibly-labelled) DeclStmt.
4992   static bool mightAddDeclToScope(const Stmt *S);
4993 
4994   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4995   /// to a constant, or if it does but contains a label, return false.  If it
4996   /// constant folds return true and set the boolean result in Result.
4997   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4998                                     bool AllowLabels = false);
4999 
5000   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
5001   /// to a constant, or if it does but contains a label, return false.  If it
5002   /// constant folds return true and set the folded value.
5003   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
5004                                     bool AllowLabels = false);
5005 
5006   /// Ignore parentheses and logical-NOT to track conditions consistently.
5007   static const Expr *stripCond(const Expr *C);
5008 
5009   /// isInstrumentedCondition - Determine whether the given condition is an
5010   /// instrumentable condition (i.e. no "&&" or "||").
5011   static bool isInstrumentedCondition(const Expr *C);
5012 
5013   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
5014   /// increments a profile counter based on the semantics of the given logical
5015   /// operator opcode.  This is used to instrument branch condition coverage
5016   /// for logical operators.
5017   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
5018                                 llvm::BasicBlock *TrueBlock,
5019                                 llvm::BasicBlock *FalseBlock,
5020                                 uint64_t TrueCount = 0,
5021                                 Stmt::Likelihood LH = Stmt::LH_None,
5022                                 const Expr *CntrIdx = nullptr);
5023 
5024   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
5025   /// if statement) to the specified blocks.  Based on the condition, this might
5026   /// try to simplify the codegen of the conditional based on the branch.
5027   /// TrueCount should be the number of times we expect the condition to
5028   /// evaluate to true based on PGO data.
5029   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
5030                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
5031                             Stmt::Likelihood LH = Stmt::LH_None,
5032                             const Expr *ConditionalOp = nullptr);
5033 
5034   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
5035   /// nonnull, if \p LHS is marked _Nonnull.
5036   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
5037 
5038   /// An enumeration which makes it easier to specify whether or not an
5039   /// operation is a subtraction.
5040   enum { NotSubtraction = false, IsSubtraction = true };
5041 
5042   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
5043   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
5044   /// \p SignedIndices indicates whether any of the GEP indices are signed.
5045   /// \p IsSubtraction indicates whether the expression used to form the GEP
5046   /// is a subtraction.
5047   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
5048                                       ArrayRef<llvm::Value *> IdxList,
5049                                       bool SignedIndices,
5050                                       bool IsSubtraction,
5051                                       SourceLocation Loc,
5052                                       const Twine &Name = "");
5053 
5054   Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList,
5055                                  llvm::Type *elementType, bool SignedIndices,
5056                                  bool IsSubtraction, SourceLocation Loc,
5057                                  CharUnits Align, const Twine &Name = "");
5058 
5059   /// Specifies which type of sanitizer check to apply when handling a
5060   /// particular builtin.
5061   enum BuiltinCheckKind {
5062     BCK_CTZPassedZero,
5063     BCK_CLZPassedZero,
5064   };
5065 
5066   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
5067   /// enabled, a runtime check specified by \p Kind is also emitted.
5068   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
5069 
5070   /// Emit a description of a type in a format suitable for passing to
5071   /// a runtime sanitizer handler.
5072   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
5073 
5074   /// Convert a value into a format suitable for passing to a runtime
5075   /// sanitizer handler.
5076   llvm::Value *EmitCheckValue(llvm::Value *V);
5077 
5078   /// Emit a description of a source location in a format suitable for
5079   /// passing to a runtime sanitizer handler.
5080   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
5081 
5082   void EmitKCFIOperandBundle(const CGCallee &Callee,
5083                              SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
5084 
5085   /// Create a basic block that will either trap or call a handler function in
5086   /// the UBSan runtime with the provided arguments, and create a conditional
5087   /// branch to it.
5088   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
5089                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
5090                  ArrayRef<llvm::Value *> DynamicArgs);
5091 
5092   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
5093   /// if Cond if false.
5094   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
5095                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
5096                             ArrayRef<llvm::Constant *> StaticArgs);
5097 
5098   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
5099   /// checking is enabled. Otherwise, just emit an unreachable instruction.
5100   void EmitUnreachable(SourceLocation Loc);
5101 
5102   /// Create a basic block that will call the trap intrinsic, and emit a
5103   /// conditional branch to it, for the -ftrapv checks.
5104   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
5105 
5106   /// Emit a call to trap or debugtrap and attach function attribute
5107   /// "trap-func-name" if specified.
5108   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
5109 
5110   /// Emit a stub for the cross-DSO CFI check function.
5111   void EmitCfiCheckStub();
5112 
5113   /// Emit a cross-DSO CFI failure handling function.
5114   void EmitCfiCheckFail();
5115 
5116   /// Create a check for a function parameter that may potentially be
5117   /// declared as non-null.
5118   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
5119                            AbstractCallee AC, unsigned ParmNum);
5120 
5121   void EmitNonNullArgCheck(Address Addr, QualType ArgType,
5122                            SourceLocation ArgLoc, AbstractCallee AC,
5123                            unsigned ParmNum);
5124 
5125   /// EmitCallArg - Emit a single call argument.
5126   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
5127 
5128   /// EmitDelegateCallArg - We are performing a delegate call; that
5129   /// is, the current function is delegating to another one.  Produce
5130   /// a r-value suitable for passing the given parameter.
5131   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
5132                            SourceLocation loc);
5133 
5134   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
5135   /// point operation, expressed as the maximum relative error in ulp.
5136   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
5137 
5138   /// Set the minimum required accuracy of the given sqrt operation
5139   /// based on CodeGenOpts.
5140   void SetSqrtFPAccuracy(llvm::Value *Val);
5141 
5142   /// Set the minimum required accuracy of the given sqrt operation based on
5143   /// CodeGenOpts.
5144   void SetDivFPAccuracy(llvm::Value *Val);
5145 
5146   /// Set the codegen fast-math flags.
5147   void SetFastMathFlags(FPOptions FPFeatures);
5148 
5149   // Truncate or extend a boolean vector to the requested number of elements.
5150   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
5151                                      unsigned NumElementsDst,
5152                                      const llvm::Twine &Name = "");
5153   // Adds a convergence_ctrl token to |Input| and emits the required parent
5154   // convergence instructions.
5155   template <typename CallType>
5156   CallType *addControlledConvergenceToken(CallType *Input) {
5157     return cast<CallType>(
5158         addConvergenceControlToken(Input, ConvergenceTokenStack.back()));
5159   }
5160 
5161 private:
5162   // Emits a convergence_loop instruction for the given |BB|, with |ParentToken|
5163   // as it's parent convergence instr.
5164   llvm::IntrinsicInst *emitConvergenceLoopToken(llvm::BasicBlock *BB,
5165                                                 llvm::Value *ParentToken);
5166   // Adds a convergence_ctrl token with |ParentToken| as parent convergence
5167   // instr to the call |Input|.
5168   llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input,
5169                                              llvm::Value *ParentToken);
5170   // Find the convergence_entry instruction |F|, or emits ones if none exists.
5171   // Returns the convergence instruction.
5172   llvm::IntrinsicInst *getOrEmitConvergenceEntryToken(llvm::Function *F);
5173   // Find the convergence_loop instruction for the loop defined by |LI|, or
5174   // emits one if none exists. Returns the convergence instruction.
5175   llvm::IntrinsicInst *getOrEmitConvergenceLoopToken(const LoopInfo *LI);
5176 
5177 private:
5178   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
5179   void EmitReturnOfRValue(RValue RV, QualType Ty);
5180 
5181   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
5182 
5183   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
5184       DeferredReplacements;
5185 
5186   /// Set the address of a local variable.
5187   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
5188     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
5189     LocalDeclMap.insert({VD, Addr});
5190   }
5191 
5192   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
5193   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
5194   ///
5195   /// \param AI - The first function argument of the expansion.
5196   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
5197                           llvm::Function::arg_iterator &AI);
5198 
5199   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
5200   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
5201   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
5202   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
5203                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
5204                         unsigned &IRCallArgPos);
5205 
5206   std::pair<llvm::Value *, llvm::Type *>
5207   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
5208                std::string &ConstraintStr);
5209 
5210   std::pair<llvm::Value *, llvm::Type *>
5211   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
5212                      QualType InputType, std::string &ConstraintStr,
5213                      SourceLocation Loc);
5214 
5215   /// Attempts to statically evaluate the object size of E. If that
5216   /// fails, emits code to figure the size of E out for us. This is
5217   /// pass_object_size aware.
5218   ///
5219   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
5220   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
5221                                                llvm::IntegerType *ResType,
5222                                                llvm::Value *EmittedE,
5223                                                bool IsDynamic);
5224 
5225   /// Emits the size of E, as required by __builtin_object_size. This
5226   /// function is aware of pass_object_size parameters, and will act accordingly
5227   /// if E is a parameter with the pass_object_size attribute.
5228   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
5229                                      llvm::IntegerType *ResType,
5230                                      llvm::Value *EmittedE,
5231                                      bool IsDynamic);
5232 
5233   llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
5234                                            llvm::IntegerType *ResType);
5235 
5236   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
5237                                        Address Loc);
5238 
5239 public:
5240   enum class EvaluationOrder {
5241     ///! No language constraints on evaluation order.
5242     Default,
5243     ///! Language semantics require left-to-right evaluation.
5244     ForceLeftToRight,
5245     ///! Language semantics require right-to-left evaluation.
5246     ForceRightToLeft
5247   };
5248 
5249   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
5250   // an ObjCMethodDecl.
5251   struct PrototypeWrapper {
5252     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
5253 
5254     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
5255     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
5256   };
5257 
5258   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
5259                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
5260                     AbstractCallee AC = AbstractCallee(),
5261                     unsigned ParamsToSkip = 0,
5262                     EvaluationOrder Order = EvaluationOrder::Default);
5263 
5264   /// EmitPointerWithAlignment - Given an expression with a pointer type,
5265   /// emit the value and compute our best estimate of the alignment of the
5266   /// pointee.
5267   ///
5268   /// \param BaseInfo - If non-null, this will be initialized with
5269   /// information about the source of the alignment and the may-alias
5270   /// attribute.  Note that this function will conservatively fall back on
5271   /// the type when it doesn't recognize the expression and may-alias will
5272   /// be set to false.
5273   ///
5274   /// One reasonable way to use this information is when there's a language
5275   /// guarantee that the pointer must be aligned to some stricter value, and
5276   /// we're simply trying to ensure that sufficiently obvious uses of under-
5277   /// aligned objects don't get miscompiled; for example, a placement new
5278   /// into the address of a local variable.  In such a case, it's quite
5279   /// reasonable to just ignore the returned alignment when it isn't from an
5280   /// explicit source.
5281   Address
5282   EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr,
5283                            TBAAAccessInfo *TBAAInfo = nullptr,
5284                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
5285 
5286   /// If \p E references a parameter with pass_object_size info or a constant
5287   /// array size modifier, emit the object size divided by the size of \p EltTy.
5288   /// Otherwise return null.
5289   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
5290 
5291   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
5292 
5293   struct MultiVersionResolverOption {
5294     llvm::Function *Function;
5295     struct Conds {
5296       StringRef Architecture;
5297       llvm::SmallVector<StringRef, 8> Features;
5298 
5299       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
5300           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
5301     } Conditions;
5302 
5303     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
5304                                ArrayRef<StringRef> Feats)
5305         : Function(F), Conditions(Arch, Feats) {}
5306   };
5307 
5308   // Emits the body of a multiversion function's resolver. Assumes that the
5309   // options are already sorted in the proper order, with the 'default' option
5310   // last (if it exists).
5311   void EmitMultiVersionResolver(llvm::Function *Resolver,
5312                                 ArrayRef<MultiVersionResolverOption> Options);
5313   void
5314   EmitX86MultiVersionResolver(llvm::Function *Resolver,
5315                               ArrayRef<MultiVersionResolverOption> Options);
5316   void
5317   EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
5318                                   ArrayRef<MultiVersionResolverOption> Options);
5319 
5320 private:
5321   QualType getVarArgType(const Expr *Arg);
5322 
5323   void EmitDeclMetadata();
5324 
5325   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
5326                                   const AutoVarEmission &emission);
5327 
5328   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
5329 
5330   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
5331   llvm::Value *EmitX86CpuIs(const CallExpr *E);
5332   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
5333   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
5334   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
5335   llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask);
5336   llvm::Value *EmitX86CpuInit();
5337   llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO);
5338   llvm::Value *EmitAArch64CpuInit();
5339   llvm::Value *
5340   FormAArch64ResolverCondition(const MultiVersionResolverOption &RO);
5341   llvm::Value *EmitAArch64CpuSupports(const CallExpr *E);
5342   llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
5343 };
5344 
5345 inline DominatingLLVMValue::saved_type
5346 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
5347   if (!needsSaving(value)) return saved_type(value, false);
5348 
5349   // Otherwise, we need an alloca.
5350   auto align = CharUnits::fromQuantity(
5351       CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
5352   Address alloca =
5353       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
5354   CGF.Builder.CreateStore(value, alloca);
5355 
5356   return saved_type(alloca.emitRawPointer(CGF), true);
5357 }
5358 
5359 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
5360                                                  saved_type value) {
5361   // If the value says it wasn't saved, trust that it's still dominating.
5362   if (!value.getInt()) return value.getPointer();
5363 
5364   // Otherwise, it should be an alloca instruction, as set up in save().
5365   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
5366   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
5367                                        alloca->getAlign());
5368 }
5369 
5370 }  // end namespace CodeGen
5371 
5372 // Map the LangOption for floating point exception behavior into
5373 // the corresponding enum in the IR.
5374 llvm::fp::ExceptionBehavior
5375 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
5376 }  // end namespace clang
5377 
5378 #endif
5379