1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 #include <optional> 45 46 namespace llvm { 47 class BasicBlock; 48 class LLVMContext; 49 class MDNode; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 class CanonicalLoopInfo; 54 } 55 56 namespace clang { 57 class ASTContext; 58 class CXXDestructorDecl; 59 class CXXForRangeStmt; 60 class CXXTryStmt; 61 class Decl; 62 class LabelDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 class OMPUseDevicePtrClause; 80 class OMPUseDeviceAddrClause; 81 class SVETypeFlags; 82 class OMPExecutableDirective; 83 84 namespace analyze_os_log { 85 class OSLogBufferLayout; 86 } 87 88 namespace CodeGen { 89 class CodeGenTypes; 90 class CGCallee; 91 class CGFunctionInfo; 92 class CGBlockInfo; 93 class CGCXXABI; 94 class BlockByrefHelpers; 95 class BlockByrefInfo; 96 class BlockFieldFlags; 97 class RegionCodeGenTy; 98 class TargetCodeGenInfo; 99 struct OMPTaskDataTy; 100 struct CGCoroData; 101 102 /// The kind of evaluation to perform on values of a particular 103 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 104 /// CGExprAgg? 105 /// 106 /// TODO: should vectors maybe be split out into their own thing? 107 enum TypeEvaluationKind { 108 TEK_Scalar, 109 TEK_Complex, 110 TEK_Aggregate 111 }; 112 113 #define LIST_SANITIZER_CHECKS \ 114 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 115 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 116 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 117 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 118 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 119 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 120 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 121 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 122 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 123 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 124 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 125 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 126 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 127 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 128 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 129 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 130 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 131 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 132 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 133 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 134 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 135 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 136 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 137 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 138 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 139 140 enum SanitizerHandler { 141 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 142 LIST_SANITIZER_CHECKS 143 #undef SANITIZER_CHECK 144 }; 145 146 /// Helper class with most of the code for saving a value for a 147 /// conditional expression cleanup. 148 struct DominatingLLVMValue { 149 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 150 151 /// Answer whether the given value needs extra work to be saved. 152 static bool needsSaving(llvm::Value *value) { 153 // If it's not an instruction, we don't need to save. 154 if (!isa<llvm::Instruction>(value)) return false; 155 156 // If it's an instruction in the entry block, we don't need to save. 157 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 158 return (block != &block->getParent()->getEntryBlock()); 159 } 160 161 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 162 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 163 }; 164 165 /// A partial specialization of DominatingValue for llvm::Values that 166 /// might be llvm::Instructions. 167 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 168 typedef T *type; 169 static type restore(CodeGenFunction &CGF, saved_type value) { 170 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 171 } 172 }; 173 174 /// A specialization of DominatingValue for Address. 175 template <> struct DominatingValue<Address> { 176 typedef Address type; 177 178 struct saved_type { 179 DominatingLLVMValue::saved_type SavedValue; 180 llvm::Type *ElementType; 181 CharUnits Alignment; 182 }; 183 184 static bool needsSaving(type value) { 185 return DominatingLLVMValue::needsSaving(value.getPointer()); 186 } 187 static saved_type save(CodeGenFunction &CGF, type value) { 188 return { DominatingLLVMValue::save(CGF, value.getPointer()), 189 value.getElementType(), value.getAlignment() }; 190 } 191 static type restore(CodeGenFunction &CGF, saved_type value) { 192 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 193 value.ElementType, value.Alignment); 194 } 195 }; 196 197 /// A specialization of DominatingValue for RValue. 198 template <> struct DominatingValue<RValue> { 199 typedef RValue type; 200 class saved_type { 201 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 202 AggregateAddress, ComplexAddress }; 203 204 llvm::Value *Value; 205 llvm::Type *ElementType; 206 unsigned K : 3; 207 unsigned Align : 29; 208 saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0) 209 : Value(v), ElementType(e), K(k), Align(a) {} 210 211 public: 212 static bool needsSaving(RValue value); 213 static saved_type save(CodeGenFunction &CGF, RValue value); 214 RValue restore(CodeGenFunction &CGF); 215 216 // implementations in CGCleanup.cpp 217 }; 218 219 static bool needsSaving(type value) { 220 return saved_type::needsSaving(value); 221 } 222 static saved_type save(CodeGenFunction &CGF, type value) { 223 return saved_type::save(CGF, value); 224 } 225 static type restore(CodeGenFunction &CGF, saved_type value) { 226 return value.restore(CGF); 227 } 228 }; 229 230 /// CodeGenFunction - This class organizes the per-function state that is used 231 /// while generating LLVM code. 232 class CodeGenFunction : public CodeGenTypeCache { 233 CodeGenFunction(const CodeGenFunction &) = delete; 234 void operator=(const CodeGenFunction &) = delete; 235 236 friend class CGCXXABI; 237 public: 238 /// A jump destination is an abstract label, branching to which may 239 /// require a jump out through normal cleanups. 240 struct JumpDest { 241 JumpDest() : Block(nullptr), Index(0) {} 242 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 243 unsigned Index) 244 : Block(Block), ScopeDepth(Depth), Index(Index) {} 245 246 bool isValid() const { return Block != nullptr; } 247 llvm::BasicBlock *getBlock() const { return Block; } 248 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 249 unsigned getDestIndex() const { return Index; } 250 251 // This should be used cautiously. 252 void setScopeDepth(EHScopeStack::stable_iterator depth) { 253 ScopeDepth = depth; 254 } 255 256 private: 257 llvm::BasicBlock *Block; 258 EHScopeStack::stable_iterator ScopeDepth; 259 unsigned Index; 260 }; 261 262 CodeGenModule &CGM; // Per-module state. 263 const TargetInfo &Target; 264 265 // For EH/SEH outlined funclets, this field points to parent's CGF 266 CodeGenFunction *ParentCGF = nullptr; 267 268 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 269 LoopInfoStack LoopStack; 270 CGBuilderTy Builder; 271 272 // Stores variables for which we can't generate correct lifetime markers 273 // because of jumps. 274 VarBypassDetector Bypasses; 275 276 /// List of recently emitted OMPCanonicalLoops. 277 /// 278 /// Since OMPCanonicalLoops are nested inside other statements (in particular 279 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 280 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 281 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 282 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 283 /// this stack when done. Entering a new loop requires clearing this list; it 284 /// either means we start parsing a new loop nest (in which case the previous 285 /// loop nest goes out of scope) or a second loop in the same level in which 286 /// case it would be ambiguous into which of the two (or more) loops the loop 287 /// nest would extend. 288 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 289 290 /// Number of nested loop to be consumed by the last surrounding 291 /// loop-associated directive. 292 int ExpectedOMPLoopDepth = 0; 293 294 // CodeGen lambda for loops and support for ordered clause 295 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 296 JumpDest)> 297 CodeGenLoopTy; 298 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 299 const unsigned, const bool)> 300 CodeGenOrderedTy; 301 302 // Codegen lambda for loop bounds in worksharing loop constructs 303 typedef llvm::function_ref<std::pair<LValue, LValue>( 304 CodeGenFunction &, const OMPExecutableDirective &S)> 305 CodeGenLoopBoundsTy; 306 307 // Codegen lambda for loop bounds in dispatch-based loop implementation 308 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 309 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 310 Address UB)> 311 CodeGenDispatchBoundsTy; 312 313 /// CGBuilder insert helper. This function is called after an 314 /// instruction is created using Builder. 315 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 316 llvm::BasicBlock *BB, 317 llvm::BasicBlock::iterator InsertPt) const; 318 319 /// CurFuncDecl - Holds the Decl for the current outermost 320 /// non-closure context. 321 const Decl *CurFuncDecl; 322 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 323 const Decl *CurCodeDecl; 324 const CGFunctionInfo *CurFnInfo; 325 QualType FnRetTy; 326 llvm::Function *CurFn = nullptr; 327 328 /// Save Parameter Decl for coroutine. 329 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 330 331 // Holds coroutine data if the current function is a coroutine. We use a 332 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 333 // in this header. 334 struct CGCoroInfo { 335 std::unique_ptr<CGCoroData> Data; 336 CGCoroInfo(); 337 ~CGCoroInfo(); 338 }; 339 CGCoroInfo CurCoro; 340 341 bool isCoroutine() const { 342 return CurCoro.Data != nullptr; 343 } 344 345 /// CurGD - The GlobalDecl for the current function being compiled. 346 GlobalDecl CurGD; 347 348 /// PrologueCleanupDepth - The cleanup depth enclosing all the 349 /// cleanups associated with the parameters. 350 EHScopeStack::stable_iterator PrologueCleanupDepth; 351 352 /// ReturnBlock - Unified return block. 353 JumpDest ReturnBlock; 354 355 /// ReturnValue - The temporary alloca to hold the return 356 /// value. This is invalid iff the function has no return value. 357 Address ReturnValue = Address::invalid(); 358 359 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 360 /// This is invalid if sret is not in use. 361 Address ReturnValuePointer = Address::invalid(); 362 363 /// If a return statement is being visited, this holds the return statment's 364 /// result expression. 365 const Expr *RetExpr = nullptr; 366 367 /// Return true if a label was seen in the current scope. 368 bool hasLabelBeenSeenInCurrentScope() const { 369 if (CurLexicalScope) 370 return CurLexicalScope->hasLabels(); 371 return !LabelMap.empty(); 372 } 373 374 /// AllocaInsertPoint - This is an instruction in the entry block before which 375 /// we prefer to insert allocas. 376 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 377 378 private: 379 /// PostAllocaInsertPt - This is a place in the prologue where code can be 380 /// inserted that will be dominated by all the static allocas. This helps 381 /// achieve two things: 382 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 383 /// 2. All other prologue code (which are dominated by static allocas) do 384 /// appear in the source order immediately after all static allocas. 385 /// 386 /// PostAllocaInsertPt will be lazily created when it is *really* required. 387 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 388 389 public: 390 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 391 /// immediately after AllocaInsertPt. 392 llvm::Instruction *getPostAllocaInsertPoint() { 393 if (!PostAllocaInsertPt) { 394 assert(AllocaInsertPt && 395 "Expected static alloca insertion point at function prologue"); 396 assert(AllocaInsertPt->getParent()->isEntryBlock() && 397 "EBB should be entry block of the current code gen function"); 398 PostAllocaInsertPt = AllocaInsertPt->clone(); 399 PostAllocaInsertPt->setName("postallocapt"); 400 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 401 } 402 403 return PostAllocaInsertPt; 404 } 405 406 /// API for captured statement code generation. 407 class CGCapturedStmtInfo { 408 public: 409 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 410 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 411 explicit CGCapturedStmtInfo(const CapturedStmt &S, 412 CapturedRegionKind K = CR_Default) 413 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 414 415 RecordDecl::field_iterator Field = 416 S.getCapturedRecordDecl()->field_begin(); 417 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 418 E = S.capture_end(); 419 I != E; ++I, ++Field) { 420 if (I->capturesThis()) 421 CXXThisFieldDecl = *Field; 422 else if (I->capturesVariable()) 423 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 424 else if (I->capturesVariableByCopy()) 425 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 426 } 427 } 428 429 virtual ~CGCapturedStmtInfo(); 430 431 CapturedRegionKind getKind() const { return Kind; } 432 433 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 434 // Retrieve the value of the context parameter. 435 virtual llvm::Value *getContextValue() const { return ThisValue; } 436 437 /// Lookup the captured field decl for a variable. 438 virtual const FieldDecl *lookup(const VarDecl *VD) const { 439 return CaptureFields.lookup(VD->getCanonicalDecl()); 440 } 441 442 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 443 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 444 445 static bool classof(const CGCapturedStmtInfo *) { 446 return true; 447 } 448 449 /// Emit the captured statement body. 450 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 451 CGF.incrementProfileCounter(S); 452 CGF.EmitStmt(S); 453 } 454 455 /// Get the name of the capture helper. 456 virtual StringRef getHelperName() const { return "__captured_stmt"; } 457 458 /// Get the CaptureFields 459 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 460 return CaptureFields; 461 } 462 463 private: 464 /// The kind of captured statement being generated. 465 CapturedRegionKind Kind; 466 467 /// Keep the map between VarDecl and FieldDecl. 468 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 469 470 /// The base address of the captured record, passed in as the first 471 /// argument of the parallel region function. 472 llvm::Value *ThisValue; 473 474 /// Captured 'this' type. 475 FieldDecl *CXXThisFieldDecl; 476 }; 477 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 478 479 /// RAII for correct setting/restoring of CapturedStmtInfo. 480 class CGCapturedStmtRAII { 481 private: 482 CodeGenFunction &CGF; 483 CGCapturedStmtInfo *PrevCapturedStmtInfo; 484 public: 485 CGCapturedStmtRAII(CodeGenFunction &CGF, 486 CGCapturedStmtInfo *NewCapturedStmtInfo) 487 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 488 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 489 } 490 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 491 }; 492 493 /// An abstract representation of regular/ObjC call/message targets. 494 class AbstractCallee { 495 /// The function declaration of the callee. 496 const Decl *CalleeDecl; 497 498 public: 499 AbstractCallee() : CalleeDecl(nullptr) {} 500 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 501 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 502 bool hasFunctionDecl() const { 503 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 504 } 505 const Decl *getDecl() const { return CalleeDecl; } 506 unsigned getNumParams() const { 507 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 508 return FD->getNumParams(); 509 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 510 } 511 const ParmVarDecl *getParamDecl(unsigned I) const { 512 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 513 return FD->getParamDecl(I); 514 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 515 } 516 }; 517 518 /// Sanitizers enabled for this function. 519 SanitizerSet SanOpts; 520 521 /// True if CodeGen currently emits code implementing sanitizer checks. 522 bool IsSanitizerScope = false; 523 524 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 525 class SanitizerScope { 526 CodeGenFunction *CGF; 527 public: 528 SanitizerScope(CodeGenFunction *CGF); 529 ~SanitizerScope(); 530 }; 531 532 /// In C++, whether we are code generating a thunk. This controls whether we 533 /// should emit cleanups. 534 bool CurFuncIsThunk = false; 535 536 /// In ARC, whether we should autorelease the return value. 537 bool AutoreleaseResult = false; 538 539 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 540 /// potentially set the return value. 541 bool SawAsmBlock = false; 542 543 GlobalDecl CurSEHParent; 544 545 /// True if the current function is an outlined SEH helper. This can be a 546 /// finally block or filter expression. 547 bool IsOutlinedSEHHelper = false; 548 549 /// True if CodeGen currently emits code inside presereved access index 550 /// region. 551 bool IsInPreservedAIRegion = false; 552 553 /// True if the current statement has nomerge attribute. 554 bool InNoMergeAttributedStmt = false; 555 556 /// True if the current statement has noinline attribute. 557 bool InNoInlineAttributedStmt = false; 558 559 /// True if the current statement has always_inline attribute. 560 bool InAlwaysInlineAttributedStmt = false; 561 562 // The CallExpr within the current statement that the musttail attribute 563 // applies to. nullptr if there is no 'musttail' on the current statement. 564 const CallExpr *MustTailCall = nullptr; 565 566 /// Returns true if a function must make progress, which means the 567 /// mustprogress attribute can be added. 568 bool checkIfFunctionMustProgress() { 569 if (CGM.getCodeGenOpts().getFiniteLoops() == 570 CodeGenOptions::FiniteLoopsKind::Never) 571 return false; 572 573 // C++11 and later guarantees that a thread eventually will do one of the 574 // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): 575 // - terminate, 576 // - make a call to a library I/O function, 577 // - perform an access through a volatile glvalue, or 578 // - perform a synchronization operation or an atomic operation. 579 // 580 // Hence each function is 'mustprogress' in C++11 or later. 581 return getLangOpts().CPlusPlus11; 582 } 583 584 /// Returns true if a loop must make progress, which means the mustprogress 585 /// attribute can be added. \p HasConstantCond indicates whether the branch 586 /// condition is a known constant. 587 bool checkIfLoopMustProgress(bool HasConstantCond) { 588 if (CGM.getCodeGenOpts().getFiniteLoops() == 589 CodeGenOptions::FiniteLoopsKind::Always) 590 return true; 591 if (CGM.getCodeGenOpts().getFiniteLoops() == 592 CodeGenOptions::FiniteLoopsKind::Never) 593 return false; 594 595 // If the containing function must make progress, loops also must make 596 // progress (as in C++11 and later). 597 if (checkIfFunctionMustProgress()) 598 return true; 599 600 // Now apply rules for plain C (see 6.8.5.6 in C11). 601 // Loops with constant conditions do not have to make progress in any C 602 // version. 603 if (HasConstantCond) 604 return false; 605 606 // Loops with non-constant conditions must make progress in C11 and later. 607 return getLangOpts().C11; 608 } 609 610 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 611 llvm::Value *BlockPointer = nullptr; 612 613 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 614 FieldDecl *LambdaThisCaptureField = nullptr; 615 616 /// A mapping from NRVO variables to the flags used to indicate 617 /// when the NRVO has been applied to this variable. 618 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 619 620 EHScopeStack EHStack; 621 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 622 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 623 624 llvm::Instruction *CurrentFuncletPad = nullptr; 625 626 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 627 bool isRedundantBeforeReturn() override { return true; } 628 629 llvm::Value *Addr; 630 llvm::Value *Size; 631 632 public: 633 CallLifetimeEnd(Address addr, llvm::Value *size) 634 : Addr(addr.getPointer()), Size(size) {} 635 636 void Emit(CodeGenFunction &CGF, Flags flags) override { 637 CGF.EmitLifetimeEnd(Size, Addr); 638 } 639 }; 640 641 /// Header for data within LifetimeExtendedCleanupStack. 642 struct LifetimeExtendedCleanupHeader { 643 /// The size of the following cleanup object. 644 unsigned Size; 645 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 646 unsigned Kind : 31; 647 /// Whether this is a conditional cleanup. 648 unsigned IsConditional : 1; 649 650 size_t getSize() const { return Size; } 651 CleanupKind getKind() const { return (CleanupKind)Kind; } 652 bool isConditional() const { return IsConditional; } 653 }; 654 655 /// i32s containing the indexes of the cleanup destinations. 656 Address NormalCleanupDest = Address::invalid(); 657 658 unsigned NextCleanupDestIndex = 1; 659 660 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 661 llvm::BasicBlock *EHResumeBlock = nullptr; 662 663 /// The exception slot. All landing pads write the current exception pointer 664 /// into this alloca. 665 llvm::Value *ExceptionSlot = nullptr; 666 667 /// The selector slot. Under the MandatoryCleanup model, all landing pads 668 /// write the current selector value into this alloca. 669 llvm::AllocaInst *EHSelectorSlot = nullptr; 670 671 /// A stack of exception code slots. Entering an __except block pushes a slot 672 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 673 /// a value from the top of the stack. 674 SmallVector<Address, 1> SEHCodeSlotStack; 675 676 /// Value returned by __exception_info intrinsic. 677 llvm::Value *SEHInfo = nullptr; 678 679 /// Emits a landing pad for the current EH stack. 680 llvm::BasicBlock *EmitLandingPad(); 681 682 llvm::BasicBlock *getInvokeDestImpl(); 683 684 /// Parent loop-based directive for scan directive. 685 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 686 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 687 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 688 llvm::BasicBlock *OMPScanExitBlock = nullptr; 689 llvm::BasicBlock *OMPScanDispatch = nullptr; 690 bool OMPFirstScanLoop = false; 691 692 /// Manages parent directive for scan directives. 693 class ParentLoopDirectiveForScanRegion { 694 CodeGenFunction &CGF; 695 const OMPExecutableDirective *ParentLoopDirectiveForScan; 696 697 public: 698 ParentLoopDirectiveForScanRegion( 699 CodeGenFunction &CGF, 700 const OMPExecutableDirective &ParentLoopDirectiveForScan) 701 : CGF(CGF), 702 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 703 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 704 } 705 ~ParentLoopDirectiveForScanRegion() { 706 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 707 } 708 }; 709 710 template <class T> 711 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 712 return DominatingValue<T>::save(*this, value); 713 } 714 715 class CGFPOptionsRAII { 716 public: 717 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 718 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 719 ~CGFPOptionsRAII(); 720 721 private: 722 void ConstructorHelper(FPOptions FPFeatures); 723 CodeGenFunction &CGF; 724 FPOptions OldFPFeatures; 725 llvm::fp::ExceptionBehavior OldExcept; 726 llvm::RoundingMode OldRounding; 727 std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 728 }; 729 FPOptions CurFPFeatures; 730 731 public: 732 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 733 /// rethrows. 734 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 735 736 /// A class controlling the emission of a finally block. 737 class FinallyInfo { 738 /// Where the catchall's edge through the cleanup should go. 739 JumpDest RethrowDest; 740 741 /// A function to call to enter the catch. 742 llvm::FunctionCallee BeginCatchFn; 743 744 /// An i1 variable indicating whether or not the @finally is 745 /// running for an exception. 746 llvm::AllocaInst *ForEHVar; 747 748 /// An i8* variable into which the exception pointer to rethrow 749 /// has been saved. 750 llvm::AllocaInst *SavedExnVar; 751 752 public: 753 void enter(CodeGenFunction &CGF, const Stmt *Finally, 754 llvm::FunctionCallee beginCatchFn, 755 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 756 void exit(CodeGenFunction &CGF); 757 }; 758 759 /// Returns true inside SEH __try blocks. 760 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 761 762 /// Returns true while emitting a cleanuppad. 763 bool isCleanupPadScope() const { 764 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 765 } 766 767 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 768 /// current full-expression. Safe against the possibility that 769 /// we're currently inside a conditionally-evaluated expression. 770 template <class T, class... As> 771 void pushFullExprCleanup(CleanupKind kind, As... A) { 772 // If we're not in a conditional branch, or if none of the 773 // arguments requires saving, then use the unconditional cleanup. 774 if (!isInConditionalBranch()) 775 return EHStack.pushCleanup<T>(kind, A...); 776 777 // Stash values in a tuple so we can guarantee the order of saves. 778 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 779 SavedTuple Saved{saveValueInCond(A)...}; 780 781 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 782 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 783 initFullExprCleanup(); 784 } 785 786 /// Queue a cleanup to be pushed after finishing the current full-expression, 787 /// potentially with an active flag. 788 template <class T, class... As> 789 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 790 if (!isInConditionalBranch()) 791 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 792 A...); 793 794 Address ActiveFlag = createCleanupActiveFlag(); 795 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 796 "cleanup active flag should never need saving"); 797 798 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 799 SavedTuple Saved{saveValueInCond(A)...}; 800 801 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 802 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 803 } 804 805 template <class T, class... As> 806 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 807 Address ActiveFlag, As... A) { 808 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 809 ActiveFlag.isValid()}; 810 811 size_t OldSize = LifetimeExtendedCleanupStack.size(); 812 LifetimeExtendedCleanupStack.resize( 813 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 814 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 815 816 static_assert(sizeof(Header) % alignof(T) == 0, 817 "Cleanup will be allocated on misaligned address"); 818 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 819 new (Buffer) LifetimeExtendedCleanupHeader(Header); 820 new (Buffer + sizeof(Header)) T(A...); 821 if (Header.IsConditional) 822 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 823 } 824 825 /// Set up the last cleanup that was pushed as a conditional 826 /// full-expression cleanup. 827 void initFullExprCleanup() { 828 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 829 } 830 831 void initFullExprCleanupWithFlag(Address ActiveFlag); 832 Address createCleanupActiveFlag(); 833 834 /// PushDestructorCleanup - Push a cleanup to call the 835 /// complete-object destructor of an object of the given type at the 836 /// given address. Does nothing if T is not a C++ class type with a 837 /// non-trivial destructor. 838 void PushDestructorCleanup(QualType T, Address Addr); 839 840 /// PushDestructorCleanup - Push a cleanup to call the 841 /// complete-object variant of the given destructor on the object at 842 /// the given address. 843 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 844 Address Addr); 845 846 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 847 /// process all branch fixups. 848 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 849 850 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 851 /// The block cannot be reactivated. Pops it if it's the top of the 852 /// stack. 853 /// 854 /// \param DominatingIP - An instruction which is known to 855 /// dominate the current IP (if set) and which lies along 856 /// all paths of execution between the current IP and the 857 /// the point at which the cleanup comes into scope. 858 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 859 llvm::Instruction *DominatingIP); 860 861 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 862 /// Cannot be used to resurrect a deactivated cleanup. 863 /// 864 /// \param DominatingIP - An instruction which is known to 865 /// dominate the current IP (if set) and which lies along 866 /// all paths of execution between the current IP and the 867 /// the point at which the cleanup comes into scope. 868 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 869 llvm::Instruction *DominatingIP); 870 871 /// Enters a new scope for capturing cleanups, all of which 872 /// will be executed once the scope is exited. 873 class RunCleanupsScope { 874 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 875 size_t LifetimeExtendedCleanupStackSize; 876 bool OldDidCallStackSave; 877 protected: 878 bool PerformCleanup; 879 private: 880 881 RunCleanupsScope(const RunCleanupsScope &) = delete; 882 void operator=(const RunCleanupsScope &) = delete; 883 884 protected: 885 CodeGenFunction& CGF; 886 887 public: 888 /// Enter a new cleanup scope. 889 explicit RunCleanupsScope(CodeGenFunction &CGF) 890 : PerformCleanup(true), CGF(CGF) 891 { 892 CleanupStackDepth = CGF.EHStack.stable_begin(); 893 LifetimeExtendedCleanupStackSize = 894 CGF.LifetimeExtendedCleanupStack.size(); 895 OldDidCallStackSave = CGF.DidCallStackSave; 896 CGF.DidCallStackSave = false; 897 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 898 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 899 } 900 901 /// Exit this cleanup scope, emitting any accumulated cleanups. 902 ~RunCleanupsScope() { 903 if (PerformCleanup) 904 ForceCleanup(); 905 } 906 907 /// Determine whether this scope requires any cleanups. 908 bool requiresCleanups() const { 909 return CGF.EHStack.stable_begin() != CleanupStackDepth; 910 } 911 912 /// Force the emission of cleanups now, instead of waiting 913 /// until this object is destroyed. 914 /// \param ValuesToReload - A list of values that need to be available at 915 /// the insertion point after cleanup emission. If cleanup emission created 916 /// a shared cleanup block, these value pointers will be rewritten. 917 /// Otherwise, they not will be modified. 918 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 919 assert(PerformCleanup && "Already forced cleanup"); 920 CGF.DidCallStackSave = OldDidCallStackSave; 921 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 922 ValuesToReload); 923 PerformCleanup = false; 924 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 925 } 926 }; 927 928 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 929 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 930 EHScopeStack::stable_end(); 931 932 class LexicalScope : public RunCleanupsScope { 933 SourceRange Range; 934 SmallVector<const LabelDecl*, 4> Labels; 935 LexicalScope *ParentScope; 936 937 LexicalScope(const LexicalScope &) = delete; 938 void operator=(const LexicalScope &) = delete; 939 940 public: 941 /// Enter a new cleanup scope. 942 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 943 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 944 CGF.CurLexicalScope = this; 945 if (CGDebugInfo *DI = CGF.getDebugInfo()) 946 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 947 } 948 949 void addLabel(const LabelDecl *label) { 950 assert(PerformCleanup && "adding label to dead scope?"); 951 Labels.push_back(label); 952 } 953 954 /// Exit this cleanup scope, emitting any accumulated 955 /// cleanups. 956 ~LexicalScope() { 957 if (CGDebugInfo *DI = CGF.getDebugInfo()) 958 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 959 960 // If we should perform a cleanup, force them now. Note that 961 // this ends the cleanup scope before rescoping any labels. 962 if (PerformCleanup) { 963 ApplyDebugLocation DL(CGF, Range.getEnd()); 964 ForceCleanup(); 965 } 966 } 967 968 /// Force the emission of cleanups now, instead of waiting 969 /// until this object is destroyed. 970 void ForceCleanup() { 971 CGF.CurLexicalScope = ParentScope; 972 RunCleanupsScope::ForceCleanup(); 973 974 if (!Labels.empty()) 975 rescopeLabels(); 976 } 977 978 bool hasLabels() const { 979 return !Labels.empty(); 980 } 981 982 void rescopeLabels(); 983 }; 984 985 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 986 987 /// The class used to assign some variables some temporarily addresses. 988 class OMPMapVars { 989 DeclMapTy SavedLocals; 990 DeclMapTy SavedTempAddresses; 991 OMPMapVars(const OMPMapVars &) = delete; 992 void operator=(const OMPMapVars &) = delete; 993 994 public: 995 explicit OMPMapVars() = default; 996 ~OMPMapVars() { 997 assert(SavedLocals.empty() && "Did not restored original addresses."); 998 }; 999 1000 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1001 /// function \p CGF. 1002 /// \return true if at least one variable was set already, false otherwise. 1003 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1004 Address TempAddr) { 1005 LocalVD = LocalVD->getCanonicalDecl(); 1006 // Only save it once. 1007 if (SavedLocals.count(LocalVD)) return false; 1008 1009 // Copy the existing local entry to SavedLocals. 1010 auto it = CGF.LocalDeclMap.find(LocalVD); 1011 if (it != CGF.LocalDeclMap.end()) 1012 SavedLocals.try_emplace(LocalVD, it->second); 1013 else 1014 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1015 1016 // Generate the private entry. 1017 QualType VarTy = LocalVD->getType(); 1018 if (VarTy->isReferenceType()) { 1019 Address Temp = CGF.CreateMemTemp(VarTy); 1020 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1021 TempAddr = Temp; 1022 } 1023 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1024 1025 return true; 1026 } 1027 1028 /// Applies new addresses to the list of the variables. 1029 /// \return true if at least one variable is using new address, false 1030 /// otherwise. 1031 bool apply(CodeGenFunction &CGF) { 1032 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1033 SavedTempAddresses.clear(); 1034 return !SavedLocals.empty(); 1035 } 1036 1037 /// Restores original addresses of the variables. 1038 void restore(CodeGenFunction &CGF) { 1039 if (!SavedLocals.empty()) { 1040 copyInto(SavedLocals, CGF.LocalDeclMap); 1041 SavedLocals.clear(); 1042 } 1043 } 1044 1045 private: 1046 /// Copy all the entries in the source map over the corresponding 1047 /// entries in the destination, which must exist. 1048 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1049 for (auto &Pair : Src) { 1050 if (!Pair.second.isValid()) { 1051 Dest.erase(Pair.first); 1052 continue; 1053 } 1054 1055 auto I = Dest.find(Pair.first); 1056 if (I != Dest.end()) 1057 I->second = Pair.second; 1058 else 1059 Dest.insert(Pair); 1060 } 1061 } 1062 }; 1063 1064 /// The scope used to remap some variables as private in the OpenMP loop body 1065 /// (or other captured region emitted without outlining), and to restore old 1066 /// vars back on exit. 1067 class OMPPrivateScope : public RunCleanupsScope { 1068 OMPMapVars MappedVars; 1069 OMPPrivateScope(const OMPPrivateScope &) = delete; 1070 void operator=(const OMPPrivateScope &) = delete; 1071 1072 public: 1073 /// Enter a new OpenMP private scope. 1074 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1075 1076 /// Registers \p LocalVD variable as a private with \p Addr as the address 1077 /// of the corresponding private variable. \p 1078 /// PrivateGen is the address of the generated private variable. 1079 /// \return true if the variable is registered as private, false if it has 1080 /// been privatized already. 1081 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1082 assert(PerformCleanup && "adding private to dead scope"); 1083 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1084 } 1085 1086 /// Privatizes local variables previously registered as private. 1087 /// Registration is separate from the actual privatization to allow 1088 /// initializers use values of the original variables, not the private one. 1089 /// This is important, for example, if the private variable is a class 1090 /// variable initialized by a constructor that references other private 1091 /// variables. But at initialization original variables must be used, not 1092 /// private copies. 1093 /// \return true if at least one variable was privatized, false otherwise. 1094 bool Privatize() { return MappedVars.apply(CGF); } 1095 1096 void ForceCleanup() { 1097 RunCleanupsScope::ForceCleanup(); 1098 restoreMap(); 1099 } 1100 1101 /// Exit scope - all the mapped variables are restored. 1102 ~OMPPrivateScope() { 1103 if (PerformCleanup) 1104 ForceCleanup(); 1105 } 1106 1107 /// Checks if the global variable is captured in current function. 1108 bool isGlobalVarCaptured(const VarDecl *VD) const { 1109 VD = VD->getCanonicalDecl(); 1110 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1111 } 1112 1113 /// Restore all mapped variables w/o clean up. This is usefully when we want 1114 /// to reference the original variables but don't want the clean up because 1115 /// that could emit lifetime end too early, causing backend issue #56913. 1116 void restoreMap() { MappedVars.restore(CGF); } 1117 }; 1118 1119 /// Save/restore original map of previously emitted local vars in case when we 1120 /// need to duplicate emission of the same code several times in the same 1121 /// function for OpenMP code. 1122 class OMPLocalDeclMapRAII { 1123 CodeGenFunction &CGF; 1124 DeclMapTy SavedMap; 1125 1126 public: 1127 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1128 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1129 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1130 }; 1131 1132 /// Takes the old cleanup stack size and emits the cleanup blocks 1133 /// that have been added. 1134 void 1135 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1136 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1137 1138 /// Takes the old cleanup stack size and emits the cleanup blocks 1139 /// that have been added, then adds all lifetime-extended cleanups from 1140 /// the given position to the stack. 1141 void 1142 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1143 size_t OldLifetimeExtendedStackSize, 1144 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1145 1146 void ResolveBranchFixups(llvm::BasicBlock *Target); 1147 1148 /// The given basic block lies in the current EH scope, but may be a 1149 /// target of a potentially scope-crossing jump; get a stable handle 1150 /// to which we can perform this jump later. 1151 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1152 return JumpDest(Target, 1153 EHStack.getInnermostNormalCleanup(), 1154 NextCleanupDestIndex++); 1155 } 1156 1157 /// The given basic block lies in the current EH scope, but may be a 1158 /// target of a potentially scope-crossing jump; get a stable handle 1159 /// to which we can perform this jump later. 1160 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1161 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1162 } 1163 1164 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1165 /// block through the normal cleanup handling code (if any) and then 1166 /// on to \arg Dest. 1167 void EmitBranchThroughCleanup(JumpDest Dest); 1168 1169 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1170 /// specified destination obviously has no cleanups to run. 'false' is always 1171 /// a conservatively correct answer for this method. 1172 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1173 1174 /// popCatchScope - Pops the catch scope at the top of the EHScope 1175 /// stack, emitting any required code (other than the catch handlers 1176 /// themselves). 1177 void popCatchScope(); 1178 1179 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1180 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1181 llvm::BasicBlock * 1182 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1183 1184 /// An object to manage conditionally-evaluated expressions. 1185 class ConditionalEvaluation { 1186 llvm::BasicBlock *StartBB; 1187 1188 public: 1189 ConditionalEvaluation(CodeGenFunction &CGF) 1190 : StartBB(CGF.Builder.GetInsertBlock()) {} 1191 1192 void begin(CodeGenFunction &CGF) { 1193 assert(CGF.OutermostConditional != this); 1194 if (!CGF.OutermostConditional) 1195 CGF.OutermostConditional = this; 1196 } 1197 1198 void end(CodeGenFunction &CGF) { 1199 assert(CGF.OutermostConditional != nullptr); 1200 if (CGF.OutermostConditional == this) 1201 CGF.OutermostConditional = nullptr; 1202 } 1203 1204 /// Returns a block which will be executed prior to each 1205 /// evaluation of the conditional code. 1206 llvm::BasicBlock *getStartingBlock() const { 1207 return StartBB; 1208 } 1209 }; 1210 1211 /// isInConditionalBranch - Return true if we're currently emitting 1212 /// one branch or the other of a conditional expression. 1213 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1214 1215 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1216 assert(isInConditionalBranch()); 1217 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1218 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1219 store->setAlignment(addr.getAlignment().getAsAlign()); 1220 } 1221 1222 /// An RAII object to record that we're evaluating a statement 1223 /// expression. 1224 class StmtExprEvaluation { 1225 CodeGenFunction &CGF; 1226 1227 /// We have to save the outermost conditional: cleanups in a 1228 /// statement expression aren't conditional just because the 1229 /// StmtExpr is. 1230 ConditionalEvaluation *SavedOutermostConditional; 1231 1232 public: 1233 StmtExprEvaluation(CodeGenFunction &CGF) 1234 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1235 CGF.OutermostConditional = nullptr; 1236 } 1237 1238 ~StmtExprEvaluation() { 1239 CGF.OutermostConditional = SavedOutermostConditional; 1240 CGF.EnsureInsertPoint(); 1241 } 1242 }; 1243 1244 /// An object which temporarily prevents a value from being 1245 /// destroyed by aggressive peephole optimizations that assume that 1246 /// all uses of a value have been realized in the IR. 1247 class PeepholeProtection { 1248 llvm::Instruction *Inst; 1249 friend class CodeGenFunction; 1250 1251 public: 1252 PeepholeProtection() : Inst(nullptr) {} 1253 }; 1254 1255 /// A non-RAII class containing all the information about a bound 1256 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1257 /// this which makes individual mappings very simple; using this 1258 /// class directly is useful when you have a variable number of 1259 /// opaque values or don't want the RAII functionality for some 1260 /// reason. 1261 class OpaqueValueMappingData { 1262 const OpaqueValueExpr *OpaqueValue; 1263 bool BoundLValue; 1264 CodeGenFunction::PeepholeProtection Protection; 1265 1266 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1267 bool boundLValue) 1268 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1269 public: 1270 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1271 1272 static bool shouldBindAsLValue(const Expr *expr) { 1273 // gl-values should be bound as l-values for obvious reasons. 1274 // Records should be bound as l-values because IR generation 1275 // always keeps them in memory. Expressions of function type 1276 // act exactly like l-values but are formally required to be 1277 // r-values in C. 1278 return expr->isGLValue() || 1279 expr->getType()->isFunctionType() || 1280 hasAggregateEvaluationKind(expr->getType()); 1281 } 1282 1283 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1284 const OpaqueValueExpr *ov, 1285 const Expr *e) { 1286 if (shouldBindAsLValue(ov)) 1287 return bind(CGF, ov, CGF.EmitLValue(e)); 1288 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1289 } 1290 1291 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1292 const OpaqueValueExpr *ov, 1293 const LValue &lv) { 1294 assert(shouldBindAsLValue(ov)); 1295 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1296 return OpaqueValueMappingData(ov, true); 1297 } 1298 1299 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1300 const OpaqueValueExpr *ov, 1301 const RValue &rv) { 1302 assert(!shouldBindAsLValue(ov)); 1303 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1304 1305 OpaqueValueMappingData data(ov, false); 1306 1307 // Work around an extremely aggressive peephole optimization in 1308 // EmitScalarConversion which assumes that all other uses of a 1309 // value are extant. 1310 data.Protection = CGF.protectFromPeepholes(rv); 1311 1312 return data; 1313 } 1314 1315 bool isValid() const { return OpaqueValue != nullptr; } 1316 void clear() { OpaqueValue = nullptr; } 1317 1318 void unbind(CodeGenFunction &CGF) { 1319 assert(OpaqueValue && "no data to unbind!"); 1320 1321 if (BoundLValue) { 1322 CGF.OpaqueLValues.erase(OpaqueValue); 1323 } else { 1324 CGF.OpaqueRValues.erase(OpaqueValue); 1325 CGF.unprotectFromPeepholes(Protection); 1326 } 1327 } 1328 }; 1329 1330 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1331 class OpaqueValueMapping { 1332 CodeGenFunction &CGF; 1333 OpaqueValueMappingData Data; 1334 1335 public: 1336 static bool shouldBindAsLValue(const Expr *expr) { 1337 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1338 } 1339 1340 /// Build the opaque value mapping for the given conditional 1341 /// operator if it's the GNU ?: extension. This is a common 1342 /// enough pattern that the convenience operator is really 1343 /// helpful. 1344 /// 1345 OpaqueValueMapping(CodeGenFunction &CGF, 1346 const AbstractConditionalOperator *op) : CGF(CGF) { 1347 if (isa<ConditionalOperator>(op)) 1348 // Leave Data empty. 1349 return; 1350 1351 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1352 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1353 e->getCommon()); 1354 } 1355 1356 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1357 /// expression is set to the expression the OVE represents. 1358 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1359 : CGF(CGF) { 1360 if (OV) { 1361 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1362 "for OVE with no source expression"); 1363 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1364 } 1365 } 1366 1367 OpaqueValueMapping(CodeGenFunction &CGF, 1368 const OpaqueValueExpr *opaqueValue, 1369 LValue lvalue) 1370 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1371 } 1372 1373 OpaqueValueMapping(CodeGenFunction &CGF, 1374 const OpaqueValueExpr *opaqueValue, 1375 RValue rvalue) 1376 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1377 } 1378 1379 void pop() { 1380 Data.unbind(CGF); 1381 Data.clear(); 1382 } 1383 1384 ~OpaqueValueMapping() { 1385 if (Data.isValid()) Data.unbind(CGF); 1386 } 1387 }; 1388 1389 private: 1390 CGDebugInfo *DebugInfo; 1391 /// Used to create unique names for artificial VLA size debug info variables. 1392 unsigned VLAExprCounter = 0; 1393 bool DisableDebugInfo = false; 1394 1395 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1396 /// calling llvm.stacksave for multiple VLAs in the same scope. 1397 bool DidCallStackSave = false; 1398 1399 /// IndirectBranch - The first time an indirect goto is seen we create a block 1400 /// with an indirect branch. Every time we see the address of a label taken, 1401 /// we add the label to the indirect goto. Every subsequent indirect goto is 1402 /// codegen'd as a jump to the IndirectBranch's basic block. 1403 llvm::IndirectBrInst *IndirectBranch = nullptr; 1404 1405 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1406 /// decls. 1407 DeclMapTy LocalDeclMap; 1408 1409 // Keep track of the cleanups for callee-destructed parameters pushed to the 1410 // cleanup stack so that they can be deactivated later. 1411 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1412 CalleeDestructedParamCleanups; 1413 1414 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1415 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1416 /// parameter. 1417 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1418 SizeArguments; 1419 1420 /// Track escaped local variables with auto storage. Used during SEH 1421 /// outlining to produce a call to llvm.localescape. 1422 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1423 1424 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1425 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1426 1427 // BreakContinueStack - This keeps track of where break and continue 1428 // statements should jump to. 1429 struct BreakContinue { 1430 BreakContinue(JumpDest Break, JumpDest Continue) 1431 : BreakBlock(Break), ContinueBlock(Continue) {} 1432 1433 JumpDest BreakBlock; 1434 JumpDest ContinueBlock; 1435 }; 1436 SmallVector<BreakContinue, 8> BreakContinueStack; 1437 1438 /// Handles cancellation exit points in OpenMP-related constructs. 1439 class OpenMPCancelExitStack { 1440 /// Tracks cancellation exit point and join point for cancel-related exit 1441 /// and normal exit. 1442 struct CancelExit { 1443 CancelExit() = default; 1444 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1445 JumpDest ContBlock) 1446 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1447 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1448 /// true if the exit block has been emitted already by the special 1449 /// emitExit() call, false if the default codegen is used. 1450 bool HasBeenEmitted = false; 1451 JumpDest ExitBlock; 1452 JumpDest ContBlock; 1453 }; 1454 1455 SmallVector<CancelExit, 8> Stack; 1456 1457 public: 1458 OpenMPCancelExitStack() : Stack(1) {} 1459 ~OpenMPCancelExitStack() = default; 1460 /// Fetches the exit block for the current OpenMP construct. 1461 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1462 /// Emits exit block with special codegen procedure specific for the related 1463 /// OpenMP construct + emits code for normal construct cleanup. 1464 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1465 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1466 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1467 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1468 assert(CGF.HaveInsertPoint()); 1469 assert(!Stack.back().HasBeenEmitted); 1470 auto IP = CGF.Builder.saveAndClearIP(); 1471 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1472 CodeGen(CGF); 1473 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1474 CGF.Builder.restoreIP(IP); 1475 Stack.back().HasBeenEmitted = true; 1476 } 1477 CodeGen(CGF); 1478 } 1479 /// Enter the cancel supporting \a Kind construct. 1480 /// \param Kind OpenMP directive that supports cancel constructs. 1481 /// \param HasCancel true, if the construct has inner cancel directive, 1482 /// false otherwise. 1483 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1484 Stack.push_back({Kind, 1485 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1486 : JumpDest(), 1487 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1488 : JumpDest()}); 1489 } 1490 /// Emits default exit point for the cancel construct (if the special one 1491 /// has not be used) + join point for cancel/normal exits. 1492 void exit(CodeGenFunction &CGF) { 1493 if (getExitBlock().isValid()) { 1494 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1495 bool HaveIP = CGF.HaveInsertPoint(); 1496 if (!Stack.back().HasBeenEmitted) { 1497 if (HaveIP) 1498 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1499 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1500 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1501 } 1502 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1503 if (!HaveIP) { 1504 CGF.Builder.CreateUnreachable(); 1505 CGF.Builder.ClearInsertionPoint(); 1506 } 1507 } 1508 Stack.pop_back(); 1509 } 1510 }; 1511 OpenMPCancelExitStack OMPCancelStack; 1512 1513 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1514 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1515 Stmt::Likelihood LH); 1516 1517 CodeGenPGO PGO; 1518 1519 /// Calculate branch weights appropriate for PGO data 1520 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1521 uint64_t FalseCount) const; 1522 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1523 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1524 uint64_t LoopCount) const; 1525 1526 public: 1527 /// Increment the profiler's counter for the given statement by \p StepV. 1528 /// If \p StepV is null, the default increment is 1. 1529 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1530 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1531 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && 1532 !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) 1533 PGO.emitCounterIncrement(Builder, S, StepV); 1534 PGO.setCurrentStmt(S); 1535 } 1536 1537 /// Get the profiler's count for the given statement. 1538 uint64_t getProfileCount(const Stmt *S) { 1539 return PGO.getStmtCount(S).value_or(0); 1540 } 1541 1542 /// Set the profiler's current count. 1543 void setCurrentProfileCount(uint64_t Count) { 1544 PGO.setCurrentRegionCount(Count); 1545 } 1546 1547 /// Get the profiler's current count. This is generally the count for the most 1548 /// recently incremented counter. 1549 uint64_t getCurrentProfileCount() { 1550 return PGO.getCurrentRegionCount(); 1551 } 1552 1553 private: 1554 1555 /// SwitchInsn - This is nearest current switch instruction. It is null if 1556 /// current context is not in a switch. 1557 llvm::SwitchInst *SwitchInsn = nullptr; 1558 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1559 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1560 1561 /// The likelihood attributes of the SwitchCase. 1562 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1563 1564 /// CaseRangeBlock - This block holds if condition check for last case 1565 /// statement range in current switch instruction. 1566 llvm::BasicBlock *CaseRangeBlock = nullptr; 1567 1568 /// OpaqueLValues - Keeps track of the current set of opaque value 1569 /// expressions. 1570 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1571 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1572 1573 // VLASizeMap - This keeps track of the associated size for each VLA type. 1574 // We track this by the size expression rather than the type itself because 1575 // in certain situations, like a const qualifier applied to an VLA typedef, 1576 // multiple VLA types can share the same size expression. 1577 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1578 // enter/leave scopes. 1579 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1580 1581 /// A block containing a single 'unreachable' instruction. Created 1582 /// lazily by getUnreachableBlock(). 1583 llvm::BasicBlock *UnreachableBlock = nullptr; 1584 1585 /// Counts of the number return expressions in the function. 1586 unsigned NumReturnExprs = 0; 1587 1588 /// Count the number of simple (constant) return expressions in the function. 1589 unsigned NumSimpleReturnExprs = 0; 1590 1591 /// The last regular (non-return) debug location (breakpoint) in the function. 1592 SourceLocation LastStopPoint; 1593 1594 public: 1595 /// Source location information about the default argument or member 1596 /// initializer expression we're evaluating, if any. 1597 CurrentSourceLocExprScope CurSourceLocExprScope; 1598 using SourceLocExprScopeGuard = 1599 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1600 1601 /// A scope within which we are constructing the fields of an object which 1602 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1603 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1604 class FieldConstructionScope { 1605 public: 1606 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1607 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1608 CGF.CXXDefaultInitExprThis = This; 1609 } 1610 ~FieldConstructionScope() { 1611 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1612 } 1613 1614 private: 1615 CodeGenFunction &CGF; 1616 Address OldCXXDefaultInitExprThis; 1617 }; 1618 1619 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1620 /// is overridden to be the object under construction. 1621 class CXXDefaultInitExprScope { 1622 public: 1623 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1624 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1625 OldCXXThisAlignment(CGF.CXXThisAlignment), 1626 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1627 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1628 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1629 } 1630 ~CXXDefaultInitExprScope() { 1631 CGF.CXXThisValue = OldCXXThisValue; 1632 CGF.CXXThisAlignment = OldCXXThisAlignment; 1633 } 1634 1635 public: 1636 CodeGenFunction &CGF; 1637 llvm::Value *OldCXXThisValue; 1638 CharUnits OldCXXThisAlignment; 1639 SourceLocExprScopeGuard SourceLocScope; 1640 }; 1641 1642 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1643 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1644 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1645 }; 1646 1647 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1648 /// current loop index is overridden. 1649 class ArrayInitLoopExprScope { 1650 public: 1651 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1652 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1653 CGF.ArrayInitIndex = Index; 1654 } 1655 ~ArrayInitLoopExprScope() { 1656 CGF.ArrayInitIndex = OldArrayInitIndex; 1657 } 1658 1659 private: 1660 CodeGenFunction &CGF; 1661 llvm::Value *OldArrayInitIndex; 1662 }; 1663 1664 class InlinedInheritingConstructorScope { 1665 public: 1666 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1667 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1668 OldCurCodeDecl(CGF.CurCodeDecl), 1669 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1670 OldCXXABIThisValue(CGF.CXXABIThisValue), 1671 OldCXXThisValue(CGF.CXXThisValue), 1672 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1673 OldCXXThisAlignment(CGF.CXXThisAlignment), 1674 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1675 OldCXXInheritedCtorInitExprArgs( 1676 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1677 CGF.CurGD = GD; 1678 CGF.CurFuncDecl = CGF.CurCodeDecl = 1679 cast<CXXConstructorDecl>(GD.getDecl()); 1680 CGF.CXXABIThisDecl = nullptr; 1681 CGF.CXXABIThisValue = nullptr; 1682 CGF.CXXThisValue = nullptr; 1683 CGF.CXXABIThisAlignment = CharUnits(); 1684 CGF.CXXThisAlignment = CharUnits(); 1685 CGF.ReturnValue = Address::invalid(); 1686 CGF.FnRetTy = QualType(); 1687 CGF.CXXInheritedCtorInitExprArgs.clear(); 1688 } 1689 ~InlinedInheritingConstructorScope() { 1690 CGF.CurGD = OldCurGD; 1691 CGF.CurFuncDecl = OldCurFuncDecl; 1692 CGF.CurCodeDecl = OldCurCodeDecl; 1693 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1694 CGF.CXXABIThisValue = OldCXXABIThisValue; 1695 CGF.CXXThisValue = OldCXXThisValue; 1696 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1697 CGF.CXXThisAlignment = OldCXXThisAlignment; 1698 CGF.ReturnValue = OldReturnValue; 1699 CGF.FnRetTy = OldFnRetTy; 1700 CGF.CXXInheritedCtorInitExprArgs = 1701 std::move(OldCXXInheritedCtorInitExprArgs); 1702 } 1703 1704 private: 1705 CodeGenFunction &CGF; 1706 GlobalDecl OldCurGD; 1707 const Decl *OldCurFuncDecl; 1708 const Decl *OldCurCodeDecl; 1709 ImplicitParamDecl *OldCXXABIThisDecl; 1710 llvm::Value *OldCXXABIThisValue; 1711 llvm::Value *OldCXXThisValue; 1712 CharUnits OldCXXABIThisAlignment; 1713 CharUnits OldCXXThisAlignment; 1714 Address OldReturnValue; 1715 QualType OldFnRetTy; 1716 CallArgList OldCXXInheritedCtorInitExprArgs; 1717 }; 1718 1719 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1720 // region body, and finalization codegen callbacks. This will class will also 1721 // contain privatization functions used by the privatization call backs 1722 // 1723 // TODO: this is temporary class for things that are being moved out of 1724 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1725 // utility function for use with the OMPBuilder. Once that move to use the 1726 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1727 // directly, or a new helper class that will contain functions used by both 1728 // this and the OMPBuilder 1729 1730 struct OMPBuilderCBHelpers { 1731 1732 OMPBuilderCBHelpers() = delete; 1733 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1734 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1735 1736 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1737 1738 /// Cleanup action for allocate support. 1739 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1740 1741 private: 1742 llvm::CallInst *RTLFnCI; 1743 1744 public: 1745 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1746 RLFnCI->removeFromParent(); 1747 } 1748 1749 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1750 if (!CGF.HaveInsertPoint()) 1751 return; 1752 CGF.Builder.Insert(RTLFnCI); 1753 } 1754 }; 1755 1756 /// Returns address of the threadprivate variable for the current 1757 /// thread. This Also create any necessary OMP runtime calls. 1758 /// 1759 /// \param VD VarDecl for Threadprivate variable. 1760 /// \param VDAddr Address of the Vardecl 1761 /// \param Loc The location where the barrier directive was encountered 1762 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1763 const VarDecl *VD, Address VDAddr, 1764 SourceLocation Loc); 1765 1766 /// Gets the OpenMP-specific address of the local variable /p VD. 1767 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1768 const VarDecl *VD); 1769 /// Get the platform-specific name separator. 1770 /// \param Parts different parts of the final name that needs separation 1771 /// \param FirstSeparator First separator used between the initial two 1772 /// parts of the name. 1773 /// \param Separator separator used between all of the rest consecutinve 1774 /// parts of the name 1775 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1776 StringRef FirstSeparator = ".", 1777 StringRef Separator = "."); 1778 /// Emit the Finalization for an OMP region 1779 /// \param CGF The Codegen function this belongs to 1780 /// \param IP Insertion point for generating the finalization code. 1781 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1782 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1783 assert(IP.getBlock()->end() != IP.getPoint() && 1784 "OpenMP IR Builder should cause terminated block!"); 1785 1786 llvm::BasicBlock *IPBB = IP.getBlock(); 1787 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1788 assert(DestBB && "Finalization block should have one successor!"); 1789 1790 // erase and replace with cleanup branch. 1791 IPBB->getTerminator()->eraseFromParent(); 1792 CGF.Builder.SetInsertPoint(IPBB); 1793 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1794 CGF.EmitBranchThroughCleanup(Dest); 1795 } 1796 1797 /// Emit the body of an OMP region 1798 /// \param CGF The Codegen function this belongs to 1799 /// \param RegionBodyStmt The body statement for the OpenMP region being 1800 /// generated 1801 /// \param AllocaIP Where to insert alloca instructions 1802 /// \param CodeGenIP Where to insert the region code 1803 /// \param RegionName Name to be used for new blocks 1804 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1805 const Stmt *RegionBodyStmt, 1806 InsertPointTy AllocaIP, 1807 InsertPointTy CodeGenIP, 1808 Twine RegionName); 1809 1810 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1811 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1812 ArrayRef<llvm::Value *> Args) { 1813 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1814 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1815 CodeGenIPBBTI->eraseFromParent(); 1816 1817 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1818 1819 if (Fn->doesNotThrow()) 1820 CGF.EmitNounwindRuntimeCall(Fn, Args); 1821 else 1822 CGF.EmitRuntimeCall(Fn, Args); 1823 1824 if (CGF.Builder.saveIP().isSet()) 1825 CGF.Builder.CreateBr(&FiniBB); 1826 } 1827 1828 /// Emit the body of an OMP region that will be outlined in 1829 /// OpenMPIRBuilder::finalize(). 1830 /// \param CGF The Codegen function this belongs to 1831 /// \param RegionBodyStmt The body statement for the OpenMP region being 1832 /// generated 1833 /// \param AllocaIP Where to insert alloca instructions 1834 /// \param CodeGenIP Where to insert the region code 1835 /// \param RegionName Name to be used for new blocks 1836 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1837 const Stmt *RegionBodyStmt, 1838 InsertPointTy AllocaIP, 1839 InsertPointTy CodeGenIP, 1840 Twine RegionName); 1841 1842 /// RAII for preserving necessary info during Outlined region body codegen. 1843 class OutlinedRegionBodyRAII { 1844 1845 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1846 CodeGenFunction::JumpDest OldReturnBlock; 1847 CodeGenFunction &CGF; 1848 1849 public: 1850 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1851 llvm::BasicBlock &RetBB) 1852 : CGF(cgf) { 1853 assert(AllocaIP.isSet() && 1854 "Must specify Insertion point for allocas of outlined function"); 1855 OldAllocaIP = CGF.AllocaInsertPt; 1856 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1857 1858 OldReturnBlock = CGF.ReturnBlock; 1859 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1860 } 1861 1862 ~OutlinedRegionBodyRAII() { 1863 CGF.AllocaInsertPt = OldAllocaIP; 1864 CGF.ReturnBlock = OldReturnBlock; 1865 } 1866 }; 1867 1868 /// RAII for preserving necessary info during inlined region body codegen. 1869 class InlinedRegionBodyRAII { 1870 1871 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1872 CodeGenFunction &CGF; 1873 1874 public: 1875 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1876 llvm::BasicBlock &FiniBB) 1877 : CGF(cgf) { 1878 // Alloca insertion block should be in the entry block of the containing 1879 // function so it expects an empty AllocaIP in which case will reuse the 1880 // old alloca insertion point, or a new AllocaIP in the same block as 1881 // the old one 1882 assert((!AllocaIP.isSet() || 1883 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1884 "Insertion point should be in the entry block of containing " 1885 "function!"); 1886 OldAllocaIP = CGF.AllocaInsertPt; 1887 if (AllocaIP.isSet()) 1888 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1889 1890 // TODO: Remove the call, after making sure the counter is not used by 1891 // the EHStack. 1892 // Since this is an inlined region, it should not modify the 1893 // ReturnBlock, and should reuse the one for the enclosing outlined 1894 // region. So, the JumpDest being return by the function is discarded 1895 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1896 } 1897 1898 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1899 }; 1900 }; 1901 1902 private: 1903 /// CXXThisDecl - When generating code for a C++ member function, 1904 /// this will hold the implicit 'this' declaration. 1905 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1906 llvm::Value *CXXABIThisValue = nullptr; 1907 llvm::Value *CXXThisValue = nullptr; 1908 CharUnits CXXABIThisAlignment; 1909 CharUnits CXXThisAlignment; 1910 1911 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1912 /// this expression. 1913 Address CXXDefaultInitExprThis = Address::invalid(); 1914 1915 /// The current array initialization index when evaluating an 1916 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1917 llvm::Value *ArrayInitIndex = nullptr; 1918 1919 /// The values of function arguments to use when evaluating 1920 /// CXXInheritedCtorInitExprs within this context. 1921 CallArgList CXXInheritedCtorInitExprArgs; 1922 1923 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1924 /// destructor, this will hold the implicit argument (e.g. VTT). 1925 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1926 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1927 1928 /// OutermostConditional - Points to the outermost active 1929 /// conditional control. This is used so that we know if a 1930 /// temporary should be destroyed conditionally. 1931 ConditionalEvaluation *OutermostConditional = nullptr; 1932 1933 /// The current lexical scope. 1934 LexicalScope *CurLexicalScope = nullptr; 1935 1936 /// The current source location that should be used for exception 1937 /// handling code. 1938 SourceLocation CurEHLocation; 1939 1940 /// BlockByrefInfos - For each __block variable, contains 1941 /// information about the layout of the variable. 1942 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1943 1944 /// Used by -fsanitize=nullability-return to determine whether the return 1945 /// value can be checked. 1946 llvm::Value *RetValNullabilityPrecondition = nullptr; 1947 1948 /// Check if -fsanitize=nullability-return instrumentation is required for 1949 /// this function. 1950 bool requiresReturnValueNullabilityCheck() const { 1951 return RetValNullabilityPrecondition; 1952 } 1953 1954 /// Used to store precise source locations for return statements by the 1955 /// runtime return value checks. 1956 Address ReturnLocation = Address::invalid(); 1957 1958 /// Check if the return value of this function requires sanitization. 1959 bool requiresReturnValueCheck() const; 1960 1961 llvm::BasicBlock *TerminateLandingPad = nullptr; 1962 llvm::BasicBlock *TerminateHandler = nullptr; 1963 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1964 1965 /// Terminate funclets keyed by parent funclet pad. 1966 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1967 1968 /// Largest vector width used in ths function. Will be used to create a 1969 /// function attribute. 1970 unsigned LargestVectorWidth = 0; 1971 1972 /// True if we need emit the life-time markers. This is initially set in 1973 /// the constructor, but could be overwritten to true if this is a coroutine. 1974 bool ShouldEmitLifetimeMarkers; 1975 1976 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1977 /// the function metadata. 1978 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 1979 1980 public: 1981 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1982 ~CodeGenFunction(); 1983 1984 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1985 ASTContext &getContext() const { return CGM.getContext(); } 1986 CGDebugInfo *getDebugInfo() { 1987 if (DisableDebugInfo) 1988 return nullptr; 1989 return DebugInfo; 1990 } 1991 void disableDebugInfo() { DisableDebugInfo = true; } 1992 void enableDebugInfo() { DisableDebugInfo = false; } 1993 1994 bool shouldUseFusedARCCalls() { 1995 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1996 } 1997 1998 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1999 2000 /// Returns a pointer to the function's exception object and selector slot, 2001 /// which is assigned in every landing pad. 2002 Address getExceptionSlot(); 2003 Address getEHSelectorSlot(); 2004 2005 /// Returns the contents of the function's exception object and selector 2006 /// slots. 2007 llvm::Value *getExceptionFromSlot(); 2008 llvm::Value *getSelectorFromSlot(); 2009 2010 Address getNormalCleanupDestSlot(); 2011 2012 llvm::BasicBlock *getUnreachableBlock() { 2013 if (!UnreachableBlock) { 2014 UnreachableBlock = createBasicBlock("unreachable"); 2015 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2016 } 2017 return UnreachableBlock; 2018 } 2019 2020 llvm::BasicBlock *getInvokeDest() { 2021 if (!EHStack.requiresLandingPad()) return nullptr; 2022 return getInvokeDestImpl(); 2023 } 2024 2025 bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } 2026 2027 const TargetInfo &getTarget() const { return Target; } 2028 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2029 const TargetCodeGenInfo &getTargetHooks() const { 2030 return CGM.getTargetCodeGenInfo(); 2031 } 2032 2033 //===--------------------------------------------------------------------===// 2034 // Cleanups 2035 //===--------------------------------------------------------------------===// 2036 2037 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2038 2039 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2040 Address arrayEndPointer, 2041 QualType elementType, 2042 CharUnits elementAlignment, 2043 Destroyer *destroyer); 2044 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2045 llvm::Value *arrayEnd, 2046 QualType elementType, 2047 CharUnits elementAlignment, 2048 Destroyer *destroyer); 2049 2050 void pushDestroy(QualType::DestructionKind dtorKind, 2051 Address addr, QualType type); 2052 void pushEHDestroy(QualType::DestructionKind dtorKind, 2053 Address addr, QualType type); 2054 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2055 Destroyer *destroyer, bool useEHCleanupForArray); 2056 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2057 QualType type, Destroyer *destroyer, 2058 bool useEHCleanupForArray); 2059 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2060 llvm::Value *CompletePtr, 2061 QualType ElementType); 2062 void pushStackRestore(CleanupKind kind, Address SPMem); 2063 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2064 bool useEHCleanupForArray); 2065 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2066 Destroyer *destroyer, 2067 bool useEHCleanupForArray, 2068 const VarDecl *VD); 2069 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2070 QualType elementType, CharUnits elementAlign, 2071 Destroyer *destroyer, 2072 bool checkZeroLength, bool useEHCleanup); 2073 2074 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2075 2076 /// Determines whether an EH cleanup is required to destroy a type 2077 /// with the given destruction kind. 2078 bool needsEHCleanup(QualType::DestructionKind kind) { 2079 switch (kind) { 2080 case QualType::DK_none: 2081 return false; 2082 case QualType::DK_cxx_destructor: 2083 case QualType::DK_objc_weak_lifetime: 2084 case QualType::DK_nontrivial_c_struct: 2085 return getLangOpts().Exceptions; 2086 case QualType::DK_objc_strong_lifetime: 2087 return getLangOpts().Exceptions && 2088 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2089 } 2090 llvm_unreachable("bad destruction kind"); 2091 } 2092 2093 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2094 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2095 } 2096 2097 //===--------------------------------------------------------------------===// 2098 // Objective-C 2099 //===--------------------------------------------------------------------===// 2100 2101 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2102 2103 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2104 2105 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2106 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2107 const ObjCPropertyImplDecl *PID); 2108 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2109 const ObjCPropertyImplDecl *propImpl, 2110 const ObjCMethodDecl *GetterMothodDecl, 2111 llvm::Constant *AtomicHelperFn); 2112 2113 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2114 ObjCMethodDecl *MD, bool ctor); 2115 2116 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2117 /// for the given property. 2118 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2119 const ObjCPropertyImplDecl *PID); 2120 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2121 const ObjCPropertyImplDecl *propImpl, 2122 llvm::Constant *AtomicHelperFn); 2123 2124 //===--------------------------------------------------------------------===// 2125 // Block Bits 2126 //===--------------------------------------------------------------------===// 2127 2128 /// Emit block literal. 2129 /// \return an LLVM value which is a pointer to a struct which contains 2130 /// information about the block, including the block invoke function, the 2131 /// captured variables, etc. 2132 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2133 2134 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2135 const CGBlockInfo &Info, 2136 const DeclMapTy &ldm, 2137 bool IsLambdaConversionToBlock, 2138 bool BuildGlobalBlock); 2139 2140 /// Check if \p T is a C++ class that has a destructor that can throw. 2141 static bool cxxDestructorCanThrow(QualType T); 2142 2143 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2144 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2145 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2146 const ObjCPropertyImplDecl *PID); 2147 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2148 const ObjCPropertyImplDecl *PID); 2149 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2150 2151 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2152 bool CanThrow); 2153 2154 class AutoVarEmission; 2155 2156 void emitByrefStructureInit(const AutoVarEmission &emission); 2157 2158 /// Enter a cleanup to destroy a __block variable. Note that this 2159 /// cleanup should be a no-op if the variable hasn't left the stack 2160 /// yet; if a cleanup is required for the variable itself, that needs 2161 /// to be done externally. 2162 /// 2163 /// \param Kind Cleanup kind. 2164 /// 2165 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2166 /// structure that will be passed to _Block_object_dispose. When 2167 /// \p LoadBlockVarAddr is true, the address of the field of the block 2168 /// structure that holds the address of the __block structure. 2169 /// 2170 /// \param Flags The flag that will be passed to _Block_object_dispose. 2171 /// 2172 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2173 /// \p Addr to get the address of the __block structure. 2174 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2175 bool LoadBlockVarAddr, bool CanThrow); 2176 2177 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2178 llvm::Value *ptr); 2179 2180 Address LoadBlockStruct(); 2181 Address GetAddrOfBlockDecl(const VarDecl *var); 2182 2183 /// BuildBlockByrefAddress - Computes the location of the 2184 /// data in a variable which is declared as __block. 2185 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2186 bool followForward = true); 2187 Address emitBlockByrefAddress(Address baseAddr, 2188 const BlockByrefInfo &info, 2189 bool followForward, 2190 const llvm::Twine &name); 2191 2192 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2193 2194 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2195 2196 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2197 const CGFunctionInfo &FnInfo); 2198 2199 /// Annotate the function with an attribute that disables TSan checking at 2200 /// runtime. 2201 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2202 2203 /// Emit code for the start of a function. 2204 /// \param Loc The location to be associated with the function. 2205 /// \param StartLoc The location of the function body. 2206 void StartFunction(GlobalDecl GD, 2207 QualType RetTy, 2208 llvm::Function *Fn, 2209 const CGFunctionInfo &FnInfo, 2210 const FunctionArgList &Args, 2211 SourceLocation Loc = SourceLocation(), 2212 SourceLocation StartLoc = SourceLocation()); 2213 2214 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2215 2216 void EmitConstructorBody(FunctionArgList &Args); 2217 void EmitDestructorBody(FunctionArgList &Args); 2218 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2219 void EmitFunctionBody(const Stmt *Body); 2220 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2221 2222 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2223 CallArgList &CallArgs); 2224 void EmitLambdaBlockInvokeBody(); 2225 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2226 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2227 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2228 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2229 } 2230 void EmitAsanPrologueOrEpilogue(bool Prologue); 2231 2232 /// Emit the unified return block, trying to avoid its emission when 2233 /// possible. 2234 /// \return The debug location of the user written return statement if the 2235 /// return block is avoided. 2236 llvm::DebugLoc EmitReturnBlock(); 2237 2238 /// FinishFunction - Complete IR generation of the current function. It is 2239 /// legal to call this function even if there is no current insertion point. 2240 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2241 2242 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2243 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2244 2245 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2246 const ThunkInfo *Thunk, bool IsUnprototyped); 2247 2248 void FinishThunk(); 2249 2250 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2251 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2252 llvm::FunctionCallee Callee); 2253 2254 /// Generate a thunk for the given method. 2255 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2256 GlobalDecl GD, const ThunkInfo &Thunk, 2257 bool IsUnprototyped); 2258 2259 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2260 const CGFunctionInfo &FnInfo, 2261 GlobalDecl GD, const ThunkInfo &Thunk); 2262 2263 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2264 FunctionArgList &Args); 2265 2266 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2267 2268 /// Struct with all information about dynamic [sub]class needed to set vptr. 2269 struct VPtr { 2270 BaseSubobject Base; 2271 const CXXRecordDecl *NearestVBase; 2272 CharUnits OffsetFromNearestVBase; 2273 const CXXRecordDecl *VTableClass; 2274 }; 2275 2276 /// Initialize the vtable pointer of the given subobject. 2277 void InitializeVTablePointer(const VPtr &vptr); 2278 2279 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2280 2281 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2282 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2283 2284 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2285 CharUnits OffsetFromNearestVBase, 2286 bool BaseIsNonVirtualPrimaryBase, 2287 const CXXRecordDecl *VTableClass, 2288 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2289 2290 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2291 2292 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2293 /// to by This. 2294 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2295 const CXXRecordDecl *VTableClass); 2296 2297 enum CFITypeCheckKind { 2298 CFITCK_VCall, 2299 CFITCK_NVCall, 2300 CFITCK_DerivedCast, 2301 CFITCK_UnrelatedCast, 2302 CFITCK_ICall, 2303 CFITCK_NVMFCall, 2304 CFITCK_VMFCall, 2305 }; 2306 2307 /// Derived is the presumed address of an object of type T after a 2308 /// cast. If T is a polymorphic class type, emit a check that the virtual 2309 /// table for Derived belongs to a class derived from T. 2310 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2311 CFITypeCheckKind TCK, SourceLocation Loc); 2312 2313 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2314 /// If vptr CFI is enabled, emit a check that VTable is valid. 2315 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2316 CFITypeCheckKind TCK, SourceLocation Loc); 2317 2318 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2319 /// RD using llvm.type.test. 2320 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2321 CFITypeCheckKind TCK, SourceLocation Loc); 2322 2323 /// If whole-program virtual table optimization is enabled, emit an assumption 2324 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2325 /// enabled, emit a check that VTable is a member of RD's type identifier. 2326 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2327 llvm::Value *VTable, SourceLocation Loc); 2328 2329 /// Returns whether we should perform a type checked load when loading a 2330 /// virtual function for virtual calls to members of RD. This is generally 2331 /// true when both vcall CFI and whole-program-vtables are enabled. 2332 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2333 2334 /// Emit a type checked load from the given vtable. 2335 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2336 llvm::Value *VTable, 2337 llvm::Type *VTableTy, 2338 uint64_t VTableByteOffset); 2339 2340 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2341 /// given phase of destruction for a destructor. The end result 2342 /// should call destructors on members and base classes in reverse 2343 /// order of their construction. 2344 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2345 2346 /// ShouldInstrumentFunction - Return true if the current function should be 2347 /// instrumented with __cyg_profile_func_* calls 2348 bool ShouldInstrumentFunction(); 2349 2350 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2351 /// should not be instrumented with sanitizers. 2352 bool ShouldSkipSanitizerInstrumentation(); 2353 2354 /// ShouldXRayInstrument - Return true if the current function should be 2355 /// instrumented with XRay nop sleds. 2356 bool ShouldXRayInstrumentFunction() const; 2357 2358 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2359 /// XRay custom event handling calls. 2360 bool AlwaysEmitXRayCustomEvents() const; 2361 2362 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2363 /// XRay typed event handling calls. 2364 bool AlwaysEmitXRayTypedEvents() const; 2365 2366 /// Decode an address used in a function prologue, encoded by \c 2367 /// EncodeAddrForUseInPrologue. 2368 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2369 llvm::Value *EncodedAddr); 2370 2371 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2372 /// arguments for the given function. This is also responsible for naming the 2373 /// LLVM function arguments. 2374 void EmitFunctionProlog(const CGFunctionInfo &FI, 2375 llvm::Function *Fn, 2376 const FunctionArgList &Args); 2377 2378 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2379 /// given temporary. 2380 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2381 SourceLocation EndLoc); 2382 2383 /// Emit a test that checks if the return value \p RV is nonnull. 2384 void EmitReturnValueCheck(llvm::Value *RV); 2385 2386 /// EmitStartEHSpec - Emit the start of the exception spec. 2387 void EmitStartEHSpec(const Decl *D); 2388 2389 /// EmitEndEHSpec - Emit the end of the exception spec. 2390 void EmitEndEHSpec(const Decl *D); 2391 2392 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2393 llvm::BasicBlock *getTerminateLandingPad(); 2394 2395 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2396 /// terminate. 2397 llvm::BasicBlock *getTerminateFunclet(); 2398 2399 /// getTerminateHandler - Return a handler (not a landing pad, just 2400 /// a catch handler) that just calls terminate. This is used when 2401 /// a terminate scope encloses a try. 2402 llvm::BasicBlock *getTerminateHandler(); 2403 2404 llvm::Type *ConvertTypeForMem(QualType T); 2405 llvm::Type *ConvertType(QualType T); 2406 llvm::Type *ConvertType(const TypeDecl *T) { 2407 return ConvertType(getContext().getTypeDeclType(T)); 2408 } 2409 2410 /// LoadObjCSelf - Load the value of self. This function is only valid while 2411 /// generating code for an Objective-C method. 2412 llvm::Value *LoadObjCSelf(); 2413 2414 /// TypeOfSelfObject - Return type of object that this self represents. 2415 QualType TypeOfSelfObject(); 2416 2417 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2418 static TypeEvaluationKind getEvaluationKind(QualType T); 2419 2420 static bool hasScalarEvaluationKind(QualType T) { 2421 return getEvaluationKind(T) == TEK_Scalar; 2422 } 2423 2424 static bool hasAggregateEvaluationKind(QualType T) { 2425 return getEvaluationKind(T) == TEK_Aggregate; 2426 } 2427 2428 /// createBasicBlock - Create an LLVM basic block. 2429 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2430 llvm::Function *parent = nullptr, 2431 llvm::BasicBlock *before = nullptr) { 2432 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2433 } 2434 2435 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2436 /// label maps to. 2437 JumpDest getJumpDestForLabel(const LabelDecl *S); 2438 2439 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2440 /// another basic block, simplify it. This assumes that no other code could 2441 /// potentially reference the basic block. 2442 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2443 2444 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2445 /// adding a fall-through branch from the current insert block if 2446 /// necessary. It is legal to call this function even if there is no current 2447 /// insertion point. 2448 /// 2449 /// IsFinished - If true, indicates that the caller has finished emitting 2450 /// branches to the given block and does not expect to emit code into it. This 2451 /// means the block can be ignored if it is unreachable. 2452 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2453 2454 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2455 /// near its uses, and leave the insertion point in it. 2456 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2457 2458 /// EmitBranch - Emit a branch to the specified basic block from the current 2459 /// insert block, taking care to avoid creation of branches from dummy 2460 /// blocks. It is legal to call this function even if there is no current 2461 /// insertion point. 2462 /// 2463 /// This function clears the current insertion point. The caller should follow 2464 /// calls to this function with calls to Emit*Block prior to generation new 2465 /// code. 2466 void EmitBranch(llvm::BasicBlock *Block); 2467 2468 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2469 /// indicates that the current code being emitted is unreachable. 2470 bool HaveInsertPoint() const { 2471 return Builder.GetInsertBlock() != nullptr; 2472 } 2473 2474 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2475 /// emitted IR has a place to go. Note that by definition, if this function 2476 /// creates a block then that block is unreachable; callers may do better to 2477 /// detect when no insertion point is defined and simply skip IR generation. 2478 void EnsureInsertPoint() { 2479 if (!HaveInsertPoint()) 2480 EmitBlock(createBasicBlock()); 2481 } 2482 2483 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2484 /// specified stmt yet. 2485 void ErrorUnsupported(const Stmt *S, const char *Type); 2486 2487 //===--------------------------------------------------------------------===// 2488 // Helpers 2489 //===--------------------------------------------------------------------===// 2490 2491 LValue MakeAddrLValue(Address Addr, QualType T, 2492 AlignmentSource Source = AlignmentSource::Type) { 2493 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2494 CGM.getTBAAAccessInfo(T)); 2495 } 2496 2497 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2498 TBAAAccessInfo TBAAInfo) { 2499 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2500 } 2501 2502 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2503 AlignmentSource Source = AlignmentSource::Type) { 2504 Address Addr(V, ConvertTypeForMem(T), Alignment); 2505 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2506 CGM.getTBAAAccessInfo(T)); 2507 } 2508 2509 LValue 2510 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2511 AlignmentSource Source = AlignmentSource::Type) { 2512 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2513 TBAAAccessInfo()); 2514 } 2515 2516 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2517 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2518 2519 Address EmitLoadOfReference(LValue RefLVal, 2520 LValueBaseInfo *PointeeBaseInfo = nullptr, 2521 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2522 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2523 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2524 AlignmentSource Source = 2525 AlignmentSource::Type) { 2526 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2527 CGM.getTBAAAccessInfo(RefTy)); 2528 return EmitLoadOfReferenceLValue(RefLVal); 2529 } 2530 2531 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2532 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2533 /// it is loaded from. 2534 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2535 LValueBaseInfo *BaseInfo = nullptr, 2536 TBAAAccessInfo *TBAAInfo = nullptr); 2537 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2538 2539 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2540 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2541 /// insertion point of the builder. The caller is responsible for setting an 2542 /// appropriate alignment on 2543 /// the alloca. 2544 /// 2545 /// \p ArraySize is the number of array elements to be allocated if it 2546 /// is not nullptr. 2547 /// 2548 /// LangAS::Default is the address space of pointers to local variables and 2549 /// temporaries, as exposed in the source language. In certain 2550 /// configurations, this is not the same as the alloca address space, and a 2551 /// cast is needed to lift the pointer from the alloca AS into 2552 /// LangAS::Default. This can happen when the target uses a restricted 2553 /// address space for the stack but the source language requires 2554 /// LangAS::Default to be a generic address space. The latter condition is 2555 /// common for most programming languages; OpenCL is an exception in that 2556 /// LangAS::Default is the private address space, which naturally maps 2557 /// to the stack. 2558 /// 2559 /// Because the address of a temporary is often exposed to the program in 2560 /// various ways, this function will perform the cast. The original alloca 2561 /// instruction is returned through \p Alloca if it is not nullptr. 2562 /// 2563 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2564 /// more efficient if the caller knows that the address will not be exposed. 2565 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2566 llvm::Value *ArraySize = nullptr); 2567 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2568 const Twine &Name = "tmp", 2569 llvm::Value *ArraySize = nullptr, 2570 Address *Alloca = nullptr); 2571 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2572 const Twine &Name = "tmp", 2573 llvm::Value *ArraySize = nullptr); 2574 2575 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2576 /// default ABI alignment of the given LLVM type. 2577 /// 2578 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2579 /// any given AST type that happens to have been lowered to the 2580 /// given IR type. This should only ever be used for function-local, 2581 /// IR-driven manipulations like saving and restoring a value. Do 2582 /// not hand this address off to arbitrary IRGen routines, and especially 2583 /// do not pass it as an argument to a function that might expect a 2584 /// properly ABI-aligned value. 2585 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2586 const Twine &Name = "tmp"); 2587 2588 /// CreateIRTemp - Create a temporary IR object of the given type, with 2589 /// appropriate alignment. This routine should only be used when an temporary 2590 /// value needs to be stored into an alloca (for example, to avoid explicit 2591 /// PHI construction), but the type is the IR type, not the type appropriate 2592 /// for storing in memory. 2593 /// 2594 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2595 /// ConvertType instead of ConvertTypeForMem. 2596 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2597 2598 /// CreateMemTemp - Create a temporary memory object of the given type, with 2599 /// appropriate alignmen and cast it to the default address space. Returns 2600 /// the original alloca instruction by \p Alloca if it is not nullptr. 2601 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2602 Address *Alloca = nullptr); 2603 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2604 Address *Alloca = nullptr); 2605 2606 /// CreateMemTemp - Create a temporary memory object of the given type, with 2607 /// appropriate alignmen without casting it to the default address space. 2608 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2609 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2610 const Twine &Name = "tmp"); 2611 2612 /// CreateAggTemp - Create a temporary memory object for the given 2613 /// aggregate type. 2614 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2615 Address *Alloca = nullptr) { 2616 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2617 T.getQualifiers(), 2618 AggValueSlot::IsNotDestructed, 2619 AggValueSlot::DoesNotNeedGCBarriers, 2620 AggValueSlot::IsNotAliased, 2621 AggValueSlot::DoesNotOverlap); 2622 } 2623 2624 /// Emit a cast to void* in the appropriate address space. 2625 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2626 2627 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2628 /// expression and compare the result against zero, returning an Int1Ty value. 2629 llvm::Value *EvaluateExprAsBool(const Expr *E); 2630 2631 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2632 void EmitIgnoredExpr(const Expr *E); 2633 2634 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2635 /// any type. The result is returned as an RValue struct. If this is an 2636 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2637 /// the result should be returned. 2638 /// 2639 /// \param ignoreResult True if the resulting value isn't used. 2640 RValue EmitAnyExpr(const Expr *E, 2641 AggValueSlot aggSlot = AggValueSlot::ignored(), 2642 bool ignoreResult = false); 2643 2644 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2645 // or the value of the expression, depending on how va_list is defined. 2646 Address EmitVAListRef(const Expr *E); 2647 2648 /// Emit a "reference" to a __builtin_ms_va_list; this is 2649 /// always the value of the expression, because a __builtin_ms_va_list is a 2650 /// pointer to a char. 2651 Address EmitMSVAListRef(const Expr *E); 2652 2653 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2654 /// always be accessible even if no aggregate location is provided. 2655 RValue EmitAnyExprToTemp(const Expr *E); 2656 2657 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2658 /// arbitrary expression into the given memory location. 2659 void EmitAnyExprToMem(const Expr *E, Address Location, 2660 Qualifiers Quals, bool IsInitializer); 2661 2662 void EmitAnyExprToExn(const Expr *E, Address Addr); 2663 2664 /// EmitExprAsInit - Emits the code necessary to initialize a 2665 /// location in memory with the given initializer. 2666 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2667 bool capturedByInit); 2668 2669 /// hasVolatileMember - returns true if aggregate type has a volatile 2670 /// member. 2671 bool hasVolatileMember(QualType T) { 2672 if (const RecordType *RT = T->getAs<RecordType>()) { 2673 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2674 return RD->hasVolatileMember(); 2675 } 2676 return false; 2677 } 2678 2679 /// Determine whether a return value slot may overlap some other object. 2680 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2681 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2682 // class subobjects. These cases may need to be revisited depending on the 2683 // resolution of the relevant core issue. 2684 return AggValueSlot::DoesNotOverlap; 2685 } 2686 2687 /// Determine whether a field initialization may overlap some other object. 2688 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2689 2690 /// Determine whether a base class initialization may overlap some other 2691 /// object. 2692 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2693 const CXXRecordDecl *BaseRD, 2694 bool IsVirtual); 2695 2696 /// Emit an aggregate assignment. 2697 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2698 bool IsVolatile = hasVolatileMember(EltTy); 2699 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2700 } 2701 2702 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2703 AggValueSlot::Overlap_t MayOverlap) { 2704 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2705 } 2706 2707 /// EmitAggregateCopy - Emit an aggregate copy. 2708 /// 2709 /// \param isVolatile \c true iff either the source or the destination is 2710 /// volatile. 2711 /// \param MayOverlap Whether the tail padding of the destination might be 2712 /// occupied by some other object. More efficient code can often be 2713 /// generated if not. 2714 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2715 AggValueSlot::Overlap_t MayOverlap, 2716 bool isVolatile = false); 2717 2718 /// GetAddrOfLocalVar - Return the address of a local variable. 2719 Address GetAddrOfLocalVar(const VarDecl *VD) { 2720 auto it = LocalDeclMap.find(VD); 2721 assert(it != LocalDeclMap.end() && 2722 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2723 return it->second; 2724 } 2725 2726 /// Given an opaque value expression, return its LValue mapping if it exists, 2727 /// otherwise create one. 2728 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2729 2730 /// Given an opaque value expression, return its RValue mapping if it exists, 2731 /// otherwise create one. 2732 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2733 2734 /// Get the index of the current ArrayInitLoopExpr, if any. 2735 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2736 2737 /// getAccessedFieldNo - Given an encoded value and a result number, return 2738 /// the input field number being accessed. 2739 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2740 2741 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2742 llvm::BasicBlock *GetIndirectGotoBlock(); 2743 2744 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2745 static bool IsWrappedCXXThis(const Expr *E); 2746 2747 /// EmitNullInitialization - Generate code to set a value of the given type to 2748 /// null, If the type contains data member pointers, they will be initialized 2749 /// to -1 in accordance with the Itanium C++ ABI. 2750 void EmitNullInitialization(Address DestPtr, QualType Ty); 2751 2752 /// Emits a call to an LLVM variable-argument intrinsic, either 2753 /// \c llvm.va_start or \c llvm.va_end. 2754 /// \param ArgValue A reference to the \c va_list as emitted by either 2755 /// \c EmitVAListRef or \c EmitMSVAListRef. 2756 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2757 /// calls \c llvm.va_end. 2758 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2759 2760 /// Generate code to get an argument from the passed in pointer 2761 /// and update it accordingly. 2762 /// \param VE The \c VAArgExpr for which to generate code. 2763 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2764 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2765 /// \returns A pointer to the argument. 2766 // FIXME: We should be able to get rid of this method and use the va_arg 2767 // instruction in LLVM instead once it works well enough. 2768 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2769 2770 /// emitArrayLength - Compute the length of an array, even if it's a 2771 /// VLA, and drill down to the base element type. 2772 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2773 QualType &baseType, 2774 Address &addr); 2775 2776 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2777 /// the given variably-modified type and store them in the VLASizeMap. 2778 /// 2779 /// This function can be called with a null (unreachable) insert point. 2780 void EmitVariablyModifiedType(QualType Ty); 2781 2782 struct VlaSizePair { 2783 llvm::Value *NumElts; 2784 QualType Type; 2785 2786 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2787 }; 2788 2789 /// Return the number of elements for a single dimension 2790 /// for the given array type. 2791 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2792 VlaSizePair getVLAElements1D(QualType vla); 2793 2794 /// Returns an LLVM value that corresponds to the size, 2795 /// in non-variably-sized elements, of a variable length array type, 2796 /// plus that largest non-variably-sized element type. Assumes that 2797 /// the type has already been emitted with EmitVariablyModifiedType. 2798 VlaSizePair getVLASize(const VariableArrayType *vla); 2799 VlaSizePair getVLASize(QualType vla); 2800 2801 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2802 /// generating code for an C++ member function. 2803 llvm::Value *LoadCXXThis() { 2804 assert(CXXThisValue && "no 'this' value for this function"); 2805 return CXXThisValue; 2806 } 2807 Address LoadCXXThisAddress(); 2808 2809 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2810 /// virtual bases. 2811 // FIXME: Every place that calls LoadCXXVTT is something 2812 // that needs to be abstracted properly. 2813 llvm::Value *LoadCXXVTT() { 2814 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2815 return CXXStructorImplicitParamValue; 2816 } 2817 2818 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2819 /// complete class to the given direct base. 2820 Address 2821 GetAddressOfDirectBaseInCompleteClass(Address Value, 2822 const CXXRecordDecl *Derived, 2823 const CXXRecordDecl *Base, 2824 bool BaseIsVirtual); 2825 2826 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2827 2828 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2829 /// load of 'this' and returns address of the base class. 2830 Address GetAddressOfBaseClass(Address Value, 2831 const CXXRecordDecl *Derived, 2832 CastExpr::path_const_iterator PathBegin, 2833 CastExpr::path_const_iterator PathEnd, 2834 bool NullCheckValue, SourceLocation Loc); 2835 2836 Address GetAddressOfDerivedClass(Address Value, 2837 const CXXRecordDecl *Derived, 2838 CastExpr::path_const_iterator PathBegin, 2839 CastExpr::path_const_iterator PathEnd, 2840 bool NullCheckValue); 2841 2842 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2843 /// base constructor/destructor with virtual bases. 2844 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2845 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2846 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2847 bool Delegating); 2848 2849 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2850 CXXCtorType CtorType, 2851 const FunctionArgList &Args, 2852 SourceLocation Loc); 2853 // It's important not to confuse this and the previous function. Delegating 2854 // constructors are the C++0x feature. The constructor delegate optimization 2855 // is used to reduce duplication in the base and complete consturctors where 2856 // they are substantially the same. 2857 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2858 const FunctionArgList &Args); 2859 2860 /// Emit a call to an inheriting constructor (that is, one that invokes a 2861 /// constructor inherited from a base class) by inlining its definition. This 2862 /// is necessary if the ABI does not support forwarding the arguments to the 2863 /// base class constructor (because they're variadic or similar). 2864 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2865 CXXCtorType CtorType, 2866 bool ForVirtualBase, 2867 bool Delegating, 2868 CallArgList &Args); 2869 2870 /// Emit a call to a constructor inherited from a base class, passing the 2871 /// current constructor's arguments along unmodified (without even making 2872 /// a copy). 2873 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2874 bool ForVirtualBase, Address This, 2875 bool InheritedFromVBase, 2876 const CXXInheritedCtorInitExpr *E); 2877 2878 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2879 bool ForVirtualBase, bool Delegating, 2880 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2881 2882 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2883 bool ForVirtualBase, bool Delegating, 2884 Address This, CallArgList &Args, 2885 AggValueSlot::Overlap_t Overlap, 2886 SourceLocation Loc, bool NewPointerIsChecked); 2887 2888 /// Emit assumption load for all bases. Requires to be called only on 2889 /// most-derived class and not under construction of the object. 2890 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2891 2892 /// Emit assumption that vptr load == global vtable. 2893 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2894 2895 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2896 Address This, Address Src, 2897 const CXXConstructExpr *E); 2898 2899 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2900 const ArrayType *ArrayTy, 2901 Address ArrayPtr, 2902 const CXXConstructExpr *E, 2903 bool NewPointerIsChecked, 2904 bool ZeroInitialization = false); 2905 2906 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2907 llvm::Value *NumElements, 2908 Address ArrayPtr, 2909 const CXXConstructExpr *E, 2910 bool NewPointerIsChecked, 2911 bool ZeroInitialization = false); 2912 2913 static Destroyer destroyCXXObject; 2914 2915 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2916 bool ForVirtualBase, bool Delegating, Address This, 2917 QualType ThisTy); 2918 2919 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2920 llvm::Type *ElementTy, Address NewPtr, 2921 llvm::Value *NumElements, 2922 llvm::Value *AllocSizeWithoutCookie); 2923 2924 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2925 Address Ptr); 2926 2927 void EmitSehCppScopeBegin(); 2928 void EmitSehCppScopeEnd(); 2929 void EmitSehTryScopeBegin(); 2930 void EmitSehTryScopeEnd(); 2931 2932 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2933 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2934 2935 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2936 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2937 2938 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2939 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2940 CharUnits CookieSize = CharUnits()); 2941 2942 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2943 const CallExpr *TheCallExpr, bool IsDelete); 2944 2945 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2946 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2947 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2948 2949 /// Situations in which we might emit a check for the suitability of a 2950 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2951 /// compiler-rt. 2952 enum TypeCheckKind { 2953 /// Checking the operand of a load. Must be suitably sized and aligned. 2954 TCK_Load, 2955 /// Checking the destination of a store. Must be suitably sized and aligned. 2956 TCK_Store, 2957 /// Checking the bound value in a reference binding. Must be suitably sized 2958 /// and aligned, but is not required to refer to an object (until the 2959 /// reference is used), per core issue 453. 2960 TCK_ReferenceBinding, 2961 /// Checking the object expression in a non-static data member access. Must 2962 /// be an object within its lifetime. 2963 TCK_MemberAccess, 2964 /// Checking the 'this' pointer for a call to a non-static member function. 2965 /// Must be an object within its lifetime. 2966 TCK_MemberCall, 2967 /// Checking the 'this' pointer for a constructor call. 2968 TCK_ConstructorCall, 2969 /// Checking the operand of a static_cast to a derived pointer type. Must be 2970 /// null or an object within its lifetime. 2971 TCK_DowncastPointer, 2972 /// Checking the operand of a static_cast to a derived reference type. Must 2973 /// be an object within its lifetime. 2974 TCK_DowncastReference, 2975 /// Checking the operand of a cast to a base object. Must be suitably sized 2976 /// and aligned. 2977 TCK_Upcast, 2978 /// Checking the operand of a cast to a virtual base object. Must be an 2979 /// object within its lifetime. 2980 TCK_UpcastToVirtualBase, 2981 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2982 TCK_NonnullAssign, 2983 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2984 /// null or an object within its lifetime. 2985 TCK_DynamicOperation 2986 }; 2987 2988 /// Determine whether the pointer type check \p TCK permits null pointers. 2989 static bool isNullPointerAllowed(TypeCheckKind TCK); 2990 2991 /// Determine whether the pointer type check \p TCK requires a vptr check. 2992 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2993 2994 /// Whether any type-checking sanitizers are enabled. If \c false, 2995 /// calls to EmitTypeCheck can be skipped. 2996 bool sanitizePerformTypeCheck() const; 2997 2998 /// Emit a check that \p V is the address of storage of the 2999 /// appropriate size and alignment for an object of type \p Type 3000 /// (or if ArraySize is provided, for an array of that bound). 3001 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3002 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3003 SanitizerSet SkippedChecks = SanitizerSet(), 3004 llvm::Value *ArraySize = nullptr); 3005 3006 /// Emit a check that \p Base points into an array object, which 3007 /// we can access at index \p Index. \p Accessed should be \c false if we 3008 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3009 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3010 QualType IndexType, bool Accessed); 3011 3012 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3013 bool isInc, bool isPre); 3014 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3015 bool isInc, bool isPre); 3016 3017 /// Converts Location to a DebugLoc, if debug information is enabled. 3018 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3019 3020 /// Get the record field index as represented in debug info. 3021 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3022 3023 3024 //===--------------------------------------------------------------------===// 3025 // Declaration Emission 3026 //===--------------------------------------------------------------------===// 3027 3028 /// EmitDecl - Emit a declaration. 3029 /// 3030 /// This function can be called with a null (unreachable) insert point. 3031 void EmitDecl(const Decl &D); 3032 3033 /// EmitVarDecl - Emit a local variable declaration. 3034 /// 3035 /// This function can be called with a null (unreachable) insert point. 3036 void EmitVarDecl(const VarDecl &D); 3037 3038 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3039 bool capturedByInit); 3040 3041 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3042 llvm::Value *Address); 3043 3044 /// Determine whether the given initializer is trivial in the sense 3045 /// that it requires no code to be generated. 3046 bool isTrivialInitializer(const Expr *Init); 3047 3048 /// EmitAutoVarDecl - Emit an auto variable declaration. 3049 /// 3050 /// This function can be called with a null (unreachable) insert point. 3051 void EmitAutoVarDecl(const VarDecl &D); 3052 3053 class AutoVarEmission { 3054 friend class CodeGenFunction; 3055 3056 const VarDecl *Variable; 3057 3058 /// The address of the alloca for languages with explicit address space 3059 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3060 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3061 /// as a global constant. 3062 Address Addr; 3063 3064 llvm::Value *NRVOFlag; 3065 3066 /// True if the variable is a __block variable that is captured by an 3067 /// escaping block. 3068 bool IsEscapingByRef; 3069 3070 /// True if the variable is of aggregate type and has a constant 3071 /// initializer. 3072 bool IsConstantAggregate; 3073 3074 /// Non-null if we should use lifetime annotations. 3075 llvm::Value *SizeForLifetimeMarkers; 3076 3077 /// Address with original alloca instruction. Invalid if the variable was 3078 /// emitted as a global constant. 3079 Address AllocaAddr; 3080 3081 struct Invalid {}; 3082 AutoVarEmission(Invalid) 3083 : Variable(nullptr), Addr(Address::invalid()), 3084 AllocaAddr(Address::invalid()) {} 3085 3086 AutoVarEmission(const VarDecl &variable) 3087 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3088 IsEscapingByRef(false), IsConstantAggregate(false), 3089 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3090 3091 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3092 3093 public: 3094 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3095 3096 bool useLifetimeMarkers() const { 3097 return SizeForLifetimeMarkers != nullptr; 3098 } 3099 llvm::Value *getSizeForLifetimeMarkers() const { 3100 assert(useLifetimeMarkers()); 3101 return SizeForLifetimeMarkers; 3102 } 3103 3104 /// Returns the raw, allocated address, which is not necessarily 3105 /// the address of the object itself. It is casted to default 3106 /// address space for address space agnostic languages. 3107 Address getAllocatedAddress() const { 3108 return Addr; 3109 } 3110 3111 /// Returns the address for the original alloca instruction. 3112 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3113 3114 /// Returns the address of the object within this declaration. 3115 /// Note that this does not chase the forwarding pointer for 3116 /// __block decls. 3117 Address getObjectAddress(CodeGenFunction &CGF) const { 3118 if (!IsEscapingByRef) return Addr; 3119 3120 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3121 } 3122 }; 3123 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3124 void EmitAutoVarInit(const AutoVarEmission &emission); 3125 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3126 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3127 QualType::DestructionKind dtorKind); 3128 3129 /// Emits the alloca and debug information for the size expressions for each 3130 /// dimension of an array. It registers the association of its (1-dimensional) 3131 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3132 /// reference this node when creating the DISubrange object to describe the 3133 /// array types. 3134 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3135 const VarDecl &D, 3136 bool EmitDebugInfo); 3137 3138 void EmitStaticVarDecl(const VarDecl &D, 3139 llvm::GlobalValue::LinkageTypes Linkage); 3140 3141 class ParamValue { 3142 llvm::Value *Value; 3143 llvm::Type *ElementType; 3144 unsigned Alignment; 3145 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3146 : Value(V), ElementType(T), Alignment(A) {} 3147 public: 3148 static ParamValue forDirect(llvm::Value *value) { 3149 return ParamValue(value, nullptr, 0); 3150 } 3151 static ParamValue forIndirect(Address addr) { 3152 assert(!addr.getAlignment().isZero()); 3153 return ParamValue(addr.getPointer(), addr.getElementType(), 3154 addr.getAlignment().getQuantity()); 3155 } 3156 3157 bool isIndirect() const { return Alignment != 0; } 3158 llvm::Value *getAnyValue() const { return Value; } 3159 3160 llvm::Value *getDirectValue() const { 3161 assert(!isIndirect()); 3162 return Value; 3163 } 3164 3165 Address getIndirectAddress() const { 3166 assert(isIndirect()); 3167 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3168 } 3169 }; 3170 3171 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3172 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3173 3174 /// protectFromPeepholes - Protect a value that we're intending to 3175 /// store to the side, but which will probably be used later, from 3176 /// aggressive peepholing optimizations that might delete it. 3177 /// 3178 /// Pass the result to unprotectFromPeepholes to declare that 3179 /// protection is no longer required. 3180 /// 3181 /// There's no particular reason why this shouldn't apply to 3182 /// l-values, it's just that no existing peepholes work on pointers. 3183 PeepholeProtection protectFromPeepholes(RValue rvalue); 3184 void unprotectFromPeepholes(PeepholeProtection protection); 3185 3186 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3187 SourceLocation Loc, 3188 SourceLocation AssumptionLoc, 3189 llvm::Value *Alignment, 3190 llvm::Value *OffsetValue, 3191 llvm::Value *TheCheck, 3192 llvm::Instruction *Assumption); 3193 3194 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3195 SourceLocation Loc, SourceLocation AssumptionLoc, 3196 llvm::Value *Alignment, 3197 llvm::Value *OffsetValue = nullptr); 3198 3199 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3200 SourceLocation AssumptionLoc, 3201 llvm::Value *Alignment, 3202 llvm::Value *OffsetValue = nullptr); 3203 3204 //===--------------------------------------------------------------------===// 3205 // Statement Emission 3206 //===--------------------------------------------------------------------===// 3207 3208 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3209 void EmitStopPoint(const Stmt *S); 3210 3211 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3212 /// this function even if there is no current insertion point. 3213 /// 3214 /// This function may clear the current insertion point; callers should use 3215 /// EnsureInsertPoint if they wish to subsequently generate code without first 3216 /// calling EmitBlock, EmitBranch, or EmitStmt. 3217 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt); 3218 3219 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3220 /// necessarily require an insertion point or debug information; typically 3221 /// because the statement amounts to a jump or a container of other 3222 /// statements. 3223 /// 3224 /// \return True if the statement was handled. 3225 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3226 3227 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3228 AggValueSlot AVS = AggValueSlot::ignored()); 3229 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3230 bool GetLast = false, 3231 AggValueSlot AVS = 3232 AggValueSlot::ignored()); 3233 3234 /// EmitLabel - Emit the block for the given label. It is legal to call this 3235 /// function even if there is no current insertion point. 3236 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3237 3238 void EmitLabelStmt(const LabelStmt &S); 3239 void EmitAttributedStmt(const AttributedStmt &S); 3240 void EmitGotoStmt(const GotoStmt &S); 3241 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3242 void EmitIfStmt(const IfStmt &S); 3243 3244 void EmitWhileStmt(const WhileStmt &S, 3245 ArrayRef<const Attr *> Attrs = std::nullopt); 3246 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt); 3247 void EmitForStmt(const ForStmt &S, 3248 ArrayRef<const Attr *> Attrs = std::nullopt); 3249 void EmitReturnStmt(const ReturnStmt &S); 3250 void EmitDeclStmt(const DeclStmt &S); 3251 void EmitBreakStmt(const BreakStmt &S); 3252 void EmitContinueStmt(const ContinueStmt &S); 3253 void EmitSwitchStmt(const SwitchStmt &S); 3254 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3255 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3256 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3257 void EmitAsmStmt(const AsmStmt &S); 3258 3259 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3260 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3261 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3262 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3263 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3264 3265 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3266 void EmitCoreturnStmt(const CoreturnStmt &S); 3267 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3268 AggValueSlot aggSlot = AggValueSlot::ignored(), 3269 bool ignoreResult = false); 3270 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3271 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3272 AggValueSlot aggSlot = AggValueSlot::ignored(), 3273 bool ignoreResult = false); 3274 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3275 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3276 3277 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3278 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3279 3280 void EmitCXXTryStmt(const CXXTryStmt &S); 3281 void EmitSEHTryStmt(const SEHTryStmt &S); 3282 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3283 void EnterSEHTryStmt(const SEHTryStmt &S); 3284 void ExitSEHTryStmt(const SEHTryStmt &S); 3285 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3286 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3287 3288 void pushSEHCleanup(CleanupKind kind, 3289 llvm::Function *FinallyFunc); 3290 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3291 const Stmt *OutlinedStmt); 3292 3293 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3294 const SEHExceptStmt &Except); 3295 3296 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3297 const SEHFinallyStmt &Finally); 3298 3299 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3300 llvm::Value *ParentFP, 3301 llvm::Value *EntryEBP); 3302 llvm::Value *EmitSEHExceptionCode(); 3303 llvm::Value *EmitSEHExceptionInfo(); 3304 llvm::Value *EmitSEHAbnormalTermination(); 3305 3306 /// Emit simple code for OpenMP directives in Simd-only mode. 3307 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3308 3309 /// Scan the outlined statement for captures from the parent function. For 3310 /// each capture, mark the capture as escaped and emit a call to 3311 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3312 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3313 bool IsFilter); 3314 3315 /// Recovers the address of a local in a parent function. ParentVar is the 3316 /// address of the variable used in the immediate parent function. It can 3317 /// either be an alloca or a call to llvm.localrecover if there are nested 3318 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3319 /// frame. 3320 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3321 Address ParentVar, 3322 llvm::Value *ParentFP); 3323 3324 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3325 ArrayRef<const Attr *> Attrs = std::nullopt); 3326 3327 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3328 class OMPCancelStackRAII { 3329 CodeGenFunction &CGF; 3330 3331 public: 3332 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3333 bool HasCancel) 3334 : CGF(CGF) { 3335 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3336 } 3337 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3338 }; 3339 3340 /// Returns calculated size of the specified type. 3341 llvm::Value *getTypeSize(QualType Ty); 3342 LValue InitCapturedStruct(const CapturedStmt &S); 3343 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3344 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3345 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3346 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3347 SourceLocation Loc); 3348 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3349 SmallVectorImpl<llvm::Value *> &CapturedVars); 3350 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3351 SourceLocation Loc); 3352 /// Perform element by element copying of arrays with type \a 3353 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3354 /// generated by \a CopyGen. 3355 /// 3356 /// \param DestAddr Address of the destination array. 3357 /// \param SrcAddr Address of the source array. 3358 /// \param OriginalType Type of destination and source arrays. 3359 /// \param CopyGen Copying procedure that copies value of single array element 3360 /// to another single array element. 3361 void EmitOMPAggregateAssign( 3362 Address DestAddr, Address SrcAddr, QualType OriginalType, 3363 const llvm::function_ref<void(Address, Address)> CopyGen); 3364 /// Emit proper copying of data from one variable to another. 3365 /// 3366 /// \param OriginalType Original type of the copied variables. 3367 /// \param DestAddr Destination address. 3368 /// \param SrcAddr Source address. 3369 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3370 /// type of the base array element). 3371 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3372 /// the base array element). 3373 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3374 /// DestVD. 3375 void EmitOMPCopy(QualType OriginalType, 3376 Address DestAddr, Address SrcAddr, 3377 const VarDecl *DestVD, const VarDecl *SrcVD, 3378 const Expr *Copy); 3379 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3380 /// \a X = \a E \a BO \a E. 3381 /// 3382 /// \param X Value to be updated. 3383 /// \param E Update value. 3384 /// \param BO Binary operation for update operation. 3385 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3386 /// expression, false otherwise. 3387 /// \param AO Atomic ordering of the generated atomic instructions. 3388 /// \param CommonGen Code generator for complex expressions that cannot be 3389 /// expressed through atomicrmw instruction. 3390 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3391 /// generated, <false, RValue::get(nullptr)> otherwise. 3392 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3393 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3394 llvm::AtomicOrdering AO, SourceLocation Loc, 3395 const llvm::function_ref<RValue(RValue)> CommonGen); 3396 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3397 OMPPrivateScope &PrivateScope); 3398 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3399 OMPPrivateScope &PrivateScope); 3400 void EmitOMPUseDevicePtrClause( 3401 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3402 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3403 void EmitOMPUseDeviceAddrClause( 3404 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3405 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3406 /// Emit code for copyin clause in \a D directive. The next code is 3407 /// generated at the start of outlined functions for directives: 3408 /// \code 3409 /// threadprivate_var1 = master_threadprivate_var1; 3410 /// operator=(threadprivate_var2, master_threadprivate_var2); 3411 /// ... 3412 /// __kmpc_barrier(&loc, global_tid); 3413 /// \endcode 3414 /// 3415 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3416 /// \returns true if at least one copyin variable is found, false otherwise. 3417 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3418 /// Emit initial code for lastprivate variables. If some variable is 3419 /// not also firstprivate, then the default initialization is used. Otherwise 3420 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3421 /// method. 3422 /// 3423 /// \param D Directive that may have 'lastprivate' directives. 3424 /// \param PrivateScope Private scope for capturing lastprivate variables for 3425 /// proper codegen in internal captured statement. 3426 /// 3427 /// \returns true if there is at least one lastprivate variable, false 3428 /// otherwise. 3429 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3430 OMPPrivateScope &PrivateScope); 3431 /// Emit final copying of lastprivate values to original variables at 3432 /// the end of the worksharing or simd directive. 3433 /// 3434 /// \param D Directive that has at least one 'lastprivate' directives. 3435 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3436 /// it is the last iteration of the loop code in associated directive, or to 3437 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3438 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3439 bool NoFinals, 3440 llvm::Value *IsLastIterCond = nullptr); 3441 /// Emit initial code for linear clauses. 3442 void EmitOMPLinearClause(const OMPLoopDirective &D, 3443 CodeGenFunction::OMPPrivateScope &PrivateScope); 3444 /// Emit final code for linear clauses. 3445 /// \param CondGen Optional conditional code for final part of codegen for 3446 /// linear clause. 3447 void EmitOMPLinearClauseFinal( 3448 const OMPLoopDirective &D, 3449 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3450 /// Emit initial code for reduction variables. Creates reduction copies 3451 /// and initializes them with the values according to OpenMP standard. 3452 /// 3453 /// \param D Directive (possibly) with the 'reduction' clause. 3454 /// \param PrivateScope Private scope for capturing reduction variables for 3455 /// proper codegen in internal captured statement. 3456 /// 3457 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3458 OMPPrivateScope &PrivateScope, 3459 bool ForInscan = false); 3460 /// Emit final update of reduction values to original variables at 3461 /// the end of the directive. 3462 /// 3463 /// \param D Directive that has at least one 'reduction' directives. 3464 /// \param ReductionKind The kind of reduction to perform. 3465 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3466 const OpenMPDirectiveKind ReductionKind); 3467 /// Emit initial code for linear variables. Creates private copies 3468 /// and initializes them with the values according to OpenMP standard. 3469 /// 3470 /// \param D Directive (possibly) with the 'linear' clause. 3471 /// \return true if at least one linear variable is found that should be 3472 /// initialized with the value of the original variable, false otherwise. 3473 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3474 3475 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3476 llvm::Function * /*OutlinedFn*/, 3477 const OMPTaskDataTy & /*Data*/)> 3478 TaskGenTy; 3479 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3480 const OpenMPDirectiveKind CapturedRegion, 3481 const RegionCodeGenTy &BodyGen, 3482 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3483 struct OMPTargetDataInfo { 3484 Address BasePointersArray = Address::invalid(); 3485 Address PointersArray = Address::invalid(); 3486 Address SizesArray = Address::invalid(); 3487 Address MappersArray = Address::invalid(); 3488 unsigned NumberOfTargetItems = 0; 3489 explicit OMPTargetDataInfo() = default; 3490 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3491 Address SizesArray, Address MappersArray, 3492 unsigned NumberOfTargetItems) 3493 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3494 SizesArray(SizesArray), MappersArray(MappersArray), 3495 NumberOfTargetItems(NumberOfTargetItems) {} 3496 }; 3497 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3498 const RegionCodeGenTy &BodyGen, 3499 OMPTargetDataInfo &InputInfo); 3500 void processInReduction(const OMPExecutableDirective &S, 3501 OMPTaskDataTy &Data, 3502 CodeGenFunction &CGF, 3503 const CapturedStmt *CS, 3504 OMPPrivateScope &Scope); 3505 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3506 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3507 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3508 void EmitOMPTileDirective(const OMPTileDirective &S); 3509 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3510 void EmitOMPForDirective(const OMPForDirective &S); 3511 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3512 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3513 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3514 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3515 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3516 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3517 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3518 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3519 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3520 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3521 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3522 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3523 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3524 void EmitOMPErrorDirective(const OMPErrorDirective &S); 3525 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3526 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3527 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3528 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3529 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3530 void EmitOMPScanDirective(const OMPScanDirective &S); 3531 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3532 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3533 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3534 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3535 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3536 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3537 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3538 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3539 void 3540 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3541 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3542 void 3543 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3544 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3545 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3546 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3547 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3548 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3549 void 3550 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3551 void EmitOMPParallelMasterTaskLoopDirective( 3552 const OMPParallelMasterTaskLoopDirective &S); 3553 void EmitOMPParallelMasterTaskLoopSimdDirective( 3554 const OMPParallelMasterTaskLoopSimdDirective &S); 3555 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3556 void EmitOMPDistributeParallelForDirective( 3557 const OMPDistributeParallelForDirective &S); 3558 void EmitOMPDistributeParallelForSimdDirective( 3559 const OMPDistributeParallelForSimdDirective &S); 3560 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3561 void EmitOMPTargetParallelForSimdDirective( 3562 const OMPTargetParallelForSimdDirective &S); 3563 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3564 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3565 void 3566 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3567 void EmitOMPTeamsDistributeParallelForSimdDirective( 3568 const OMPTeamsDistributeParallelForSimdDirective &S); 3569 void EmitOMPTeamsDistributeParallelForDirective( 3570 const OMPTeamsDistributeParallelForDirective &S); 3571 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3572 void EmitOMPTargetTeamsDistributeDirective( 3573 const OMPTargetTeamsDistributeDirective &S); 3574 void EmitOMPTargetTeamsDistributeParallelForDirective( 3575 const OMPTargetTeamsDistributeParallelForDirective &S); 3576 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3577 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3578 void EmitOMPTargetTeamsDistributeSimdDirective( 3579 const OMPTargetTeamsDistributeSimdDirective &S); 3580 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3581 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3582 3583 /// Emit device code for the target directive. 3584 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3585 StringRef ParentName, 3586 const OMPTargetDirective &S); 3587 static void 3588 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3589 const OMPTargetParallelDirective &S); 3590 /// Emit device code for the target parallel for directive. 3591 static void EmitOMPTargetParallelForDeviceFunction( 3592 CodeGenModule &CGM, StringRef ParentName, 3593 const OMPTargetParallelForDirective &S); 3594 /// Emit device code for the target parallel for simd directive. 3595 static void EmitOMPTargetParallelForSimdDeviceFunction( 3596 CodeGenModule &CGM, StringRef ParentName, 3597 const OMPTargetParallelForSimdDirective &S); 3598 /// Emit device code for the target teams directive. 3599 static void 3600 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3601 const OMPTargetTeamsDirective &S); 3602 /// Emit device code for the target teams distribute directive. 3603 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3604 CodeGenModule &CGM, StringRef ParentName, 3605 const OMPTargetTeamsDistributeDirective &S); 3606 /// Emit device code for the target teams distribute simd directive. 3607 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3608 CodeGenModule &CGM, StringRef ParentName, 3609 const OMPTargetTeamsDistributeSimdDirective &S); 3610 /// Emit device code for the target simd directive. 3611 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3612 StringRef ParentName, 3613 const OMPTargetSimdDirective &S); 3614 /// Emit device code for the target teams distribute parallel for simd 3615 /// directive. 3616 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3617 CodeGenModule &CGM, StringRef ParentName, 3618 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3619 3620 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3621 CodeGenModule &CGM, StringRef ParentName, 3622 const OMPTargetTeamsDistributeParallelForDirective &S); 3623 3624 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3625 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3626 /// future it is meant to be the number of loops expected in the loop nests 3627 /// (usually specified by the "collapse" clause) that are collapsed to a 3628 /// single loop by this function. 3629 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3630 int Depth); 3631 3632 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3633 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3634 3635 /// Emit inner loop of the worksharing/simd construct. 3636 /// 3637 /// \param S Directive, for which the inner loop must be emitted. 3638 /// \param RequiresCleanup true, if directive has some associated private 3639 /// variables. 3640 /// \param LoopCond Bollean condition for loop continuation. 3641 /// \param IncExpr Increment expression for loop control variable. 3642 /// \param BodyGen Generator for the inner body of the inner loop. 3643 /// \param PostIncGen Genrator for post-increment code (required for ordered 3644 /// loop directvies). 3645 void EmitOMPInnerLoop( 3646 const OMPExecutableDirective &S, bool RequiresCleanup, 3647 const Expr *LoopCond, const Expr *IncExpr, 3648 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3649 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3650 3651 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3652 /// Emit initial code for loop counters of loop-based directives. 3653 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3654 OMPPrivateScope &LoopScope); 3655 3656 /// Helper for the OpenMP loop directives. 3657 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3658 3659 /// Emit code for the worksharing loop-based directive. 3660 /// \return true, if this construct has any lastprivate clause, false - 3661 /// otherwise. 3662 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3663 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3664 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3665 3666 /// Emit code for the distribute loop-based directive. 3667 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3668 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3669 3670 /// Helpers for the OpenMP loop directives. 3671 void EmitOMPSimdInit(const OMPLoopDirective &D); 3672 void EmitOMPSimdFinal( 3673 const OMPLoopDirective &D, 3674 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3675 3676 /// Emits the lvalue for the expression with possibly captured variable. 3677 LValue EmitOMPSharedLValue(const Expr *E); 3678 3679 private: 3680 /// Helpers for blocks. 3681 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3682 3683 /// struct with the values to be passed to the OpenMP loop-related functions 3684 struct OMPLoopArguments { 3685 /// loop lower bound 3686 Address LB = Address::invalid(); 3687 /// loop upper bound 3688 Address UB = Address::invalid(); 3689 /// loop stride 3690 Address ST = Address::invalid(); 3691 /// isLastIteration argument for runtime functions 3692 Address IL = Address::invalid(); 3693 /// Chunk value generated by sema 3694 llvm::Value *Chunk = nullptr; 3695 /// EnsureUpperBound 3696 Expr *EUB = nullptr; 3697 /// IncrementExpression 3698 Expr *IncExpr = nullptr; 3699 /// Loop initialization 3700 Expr *Init = nullptr; 3701 /// Loop exit condition 3702 Expr *Cond = nullptr; 3703 /// Update of LB after a whole chunk has been executed 3704 Expr *NextLB = nullptr; 3705 /// Update of UB after a whole chunk has been executed 3706 Expr *NextUB = nullptr; 3707 OMPLoopArguments() = default; 3708 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3709 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3710 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3711 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3712 Expr *NextUB = nullptr) 3713 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3714 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3715 NextUB(NextUB) {} 3716 }; 3717 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3718 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3719 const OMPLoopArguments &LoopArgs, 3720 const CodeGenLoopTy &CodeGenLoop, 3721 const CodeGenOrderedTy &CodeGenOrdered); 3722 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3723 bool IsMonotonic, const OMPLoopDirective &S, 3724 OMPPrivateScope &LoopScope, bool Ordered, 3725 const OMPLoopArguments &LoopArgs, 3726 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3727 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3728 const OMPLoopDirective &S, 3729 OMPPrivateScope &LoopScope, 3730 const OMPLoopArguments &LoopArgs, 3731 const CodeGenLoopTy &CodeGenLoopContent); 3732 /// Emit code for sections directive. 3733 void EmitSections(const OMPExecutableDirective &S); 3734 3735 public: 3736 3737 //===--------------------------------------------------------------------===// 3738 // LValue Expression Emission 3739 //===--------------------------------------------------------------------===// 3740 3741 /// Create a check that a scalar RValue is non-null. 3742 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3743 3744 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3745 RValue GetUndefRValue(QualType Ty); 3746 3747 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3748 /// and issue an ErrorUnsupported style diagnostic (using the 3749 /// provided Name). 3750 RValue EmitUnsupportedRValue(const Expr *E, 3751 const char *Name); 3752 3753 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3754 /// an ErrorUnsupported style diagnostic (using the provided Name). 3755 LValue EmitUnsupportedLValue(const Expr *E, 3756 const char *Name); 3757 3758 /// EmitLValue - Emit code to compute a designator that specifies the location 3759 /// of the expression. 3760 /// 3761 /// This can return one of two things: a simple address or a bitfield 3762 /// reference. In either case, the LLVM Value* in the LValue structure is 3763 /// guaranteed to be an LLVM pointer type. 3764 /// 3765 /// If this returns a bitfield reference, nothing about the pointee type of 3766 /// the LLVM value is known: For example, it may not be a pointer to an 3767 /// integer. 3768 /// 3769 /// If this returns a normal address, and if the lvalue's C type is fixed 3770 /// size, this method guarantees that the returned pointer type will point to 3771 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3772 /// variable length type, this is not possible. 3773 /// 3774 LValue EmitLValue(const Expr *E); 3775 3776 /// Same as EmitLValue but additionally we generate checking code to 3777 /// guard against undefined behavior. This is only suitable when we know 3778 /// that the address will be used to access the object. 3779 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3780 3781 RValue convertTempToRValue(Address addr, QualType type, 3782 SourceLocation Loc); 3783 3784 void EmitAtomicInit(Expr *E, LValue lvalue); 3785 3786 bool LValueIsSuitableForInlineAtomic(LValue Src); 3787 3788 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3789 AggValueSlot Slot = AggValueSlot::ignored()); 3790 3791 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3792 llvm::AtomicOrdering AO, bool IsVolatile = false, 3793 AggValueSlot slot = AggValueSlot::ignored()); 3794 3795 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3796 3797 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3798 bool IsVolatile, bool isInit); 3799 3800 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3801 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3802 llvm::AtomicOrdering Success = 3803 llvm::AtomicOrdering::SequentiallyConsistent, 3804 llvm::AtomicOrdering Failure = 3805 llvm::AtomicOrdering::SequentiallyConsistent, 3806 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3807 3808 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3809 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3810 bool IsVolatile); 3811 3812 /// EmitToMemory - Change a scalar value from its value 3813 /// representation to its in-memory representation. 3814 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3815 3816 /// EmitFromMemory - Change a scalar value from its memory 3817 /// representation to its value representation. 3818 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3819 3820 /// Check if the scalar \p Value is within the valid range for the given 3821 /// type \p Ty. 3822 /// 3823 /// Returns true if a check is needed (even if the range is unknown). 3824 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3825 SourceLocation Loc); 3826 3827 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3828 /// care to appropriately convert from the memory representation to 3829 /// the LLVM value representation. 3830 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3831 SourceLocation Loc, 3832 AlignmentSource Source = AlignmentSource::Type, 3833 bool isNontemporal = false) { 3834 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3835 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3836 } 3837 3838 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3839 SourceLocation Loc, LValueBaseInfo BaseInfo, 3840 TBAAAccessInfo TBAAInfo, 3841 bool isNontemporal = false); 3842 3843 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3844 /// care to appropriately convert from the memory representation to 3845 /// the LLVM value representation. The l-value must be a simple 3846 /// l-value. 3847 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3848 3849 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3850 /// care to appropriately convert from the memory representation to 3851 /// the LLVM value representation. 3852 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3853 bool Volatile, QualType Ty, 3854 AlignmentSource Source = AlignmentSource::Type, 3855 bool isInit = false, bool isNontemporal = false) { 3856 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3857 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3858 } 3859 3860 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3861 bool Volatile, QualType Ty, 3862 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3863 bool isInit = false, bool isNontemporal = false); 3864 3865 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3866 /// care to appropriately convert from the memory representation to 3867 /// the LLVM value representation. The l-value must be a simple 3868 /// l-value. The isInit flag indicates whether this is an initialization. 3869 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3870 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3871 3872 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3873 /// this method emits the address of the lvalue, then loads the result as an 3874 /// rvalue, returning the rvalue. 3875 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3876 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3877 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3878 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3879 3880 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3881 /// lvalue, where both are guaranteed to the have the same type, and that type 3882 /// is 'Ty'. 3883 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3884 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3885 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3886 3887 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3888 /// as EmitStoreThroughLValue. 3889 /// 3890 /// \param Result [out] - If non-null, this will be set to a Value* for the 3891 /// bit-field contents after the store, appropriate for use as the result of 3892 /// an assignment to the bit-field. 3893 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3894 llvm::Value **Result=nullptr); 3895 3896 /// Emit an l-value for an assignment (simple or compound) of complex type. 3897 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3898 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3899 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3900 llvm::Value *&Result); 3901 3902 // Note: only available for agg return types 3903 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3904 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3905 // Note: only available for agg return types 3906 LValue EmitCallExprLValue(const CallExpr *E); 3907 // Note: only available for agg return types 3908 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3909 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3910 LValue EmitStringLiteralLValue(const StringLiteral *E); 3911 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3912 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3913 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3914 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3915 bool Accessed = false); 3916 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3917 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3918 bool IsLowerBound = true); 3919 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3920 LValue EmitMemberExpr(const MemberExpr *E); 3921 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3922 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3923 LValue EmitInitListLValue(const InitListExpr *E); 3924 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 3925 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3926 LValue EmitCastLValue(const CastExpr *E); 3927 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3928 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3929 3930 Address EmitExtVectorElementLValue(LValue V); 3931 3932 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3933 3934 Address EmitArrayToPointerDecay(const Expr *Array, 3935 LValueBaseInfo *BaseInfo = nullptr, 3936 TBAAAccessInfo *TBAAInfo = nullptr); 3937 3938 class ConstantEmission { 3939 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3940 ConstantEmission(llvm::Constant *C, bool isReference) 3941 : ValueAndIsReference(C, isReference) {} 3942 public: 3943 ConstantEmission() {} 3944 static ConstantEmission forReference(llvm::Constant *C) { 3945 return ConstantEmission(C, true); 3946 } 3947 static ConstantEmission forValue(llvm::Constant *C) { 3948 return ConstantEmission(C, false); 3949 } 3950 3951 explicit operator bool() const { 3952 return ValueAndIsReference.getOpaqueValue() != nullptr; 3953 } 3954 3955 bool isReference() const { return ValueAndIsReference.getInt(); } 3956 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3957 assert(isReference()); 3958 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3959 refExpr->getType()); 3960 } 3961 3962 llvm::Constant *getValue() const { 3963 assert(!isReference()); 3964 return ValueAndIsReference.getPointer(); 3965 } 3966 }; 3967 3968 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3969 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3970 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3971 3972 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3973 AggValueSlot slot = AggValueSlot::ignored()); 3974 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3975 3976 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3977 const ObjCIvarDecl *Ivar); 3978 llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 3979 const ObjCIvarDecl *Ivar); 3980 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3981 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3982 3983 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3984 /// if the Field is a reference, this will return the address of the reference 3985 /// and not the address of the value stored in the reference. 3986 LValue EmitLValueForFieldInitialization(LValue Base, 3987 const FieldDecl* Field); 3988 3989 LValue EmitLValueForIvar(QualType ObjectTy, 3990 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3991 unsigned CVRQualifiers); 3992 3993 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3994 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3995 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3996 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3997 3998 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3999 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 4000 LValue EmitStmtExprLValue(const StmtExpr *E); 4001 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 4002 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 4003 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 4004 4005 //===--------------------------------------------------------------------===// 4006 // Scalar Expression Emission 4007 //===--------------------------------------------------------------------===// 4008 4009 /// EmitCall - Generate a call of the given function, expecting the given 4010 /// result type, and using the given argument list which specifies both the 4011 /// LLVM arguments and the types they were derived from. 4012 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4013 ReturnValueSlot ReturnValue, const CallArgList &Args, 4014 llvm::CallBase **callOrInvoke, bool IsMustTail, 4015 SourceLocation Loc); 4016 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4017 ReturnValueSlot ReturnValue, const CallArgList &Args, 4018 llvm::CallBase **callOrInvoke = nullptr, 4019 bool IsMustTail = false) { 4020 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4021 IsMustTail, SourceLocation()); 4022 } 4023 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4024 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4025 RValue EmitCallExpr(const CallExpr *E, 4026 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4027 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4028 CGCallee EmitCallee(const Expr *E); 4029 4030 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4031 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4032 4033 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4034 const Twine &name = ""); 4035 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4036 ArrayRef<llvm::Value *> args, 4037 const Twine &name = ""); 4038 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4039 const Twine &name = ""); 4040 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4041 ArrayRef<llvm::Value *> args, 4042 const Twine &name = ""); 4043 4044 SmallVector<llvm::OperandBundleDef, 1> 4045 getBundlesForFunclet(llvm::Value *Callee); 4046 4047 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4048 ArrayRef<llvm::Value *> Args, 4049 const Twine &Name = ""); 4050 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4051 ArrayRef<llvm::Value *> args, 4052 const Twine &name = ""); 4053 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4054 const Twine &name = ""); 4055 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4056 ArrayRef<llvm::Value *> args); 4057 4058 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4059 NestedNameSpecifier *Qual, 4060 llvm::Type *Ty); 4061 4062 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4063 CXXDtorType Type, 4064 const CXXRecordDecl *RD); 4065 4066 // Return the copy constructor name with the prefix "__copy_constructor_" 4067 // removed. 4068 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4069 CharUnits Alignment, 4070 bool IsVolatile, 4071 ASTContext &Ctx); 4072 4073 // Return the destructor name with the prefix "__destructor_" removed. 4074 static std::string getNonTrivialDestructorStr(QualType QT, 4075 CharUnits Alignment, 4076 bool IsVolatile, 4077 ASTContext &Ctx); 4078 4079 // These functions emit calls to the special functions of non-trivial C 4080 // structs. 4081 void defaultInitNonTrivialCStructVar(LValue Dst); 4082 void callCStructDefaultConstructor(LValue Dst); 4083 void callCStructDestructor(LValue Dst); 4084 void callCStructCopyConstructor(LValue Dst, LValue Src); 4085 void callCStructMoveConstructor(LValue Dst, LValue Src); 4086 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4087 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4088 4089 RValue 4090 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4091 const CGCallee &Callee, 4092 ReturnValueSlot ReturnValue, llvm::Value *This, 4093 llvm::Value *ImplicitParam, 4094 QualType ImplicitParamTy, const CallExpr *E, 4095 CallArgList *RtlArgs); 4096 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4097 llvm::Value *This, QualType ThisTy, 4098 llvm::Value *ImplicitParam, 4099 QualType ImplicitParamTy, const CallExpr *E); 4100 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4101 ReturnValueSlot ReturnValue); 4102 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4103 const CXXMethodDecl *MD, 4104 ReturnValueSlot ReturnValue, 4105 bool HasQualifier, 4106 NestedNameSpecifier *Qualifier, 4107 bool IsArrow, const Expr *Base); 4108 // Compute the object pointer. 4109 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4110 llvm::Value *memberPtr, 4111 const MemberPointerType *memberPtrType, 4112 LValueBaseInfo *BaseInfo = nullptr, 4113 TBAAAccessInfo *TBAAInfo = nullptr); 4114 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4115 ReturnValueSlot ReturnValue); 4116 4117 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4118 const CXXMethodDecl *MD, 4119 ReturnValueSlot ReturnValue); 4120 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4121 4122 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4123 ReturnValueSlot ReturnValue); 4124 4125 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4126 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4127 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4128 4129 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4130 const CallExpr *E, ReturnValueSlot ReturnValue); 4131 4132 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4133 4134 /// Emit IR for __builtin_os_log_format. 4135 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4136 4137 /// Emit IR for __builtin_is_aligned. 4138 RValue EmitBuiltinIsAligned(const CallExpr *E); 4139 /// Emit IR for __builtin_align_up/__builtin_align_down. 4140 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4141 4142 llvm::Function *generateBuiltinOSLogHelperFunction( 4143 const analyze_os_log::OSLogBufferLayout &Layout, 4144 CharUnits BufferAlignment); 4145 4146 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4147 4148 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4149 /// is unhandled by the current target. 4150 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4151 ReturnValueSlot ReturnValue); 4152 4153 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4154 const llvm::CmpInst::Predicate Fp, 4155 const llvm::CmpInst::Predicate Ip, 4156 const llvm::Twine &Name = ""); 4157 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4158 ReturnValueSlot ReturnValue, 4159 llvm::Triple::ArchType Arch); 4160 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4161 ReturnValueSlot ReturnValue, 4162 llvm::Triple::ArchType Arch); 4163 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4164 ReturnValueSlot ReturnValue, 4165 llvm::Triple::ArchType Arch); 4166 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4167 QualType RTy); 4168 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4169 QualType RTy); 4170 4171 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4172 unsigned LLVMIntrinsic, 4173 unsigned AltLLVMIntrinsic, 4174 const char *NameHint, 4175 unsigned Modifier, 4176 const CallExpr *E, 4177 SmallVectorImpl<llvm::Value *> &Ops, 4178 Address PtrOp0, Address PtrOp1, 4179 llvm::Triple::ArchType Arch); 4180 4181 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4182 unsigned Modifier, llvm::Type *ArgTy, 4183 const CallExpr *E); 4184 llvm::Value *EmitNeonCall(llvm::Function *F, 4185 SmallVectorImpl<llvm::Value*> &O, 4186 const char *name, 4187 unsigned shift = 0, bool rightshift = false); 4188 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4189 const llvm::ElementCount &Count); 4190 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4191 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4192 bool negateForRightShift); 4193 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4194 llvm::Type *Ty, bool usgn, const char *name); 4195 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4196 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4197 /// access builtin. Only required if it can't be inferred from the base 4198 /// pointer operand. 4199 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4200 4201 SmallVector<llvm::Type *, 2> 4202 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4203 ArrayRef<llvm::Value *> Ops); 4204 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4205 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4206 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4207 llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, 4208 llvm::Type *ReturnType, 4209 ArrayRef<llvm::Value *> Ops); 4210 llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, 4211 llvm::Type *ReturnType, 4212 ArrayRef<llvm::Value *> Ops); 4213 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4214 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4215 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4216 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4217 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4218 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4219 unsigned BuiltinID); 4220 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4221 llvm::ArrayRef<llvm::Value *> Ops, 4222 unsigned BuiltinID); 4223 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4224 llvm::ScalableVectorType *VTy); 4225 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4226 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4227 unsigned IntID); 4228 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4229 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4230 unsigned IntID); 4231 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4232 SmallVectorImpl<llvm::Value *> &Ops, 4233 unsigned BuiltinID, bool IsZExtReturn); 4234 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4235 SmallVectorImpl<llvm::Value *> &Ops, 4236 unsigned BuiltinID); 4237 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4238 SmallVectorImpl<llvm::Value *> &Ops, 4239 unsigned BuiltinID); 4240 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4241 SmallVectorImpl<llvm::Value *> &Ops, 4242 unsigned IntID); 4243 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4244 SmallVectorImpl<llvm::Value *> &Ops, 4245 unsigned IntID); 4246 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4247 SmallVectorImpl<llvm::Value *> &Ops, 4248 unsigned IntID); 4249 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4250 4251 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4252 llvm::Triple::ArchType Arch); 4253 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4254 4255 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4256 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4257 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4258 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4259 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4260 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4261 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4262 const CallExpr *E); 4263 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4264 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4265 ReturnValueSlot ReturnValue); 4266 llvm::Value *EmitLoongArchBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4267 void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4268 llvm::AtomicOrdering &AO, 4269 llvm::SyncScope::ID &SSID); 4270 4271 enum class MSVCIntrin; 4272 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4273 4274 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4275 4276 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4277 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4278 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4279 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4280 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4281 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4282 const ObjCMethodDecl *MethodWithObjects); 4283 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4284 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4285 ReturnValueSlot Return = ReturnValueSlot()); 4286 4287 /// Retrieves the default cleanup kind for an ARC cleanup. 4288 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4289 CleanupKind getARCCleanupKind() { 4290 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4291 ? NormalAndEHCleanup : NormalCleanup; 4292 } 4293 4294 // ARC primitives. 4295 void EmitARCInitWeak(Address addr, llvm::Value *value); 4296 void EmitARCDestroyWeak(Address addr); 4297 llvm::Value *EmitARCLoadWeak(Address addr); 4298 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4299 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4300 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4301 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4302 void EmitARCCopyWeak(Address dst, Address src); 4303 void EmitARCMoveWeak(Address dst, Address src); 4304 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4305 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4306 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4307 bool resultIgnored); 4308 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4309 bool resultIgnored); 4310 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4311 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4312 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4313 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4314 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4315 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4316 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4317 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4318 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4319 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4320 4321 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4322 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4323 llvm::Type *returnType); 4324 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4325 4326 std::pair<LValue,llvm::Value*> 4327 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4328 std::pair<LValue,llvm::Value*> 4329 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4330 std::pair<LValue,llvm::Value*> 4331 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4332 4333 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4334 llvm::Type *returnType); 4335 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4336 llvm::Type *returnType); 4337 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4338 4339 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4340 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4341 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4342 4343 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4344 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4345 bool allowUnsafeClaim); 4346 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4347 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4348 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4349 4350 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4351 4352 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4353 4354 static Destroyer destroyARCStrongImprecise; 4355 static Destroyer destroyARCStrongPrecise; 4356 static Destroyer destroyARCWeak; 4357 static Destroyer emitARCIntrinsicUse; 4358 static Destroyer destroyNonTrivialCStruct; 4359 4360 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4361 llvm::Value *EmitObjCAutoreleasePoolPush(); 4362 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4363 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4364 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4365 4366 /// Emits a reference binding to the passed in expression. 4367 RValue EmitReferenceBindingToExpr(const Expr *E); 4368 4369 //===--------------------------------------------------------------------===// 4370 // Expression Emission 4371 //===--------------------------------------------------------------------===// 4372 4373 // Expressions are broken into three classes: scalar, complex, aggregate. 4374 4375 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4376 /// scalar type, returning the result. 4377 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4378 4379 /// Emit a conversion from the specified type to the specified destination 4380 /// type, both of which are LLVM scalar types. 4381 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4382 QualType DstTy, SourceLocation Loc); 4383 4384 /// Emit a conversion from the specified complex type to the specified 4385 /// destination type, where the destination type is an LLVM scalar type. 4386 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4387 QualType DstTy, 4388 SourceLocation Loc); 4389 4390 /// EmitAggExpr - Emit the computation of the specified expression 4391 /// of aggregate type. The result is computed into the given slot, 4392 /// which may be null to indicate that the value is not needed. 4393 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4394 4395 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4396 /// aggregate type into a temporary LValue. 4397 LValue EmitAggExprToLValue(const Expr *E); 4398 4399 /// Build all the stores needed to initialize an aggregate at Dest with the 4400 /// value Val. 4401 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4402 4403 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4404 /// make sure it survives garbage collection until this point. 4405 void EmitExtendGCLifetime(llvm::Value *object); 4406 4407 /// EmitComplexExpr - Emit the computation of the specified expression of 4408 /// complex type, returning the result. 4409 ComplexPairTy EmitComplexExpr(const Expr *E, 4410 bool IgnoreReal = false, 4411 bool IgnoreImag = false); 4412 4413 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4414 /// type and place its result into the specified l-value. 4415 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4416 4417 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4418 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4419 4420 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4421 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4422 4423 ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); 4424 llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); 4425 ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); 4426 ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); 4427 4428 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4429 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4430 4431 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4432 /// global variable that has already been created for it. If the initializer 4433 /// has a different type than GV does, this may free GV and return a different 4434 /// one. Otherwise it just returns GV. 4435 llvm::GlobalVariable * 4436 AddInitializerToStaticVarDecl(const VarDecl &D, 4437 llvm::GlobalVariable *GV); 4438 4439 // Emit an @llvm.invariant.start call for the given memory region. 4440 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4441 4442 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4443 /// variable with global storage. 4444 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4445 bool PerformInit); 4446 4447 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4448 llvm::Constant *Addr); 4449 4450 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4451 llvm::FunctionCallee Dtor, 4452 llvm::Constant *Addr, 4453 llvm::FunctionCallee &AtExit); 4454 4455 /// Call atexit() with a function that passes the given argument to 4456 /// the given function. 4457 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4458 llvm::Constant *addr); 4459 4460 /// Call atexit() with function dtorStub. 4461 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4462 4463 /// Call unatexit() with function dtorStub. 4464 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4465 4466 /// Emit code in this function to perform a guarded variable 4467 /// initialization. Guarded initializations are used when it's not 4468 /// possible to prove that an initialization will be done exactly 4469 /// once, e.g. with a static local variable or a static data member 4470 /// of a class template. 4471 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4472 bool PerformInit); 4473 4474 enum class GuardKind { VariableGuard, TlsGuard }; 4475 4476 /// Emit a branch to select whether or not to perform guarded initialization. 4477 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4478 llvm::BasicBlock *InitBlock, 4479 llvm::BasicBlock *NoInitBlock, 4480 GuardKind Kind, const VarDecl *D); 4481 4482 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4483 /// variables. 4484 void 4485 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4486 ArrayRef<llvm::Function *> CXXThreadLocals, 4487 ConstantAddress Guard = ConstantAddress::invalid()); 4488 4489 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4490 /// variables. 4491 void GenerateCXXGlobalCleanUpFunc( 4492 llvm::Function *Fn, 4493 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4494 llvm::Constant *>> 4495 DtorsOrStermFinalizers); 4496 4497 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4498 const VarDecl *D, 4499 llvm::GlobalVariable *Addr, 4500 bool PerformInit); 4501 4502 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4503 4504 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4505 4506 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4507 4508 RValue EmitAtomicExpr(AtomicExpr *E); 4509 4510 //===--------------------------------------------------------------------===// 4511 // Annotations Emission 4512 //===--------------------------------------------------------------------===// 4513 4514 /// Emit an annotation call (intrinsic). 4515 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4516 llvm::Value *AnnotatedVal, 4517 StringRef AnnotationStr, 4518 SourceLocation Location, 4519 const AnnotateAttr *Attr); 4520 4521 /// Emit local annotations for the local variable V, declared by D. 4522 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4523 4524 /// Emit field annotations for the given field & value. Returns the 4525 /// annotation result. 4526 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4527 4528 //===--------------------------------------------------------------------===// 4529 // Internal Helpers 4530 //===--------------------------------------------------------------------===// 4531 4532 /// ContainsLabel - Return true if the statement contains a label in it. If 4533 /// this statement is not executed normally, it not containing a label means 4534 /// that we can just remove the code. 4535 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4536 4537 /// containsBreak - Return true if the statement contains a break out of it. 4538 /// If the statement (recursively) contains a switch or loop with a break 4539 /// inside of it, this is fine. 4540 static bool containsBreak(const Stmt *S); 4541 4542 /// Determine if the given statement might introduce a declaration into the 4543 /// current scope, by being a (possibly-labelled) DeclStmt. 4544 static bool mightAddDeclToScope(const Stmt *S); 4545 4546 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4547 /// to a constant, or if it does but contains a label, return false. If it 4548 /// constant folds return true and set the boolean result in Result. 4549 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4550 bool AllowLabels = false); 4551 4552 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4553 /// to a constant, or if it does but contains a label, return false. If it 4554 /// constant folds return true and set the folded value. 4555 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4556 bool AllowLabels = false); 4557 4558 /// isInstrumentedCondition - Determine whether the given condition is an 4559 /// instrumentable condition (i.e. no "&&" or "||"). 4560 static bool isInstrumentedCondition(const Expr *C); 4561 4562 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4563 /// increments a profile counter based on the semantics of the given logical 4564 /// operator opcode. This is used to instrument branch condition coverage 4565 /// for logical operators. 4566 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4567 llvm::BasicBlock *TrueBlock, 4568 llvm::BasicBlock *FalseBlock, 4569 uint64_t TrueCount = 0, 4570 Stmt::Likelihood LH = Stmt::LH_None, 4571 const Expr *CntrIdx = nullptr); 4572 4573 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4574 /// if statement) to the specified blocks. Based on the condition, this might 4575 /// try to simplify the codegen of the conditional based on the branch. 4576 /// TrueCount should be the number of times we expect the condition to 4577 /// evaluate to true based on PGO data. 4578 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4579 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4580 Stmt::Likelihood LH = Stmt::LH_None); 4581 4582 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4583 /// nonnull, if \p LHS is marked _Nonnull. 4584 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4585 4586 /// An enumeration which makes it easier to specify whether or not an 4587 /// operation is a subtraction. 4588 enum { NotSubtraction = false, IsSubtraction = true }; 4589 4590 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4591 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4592 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4593 /// \p IsSubtraction indicates whether the expression used to form the GEP 4594 /// is a subtraction. 4595 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4596 ArrayRef<llvm::Value *> IdxList, 4597 bool SignedIndices, 4598 bool IsSubtraction, 4599 SourceLocation Loc, 4600 const Twine &Name = ""); 4601 4602 /// Specifies which type of sanitizer check to apply when handling a 4603 /// particular builtin. 4604 enum BuiltinCheckKind { 4605 BCK_CTZPassedZero, 4606 BCK_CLZPassedZero, 4607 }; 4608 4609 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4610 /// enabled, a runtime check specified by \p Kind is also emitted. 4611 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4612 4613 /// Emit a description of a type in a format suitable for passing to 4614 /// a runtime sanitizer handler. 4615 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4616 4617 /// Convert a value into a format suitable for passing to a runtime 4618 /// sanitizer handler. 4619 llvm::Value *EmitCheckValue(llvm::Value *V); 4620 4621 /// Emit a description of a source location in a format suitable for 4622 /// passing to a runtime sanitizer handler. 4623 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4624 4625 void EmitKCFIOperandBundle(const CGCallee &Callee, 4626 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 4627 4628 /// Create a basic block that will either trap or call a handler function in 4629 /// the UBSan runtime with the provided arguments, and create a conditional 4630 /// branch to it. 4631 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4632 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4633 ArrayRef<llvm::Value *> DynamicArgs); 4634 4635 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4636 /// if Cond if false. 4637 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4638 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4639 ArrayRef<llvm::Constant *> StaticArgs); 4640 4641 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4642 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4643 void EmitUnreachable(SourceLocation Loc); 4644 4645 /// Create a basic block that will call the trap intrinsic, and emit a 4646 /// conditional branch to it, for the -ftrapv checks. 4647 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4648 4649 /// Emit a call to trap or debugtrap and attach function attribute 4650 /// "trap-func-name" if specified. 4651 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4652 4653 /// Emit a stub for the cross-DSO CFI check function. 4654 void EmitCfiCheckStub(); 4655 4656 /// Emit a cross-DSO CFI failure handling function. 4657 void EmitCfiCheckFail(); 4658 4659 /// Create a check for a function parameter that may potentially be 4660 /// declared as non-null. 4661 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4662 AbstractCallee AC, unsigned ParmNum); 4663 4664 /// EmitCallArg - Emit a single call argument. 4665 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4666 4667 /// EmitDelegateCallArg - We are performing a delegate call; that 4668 /// is, the current function is delegating to another one. Produce 4669 /// a r-value suitable for passing the given parameter. 4670 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4671 SourceLocation loc); 4672 4673 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4674 /// point operation, expressed as the maximum relative error in ulp. 4675 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4676 4677 /// Set the codegen fast-math flags. 4678 void SetFastMathFlags(FPOptions FPFeatures); 4679 4680 // Truncate or extend a boolean vector to the requested number of elements. 4681 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 4682 unsigned NumElementsDst, 4683 const llvm::Twine &Name = ""); 4684 4685 private: 4686 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4687 void EmitReturnOfRValue(RValue RV, QualType Ty); 4688 4689 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4690 4691 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4692 DeferredReplacements; 4693 4694 /// Set the address of a local variable. 4695 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4696 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4697 LocalDeclMap.insert({VD, Addr}); 4698 } 4699 4700 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4701 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4702 /// 4703 /// \param AI - The first function argument of the expansion. 4704 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4705 llvm::Function::arg_iterator &AI); 4706 4707 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4708 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4709 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4710 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4711 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4712 unsigned &IRCallArgPos); 4713 4714 std::pair<llvm::Value *, llvm::Type *> 4715 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4716 std::string &ConstraintStr); 4717 4718 std::pair<llvm::Value *, llvm::Type *> 4719 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4720 QualType InputType, std::string &ConstraintStr, 4721 SourceLocation Loc); 4722 4723 /// Attempts to statically evaluate the object size of E. If that 4724 /// fails, emits code to figure the size of E out for us. This is 4725 /// pass_object_size aware. 4726 /// 4727 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4728 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4729 llvm::IntegerType *ResType, 4730 llvm::Value *EmittedE, 4731 bool IsDynamic); 4732 4733 /// Emits the size of E, as required by __builtin_object_size. This 4734 /// function is aware of pass_object_size parameters, and will act accordingly 4735 /// if E is a parameter with the pass_object_size attribute. 4736 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4737 llvm::IntegerType *ResType, 4738 llvm::Value *EmittedE, 4739 bool IsDynamic); 4740 4741 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4742 Address Loc); 4743 4744 public: 4745 enum class EvaluationOrder { 4746 ///! No language constraints on evaluation order. 4747 Default, 4748 ///! Language semantics require left-to-right evaluation. 4749 ForceLeftToRight, 4750 ///! Language semantics require right-to-left evaluation. 4751 ForceRightToLeft 4752 }; 4753 4754 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4755 // an ObjCMethodDecl. 4756 struct PrototypeWrapper { 4757 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4758 4759 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4760 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4761 }; 4762 4763 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4764 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4765 AbstractCallee AC = AbstractCallee(), 4766 unsigned ParamsToSkip = 0, 4767 EvaluationOrder Order = EvaluationOrder::Default); 4768 4769 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4770 /// emit the value and compute our best estimate of the alignment of the 4771 /// pointee. 4772 /// 4773 /// \param BaseInfo - If non-null, this will be initialized with 4774 /// information about the source of the alignment and the may-alias 4775 /// attribute. Note that this function will conservatively fall back on 4776 /// the type when it doesn't recognize the expression and may-alias will 4777 /// be set to false. 4778 /// 4779 /// One reasonable way to use this information is when there's a language 4780 /// guarantee that the pointer must be aligned to some stricter value, and 4781 /// we're simply trying to ensure that sufficiently obvious uses of under- 4782 /// aligned objects don't get miscompiled; for example, a placement new 4783 /// into the address of a local variable. In such a case, it's quite 4784 /// reasonable to just ignore the returned alignment when it isn't from an 4785 /// explicit source. 4786 Address EmitPointerWithAlignment(const Expr *Addr, 4787 LValueBaseInfo *BaseInfo = nullptr, 4788 TBAAAccessInfo *TBAAInfo = nullptr); 4789 4790 /// If \p E references a parameter with pass_object_size info or a constant 4791 /// array size modifier, emit the object size divided by the size of \p EltTy. 4792 /// Otherwise return null. 4793 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4794 4795 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4796 4797 struct MultiVersionResolverOption { 4798 llvm::Function *Function; 4799 struct Conds { 4800 StringRef Architecture; 4801 llvm::SmallVector<StringRef, 8> Features; 4802 4803 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4804 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4805 } Conditions; 4806 4807 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4808 ArrayRef<StringRef> Feats) 4809 : Function(F), Conditions(Arch, Feats) {} 4810 }; 4811 4812 // Emits the body of a multiversion function's resolver. Assumes that the 4813 // options are already sorted in the proper order, with the 'default' option 4814 // last (if it exists). 4815 void EmitMultiVersionResolver(llvm::Function *Resolver, 4816 ArrayRef<MultiVersionResolverOption> Options); 4817 void 4818 EmitX86MultiVersionResolver(llvm::Function *Resolver, 4819 ArrayRef<MultiVersionResolverOption> Options); 4820 void 4821 EmitAArch64MultiVersionResolver(llvm::Function *Resolver, 4822 ArrayRef<MultiVersionResolverOption> Options); 4823 4824 private: 4825 QualType getVarArgType(const Expr *Arg); 4826 4827 void EmitDeclMetadata(); 4828 4829 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4830 const AutoVarEmission &emission); 4831 4832 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4833 4834 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4835 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4836 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4837 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4838 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4839 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4840 llvm::Value *EmitX86CpuInit(); 4841 llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO); 4842 llvm::Value *EmitAArch64CpuInit(); 4843 llvm::Value * 4844 FormAArch64ResolverCondition(const MultiVersionResolverOption &RO); 4845 llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); 4846 }; 4847 4848 4849 inline DominatingLLVMValue::saved_type 4850 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4851 if (!needsSaving(value)) return saved_type(value, false); 4852 4853 // Otherwise, we need an alloca. 4854 auto align = CharUnits::fromQuantity( 4855 CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType())); 4856 Address alloca = 4857 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4858 CGF.Builder.CreateStore(value, alloca); 4859 4860 return saved_type(alloca.getPointer(), true); 4861 } 4862 4863 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4864 saved_type value) { 4865 // If the value says it wasn't saved, trust that it's still dominating. 4866 if (!value.getInt()) return value.getPointer(); 4867 4868 // Otherwise, it should be an alloca instruction, as set up in save(). 4869 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4870 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4871 alloca->getAlign()); 4872 } 4873 4874 } // end namespace CodeGen 4875 4876 // Map the LangOption for floating point exception behavior into 4877 // the corresponding enum in the IR. 4878 llvm::fp::ExceptionBehavior 4879 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4880 } // end namespace clang 4881 4882 #endif 4883