xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 #include <optional>
45 
46 namespace llvm {
47 class BasicBlock;
48 class LLVMContext;
49 class MDNode;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 class CanonicalLoopInfo;
54 }
55 
56 namespace clang {
57 class ASTContext;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 class OMPUseDevicePtrClause;
80 class OMPUseDeviceAddrClause;
81 class SVETypeFlags;
82 class OMPExecutableDirective;
83 
84 namespace analyze_os_log {
85 class OSLogBufferLayout;
86 }
87 
88 namespace CodeGen {
89 class CodeGenTypes;
90 class CGCallee;
91 class CGFunctionInfo;
92 class CGBlockInfo;
93 class CGCXXABI;
94 class BlockByrefHelpers;
95 class BlockByrefInfo;
96 class BlockFieldFlags;
97 class RegionCodeGenTy;
98 class TargetCodeGenInfo;
99 struct OMPTaskDataTy;
100 struct CGCoroData;
101 
102 /// The kind of evaluation to perform on values of a particular
103 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
104 /// CGExprAgg?
105 ///
106 /// TODO: should vectors maybe be split out into their own thing?
107 enum TypeEvaluationKind {
108   TEK_Scalar,
109   TEK_Complex,
110   TEK_Aggregate
111 };
112 
113 #define LIST_SANITIZER_CHECKS                                                  \
114   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
115   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
116   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
117   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
118   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
119   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
120   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
121   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
122   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
123   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
124   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
125   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
126   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
127   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
128   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
129   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
130   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
131   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
132   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
133   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
134   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
135   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
136   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
137   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
138   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
139 
140 enum SanitizerHandler {
141 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
142   LIST_SANITIZER_CHECKS
143 #undef SANITIZER_CHECK
144 };
145 
146 /// Helper class with most of the code for saving a value for a
147 /// conditional expression cleanup.
148 struct DominatingLLVMValue {
149   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
150 
151   /// Answer whether the given value needs extra work to be saved.
152   static bool needsSaving(llvm::Value *value) {
153     // If it's not an instruction, we don't need to save.
154     if (!isa<llvm::Instruction>(value)) return false;
155 
156     // If it's an instruction in the entry block, we don't need to save.
157     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
158     return (block != &block->getParent()->getEntryBlock());
159   }
160 
161   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
162   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
163 };
164 
165 /// A partial specialization of DominatingValue for llvm::Values that
166 /// might be llvm::Instructions.
167 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
168   typedef T *type;
169   static type restore(CodeGenFunction &CGF, saved_type value) {
170     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
171   }
172 };
173 
174 /// A specialization of DominatingValue for Address.
175 template <> struct DominatingValue<Address> {
176   typedef Address type;
177 
178   struct saved_type {
179     DominatingLLVMValue::saved_type SavedValue;
180     llvm::Type *ElementType;
181     CharUnits Alignment;
182   };
183 
184   static bool needsSaving(type value) {
185     return DominatingLLVMValue::needsSaving(value.getPointer());
186   }
187   static saved_type save(CodeGenFunction &CGF, type value) {
188     return { DominatingLLVMValue::save(CGF, value.getPointer()),
189              value.getElementType(), value.getAlignment() };
190   }
191   static type restore(CodeGenFunction &CGF, saved_type value) {
192     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
193                    value.ElementType, value.Alignment);
194   }
195 };
196 
197 /// A specialization of DominatingValue for RValue.
198 template <> struct DominatingValue<RValue> {
199   typedef RValue type;
200   class saved_type {
201     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
202                 AggregateAddress, ComplexAddress };
203 
204     llvm::Value *Value;
205     llvm::Type *ElementType;
206     unsigned K : 3;
207     unsigned Align : 29;
208     saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
209       : Value(v), ElementType(e), K(k), Align(a) {}
210 
211   public:
212     static bool needsSaving(RValue value);
213     static saved_type save(CodeGenFunction &CGF, RValue value);
214     RValue restore(CodeGenFunction &CGF);
215 
216     // implementations in CGCleanup.cpp
217   };
218 
219   static bool needsSaving(type value) {
220     return saved_type::needsSaving(value);
221   }
222   static saved_type save(CodeGenFunction &CGF, type value) {
223     return saved_type::save(CGF, value);
224   }
225   static type restore(CodeGenFunction &CGF, saved_type value) {
226     return value.restore(CGF);
227   }
228 };
229 
230 /// CodeGenFunction - This class organizes the per-function state that is used
231 /// while generating LLVM code.
232 class CodeGenFunction : public CodeGenTypeCache {
233   CodeGenFunction(const CodeGenFunction &) = delete;
234   void operator=(const CodeGenFunction &) = delete;
235 
236   friend class CGCXXABI;
237 public:
238   /// A jump destination is an abstract label, branching to which may
239   /// require a jump out through normal cleanups.
240   struct JumpDest {
241     JumpDest() : Block(nullptr), Index(0) {}
242     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
243              unsigned Index)
244         : Block(Block), ScopeDepth(Depth), Index(Index) {}
245 
246     bool isValid() const { return Block != nullptr; }
247     llvm::BasicBlock *getBlock() const { return Block; }
248     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
249     unsigned getDestIndex() const { return Index; }
250 
251     // This should be used cautiously.
252     void setScopeDepth(EHScopeStack::stable_iterator depth) {
253       ScopeDepth = depth;
254     }
255 
256   private:
257     llvm::BasicBlock *Block;
258     EHScopeStack::stable_iterator ScopeDepth;
259     unsigned Index;
260   };
261 
262   CodeGenModule &CGM;  // Per-module state.
263   const TargetInfo &Target;
264 
265   // For EH/SEH outlined funclets, this field points to parent's CGF
266   CodeGenFunction *ParentCGF = nullptr;
267 
268   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
269   LoopInfoStack LoopStack;
270   CGBuilderTy Builder;
271 
272   // Stores variables for which we can't generate correct lifetime markers
273   // because of jumps.
274   VarBypassDetector Bypasses;
275 
276   /// List of recently emitted OMPCanonicalLoops.
277   ///
278   /// Since OMPCanonicalLoops are nested inside other statements (in particular
279   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
280   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
281   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
282   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
283   /// this stack when done. Entering a new loop requires clearing this list; it
284   /// either means we start parsing a new loop nest (in which case the previous
285   /// loop nest goes out of scope) or a second loop in the same level in which
286   /// case it would be ambiguous into which of the two (or more) loops the loop
287   /// nest would extend.
288   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
289 
290   /// Stack to track the Logical Operator recursion nest for MC/DC.
291   SmallVector<const BinaryOperator *, 16> MCDCLogOpStack;
292 
293   /// Number of nested loop to be consumed by the last surrounding
294   /// loop-associated directive.
295   int ExpectedOMPLoopDepth = 0;
296 
297   // CodeGen lambda for loops and support for ordered clause
298   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
299                                   JumpDest)>
300       CodeGenLoopTy;
301   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
302                                   const unsigned, const bool)>
303       CodeGenOrderedTy;
304 
305   // Codegen lambda for loop bounds in worksharing loop constructs
306   typedef llvm::function_ref<std::pair<LValue, LValue>(
307       CodeGenFunction &, const OMPExecutableDirective &S)>
308       CodeGenLoopBoundsTy;
309 
310   // Codegen lambda for loop bounds in dispatch-based loop implementation
311   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
312       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
313       Address UB)>
314       CodeGenDispatchBoundsTy;
315 
316   /// CGBuilder insert helper. This function is called after an
317   /// instruction is created using Builder.
318   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
319                     llvm::BasicBlock *BB,
320                     llvm::BasicBlock::iterator InsertPt) const;
321 
322   /// CurFuncDecl - Holds the Decl for the current outermost
323   /// non-closure context.
324   const Decl *CurFuncDecl = nullptr;
325   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
326   const Decl *CurCodeDecl = nullptr;
327   const CGFunctionInfo *CurFnInfo = nullptr;
328   QualType FnRetTy;
329   llvm::Function *CurFn = nullptr;
330 
331   /// Save Parameter Decl for coroutine.
332   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
333 
334   // Holds coroutine data if the current function is a coroutine. We use a
335   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
336   // in this header.
337   struct CGCoroInfo {
338     std::unique_ptr<CGCoroData> Data;
339     bool InSuspendBlock = false;
340     CGCoroInfo();
341     ~CGCoroInfo();
342   };
343   CGCoroInfo CurCoro;
344 
345   bool isCoroutine() const {
346     return CurCoro.Data != nullptr;
347   }
348 
349   bool inSuspendBlock() const {
350     return isCoroutine() && CurCoro.InSuspendBlock;
351   }
352 
353   /// CurGD - The GlobalDecl for the current function being compiled.
354   GlobalDecl CurGD;
355 
356   /// PrologueCleanupDepth - The cleanup depth enclosing all the
357   /// cleanups associated with the parameters.
358   EHScopeStack::stable_iterator PrologueCleanupDepth;
359 
360   /// ReturnBlock - Unified return block.
361   JumpDest ReturnBlock;
362 
363   /// ReturnValue - The temporary alloca to hold the return
364   /// value. This is invalid iff the function has no return value.
365   Address ReturnValue = Address::invalid();
366 
367   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
368   /// This is invalid if sret is not in use.
369   Address ReturnValuePointer = Address::invalid();
370 
371   /// If a return statement is being visited, this holds the return statment's
372   /// result expression.
373   const Expr *RetExpr = nullptr;
374 
375   /// Return true if a label was seen in the current scope.
376   bool hasLabelBeenSeenInCurrentScope() const {
377     if (CurLexicalScope)
378       return CurLexicalScope->hasLabels();
379     return !LabelMap.empty();
380   }
381 
382   /// AllocaInsertPoint - This is an instruction in the entry block before which
383   /// we prefer to insert allocas.
384   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
385 
386 private:
387   /// PostAllocaInsertPt - This is a place in the prologue where code can be
388   /// inserted that will be dominated by all the static allocas. This helps
389   /// achieve two things:
390   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
391   ///   2. All other prologue code (which are dominated by static allocas) do
392   ///      appear in the source order immediately after all static allocas.
393   ///
394   /// PostAllocaInsertPt will be lazily created when it is *really* required.
395   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
396 
397 public:
398   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
399   /// immediately after AllocaInsertPt.
400   llvm::Instruction *getPostAllocaInsertPoint() {
401     if (!PostAllocaInsertPt) {
402       assert(AllocaInsertPt &&
403              "Expected static alloca insertion point at function prologue");
404       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
405              "EBB should be entry block of the current code gen function");
406       PostAllocaInsertPt = AllocaInsertPt->clone();
407       PostAllocaInsertPt->setName("postallocapt");
408       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
409     }
410 
411     return PostAllocaInsertPt;
412   }
413 
414   /// API for captured statement code generation.
415   class CGCapturedStmtInfo {
416   public:
417     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
418         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
419     explicit CGCapturedStmtInfo(const CapturedStmt &S,
420                                 CapturedRegionKind K = CR_Default)
421       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
422 
423       RecordDecl::field_iterator Field =
424         S.getCapturedRecordDecl()->field_begin();
425       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
426                                                 E = S.capture_end();
427            I != E; ++I, ++Field) {
428         if (I->capturesThis())
429           CXXThisFieldDecl = *Field;
430         else if (I->capturesVariable())
431           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
432         else if (I->capturesVariableByCopy())
433           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
434       }
435     }
436 
437     virtual ~CGCapturedStmtInfo();
438 
439     CapturedRegionKind getKind() const { return Kind; }
440 
441     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
442     // Retrieve the value of the context parameter.
443     virtual llvm::Value *getContextValue() const { return ThisValue; }
444 
445     /// Lookup the captured field decl for a variable.
446     virtual const FieldDecl *lookup(const VarDecl *VD) const {
447       return CaptureFields.lookup(VD->getCanonicalDecl());
448     }
449 
450     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
451     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
452 
453     static bool classof(const CGCapturedStmtInfo *) {
454       return true;
455     }
456 
457     /// Emit the captured statement body.
458     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
459       CGF.incrementProfileCounter(S);
460       CGF.EmitStmt(S);
461     }
462 
463     /// Get the name of the capture helper.
464     virtual StringRef getHelperName() const { return "__captured_stmt"; }
465 
466     /// Get the CaptureFields
467     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
468       return CaptureFields;
469     }
470 
471   private:
472     /// The kind of captured statement being generated.
473     CapturedRegionKind Kind;
474 
475     /// Keep the map between VarDecl and FieldDecl.
476     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
477 
478     /// The base address of the captured record, passed in as the first
479     /// argument of the parallel region function.
480     llvm::Value *ThisValue;
481 
482     /// Captured 'this' type.
483     FieldDecl *CXXThisFieldDecl;
484   };
485   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
486 
487   /// RAII for correct setting/restoring of CapturedStmtInfo.
488   class CGCapturedStmtRAII {
489   private:
490     CodeGenFunction &CGF;
491     CGCapturedStmtInfo *PrevCapturedStmtInfo;
492   public:
493     CGCapturedStmtRAII(CodeGenFunction &CGF,
494                        CGCapturedStmtInfo *NewCapturedStmtInfo)
495         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
496       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
497     }
498     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
499   };
500 
501   /// An abstract representation of regular/ObjC call/message targets.
502   class AbstractCallee {
503     /// The function declaration of the callee.
504     const Decl *CalleeDecl;
505 
506   public:
507     AbstractCallee() : CalleeDecl(nullptr) {}
508     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
509     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
510     bool hasFunctionDecl() const {
511       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
512     }
513     const Decl *getDecl() const { return CalleeDecl; }
514     unsigned getNumParams() const {
515       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
516         return FD->getNumParams();
517       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
518     }
519     const ParmVarDecl *getParamDecl(unsigned I) const {
520       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
521         return FD->getParamDecl(I);
522       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
523     }
524   };
525 
526   /// Sanitizers enabled for this function.
527   SanitizerSet SanOpts;
528 
529   /// True if CodeGen currently emits code implementing sanitizer checks.
530   bool IsSanitizerScope = false;
531 
532   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
533   class SanitizerScope {
534     CodeGenFunction *CGF;
535   public:
536     SanitizerScope(CodeGenFunction *CGF);
537     ~SanitizerScope();
538   };
539 
540   /// In C++, whether we are code generating a thunk.  This controls whether we
541   /// should emit cleanups.
542   bool CurFuncIsThunk = false;
543 
544   /// In ARC, whether we should autorelease the return value.
545   bool AutoreleaseResult = false;
546 
547   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
548   /// potentially set the return value.
549   bool SawAsmBlock = false;
550 
551   GlobalDecl CurSEHParent;
552 
553   /// True if the current function is an outlined SEH helper. This can be a
554   /// finally block or filter expression.
555   bool IsOutlinedSEHHelper = false;
556 
557   /// True if CodeGen currently emits code inside presereved access index
558   /// region.
559   bool IsInPreservedAIRegion = false;
560 
561   /// True if the current statement has nomerge attribute.
562   bool InNoMergeAttributedStmt = false;
563 
564   /// True if the current statement has noinline attribute.
565   bool InNoInlineAttributedStmt = false;
566 
567   /// True if the current statement has always_inline attribute.
568   bool InAlwaysInlineAttributedStmt = false;
569 
570   // The CallExpr within the current statement that the musttail attribute
571   // applies to.  nullptr if there is no 'musttail' on the current statement.
572   const CallExpr *MustTailCall = nullptr;
573 
574   /// Returns true if a function must make progress, which means the
575   /// mustprogress attribute can be added.
576   bool checkIfFunctionMustProgress() {
577     if (CGM.getCodeGenOpts().getFiniteLoops() ==
578         CodeGenOptions::FiniteLoopsKind::Never)
579       return false;
580 
581     // C++11 and later guarantees that a thread eventually will do one of the
582     // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
583     // - terminate,
584     //  - make a call to a library I/O function,
585     //  - perform an access through a volatile glvalue, or
586     //  - perform a synchronization operation or an atomic operation.
587     //
588     // Hence each function is 'mustprogress' in C++11 or later.
589     return getLangOpts().CPlusPlus11;
590   }
591 
592   /// Returns true if a loop must make progress, which means the mustprogress
593   /// attribute can be added. \p HasConstantCond indicates whether the branch
594   /// condition is a known constant.
595   bool checkIfLoopMustProgress(bool HasConstantCond) {
596     if (CGM.getCodeGenOpts().getFiniteLoops() ==
597         CodeGenOptions::FiniteLoopsKind::Always)
598       return true;
599     if (CGM.getCodeGenOpts().getFiniteLoops() ==
600         CodeGenOptions::FiniteLoopsKind::Never)
601       return false;
602 
603     // If the containing function must make progress, loops also must make
604     // progress (as in C++11 and later).
605     if (checkIfFunctionMustProgress())
606       return true;
607 
608     // Now apply rules for plain C (see  6.8.5.6 in C11).
609     // Loops with constant conditions do not have to make progress in any C
610     // version.
611     if (HasConstantCond)
612       return false;
613 
614     // Loops with non-constant conditions must make progress in C11 and later.
615     return getLangOpts().C11;
616   }
617 
618   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
619   llvm::Value *BlockPointer = nullptr;
620 
621   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
622   FieldDecl *LambdaThisCaptureField = nullptr;
623 
624   /// A mapping from NRVO variables to the flags used to indicate
625   /// when the NRVO has been applied to this variable.
626   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
627 
628   EHScopeStack EHStack;
629   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
630   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
631 
632   llvm::Instruction *CurrentFuncletPad = nullptr;
633 
634   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
635     bool isRedundantBeforeReturn() override { return true; }
636 
637     llvm::Value *Addr;
638     llvm::Value *Size;
639 
640   public:
641     CallLifetimeEnd(Address addr, llvm::Value *size)
642         : Addr(addr.getPointer()), Size(size) {}
643 
644     void Emit(CodeGenFunction &CGF, Flags flags) override {
645       CGF.EmitLifetimeEnd(Size, Addr);
646     }
647   };
648 
649   /// Header for data within LifetimeExtendedCleanupStack.
650   struct LifetimeExtendedCleanupHeader {
651     /// The size of the following cleanup object.
652     unsigned Size;
653     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
654     unsigned Kind : 31;
655     /// Whether this is a conditional cleanup.
656     unsigned IsConditional : 1;
657 
658     size_t getSize() const { return Size; }
659     CleanupKind getKind() const { return (CleanupKind)Kind; }
660     bool isConditional() const { return IsConditional; }
661   };
662 
663   /// i32s containing the indexes of the cleanup destinations.
664   Address NormalCleanupDest = Address::invalid();
665 
666   unsigned NextCleanupDestIndex = 1;
667 
668   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
669   llvm::BasicBlock *EHResumeBlock = nullptr;
670 
671   /// The exception slot.  All landing pads write the current exception pointer
672   /// into this alloca.
673   llvm::Value *ExceptionSlot = nullptr;
674 
675   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
676   /// write the current selector value into this alloca.
677   llvm::AllocaInst *EHSelectorSlot = nullptr;
678 
679   /// A stack of exception code slots. Entering an __except block pushes a slot
680   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
681   /// a value from the top of the stack.
682   SmallVector<Address, 1> SEHCodeSlotStack;
683 
684   /// Value returned by __exception_info intrinsic.
685   llvm::Value *SEHInfo = nullptr;
686 
687   /// Emits a landing pad for the current EH stack.
688   llvm::BasicBlock *EmitLandingPad();
689 
690   llvm::BasicBlock *getInvokeDestImpl();
691 
692   /// Parent loop-based directive for scan directive.
693   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
694   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
695   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
696   llvm::BasicBlock *OMPScanExitBlock = nullptr;
697   llvm::BasicBlock *OMPScanDispatch = nullptr;
698   bool OMPFirstScanLoop = false;
699 
700   /// Manages parent directive for scan directives.
701   class ParentLoopDirectiveForScanRegion {
702     CodeGenFunction &CGF;
703     const OMPExecutableDirective *ParentLoopDirectiveForScan;
704 
705   public:
706     ParentLoopDirectiveForScanRegion(
707         CodeGenFunction &CGF,
708         const OMPExecutableDirective &ParentLoopDirectiveForScan)
709         : CGF(CGF),
710           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
711       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
712     }
713     ~ParentLoopDirectiveForScanRegion() {
714       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
715     }
716   };
717 
718   template <class T>
719   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
720     return DominatingValue<T>::save(*this, value);
721   }
722 
723   class CGFPOptionsRAII {
724   public:
725     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
726     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
727     ~CGFPOptionsRAII();
728 
729   private:
730     void ConstructorHelper(FPOptions FPFeatures);
731     CodeGenFunction &CGF;
732     FPOptions OldFPFeatures;
733     llvm::fp::ExceptionBehavior OldExcept;
734     llvm::RoundingMode OldRounding;
735     std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
736   };
737   FPOptions CurFPFeatures;
738 
739 public:
740   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
741   /// rethrows.
742   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
743 
744   /// A class controlling the emission of a finally block.
745   class FinallyInfo {
746     /// Where the catchall's edge through the cleanup should go.
747     JumpDest RethrowDest;
748 
749     /// A function to call to enter the catch.
750     llvm::FunctionCallee BeginCatchFn;
751 
752     /// An i1 variable indicating whether or not the @finally is
753     /// running for an exception.
754     llvm::AllocaInst *ForEHVar = nullptr;
755 
756     /// An i8* variable into which the exception pointer to rethrow
757     /// has been saved.
758     llvm::AllocaInst *SavedExnVar = nullptr;
759 
760   public:
761     void enter(CodeGenFunction &CGF, const Stmt *Finally,
762                llvm::FunctionCallee beginCatchFn,
763                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
764     void exit(CodeGenFunction &CGF);
765   };
766 
767   /// Returns true inside SEH __try blocks.
768   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
769 
770   /// Returns true while emitting a cleanuppad.
771   bool isCleanupPadScope() const {
772     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
773   }
774 
775   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
776   /// current full-expression.  Safe against the possibility that
777   /// we're currently inside a conditionally-evaluated expression.
778   template <class T, class... As>
779   void pushFullExprCleanup(CleanupKind kind, As... A) {
780     // If we're not in a conditional branch, or if none of the
781     // arguments requires saving, then use the unconditional cleanup.
782     if (!isInConditionalBranch())
783       return EHStack.pushCleanup<T>(kind, A...);
784 
785     // Stash values in a tuple so we can guarantee the order of saves.
786     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
787     SavedTuple Saved{saveValueInCond(A)...};
788 
789     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
790     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
791     initFullExprCleanup();
792   }
793 
794   /// Queue a cleanup to be pushed after finishing the current full-expression,
795   /// potentially with an active flag.
796   template <class T, class... As>
797   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
798     if (!isInConditionalBranch())
799       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
800                                                        A...);
801 
802     Address ActiveFlag = createCleanupActiveFlag();
803     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
804            "cleanup active flag should never need saving");
805 
806     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
807     SavedTuple Saved{saveValueInCond(A)...};
808 
809     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
810     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
811   }
812 
813   template <class T, class... As>
814   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
815                                               Address ActiveFlag, As... A) {
816     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
817                                             ActiveFlag.isValid()};
818 
819     size_t OldSize = LifetimeExtendedCleanupStack.size();
820     LifetimeExtendedCleanupStack.resize(
821         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
822         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
823 
824     static_assert(sizeof(Header) % alignof(T) == 0,
825                   "Cleanup will be allocated on misaligned address");
826     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
827     new (Buffer) LifetimeExtendedCleanupHeader(Header);
828     new (Buffer + sizeof(Header)) T(A...);
829     if (Header.IsConditional)
830       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
831   }
832 
833   /// Set up the last cleanup that was pushed as a conditional
834   /// full-expression cleanup.
835   void initFullExprCleanup() {
836     initFullExprCleanupWithFlag(createCleanupActiveFlag());
837   }
838 
839   void initFullExprCleanupWithFlag(Address ActiveFlag);
840   Address createCleanupActiveFlag();
841 
842   /// PushDestructorCleanup - Push a cleanup to call the
843   /// complete-object destructor of an object of the given type at the
844   /// given address.  Does nothing if T is not a C++ class type with a
845   /// non-trivial destructor.
846   void PushDestructorCleanup(QualType T, Address Addr);
847 
848   /// PushDestructorCleanup - Push a cleanup to call the
849   /// complete-object variant of the given destructor on the object at
850   /// the given address.
851   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
852                              Address Addr);
853 
854   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
855   /// process all branch fixups.
856   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
857 
858   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
859   /// The block cannot be reactivated.  Pops it if it's the top of the
860   /// stack.
861   ///
862   /// \param DominatingIP - An instruction which is known to
863   ///   dominate the current IP (if set) and which lies along
864   ///   all paths of execution between the current IP and the
865   ///   the point at which the cleanup comes into scope.
866   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
867                               llvm::Instruction *DominatingIP);
868 
869   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
870   /// Cannot be used to resurrect a deactivated cleanup.
871   ///
872   /// \param DominatingIP - An instruction which is known to
873   ///   dominate the current IP (if set) and which lies along
874   ///   all paths of execution between the current IP and the
875   ///   the point at which the cleanup comes into scope.
876   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
877                             llvm::Instruction *DominatingIP);
878 
879   /// Enters a new scope for capturing cleanups, all of which
880   /// will be executed once the scope is exited.
881   class RunCleanupsScope {
882     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
883     size_t LifetimeExtendedCleanupStackSize;
884     bool OldDidCallStackSave;
885   protected:
886     bool PerformCleanup;
887   private:
888 
889     RunCleanupsScope(const RunCleanupsScope &) = delete;
890     void operator=(const RunCleanupsScope &) = delete;
891 
892   protected:
893     CodeGenFunction& CGF;
894 
895   public:
896     /// Enter a new cleanup scope.
897     explicit RunCleanupsScope(CodeGenFunction &CGF)
898       : PerformCleanup(true), CGF(CGF)
899     {
900       CleanupStackDepth = CGF.EHStack.stable_begin();
901       LifetimeExtendedCleanupStackSize =
902           CGF.LifetimeExtendedCleanupStack.size();
903       OldDidCallStackSave = CGF.DidCallStackSave;
904       CGF.DidCallStackSave = false;
905       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
906       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
907     }
908 
909     /// Exit this cleanup scope, emitting any accumulated cleanups.
910     ~RunCleanupsScope() {
911       if (PerformCleanup)
912         ForceCleanup();
913     }
914 
915     /// Determine whether this scope requires any cleanups.
916     bool requiresCleanups() const {
917       return CGF.EHStack.stable_begin() != CleanupStackDepth;
918     }
919 
920     /// Force the emission of cleanups now, instead of waiting
921     /// until this object is destroyed.
922     /// \param ValuesToReload - A list of values that need to be available at
923     /// the insertion point after cleanup emission. If cleanup emission created
924     /// a shared cleanup block, these value pointers will be rewritten.
925     /// Otherwise, they not will be modified.
926     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
927       assert(PerformCleanup && "Already forced cleanup");
928       CGF.DidCallStackSave = OldDidCallStackSave;
929       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
930                            ValuesToReload);
931       PerformCleanup = false;
932       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
933     }
934   };
935 
936   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
937   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
938       EHScopeStack::stable_end();
939 
940   class LexicalScope : public RunCleanupsScope {
941     SourceRange Range;
942     SmallVector<const LabelDecl*, 4> Labels;
943     LexicalScope *ParentScope;
944 
945     LexicalScope(const LexicalScope &) = delete;
946     void operator=(const LexicalScope &) = delete;
947 
948   public:
949     /// Enter a new cleanup scope.
950     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
951       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
952       CGF.CurLexicalScope = this;
953       if (CGDebugInfo *DI = CGF.getDebugInfo())
954         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
955     }
956 
957     void addLabel(const LabelDecl *label) {
958       assert(PerformCleanup && "adding label to dead scope?");
959       Labels.push_back(label);
960     }
961 
962     /// Exit this cleanup scope, emitting any accumulated
963     /// cleanups.
964     ~LexicalScope() {
965       if (CGDebugInfo *DI = CGF.getDebugInfo())
966         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
967 
968       // If we should perform a cleanup, force them now.  Note that
969       // this ends the cleanup scope before rescoping any labels.
970       if (PerformCleanup) {
971         ApplyDebugLocation DL(CGF, Range.getEnd());
972         ForceCleanup();
973       }
974     }
975 
976     /// Force the emission of cleanups now, instead of waiting
977     /// until this object is destroyed.
978     void ForceCleanup() {
979       CGF.CurLexicalScope = ParentScope;
980       RunCleanupsScope::ForceCleanup();
981 
982       if (!Labels.empty())
983         rescopeLabels();
984     }
985 
986     bool hasLabels() const {
987       return !Labels.empty();
988     }
989 
990     void rescopeLabels();
991   };
992 
993   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
994 
995   /// The class used to assign some variables some temporarily addresses.
996   class OMPMapVars {
997     DeclMapTy SavedLocals;
998     DeclMapTy SavedTempAddresses;
999     OMPMapVars(const OMPMapVars &) = delete;
1000     void operator=(const OMPMapVars &) = delete;
1001 
1002   public:
1003     explicit OMPMapVars() = default;
1004     ~OMPMapVars() {
1005       assert(SavedLocals.empty() && "Did not restored original addresses.");
1006     };
1007 
1008     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1009     /// function \p CGF.
1010     /// \return true if at least one variable was set already, false otherwise.
1011     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1012                     Address TempAddr) {
1013       LocalVD = LocalVD->getCanonicalDecl();
1014       // Only save it once.
1015       if (SavedLocals.count(LocalVD)) return false;
1016 
1017       // Copy the existing local entry to SavedLocals.
1018       auto it = CGF.LocalDeclMap.find(LocalVD);
1019       if (it != CGF.LocalDeclMap.end())
1020         SavedLocals.try_emplace(LocalVD, it->second);
1021       else
1022         SavedLocals.try_emplace(LocalVD, Address::invalid());
1023 
1024       // Generate the private entry.
1025       QualType VarTy = LocalVD->getType();
1026       if (VarTy->isReferenceType()) {
1027         Address Temp = CGF.CreateMemTemp(VarTy);
1028         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1029         TempAddr = Temp;
1030       }
1031       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1032 
1033       return true;
1034     }
1035 
1036     /// Applies new addresses to the list of the variables.
1037     /// \return true if at least one variable is using new address, false
1038     /// otherwise.
1039     bool apply(CodeGenFunction &CGF) {
1040       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1041       SavedTempAddresses.clear();
1042       return !SavedLocals.empty();
1043     }
1044 
1045     /// Restores original addresses of the variables.
1046     void restore(CodeGenFunction &CGF) {
1047       if (!SavedLocals.empty()) {
1048         copyInto(SavedLocals, CGF.LocalDeclMap);
1049         SavedLocals.clear();
1050       }
1051     }
1052 
1053   private:
1054     /// Copy all the entries in the source map over the corresponding
1055     /// entries in the destination, which must exist.
1056     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1057       for (auto &Pair : Src) {
1058         if (!Pair.second.isValid()) {
1059           Dest.erase(Pair.first);
1060           continue;
1061         }
1062 
1063         auto I = Dest.find(Pair.first);
1064         if (I != Dest.end())
1065           I->second = Pair.second;
1066         else
1067           Dest.insert(Pair);
1068       }
1069     }
1070   };
1071 
1072   /// The scope used to remap some variables as private in the OpenMP loop body
1073   /// (or other captured region emitted without outlining), and to restore old
1074   /// vars back on exit.
1075   class OMPPrivateScope : public RunCleanupsScope {
1076     OMPMapVars MappedVars;
1077     OMPPrivateScope(const OMPPrivateScope &) = delete;
1078     void operator=(const OMPPrivateScope &) = delete;
1079 
1080   public:
1081     /// Enter a new OpenMP private scope.
1082     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1083 
1084     /// Registers \p LocalVD variable as a private with \p Addr as the address
1085     /// of the corresponding private variable. \p
1086     /// PrivateGen is the address of the generated private variable.
1087     /// \return true if the variable is registered as private, false if it has
1088     /// been privatized already.
1089     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1090       assert(PerformCleanup && "adding private to dead scope");
1091       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1092     }
1093 
1094     /// Privatizes local variables previously registered as private.
1095     /// Registration is separate from the actual privatization to allow
1096     /// initializers use values of the original variables, not the private one.
1097     /// This is important, for example, if the private variable is a class
1098     /// variable initialized by a constructor that references other private
1099     /// variables. But at initialization original variables must be used, not
1100     /// private copies.
1101     /// \return true if at least one variable was privatized, false otherwise.
1102     bool Privatize() { return MappedVars.apply(CGF); }
1103 
1104     void ForceCleanup() {
1105       RunCleanupsScope::ForceCleanup();
1106       restoreMap();
1107     }
1108 
1109     /// Exit scope - all the mapped variables are restored.
1110     ~OMPPrivateScope() {
1111       if (PerformCleanup)
1112         ForceCleanup();
1113     }
1114 
1115     /// Checks if the global variable is captured in current function.
1116     bool isGlobalVarCaptured(const VarDecl *VD) const {
1117       VD = VD->getCanonicalDecl();
1118       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1119     }
1120 
1121     /// Restore all mapped variables w/o clean up. This is usefully when we want
1122     /// to reference the original variables but don't want the clean up because
1123     /// that could emit lifetime end too early, causing backend issue #56913.
1124     void restoreMap() { MappedVars.restore(CGF); }
1125   };
1126 
1127   /// Save/restore original map of previously emitted local vars in case when we
1128   /// need to duplicate emission of the same code several times in the same
1129   /// function for OpenMP code.
1130   class OMPLocalDeclMapRAII {
1131     CodeGenFunction &CGF;
1132     DeclMapTy SavedMap;
1133 
1134   public:
1135     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1136         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1137     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1138   };
1139 
1140   /// Takes the old cleanup stack size and emits the cleanup blocks
1141   /// that have been added.
1142   void
1143   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1144                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1145 
1146   /// Takes the old cleanup stack size and emits the cleanup blocks
1147   /// that have been added, then adds all lifetime-extended cleanups from
1148   /// the given position to the stack.
1149   void
1150   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1151                    size_t OldLifetimeExtendedStackSize,
1152                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1153 
1154   void ResolveBranchFixups(llvm::BasicBlock *Target);
1155 
1156   /// The given basic block lies in the current EH scope, but may be a
1157   /// target of a potentially scope-crossing jump; get a stable handle
1158   /// to which we can perform this jump later.
1159   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1160     return JumpDest(Target,
1161                     EHStack.getInnermostNormalCleanup(),
1162                     NextCleanupDestIndex++);
1163   }
1164 
1165   /// The given basic block lies in the current EH scope, but may be a
1166   /// target of a potentially scope-crossing jump; get a stable handle
1167   /// to which we can perform this jump later.
1168   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1169     return getJumpDestInCurrentScope(createBasicBlock(Name));
1170   }
1171 
1172   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1173   /// block through the normal cleanup handling code (if any) and then
1174   /// on to \arg Dest.
1175   void EmitBranchThroughCleanup(JumpDest Dest);
1176 
1177   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1178   /// specified destination obviously has no cleanups to run.  'false' is always
1179   /// a conservatively correct answer for this method.
1180   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1181 
1182   /// popCatchScope - Pops the catch scope at the top of the EHScope
1183   /// stack, emitting any required code (other than the catch handlers
1184   /// themselves).
1185   void popCatchScope();
1186 
1187   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1188   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1189   llvm::BasicBlock *
1190   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1191 
1192   /// An object to manage conditionally-evaluated expressions.
1193   class ConditionalEvaluation {
1194     llvm::BasicBlock *StartBB;
1195 
1196   public:
1197     ConditionalEvaluation(CodeGenFunction &CGF)
1198       : StartBB(CGF.Builder.GetInsertBlock()) {}
1199 
1200     void begin(CodeGenFunction &CGF) {
1201       assert(CGF.OutermostConditional != this);
1202       if (!CGF.OutermostConditional)
1203         CGF.OutermostConditional = this;
1204     }
1205 
1206     void end(CodeGenFunction &CGF) {
1207       assert(CGF.OutermostConditional != nullptr);
1208       if (CGF.OutermostConditional == this)
1209         CGF.OutermostConditional = nullptr;
1210     }
1211 
1212     /// Returns a block which will be executed prior to each
1213     /// evaluation of the conditional code.
1214     llvm::BasicBlock *getStartingBlock() const {
1215       return StartBB;
1216     }
1217   };
1218 
1219   /// isInConditionalBranch - Return true if we're currently emitting
1220   /// one branch or the other of a conditional expression.
1221   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1222 
1223   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1224     assert(isInConditionalBranch());
1225     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1226     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1227     store->setAlignment(addr.getAlignment().getAsAlign());
1228   }
1229 
1230   /// An RAII object to record that we're evaluating a statement
1231   /// expression.
1232   class StmtExprEvaluation {
1233     CodeGenFunction &CGF;
1234 
1235     /// We have to save the outermost conditional: cleanups in a
1236     /// statement expression aren't conditional just because the
1237     /// StmtExpr is.
1238     ConditionalEvaluation *SavedOutermostConditional;
1239 
1240   public:
1241     StmtExprEvaluation(CodeGenFunction &CGF)
1242       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1243       CGF.OutermostConditional = nullptr;
1244     }
1245 
1246     ~StmtExprEvaluation() {
1247       CGF.OutermostConditional = SavedOutermostConditional;
1248       CGF.EnsureInsertPoint();
1249     }
1250   };
1251 
1252   /// An object which temporarily prevents a value from being
1253   /// destroyed by aggressive peephole optimizations that assume that
1254   /// all uses of a value have been realized in the IR.
1255   class PeepholeProtection {
1256     llvm::Instruction *Inst = nullptr;
1257     friend class CodeGenFunction;
1258 
1259   public:
1260     PeepholeProtection() = default;
1261   };
1262 
1263   /// A non-RAII class containing all the information about a bound
1264   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1265   /// this which makes individual mappings very simple; using this
1266   /// class directly is useful when you have a variable number of
1267   /// opaque values or don't want the RAII functionality for some
1268   /// reason.
1269   class OpaqueValueMappingData {
1270     const OpaqueValueExpr *OpaqueValue;
1271     bool BoundLValue;
1272     CodeGenFunction::PeepholeProtection Protection;
1273 
1274     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1275                            bool boundLValue)
1276       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1277   public:
1278     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1279 
1280     static bool shouldBindAsLValue(const Expr *expr) {
1281       // gl-values should be bound as l-values for obvious reasons.
1282       // Records should be bound as l-values because IR generation
1283       // always keeps them in memory.  Expressions of function type
1284       // act exactly like l-values but are formally required to be
1285       // r-values in C.
1286       return expr->isGLValue() ||
1287              expr->getType()->isFunctionType() ||
1288              hasAggregateEvaluationKind(expr->getType());
1289     }
1290 
1291     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1292                                        const OpaqueValueExpr *ov,
1293                                        const Expr *e) {
1294       if (shouldBindAsLValue(ov))
1295         return bind(CGF, ov, CGF.EmitLValue(e));
1296       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1297     }
1298 
1299     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1300                                        const OpaqueValueExpr *ov,
1301                                        const LValue &lv) {
1302       assert(shouldBindAsLValue(ov));
1303       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1304       return OpaqueValueMappingData(ov, true);
1305     }
1306 
1307     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1308                                        const OpaqueValueExpr *ov,
1309                                        const RValue &rv) {
1310       assert(!shouldBindAsLValue(ov));
1311       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1312 
1313       OpaqueValueMappingData data(ov, false);
1314 
1315       // Work around an extremely aggressive peephole optimization in
1316       // EmitScalarConversion which assumes that all other uses of a
1317       // value are extant.
1318       data.Protection = CGF.protectFromPeepholes(rv);
1319 
1320       return data;
1321     }
1322 
1323     bool isValid() const { return OpaqueValue != nullptr; }
1324     void clear() { OpaqueValue = nullptr; }
1325 
1326     void unbind(CodeGenFunction &CGF) {
1327       assert(OpaqueValue && "no data to unbind!");
1328 
1329       if (BoundLValue) {
1330         CGF.OpaqueLValues.erase(OpaqueValue);
1331       } else {
1332         CGF.OpaqueRValues.erase(OpaqueValue);
1333         CGF.unprotectFromPeepholes(Protection);
1334       }
1335     }
1336   };
1337 
1338   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1339   class OpaqueValueMapping {
1340     CodeGenFunction &CGF;
1341     OpaqueValueMappingData Data;
1342 
1343   public:
1344     static bool shouldBindAsLValue(const Expr *expr) {
1345       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1346     }
1347 
1348     /// Build the opaque value mapping for the given conditional
1349     /// operator if it's the GNU ?: extension.  This is a common
1350     /// enough pattern that the convenience operator is really
1351     /// helpful.
1352     ///
1353     OpaqueValueMapping(CodeGenFunction &CGF,
1354                        const AbstractConditionalOperator *op) : CGF(CGF) {
1355       if (isa<ConditionalOperator>(op))
1356         // Leave Data empty.
1357         return;
1358 
1359       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1360       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1361                                           e->getCommon());
1362     }
1363 
1364     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1365     /// expression is set to the expression the OVE represents.
1366     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1367         : CGF(CGF) {
1368       if (OV) {
1369         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1370                                       "for OVE with no source expression");
1371         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1372       }
1373     }
1374 
1375     OpaqueValueMapping(CodeGenFunction &CGF,
1376                        const OpaqueValueExpr *opaqueValue,
1377                        LValue lvalue)
1378       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1379     }
1380 
1381     OpaqueValueMapping(CodeGenFunction &CGF,
1382                        const OpaqueValueExpr *opaqueValue,
1383                        RValue rvalue)
1384       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1385     }
1386 
1387     void pop() {
1388       Data.unbind(CGF);
1389       Data.clear();
1390     }
1391 
1392     ~OpaqueValueMapping() {
1393       if (Data.isValid()) Data.unbind(CGF);
1394     }
1395   };
1396 
1397 private:
1398   CGDebugInfo *DebugInfo;
1399   /// Used to create unique names for artificial VLA size debug info variables.
1400   unsigned VLAExprCounter = 0;
1401   bool DisableDebugInfo = false;
1402 
1403   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1404   /// calling llvm.stacksave for multiple VLAs in the same scope.
1405   bool DidCallStackSave = false;
1406 
1407   /// IndirectBranch - The first time an indirect goto is seen we create a block
1408   /// with an indirect branch.  Every time we see the address of a label taken,
1409   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1410   /// codegen'd as a jump to the IndirectBranch's basic block.
1411   llvm::IndirectBrInst *IndirectBranch = nullptr;
1412 
1413   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1414   /// decls.
1415   DeclMapTy LocalDeclMap;
1416 
1417   // Keep track of the cleanups for callee-destructed parameters pushed to the
1418   // cleanup stack so that they can be deactivated later.
1419   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1420       CalleeDestructedParamCleanups;
1421 
1422   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1423   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1424   /// parameter.
1425   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1426       SizeArguments;
1427 
1428   /// Track escaped local variables with auto storage. Used during SEH
1429   /// outlining to produce a call to llvm.localescape.
1430   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1431 
1432   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1433   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1434 
1435   // BreakContinueStack - This keeps track of where break and continue
1436   // statements should jump to.
1437   struct BreakContinue {
1438     BreakContinue(JumpDest Break, JumpDest Continue)
1439       : BreakBlock(Break), ContinueBlock(Continue) {}
1440 
1441     JumpDest BreakBlock;
1442     JumpDest ContinueBlock;
1443   };
1444   SmallVector<BreakContinue, 8> BreakContinueStack;
1445 
1446   /// Handles cancellation exit points in OpenMP-related constructs.
1447   class OpenMPCancelExitStack {
1448     /// Tracks cancellation exit point and join point for cancel-related exit
1449     /// and normal exit.
1450     struct CancelExit {
1451       CancelExit() = default;
1452       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1453                  JumpDest ContBlock)
1454           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1455       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1456       /// true if the exit block has been emitted already by the special
1457       /// emitExit() call, false if the default codegen is used.
1458       bool HasBeenEmitted = false;
1459       JumpDest ExitBlock;
1460       JumpDest ContBlock;
1461     };
1462 
1463     SmallVector<CancelExit, 8> Stack;
1464 
1465   public:
1466     OpenMPCancelExitStack() : Stack(1) {}
1467     ~OpenMPCancelExitStack() = default;
1468     /// Fetches the exit block for the current OpenMP construct.
1469     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1470     /// Emits exit block with special codegen procedure specific for the related
1471     /// OpenMP construct + emits code for normal construct cleanup.
1472     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1473                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1474       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1475         assert(CGF.getOMPCancelDestination(Kind).isValid());
1476         assert(CGF.HaveInsertPoint());
1477         assert(!Stack.back().HasBeenEmitted);
1478         auto IP = CGF.Builder.saveAndClearIP();
1479         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1480         CodeGen(CGF);
1481         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1482         CGF.Builder.restoreIP(IP);
1483         Stack.back().HasBeenEmitted = true;
1484       }
1485       CodeGen(CGF);
1486     }
1487     /// Enter the cancel supporting \a Kind construct.
1488     /// \param Kind OpenMP directive that supports cancel constructs.
1489     /// \param HasCancel true, if the construct has inner cancel directive,
1490     /// false otherwise.
1491     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1492       Stack.push_back({Kind,
1493                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1494                                  : JumpDest(),
1495                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1496                                  : JumpDest()});
1497     }
1498     /// Emits default exit point for the cancel construct (if the special one
1499     /// has not be used) + join point for cancel/normal exits.
1500     void exit(CodeGenFunction &CGF) {
1501       if (getExitBlock().isValid()) {
1502         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1503         bool HaveIP = CGF.HaveInsertPoint();
1504         if (!Stack.back().HasBeenEmitted) {
1505           if (HaveIP)
1506             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1507           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1508           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1509         }
1510         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1511         if (!HaveIP) {
1512           CGF.Builder.CreateUnreachable();
1513           CGF.Builder.ClearInsertionPoint();
1514         }
1515       }
1516       Stack.pop_back();
1517     }
1518   };
1519   OpenMPCancelExitStack OMPCancelStack;
1520 
1521   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1522   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1523                                                     Stmt::Likelihood LH);
1524 
1525   CodeGenPGO PGO;
1526 
1527   /// Bitmap used by MC/DC to track condition outcomes of a boolean expression.
1528   Address MCDCCondBitmapAddr = Address::invalid();
1529 
1530   /// Calculate branch weights appropriate for PGO data
1531   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1532                                      uint64_t FalseCount) const;
1533   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1534   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1535                                             uint64_t LoopCount) const;
1536 
1537 public:
1538   /// Increment the profiler's counter for the given statement by \p StepV.
1539   /// If \p StepV is null, the default increment is 1.
1540   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1541     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1542         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1543         !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile))
1544       PGO.emitCounterIncrement(Builder, S, StepV);
1545     PGO.setCurrentStmt(S);
1546   }
1547 
1548   bool isMCDCCoverageEnabled() const {
1549     return (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1550             CGM.getCodeGenOpts().MCDCCoverage &&
1551             !CurFn->hasFnAttribute(llvm::Attribute::NoProfile));
1552   }
1553 
1554   /// Allocate a temp value on the stack that MCDC can use to track condition
1555   /// results.
1556   void maybeCreateMCDCCondBitmap() {
1557     if (isMCDCCoverageEnabled()) {
1558       PGO.emitMCDCParameters(Builder);
1559       MCDCCondBitmapAddr =
1560           CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr");
1561     }
1562   }
1563 
1564   bool isBinaryLogicalOp(const Expr *E) const {
1565     const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens());
1566     return (BOp && BOp->isLogicalOp());
1567   }
1568 
1569   /// Zero-init the MCDC temp value.
1570   void maybeResetMCDCCondBitmap(const Expr *E) {
1571     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1572       PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr);
1573       PGO.setCurrentStmt(E);
1574     }
1575   }
1576 
1577   /// Increment the profiler's counter for the given expression by \p StepV.
1578   /// If \p StepV is null, the default increment is 1.
1579   void maybeUpdateMCDCTestVectorBitmap(const Expr *E) {
1580     if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1581       PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr);
1582       PGO.setCurrentStmt(E);
1583     }
1584   }
1585 
1586   /// Update the MCDC temp value with the condition's evaluated result.
1587   void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) {
1588     if (isMCDCCoverageEnabled()) {
1589       PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val);
1590       PGO.setCurrentStmt(E);
1591     }
1592   }
1593 
1594   /// Get the profiler's count for the given statement.
1595   uint64_t getProfileCount(const Stmt *S) {
1596     return PGO.getStmtCount(S).value_or(0);
1597   }
1598 
1599   /// Set the profiler's current count.
1600   void setCurrentProfileCount(uint64_t Count) {
1601     PGO.setCurrentRegionCount(Count);
1602   }
1603 
1604   /// Get the profiler's current count. This is generally the count for the most
1605   /// recently incremented counter.
1606   uint64_t getCurrentProfileCount() {
1607     return PGO.getCurrentRegionCount();
1608   }
1609 
1610 private:
1611 
1612   /// SwitchInsn - This is nearest current switch instruction. It is null if
1613   /// current context is not in a switch.
1614   llvm::SwitchInst *SwitchInsn = nullptr;
1615   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1616   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1617 
1618   /// The likelihood attributes of the SwitchCase.
1619   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1620 
1621   /// CaseRangeBlock - This block holds if condition check for last case
1622   /// statement range in current switch instruction.
1623   llvm::BasicBlock *CaseRangeBlock = nullptr;
1624 
1625   /// OpaqueLValues - Keeps track of the current set of opaque value
1626   /// expressions.
1627   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1628   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1629 
1630   // VLASizeMap - This keeps track of the associated size for each VLA type.
1631   // We track this by the size expression rather than the type itself because
1632   // in certain situations, like a const qualifier applied to an VLA typedef,
1633   // multiple VLA types can share the same size expression.
1634   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1635   // enter/leave scopes.
1636   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1637 
1638   /// A block containing a single 'unreachable' instruction.  Created
1639   /// lazily by getUnreachableBlock().
1640   llvm::BasicBlock *UnreachableBlock = nullptr;
1641 
1642   /// Counts of the number return expressions in the function.
1643   unsigned NumReturnExprs = 0;
1644 
1645   /// Count the number of simple (constant) return expressions in the function.
1646   unsigned NumSimpleReturnExprs = 0;
1647 
1648   /// The last regular (non-return) debug location (breakpoint) in the function.
1649   SourceLocation LastStopPoint;
1650 
1651 public:
1652   /// Source location information about the default argument or member
1653   /// initializer expression we're evaluating, if any.
1654   CurrentSourceLocExprScope CurSourceLocExprScope;
1655   using SourceLocExprScopeGuard =
1656       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1657 
1658   /// A scope within which we are constructing the fields of an object which
1659   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1660   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1661   class FieldConstructionScope {
1662   public:
1663     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1664         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1665       CGF.CXXDefaultInitExprThis = This;
1666     }
1667     ~FieldConstructionScope() {
1668       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1669     }
1670 
1671   private:
1672     CodeGenFunction &CGF;
1673     Address OldCXXDefaultInitExprThis;
1674   };
1675 
1676   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1677   /// is overridden to be the object under construction.
1678   class CXXDefaultInitExprScope  {
1679   public:
1680     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1681         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1682           OldCXXThisAlignment(CGF.CXXThisAlignment),
1683           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1684       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1685       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1686     }
1687     ~CXXDefaultInitExprScope() {
1688       CGF.CXXThisValue = OldCXXThisValue;
1689       CGF.CXXThisAlignment = OldCXXThisAlignment;
1690     }
1691 
1692   public:
1693     CodeGenFunction &CGF;
1694     llvm::Value *OldCXXThisValue;
1695     CharUnits OldCXXThisAlignment;
1696     SourceLocExprScopeGuard SourceLocScope;
1697   };
1698 
1699   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1700     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1701         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1702   };
1703 
1704   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1705   /// current loop index is overridden.
1706   class ArrayInitLoopExprScope {
1707   public:
1708     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1709       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1710       CGF.ArrayInitIndex = Index;
1711     }
1712     ~ArrayInitLoopExprScope() {
1713       CGF.ArrayInitIndex = OldArrayInitIndex;
1714     }
1715 
1716   private:
1717     CodeGenFunction &CGF;
1718     llvm::Value *OldArrayInitIndex;
1719   };
1720 
1721   class InlinedInheritingConstructorScope {
1722   public:
1723     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1724         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1725           OldCurCodeDecl(CGF.CurCodeDecl),
1726           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1727           OldCXXABIThisValue(CGF.CXXABIThisValue),
1728           OldCXXThisValue(CGF.CXXThisValue),
1729           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1730           OldCXXThisAlignment(CGF.CXXThisAlignment),
1731           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1732           OldCXXInheritedCtorInitExprArgs(
1733               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1734       CGF.CurGD = GD;
1735       CGF.CurFuncDecl = CGF.CurCodeDecl =
1736           cast<CXXConstructorDecl>(GD.getDecl());
1737       CGF.CXXABIThisDecl = nullptr;
1738       CGF.CXXABIThisValue = nullptr;
1739       CGF.CXXThisValue = nullptr;
1740       CGF.CXXABIThisAlignment = CharUnits();
1741       CGF.CXXThisAlignment = CharUnits();
1742       CGF.ReturnValue = Address::invalid();
1743       CGF.FnRetTy = QualType();
1744       CGF.CXXInheritedCtorInitExprArgs.clear();
1745     }
1746     ~InlinedInheritingConstructorScope() {
1747       CGF.CurGD = OldCurGD;
1748       CGF.CurFuncDecl = OldCurFuncDecl;
1749       CGF.CurCodeDecl = OldCurCodeDecl;
1750       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1751       CGF.CXXABIThisValue = OldCXXABIThisValue;
1752       CGF.CXXThisValue = OldCXXThisValue;
1753       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1754       CGF.CXXThisAlignment = OldCXXThisAlignment;
1755       CGF.ReturnValue = OldReturnValue;
1756       CGF.FnRetTy = OldFnRetTy;
1757       CGF.CXXInheritedCtorInitExprArgs =
1758           std::move(OldCXXInheritedCtorInitExprArgs);
1759     }
1760 
1761   private:
1762     CodeGenFunction &CGF;
1763     GlobalDecl OldCurGD;
1764     const Decl *OldCurFuncDecl;
1765     const Decl *OldCurCodeDecl;
1766     ImplicitParamDecl *OldCXXABIThisDecl;
1767     llvm::Value *OldCXXABIThisValue;
1768     llvm::Value *OldCXXThisValue;
1769     CharUnits OldCXXABIThisAlignment;
1770     CharUnits OldCXXThisAlignment;
1771     Address OldReturnValue;
1772     QualType OldFnRetTy;
1773     CallArgList OldCXXInheritedCtorInitExprArgs;
1774   };
1775 
1776   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1777   // region body, and finalization codegen callbacks. This will class will also
1778   // contain privatization functions used by the privatization call backs
1779   //
1780   // TODO: this is temporary class for things that are being moved out of
1781   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1782   // utility function for use with the OMPBuilder. Once that move to use the
1783   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1784   // directly, or a new helper class that will contain functions used by both
1785   // this and the OMPBuilder
1786 
1787   struct OMPBuilderCBHelpers {
1788 
1789     OMPBuilderCBHelpers() = delete;
1790     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1791     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1792 
1793     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1794 
1795     /// Cleanup action for allocate support.
1796     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1797 
1798     private:
1799       llvm::CallInst *RTLFnCI;
1800 
1801     public:
1802       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1803         RLFnCI->removeFromParent();
1804       }
1805 
1806       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1807         if (!CGF.HaveInsertPoint())
1808           return;
1809         CGF.Builder.Insert(RTLFnCI);
1810       }
1811     };
1812 
1813     /// Returns address of the threadprivate variable for the current
1814     /// thread. This Also create any necessary OMP runtime calls.
1815     ///
1816     /// \param VD VarDecl for Threadprivate variable.
1817     /// \param VDAddr Address of the Vardecl
1818     /// \param Loc  The location where the barrier directive was encountered
1819     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1820                                           const VarDecl *VD, Address VDAddr,
1821                                           SourceLocation Loc);
1822 
1823     /// Gets the OpenMP-specific address of the local variable /p VD.
1824     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1825                                              const VarDecl *VD);
1826     /// Get the platform-specific name separator.
1827     /// \param Parts different parts of the final name that needs separation
1828     /// \param FirstSeparator First separator used between the initial two
1829     ///        parts of the name.
1830     /// \param Separator separator used between all of the rest consecutinve
1831     ///        parts of the name
1832     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1833                                              StringRef FirstSeparator = ".",
1834                                              StringRef Separator = ".");
1835     /// Emit the Finalization for an OMP region
1836     /// \param CGF	The Codegen function this belongs to
1837     /// \param IP	Insertion point for generating the finalization code.
1838     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1839       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1840       assert(IP.getBlock()->end() != IP.getPoint() &&
1841              "OpenMP IR Builder should cause terminated block!");
1842 
1843       llvm::BasicBlock *IPBB = IP.getBlock();
1844       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1845       assert(DestBB && "Finalization block should have one successor!");
1846 
1847       // erase and replace with cleanup branch.
1848       IPBB->getTerminator()->eraseFromParent();
1849       CGF.Builder.SetInsertPoint(IPBB);
1850       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1851       CGF.EmitBranchThroughCleanup(Dest);
1852     }
1853 
1854     /// Emit the body of an OMP region
1855     /// \param CGF	          The Codegen function this belongs to
1856     /// \param RegionBodyStmt The body statement for the OpenMP region being
1857     ///                       generated
1858     /// \param AllocaIP       Where to insert alloca instructions
1859     /// \param CodeGenIP      Where to insert the region code
1860     /// \param RegionName     Name to be used for new blocks
1861     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1862                                          const Stmt *RegionBodyStmt,
1863                                          InsertPointTy AllocaIP,
1864                                          InsertPointTy CodeGenIP,
1865                                          Twine RegionName);
1866 
1867     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1868                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1869                                 ArrayRef<llvm::Value *> Args) {
1870       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1871       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1872         CodeGenIPBBTI->eraseFromParent();
1873 
1874       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1875 
1876       if (Fn->doesNotThrow())
1877         CGF.EmitNounwindRuntimeCall(Fn, Args);
1878       else
1879         CGF.EmitRuntimeCall(Fn, Args);
1880 
1881       if (CGF.Builder.saveIP().isSet())
1882         CGF.Builder.CreateBr(&FiniBB);
1883     }
1884 
1885     /// Emit the body of an OMP region that will be outlined in
1886     /// OpenMPIRBuilder::finalize().
1887     /// \param CGF	          The Codegen function this belongs to
1888     /// \param RegionBodyStmt The body statement for the OpenMP region being
1889     ///                       generated
1890     /// \param AllocaIP       Where to insert alloca instructions
1891     /// \param CodeGenIP      Where to insert the region code
1892     /// \param RegionName     Name to be used for new blocks
1893     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1894                                           const Stmt *RegionBodyStmt,
1895                                           InsertPointTy AllocaIP,
1896                                           InsertPointTy CodeGenIP,
1897                                           Twine RegionName);
1898 
1899     /// RAII for preserving necessary info during Outlined region body codegen.
1900     class OutlinedRegionBodyRAII {
1901 
1902       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1903       CodeGenFunction::JumpDest OldReturnBlock;
1904       CodeGenFunction &CGF;
1905 
1906     public:
1907       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1908                              llvm::BasicBlock &RetBB)
1909           : CGF(cgf) {
1910         assert(AllocaIP.isSet() &&
1911                "Must specify Insertion point for allocas of outlined function");
1912         OldAllocaIP = CGF.AllocaInsertPt;
1913         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1914 
1915         OldReturnBlock = CGF.ReturnBlock;
1916         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1917       }
1918 
1919       ~OutlinedRegionBodyRAII() {
1920         CGF.AllocaInsertPt = OldAllocaIP;
1921         CGF.ReturnBlock = OldReturnBlock;
1922       }
1923     };
1924 
1925     /// RAII for preserving necessary info during inlined region body codegen.
1926     class InlinedRegionBodyRAII {
1927 
1928       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1929       CodeGenFunction &CGF;
1930 
1931     public:
1932       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1933                             llvm::BasicBlock &FiniBB)
1934           : CGF(cgf) {
1935         // Alloca insertion block should be in the entry block of the containing
1936         // function so it expects an empty AllocaIP in which case will reuse the
1937         // old alloca insertion point, or a new AllocaIP in the same block as
1938         // the old one
1939         assert((!AllocaIP.isSet() ||
1940                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1941                "Insertion point should be in the entry block of containing "
1942                "function!");
1943         OldAllocaIP = CGF.AllocaInsertPt;
1944         if (AllocaIP.isSet())
1945           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1946 
1947         // TODO: Remove the call, after making sure the counter is not used by
1948         //       the EHStack.
1949         // Since this is an inlined region, it should not modify the
1950         // ReturnBlock, and should reuse the one for the enclosing outlined
1951         // region. So, the JumpDest being return by the function is discarded
1952         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1953       }
1954 
1955       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1956     };
1957   };
1958 
1959 private:
1960   /// CXXThisDecl - When generating code for a C++ member function,
1961   /// this will hold the implicit 'this' declaration.
1962   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1963   llvm::Value *CXXABIThisValue = nullptr;
1964   llvm::Value *CXXThisValue = nullptr;
1965   CharUnits CXXABIThisAlignment;
1966   CharUnits CXXThisAlignment;
1967 
1968   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1969   /// this expression.
1970   Address CXXDefaultInitExprThis = Address::invalid();
1971 
1972   /// The current array initialization index when evaluating an
1973   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1974   llvm::Value *ArrayInitIndex = nullptr;
1975 
1976   /// The values of function arguments to use when evaluating
1977   /// CXXInheritedCtorInitExprs within this context.
1978   CallArgList CXXInheritedCtorInitExprArgs;
1979 
1980   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1981   /// destructor, this will hold the implicit argument (e.g. VTT).
1982   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1983   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1984 
1985   /// OutermostConditional - Points to the outermost active
1986   /// conditional control.  This is used so that we know if a
1987   /// temporary should be destroyed conditionally.
1988   ConditionalEvaluation *OutermostConditional = nullptr;
1989 
1990   /// The current lexical scope.
1991   LexicalScope *CurLexicalScope = nullptr;
1992 
1993   /// The current source location that should be used for exception
1994   /// handling code.
1995   SourceLocation CurEHLocation;
1996 
1997   /// BlockByrefInfos - For each __block variable, contains
1998   /// information about the layout of the variable.
1999   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
2000 
2001   /// Used by -fsanitize=nullability-return to determine whether the return
2002   /// value can be checked.
2003   llvm::Value *RetValNullabilityPrecondition = nullptr;
2004 
2005   /// Check if -fsanitize=nullability-return instrumentation is required for
2006   /// this function.
2007   bool requiresReturnValueNullabilityCheck() const {
2008     return RetValNullabilityPrecondition;
2009   }
2010 
2011   /// Used to store precise source locations for return statements by the
2012   /// runtime return value checks.
2013   Address ReturnLocation = Address::invalid();
2014 
2015   /// Check if the return value of this function requires sanitization.
2016   bool requiresReturnValueCheck() const;
2017 
2018   bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty);
2019   bool hasInAllocaArg(const CXXMethodDecl *MD);
2020 
2021   llvm::BasicBlock *TerminateLandingPad = nullptr;
2022   llvm::BasicBlock *TerminateHandler = nullptr;
2023   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
2024 
2025   /// Terminate funclets keyed by parent funclet pad.
2026   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
2027 
2028   /// Largest vector width used in ths function. Will be used to create a
2029   /// function attribute.
2030   unsigned LargestVectorWidth = 0;
2031 
2032   /// True if we need emit the life-time markers. This is initially set in
2033   /// the constructor, but could be overwritten to true if this is a coroutine.
2034   bool ShouldEmitLifetimeMarkers;
2035 
2036   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
2037   /// the function metadata.
2038   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
2039 
2040 public:
2041   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
2042   ~CodeGenFunction();
2043 
2044   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
2045   ASTContext &getContext() const { return CGM.getContext(); }
2046   CGDebugInfo *getDebugInfo() {
2047     if (DisableDebugInfo)
2048       return nullptr;
2049     return DebugInfo;
2050   }
2051   void disableDebugInfo() { DisableDebugInfo = true; }
2052   void enableDebugInfo() { DisableDebugInfo = false; }
2053 
2054   bool shouldUseFusedARCCalls() {
2055     return CGM.getCodeGenOpts().OptimizationLevel == 0;
2056   }
2057 
2058   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
2059 
2060   /// Returns a pointer to the function's exception object and selector slot,
2061   /// which is assigned in every landing pad.
2062   Address getExceptionSlot();
2063   Address getEHSelectorSlot();
2064 
2065   /// Returns the contents of the function's exception object and selector
2066   /// slots.
2067   llvm::Value *getExceptionFromSlot();
2068   llvm::Value *getSelectorFromSlot();
2069 
2070   Address getNormalCleanupDestSlot();
2071 
2072   llvm::BasicBlock *getUnreachableBlock() {
2073     if (!UnreachableBlock) {
2074       UnreachableBlock = createBasicBlock("unreachable");
2075       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2076     }
2077     return UnreachableBlock;
2078   }
2079 
2080   llvm::BasicBlock *getInvokeDest() {
2081     if (!EHStack.requiresLandingPad()) return nullptr;
2082     return getInvokeDestImpl();
2083   }
2084 
2085   bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2086 
2087   const TargetInfo &getTarget() const { return Target; }
2088   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2089   const TargetCodeGenInfo &getTargetHooks() const {
2090     return CGM.getTargetCodeGenInfo();
2091   }
2092 
2093   //===--------------------------------------------------------------------===//
2094   //                                  Cleanups
2095   //===--------------------------------------------------------------------===//
2096 
2097   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2098 
2099   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2100                                         Address arrayEndPointer,
2101                                         QualType elementType,
2102                                         CharUnits elementAlignment,
2103                                         Destroyer *destroyer);
2104   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2105                                       llvm::Value *arrayEnd,
2106                                       QualType elementType,
2107                                       CharUnits elementAlignment,
2108                                       Destroyer *destroyer);
2109 
2110   void pushDestroy(QualType::DestructionKind dtorKind,
2111                    Address addr, QualType type);
2112   void pushEHDestroy(QualType::DestructionKind dtorKind,
2113                      Address addr, QualType type);
2114   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2115                    Destroyer *destroyer, bool useEHCleanupForArray);
2116   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2117                                    QualType type, Destroyer *destroyer,
2118                                    bool useEHCleanupForArray);
2119   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2120                                    llvm::Value *CompletePtr,
2121                                    QualType ElementType);
2122   void pushStackRestore(CleanupKind kind, Address SPMem);
2123   void pushKmpcAllocFree(CleanupKind Kind,
2124                          std::pair<llvm::Value *, llvm::Value *> AddrSizePair);
2125   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2126                    bool useEHCleanupForArray);
2127   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2128                                         Destroyer *destroyer,
2129                                         bool useEHCleanupForArray,
2130                                         const VarDecl *VD);
2131   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2132                         QualType elementType, CharUnits elementAlign,
2133                         Destroyer *destroyer,
2134                         bool checkZeroLength, bool useEHCleanup);
2135 
2136   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2137 
2138   /// Determines whether an EH cleanup is required to destroy a type
2139   /// with the given destruction kind.
2140   bool needsEHCleanup(QualType::DestructionKind kind) {
2141     switch (kind) {
2142     case QualType::DK_none:
2143       return false;
2144     case QualType::DK_cxx_destructor:
2145     case QualType::DK_objc_weak_lifetime:
2146     case QualType::DK_nontrivial_c_struct:
2147       return getLangOpts().Exceptions;
2148     case QualType::DK_objc_strong_lifetime:
2149       return getLangOpts().Exceptions &&
2150              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2151     }
2152     llvm_unreachable("bad destruction kind");
2153   }
2154 
2155   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2156     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2157   }
2158 
2159   //===--------------------------------------------------------------------===//
2160   //                                  Objective-C
2161   //===--------------------------------------------------------------------===//
2162 
2163   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2164 
2165   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2166 
2167   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2168   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2169                           const ObjCPropertyImplDecl *PID);
2170   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2171                               const ObjCPropertyImplDecl *propImpl,
2172                               const ObjCMethodDecl *GetterMothodDecl,
2173                               llvm::Constant *AtomicHelperFn);
2174 
2175   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2176                                   ObjCMethodDecl *MD, bool ctor);
2177 
2178   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2179   /// for the given property.
2180   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2181                           const ObjCPropertyImplDecl *PID);
2182   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2183                               const ObjCPropertyImplDecl *propImpl,
2184                               llvm::Constant *AtomicHelperFn);
2185 
2186   //===--------------------------------------------------------------------===//
2187   //                                  Block Bits
2188   //===--------------------------------------------------------------------===//
2189 
2190   /// Emit block literal.
2191   /// \return an LLVM value which is a pointer to a struct which contains
2192   /// information about the block, including the block invoke function, the
2193   /// captured variables, etc.
2194   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2195 
2196   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2197                                         const CGBlockInfo &Info,
2198                                         const DeclMapTy &ldm,
2199                                         bool IsLambdaConversionToBlock,
2200                                         bool BuildGlobalBlock);
2201 
2202   /// Check if \p T is a C++ class that has a destructor that can throw.
2203   static bool cxxDestructorCanThrow(QualType T);
2204 
2205   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2206   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2207   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2208                                              const ObjCPropertyImplDecl *PID);
2209   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2210                                              const ObjCPropertyImplDecl *PID);
2211   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2212 
2213   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2214                          bool CanThrow);
2215 
2216   class AutoVarEmission;
2217 
2218   void emitByrefStructureInit(const AutoVarEmission &emission);
2219 
2220   /// Enter a cleanup to destroy a __block variable.  Note that this
2221   /// cleanup should be a no-op if the variable hasn't left the stack
2222   /// yet; if a cleanup is required for the variable itself, that needs
2223   /// to be done externally.
2224   ///
2225   /// \param Kind Cleanup kind.
2226   ///
2227   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2228   /// structure that will be passed to _Block_object_dispose. When
2229   /// \p LoadBlockVarAddr is true, the address of the field of the block
2230   /// structure that holds the address of the __block structure.
2231   ///
2232   /// \param Flags The flag that will be passed to _Block_object_dispose.
2233   ///
2234   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2235   /// \p Addr to get the address of the __block structure.
2236   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2237                          bool LoadBlockVarAddr, bool CanThrow);
2238 
2239   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2240                                 llvm::Value *ptr);
2241 
2242   Address LoadBlockStruct();
2243   Address GetAddrOfBlockDecl(const VarDecl *var);
2244 
2245   /// BuildBlockByrefAddress - Computes the location of the
2246   /// data in a variable which is declared as __block.
2247   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2248                                 bool followForward = true);
2249   Address emitBlockByrefAddress(Address baseAddr,
2250                                 const BlockByrefInfo &info,
2251                                 bool followForward,
2252                                 const llvm::Twine &name);
2253 
2254   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2255 
2256   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2257 
2258   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2259                     const CGFunctionInfo &FnInfo);
2260 
2261   /// Annotate the function with an attribute that disables TSan checking at
2262   /// runtime.
2263   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2264 
2265   /// Emit code for the start of a function.
2266   /// \param Loc       The location to be associated with the function.
2267   /// \param StartLoc  The location of the function body.
2268   void StartFunction(GlobalDecl GD,
2269                      QualType RetTy,
2270                      llvm::Function *Fn,
2271                      const CGFunctionInfo &FnInfo,
2272                      const FunctionArgList &Args,
2273                      SourceLocation Loc = SourceLocation(),
2274                      SourceLocation StartLoc = SourceLocation());
2275 
2276   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2277 
2278   void EmitConstructorBody(FunctionArgList &Args);
2279   void EmitDestructorBody(FunctionArgList &Args);
2280   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2281   void EmitFunctionBody(const Stmt *Body);
2282   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2283 
2284   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2285                                   CallArgList &CallArgs,
2286                                   const CGFunctionInfo *CallOpFnInfo = nullptr,
2287                                   llvm::Constant *CallOpFn = nullptr);
2288   void EmitLambdaBlockInvokeBody();
2289   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2290   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
2291                                       CallArgList &CallArgs);
2292   void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp,
2293                                 const CGFunctionInfo **ImplFnInfo,
2294                                 llvm::Function **ImplFn);
2295   void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD);
2296   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2297     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2298   }
2299   void EmitAsanPrologueOrEpilogue(bool Prologue);
2300 
2301   /// Emit the unified return block, trying to avoid its emission when
2302   /// possible.
2303   /// \return The debug location of the user written return statement if the
2304   /// return block is avoided.
2305   llvm::DebugLoc EmitReturnBlock();
2306 
2307   /// FinishFunction - Complete IR generation of the current function. It is
2308   /// legal to call this function even if there is no current insertion point.
2309   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2310 
2311   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2312                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2313 
2314   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2315                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2316 
2317   void FinishThunk();
2318 
2319   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2320   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2321                          llvm::FunctionCallee Callee);
2322 
2323   /// Generate a thunk for the given method.
2324   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2325                      GlobalDecl GD, const ThunkInfo &Thunk,
2326                      bool IsUnprototyped);
2327 
2328   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2329                                        const CGFunctionInfo &FnInfo,
2330                                        GlobalDecl GD, const ThunkInfo &Thunk);
2331 
2332   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2333                         FunctionArgList &Args);
2334 
2335   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2336 
2337   /// Struct with all information about dynamic [sub]class needed to set vptr.
2338   struct VPtr {
2339     BaseSubobject Base;
2340     const CXXRecordDecl *NearestVBase;
2341     CharUnits OffsetFromNearestVBase;
2342     const CXXRecordDecl *VTableClass;
2343   };
2344 
2345   /// Initialize the vtable pointer of the given subobject.
2346   void InitializeVTablePointer(const VPtr &vptr);
2347 
2348   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2349 
2350   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2351   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2352 
2353   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2354                          CharUnits OffsetFromNearestVBase,
2355                          bool BaseIsNonVirtualPrimaryBase,
2356                          const CXXRecordDecl *VTableClass,
2357                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2358 
2359   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2360 
2361   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2362   /// to by This.
2363   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2364                             const CXXRecordDecl *VTableClass);
2365 
2366   enum CFITypeCheckKind {
2367     CFITCK_VCall,
2368     CFITCK_NVCall,
2369     CFITCK_DerivedCast,
2370     CFITCK_UnrelatedCast,
2371     CFITCK_ICall,
2372     CFITCK_NVMFCall,
2373     CFITCK_VMFCall,
2374   };
2375 
2376   /// Derived is the presumed address of an object of type T after a
2377   /// cast. If T is a polymorphic class type, emit a check that the virtual
2378   /// table for Derived belongs to a class derived from T.
2379   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2380                                  CFITypeCheckKind TCK, SourceLocation Loc);
2381 
2382   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2383   /// If vptr CFI is enabled, emit a check that VTable is valid.
2384   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2385                                  CFITypeCheckKind TCK, SourceLocation Loc);
2386 
2387   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2388   /// RD using llvm.type.test.
2389   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2390                           CFITypeCheckKind TCK, SourceLocation Loc);
2391 
2392   /// If whole-program virtual table optimization is enabled, emit an assumption
2393   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2394   /// enabled, emit a check that VTable is a member of RD's type identifier.
2395   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2396                                     llvm::Value *VTable, SourceLocation Loc);
2397 
2398   /// Returns whether we should perform a type checked load when loading a
2399   /// virtual function for virtual calls to members of RD. This is generally
2400   /// true when both vcall CFI and whole-program-vtables are enabled.
2401   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2402 
2403   /// Emit a type checked load from the given vtable.
2404   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2405                                          llvm::Value *VTable,
2406                                          llvm::Type *VTableTy,
2407                                          uint64_t VTableByteOffset);
2408 
2409   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2410   /// given phase of destruction for a destructor.  The end result
2411   /// should call destructors on members and base classes in reverse
2412   /// order of their construction.
2413   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2414 
2415   /// ShouldInstrumentFunction - Return true if the current function should be
2416   /// instrumented with __cyg_profile_func_* calls
2417   bool ShouldInstrumentFunction();
2418 
2419   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2420   /// should not be instrumented with sanitizers.
2421   bool ShouldSkipSanitizerInstrumentation();
2422 
2423   /// ShouldXRayInstrument - Return true if the current function should be
2424   /// instrumented with XRay nop sleds.
2425   bool ShouldXRayInstrumentFunction() const;
2426 
2427   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2428   /// XRay custom event handling calls.
2429   bool AlwaysEmitXRayCustomEvents() const;
2430 
2431   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2432   /// XRay typed event handling calls.
2433   bool AlwaysEmitXRayTypedEvents() const;
2434 
2435   /// Return a type hash constant for a function instrumented by
2436   /// -fsanitize=function.
2437   llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const;
2438 
2439   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2440   /// arguments for the given function. This is also responsible for naming the
2441   /// LLVM function arguments.
2442   void EmitFunctionProlog(const CGFunctionInfo &FI,
2443                           llvm::Function *Fn,
2444                           const FunctionArgList &Args);
2445 
2446   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2447   /// given temporary.
2448   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2449                           SourceLocation EndLoc);
2450 
2451   /// Emit a test that checks if the return value \p RV is nonnull.
2452   void EmitReturnValueCheck(llvm::Value *RV);
2453 
2454   /// EmitStartEHSpec - Emit the start of the exception spec.
2455   void EmitStartEHSpec(const Decl *D);
2456 
2457   /// EmitEndEHSpec - Emit the end of the exception spec.
2458   void EmitEndEHSpec(const Decl *D);
2459 
2460   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2461   llvm::BasicBlock *getTerminateLandingPad();
2462 
2463   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2464   /// terminate.
2465   llvm::BasicBlock *getTerminateFunclet();
2466 
2467   /// getTerminateHandler - Return a handler (not a landing pad, just
2468   /// a catch handler) that just calls terminate.  This is used when
2469   /// a terminate scope encloses a try.
2470   llvm::BasicBlock *getTerminateHandler();
2471 
2472   llvm::Type *ConvertTypeForMem(QualType T);
2473   llvm::Type *ConvertType(QualType T);
2474   llvm::Type *ConvertType(const TypeDecl *T) {
2475     return ConvertType(getContext().getTypeDeclType(T));
2476   }
2477 
2478   /// LoadObjCSelf - Load the value of self. This function is only valid while
2479   /// generating code for an Objective-C method.
2480   llvm::Value *LoadObjCSelf();
2481 
2482   /// TypeOfSelfObject - Return type of object that this self represents.
2483   QualType TypeOfSelfObject();
2484 
2485   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2486   static TypeEvaluationKind getEvaluationKind(QualType T);
2487 
2488   static bool hasScalarEvaluationKind(QualType T) {
2489     return getEvaluationKind(T) == TEK_Scalar;
2490   }
2491 
2492   static bool hasAggregateEvaluationKind(QualType T) {
2493     return getEvaluationKind(T) == TEK_Aggregate;
2494   }
2495 
2496   /// createBasicBlock - Create an LLVM basic block.
2497   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2498                                      llvm::Function *parent = nullptr,
2499                                      llvm::BasicBlock *before = nullptr) {
2500     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2501   }
2502 
2503   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2504   /// label maps to.
2505   JumpDest getJumpDestForLabel(const LabelDecl *S);
2506 
2507   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2508   /// another basic block, simplify it. This assumes that no other code could
2509   /// potentially reference the basic block.
2510   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2511 
2512   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2513   /// adding a fall-through branch from the current insert block if
2514   /// necessary. It is legal to call this function even if there is no current
2515   /// insertion point.
2516   ///
2517   /// IsFinished - If true, indicates that the caller has finished emitting
2518   /// branches to the given block and does not expect to emit code into it. This
2519   /// means the block can be ignored if it is unreachable.
2520   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2521 
2522   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2523   /// near its uses, and leave the insertion point in it.
2524   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2525 
2526   /// EmitBranch - Emit a branch to the specified basic block from the current
2527   /// insert block, taking care to avoid creation of branches from dummy
2528   /// blocks. It is legal to call this function even if there is no current
2529   /// insertion point.
2530   ///
2531   /// This function clears the current insertion point. The caller should follow
2532   /// calls to this function with calls to Emit*Block prior to generation new
2533   /// code.
2534   void EmitBranch(llvm::BasicBlock *Block);
2535 
2536   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2537   /// indicates that the current code being emitted is unreachable.
2538   bool HaveInsertPoint() const {
2539     return Builder.GetInsertBlock() != nullptr;
2540   }
2541 
2542   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2543   /// emitted IR has a place to go. Note that by definition, if this function
2544   /// creates a block then that block is unreachable; callers may do better to
2545   /// detect when no insertion point is defined and simply skip IR generation.
2546   void EnsureInsertPoint() {
2547     if (!HaveInsertPoint())
2548       EmitBlock(createBasicBlock());
2549   }
2550 
2551   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2552   /// specified stmt yet.
2553   void ErrorUnsupported(const Stmt *S, const char *Type);
2554 
2555   //===--------------------------------------------------------------------===//
2556   //                                  Helpers
2557   //===--------------------------------------------------------------------===//
2558 
2559   LValue MakeAddrLValue(Address Addr, QualType T,
2560                         AlignmentSource Source = AlignmentSource::Type) {
2561     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2562                             CGM.getTBAAAccessInfo(T));
2563   }
2564 
2565   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2566                         TBAAAccessInfo TBAAInfo) {
2567     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2568   }
2569 
2570   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2571                         AlignmentSource Source = AlignmentSource::Type) {
2572     Address Addr(V, ConvertTypeForMem(T), Alignment);
2573     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2574                             CGM.getTBAAAccessInfo(T));
2575   }
2576 
2577   LValue
2578   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2579                             AlignmentSource Source = AlignmentSource::Type) {
2580     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2581                             TBAAAccessInfo());
2582   }
2583 
2584   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2585   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2586 
2587   Address EmitLoadOfReference(LValue RefLVal,
2588                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2589                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2590   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2591   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2592                                    AlignmentSource Source =
2593                                        AlignmentSource::Type) {
2594     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2595                                     CGM.getTBAAAccessInfo(RefTy));
2596     return EmitLoadOfReferenceLValue(RefLVal);
2597   }
2598 
2599   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2600   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2601   /// it is loaded from.
2602   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2603                             LValueBaseInfo *BaseInfo = nullptr,
2604                             TBAAAccessInfo *TBAAInfo = nullptr);
2605   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2606 
2607   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2608   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2609   /// insertion point of the builder. The caller is responsible for setting an
2610   /// appropriate alignment on
2611   /// the alloca.
2612   ///
2613   /// \p ArraySize is the number of array elements to be allocated if it
2614   ///    is not nullptr.
2615   ///
2616   /// LangAS::Default is the address space of pointers to local variables and
2617   /// temporaries, as exposed in the source language. In certain
2618   /// configurations, this is not the same as the alloca address space, and a
2619   /// cast is needed to lift the pointer from the alloca AS into
2620   /// LangAS::Default. This can happen when the target uses a restricted
2621   /// address space for the stack but the source language requires
2622   /// LangAS::Default to be a generic address space. The latter condition is
2623   /// common for most programming languages; OpenCL is an exception in that
2624   /// LangAS::Default is the private address space, which naturally maps
2625   /// to the stack.
2626   ///
2627   /// Because the address of a temporary is often exposed to the program in
2628   /// various ways, this function will perform the cast. The original alloca
2629   /// instruction is returned through \p Alloca if it is not nullptr.
2630   ///
2631   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2632   /// more efficient if the caller knows that the address will not be exposed.
2633   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2634                                      llvm::Value *ArraySize = nullptr);
2635   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2636                            const Twine &Name = "tmp",
2637                            llvm::Value *ArraySize = nullptr,
2638                            Address *Alloca = nullptr);
2639   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2640                                       const Twine &Name = "tmp",
2641                                       llvm::Value *ArraySize = nullptr);
2642 
2643   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2644   /// default ABI alignment of the given LLVM type.
2645   ///
2646   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2647   /// any given AST type that happens to have been lowered to the
2648   /// given IR type.  This should only ever be used for function-local,
2649   /// IR-driven manipulations like saving and restoring a value.  Do
2650   /// not hand this address off to arbitrary IRGen routines, and especially
2651   /// do not pass it as an argument to a function that might expect a
2652   /// properly ABI-aligned value.
2653   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2654                                        const Twine &Name = "tmp");
2655 
2656   /// CreateIRTemp - Create a temporary IR object of the given type, with
2657   /// appropriate alignment. This routine should only be used when an temporary
2658   /// value needs to be stored into an alloca (for example, to avoid explicit
2659   /// PHI construction), but the type is the IR type, not the type appropriate
2660   /// for storing in memory.
2661   ///
2662   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2663   /// ConvertType instead of ConvertTypeForMem.
2664   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2665 
2666   /// CreateMemTemp - Create a temporary memory object of the given type, with
2667   /// appropriate alignmen and cast it to the default address space. Returns
2668   /// the original alloca instruction by \p Alloca if it is not nullptr.
2669   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2670                         Address *Alloca = nullptr);
2671   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2672                         Address *Alloca = nullptr);
2673 
2674   /// CreateMemTemp - Create a temporary memory object of the given type, with
2675   /// appropriate alignmen without casting it to the default address space.
2676   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2677   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2678                                    const Twine &Name = "tmp");
2679 
2680   /// CreateAggTemp - Create a temporary memory object for the given
2681   /// aggregate type.
2682   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2683                              Address *Alloca = nullptr) {
2684     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2685                                  T.getQualifiers(),
2686                                  AggValueSlot::IsNotDestructed,
2687                                  AggValueSlot::DoesNotNeedGCBarriers,
2688                                  AggValueSlot::IsNotAliased,
2689                                  AggValueSlot::DoesNotOverlap);
2690   }
2691 
2692   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2693   /// expression and compare the result against zero, returning an Int1Ty value.
2694   llvm::Value *EvaluateExprAsBool(const Expr *E);
2695 
2696   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2697   void EmitIgnoredExpr(const Expr *E);
2698 
2699   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2700   /// any type.  The result is returned as an RValue struct.  If this is an
2701   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2702   /// the result should be returned.
2703   ///
2704   /// \param ignoreResult True if the resulting value isn't used.
2705   RValue EmitAnyExpr(const Expr *E,
2706                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2707                      bool ignoreResult = false);
2708 
2709   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2710   // or the value of the expression, depending on how va_list is defined.
2711   Address EmitVAListRef(const Expr *E);
2712 
2713   /// Emit a "reference" to a __builtin_ms_va_list; this is
2714   /// always the value of the expression, because a __builtin_ms_va_list is a
2715   /// pointer to a char.
2716   Address EmitMSVAListRef(const Expr *E);
2717 
2718   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2719   /// always be accessible even if no aggregate location is provided.
2720   RValue EmitAnyExprToTemp(const Expr *E);
2721 
2722   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2723   /// arbitrary expression into the given memory location.
2724   void EmitAnyExprToMem(const Expr *E, Address Location,
2725                         Qualifiers Quals, bool IsInitializer);
2726 
2727   void EmitAnyExprToExn(const Expr *E, Address Addr);
2728 
2729   /// EmitExprAsInit - Emits the code necessary to initialize a
2730   /// location in memory with the given initializer.
2731   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2732                       bool capturedByInit);
2733 
2734   /// hasVolatileMember - returns true if aggregate type has a volatile
2735   /// member.
2736   bool hasVolatileMember(QualType T) {
2737     if (const RecordType *RT = T->getAs<RecordType>()) {
2738       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2739       return RD->hasVolatileMember();
2740     }
2741     return false;
2742   }
2743 
2744   /// Determine whether a return value slot may overlap some other object.
2745   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2746     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2747     // class subobjects. These cases may need to be revisited depending on the
2748     // resolution of the relevant core issue.
2749     return AggValueSlot::DoesNotOverlap;
2750   }
2751 
2752   /// Determine whether a field initialization may overlap some other object.
2753   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2754 
2755   /// Determine whether a base class initialization may overlap some other
2756   /// object.
2757   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2758                                                 const CXXRecordDecl *BaseRD,
2759                                                 bool IsVirtual);
2760 
2761   /// Emit an aggregate assignment.
2762   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2763     bool IsVolatile = hasVolatileMember(EltTy);
2764     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2765   }
2766 
2767   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2768                              AggValueSlot::Overlap_t MayOverlap) {
2769     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2770   }
2771 
2772   /// EmitAggregateCopy - Emit an aggregate copy.
2773   ///
2774   /// \param isVolatile \c true iff either the source or the destination is
2775   ///        volatile.
2776   /// \param MayOverlap Whether the tail padding of the destination might be
2777   ///        occupied by some other object. More efficient code can often be
2778   ///        generated if not.
2779   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2780                          AggValueSlot::Overlap_t MayOverlap,
2781                          bool isVolatile = false);
2782 
2783   /// GetAddrOfLocalVar - Return the address of a local variable.
2784   Address GetAddrOfLocalVar(const VarDecl *VD) {
2785     auto it = LocalDeclMap.find(VD);
2786     assert(it != LocalDeclMap.end() &&
2787            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2788     return it->second;
2789   }
2790 
2791   /// Given an opaque value expression, return its LValue mapping if it exists,
2792   /// otherwise create one.
2793   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2794 
2795   /// Given an opaque value expression, return its RValue mapping if it exists,
2796   /// otherwise create one.
2797   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2798 
2799   /// Get the index of the current ArrayInitLoopExpr, if any.
2800   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2801 
2802   /// getAccessedFieldNo - Given an encoded value and a result number, return
2803   /// the input field number being accessed.
2804   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2805 
2806   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2807   llvm::BasicBlock *GetIndirectGotoBlock();
2808 
2809   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2810   static bool IsWrappedCXXThis(const Expr *E);
2811 
2812   /// EmitNullInitialization - Generate code to set a value of the given type to
2813   /// null, If the type contains data member pointers, they will be initialized
2814   /// to -1 in accordance with the Itanium C++ ABI.
2815   void EmitNullInitialization(Address DestPtr, QualType Ty);
2816 
2817   /// Emits a call to an LLVM variable-argument intrinsic, either
2818   /// \c llvm.va_start or \c llvm.va_end.
2819   /// \param ArgValue A reference to the \c va_list as emitted by either
2820   /// \c EmitVAListRef or \c EmitMSVAListRef.
2821   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2822   /// calls \c llvm.va_end.
2823   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2824 
2825   /// Generate code to get an argument from the passed in pointer
2826   /// and update it accordingly.
2827   /// \param VE The \c VAArgExpr for which to generate code.
2828   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2829   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2830   /// \returns A pointer to the argument.
2831   // FIXME: We should be able to get rid of this method and use the va_arg
2832   // instruction in LLVM instead once it works well enough.
2833   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2834 
2835   /// emitArrayLength - Compute the length of an array, even if it's a
2836   /// VLA, and drill down to the base element type.
2837   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2838                                QualType &baseType,
2839                                Address &addr);
2840 
2841   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2842   /// the given variably-modified type and store them in the VLASizeMap.
2843   ///
2844   /// This function can be called with a null (unreachable) insert point.
2845   void EmitVariablyModifiedType(QualType Ty);
2846 
2847   struct VlaSizePair {
2848     llvm::Value *NumElts;
2849     QualType Type;
2850 
2851     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2852   };
2853 
2854   /// Return the number of elements for a single dimension
2855   /// for the given array type.
2856   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2857   VlaSizePair getVLAElements1D(QualType vla);
2858 
2859   /// Returns an LLVM value that corresponds to the size,
2860   /// in non-variably-sized elements, of a variable length array type,
2861   /// plus that largest non-variably-sized element type.  Assumes that
2862   /// the type has already been emitted with EmitVariablyModifiedType.
2863   VlaSizePair getVLASize(const VariableArrayType *vla);
2864   VlaSizePair getVLASize(QualType vla);
2865 
2866   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2867   /// generating code for an C++ member function.
2868   llvm::Value *LoadCXXThis() {
2869     assert(CXXThisValue && "no 'this' value for this function");
2870     return CXXThisValue;
2871   }
2872   Address LoadCXXThisAddress();
2873 
2874   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2875   /// virtual bases.
2876   // FIXME: Every place that calls LoadCXXVTT is something
2877   // that needs to be abstracted properly.
2878   llvm::Value *LoadCXXVTT() {
2879     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2880     return CXXStructorImplicitParamValue;
2881   }
2882 
2883   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2884   /// complete class to the given direct base.
2885   Address
2886   GetAddressOfDirectBaseInCompleteClass(Address Value,
2887                                         const CXXRecordDecl *Derived,
2888                                         const CXXRecordDecl *Base,
2889                                         bool BaseIsVirtual);
2890 
2891   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2892 
2893   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2894   /// load of 'this' and returns address of the base class.
2895   Address GetAddressOfBaseClass(Address Value,
2896                                 const CXXRecordDecl *Derived,
2897                                 CastExpr::path_const_iterator PathBegin,
2898                                 CastExpr::path_const_iterator PathEnd,
2899                                 bool NullCheckValue, SourceLocation Loc);
2900 
2901   Address GetAddressOfDerivedClass(Address Value,
2902                                    const CXXRecordDecl *Derived,
2903                                    CastExpr::path_const_iterator PathBegin,
2904                                    CastExpr::path_const_iterator PathEnd,
2905                                    bool NullCheckValue);
2906 
2907   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2908   /// base constructor/destructor with virtual bases.
2909   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2910   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2911   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2912                                bool Delegating);
2913 
2914   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2915                                       CXXCtorType CtorType,
2916                                       const FunctionArgList &Args,
2917                                       SourceLocation Loc);
2918   // It's important not to confuse this and the previous function. Delegating
2919   // constructors are the C++0x feature. The constructor delegate optimization
2920   // is used to reduce duplication in the base and complete consturctors where
2921   // they are substantially the same.
2922   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2923                                         const FunctionArgList &Args);
2924 
2925   /// Emit a call to an inheriting constructor (that is, one that invokes a
2926   /// constructor inherited from a base class) by inlining its definition. This
2927   /// is necessary if the ABI does not support forwarding the arguments to the
2928   /// base class constructor (because they're variadic or similar).
2929   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2930                                                CXXCtorType CtorType,
2931                                                bool ForVirtualBase,
2932                                                bool Delegating,
2933                                                CallArgList &Args);
2934 
2935   /// Emit a call to a constructor inherited from a base class, passing the
2936   /// current constructor's arguments along unmodified (without even making
2937   /// a copy).
2938   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2939                                        bool ForVirtualBase, Address This,
2940                                        bool InheritedFromVBase,
2941                                        const CXXInheritedCtorInitExpr *E);
2942 
2943   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2944                               bool ForVirtualBase, bool Delegating,
2945                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2946 
2947   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2948                               bool ForVirtualBase, bool Delegating,
2949                               Address This, CallArgList &Args,
2950                               AggValueSlot::Overlap_t Overlap,
2951                               SourceLocation Loc, bool NewPointerIsChecked);
2952 
2953   /// Emit assumption load for all bases. Requires to be called only on
2954   /// most-derived class and not under construction of the object.
2955   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2956 
2957   /// Emit assumption that vptr load == global vtable.
2958   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2959 
2960   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2961                                       Address This, Address Src,
2962                                       const CXXConstructExpr *E);
2963 
2964   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2965                                   const ArrayType *ArrayTy,
2966                                   Address ArrayPtr,
2967                                   const CXXConstructExpr *E,
2968                                   bool NewPointerIsChecked,
2969                                   bool ZeroInitialization = false);
2970 
2971   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2972                                   llvm::Value *NumElements,
2973                                   Address ArrayPtr,
2974                                   const CXXConstructExpr *E,
2975                                   bool NewPointerIsChecked,
2976                                   bool ZeroInitialization = false);
2977 
2978   static Destroyer destroyCXXObject;
2979 
2980   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2981                              bool ForVirtualBase, bool Delegating, Address This,
2982                              QualType ThisTy);
2983 
2984   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2985                                llvm::Type *ElementTy, Address NewPtr,
2986                                llvm::Value *NumElements,
2987                                llvm::Value *AllocSizeWithoutCookie);
2988 
2989   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2990                         Address Ptr);
2991 
2992   void EmitSehCppScopeBegin();
2993   void EmitSehCppScopeEnd();
2994   void EmitSehTryScopeBegin();
2995   void EmitSehTryScopeEnd();
2996 
2997   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2998   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2999 
3000   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
3001   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
3002 
3003   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
3004                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
3005                       CharUnits CookieSize = CharUnits());
3006 
3007   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
3008                                   const CallExpr *TheCallExpr, bool IsDelete);
3009 
3010   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
3011   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
3012   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
3013 
3014   /// Situations in which we might emit a check for the suitability of a
3015   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
3016   /// compiler-rt.
3017   enum TypeCheckKind {
3018     /// Checking the operand of a load. Must be suitably sized and aligned.
3019     TCK_Load,
3020     /// Checking the destination of a store. Must be suitably sized and aligned.
3021     TCK_Store,
3022     /// Checking the bound value in a reference binding. Must be suitably sized
3023     /// and aligned, but is not required to refer to an object (until the
3024     /// reference is used), per core issue 453.
3025     TCK_ReferenceBinding,
3026     /// Checking the object expression in a non-static data member access. Must
3027     /// be an object within its lifetime.
3028     TCK_MemberAccess,
3029     /// Checking the 'this' pointer for a call to a non-static member function.
3030     /// Must be an object within its lifetime.
3031     TCK_MemberCall,
3032     /// Checking the 'this' pointer for a constructor call.
3033     TCK_ConstructorCall,
3034     /// Checking the operand of a static_cast to a derived pointer type. Must be
3035     /// null or an object within its lifetime.
3036     TCK_DowncastPointer,
3037     /// Checking the operand of a static_cast to a derived reference type. Must
3038     /// be an object within its lifetime.
3039     TCK_DowncastReference,
3040     /// Checking the operand of a cast to a base object. Must be suitably sized
3041     /// and aligned.
3042     TCK_Upcast,
3043     /// Checking the operand of a cast to a virtual base object. Must be an
3044     /// object within its lifetime.
3045     TCK_UpcastToVirtualBase,
3046     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
3047     TCK_NonnullAssign,
3048     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
3049     /// null or an object within its lifetime.
3050     TCK_DynamicOperation
3051   };
3052 
3053   /// Determine whether the pointer type check \p TCK permits null pointers.
3054   static bool isNullPointerAllowed(TypeCheckKind TCK);
3055 
3056   /// Determine whether the pointer type check \p TCK requires a vptr check.
3057   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
3058 
3059   /// Whether any type-checking sanitizers are enabled. If \c false,
3060   /// calls to EmitTypeCheck can be skipped.
3061   bool sanitizePerformTypeCheck() const;
3062 
3063   /// Emit a check that \p V is the address of storage of the
3064   /// appropriate size and alignment for an object of type \p Type
3065   /// (or if ArraySize is provided, for an array of that bound).
3066   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3067                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3068                      SanitizerSet SkippedChecks = SanitizerSet(),
3069                      llvm::Value *ArraySize = nullptr);
3070 
3071   /// Emit a check that \p Base points into an array object, which
3072   /// we can access at index \p Index. \p Accessed should be \c false if we
3073   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3074   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3075                        QualType IndexType, bool Accessed);
3076   void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
3077                            llvm::Value *Index, QualType IndexType,
3078                            QualType IndexedType, bool Accessed);
3079 
3080   // Find a struct's flexible array member. It may be embedded inside multiple
3081   // sub-structs, but must still be the last field.
3082   const FieldDecl *FindFlexibleArrayMemberField(ASTContext &Ctx,
3083                                                 const RecordDecl *RD,
3084                                                 StringRef Name,
3085                                                 uint64_t &Offset);
3086 
3087   /// Find the FieldDecl specified in a FAM's "counted_by" attribute. Returns
3088   /// \p nullptr if either the attribute or the field doesn't exist.
3089   const FieldDecl *FindCountedByField(const FieldDecl *FD);
3090 
3091   /// Build an expression accessing the "counted_by" field.
3092   llvm::Value *EmitCountedByFieldExpr(const Expr *Base,
3093                                       const FieldDecl *FAMDecl,
3094                                       const FieldDecl *CountDecl);
3095 
3096   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3097                                        bool isInc, bool isPre);
3098   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3099                                          bool isInc, bool isPre);
3100 
3101   /// Converts Location to a DebugLoc, if debug information is enabled.
3102   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3103 
3104   /// Get the record field index as represented in debug info.
3105   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3106 
3107 
3108   //===--------------------------------------------------------------------===//
3109   //                            Declaration Emission
3110   //===--------------------------------------------------------------------===//
3111 
3112   /// EmitDecl - Emit a declaration.
3113   ///
3114   /// This function can be called with a null (unreachable) insert point.
3115   void EmitDecl(const Decl &D);
3116 
3117   /// EmitVarDecl - Emit a local variable declaration.
3118   ///
3119   /// This function can be called with a null (unreachable) insert point.
3120   void EmitVarDecl(const VarDecl &D);
3121 
3122   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3123                       bool capturedByInit);
3124 
3125   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3126                              llvm::Value *Address);
3127 
3128   /// Determine whether the given initializer is trivial in the sense
3129   /// that it requires no code to be generated.
3130   bool isTrivialInitializer(const Expr *Init);
3131 
3132   /// EmitAutoVarDecl - Emit an auto variable declaration.
3133   ///
3134   /// This function can be called with a null (unreachable) insert point.
3135   void EmitAutoVarDecl(const VarDecl &D);
3136 
3137   class AutoVarEmission {
3138     friend class CodeGenFunction;
3139 
3140     const VarDecl *Variable;
3141 
3142     /// The address of the alloca for languages with explicit address space
3143     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3144     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3145     /// as a global constant.
3146     Address Addr;
3147 
3148     llvm::Value *NRVOFlag;
3149 
3150     /// True if the variable is a __block variable that is captured by an
3151     /// escaping block.
3152     bool IsEscapingByRef;
3153 
3154     /// True if the variable is of aggregate type and has a constant
3155     /// initializer.
3156     bool IsConstantAggregate;
3157 
3158     /// Non-null if we should use lifetime annotations.
3159     llvm::Value *SizeForLifetimeMarkers;
3160 
3161     /// Address with original alloca instruction. Invalid if the variable was
3162     /// emitted as a global constant.
3163     Address AllocaAddr;
3164 
3165     struct Invalid {};
3166     AutoVarEmission(Invalid)
3167         : Variable(nullptr), Addr(Address::invalid()),
3168           AllocaAddr(Address::invalid()) {}
3169 
3170     AutoVarEmission(const VarDecl &variable)
3171         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3172           IsEscapingByRef(false), IsConstantAggregate(false),
3173           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3174 
3175     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3176 
3177   public:
3178     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3179 
3180     bool useLifetimeMarkers() const {
3181       return SizeForLifetimeMarkers != nullptr;
3182     }
3183     llvm::Value *getSizeForLifetimeMarkers() const {
3184       assert(useLifetimeMarkers());
3185       return SizeForLifetimeMarkers;
3186     }
3187 
3188     /// Returns the raw, allocated address, which is not necessarily
3189     /// the address of the object itself. It is casted to default
3190     /// address space for address space agnostic languages.
3191     Address getAllocatedAddress() const {
3192       return Addr;
3193     }
3194 
3195     /// Returns the address for the original alloca instruction.
3196     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3197 
3198     /// Returns the address of the object within this declaration.
3199     /// Note that this does not chase the forwarding pointer for
3200     /// __block decls.
3201     Address getObjectAddress(CodeGenFunction &CGF) const {
3202       if (!IsEscapingByRef) return Addr;
3203 
3204       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3205     }
3206   };
3207   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3208   void EmitAutoVarInit(const AutoVarEmission &emission);
3209   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3210   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3211                               QualType::DestructionKind dtorKind);
3212 
3213   /// Emits the alloca and debug information for the size expressions for each
3214   /// dimension of an array. It registers the association of its (1-dimensional)
3215   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3216   /// reference this node when creating the DISubrange object to describe the
3217   /// array types.
3218   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3219                                               const VarDecl &D,
3220                                               bool EmitDebugInfo);
3221 
3222   void EmitStaticVarDecl(const VarDecl &D,
3223                          llvm::GlobalValue::LinkageTypes Linkage);
3224 
3225   class ParamValue {
3226     llvm::Value *Value;
3227     llvm::Type *ElementType;
3228     unsigned Alignment;
3229     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3230         : Value(V), ElementType(T), Alignment(A) {}
3231   public:
3232     static ParamValue forDirect(llvm::Value *value) {
3233       return ParamValue(value, nullptr, 0);
3234     }
3235     static ParamValue forIndirect(Address addr) {
3236       assert(!addr.getAlignment().isZero());
3237       return ParamValue(addr.getPointer(), addr.getElementType(),
3238                         addr.getAlignment().getQuantity());
3239     }
3240 
3241     bool isIndirect() const { return Alignment != 0; }
3242     llvm::Value *getAnyValue() const { return Value; }
3243 
3244     llvm::Value *getDirectValue() const {
3245       assert(!isIndirect());
3246       return Value;
3247     }
3248 
3249     Address getIndirectAddress() const {
3250       assert(isIndirect());
3251       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment),
3252                      KnownNonNull);
3253     }
3254   };
3255 
3256   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3257   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3258 
3259   /// protectFromPeepholes - Protect a value that we're intending to
3260   /// store to the side, but which will probably be used later, from
3261   /// aggressive peepholing optimizations that might delete it.
3262   ///
3263   /// Pass the result to unprotectFromPeepholes to declare that
3264   /// protection is no longer required.
3265   ///
3266   /// There's no particular reason why this shouldn't apply to
3267   /// l-values, it's just that no existing peepholes work on pointers.
3268   PeepholeProtection protectFromPeepholes(RValue rvalue);
3269   void unprotectFromPeepholes(PeepholeProtection protection);
3270 
3271   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3272                                     SourceLocation Loc,
3273                                     SourceLocation AssumptionLoc,
3274                                     llvm::Value *Alignment,
3275                                     llvm::Value *OffsetValue,
3276                                     llvm::Value *TheCheck,
3277                                     llvm::Instruction *Assumption);
3278 
3279   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3280                                SourceLocation Loc, SourceLocation AssumptionLoc,
3281                                llvm::Value *Alignment,
3282                                llvm::Value *OffsetValue = nullptr);
3283 
3284   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3285                                SourceLocation AssumptionLoc,
3286                                llvm::Value *Alignment,
3287                                llvm::Value *OffsetValue = nullptr);
3288 
3289   //===--------------------------------------------------------------------===//
3290   //                             Statement Emission
3291   //===--------------------------------------------------------------------===//
3292 
3293   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3294   void EmitStopPoint(const Stmt *S);
3295 
3296   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3297   /// this function even if there is no current insertion point.
3298   ///
3299   /// This function may clear the current insertion point; callers should use
3300   /// EnsureInsertPoint if they wish to subsequently generate code without first
3301   /// calling EmitBlock, EmitBranch, or EmitStmt.
3302   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt);
3303 
3304   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3305   /// necessarily require an insertion point or debug information; typically
3306   /// because the statement amounts to a jump or a container of other
3307   /// statements.
3308   ///
3309   /// \return True if the statement was handled.
3310   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3311 
3312   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3313                            AggValueSlot AVS = AggValueSlot::ignored());
3314   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3315                                        bool GetLast = false,
3316                                        AggValueSlot AVS =
3317                                                 AggValueSlot::ignored());
3318 
3319   /// EmitLabel - Emit the block for the given label. It is legal to call this
3320   /// function even if there is no current insertion point.
3321   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3322 
3323   void EmitLabelStmt(const LabelStmt &S);
3324   void EmitAttributedStmt(const AttributedStmt &S);
3325   void EmitGotoStmt(const GotoStmt &S);
3326   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3327   void EmitIfStmt(const IfStmt &S);
3328 
3329   void EmitWhileStmt(const WhileStmt &S,
3330                      ArrayRef<const Attr *> Attrs = std::nullopt);
3331   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt);
3332   void EmitForStmt(const ForStmt &S,
3333                    ArrayRef<const Attr *> Attrs = std::nullopt);
3334   void EmitReturnStmt(const ReturnStmt &S);
3335   void EmitDeclStmt(const DeclStmt &S);
3336   void EmitBreakStmt(const BreakStmt &S);
3337   void EmitContinueStmt(const ContinueStmt &S);
3338   void EmitSwitchStmt(const SwitchStmt &S);
3339   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3340   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3341   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3342   void EmitAsmStmt(const AsmStmt &S);
3343 
3344   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3345   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3346   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3347   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3348   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3349 
3350   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3351   void EmitCoreturnStmt(const CoreturnStmt &S);
3352   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3353                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3354                          bool ignoreResult = false);
3355   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3356   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3357                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3358                          bool ignoreResult = false);
3359   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3360   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3361 
3362   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3363   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3364 
3365   void EmitCXXTryStmt(const CXXTryStmt &S);
3366   void EmitSEHTryStmt(const SEHTryStmt &S);
3367   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3368   void EnterSEHTryStmt(const SEHTryStmt &S);
3369   void ExitSEHTryStmt(const SEHTryStmt &S);
3370   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3371                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3372 
3373   void pushSEHCleanup(CleanupKind kind,
3374                       llvm::Function *FinallyFunc);
3375   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3376                               const Stmt *OutlinedStmt);
3377 
3378   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3379                                             const SEHExceptStmt &Except);
3380 
3381   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3382                                              const SEHFinallyStmt &Finally);
3383 
3384   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3385                                 llvm::Value *ParentFP,
3386                                 llvm::Value *EntryEBP);
3387   llvm::Value *EmitSEHExceptionCode();
3388   llvm::Value *EmitSEHExceptionInfo();
3389   llvm::Value *EmitSEHAbnormalTermination();
3390 
3391   /// Emit simple code for OpenMP directives in Simd-only mode.
3392   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3393 
3394   /// Scan the outlined statement for captures from the parent function. For
3395   /// each capture, mark the capture as escaped and emit a call to
3396   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3397   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3398                           bool IsFilter);
3399 
3400   /// Recovers the address of a local in a parent function. ParentVar is the
3401   /// address of the variable used in the immediate parent function. It can
3402   /// either be an alloca or a call to llvm.localrecover if there are nested
3403   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3404   /// frame.
3405   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3406                                     Address ParentVar,
3407                                     llvm::Value *ParentFP);
3408 
3409   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3410                            ArrayRef<const Attr *> Attrs = std::nullopt);
3411 
3412   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3413   class OMPCancelStackRAII {
3414     CodeGenFunction &CGF;
3415 
3416   public:
3417     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3418                        bool HasCancel)
3419         : CGF(CGF) {
3420       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3421     }
3422     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3423   };
3424 
3425   /// Returns calculated size of the specified type.
3426   llvm::Value *getTypeSize(QualType Ty);
3427   LValue InitCapturedStruct(const CapturedStmt &S);
3428   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3429   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3430   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3431   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3432                                                      SourceLocation Loc);
3433   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3434                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3435   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3436                           SourceLocation Loc);
3437   /// Perform element by element copying of arrays with type \a
3438   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3439   /// generated by \a CopyGen.
3440   ///
3441   /// \param DestAddr Address of the destination array.
3442   /// \param SrcAddr Address of the source array.
3443   /// \param OriginalType Type of destination and source arrays.
3444   /// \param CopyGen Copying procedure that copies value of single array element
3445   /// to another single array element.
3446   void EmitOMPAggregateAssign(
3447       Address DestAddr, Address SrcAddr, QualType OriginalType,
3448       const llvm::function_ref<void(Address, Address)> CopyGen);
3449   /// Emit proper copying of data from one variable to another.
3450   ///
3451   /// \param OriginalType Original type of the copied variables.
3452   /// \param DestAddr Destination address.
3453   /// \param SrcAddr Source address.
3454   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3455   /// type of the base array element).
3456   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3457   /// the base array element).
3458   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3459   /// DestVD.
3460   void EmitOMPCopy(QualType OriginalType,
3461                    Address DestAddr, Address SrcAddr,
3462                    const VarDecl *DestVD, const VarDecl *SrcVD,
3463                    const Expr *Copy);
3464   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3465   /// \a X = \a E \a BO \a E.
3466   ///
3467   /// \param X Value to be updated.
3468   /// \param E Update value.
3469   /// \param BO Binary operation for update operation.
3470   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3471   /// expression, false otherwise.
3472   /// \param AO Atomic ordering of the generated atomic instructions.
3473   /// \param CommonGen Code generator for complex expressions that cannot be
3474   /// expressed through atomicrmw instruction.
3475   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3476   /// generated, <false, RValue::get(nullptr)> otherwise.
3477   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3478       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3479       llvm::AtomicOrdering AO, SourceLocation Loc,
3480       const llvm::function_ref<RValue(RValue)> CommonGen);
3481   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3482                                  OMPPrivateScope &PrivateScope);
3483   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3484                             OMPPrivateScope &PrivateScope);
3485   void EmitOMPUseDevicePtrClause(
3486       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3487       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3488           CaptureDeviceAddrMap);
3489   void EmitOMPUseDeviceAddrClause(
3490       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3491       const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3492           CaptureDeviceAddrMap);
3493   /// Emit code for copyin clause in \a D directive. The next code is
3494   /// generated at the start of outlined functions for directives:
3495   /// \code
3496   /// threadprivate_var1 = master_threadprivate_var1;
3497   /// operator=(threadprivate_var2, master_threadprivate_var2);
3498   /// ...
3499   /// __kmpc_barrier(&loc, global_tid);
3500   /// \endcode
3501   ///
3502   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3503   /// \returns true if at least one copyin variable is found, false otherwise.
3504   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3505   /// Emit initial code for lastprivate variables. If some variable is
3506   /// not also firstprivate, then the default initialization is used. Otherwise
3507   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3508   /// method.
3509   ///
3510   /// \param D Directive that may have 'lastprivate' directives.
3511   /// \param PrivateScope Private scope for capturing lastprivate variables for
3512   /// proper codegen in internal captured statement.
3513   ///
3514   /// \returns true if there is at least one lastprivate variable, false
3515   /// otherwise.
3516   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3517                                     OMPPrivateScope &PrivateScope);
3518   /// Emit final copying of lastprivate values to original variables at
3519   /// the end of the worksharing or simd directive.
3520   ///
3521   /// \param D Directive that has at least one 'lastprivate' directives.
3522   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3523   /// it is the last iteration of the loop code in associated directive, or to
3524   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3525   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3526                                      bool NoFinals,
3527                                      llvm::Value *IsLastIterCond = nullptr);
3528   /// Emit initial code for linear clauses.
3529   void EmitOMPLinearClause(const OMPLoopDirective &D,
3530                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3531   /// Emit final code for linear clauses.
3532   /// \param CondGen Optional conditional code for final part of codegen for
3533   /// linear clause.
3534   void EmitOMPLinearClauseFinal(
3535       const OMPLoopDirective &D,
3536       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3537   /// Emit initial code for reduction variables. Creates reduction copies
3538   /// and initializes them with the values according to OpenMP standard.
3539   ///
3540   /// \param D Directive (possibly) with the 'reduction' clause.
3541   /// \param PrivateScope Private scope for capturing reduction variables for
3542   /// proper codegen in internal captured statement.
3543   ///
3544   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3545                                   OMPPrivateScope &PrivateScope,
3546                                   bool ForInscan = false);
3547   /// Emit final update of reduction values to original variables at
3548   /// the end of the directive.
3549   ///
3550   /// \param D Directive that has at least one 'reduction' directives.
3551   /// \param ReductionKind The kind of reduction to perform.
3552   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3553                                    const OpenMPDirectiveKind ReductionKind);
3554   /// Emit initial code for linear variables. Creates private copies
3555   /// and initializes them with the values according to OpenMP standard.
3556   ///
3557   /// \param D Directive (possibly) with the 'linear' clause.
3558   /// \return true if at least one linear variable is found that should be
3559   /// initialized with the value of the original variable, false otherwise.
3560   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3561 
3562   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3563                                         llvm::Function * /*OutlinedFn*/,
3564                                         const OMPTaskDataTy & /*Data*/)>
3565       TaskGenTy;
3566   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3567                                  const OpenMPDirectiveKind CapturedRegion,
3568                                  const RegionCodeGenTy &BodyGen,
3569                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3570   struct OMPTargetDataInfo {
3571     Address BasePointersArray = Address::invalid();
3572     Address PointersArray = Address::invalid();
3573     Address SizesArray = Address::invalid();
3574     Address MappersArray = Address::invalid();
3575     unsigned NumberOfTargetItems = 0;
3576     explicit OMPTargetDataInfo() = default;
3577     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3578                       Address SizesArray, Address MappersArray,
3579                       unsigned NumberOfTargetItems)
3580         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3581           SizesArray(SizesArray), MappersArray(MappersArray),
3582           NumberOfTargetItems(NumberOfTargetItems) {}
3583   };
3584   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3585                                        const RegionCodeGenTy &BodyGen,
3586                                        OMPTargetDataInfo &InputInfo);
3587   void processInReduction(const OMPExecutableDirective &S,
3588                           OMPTaskDataTy &Data,
3589                           CodeGenFunction &CGF,
3590                           const CapturedStmt *CS,
3591                           OMPPrivateScope &Scope);
3592   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3593   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3594   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3595   void EmitOMPTileDirective(const OMPTileDirective &S);
3596   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3597   void EmitOMPForDirective(const OMPForDirective &S);
3598   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3599   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3600   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3601   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3602   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3603   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3604   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3605   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3606   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3607   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3608   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3609   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3610   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3611   void EmitOMPErrorDirective(const OMPErrorDirective &S);
3612   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3613   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3614   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3615   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3616   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3617   void EmitOMPScanDirective(const OMPScanDirective &S);
3618   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3619   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3620   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3621   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3622   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3623   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3624   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3625   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3626   void
3627   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3628   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3629   void
3630   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3631   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3632   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3633   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3634   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3635   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3636   void
3637   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3638   void EmitOMPParallelMasterTaskLoopDirective(
3639       const OMPParallelMasterTaskLoopDirective &S);
3640   void EmitOMPParallelMasterTaskLoopSimdDirective(
3641       const OMPParallelMasterTaskLoopSimdDirective &S);
3642   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3643   void EmitOMPDistributeParallelForDirective(
3644       const OMPDistributeParallelForDirective &S);
3645   void EmitOMPDistributeParallelForSimdDirective(
3646       const OMPDistributeParallelForSimdDirective &S);
3647   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3648   void EmitOMPTargetParallelForSimdDirective(
3649       const OMPTargetParallelForSimdDirective &S);
3650   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3651   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3652   void
3653   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3654   void EmitOMPTeamsDistributeParallelForSimdDirective(
3655       const OMPTeamsDistributeParallelForSimdDirective &S);
3656   void EmitOMPTeamsDistributeParallelForDirective(
3657       const OMPTeamsDistributeParallelForDirective &S);
3658   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3659   void EmitOMPTargetTeamsDistributeDirective(
3660       const OMPTargetTeamsDistributeDirective &S);
3661   void EmitOMPTargetTeamsDistributeParallelForDirective(
3662       const OMPTargetTeamsDistributeParallelForDirective &S);
3663   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3664       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3665   void EmitOMPTargetTeamsDistributeSimdDirective(
3666       const OMPTargetTeamsDistributeSimdDirective &S);
3667   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3668   void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S);
3669   void EmitOMPTargetParallelGenericLoopDirective(
3670       const OMPTargetParallelGenericLoopDirective &S);
3671   void EmitOMPTargetTeamsGenericLoopDirective(
3672       const OMPTargetTeamsGenericLoopDirective &S);
3673   void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S);
3674   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3675   void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S);
3676 
3677   /// Emit device code for the target directive.
3678   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3679                                           StringRef ParentName,
3680                                           const OMPTargetDirective &S);
3681   static void
3682   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3683                                       const OMPTargetParallelDirective &S);
3684   /// Emit device code for the target parallel for directive.
3685   static void EmitOMPTargetParallelForDeviceFunction(
3686       CodeGenModule &CGM, StringRef ParentName,
3687       const OMPTargetParallelForDirective &S);
3688   /// Emit device code for the target parallel for simd directive.
3689   static void EmitOMPTargetParallelForSimdDeviceFunction(
3690       CodeGenModule &CGM, StringRef ParentName,
3691       const OMPTargetParallelForSimdDirective &S);
3692   /// Emit device code for the target teams directive.
3693   static void
3694   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3695                                    const OMPTargetTeamsDirective &S);
3696   /// Emit device code for the target teams distribute directive.
3697   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3698       CodeGenModule &CGM, StringRef ParentName,
3699       const OMPTargetTeamsDistributeDirective &S);
3700   /// Emit device code for the target teams distribute simd directive.
3701   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3702       CodeGenModule &CGM, StringRef ParentName,
3703       const OMPTargetTeamsDistributeSimdDirective &S);
3704   /// Emit device code for the target simd directive.
3705   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3706                                               StringRef ParentName,
3707                                               const OMPTargetSimdDirective &S);
3708   /// Emit device code for the target teams distribute parallel for simd
3709   /// directive.
3710   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3711       CodeGenModule &CGM, StringRef ParentName,
3712       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3713 
3714   /// Emit device code for the target teams loop directive.
3715   static void EmitOMPTargetTeamsGenericLoopDeviceFunction(
3716       CodeGenModule &CGM, StringRef ParentName,
3717       const OMPTargetTeamsGenericLoopDirective &S);
3718 
3719   /// Emit device code for the target parallel loop directive.
3720   static void EmitOMPTargetParallelGenericLoopDeviceFunction(
3721       CodeGenModule &CGM, StringRef ParentName,
3722       const OMPTargetParallelGenericLoopDirective &S);
3723 
3724   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3725       CodeGenModule &CGM, StringRef ParentName,
3726       const OMPTargetTeamsDistributeParallelForDirective &S);
3727 
3728   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3729   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3730   /// future it is meant to be the number of loops expected in the loop nests
3731   /// (usually specified by the "collapse" clause) that are collapsed to a
3732   /// single loop by this function.
3733   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3734                                                              int Depth);
3735 
3736   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3737   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3738 
3739   /// Emit inner loop of the worksharing/simd construct.
3740   ///
3741   /// \param S Directive, for which the inner loop must be emitted.
3742   /// \param RequiresCleanup true, if directive has some associated private
3743   /// variables.
3744   /// \param LoopCond Bollean condition for loop continuation.
3745   /// \param IncExpr Increment expression for loop control variable.
3746   /// \param BodyGen Generator for the inner body of the inner loop.
3747   /// \param PostIncGen Genrator for post-increment code (required for ordered
3748   /// loop directvies).
3749   void EmitOMPInnerLoop(
3750       const OMPExecutableDirective &S, bool RequiresCleanup,
3751       const Expr *LoopCond, const Expr *IncExpr,
3752       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3753       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3754 
3755   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3756   /// Emit initial code for loop counters of loop-based directives.
3757   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3758                                   OMPPrivateScope &LoopScope);
3759 
3760   /// Helper for the OpenMP loop directives.
3761   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3762 
3763   /// Emit code for the worksharing loop-based directive.
3764   /// \return true, if this construct has any lastprivate clause, false -
3765   /// otherwise.
3766   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3767                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3768                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3769 
3770   /// Emit code for the distribute loop-based directive.
3771   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3772                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3773 
3774   /// Helpers for the OpenMP loop directives.
3775   void EmitOMPSimdInit(const OMPLoopDirective &D);
3776   void EmitOMPSimdFinal(
3777       const OMPLoopDirective &D,
3778       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3779 
3780   /// Emits the lvalue for the expression with possibly captured variable.
3781   LValue EmitOMPSharedLValue(const Expr *E);
3782 
3783 private:
3784   /// Helpers for blocks.
3785   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3786 
3787   /// struct with the values to be passed to the OpenMP loop-related functions
3788   struct OMPLoopArguments {
3789     /// loop lower bound
3790     Address LB = Address::invalid();
3791     /// loop upper bound
3792     Address UB = Address::invalid();
3793     /// loop stride
3794     Address ST = Address::invalid();
3795     /// isLastIteration argument for runtime functions
3796     Address IL = Address::invalid();
3797     /// Chunk value generated by sema
3798     llvm::Value *Chunk = nullptr;
3799     /// EnsureUpperBound
3800     Expr *EUB = nullptr;
3801     /// IncrementExpression
3802     Expr *IncExpr = nullptr;
3803     /// Loop initialization
3804     Expr *Init = nullptr;
3805     /// Loop exit condition
3806     Expr *Cond = nullptr;
3807     /// Update of LB after a whole chunk has been executed
3808     Expr *NextLB = nullptr;
3809     /// Update of UB after a whole chunk has been executed
3810     Expr *NextUB = nullptr;
3811     OMPLoopArguments() = default;
3812     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3813                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3814                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3815                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3816                      Expr *NextUB = nullptr)
3817         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3818           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3819           NextUB(NextUB) {}
3820   };
3821   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3822                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3823                         const OMPLoopArguments &LoopArgs,
3824                         const CodeGenLoopTy &CodeGenLoop,
3825                         const CodeGenOrderedTy &CodeGenOrdered);
3826   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3827                            bool IsMonotonic, const OMPLoopDirective &S,
3828                            OMPPrivateScope &LoopScope, bool Ordered,
3829                            const OMPLoopArguments &LoopArgs,
3830                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3831   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3832                                   const OMPLoopDirective &S,
3833                                   OMPPrivateScope &LoopScope,
3834                                   const OMPLoopArguments &LoopArgs,
3835                                   const CodeGenLoopTy &CodeGenLoopContent);
3836   /// Emit code for sections directive.
3837   void EmitSections(const OMPExecutableDirective &S);
3838 
3839 public:
3840 
3841   //===--------------------------------------------------------------------===//
3842   //                         LValue Expression Emission
3843   //===--------------------------------------------------------------------===//
3844 
3845   /// Create a check that a scalar RValue is non-null.
3846   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3847 
3848   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3849   RValue GetUndefRValue(QualType Ty);
3850 
3851   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3852   /// and issue an ErrorUnsupported style diagnostic (using the
3853   /// provided Name).
3854   RValue EmitUnsupportedRValue(const Expr *E,
3855                                const char *Name);
3856 
3857   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3858   /// an ErrorUnsupported style diagnostic (using the provided Name).
3859   LValue EmitUnsupportedLValue(const Expr *E,
3860                                const char *Name);
3861 
3862   /// EmitLValue - Emit code to compute a designator that specifies the location
3863   /// of the expression.
3864   ///
3865   /// This can return one of two things: a simple address or a bitfield
3866   /// reference.  In either case, the LLVM Value* in the LValue structure is
3867   /// guaranteed to be an LLVM pointer type.
3868   ///
3869   /// If this returns a bitfield reference, nothing about the pointee type of
3870   /// the LLVM value is known: For example, it may not be a pointer to an
3871   /// integer.
3872   ///
3873   /// If this returns a normal address, and if the lvalue's C type is fixed
3874   /// size, this method guarantees that the returned pointer type will point to
3875   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3876   /// variable length type, this is not possible.
3877   ///
3878   LValue EmitLValue(const Expr *E,
3879                     KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
3880 
3881 private:
3882   LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull);
3883 
3884 public:
3885   /// Same as EmitLValue but additionally we generate checking code to
3886   /// guard against undefined behavior.  This is only suitable when we know
3887   /// that the address will be used to access the object.
3888   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3889 
3890   RValue convertTempToRValue(Address addr, QualType type,
3891                              SourceLocation Loc);
3892 
3893   void EmitAtomicInit(Expr *E, LValue lvalue);
3894 
3895   bool LValueIsSuitableForInlineAtomic(LValue Src);
3896 
3897   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3898                         AggValueSlot Slot = AggValueSlot::ignored());
3899 
3900   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3901                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3902                         AggValueSlot slot = AggValueSlot::ignored());
3903 
3904   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3905 
3906   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3907                        bool IsVolatile, bool isInit);
3908 
3909   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3910       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3911       llvm::AtomicOrdering Success =
3912           llvm::AtomicOrdering::SequentiallyConsistent,
3913       llvm::AtomicOrdering Failure =
3914           llvm::AtomicOrdering::SequentiallyConsistent,
3915       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3916 
3917   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3918                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3919                         bool IsVolatile);
3920 
3921   /// EmitToMemory - Change a scalar value from its value
3922   /// representation to its in-memory representation.
3923   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3924 
3925   /// EmitFromMemory - Change a scalar value from its memory
3926   /// representation to its value representation.
3927   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3928 
3929   /// Check if the scalar \p Value is within the valid range for the given
3930   /// type \p Ty.
3931   ///
3932   /// Returns true if a check is needed (even if the range is unknown).
3933   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3934                             SourceLocation Loc);
3935 
3936   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3937   /// care to appropriately convert from the memory representation to
3938   /// the LLVM value representation.
3939   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3940                                 SourceLocation Loc,
3941                                 AlignmentSource Source = AlignmentSource::Type,
3942                                 bool isNontemporal = false) {
3943     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3944                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3945   }
3946 
3947   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3948                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3949                                 TBAAAccessInfo TBAAInfo,
3950                                 bool isNontemporal = false);
3951 
3952   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3953   /// care to appropriately convert from the memory representation to
3954   /// the LLVM value representation.  The l-value must be a simple
3955   /// l-value.
3956   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3957 
3958   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3959   /// care to appropriately convert from the memory representation to
3960   /// the LLVM value representation.
3961   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3962                          bool Volatile, QualType Ty,
3963                          AlignmentSource Source = AlignmentSource::Type,
3964                          bool isInit = false, bool isNontemporal = false) {
3965     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3966                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3967   }
3968 
3969   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3970                          bool Volatile, QualType Ty,
3971                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3972                          bool isInit = false, bool isNontemporal = false);
3973 
3974   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3975   /// care to appropriately convert from the memory representation to
3976   /// the LLVM value representation.  The l-value must be a simple
3977   /// l-value.  The isInit flag indicates whether this is an initialization.
3978   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3979   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3980 
3981   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3982   /// this method emits the address of the lvalue, then loads the result as an
3983   /// rvalue, returning the rvalue.
3984   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3985   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3986   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3987   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3988 
3989   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3990   /// lvalue, where both are guaranteed to the have the same type, and that type
3991   /// is 'Ty'.
3992   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3993   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3994   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3995 
3996   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3997   /// as EmitStoreThroughLValue.
3998   ///
3999   /// \param Result [out] - If non-null, this will be set to a Value* for the
4000   /// bit-field contents after the store, appropriate for use as the result of
4001   /// an assignment to the bit-field.
4002   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
4003                                       llvm::Value **Result=nullptr);
4004 
4005   /// Emit an l-value for an assignment (simple or compound) of complex type.
4006   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
4007   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
4008   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
4009                                              llvm::Value *&Result);
4010 
4011   // Note: only available for agg return types
4012   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
4013   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
4014   // Note: only available for agg return types
4015   LValue EmitCallExprLValue(const CallExpr *E);
4016   // Note: only available for agg return types
4017   LValue EmitVAArgExprLValue(const VAArgExpr *E);
4018   LValue EmitDeclRefLValue(const DeclRefExpr *E);
4019   LValue EmitStringLiteralLValue(const StringLiteral *E);
4020   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
4021   LValue EmitPredefinedLValue(const PredefinedExpr *E);
4022   LValue EmitUnaryOpLValue(const UnaryOperator *E);
4023   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4024                                 bool Accessed = false);
4025   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
4026   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4027                                  bool IsLowerBound = true);
4028   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
4029   LValue EmitMemberExpr(const MemberExpr *E);
4030   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
4031   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
4032   LValue EmitInitListLValue(const InitListExpr *E);
4033   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
4034   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
4035   LValue EmitCastLValue(const CastExpr *E);
4036   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4037   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
4038 
4039   Address EmitExtVectorElementLValue(LValue V);
4040 
4041   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
4042 
4043   Address EmitArrayToPointerDecay(const Expr *Array,
4044                                   LValueBaseInfo *BaseInfo = nullptr,
4045                                   TBAAAccessInfo *TBAAInfo = nullptr);
4046 
4047   class ConstantEmission {
4048     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
4049     ConstantEmission(llvm::Constant *C, bool isReference)
4050       : ValueAndIsReference(C, isReference) {}
4051   public:
4052     ConstantEmission() {}
4053     static ConstantEmission forReference(llvm::Constant *C) {
4054       return ConstantEmission(C, true);
4055     }
4056     static ConstantEmission forValue(llvm::Constant *C) {
4057       return ConstantEmission(C, false);
4058     }
4059 
4060     explicit operator bool() const {
4061       return ValueAndIsReference.getOpaqueValue() != nullptr;
4062     }
4063 
4064     bool isReference() const { return ValueAndIsReference.getInt(); }
4065     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
4066       assert(isReference());
4067       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
4068                                             refExpr->getType());
4069     }
4070 
4071     llvm::Constant *getValue() const {
4072       assert(!isReference());
4073       return ValueAndIsReference.getPointer();
4074     }
4075   };
4076 
4077   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
4078   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
4079   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
4080 
4081   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
4082                                 AggValueSlot slot = AggValueSlot::ignored());
4083   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
4084 
4085   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4086                               const ObjCIvarDecl *Ivar);
4087   llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
4088                                            const ObjCIvarDecl *Ivar);
4089   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
4090   LValue EmitLValueForLambdaField(const FieldDecl *Field);
4091   LValue EmitLValueForLambdaField(const FieldDecl *Field,
4092                                   llvm::Value *ThisValue);
4093 
4094   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
4095   /// if the Field is a reference, this will return the address of the reference
4096   /// and not the address of the value stored in the reference.
4097   LValue EmitLValueForFieldInitialization(LValue Base,
4098                                           const FieldDecl* Field);
4099 
4100   LValue EmitLValueForIvar(QualType ObjectTy,
4101                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
4102                            unsigned CVRQualifiers);
4103 
4104   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
4105   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
4106   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
4107   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
4108 
4109   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
4110   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4111   LValue EmitStmtExprLValue(const StmtExpr *E);
4112   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4113   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4114   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4115 
4116   //===--------------------------------------------------------------------===//
4117   //                         Scalar Expression Emission
4118   //===--------------------------------------------------------------------===//
4119 
4120   /// EmitCall - Generate a call of the given function, expecting the given
4121   /// result type, and using the given argument list which specifies both the
4122   /// LLVM arguments and the types they were derived from.
4123   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4124                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4125                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4126                   SourceLocation Loc);
4127   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4128                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4129                   llvm::CallBase **callOrInvoke = nullptr,
4130                   bool IsMustTail = false) {
4131     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4132                     IsMustTail, SourceLocation());
4133   }
4134   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4135                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4136   RValue EmitCallExpr(const CallExpr *E,
4137                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4138   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4139   CGCallee EmitCallee(const Expr *E);
4140 
4141   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4142   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4143 
4144   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4145                                   const Twine &name = "");
4146   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4147                                   ArrayRef<llvm::Value *> args,
4148                                   const Twine &name = "");
4149   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4150                                           const Twine &name = "");
4151   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4152                                           ArrayRef<llvm::Value *> args,
4153                                           const Twine &name = "");
4154 
4155   SmallVector<llvm::OperandBundleDef, 1>
4156   getBundlesForFunclet(llvm::Value *Callee);
4157 
4158   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4159                                    ArrayRef<llvm::Value *> Args,
4160                                    const Twine &Name = "");
4161   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4162                                           ArrayRef<llvm::Value *> args,
4163                                           const Twine &name = "");
4164   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4165                                           const Twine &name = "");
4166   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4167                                        ArrayRef<llvm::Value *> args);
4168 
4169   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4170                                      NestedNameSpecifier *Qual,
4171                                      llvm::Type *Ty);
4172 
4173   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4174                                                CXXDtorType Type,
4175                                                const CXXRecordDecl *RD);
4176 
4177   // Return the copy constructor name with the prefix "__copy_constructor_"
4178   // removed.
4179   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4180                                                      CharUnits Alignment,
4181                                                      bool IsVolatile,
4182                                                      ASTContext &Ctx);
4183 
4184   // Return the destructor name with the prefix "__destructor_" removed.
4185   static std::string getNonTrivialDestructorStr(QualType QT,
4186                                                 CharUnits Alignment,
4187                                                 bool IsVolatile,
4188                                                 ASTContext &Ctx);
4189 
4190   // These functions emit calls to the special functions of non-trivial C
4191   // structs.
4192   void defaultInitNonTrivialCStructVar(LValue Dst);
4193   void callCStructDefaultConstructor(LValue Dst);
4194   void callCStructDestructor(LValue Dst);
4195   void callCStructCopyConstructor(LValue Dst, LValue Src);
4196   void callCStructMoveConstructor(LValue Dst, LValue Src);
4197   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4198   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4199 
4200   RValue
4201   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4202                               const CGCallee &Callee,
4203                               ReturnValueSlot ReturnValue, llvm::Value *This,
4204                               llvm::Value *ImplicitParam,
4205                               QualType ImplicitParamTy, const CallExpr *E,
4206                               CallArgList *RtlArgs);
4207   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4208                                llvm::Value *This, QualType ThisTy,
4209                                llvm::Value *ImplicitParam,
4210                                QualType ImplicitParamTy, const CallExpr *E);
4211   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4212                                ReturnValueSlot ReturnValue);
4213   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4214                                                const CXXMethodDecl *MD,
4215                                                ReturnValueSlot ReturnValue,
4216                                                bool HasQualifier,
4217                                                NestedNameSpecifier *Qualifier,
4218                                                bool IsArrow, const Expr *Base);
4219   // Compute the object pointer.
4220   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4221                                           llvm::Value *memberPtr,
4222                                           const MemberPointerType *memberPtrType,
4223                                           LValueBaseInfo *BaseInfo = nullptr,
4224                                           TBAAAccessInfo *TBAAInfo = nullptr);
4225   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4226                                       ReturnValueSlot ReturnValue);
4227 
4228   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4229                                        const CXXMethodDecl *MD,
4230                                        ReturnValueSlot ReturnValue);
4231   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4232 
4233   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4234                                 ReturnValueSlot ReturnValue);
4235 
4236   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4237   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4238   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4239 
4240   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4241                          const CallExpr *E, ReturnValueSlot ReturnValue);
4242 
4243   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4244 
4245   /// Emit IR for __builtin_os_log_format.
4246   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4247 
4248   /// Emit IR for __builtin_is_aligned.
4249   RValue EmitBuiltinIsAligned(const CallExpr *E);
4250   /// Emit IR for __builtin_align_up/__builtin_align_down.
4251   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4252 
4253   llvm::Function *generateBuiltinOSLogHelperFunction(
4254       const analyze_os_log::OSLogBufferLayout &Layout,
4255       CharUnits BufferAlignment);
4256 
4257   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4258 
4259   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4260   /// is unhandled by the current target.
4261   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4262                                      ReturnValueSlot ReturnValue);
4263 
4264   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4265                                              const llvm::CmpInst::Predicate Fp,
4266                                              const llvm::CmpInst::Predicate Ip,
4267                                              const llvm::Twine &Name = "");
4268   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4269                                   ReturnValueSlot ReturnValue,
4270                                   llvm::Triple::ArchType Arch);
4271   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4272                                      ReturnValueSlot ReturnValue,
4273                                      llvm::Triple::ArchType Arch);
4274   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4275                                      ReturnValueSlot ReturnValue,
4276                                      llvm::Triple::ArchType Arch);
4277   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4278                                    QualType RTy);
4279   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4280                                    QualType RTy);
4281 
4282   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4283                                          unsigned LLVMIntrinsic,
4284                                          unsigned AltLLVMIntrinsic,
4285                                          const char *NameHint,
4286                                          unsigned Modifier,
4287                                          const CallExpr *E,
4288                                          SmallVectorImpl<llvm::Value *> &Ops,
4289                                          Address PtrOp0, Address PtrOp1,
4290                                          llvm::Triple::ArchType Arch);
4291 
4292   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4293                                           unsigned Modifier, llvm::Type *ArgTy,
4294                                           const CallExpr *E);
4295   llvm::Value *EmitNeonCall(llvm::Function *F,
4296                             SmallVectorImpl<llvm::Value*> &O,
4297                             const char *name,
4298                             unsigned shift = 0, bool rightshift = false);
4299   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4300                              const llvm::ElementCount &Count);
4301   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4302   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4303                                    bool negateForRightShift);
4304   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4305                                  llvm::Type *Ty, bool usgn, const char *name);
4306   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4307   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4308   /// access builtin.  Only required if it can't be inferred from the base
4309   /// pointer operand.
4310   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4311 
4312   SmallVector<llvm::Type *, 2>
4313   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4314                       ArrayRef<llvm::Value *> Ops);
4315   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4316   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4317   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4318   llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4319                                     llvm::Type *ReturnType,
4320                                     ArrayRef<llvm::Value *> Ops);
4321   llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4322                                   llvm::Type *ReturnType,
4323                                   ArrayRef<llvm::Value *> Ops);
4324   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4325   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4326   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4327   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4328   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4329                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4330                             unsigned BuiltinID);
4331   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4332                            llvm::ArrayRef<llvm::Value *> Ops,
4333                            unsigned BuiltinID);
4334   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4335                                     llvm::ScalableVectorType *VTy);
4336   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4337                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4338                                  unsigned IntID);
4339   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4340                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4341                                    unsigned IntID);
4342   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4343                                  SmallVectorImpl<llvm::Value *> &Ops,
4344                                  unsigned BuiltinID, bool IsZExtReturn);
4345   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4346                                   SmallVectorImpl<llvm::Value *> &Ops,
4347                                   unsigned BuiltinID);
4348   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4349                                    SmallVectorImpl<llvm::Value *> &Ops,
4350                                    unsigned BuiltinID);
4351   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4352                                      SmallVectorImpl<llvm::Value *> &Ops,
4353                                      unsigned IntID);
4354   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4355                                  SmallVectorImpl<llvm::Value *> &Ops,
4356                                  unsigned IntID);
4357   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4358                                   SmallVectorImpl<llvm::Value *> &Ops,
4359                                   unsigned IntID);
4360   /// FormSVEBuiltinResult - Returns the struct of scalable vectors as a wider
4361   /// vector. It extracts the scalable vector from the struct and inserts into
4362   /// the wider vector. This avoids the error when allocating space in llvm
4363   /// for struct of scalable vectors if a function returns struct.
4364   llvm::Value *FormSVEBuiltinResult(llvm::Value *Call);
4365 
4366   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4367 
4368   llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags,
4369                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4370                              unsigned IntID);
4371   llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
4372                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4373                                 unsigned IntID);
4374   llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags,
4375                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4376                            unsigned IntID);
4377   llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags,
4378                              llvm::SmallVectorImpl<llvm::Value *> &Ops,
4379                              unsigned IntID);
4380 
4381   void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E,
4382                                       SmallVectorImpl<llvm::Value *> &Ops,
4383                                       SVETypeFlags TypeFlags);
4384 
4385   llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4386 
4387   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4388                                       llvm::Triple::ArchType Arch);
4389   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4390 
4391   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4392   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4393   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4394   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4395   llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx,
4396                                            const CallExpr *E);
4397   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4398   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4399   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4400                                           const CallExpr *E);
4401   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4402   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4403                                     ReturnValueSlot ReturnValue);
4404   void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4405                                llvm::AtomicOrdering &AO,
4406                                llvm::SyncScope::ID &SSID);
4407 
4408   enum class MSVCIntrin;
4409   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4410 
4411   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4412 
4413   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4414   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4415   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4416   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4417   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4418   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4419                                 const ObjCMethodDecl *MethodWithObjects);
4420   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4421   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4422                              ReturnValueSlot Return = ReturnValueSlot());
4423 
4424   /// Retrieves the default cleanup kind for an ARC cleanup.
4425   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4426   CleanupKind getARCCleanupKind() {
4427     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4428              ? NormalAndEHCleanup : NormalCleanup;
4429   }
4430 
4431   // ARC primitives.
4432   void EmitARCInitWeak(Address addr, llvm::Value *value);
4433   void EmitARCDestroyWeak(Address addr);
4434   llvm::Value *EmitARCLoadWeak(Address addr);
4435   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4436   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4437   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4438   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4439   void EmitARCCopyWeak(Address dst, Address src);
4440   void EmitARCMoveWeak(Address dst, Address src);
4441   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4442   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4443   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4444                                   bool resultIgnored);
4445   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4446                                       bool resultIgnored);
4447   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4448   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4449   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4450   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4451   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4452   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4453   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4454   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4455   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4456   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4457 
4458   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4459   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4460                                       llvm::Type *returnType);
4461   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4462 
4463   std::pair<LValue,llvm::Value*>
4464   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4465   std::pair<LValue,llvm::Value*>
4466   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4467   std::pair<LValue,llvm::Value*>
4468   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4469 
4470   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4471                              llvm::Type *returnType);
4472   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4473                                      llvm::Type *returnType);
4474   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4475 
4476   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4477   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4478   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4479 
4480   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4481   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4482                                             bool allowUnsafeClaim);
4483   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4484   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4485   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4486 
4487   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4488 
4489   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4490 
4491   static Destroyer destroyARCStrongImprecise;
4492   static Destroyer destroyARCStrongPrecise;
4493   static Destroyer destroyARCWeak;
4494   static Destroyer emitARCIntrinsicUse;
4495   static Destroyer destroyNonTrivialCStruct;
4496 
4497   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4498   llvm::Value *EmitObjCAutoreleasePoolPush();
4499   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4500   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4501   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4502 
4503   /// Emits a reference binding to the passed in expression.
4504   RValue EmitReferenceBindingToExpr(const Expr *E);
4505 
4506   //===--------------------------------------------------------------------===//
4507   //                           Expression Emission
4508   //===--------------------------------------------------------------------===//
4509 
4510   // Expressions are broken into three classes: scalar, complex, aggregate.
4511 
4512   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4513   /// scalar type, returning the result.
4514   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4515 
4516   /// Emit a conversion from the specified type to the specified destination
4517   /// type, both of which are LLVM scalar types.
4518   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4519                                     QualType DstTy, SourceLocation Loc);
4520 
4521   /// Emit a conversion from the specified complex type to the specified
4522   /// destination type, where the destination type is an LLVM scalar type.
4523   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4524                                              QualType DstTy,
4525                                              SourceLocation Loc);
4526 
4527   /// EmitAggExpr - Emit the computation of the specified expression
4528   /// of aggregate type.  The result is computed into the given slot,
4529   /// which may be null to indicate that the value is not needed.
4530   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4531 
4532   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4533   /// aggregate type into a temporary LValue.
4534   LValue EmitAggExprToLValue(const Expr *E);
4535 
4536   /// Build all the stores needed to initialize an aggregate at Dest with the
4537   /// value Val.
4538   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4539 
4540   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4541   /// make sure it survives garbage collection until this point.
4542   void EmitExtendGCLifetime(llvm::Value *object);
4543 
4544   /// EmitComplexExpr - Emit the computation of the specified expression of
4545   /// complex type, returning the result.
4546   ComplexPairTy EmitComplexExpr(const Expr *E,
4547                                 bool IgnoreReal = false,
4548                                 bool IgnoreImag = false);
4549 
4550   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4551   /// type and place its result into the specified l-value.
4552   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4553 
4554   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4555   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4556 
4557   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4558   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4559 
4560   ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4561   llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4562   ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4563   ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
4564 
4565   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4566   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4567 
4568   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4569   /// global variable that has already been created for it.  If the initializer
4570   /// has a different type than GV does, this may free GV and return a different
4571   /// one.  Otherwise it just returns GV.
4572   llvm::GlobalVariable *
4573   AddInitializerToStaticVarDecl(const VarDecl &D,
4574                                 llvm::GlobalVariable *GV);
4575 
4576   // Emit an @llvm.invariant.start call for the given memory region.
4577   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4578 
4579   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4580   /// variable with global storage.
4581   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4582                                 bool PerformInit);
4583 
4584   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4585                                    llvm::Constant *Addr);
4586 
4587   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4588                                       llvm::FunctionCallee Dtor,
4589                                       llvm::Constant *Addr,
4590                                       llvm::FunctionCallee &AtExit);
4591 
4592   /// Call atexit() with a function that passes the given argument to
4593   /// the given function.
4594   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4595                                     llvm::Constant *addr);
4596 
4597   /// Registers the dtor using 'llvm.global_dtors' for platforms that do not
4598   /// support an 'atexit()' function.
4599   void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn,
4600                                   llvm::Constant *addr);
4601 
4602   /// Call atexit() with function dtorStub.
4603   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4604 
4605   /// Call unatexit() with function dtorStub.
4606   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4607 
4608   /// Emit code in this function to perform a guarded variable
4609   /// initialization.  Guarded initializations are used when it's not
4610   /// possible to prove that an initialization will be done exactly
4611   /// once, e.g. with a static local variable or a static data member
4612   /// of a class template.
4613   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4614                           bool PerformInit);
4615 
4616   enum class GuardKind { VariableGuard, TlsGuard };
4617 
4618   /// Emit a branch to select whether or not to perform guarded initialization.
4619   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4620                                 llvm::BasicBlock *InitBlock,
4621                                 llvm::BasicBlock *NoInitBlock,
4622                                 GuardKind Kind, const VarDecl *D);
4623 
4624   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4625   /// variables.
4626   void
4627   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4628                             ArrayRef<llvm::Function *> CXXThreadLocals,
4629                             ConstantAddress Guard = ConstantAddress::invalid());
4630 
4631   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4632   /// variables.
4633   void GenerateCXXGlobalCleanUpFunc(
4634       llvm::Function *Fn,
4635       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4636                           llvm::Constant *>>
4637           DtorsOrStermFinalizers);
4638 
4639   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4640                                         const VarDecl *D,
4641                                         llvm::GlobalVariable *Addr,
4642                                         bool PerformInit);
4643 
4644   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4645 
4646   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4647 
4648   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4649 
4650   RValue EmitAtomicExpr(AtomicExpr *E);
4651 
4652   //===--------------------------------------------------------------------===//
4653   //                         Annotations Emission
4654   //===--------------------------------------------------------------------===//
4655 
4656   /// Emit an annotation call (intrinsic).
4657   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4658                                   llvm::Value *AnnotatedVal,
4659                                   StringRef AnnotationStr,
4660                                   SourceLocation Location,
4661                                   const AnnotateAttr *Attr);
4662 
4663   /// Emit local annotations for the local variable V, declared by D.
4664   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4665 
4666   /// Emit field annotations for the given field & value. Returns the
4667   /// annotation result.
4668   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4669 
4670   //===--------------------------------------------------------------------===//
4671   //                             Internal Helpers
4672   //===--------------------------------------------------------------------===//
4673 
4674   /// ContainsLabel - Return true if the statement contains a label in it.  If
4675   /// this statement is not executed normally, it not containing a label means
4676   /// that we can just remove the code.
4677   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4678 
4679   /// containsBreak - Return true if the statement contains a break out of it.
4680   /// If the statement (recursively) contains a switch or loop with a break
4681   /// inside of it, this is fine.
4682   static bool containsBreak(const Stmt *S);
4683 
4684   /// Determine if the given statement might introduce a declaration into the
4685   /// current scope, by being a (possibly-labelled) DeclStmt.
4686   static bool mightAddDeclToScope(const Stmt *S);
4687 
4688   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4689   /// to a constant, or if it does but contains a label, return false.  If it
4690   /// constant folds return true and set the boolean result in Result.
4691   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4692                                     bool AllowLabels = false);
4693 
4694   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4695   /// to a constant, or if it does but contains a label, return false.  If it
4696   /// constant folds return true and set the folded value.
4697   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4698                                     bool AllowLabels = false);
4699 
4700   /// Ignore parentheses and logical-NOT to track conditions consistently.
4701   static const Expr *stripCond(const Expr *C);
4702 
4703   /// isInstrumentedCondition - Determine whether the given condition is an
4704   /// instrumentable condition (i.e. no "&&" or "||").
4705   static bool isInstrumentedCondition(const Expr *C);
4706 
4707   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4708   /// increments a profile counter based on the semantics of the given logical
4709   /// operator opcode.  This is used to instrument branch condition coverage
4710   /// for logical operators.
4711   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4712                                 llvm::BasicBlock *TrueBlock,
4713                                 llvm::BasicBlock *FalseBlock,
4714                                 uint64_t TrueCount = 0,
4715                                 Stmt::Likelihood LH = Stmt::LH_None,
4716                                 const Expr *CntrIdx = nullptr);
4717 
4718   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4719   /// if statement) to the specified blocks.  Based on the condition, this might
4720   /// try to simplify the codegen of the conditional based on the branch.
4721   /// TrueCount should be the number of times we expect the condition to
4722   /// evaluate to true based on PGO data.
4723   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4724                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4725                             Stmt::Likelihood LH = Stmt::LH_None,
4726                             const Expr *ConditionalOp = nullptr);
4727 
4728   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4729   /// nonnull, if \p LHS is marked _Nonnull.
4730   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4731 
4732   /// An enumeration which makes it easier to specify whether or not an
4733   /// operation is a subtraction.
4734   enum { NotSubtraction = false, IsSubtraction = true };
4735 
4736   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4737   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4738   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4739   /// \p IsSubtraction indicates whether the expression used to form the GEP
4740   /// is a subtraction.
4741   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4742                                       ArrayRef<llvm::Value *> IdxList,
4743                                       bool SignedIndices,
4744                                       bool IsSubtraction,
4745                                       SourceLocation Loc,
4746                                       const Twine &Name = "");
4747 
4748   /// Specifies which type of sanitizer check to apply when handling a
4749   /// particular builtin.
4750   enum BuiltinCheckKind {
4751     BCK_CTZPassedZero,
4752     BCK_CLZPassedZero,
4753   };
4754 
4755   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4756   /// enabled, a runtime check specified by \p Kind is also emitted.
4757   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4758 
4759   /// Emit a description of a type in a format suitable for passing to
4760   /// a runtime sanitizer handler.
4761   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4762 
4763   /// Convert a value into a format suitable for passing to a runtime
4764   /// sanitizer handler.
4765   llvm::Value *EmitCheckValue(llvm::Value *V);
4766 
4767   /// Emit a description of a source location in a format suitable for
4768   /// passing to a runtime sanitizer handler.
4769   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4770 
4771   void EmitKCFIOperandBundle(const CGCallee &Callee,
4772                              SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4773 
4774   /// Create a basic block that will either trap or call a handler function in
4775   /// the UBSan runtime with the provided arguments, and create a conditional
4776   /// branch to it.
4777   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4778                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4779                  ArrayRef<llvm::Value *> DynamicArgs);
4780 
4781   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4782   /// if Cond if false.
4783   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4784                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4785                             ArrayRef<llvm::Constant *> StaticArgs);
4786 
4787   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4788   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4789   void EmitUnreachable(SourceLocation Loc);
4790 
4791   /// Create a basic block that will call the trap intrinsic, and emit a
4792   /// conditional branch to it, for the -ftrapv checks.
4793   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4794 
4795   /// Emit a call to trap or debugtrap and attach function attribute
4796   /// "trap-func-name" if specified.
4797   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4798 
4799   /// Emit a stub for the cross-DSO CFI check function.
4800   void EmitCfiCheckStub();
4801 
4802   /// Emit a cross-DSO CFI failure handling function.
4803   void EmitCfiCheckFail();
4804 
4805   /// Create a check for a function parameter that may potentially be
4806   /// declared as non-null.
4807   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4808                            AbstractCallee AC, unsigned ParmNum);
4809 
4810   /// EmitCallArg - Emit a single call argument.
4811   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4812 
4813   /// EmitDelegateCallArg - We are performing a delegate call; that
4814   /// is, the current function is delegating to another one.  Produce
4815   /// a r-value suitable for passing the given parameter.
4816   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4817                            SourceLocation loc);
4818 
4819   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4820   /// point operation, expressed as the maximum relative error in ulp.
4821   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4822 
4823   /// Set the minimum required accuracy of the given sqrt operation
4824   /// based on CodeGenOpts.
4825   void SetSqrtFPAccuracy(llvm::Value *Val);
4826 
4827   /// Set the minimum required accuracy of the given sqrt operation based on
4828   /// CodeGenOpts.
4829   void SetDivFPAccuracy(llvm::Value *Val);
4830 
4831   /// Set the codegen fast-math flags.
4832   void SetFastMathFlags(FPOptions FPFeatures);
4833 
4834   // Truncate or extend a boolean vector to the requested number of elements.
4835   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4836                                      unsigned NumElementsDst,
4837                                      const llvm::Twine &Name = "");
4838 
4839 private:
4840   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4841   void EmitReturnOfRValue(RValue RV, QualType Ty);
4842 
4843   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4844 
4845   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4846       DeferredReplacements;
4847 
4848   /// Set the address of a local variable.
4849   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4850     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4851     LocalDeclMap.insert({VD, Addr});
4852   }
4853 
4854   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4855   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4856   ///
4857   /// \param AI - The first function argument of the expansion.
4858   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4859                           llvm::Function::arg_iterator &AI);
4860 
4861   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4862   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4863   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4864   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4865                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4866                         unsigned &IRCallArgPos);
4867 
4868   std::pair<llvm::Value *, llvm::Type *>
4869   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4870                std::string &ConstraintStr);
4871 
4872   std::pair<llvm::Value *, llvm::Type *>
4873   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4874                      QualType InputType, std::string &ConstraintStr,
4875                      SourceLocation Loc);
4876 
4877   /// Attempts to statically evaluate the object size of E. If that
4878   /// fails, emits code to figure the size of E out for us. This is
4879   /// pass_object_size aware.
4880   ///
4881   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4882   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4883                                                llvm::IntegerType *ResType,
4884                                                llvm::Value *EmittedE,
4885                                                bool IsDynamic);
4886 
4887   /// Emits the size of E, as required by __builtin_object_size. This
4888   /// function is aware of pass_object_size parameters, and will act accordingly
4889   /// if E is a parameter with the pass_object_size attribute.
4890   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4891                                      llvm::IntegerType *ResType,
4892                                      llvm::Value *EmittedE,
4893                                      bool IsDynamic);
4894 
4895   llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
4896                                            llvm::IntegerType *ResType);
4897 
4898   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4899                                        Address Loc);
4900 
4901 public:
4902   enum class EvaluationOrder {
4903     ///! No language constraints on evaluation order.
4904     Default,
4905     ///! Language semantics require left-to-right evaluation.
4906     ForceLeftToRight,
4907     ///! Language semantics require right-to-left evaluation.
4908     ForceRightToLeft
4909   };
4910 
4911   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4912   // an ObjCMethodDecl.
4913   struct PrototypeWrapper {
4914     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4915 
4916     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4917     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4918   };
4919 
4920   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4921                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4922                     AbstractCallee AC = AbstractCallee(),
4923                     unsigned ParamsToSkip = 0,
4924                     EvaluationOrder Order = EvaluationOrder::Default);
4925 
4926   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4927   /// emit the value and compute our best estimate of the alignment of the
4928   /// pointee.
4929   ///
4930   /// \param BaseInfo - If non-null, this will be initialized with
4931   /// information about the source of the alignment and the may-alias
4932   /// attribute.  Note that this function will conservatively fall back on
4933   /// the type when it doesn't recognize the expression and may-alias will
4934   /// be set to false.
4935   ///
4936   /// One reasonable way to use this information is when there's a language
4937   /// guarantee that the pointer must be aligned to some stricter value, and
4938   /// we're simply trying to ensure that sufficiently obvious uses of under-
4939   /// aligned objects don't get miscompiled; for example, a placement new
4940   /// into the address of a local variable.  In such a case, it's quite
4941   /// reasonable to just ignore the returned alignment when it isn't from an
4942   /// explicit source.
4943   Address
4944   EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr,
4945                            TBAAAccessInfo *TBAAInfo = nullptr,
4946                            KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
4947 
4948   /// If \p E references a parameter with pass_object_size info or a constant
4949   /// array size modifier, emit the object size divided by the size of \p EltTy.
4950   /// Otherwise return null.
4951   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4952 
4953   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4954 
4955   struct MultiVersionResolverOption {
4956     llvm::Function *Function;
4957     struct Conds {
4958       StringRef Architecture;
4959       llvm::SmallVector<StringRef, 8> Features;
4960 
4961       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4962           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4963     } Conditions;
4964 
4965     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4966                                ArrayRef<StringRef> Feats)
4967         : Function(F), Conditions(Arch, Feats) {}
4968   };
4969 
4970   // Emits the body of a multiversion function's resolver. Assumes that the
4971   // options are already sorted in the proper order, with the 'default' option
4972   // last (if it exists).
4973   void EmitMultiVersionResolver(llvm::Function *Resolver,
4974                                 ArrayRef<MultiVersionResolverOption> Options);
4975   void
4976   EmitX86MultiVersionResolver(llvm::Function *Resolver,
4977                               ArrayRef<MultiVersionResolverOption> Options);
4978   void
4979   EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
4980                                   ArrayRef<MultiVersionResolverOption> Options);
4981 
4982 private:
4983   QualType getVarArgType(const Expr *Arg);
4984 
4985   void EmitDeclMetadata();
4986 
4987   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4988                                   const AutoVarEmission &emission);
4989 
4990   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4991 
4992   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4993   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4994   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4995   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4996   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4997   llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask);
4998   llvm::Value *EmitX86CpuInit();
4999   llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO);
5000   llvm::Value *EmitAArch64CpuInit();
5001   llvm::Value *
5002   FormAArch64ResolverCondition(const MultiVersionResolverOption &RO);
5003   llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
5004 };
5005 
5006 
5007 inline DominatingLLVMValue::saved_type
5008 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
5009   if (!needsSaving(value)) return saved_type(value, false);
5010 
5011   // Otherwise, we need an alloca.
5012   auto align = CharUnits::fromQuantity(
5013       CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
5014   Address alloca =
5015       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
5016   CGF.Builder.CreateStore(value, alloca);
5017 
5018   return saved_type(alloca.getPointer(), true);
5019 }
5020 
5021 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
5022                                                  saved_type value) {
5023   // If the value says it wasn't saved, trust that it's still dominating.
5024   if (!value.getInt()) return value.getPointer();
5025 
5026   // Otherwise, it should be an alloca instruction, as set up in save().
5027   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
5028   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
5029                                        alloca->getAlign());
5030 }
5031 
5032 }  // end namespace CodeGen
5033 
5034 // Map the LangOption for floating point exception behavior into
5035 // the corresponding enum in the IR.
5036 llvm::fp::ExceptionBehavior
5037 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
5038 }  // end namespace clang
5039 
5040 #endif
5041