xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 #include <optional>
45 
46 namespace llvm {
47 class BasicBlock;
48 class LLVMContext;
49 class MDNode;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 class CanonicalLoopInfo;
54 }
55 
56 namespace clang {
57 class ASTContext;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 class OMPUseDevicePtrClause;
80 class OMPUseDeviceAddrClause;
81 class SVETypeFlags;
82 class OMPExecutableDirective;
83 
84 namespace analyze_os_log {
85 class OSLogBufferLayout;
86 }
87 
88 namespace CodeGen {
89 class CodeGenTypes;
90 class CGCallee;
91 class CGFunctionInfo;
92 class CGBlockInfo;
93 class CGCXXABI;
94 class BlockByrefHelpers;
95 class BlockByrefInfo;
96 class BlockFieldFlags;
97 class RegionCodeGenTy;
98 class TargetCodeGenInfo;
99 struct OMPTaskDataTy;
100 struct CGCoroData;
101 
102 /// The kind of evaluation to perform on values of a particular
103 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
104 /// CGExprAgg?
105 ///
106 /// TODO: should vectors maybe be split out into their own thing?
107 enum TypeEvaluationKind {
108   TEK_Scalar,
109   TEK_Complex,
110   TEK_Aggregate
111 };
112 
113 #define LIST_SANITIZER_CHECKS                                                  \
114   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
115   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
116   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
117   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
118   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
119   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
120   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
121   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
122   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
123   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
124   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
125   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
126   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
127   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
128   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
129   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
130   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
131   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
132   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
133   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
134   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
135   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
136   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
137   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
138   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
139 
140 enum SanitizerHandler {
141 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
142   LIST_SANITIZER_CHECKS
143 #undef SANITIZER_CHECK
144 };
145 
146 /// Helper class with most of the code for saving a value for a
147 /// conditional expression cleanup.
148 struct DominatingLLVMValue {
149   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
150 
151   /// Answer whether the given value needs extra work to be saved.
152   static bool needsSaving(llvm::Value *value) {
153     // If it's not an instruction, we don't need to save.
154     if (!isa<llvm::Instruction>(value)) return false;
155 
156     // If it's an instruction in the entry block, we don't need to save.
157     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
158     return (block != &block->getParent()->getEntryBlock());
159   }
160 
161   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
162   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
163 };
164 
165 /// A partial specialization of DominatingValue for llvm::Values that
166 /// might be llvm::Instructions.
167 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
168   typedef T *type;
169   static type restore(CodeGenFunction &CGF, saved_type value) {
170     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
171   }
172 };
173 
174 /// A specialization of DominatingValue for Address.
175 template <> struct DominatingValue<Address> {
176   typedef Address type;
177 
178   struct saved_type {
179     DominatingLLVMValue::saved_type SavedValue;
180     llvm::Type *ElementType;
181     CharUnits Alignment;
182   };
183 
184   static bool needsSaving(type value) {
185     return DominatingLLVMValue::needsSaving(value.getPointer());
186   }
187   static saved_type save(CodeGenFunction &CGF, type value) {
188     return { DominatingLLVMValue::save(CGF, value.getPointer()),
189              value.getElementType(), value.getAlignment() };
190   }
191   static type restore(CodeGenFunction &CGF, saved_type value) {
192     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
193                    value.ElementType, value.Alignment);
194   }
195 };
196 
197 /// A specialization of DominatingValue for RValue.
198 template <> struct DominatingValue<RValue> {
199   typedef RValue type;
200   class saved_type {
201     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
202                 AggregateAddress, ComplexAddress };
203 
204     llvm::Value *Value;
205     llvm::Type *ElementType;
206     unsigned K : 3;
207     unsigned Align : 29;
208     saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
209       : Value(v), ElementType(e), K(k), Align(a) {}
210 
211   public:
212     static bool needsSaving(RValue value);
213     static saved_type save(CodeGenFunction &CGF, RValue value);
214     RValue restore(CodeGenFunction &CGF);
215 
216     // implementations in CGCleanup.cpp
217   };
218 
219   static bool needsSaving(type value) {
220     return saved_type::needsSaving(value);
221   }
222   static saved_type save(CodeGenFunction &CGF, type value) {
223     return saved_type::save(CGF, value);
224   }
225   static type restore(CodeGenFunction &CGF, saved_type value) {
226     return value.restore(CGF);
227   }
228 };
229 
230 /// CodeGenFunction - This class organizes the per-function state that is used
231 /// while generating LLVM code.
232 class CodeGenFunction : public CodeGenTypeCache {
233   CodeGenFunction(const CodeGenFunction &) = delete;
234   void operator=(const CodeGenFunction &) = delete;
235 
236   friend class CGCXXABI;
237 public:
238   /// A jump destination is an abstract label, branching to which may
239   /// require a jump out through normal cleanups.
240   struct JumpDest {
241     JumpDest() : Block(nullptr), Index(0) {}
242     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
243              unsigned Index)
244         : Block(Block), ScopeDepth(Depth), Index(Index) {}
245 
246     bool isValid() const { return Block != nullptr; }
247     llvm::BasicBlock *getBlock() const { return Block; }
248     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
249     unsigned getDestIndex() const { return Index; }
250 
251     // This should be used cautiously.
252     void setScopeDepth(EHScopeStack::stable_iterator depth) {
253       ScopeDepth = depth;
254     }
255 
256   private:
257     llvm::BasicBlock *Block;
258     EHScopeStack::stable_iterator ScopeDepth;
259     unsigned Index;
260   };
261 
262   CodeGenModule &CGM;  // Per-module state.
263   const TargetInfo &Target;
264 
265   // For EH/SEH outlined funclets, this field points to parent's CGF
266   CodeGenFunction *ParentCGF = nullptr;
267 
268   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
269   LoopInfoStack LoopStack;
270   CGBuilderTy Builder;
271 
272   // Stores variables for which we can't generate correct lifetime markers
273   // because of jumps.
274   VarBypassDetector Bypasses;
275 
276   /// List of recently emitted OMPCanonicalLoops.
277   ///
278   /// Since OMPCanonicalLoops are nested inside other statements (in particular
279   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
280   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
281   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
282   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
283   /// this stack when done. Entering a new loop requires clearing this list; it
284   /// either means we start parsing a new loop nest (in which case the previous
285   /// loop nest goes out of scope) or a second loop in the same level in which
286   /// case it would be ambiguous into which of the two (or more) loops the loop
287   /// nest would extend.
288   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
289 
290   /// Number of nested loop to be consumed by the last surrounding
291   /// loop-associated directive.
292   int ExpectedOMPLoopDepth = 0;
293 
294   // CodeGen lambda for loops and support for ordered clause
295   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
296                                   JumpDest)>
297       CodeGenLoopTy;
298   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
299                                   const unsigned, const bool)>
300       CodeGenOrderedTy;
301 
302   // Codegen lambda for loop bounds in worksharing loop constructs
303   typedef llvm::function_ref<std::pair<LValue, LValue>(
304       CodeGenFunction &, const OMPExecutableDirective &S)>
305       CodeGenLoopBoundsTy;
306 
307   // Codegen lambda for loop bounds in dispatch-based loop implementation
308   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
309       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
310       Address UB)>
311       CodeGenDispatchBoundsTy;
312 
313   /// CGBuilder insert helper. This function is called after an
314   /// instruction is created using Builder.
315   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
316                     llvm::BasicBlock *BB,
317                     llvm::BasicBlock::iterator InsertPt) const;
318 
319   /// CurFuncDecl - Holds the Decl for the current outermost
320   /// non-closure context.
321   const Decl *CurFuncDecl;
322   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
323   const Decl *CurCodeDecl;
324   const CGFunctionInfo *CurFnInfo;
325   QualType FnRetTy;
326   llvm::Function *CurFn = nullptr;
327 
328   /// Save Parameter Decl for coroutine.
329   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
330 
331   // Holds coroutine data if the current function is a coroutine. We use a
332   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
333   // in this header.
334   struct CGCoroInfo {
335     std::unique_ptr<CGCoroData> Data;
336     CGCoroInfo();
337     ~CGCoroInfo();
338   };
339   CGCoroInfo CurCoro;
340 
341   bool isCoroutine() const {
342     return CurCoro.Data != nullptr;
343   }
344 
345   /// CurGD - The GlobalDecl for the current function being compiled.
346   GlobalDecl CurGD;
347 
348   /// PrologueCleanupDepth - The cleanup depth enclosing all the
349   /// cleanups associated with the parameters.
350   EHScopeStack::stable_iterator PrologueCleanupDepth;
351 
352   /// ReturnBlock - Unified return block.
353   JumpDest ReturnBlock;
354 
355   /// ReturnValue - The temporary alloca to hold the return
356   /// value. This is invalid iff the function has no return value.
357   Address ReturnValue = Address::invalid();
358 
359   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
360   /// This is invalid if sret is not in use.
361   Address ReturnValuePointer = Address::invalid();
362 
363   /// If a return statement is being visited, this holds the return statment's
364   /// result expression.
365   const Expr *RetExpr = nullptr;
366 
367   /// Return true if a label was seen in the current scope.
368   bool hasLabelBeenSeenInCurrentScope() const {
369     if (CurLexicalScope)
370       return CurLexicalScope->hasLabels();
371     return !LabelMap.empty();
372   }
373 
374   /// AllocaInsertPoint - This is an instruction in the entry block before which
375   /// we prefer to insert allocas.
376   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
377 
378 private:
379   /// PostAllocaInsertPt - This is a place in the prologue where code can be
380   /// inserted that will be dominated by all the static allocas. This helps
381   /// achieve two things:
382   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
383   ///   2. All other prologue code (which are dominated by static allocas) do
384   ///      appear in the source order immediately after all static allocas.
385   ///
386   /// PostAllocaInsertPt will be lazily created when it is *really* required.
387   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
388 
389 public:
390   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
391   /// immediately after AllocaInsertPt.
392   llvm::Instruction *getPostAllocaInsertPoint() {
393     if (!PostAllocaInsertPt) {
394       assert(AllocaInsertPt &&
395              "Expected static alloca insertion point at function prologue");
396       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
397              "EBB should be entry block of the current code gen function");
398       PostAllocaInsertPt = AllocaInsertPt->clone();
399       PostAllocaInsertPt->setName("postallocapt");
400       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
401     }
402 
403     return PostAllocaInsertPt;
404   }
405 
406   /// API for captured statement code generation.
407   class CGCapturedStmtInfo {
408   public:
409     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
410         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
411     explicit CGCapturedStmtInfo(const CapturedStmt &S,
412                                 CapturedRegionKind K = CR_Default)
413       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
414 
415       RecordDecl::field_iterator Field =
416         S.getCapturedRecordDecl()->field_begin();
417       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
418                                                 E = S.capture_end();
419            I != E; ++I, ++Field) {
420         if (I->capturesThis())
421           CXXThisFieldDecl = *Field;
422         else if (I->capturesVariable())
423           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
424         else if (I->capturesVariableByCopy())
425           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
426       }
427     }
428 
429     virtual ~CGCapturedStmtInfo();
430 
431     CapturedRegionKind getKind() const { return Kind; }
432 
433     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
434     // Retrieve the value of the context parameter.
435     virtual llvm::Value *getContextValue() const { return ThisValue; }
436 
437     /// Lookup the captured field decl for a variable.
438     virtual const FieldDecl *lookup(const VarDecl *VD) const {
439       return CaptureFields.lookup(VD->getCanonicalDecl());
440     }
441 
442     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
443     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
444 
445     static bool classof(const CGCapturedStmtInfo *) {
446       return true;
447     }
448 
449     /// Emit the captured statement body.
450     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
451       CGF.incrementProfileCounter(S);
452       CGF.EmitStmt(S);
453     }
454 
455     /// Get the name of the capture helper.
456     virtual StringRef getHelperName() const { return "__captured_stmt"; }
457 
458     /// Get the CaptureFields
459     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
460       return CaptureFields;
461     }
462 
463   private:
464     /// The kind of captured statement being generated.
465     CapturedRegionKind Kind;
466 
467     /// Keep the map between VarDecl and FieldDecl.
468     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
469 
470     /// The base address of the captured record, passed in as the first
471     /// argument of the parallel region function.
472     llvm::Value *ThisValue;
473 
474     /// Captured 'this' type.
475     FieldDecl *CXXThisFieldDecl;
476   };
477   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
478 
479   /// RAII for correct setting/restoring of CapturedStmtInfo.
480   class CGCapturedStmtRAII {
481   private:
482     CodeGenFunction &CGF;
483     CGCapturedStmtInfo *PrevCapturedStmtInfo;
484   public:
485     CGCapturedStmtRAII(CodeGenFunction &CGF,
486                        CGCapturedStmtInfo *NewCapturedStmtInfo)
487         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
488       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
489     }
490     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
491   };
492 
493   /// An abstract representation of regular/ObjC call/message targets.
494   class AbstractCallee {
495     /// The function declaration of the callee.
496     const Decl *CalleeDecl;
497 
498   public:
499     AbstractCallee() : CalleeDecl(nullptr) {}
500     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
501     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
502     bool hasFunctionDecl() const {
503       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
504     }
505     const Decl *getDecl() const { return CalleeDecl; }
506     unsigned getNumParams() const {
507       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
508         return FD->getNumParams();
509       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
510     }
511     const ParmVarDecl *getParamDecl(unsigned I) const {
512       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
513         return FD->getParamDecl(I);
514       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
515     }
516   };
517 
518   /// Sanitizers enabled for this function.
519   SanitizerSet SanOpts;
520 
521   /// True if CodeGen currently emits code implementing sanitizer checks.
522   bool IsSanitizerScope = false;
523 
524   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
525   class SanitizerScope {
526     CodeGenFunction *CGF;
527   public:
528     SanitizerScope(CodeGenFunction *CGF);
529     ~SanitizerScope();
530   };
531 
532   /// In C++, whether we are code generating a thunk.  This controls whether we
533   /// should emit cleanups.
534   bool CurFuncIsThunk = false;
535 
536   /// In ARC, whether we should autorelease the return value.
537   bool AutoreleaseResult = false;
538 
539   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
540   /// potentially set the return value.
541   bool SawAsmBlock = false;
542 
543   GlobalDecl CurSEHParent;
544 
545   /// True if the current function is an outlined SEH helper. This can be a
546   /// finally block or filter expression.
547   bool IsOutlinedSEHHelper = false;
548 
549   /// True if CodeGen currently emits code inside presereved access index
550   /// region.
551   bool IsInPreservedAIRegion = false;
552 
553   /// True if the current statement has nomerge attribute.
554   bool InNoMergeAttributedStmt = false;
555 
556   /// True if the current statement has noinline attribute.
557   bool InNoInlineAttributedStmt = false;
558 
559   /// True if the current statement has always_inline attribute.
560   bool InAlwaysInlineAttributedStmt = false;
561 
562   // The CallExpr within the current statement that the musttail attribute
563   // applies to.  nullptr if there is no 'musttail' on the current statement.
564   const CallExpr *MustTailCall = nullptr;
565 
566   /// Returns true if a function must make progress, which means the
567   /// mustprogress attribute can be added.
568   bool checkIfFunctionMustProgress() {
569     if (CGM.getCodeGenOpts().getFiniteLoops() ==
570         CodeGenOptions::FiniteLoopsKind::Never)
571       return false;
572 
573     // C++11 and later guarantees that a thread eventually will do one of the
574     // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
575     // - terminate,
576     //  - make a call to a library I/O function,
577     //  - perform an access through a volatile glvalue, or
578     //  - perform a synchronization operation or an atomic operation.
579     //
580     // Hence each function is 'mustprogress' in C++11 or later.
581     return getLangOpts().CPlusPlus11;
582   }
583 
584   /// Returns true if a loop must make progress, which means the mustprogress
585   /// attribute can be added. \p HasConstantCond indicates whether the branch
586   /// condition is a known constant.
587   bool checkIfLoopMustProgress(bool HasConstantCond) {
588     if (CGM.getCodeGenOpts().getFiniteLoops() ==
589         CodeGenOptions::FiniteLoopsKind::Always)
590       return true;
591     if (CGM.getCodeGenOpts().getFiniteLoops() ==
592         CodeGenOptions::FiniteLoopsKind::Never)
593       return false;
594 
595     // If the containing function must make progress, loops also must make
596     // progress (as in C++11 and later).
597     if (checkIfFunctionMustProgress())
598       return true;
599 
600     // Now apply rules for plain C (see  6.8.5.6 in C11).
601     // Loops with constant conditions do not have to make progress in any C
602     // version.
603     if (HasConstantCond)
604       return false;
605 
606     // Loops with non-constant conditions must make progress in C11 and later.
607     return getLangOpts().C11;
608   }
609 
610   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
611   llvm::Value *BlockPointer = nullptr;
612 
613   llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
614   FieldDecl *LambdaThisCaptureField = nullptr;
615 
616   /// A mapping from NRVO variables to the flags used to indicate
617   /// when the NRVO has been applied to this variable.
618   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
619 
620   EHScopeStack EHStack;
621   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
622   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
623 
624   llvm::Instruction *CurrentFuncletPad = nullptr;
625 
626   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
627     bool isRedundantBeforeReturn() override { return true; }
628 
629     llvm::Value *Addr;
630     llvm::Value *Size;
631 
632   public:
633     CallLifetimeEnd(Address addr, llvm::Value *size)
634         : Addr(addr.getPointer()), Size(size) {}
635 
636     void Emit(CodeGenFunction &CGF, Flags flags) override {
637       CGF.EmitLifetimeEnd(Size, Addr);
638     }
639   };
640 
641   /// Header for data within LifetimeExtendedCleanupStack.
642   struct LifetimeExtendedCleanupHeader {
643     /// The size of the following cleanup object.
644     unsigned Size;
645     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
646     unsigned Kind : 31;
647     /// Whether this is a conditional cleanup.
648     unsigned IsConditional : 1;
649 
650     size_t getSize() const { return Size; }
651     CleanupKind getKind() const { return (CleanupKind)Kind; }
652     bool isConditional() const { return IsConditional; }
653   };
654 
655   /// i32s containing the indexes of the cleanup destinations.
656   Address NormalCleanupDest = Address::invalid();
657 
658   unsigned NextCleanupDestIndex = 1;
659 
660   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
661   llvm::BasicBlock *EHResumeBlock = nullptr;
662 
663   /// The exception slot.  All landing pads write the current exception pointer
664   /// into this alloca.
665   llvm::Value *ExceptionSlot = nullptr;
666 
667   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
668   /// write the current selector value into this alloca.
669   llvm::AllocaInst *EHSelectorSlot = nullptr;
670 
671   /// A stack of exception code slots. Entering an __except block pushes a slot
672   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
673   /// a value from the top of the stack.
674   SmallVector<Address, 1> SEHCodeSlotStack;
675 
676   /// Value returned by __exception_info intrinsic.
677   llvm::Value *SEHInfo = nullptr;
678 
679   /// Emits a landing pad for the current EH stack.
680   llvm::BasicBlock *EmitLandingPad();
681 
682   llvm::BasicBlock *getInvokeDestImpl();
683 
684   /// Parent loop-based directive for scan directive.
685   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
686   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
687   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
688   llvm::BasicBlock *OMPScanExitBlock = nullptr;
689   llvm::BasicBlock *OMPScanDispatch = nullptr;
690   bool OMPFirstScanLoop = false;
691 
692   /// Manages parent directive for scan directives.
693   class ParentLoopDirectiveForScanRegion {
694     CodeGenFunction &CGF;
695     const OMPExecutableDirective *ParentLoopDirectiveForScan;
696 
697   public:
698     ParentLoopDirectiveForScanRegion(
699         CodeGenFunction &CGF,
700         const OMPExecutableDirective &ParentLoopDirectiveForScan)
701         : CGF(CGF),
702           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
703       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
704     }
705     ~ParentLoopDirectiveForScanRegion() {
706       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
707     }
708   };
709 
710   template <class T>
711   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
712     return DominatingValue<T>::save(*this, value);
713   }
714 
715   class CGFPOptionsRAII {
716   public:
717     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
718     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
719     ~CGFPOptionsRAII();
720 
721   private:
722     void ConstructorHelper(FPOptions FPFeatures);
723     CodeGenFunction &CGF;
724     FPOptions OldFPFeatures;
725     llvm::fp::ExceptionBehavior OldExcept;
726     llvm::RoundingMode OldRounding;
727     std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
728   };
729   FPOptions CurFPFeatures;
730 
731 public:
732   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
733   /// rethrows.
734   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
735 
736   /// A class controlling the emission of a finally block.
737   class FinallyInfo {
738     /// Where the catchall's edge through the cleanup should go.
739     JumpDest RethrowDest;
740 
741     /// A function to call to enter the catch.
742     llvm::FunctionCallee BeginCatchFn;
743 
744     /// An i1 variable indicating whether or not the @finally is
745     /// running for an exception.
746     llvm::AllocaInst *ForEHVar;
747 
748     /// An i8* variable into which the exception pointer to rethrow
749     /// has been saved.
750     llvm::AllocaInst *SavedExnVar;
751 
752   public:
753     void enter(CodeGenFunction &CGF, const Stmt *Finally,
754                llvm::FunctionCallee beginCatchFn,
755                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
756     void exit(CodeGenFunction &CGF);
757   };
758 
759   /// Returns true inside SEH __try blocks.
760   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
761 
762   /// Returns true while emitting a cleanuppad.
763   bool isCleanupPadScope() const {
764     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
765   }
766 
767   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
768   /// current full-expression.  Safe against the possibility that
769   /// we're currently inside a conditionally-evaluated expression.
770   template <class T, class... As>
771   void pushFullExprCleanup(CleanupKind kind, As... A) {
772     // If we're not in a conditional branch, or if none of the
773     // arguments requires saving, then use the unconditional cleanup.
774     if (!isInConditionalBranch())
775       return EHStack.pushCleanup<T>(kind, A...);
776 
777     // Stash values in a tuple so we can guarantee the order of saves.
778     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
779     SavedTuple Saved{saveValueInCond(A)...};
780 
781     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
782     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
783     initFullExprCleanup();
784   }
785 
786   /// Queue a cleanup to be pushed after finishing the current full-expression,
787   /// potentially with an active flag.
788   template <class T, class... As>
789   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
790     if (!isInConditionalBranch())
791       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
792                                                        A...);
793 
794     Address ActiveFlag = createCleanupActiveFlag();
795     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
796            "cleanup active flag should never need saving");
797 
798     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
799     SavedTuple Saved{saveValueInCond(A)...};
800 
801     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
802     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
803   }
804 
805   template <class T, class... As>
806   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
807                                               Address ActiveFlag, As... A) {
808     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
809                                             ActiveFlag.isValid()};
810 
811     size_t OldSize = LifetimeExtendedCleanupStack.size();
812     LifetimeExtendedCleanupStack.resize(
813         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
814         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
815 
816     static_assert(sizeof(Header) % alignof(T) == 0,
817                   "Cleanup will be allocated on misaligned address");
818     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
819     new (Buffer) LifetimeExtendedCleanupHeader(Header);
820     new (Buffer + sizeof(Header)) T(A...);
821     if (Header.IsConditional)
822       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
823   }
824 
825   /// Set up the last cleanup that was pushed as a conditional
826   /// full-expression cleanup.
827   void initFullExprCleanup() {
828     initFullExprCleanupWithFlag(createCleanupActiveFlag());
829   }
830 
831   void initFullExprCleanupWithFlag(Address ActiveFlag);
832   Address createCleanupActiveFlag();
833 
834   /// PushDestructorCleanup - Push a cleanup to call the
835   /// complete-object destructor of an object of the given type at the
836   /// given address.  Does nothing if T is not a C++ class type with a
837   /// non-trivial destructor.
838   void PushDestructorCleanup(QualType T, Address Addr);
839 
840   /// PushDestructorCleanup - Push a cleanup to call the
841   /// complete-object variant of the given destructor on the object at
842   /// the given address.
843   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
844                              Address Addr);
845 
846   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
847   /// process all branch fixups.
848   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
849 
850   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
851   /// The block cannot be reactivated.  Pops it if it's the top of the
852   /// stack.
853   ///
854   /// \param DominatingIP - An instruction which is known to
855   ///   dominate the current IP (if set) and which lies along
856   ///   all paths of execution between the current IP and the
857   ///   the point at which the cleanup comes into scope.
858   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
859                               llvm::Instruction *DominatingIP);
860 
861   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
862   /// Cannot be used to resurrect a deactivated cleanup.
863   ///
864   /// \param DominatingIP - An instruction which is known to
865   ///   dominate the current IP (if set) and which lies along
866   ///   all paths of execution between the current IP and the
867   ///   the point at which the cleanup comes into scope.
868   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
869                             llvm::Instruction *DominatingIP);
870 
871   /// Enters a new scope for capturing cleanups, all of which
872   /// will be executed once the scope is exited.
873   class RunCleanupsScope {
874     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
875     size_t LifetimeExtendedCleanupStackSize;
876     bool OldDidCallStackSave;
877   protected:
878     bool PerformCleanup;
879   private:
880 
881     RunCleanupsScope(const RunCleanupsScope &) = delete;
882     void operator=(const RunCleanupsScope &) = delete;
883 
884   protected:
885     CodeGenFunction& CGF;
886 
887   public:
888     /// Enter a new cleanup scope.
889     explicit RunCleanupsScope(CodeGenFunction &CGF)
890       : PerformCleanup(true), CGF(CGF)
891     {
892       CleanupStackDepth = CGF.EHStack.stable_begin();
893       LifetimeExtendedCleanupStackSize =
894           CGF.LifetimeExtendedCleanupStack.size();
895       OldDidCallStackSave = CGF.DidCallStackSave;
896       CGF.DidCallStackSave = false;
897       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
898       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
899     }
900 
901     /// Exit this cleanup scope, emitting any accumulated cleanups.
902     ~RunCleanupsScope() {
903       if (PerformCleanup)
904         ForceCleanup();
905     }
906 
907     /// Determine whether this scope requires any cleanups.
908     bool requiresCleanups() const {
909       return CGF.EHStack.stable_begin() != CleanupStackDepth;
910     }
911 
912     /// Force the emission of cleanups now, instead of waiting
913     /// until this object is destroyed.
914     /// \param ValuesToReload - A list of values that need to be available at
915     /// the insertion point after cleanup emission. If cleanup emission created
916     /// a shared cleanup block, these value pointers will be rewritten.
917     /// Otherwise, they not will be modified.
918     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
919       assert(PerformCleanup && "Already forced cleanup");
920       CGF.DidCallStackSave = OldDidCallStackSave;
921       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
922                            ValuesToReload);
923       PerformCleanup = false;
924       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
925     }
926   };
927 
928   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
929   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
930       EHScopeStack::stable_end();
931 
932   class LexicalScope : public RunCleanupsScope {
933     SourceRange Range;
934     SmallVector<const LabelDecl*, 4> Labels;
935     LexicalScope *ParentScope;
936 
937     LexicalScope(const LexicalScope &) = delete;
938     void operator=(const LexicalScope &) = delete;
939 
940   public:
941     /// Enter a new cleanup scope.
942     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
943       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
944       CGF.CurLexicalScope = this;
945       if (CGDebugInfo *DI = CGF.getDebugInfo())
946         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
947     }
948 
949     void addLabel(const LabelDecl *label) {
950       assert(PerformCleanup && "adding label to dead scope?");
951       Labels.push_back(label);
952     }
953 
954     /// Exit this cleanup scope, emitting any accumulated
955     /// cleanups.
956     ~LexicalScope() {
957       if (CGDebugInfo *DI = CGF.getDebugInfo())
958         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
959 
960       // If we should perform a cleanup, force them now.  Note that
961       // this ends the cleanup scope before rescoping any labels.
962       if (PerformCleanup) {
963         ApplyDebugLocation DL(CGF, Range.getEnd());
964         ForceCleanup();
965       }
966     }
967 
968     /// Force the emission of cleanups now, instead of waiting
969     /// until this object is destroyed.
970     void ForceCleanup() {
971       CGF.CurLexicalScope = ParentScope;
972       RunCleanupsScope::ForceCleanup();
973 
974       if (!Labels.empty())
975         rescopeLabels();
976     }
977 
978     bool hasLabels() const {
979       return !Labels.empty();
980     }
981 
982     void rescopeLabels();
983   };
984 
985   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
986 
987   /// The class used to assign some variables some temporarily addresses.
988   class OMPMapVars {
989     DeclMapTy SavedLocals;
990     DeclMapTy SavedTempAddresses;
991     OMPMapVars(const OMPMapVars &) = delete;
992     void operator=(const OMPMapVars &) = delete;
993 
994   public:
995     explicit OMPMapVars() = default;
996     ~OMPMapVars() {
997       assert(SavedLocals.empty() && "Did not restored original addresses.");
998     };
999 
1000     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1001     /// function \p CGF.
1002     /// \return true if at least one variable was set already, false otherwise.
1003     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1004                     Address TempAddr) {
1005       LocalVD = LocalVD->getCanonicalDecl();
1006       // Only save it once.
1007       if (SavedLocals.count(LocalVD)) return false;
1008 
1009       // Copy the existing local entry to SavedLocals.
1010       auto it = CGF.LocalDeclMap.find(LocalVD);
1011       if (it != CGF.LocalDeclMap.end())
1012         SavedLocals.try_emplace(LocalVD, it->second);
1013       else
1014         SavedLocals.try_emplace(LocalVD, Address::invalid());
1015 
1016       // Generate the private entry.
1017       QualType VarTy = LocalVD->getType();
1018       if (VarTy->isReferenceType()) {
1019         Address Temp = CGF.CreateMemTemp(VarTy);
1020         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1021         TempAddr = Temp;
1022       }
1023       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1024 
1025       return true;
1026     }
1027 
1028     /// Applies new addresses to the list of the variables.
1029     /// \return true if at least one variable is using new address, false
1030     /// otherwise.
1031     bool apply(CodeGenFunction &CGF) {
1032       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1033       SavedTempAddresses.clear();
1034       return !SavedLocals.empty();
1035     }
1036 
1037     /// Restores original addresses of the variables.
1038     void restore(CodeGenFunction &CGF) {
1039       if (!SavedLocals.empty()) {
1040         copyInto(SavedLocals, CGF.LocalDeclMap);
1041         SavedLocals.clear();
1042       }
1043     }
1044 
1045   private:
1046     /// Copy all the entries in the source map over the corresponding
1047     /// entries in the destination, which must exist.
1048     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1049       for (auto &Pair : Src) {
1050         if (!Pair.second.isValid()) {
1051           Dest.erase(Pair.first);
1052           continue;
1053         }
1054 
1055         auto I = Dest.find(Pair.first);
1056         if (I != Dest.end())
1057           I->second = Pair.second;
1058         else
1059           Dest.insert(Pair);
1060       }
1061     }
1062   };
1063 
1064   /// The scope used to remap some variables as private in the OpenMP loop body
1065   /// (or other captured region emitted without outlining), and to restore old
1066   /// vars back on exit.
1067   class OMPPrivateScope : public RunCleanupsScope {
1068     OMPMapVars MappedVars;
1069     OMPPrivateScope(const OMPPrivateScope &) = delete;
1070     void operator=(const OMPPrivateScope &) = delete;
1071 
1072   public:
1073     /// Enter a new OpenMP private scope.
1074     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1075 
1076     /// Registers \p LocalVD variable as a private with \p Addr as the address
1077     /// of the corresponding private variable. \p
1078     /// PrivateGen is the address of the generated private variable.
1079     /// \return true if the variable is registered as private, false if it has
1080     /// been privatized already.
1081     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1082       assert(PerformCleanup && "adding private to dead scope");
1083       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1084     }
1085 
1086     /// Privatizes local variables previously registered as private.
1087     /// Registration is separate from the actual privatization to allow
1088     /// initializers use values of the original variables, not the private one.
1089     /// This is important, for example, if the private variable is a class
1090     /// variable initialized by a constructor that references other private
1091     /// variables. But at initialization original variables must be used, not
1092     /// private copies.
1093     /// \return true if at least one variable was privatized, false otherwise.
1094     bool Privatize() { return MappedVars.apply(CGF); }
1095 
1096     void ForceCleanup() {
1097       RunCleanupsScope::ForceCleanup();
1098       restoreMap();
1099     }
1100 
1101     /// Exit scope - all the mapped variables are restored.
1102     ~OMPPrivateScope() {
1103       if (PerformCleanup)
1104         ForceCleanup();
1105     }
1106 
1107     /// Checks if the global variable is captured in current function.
1108     bool isGlobalVarCaptured(const VarDecl *VD) const {
1109       VD = VD->getCanonicalDecl();
1110       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1111     }
1112 
1113     /// Restore all mapped variables w/o clean up. This is usefully when we want
1114     /// to reference the original variables but don't want the clean up because
1115     /// that could emit lifetime end too early, causing backend issue #56913.
1116     void restoreMap() { MappedVars.restore(CGF); }
1117   };
1118 
1119   /// Save/restore original map of previously emitted local vars in case when we
1120   /// need to duplicate emission of the same code several times in the same
1121   /// function for OpenMP code.
1122   class OMPLocalDeclMapRAII {
1123     CodeGenFunction &CGF;
1124     DeclMapTy SavedMap;
1125 
1126   public:
1127     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1128         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1129     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1130   };
1131 
1132   /// Takes the old cleanup stack size and emits the cleanup blocks
1133   /// that have been added.
1134   void
1135   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1136                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1137 
1138   /// Takes the old cleanup stack size and emits the cleanup blocks
1139   /// that have been added, then adds all lifetime-extended cleanups from
1140   /// the given position to the stack.
1141   void
1142   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1143                    size_t OldLifetimeExtendedStackSize,
1144                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1145 
1146   void ResolveBranchFixups(llvm::BasicBlock *Target);
1147 
1148   /// The given basic block lies in the current EH scope, but may be a
1149   /// target of a potentially scope-crossing jump; get a stable handle
1150   /// to which we can perform this jump later.
1151   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1152     return JumpDest(Target,
1153                     EHStack.getInnermostNormalCleanup(),
1154                     NextCleanupDestIndex++);
1155   }
1156 
1157   /// The given basic block lies in the current EH scope, but may be a
1158   /// target of a potentially scope-crossing jump; get a stable handle
1159   /// to which we can perform this jump later.
1160   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1161     return getJumpDestInCurrentScope(createBasicBlock(Name));
1162   }
1163 
1164   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1165   /// block through the normal cleanup handling code (if any) and then
1166   /// on to \arg Dest.
1167   void EmitBranchThroughCleanup(JumpDest Dest);
1168 
1169   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1170   /// specified destination obviously has no cleanups to run.  'false' is always
1171   /// a conservatively correct answer for this method.
1172   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1173 
1174   /// popCatchScope - Pops the catch scope at the top of the EHScope
1175   /// stack, emitting any required code (other than the catch handlers
1176   /// themselves).
1177   void popCatchScope();
1178 
1179   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1180   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1181   llvm::BasicBlock *
1182   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1183 
1184   /// An object to manage conditionally-evaluated expressions.
1185   class ConditionalEvaluation {
1186     llvm::BasicBlock *StartBB;
1187 
1188   public:
1189     ConditionalEvaluation(CodeGenFunction &CGF)
1190       : StartBB(CGF.Builder.GetInsertBlock()) {}
1191 
1192     void begin(CodeGenFunction &CGF) {
1193       assert(CGF.OutermostConditional != this);
1194       if (!CGF.OutermostConditional)
1195         CGF.OutermostConditional = this;
1196     }
1197 
1198     void end(CodeGenFunction &CGF) {
1199       assert(CGF.OutermostConditional != nullptr);
1200       if (CGF.OutermostConditional == this)
1201         CGF.OutermostConditional = nullptr;
1202     }
1203 
1204     /// Returns a block which will be executed prior to each
1205     /// evaluation of the conditional code.
1206     llvm::BasicBlock *getStartingBlock() const {
1207       return StartBB;
1208     }
1209   };
1210 
1211   /// isInConditionalBranch - Return true if we're currently emitting
1212   /// one branch or the other of a conditional expression.
1213   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1214 
1215   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1216     assert(isInConditionalBranch());
1217     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1218     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1219     store->setAlignment(addr.getAlignment().getAsAlign());
1220   }
1221 
1222   /// An RAII object to record that we're evaluating a statement
1223   /// expression.
1224   class StmtExprEvaluation {
1225     CodeGenFunction &CGF;
1226 
1227     /// We have to save the outermost conditional: cleanups in a
1228     /// statement expression aren't conditional just because the
1229     /// StmtExpr is.
1230     ConditionalEvaluation *SavedOutermostConditional;
1231 
1232   public:
1233     StmtExprEvaluation(CodeGenFunction &CGF)
1234       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1235       CGF.OutermostConditional = nullptr;
1236     }
1237 
1238     ~StmtExprEvaluation() {
1239       CGF.OutermostConditional = SavedOutermostConditional;
1240       CGF.EnsureInsertPoint();
1241     }
1242   };
1243 
1244   /// An object which temporarily prevents a value from being
1245   /// destroyed by aggressive peephole optimizations that assume that
1246   /// all uses of a value have been realized in the IR.
1247   class PeepholeProtection {
1248     llvm::Instruction *Inst;
1249     friend class CodeGenFunction;
1250 
1251   public:
1252     PeepholeProtection() : Inst(nullptr) {}
1253   };
1254 
1255   /// A non-RAII class containing all the information about a bound
1256   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1257   /// this which makes individual mappings very simple; using this
1258   /// class directly is useful when you have a variable number of
1259   /// opaque values or don't want the RAII functionality for some
1260   /// reason.
1261   class OpaqueValueMappingData {
1262     const OpaqueValueExpr *OpaqueValue;
1263     bool BoundLValue;
1264     CodeGenFunction::PeepholeProtection Protection;
1265 
1266     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1267                            bool boundLValue)
1268       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1269   public:
1270     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1271 
1272     static bool shouldBindAsLValue(const Expr *expr) {
1273       // gl-values should be bound as l-values for obvious reasons.
1274       // Records should be bound as l-values because IR generation
1275       // always keeps them in memory.  Expressions of function type
1276       // act exactly like l-values but are formally required to be
1277       // r-values in C.
1278       return expr->isGLValue() ||
1279              expr->getType()->isFunctionType() ||
1280              hasAggregateEvaluationKind(expr->getType());
1281     }
1282 
1283     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1284                                        const OpaqueValueExpr *ov,
1285                                        const Expr *e) {
1286       if (shouldBindAsLValue(ov))
1287         return bind(CGF, ov, CGF.EmitLValue(e));
1288       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1289     }
1290 
1291     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1292                                        const OpaqueValueExpr *ov,
1293                                        const LValue &lv) {
1294       assert(shouldBindAsLValue(ov));
1295       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1296       return OpaqueValueMappingData(ov, true);
1297     }
1298 
1299     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1300                                        const OpaqueValueExpr *ov,
1301                                        const RValue &rv) {
1302       assert(!shouldBindAsLValue(ov));
1303       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1304 
1305       OpaqueValueMappingData data(ov, false);
1306 
1307       // Work around an extremely aggressive peephole optimization in
1308       // EmitScalarConversion which assumes that all other uses of a
1309       // value are extant.
1310       data.Protection = CGF.protectFromPeepholes(rv);
1311 
1312       return data;
1313     }
1314 
1315     bool isValid() const { return OpaqueValue != nullptr; }
1316     void clear() { OpaqueValue = nullptr; }
1317 
1318     void unbind(CodeGenFunction &CGF) {
1319       assert(OpaqueValue && "no data to unbind!");
1320 
1321       if (BoundLValue) {
1322         CGF.OpaqueLValues.erase(OpaqueValue);
1323       } else {
1324         CGF.OpaqueRValues.erase(OpaqueValue);
1325         CGF.unprotectFromPeepholes(Protection);
1326       }
1327     }
1328   };
1329 
1330   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1331   class OpaqueValueMapping {
1332     CodeGenFunction &CGF;
1333     OpaqueValueMappingData Data;
1334 
1335   public:
1336     static bool shouldBindAsLValue(const Expr *expr) {
1337       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1338     }
1339 
1340     /// Build the opaque value mapping for the given conditional
1341     /// operator if it's the GNU ?: extension.  This is a common
1342     /// enough pattern that the convenience operator is really
1343     /// helpful.
1344     ///
1345     OpaqueValueMapping(CodeGenFunction &CGF,
1346                        const AbstractConditionalOperator *op) : CGF(CGF) {
1347       if (isa<ConditionalOperator>(op))
1348         // Leave Data empty.
1349         return;
1350 
1351       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1352       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1353                                           e->getCommon());
1354     }
1355 
1356     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1357     /// expression is set to the expression the OVE represents.
1358     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1359         : CGF(CGF) {
1360       if (OV) {
1361         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1362                                       "for OVE with no source expression");
1363         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1364       }
1365     }
1366 
1367     OpaqueValueMapping(CodeGenFunction &CGF,
1368                        const OpaqueValueExpr *opaqueValue,
1369                        LValue lvalue)
1370       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1371     }
1372 
1373     OpaqueValueMapping(CodeGenFunction &CGF,
1374                        const OpaqueValueExpr *opaqueValue,
1375                        RValue rvalue)
1376       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1377     }
1378 
1379     void pop() {
1380       Data.unbind(CGF);
1381       Data.clear();
1382     }
1383 
1384     ~OpaqueValueMapping() {
1385       if (Data.isValid()) Data.unbind(CGF);
1386     }
1387   };
1388 
1389 private:
1390   CGDebugInfo *DebugInfo;
1391   /// Used to create unique names for artificial VLA size debug info variables.
1392   unsigned VLAExprCounter = 0;
1393   bool DisableDebugInfo = false;
1394 
1395   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1396   /// calling llvm.stacksave for multiple VLAs in the same scope.
1397   bool DidCallStackSave = false;
1398 
1399   /// IndirectBranch - The first time an indirect goto is seen we create a block
1400   /// with an indirect branch.  Every time we see the address of a label taken,
1401   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1402   /// codegen'd as a jump to the IndirectBranch's basic block.
1403   llvm::IndirectBrInst *IndirectBranch = nullptr;
1404 
1405   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1406   /// decls.
1407   DeclMapTy LocalDeclMap;
1408 
1409   // Keep track of the cleanups for callee-destructed parameters pushed to the
1410   // cleanup stack so that they can be deactivated later.
1411   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1412       CalleeDestructedParamCleanups;
1413 
1414   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1415   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1416   /// parameter.
1417   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1418       SizeArguments;
1419 
1420   /// Track escaped local variables with auto storage. Used during SEH
1421   /// outlining to produce a call to llvm.localescape.
1422   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1423 
1424   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1425   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1426 
1427   // BreakContinueStack - This keeps track of where break and continue
1428   // statements should jump to.
1429   struct BreakContinue {
1430     BreakContinue(JumpDest Break, JumpDest Continue)
1431       : BreakBlock(Break), ContinueBlock(Continue) {}
1432 
1433     JumpDest BreakBlock;
1434     JumpDest ContinueBlock;
1435   };
1436   SmallVector<BreakContinue, 8> BreakContinueStack;
1437 
1438   /// Handles cancellation exit points in OpenMP-related constructs.
1439   class OpenMPCancelExitStack {
1440     /// Tracks cancellation exit point and join point for cancel-related exit
1441     /// and normal exit.
1442     struct CancelExit {
1443       CancelExit() = default;
1444       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1445                  JumpDest ContBlock)
1446           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1447       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1448       /// true if the exit block has been emitted already by the special
1449       /// emitExit() call, false if the default codegen is used.
1450       bool HasBeenEmitted = false;
1451       JumpDest ExitBlock;
1452       JumpDest ContBlock;
1453     };
1454 
1455     SmallVector<CancelExit, 8> Stack;
1456 
1457   public:
1458     OpenMPCancelExitStack() : Stack(1) {}
1459     ~OpenMPCancelExitStack() = default;
1460     /// Fetches the exit block for the current OpenMP construct.
1461     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1462     /// Emits exit block with special codegen procedure specific for the related
1463     /// OpenMP construct + emits code for normal construct cleanup.
1464     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1465                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1466       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1467         assert(CGF.getOMPCancelDestination(Kind).isValid());
1468         assert(CGF.HaveInsertPoint());
1469         assert(!Stack.back().HasBeenEmitted);
1470         auto IP = CGF.Builder.saveAndClearIP();
1471         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1472         CodeGen(CGF);
1473         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1474         CGF.Builder.restoreIP(IP);
1475         Stack.back().HasBeenEmitted = true;
1476       }
1477       CodeGen(CGF);
1478     }
1479     /// Enter the cancel supporting \a Kind construct.
1480     /// \param Kind OpenMP directive that supports cancel constructs.
1481     /// \param HasCancel true, if the construct has inner cancel directive,
1482     /// false otherwise.
1483     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1484       Stack.push_back({Kind,
1485                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1486                                  : JumpDest(),
1487                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1488                                  : JumpDest()});
1489     }
1490     /// Emits default exit point for the cancel construct (if the special one
1491     /// has not be used) + join point for cancel/normal exits.
1492     void exit(CodeGenFunction &CGF) {
1493       if (getExitBlock().isValid()) {
1494         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1495         bool HaveIP = CGF.HaveInsertPoint();
1496         if (!Stack.back().HasBeenEmitted) {
1497           if (HaveIP)
1498             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1499           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1500           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1501         }
1502         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1503         if (!HaveIP) {
1504           CGF.Builder.CreateUnreachable();
1505           CGF.Builder.ClearInsertionPoint();
1506         }
1507       }
1508       Stack.pop_back();
1509     }
1510   };
1511   OpenMPCancelExitStack OMPCancelStack;
1512 
1513   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1514   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1515                                                     Stmt::Likelihood LH);
1516 
1517   CodeGenPGO PGO;
1518 
1519   /// Calculate branch weights appropriate for PGO data
1520   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1521                                      uint64_t FalseCount) const;
1522   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1523   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1524                                             uint64_t LoopCount) const;
1525 
1526 public:
1527   /// Increment the profiler's counter for the given statement by \p StepV.
1528   /// If \p StepV is null, the default increment is 1.
1529   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1530     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1531         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1532         !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile))
1533       PGO.emitCounterIncrement(Builder, S, StepV);
1534     PGO.setCurrentStmt(S);
1535   }
1536 
1537   /// Get the profiler's count for the given statement.
1538   uint64_t getProfileCount(const Stmt *S) {
1539     return PGO.getStmtCount(S).value_or(0);
1540   }
1541 
1542   /// Set the profiler's current count.
1543   void setCurrentProfileCount(uint64_t Count) {
1544     PGO.setCurrentRegionCount(Count);
1545   }
1546 
1547   /// Get the profiler's current count. This is generally the count for the most
1548   /// recently incremented counter.
1549   uint64_t getCurrentProfileCount() {
1550     return PGO.getCurrentRegionCount();
1551   }
1552 
1553 private:
1554 
1555   /// SwitchInsn - This is nearest current switch instruction. It is null if
1556   /// current context is not in a switch.
1557   llvm::SwitchInst *SwitchInsn = nullptr;
1558   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1559   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1560 
1561   /// The likelihood attributes of the SwitchCase.
1562   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1563 
1564   /// CaseRangeBlock - This block holds if condition check for last case
1565   /// statement range in current switch instruction.
1566   llvm::BasicBlock *CaseRangeBlock = nullptr;
1567 
1568   /// OpaqueLValues - Keeps track of the current set of opaque value
1569   /// expressions.
1570   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1571   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1572 
1573   // VLASizeMap - This keeps track of the associated size for each VLA type.
1574   // We track this by the size expression rather than the type itself because
1575   // in certain situations, like a const qualifier applied to an VLA typedef,
1576   // multiple VLA types can share the same size expression.
1577   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1578   // enter/leave scopes.
1579   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1580 
1581   /// A block containing a single 'unreachable' instruction.  Created
1582   /// lazily by getUnreachableBlock().
1583   llvm::BasicBlock *UnreachableBlock = nullptr;
1584 
1585   /// Counts of the number return expressions in the function.
1586   unsigned NumReturnExprs = 0;
1587 
1588   /// Count the number of simple (constant) return expressions in the function.
1589   unsigned NumSimpleReturnExprs = 0;
1590 
1591   /// The last regular (non-return) debug location (breakpoint) in the function.
1592   SourceLocation LastStopPoint;
1593 
1594 public:
1595   /// Source location information about the default argument or member
1596   /// initializer expression we're evaluating, if any.
1597   CurrentSourceLocExprScope CurSourceLocExprScope;
1598   using SourceLocExprScopeGuard =
1599       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1600 
1601   /// A scope within which we are constructing the fields of an object which
1602   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1603   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1604   class FieldConstructionScope {
1605   public:
1606     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1607         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1608       CGF.CXXDefaultInitExprThis = This;
1609     }
1610     ~FieldConstructionScope() {
1611       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1612     }
1613 
1614   private:
1615     CodeGenFunction &CGF;
1616     Address OldCXXDefaultInitExprThis;
1617   };
1618 
1619   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1620   /// is overridden to be the object under construction.
1621   class CXXDefaultInitExprScope  {
1622   public:
1623     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1624         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1625           OldCXXThisAlignment(CGF.CXXThisAlignment),
1626           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1627       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1628       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1629     }
1630     ~CXXDefaultInitExprScope() {
1631       CGF.CXXThisValue = OldCXXThisValue;
1632       CGF.CXXThisAlignment = OldCXXThisAlignment;
1633     }
1634 
1635   public:
1636     CodeGenFunction &CGF;
1637     llvm::Value *OldCXXThisValue;
1638     CharUnits OldCXXThisAlignment;
1639     SourceLocExprScopeGuard SourceLocScope;
1640   };
1641 
1642   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1643     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1644         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1645   };
1646 
1647   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1648   /// current loop index is overridden.
1649   class ArrayInitLoopExprScope {
1650   public:
1651     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1652       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1653       CGF.ArrayInitIndex = Index;
1654     }
1655     ~ArrayInitLoopExprScope() {
1656       CGF.ArrayInitIndex = OldArrayInitIndex;
1657     }
1658 
1659   private:
1660     CodeGenFunction &CGF;
1661     llvm::Value *OldArrayInitIndex;
1662   };
1663 
1664   class InlinedInheritingConstructorScope {
1665   public:
1666     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1667         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1668           OldCurCodeDecl(CGF.CurCodeDecl),
1669           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1670           OldCXXABIThisValue(CGF.CXXABIThisValue),
1671           OldCXXThisValue(CGF.CXXThisValue),
1672           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1673           OldCXXThisAlignment(CGF.CXXThisAlignment),
1674           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1675           OldCXXInheritedCtorInitExprArgs(
1676               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1677       CGF.CurGD = GD;
1678       CGF.CurFuncDecl = CGF.CurCodeDecl =
1679           cast<CXXConstructorDecl>(GD.getDecl());
1680       CGF.CXXABIThisDecl = nullptr;
1681       CGF.CXXABIThisValue = nullptr;
1682       CGF.CXXThisValue = nullptr;
1683       CGF.CXXABIThisAlignment = CharUnits();
1684       CGF.CXXThisAlignment = CharUnits();
1685       CGF.ReturnValue = Address::invalid();
1686       CGF.FnRetTy = QualType();
1687       CGF.CXXInheritedCtorInitExprArgs.clear();
1688     }
1689     ~InlinedInheritingConstructorScope() {
1690       CGF.CurGD = OldCurGD;
1691       CGF.CurFuncDecl = OldCurFuncDecl;
1692       CGF.CurCodeDecl = OldCurCodeDecl;
1693       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1694       CGF.CXXABIThisValue = OldCXXABIThisValue;
1695       CGF.CXXThisValue = OldCXXThisValue;
1696       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1697       CGF.CXXThisAlignment = OldCXXThisAlignment;
1698       CGF.ReturnValue = OldReturnValue;
1699       CGF.FnRetTy = OldFnRetTy;
1700       CGF.CXXInheritedCtorInitExprArgs =
1701           std::move(OldCXXInheritedCtorInitExprArgs);
1702     }
1703 
1704   private:
1705     CodeGenFunction &CGF;
1706     GlobalDecl OldCurGD;
1707     const Decl *OldCurFuncDecl;
1708     const Decl *OldCurCodeDecl;
1709     ImplicitParamDecl *OldCXXABIThisDecl;
1710     llvm::Value *OldCXXABIThisValue;
1711     llvm::Value *OldCXXThisValue;
1712     CharUnits OldCXXABIThisAlignment;
1713     CharUnits OldCXXThisAlignment;
1714     Address OldReturnValue;
1715     QualType OldFnRetTy;
1716     CallArgList OldCXXInheritedCtorInitExprArgs;
1717   };
1718 
1719   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1720   // region body, and finalization codegen callbacks. This will class will also
1721   // contain privatization functions used by the privatization call backs
1722   //
1723   // TODO: this is temporary class for things that are being moved out of
1724   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1725   // utility function for use with the OMPBuilder. Once that move to use the
1726   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1727   // directly, or a new helper class that will contain functions used by both
1728   // this and the OMPBuilder
1729 
1730   struct OMPBuilderCBHelpers {
1731 
1732     OMPBuilderCBHelpers() = delete;
1733     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1734     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1735 
1736     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1737 
1738     /// Cleanup action for allocate support.
1739     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1740 
1741     private:
1742       llvm::CallInst *RTLFnCI;
1743 
1744     public:
1745       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1746         RLFnCI->removeFromParent();
1747       }
1748 
1749       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1750         if (!CGF.HaveInsertPoint())
1751           return;
1752         CGF.Builder.Insert(RTLFnCI);
1753       }
1754     };
1755 
1756     /// Returns address of the threadprivate variable for the current
1757     /// thread. This Also create any necessary OMP runtime calls.
1758     ///
1759     /// \param VD VarDecl for Threadprivate variable.
1760     /// \param VDAddr Address of the Vardecl
1761     /// \param Loc  The location where the barrier directive was encountered
1762     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1763                                           const VarDecl *VD, Address VDAddr,
1764                                           SourceLocation Loc);
1765 
1766     /// Gets the OpenMP-specific address of the local variable /p VD.
1767     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1768                                              const VarDecl *VD);
1769     /// Get the platform-specific name separator.
1770     /// \param Parts different parts of the final name that needs separation
1771     /// \param FirstSeparator First separator used between the initial two
1772     ///        parts of the name.
1773     /// \param Separator separator used between all of the rest consecutinve
1774     ///        parts of the name
1775     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1776                                              StringRef FirstSeparator = ".",
1777                                              StringRef Separator = ".");
1778     /// Emit the Finalization for an OMP region
1779     /// \param CGF	The Codegen function this belongs to
1780     /// \param IP	Insertion point for generating the finalization code.
1781     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1782       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1783       assert(IP.getBlock()->end() != IP.getPoint() &&
1784              "OpenMP IR Builder should cause terminated block!");
1785 
1786       llvm::BasicBlock *IPBB = IP.getBlock();
1787       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1788       assert(DestBB && "Finalization block should have one successor!");
1789 
1790       // erase and replace with cleanup branch.
1791       IPBB->getTerminator()->eraseFromParent();
1792       CGF.Builder.SetInsertPoint(IPBB);
1793       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1794       CGF.EmitBranchThroughCleanup(Dest);
1795     }
1796 
1797     /// Emit the body of an OMP region
1798     /// \param CGF	          The Codegen function this belongs to
1799     /// \param RegionBodyStmt The body statement for the OpenMP region being
1800     ///                       generated
1801     /// \param AllocaIP       Where to insert alloca instructions
1802     /// \param CodeGenIP      Where to insert the region code
1803     /// \param RegionName     Name to be used for new blocks
1804     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1805                                          const Stmt *RegionBodyStmt,
1806                                          InsertPointTy AllocaIP,
1807                                          InsertPointTy CodeGenIP,
1808                                          Twine RegionName);
1809 
1810     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1811                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1812                                 ArrayRef<llvm::Value *> Args) {
1813       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1814       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1815         CodeGenIPBBTI->eraseFromParent();
1816 
1817       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1818 
1819       if (Fn->doesNotThrow())
1820         CGF.EmitNounwindRuntimeCall(Fn, Args);
1821       else
1822         CGF.EmitRuntimeCall(Fn, Args);
1823 
1824       if (CGF.Builder.saveIP().isSet())
1825         CGF.Builder.CreateBr(&FiniBB);
1826     }
1827 
1828     /// Emit the body of an OMP region that will be outlined in
1829     /// OpenMPIRBuilder::finalize().
1830     /// \param CGF	          The Codegen function this belongs to
1831     /// \param RegionBodyStmt The body statement for the OpenMP region being
1832     ///                       generated
1833     /// \param AllocaIP       Where to insert alloca instructions
1834     /// \param CodeGenIP      Where to insert the region code
1835     /// \param RegionName     Name to be used for new blocks
1836     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1837                                           const Stmt *RegionBodyStmt,
1838                                           InsertPointTy AllocaIP,
1839                                           InsertPointTy CodeGenIP,
1840                                           Twine RegionName);
1841 
1842     /// RAII for preserving necessary info during Outlined region body codegen.
1843     class OutlinedRegionBodyRAII {
1844 
1845       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1846       CodeGenFunction::JumpDest OldReturnBlock;
1847       CodeGenFunction &CGF;
1848 
1849     public:
1850       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1851                              llvm::BasicBlock &RetBB)
1852           : CGF(cgf) {
1853         assert(AllocaIP.isSet() &&
1854                "Must specify Insertion point for allocas of outlined function");
1855         OldAllocaIP = CGF.AllocaInsertPt;
1856         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1857 
1858         OldReturnBlock = CGF.ReturnBlock;
1859         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1860       }
1861 
1862       ~OutlinedRegionBodyRAII() {
1863         CGF.AllocaInsertPt = OldAllocaIP;
1864         CGF.ReturnBlock = OldReturnBlock;
1865       }
1866     };
1867 
1868     /// RAII for preserving necessary info during inlined region body codegen.
1869     class InlinedRegionBodyRAII {
1870 
1871       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1872       CodeGenFunction &CGF;
1873 
1874     public:
1875       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1876                             llvm::BasicBlock &FiniBB)
1877           : CGF(cgf) {
1878         // Alloca insertion block should be in the entry block of the containing
1879         // function so it expects an empty AllocaIP in which case will reuse the
1880         // old alloca insertion point, or a new AllocaIP in the same block as
1881         // the old one
1882         assert((!AllocaIP.isSet() ||
1883                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1884                "Insertion point should be in the entry block of containing "
1885                "function!");
1886         OldAllocaIP = CGF.AllocaInsertPt;
1887         if (AllocaIP.isSet())
1888           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1889 
1890         // TODO: Remove the call, after making sure the counter is not used by
1891         //       the EHStack.
1892         // Since this is an inlined region, it should not modify the
1893         // ReturnBlock, and should reuse the one for the enclosing outlined
1894         // region. So, the JumpDest being return by the function is discarded
1895         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1896       }
1897 
1898       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1899     };
1900   };
1901 
1902 private:
1903   /// CXXThisDecl - When generating code for a C++ member function,
1904   /// this will hold the implicit 'this' declaration.
1905   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1906   llvm::Value *CXXABIThisValue = nullptr;
1907   llvm::Value *CXXThisValue = nullptr;
1908   CharUnits CXXABIThisAlignment;
1909   CharUnits CXXThisAlignment;
1910 
1911   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1912   /// this expression.
1913   Address CXXDefaultInitExprThis = Address::invalid();
1914 
1915   /// The current array initialization index when evaluating an
1916   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1917   llvm::Value *ArrayInitIndex = nullptr;
1918 
1919   /// The values of function arguments to use when evaluating
1920   /// CXXInheritedCtorInitExprs within this context.
1921   CallArgList CXXInheritedCtorInitExprArgs;
1922 
1923   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1924   /// destructor, this will hold the implicit argument (e.g. VTT).
1925   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1926   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1927 
1928   /// OutermostConditional - Points to the outermost active
1929   /// conditional control.  This is used so that we know if a
1930   /// temporary should be destroyed conditionally.
1931   ConditionalEvaluation *OutermostConditional = nullptr;
1932 
1933   /// The current lexical scope.
1934   LexicalScope *CurLexicalScope = nullptr;
1935 
1936   /// The current source location that should be used for exception
1937   /// handling code.
1938   SourceLocation CurEHLocation;
1939 
1940   /// BlockByrefInfos - For each __block variable, contains
1941   /// information about the layout of the variable.
1942   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1943 
1944   /// Used by -fsanitize=nullability-return to determine whether the return
1945   /// value can be checked.
1946   llvm::Value *RetValNullabilityPrecondition = nullptr;
1947 
1948   /// Check if -fsanitize=nullability-return instrumentation is required for
1949   /// this function.
1950   bool requiresReturnValueNullabilityCheck() const {
1951     return RetValNullabilityPrecondition;
1952   }
1953 
1954   /// Used to store precise source locations for return statements by the
1955   /// runtime return value checks.
1956   Address ReturnLocation = Address::invalid();
1957 
1958   /// Check if the return value of this function requires sanitization.
1959   bool requiresReturnValueCheck() const;
1960 
1961   llvm::BasicBlock *TerminateLandingPad = nullptr;
1962   llvm::BasicBlock *TerminateHandler = nullptr;
1963   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1964 
1965   /// Terminate funclets keyed by parent funclet pad.
1966   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1967 
1968   /// Largest vector width used in ths function. Will be used to create a
1969   /// function attribute.
1970   unsigned LargestVectorWidth = 0;
1971 
1972   /// True if we need emit the life-time markers. This is initially set in
1973   /// the constructor, but could be overwritten to true if this is a coroutine.
1974   bool ShouldEmitLifetimeMarkers;
1975 
1976   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1977   /// the function metadata.
1978   void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
1979 
1980 public:
1981   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1982   ~CodeGenFunction();
1983 
1984   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1985   ASTContext &getContext() const { return CGM.getContext(); }
1986   CGDebugInfo *getDebugInfo() {
1987     if (DisableDebugInfo)
1988       return nullptr;
1989     return DebugInfo;
1990   }
1991   void disableDebugInfo() { DisableDebugInfo = true; }
1992   void enableDebugInfo() { DisableDebugInfo = false; }
1993 
1994   bool shouldUseFusedARCCalls() {
1995     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1996   }
1997 
1998   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1999 
2000   /// Returns a pointer to the function's exception object and selector slot,
2001   /// which is assigned in every landing pad.
2002   Address getExceptionSlot();
2003   Address getEHSelectorSlot();
2004 
2005   /// Returns the contents of the function's exception object and selector
2006   /// slots.
2007   llvm::Value *getExceptionFromSlot();
2008   llvm::Value *getSelectorFromSlot();
2009 
2010   Address getNormalCleanupDestSlot();
2011 
2012   llvm::BasicBlock *getUnreachableBlock() {
2013     if (!UnreachableBlock) {
2014       UnreachableBlock = createBasicBlock("unreachable");
2015       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2016     }
2017     return UnreachableBlock;
2018   }
2019 
2020   llvm::BasicBlock *getInvokeDest() {
2021     if (!EHStack.requiresLandingPad()) return nullptr;
2022     return getInvokeDestImpl();
2023   }
2024 
2025   bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2026 
2027   const TargetInfo &getTarget() const { return Target; }
2028   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2029   const TargetCodeGenInfo &getTargetHooks() const {
2030     return CGM.getTargetCodeGenInfo();
2031   }
2032 
2033   //===--------------------------------------------------------------------===//
2034   //                                  Cleanups
2035   //===--------------------------------------------------------------------===//
2036 
2037   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2038 
2039   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2040                                         Address arrayEndPointer,
2041                                         QualType elementType,
2042                                         CharUnits elementAlignment,
2043                                         Destroyer *destroyer);
2044   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2045                                       llvm::Value *arrayEnd,
2046                                       QualType elementType,
2047                                       CharUnits elementAlignment,
2048                                       Destroyer *destroyer);
2049 
2050   void pushDestroy(QualType::DestructionKind dtorKind,
2051                    Address addr, QualType type);
2052   void pushEHDestroy(QualType::DestructionKind dtorKind,
2053                      Address addr, QualType type);
2054   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2055                    Destroyer *destroyer, bool useEHCleanupForArray);
2056   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2057                                    QualType type, Destroyer *destroyer,
2058                                    bool useEHCleanupForArray);
2059   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2060                                    llvm::Value *CompletePtr,
2061                                    QualType ElementType);
2062   void pushStackRestore(CleanupKind kind, Address SPMem);
2063   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2064                    bool useEHCleanupForArray);
2065   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2066                                         Destroyer *destroyer,
2067                                         bool useEHCleanupForArray,
2068                                         const VarDecl *VD);
2069   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2070                         QualType elementType, CharUnits elementAlign,
2071                         Destroyer *destroyer,
2072                         bool checkZeroLength, bool useEHCleanup);
2073 
2074   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2075 
2076   /// Determines whether an EH cleanup is required to destroy a type
2077   /// with the given destruction kind.
2078   bool needsEHCleanup(QualType::DestructionKind kind) {
2079     switch (kind) {
2080     case QualType::DK_none:
2081       return false;
2082     case QualType::DK_cxx_destructor:
2083     case QualType::DK_objc_weak_lifetime:
2084     case QualType::DK_nontrivial_c_struct:
2085       return getLangOpts().Exceptions;
2086     case QualType::DK_objc_strong_lifetime:
2087       return getLangOpts().Exceptions &&
2088              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2089     }
2090     llvm_unreachable("bad destruction kind");
2091   }
2092 
2093   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2094     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2095   }
2096 
2097   //===--------------------------------------------------------------------===//
2098   //                                  Objective-C
2099   //===--------------------------------------------------------------------===//
2100 
2101   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2102 
2103   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2104 
2105   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2106   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2107                           const ObjCPropertyImplDecl *PID);
2108   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2109                               const ObjCPropertyImplDecl *propImpl,
2110                               const ObjCMethodDecl *GetterMothodDecl,
2111                               llvm::Constant *AtomicHelperFn);
2112 
2113   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2114                                   ObjCMethodDecl *MD, bool ctor);
2115 
2116   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2117   /// for the given property.
2118   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2119                           const ObjCPropertyImplDecl *PID);
2120   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2121                               const ObjCPropertyImplDecl *propImpl,
2122                               llvm::Constant *AtomicHelperFn);
2123 
2124   //===--------------------------------------------------------------------===//
2125   //                                  Block Bits
2126   //===--------------------------------------------------------------------===//
2127 
2128   /// Emit block literal.
2129   /// \return an LLVM value which is a pointer to a struct which contains
2130   /// information about the block, including the block invoke function, the
2131   /// captured variables, etc.
2132   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2133 
2134   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2135                                         const CGBlockInfo &Info,
2136                                         const DeclMapTy &ldm,
2137                                         bool IsLambdaConversionToBlock,
2138                                         bool BuildGlobalBlock);
2139 
2140   /// Check if \p T is a C++ class that has a destructor that can throw.
2141   static bool cxxDestructorCanThrow(QualType T);
2142 
2143   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2144   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2145   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2146                                              const ObjCPropertyImplDecl *PID);
2147   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2148                                              const ObjCPropertyImplDecl *PID);
2149   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2150 
2151   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2152                          bool CanThrow);
2153 
2154   class AutoVarEmission;
2155 
2156   void emitByrefStructureInit(const AutoVarEmission &emission);
2157 
2158   /// Enter a cleanup to destroy a __block variable.  Note that this
2159   /// cleanup should be a no-op if the variable hasn't left the stack
2160   /// yet; if a cleanup is required for the variable itself, that needs
2161   /// to be done externally.
2162   ///
2163   /// \param Kind Cleanup kind.
2164   ///
2165   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2166   /// structure that will be passed to _Block_object_dispose. When
2167   /// \p LoadBlockVarAddr is true, the address of the field of the block
2168   /// structure that holds the address of the __block structure.
2169   ///
2170   /// \param Flags The flag that will be passed to _Block_object_dispose.
2171   ///
2172   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2173   /// \p Addr to get the address of the __block structure.
2174   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2175                          bool LoadBlockVarAddr, bool CanThrow);
2176 
2177   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2178                                 llvm::Value *ptr);
2179 
2180   Address LoadBlockStruct();
2181   Address GetAddrOfBlockDecl(const VarDecl *var);
2182 
2183   /// BuildBlockByrefAddress - Computes the location of the
2184   /// data in a variable which is declared as __block.
2185   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2186                                 bool followForward = true);
2187   Address emitBlockByrefAddress(Address baseAddr,
2188                                 const BlockByrefInfo &info,
2189                                 bool followForward,
2190                                 const llvm::Twine &name);
2191 
2192   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2193 
2194   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2195 
2196   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2197                     const CGFunctionInfo &FnInfo);
2198 
2199   /// Annotate the function with an attribute that disables TSan checking at
2200   /// runtime.
2201   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2202 
2203   /// Emit code for the start of a function.
2204   /// \param Loc       The location to be associated with the function.
2205   /// \param StartLoc  The location of the function body.
2206   void StartFunction(GlobalDecl GD,
2207                      QualType RetTy,
2208                      llvm::Function *Fn,
2209                      const CGFunctionInfo &FnInfo,
2210                      const FunctionArgList &Args,
2211                      SourceLocation Loc = SourceLocation(),
2212                      SourceLocation StartLoc = SourceLocation());
2213 
2214   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2215 
2216   void EmitConstructorBody(FunctionArgList &Args);
2217   void EmitDestructorBody(FunctionArgList &Args);
2218   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2219   void EmitFunctionBody(const Stmt *Body);
2220   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2221 
2222   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2223                                   CallArgList &CallArgs);
2224   void EmitLambdaBlockInvokeBody();
2225   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2226   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2227   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2228     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2229   }
2230   void EmitAsanPrologueOrEpilogue(bool Prologue);
2231 
2232   /// Emit the unified return block, trying to avoid its emission when
2233   /// possible.
2234   /// \return The debug location of the user written return statement if the
2235   /// return block is avoided.
2236   llvm::DebugLoc EmitReturnBlock();
2237 
2238   /// FinishFunction - Complete IR generation of the current function. It is
2239   /// legal to call this function even if there is no current insertion point.
2240   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2241 
2242   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2243                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2244 
2245   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2246                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2247 
2248   void FinishThunk();
2249 
2250   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2251   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2252                          llvm::FunctionCallee Callee);
2253 
2254   /// Generate a thunk for the given method.
2255   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2256                      GlobalDecl GD, const ThunkInfo &Thunk,
2257                      bool IsUnprototyped);
2258 
2259   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2260                                        const CGFunctionInfo &FnInfo,
2261                                        GlobalDecl GD, const ThunkInfo &Thunk);
2262 
2263   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2264                         FunctionArgList &Args);
2265 
2266   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2267 
2268   /// Struct with all information about dynamic [sub]class needed to set vptr.
2269   struct VPtr {
2270     BaseSubobject Base;
2271     const CXXRecordDecl *NearestVBase;
2272     CharUnits OffsetFromNearestVBase;
2273     const CXXRecordDecl *VTableClass;
2274   };
2275 
2276   /// Initialize the vtable pointer of the given subobject.
2277   void InitializeVTablePointer(const VPtr &vptr);
2278 
2279   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2280 
2281   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2282   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2283 
2284   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2285                          CharUnits OffsetFromNearestVBase,
2286                          bool BaseIsNonVirtualPrimaryBase,
2287                          const CXXRecordDecl *VTableClass,
2288                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2289 
2290   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2291 
2292   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2293   /// to by This.
2294   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2295                             const CXXRecordDecl *VTableClass);
2296 
2297   enum CFITypeCheckKind {
2298     CFITCK_VCall,
2299     CFITCK_NVCall,
2300     CFITCK_DerivedCast,
2301     CFITCK_UnrelatedCast,
2302     CFITCK_ICall,
2303     CFITCK_NVMFCall,
2304     CFITCK_VMFCall,
2305   };
2306 
2307   /// Derived is the presumed address of an object of type T after a
2308   /// cast. If T is a polymorphic class type, emit a check that the virtual
2309   /// table for Derived belongs to a class derived from T.
2310   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2311                                  CFITypeCheckKind TCK, SourceLocation Loc);
2312 
2313   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2314   /// If vptr CFI is enabled, emit a check that VTable is valid.
2315   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2316                                  CFITypeCheckKind TCK, SourceLocation Loc);
2317 
2318   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2319   /// RD using llvm.type.test.
2320   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2321                           CFITypeCheckKind TCK, SourceLocation Loc);
2322 
2323   /// If whole-program virtual table optimization is enabled, emit an assumption
2324   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2325   /// enabled, emit a check that VTable is a member of RD's type identifier.
2326   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2327                                     llvm::Value *VTable, SourceLocation Loc);
2328 
2329   /// Returns whether we should perform a type checked load when loading a
2330   /// virtual function for virtual calls to members of RD. This is generally
2331   /// true when both vcall CFI and whole-program-vtables are enabled.
2332   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2333 
2334   /// Emit a type checked load from the given vtable.
2335   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2336                                          llvm::Value *VTable,
2337                                          llvm::Type *VTableTy,
2338                                          uint64_t VTableByteOffset);
2339 
2340   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2341   /// given phase of destruction for a destructor.  The end result
2342   /// should call destructors on members and base classes in reverse
2343   /// order of their construction.
2344   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2345 
2346   /// ShouldInstrumentFunction - Return true if the current function should be
2347   /// instrumented with __cyg_profile_func_* calls
2348   bool ShouldInstrumentFunction();
2349 
2350   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2351   /// should not be instrumented with sanitizers.
2352   bool ShouldSkipSanitizerInstrumentation();
2353 
2354   /// ShouldXRayInstrument - Return true if the current function should be
2355   /// instrumented with XRay nop sleds.
2356   bool ShouldXRayInstrumentFunction() const;
2357 
2358   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2359   /// XRay custom event handling calls.
2360   bool AlwaysEmitXRayCustomEvents() const;
2361 
2362   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2363   /// XRay typed event handling calls.
2364   bool AlwaysEmitXRayTypedEvents() const;
2365 
2366   /// Decode an address used in a function prologue, encoded by \c
2367   /// EncodeAddrForUseInPrologue.
2368   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2369                                         llvm::Value *EncodedAddr);
2370 
2371   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2372   /// arguments for the given function. This is also responsible for naming the
2373   /// LLVM function arguments.
2374   void EmitFunctionProlog(const CGFunctionInfo &FI,
2375                           llvm::Function *Fn,
2376                           const FunctionArgList &Args);
2377 
2378   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2379   /// given temporary.
2380   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2381                           SourceLocation EndLoc);
2382 
2383   /// Emit a test that checks if the return value \p RV is nonnull.
2384   void EmitReturnValueCheck(llvm::Value *RV);
2385 
2386   /// EmitStartEHSpec - Emit the start of the exception spec.
2387   void EmitStartEHSpec(const Decl *D);
2388 
2389   /// EmitEndEHSpec - Emit the end of the exception spec.
2390   void EmitEndEHSpec(const Decl *D);
2391 
2392   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2393   llvm::BasicBlock *getTerminateLandingPad();
2394 
2395   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2396   /// terminate.
2397   llvm::BasicBlock *getTerminateFunclet();
2398 
2399   /// getTerminateHandler - Return a handler (not a landing pad, just
2400   /// a catch handler) that just calls terminate.  This is used when
2401   /// a terminate scope encloses a try.
2402   llvm::BasicBlock *getTerminateHandler();
2403 
2404   llvm::Type *ConvertTypeForMem(QualType T);
2405   llvm::Type *ConvertType(QualType T);
2406   llvm::Type *ConvertType(const TypeDecl *T) {
2407     return ConvertType(getContext().getTypeDeclType(T));
2408   }
2409 
2410   /// LoadObjCSelf - Load the value of self. This function is only valid while
2411   /// generating code for an Objective-C method.
2412   llvm::Value *LoadObjCSelf();
2413 
2414   /// TypeOfSelfObject - Return type of object that this self represents.
2415   QualType TypeOfSelfObject();
2416 
2417   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2418   static TypeEvaluationKind getEvaluationKind(QualType T);
2419 
2420   static bool hasScalarEvaluationKind(QualType T) {
2421     return getEvaluationKind(T) == TEK_Scalar;
2422   }
2423 
2424   static bool hasAggregateEvaluationKind(QualType T) {
2425     return getEvaluationKind(T) == TEK_Aggregate;
2426   }
2427 
2428   /// createBasicBlock - Create an LLVM basic block.
2429   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2430                                      llvm::Function *parent = nullptr,
2431                                      llvm::BasicBlock *before = nullptr) {
2432     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2433   }
2434 
2435   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2436   /// label maps to.
2437   JumpDest getJumpDestForLabel(const LabelDecl *S);
2438 
2439   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2440   /// another basic block, simplify it. This assumes that no other code could
2441   /// potentially reference the basic block.
2442   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2443 
2444   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2445   /// adding a fall-through branch from the current insert block if
2446   /// necessary. It is legal to call this function even if there is no current
2447   /// insertion point.
2448   ///
2449   /// IsFinished - If true, indicates that the caller has finished emitting
2450   /// branches to the given block and does not expect to emit code into it. This
2451   /// means the block can be ignored if it is unreachable.
2452   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2453 
2454   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2455   /// near its uses, and leave the insertion point in it.
2456   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2457 
2458   /// EmitBranch - Emit a branch to the specified basic block from the current
2459   /// insert block, taking care to avoid creation of branches from dummy
2460   /// blocks. It is legal to call this function even if there is no current
2461   /// insertion point.
2462   ///
2463   /// This function clears the current insertion point. The caller should follow
2464   /// calls to this function with calls to Emit*Block prior to generation new
2465   /// code.
2466   void EmitBranch(llvm::BasicBlock *Block);
2467 
2468   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2469   /// indicates that the current code being emitted is unreachable.
2470   bool HaveInsertPoint() const {
2471     return Builder.GetInsertBlock() != nullptr;
2472   }
2473 
2474   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2475   /// emitted IR has a place to go. Note that by definition, if this function
2476   /// creates a block then that block is unreachable; callers may do better to
2477   /// detect when no insertion point is defined and simply skip IR generation.
2478   void EnsureInsertPoint() {
2479     if (!HaveInsertPoint())
2480       EmitBlock(createBasicBlock());
2481   }
2482 
2483   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2484   /// specified stmt yet.
2485   void ErrorUnsupported(const Stmt *S, const char *Type);
2486 
2487   //===--------------------------------------------------------------------===//
2488   //                                  Helpers
2489   //===--------------------------------------------------------------------===//
2490 
2491   LValue MakeAddrLValue(Address Addr, QualType T,
2492                         AlignmentSource Source = AlignmentSource::Type) {
2493     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2494                             CGM.getTBAAAccessInfo(T));
2495   }
2496 
2497   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2498                         TBAAAccessInfo TBAAInfo) {
2499     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2500   }
2501 
2502   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2503                         AlignmentSource Source = AlignmentSource::Type) {
2504     Address Addr(V, ConvertTypeForMem(T), Alignment);
2505     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2506                             CGM.getTBAAAccessInfo(T));
2507   }
2508 
2509   LValue
2510   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2511                             AlignmentSource Source = AlignmentSource::Type) {
2512     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2513                             TBAAAccessInfo());
2514   }
2515 
2516   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2517   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2518 
2519   Address EmitLoadOfReference(LValue RefLVal,
2520                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2521                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2522   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2523   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2524                                    AlignmentSource Source =
2525                                        AlignmentSource::Type) {
2526     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2527                                     CGM.getTBAAAccessInfo(RefTy));
2528     return EmitLoadOfReferenceLValue(RefLVal);
2529   }
2530 
2531   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2532   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2533   /// it is loaded from.
2534   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2535                             LValueBaseInfo *BaseInfo = nullptr,
2536                             TBAAAccessInfo *TBAAInfo = nullptr);
2537   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2538 
2539   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2540   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2541   /// insertion point of the builder. The caller is responsible for setting an
2542   /// appropriate alignment on
2543   /// the alloca.
2544   ///
2545   /// \p ArraySize is the number of array elements to be allocated if it
2546   ///    is not nullptr.
2547   ///
2548   /// LangAS::Default is the address space of pointers to local variables and
2549   /// temporaries, as exposed in the source language. In certain
2550   /// configurations, this is not the same as the alloca address space, and a
2551   /// cast is needed to lift the pointer from the alloca AS into
2552   /// LangAS::Default. This can happen when the target uses a restricted
2553   /// address space for the stack but the source language requires
2554   /// LangAS::Default to be a generic address space. The latter condition is
2555   /// common for most programming languages; OpenCL is an exception in that
2556   /// LangAS::Default is the private address space, which naturally maps
2557   /// to the stack.
2558   ///
2559   /// Because the address of a temporary is often exposed to the program in
2560   /// various ways, this function will perform the cast. The original alloca
2561   /// instruction is returned through \p Alloca if it is not nullptr.
2562   ///
2563   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2564   /// more efficient if the caller knows that the address will not be exposed.
2565   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2566                                      llvm::Value *ArraySize = nullptr);
2567   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2568                            const Twine &Name = "tmp",
2569                            llvm::Value *ArraySize = nullptr,
2570                            Address *Alloca = nullptr);
2571   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2572                                       const Twine &Name = "tmp",
2573                                       llvm::Value *ArraySize = nullptr);
2574 
2575   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2576   /// default ABI alignment of the given LLVM type.
2577   ///
2578   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2579   /// any given AST type that happens to have been lowered to the
2580   /// given IR type.  This should only ever be used for function-local,
2581   /// IR-driven manipulations like saving and restoring a value.  Do
2582   /// not hand this address off to arbitrary IRGen routines, and especially
2583   /// do not pass it as an argument to a function that might expect a
2584   /// properly ABI-aligned value.
2585   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2586                                        const Twine &Name = "tmp");
2587 
2588   /// CreateIRTemp - Create a temporary IR object of the given type, with
2589   /// appropriate alignment. This routine should only be used when an temporary
2590   /// value needs to be stored into an alloca (for example, to avoid explicit
2591   /// PHI construction), but the type is the IR type, not the type appropriate
2592   /// for storing in memory.
2593   ///
2594   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2595   /// ConvertType instead of ConvertTypeForMem.
2596   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2597 
2598   /// CreateMemTemp - Create a temporary memory object of the given type, with
2599   /// appropriate alignmen and cast it to the default address space. Returns
2600   /// the original alloca instruction by \p Alloca if it is not nullptr.
2601   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2602                         Address *Alloca = nullptr);
2603   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2604                         Address *Alloca = nullptr);
2605 
2606   /// CreateMemTemp - Create a temporary memory object of the given type, with
2607   /// appropriate alignmen without casting it to the default address space.
2608   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2609   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2610                                    const Twine &Name = "tmp");
2611 
2612   /// CreateAggTemp - Create a temporary memory object for the given
2613   /// aggregate type.
2614   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2615                              Address *Alloca = nullptr) {
2616     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2617                                  T.getQualifiers(),
2618                                  AggValueSlot::IsNotDestructed,
2619                                  AggValueSlot::DoesNotNeedGCBarriers,
2620                                  AggValueSlot::IsNotAliased,
2621                                  AggValueSlot::DoesNotOverlap);
2622   }
2623 
2624   /// Emit a cast to void* in the appropriate address space.
2625   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2626 
2627   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2628   /// expression and compare the result against zero, returning an Int1Ty value.
2629   llvm::Value *EvaluateExprAsBool(const Expr *E);
2630 
2631   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2632   void EmitIgnoredExpr(const Expr *E);
2633 
2634   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2635   /// any type.  The result is returned as an RValue struct.  If this is an
2636   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2637   /// the result should be returned.
2638   ///
2639   /// \param ignoreResult True if the resulting value isn't used.
2640   RValue EmitAnyExpr(const Expr *E,
2641                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2642                      bool ignoreResult = false);
2643 
2644   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2645   // or the value of the expression, depending on how va_list is defined.
2646   Address EmitVAListRef(const Expr *E);
2647 
2648   /// Emit a "reference" to a __builtin_ms_va_list; this is
2649   /// always the value of the expression, because a __builtin_ms_va_list is a
2650   /// pointer to a char.
2651   Address EmitMSVAListRef(const Expr *E);
2652 
2653   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2654   /// always be accessible even if no aggregate location is provided.
2655   RValue EmitAnyExprToTemp(const Expr *E);
2656 
2657   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2658   /// arbitrary expression into the given memory location.
2659   void EmitAnyExprToMem(const Expr *E, Address Location,
2660                         Qualifiers Quals, bool IsInitializer);
2661 
2662   void EmitAnyExprToExn(const Expr *E, Address Addr);
2663 
2664   /// EmitExprAsInit - Emits the code necessary to initialize a
2665   /// location in memory with the given initializer.
2666   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2667                       bool capturedByInit);
2668 
2669   /// hasVolatileMember - returns true if aggregate type has a volatile
2670   /// member.
2671   bool hasVolatileMember(QualType T) {
2672     if (const RecordType *RT = T->getAs<RecordType>()) {
2673       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2674       return RD->hasVolatileMember();
2675     }
2676     return false;
2677   }
2678 
2679   /// Determine whether a return value slot may overlap some other object.
2680   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2681     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2682     // class subobjects. These cases may need to be revisited depending on the
2683     // resolution of the relevant core issue.
2684     return AggValueSlot::DoesNotOverlap;
2685   }
2686 
2687   /// Determine whether a field initialization may overlap some other object.
2688   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2689 
2690   /// Determine whether a base class initialization may overlap some other
2691   /// object.
2692   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2693                                                 const CXXRecordDecl *BaseRD,
2694                                                 bool IsVirtual);
2695 
2696   /// Emit an aggregate assignment.
2697   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2698     bool IsVolatile = hasVolatileMember(EltTy);
2699     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2700   }
2701 
2702   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2703                              AggValueSlot::Overlap_t MayOverlap) {
2704     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2705   }
2706 
2707   /// EmitAggregateCopy - Emit an aggregate copy.
2708   ///
2709   /// \param isVolatile \c true iff either the source or the destination is
2710   ///        volatile.
2711   /// \param MayOverlap Whether the tail padding of the destination might be
2712   ///        occupied by some other object. More efficient code can often be
2713   ///        generated if not.
2714   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2715                          AggValueSlot::Overlap_t MayOverlap,
2716                          bool isVolatile = false);
2717 
2718   /// GetAddrOfLocalVar - Return the address of a local variable.
2719   Address GetAddrOfLocalVar(const VarDecl *VD) {
2720     auto it = LocalDeclMap.find(VD);
2721     assert(it != LocalDeclMap.end() &&
2722            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2723     return it->second;
2724   }
2725 
2726   /// Given an opaque value expression, return its LValue mapping if it exists,
2727   /// otherwise create one.
2728   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2729 
2730   /// Given an opaque value expression, return its RValue mapping if it exists,
2731   /// otherwise create one.
2732   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2733 
2734   /// Get the index of the current ArrayInitLoopExpr, if any.
2735   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2736 
2737   /// getAccessedFieldNo - Given an encoded value and a result number, return
2738   /// the input field number being accessed.
2739   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2740 
2741   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2742   llvm::BasicBlock *GetIndirectGotoBlock();
2743 
2744   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2745   static bool IsWrappedCXXThis(const Expr *E);
2746 
2747   /// EmitNullInitialization - Generate code to set a value of the given type to
2748   /// null, If the type contains data member pointers, they will be initialized
2749   /// to -1 in accordance with the Itanium C++ ABI.
2750   void EmitNullInitialization(Address DestPtr, QualType Ty);
2751 
2752   /// Emits a call to an LLVM variable-argument intrinsic, either
2753   /// \c llvm.va_start or \c llvm.va_end.
2754   /// \param ArgValue A reference to the \c va_list as emitted by either
2755   /// \c EmitVAListRef or \c EmitMSVAListRef.
2756   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2757   /// calls \c llvm.va_end.
2758   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2759 
2760   /// Generate code to get an argument from the passed in pointer
2761   /// and update it accordingly.
2762   /// \param VE The \c VAArgExpr for which to generate code.
2763   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2764   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2765   /// \returns A pointer to the argument.
2766   // FIXME: We should be able to get rid of this method and use the va_arg
2767   // instruction in LLVM instead once it works well enough.
2768   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2769 
2770   /// emitArrayLength - Compute the length of an array, even if it's a
2771   /// VLA, and drill down to the base element type.
2772   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2773                                QualType &baseType,
2774                                Address &addr);
2775 
2776   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2777   /// the given variably-modified type and store them in the VLASizeMap.
2778   ///
2779   /// This function can be called with a null (unreachable) insert point.
2780   void EmitVariablyModifiedType(QualType Ty);
2781 
2782   struct VlaSizePair {
2783     llvm::Value *NumElts;
2784     QualType Type;
2785 
2786     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2787   };
2788 
2789   /// Return the number of elements for a single dimension
2790   /// for the given array type.
2791   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2792   VlaSizePair getVLAElements1D(QualType vla);
2793 
2794   /// Returns an LLVM value that corresponds to the size,
2795   /// in non-variably-sized elements, of a variable length array type,
2796   /// plus that largest non-variably-sized element type.  Assumes that
2797   /// the type has already been emitted with EmitVariablyModifiedType.
2798   VlaSizePair getVLASize(const VariableArrayType *vla);
2799   VlaSizePair getVLASize(QualType vla);
2800 
2801   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2802   /// generating code for an C++ member function.
2803   llvm::Value *LoadCXXThis() {
2804     assert(CXXThisValue && "no 'this' value for this function");
2805     return CXXThisValue;
2806   }
2807   Address LoadCXXThisAddress();
2808 
2809   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2810   /// virtual bases.
2811   // FIXME: Every place that calls LoadCXXVTT is something
2812   // that needs to be abstracted properly.
2813   llvm::Value *LoadCXXVTT() {
2814     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2815     return CXXStructorImplicitParamValue;
2816   }
2817 
2818   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2819   /// complete class to the given direct base.
2820   Address
2821   GetAddressOfDirectBaseInCompleteClass(Address Value,
2822                                         const CXXRecordDecl *Derived,
2823                                         const CXXRecordDecl *Base,
2824                                         bool BaseIsVirtual);
2825 
2826   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2827 
2828   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2829   /// load of 'this' and returns address of the base class.
2830   Address GetAddressOfBaseClass(Address Value,
2831                                 const CXXRecordDecl *Derived,
2832                                 CastExpr::path_const_iterator PathBegin,
2833                                 CastExpr::path_const_iterator PathEnd,
2834                                 bool NullCheckValue, SourceLocation Loc);
2835 
2836   Address GetAddressOfDerivedClass(Address Value,
2837                                    const CXXRecordDecl *Derived,
2838                                    CastExpr::path_const_iterator PathBegin,
2839                                    CastExpr::path_const_iterator PathEnd,
2840                                    bool NullCheckValue);
2841 
2842   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2843   /// base constructor/destructor with virtual bases.
2844   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2845   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2846   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2847                                bool Delegating);
2848 
2849   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2850                                       CXXCtorType CtorType,
2851                                       const FunctionArgList &Args,
2852                                       SourceLocation Loc);
2853   // It's important not to confuse this and the previous function. Delegating
2854   // constructors are the C++0x feature. The constructor delegate optimization
2855   // is used to reduce duplication in the base and complete consturctors where
2856   // they are substantially the same.
2857   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2858                                         const FunctionArgList &Args);
2859 
2860   /// Emit a call to an inheriting constructor (that is, one that invokes a
2861   /// constructor inherited from a base class) by inlining its definition. This
2862   /// is necessary if the ABI does not support forwarding the arguments to the
2863   /// base class constructor (because they're variadic or similar).
2864   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2865                                                CXXCtorType CtorType,
2866                                                bool ForVirtualBase,
2867                                                bool Delegating,
2868                                                CallArgList &Args);
2869 
2870   /// Emit a call to a constructor inherited from a base class, passing the
2871   /// current constructor's arguments along unmodified (without even making
2872   /// a copy).
2873   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2874                                        bool ForVirtualBase, Address This,
2875                                        bool InheritedFromVBase,
2876                                        const CXXInheritedCtorInitExpr *E);
2877 
2878   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2879                               bool ForVirtualBase, bool Delegating,
2880                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2881 
2882   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2883                               bool ForVirtualBase, bool Delegating,
2884                               Address This, CallArgList &Args,
2885                               AggValueSlot::Overlap_t Overlap,
2886                               SourceLocation Loc, bool NewPointerIsChecked);
2887 
2888   /// Emit assumption load for all bases. Requires to be called only on
2889   /// most-derived class and not under construction of the object.
2890   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2891 
2892   /// Emit assumption that vptr load == global vtable.
2893   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2894 
2895   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2896                                       Address This, Address Src,
2897                                       const CXXConstructExpr *E);
2898 
2899   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2900                                   const ArrayType *ArrayTy,
2901                                   Address ArrayPtr,
2902                                   const CXXConstructExpr *E,
2903                                   bool NewPointerIsChecked,
2904                                   bool ZeroInitialization = false);
2905 
2906   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2907                                   llvm::Value *NumElements,
2908                                   Address ArrayPtr,
2909                                   const CXXConstructExpr *E,
2910                                   bool NewPointerIsChecked,
2911                                   bool ZeroInitialization = false);
2912 
2913   static Destroyer destroyCXXObject;
2914 
2915   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2916                              bool ForVirtualBase, bool Delegating, Address This,
2917                              QualType ThisTy);
2918 
2919   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2920                                llvm::Type *ElementTy, Address NewPtr,
2921                                llvm::Value *NumElements,
2922                                llvm::Value *AllocSizeWithoutCookie);
2923 
2924   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2925                         Address Ptr);
2926 
2927   void EmitSehCppScopeBegin();
2928   void EmitSehCppScopeEnd();
2929   void EmitSehTryScopeBegin();
2930   void EmitSehTryScopeEnd();
2931 
2932   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2933   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2934 
2935   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2936   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2937 
2938   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2939                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2940                       CharUnits CookieSize = CharUnits());
2941 
2942   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2943                                   const CallExpr *TheCallExpr, bool IsDelete);
2944 
2945   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2946   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2947   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2948 
2949   /// Situations in which we might emit a check for the suitability of a
2950   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2951   /// compiler-rt.
2952   enum TypeCheckKind {
2953     /// Checking the operand of a load. Must be suitably sized and aligned.
2954     TCK_Load,
2955     /// Checking the destination of a store. Must be suitably sized and aligned.
2956     TCK_Store,
2957     /// Checking the bound value in a reference binding. Must be suitably sized
2958     /// and aligned, but is not required to refer to an object (until the
2959     /// reference is used), per core issue 453.
2960     TCK_ReferenceBinding,
2961     /// Checking the object expression in a non-static data member access. Must
2962     /// be an object within its lifetime.
2963     TCK_MemberAccess,
2964     /// Checking the 'this' pointer for a call to a non-static member function.
2965     /// Must be an object within its lifetime.
2966     TCK_MemberCall,
2967     /// Checking the 'this' pointer for a constructor call.
2968     TCK_ConstructorCall,
2969     /// Checking the operand of a static_cast to a derived pointer type. Must be
2970     /// null or an object within its lifetime.
2971     TCK_DowncastPointer,
2972     /// Checking the operand of a static_cast to a derived reference type. Must
2973     /// be an object within its lifetime.
2974     TCK_DowncastReference,
2975     /// Checking the operand of a cast to a base object. Must be suitably sized
2976     /// and aligned.
2977     TCK_Upcast,
2978     /// Checking the operand of a cast to a virtual base object. Must be an
2979     /// object within its lifetime.
2980     TCK_UpcastToVirtualBase,
2981     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2982     TCK_NonnullAssign,
2983     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2984     /// null or an object within its lifetime.
2985     TCK_DynamicOperation
2986   };
2987 
2988   /// Determine whether the pointer type check \p TCK permits null pointers.
2989   static bool isNullPointerAllowed(TypeCheckKind TCK);
2990 
2991   /// Determine whether the pointer type check \p TCK requires a vptr check.
2992   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2993 
2994   /// Whether any type-checking sanitizers are enabled. If \c false,
2995   /// calls to EmitTypeCheck can be skipped.
2996   bool sanitizePerformTypeCheck() const;
2997 
2998   /// Emit a check that \p V is the address of storage of the
2999   /// appropriate size and alignment for an object of type \p Type
3000   /// (or if ArraySize is provided, for an array of that bound).
3001   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3002                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3003                      SanitizerSet SkippedChecks = SanitizerSet(),
3004                      llvm::Value *ArraySize = nullptr);
3005 
3006   /// Emit a check that \p Base points into an array object, which
3007   /// we can access at index \p Index. \p Accessed should be \c false if we
3008   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3009   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3010                        QualType IndexType, bool Accessed);
3011 
3012   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3013                                        bool isInc, bool isPre);
3014   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3015                                          bool isInc, bool isPre);
3016 
3017   /// Converts Location to a DebugLoc, if debug information is enabled.
3018   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3019 
3020   /// Get the record field index as represented in debug info.
3021   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3022 
3023 
3024   //===--------------------------------------------------------------------===//
3025   //                            Declaration Emission
3026   //===--------------------------------------------------------------------===//
3027 
3028   /// EmitDecl - Emit a declaration.
3029   ///
3030   /// This function can be called with a null (unreachable) insert point.
3031   void EmitDecl(const Decl &D);
3032 
3033   /// EmitVarDecl - Emit a local variable declaration.
3034   ///
3035   /// This function can be called with a null (unreachable) insert point.
3036   void EmitVarDecl(const VarDecl &D);
3037 
3038   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3039                       bool capturedByInit);
3040 
3041   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3042                              llvm::Value *Address);
3043 
3044   /// Determine whether the given initializer is trivial in the sense
3045   /// that it requires no code to be generated.
3046   bool isTrivialInitializer(const Expr *Init);
3047 
3048   /// EmitAutoVarDecl - Emit an auto variable declaration.
3049   ///
3050   /// This function can be called with a null (unreachable) insert point.
3051   void EmitAutoVarDecl(const VarDecl &D);
3052 
3053   class AutoVarEmission {
3054     friend class CodeGenFunction;
3055 
3056     const VarDecl *Variable;
3057 
3058     /// The address of the alloca for languages with explicit address space
3059     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3060     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3061     /// as a global constant.
3062     Address Addr;
3063 
3064     llvm::Value *NRVOFlag;
3065 
3066     /// True if the variable is a __block variable that is captured by an
3067     /// escaping block.
3068     bool IsEscapingByRef;
3069 
3070     /// True if the variable is of aggregate type and has a constant
3071     /// initializer.
3072     bool IsConstantAggregate;
3073 
3074     /// Non-null if we should use lifetime annotations.
3075     llvm::Value *SizeForLifetimeMarkers;
3076 
3077     /// Address with original alloca instruction. Invalid if the variable was
3078     /// emitted as a global constant.
3079     Address AllocaAddr;
3080 
3081     struct Invalid {};
3082     AutoVarEmission(Invalid)
3083         : Variable(nullptr), Addr(Address::invalid()),
3084           AllocaAddr(Address::invalid()) {}
3085 
3086     AutoVarEmission(const VarDecl &variable)
3087         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3088           IsEscapingByRef(false), IsConstantAggregate(false),
3089           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3090 
3091     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3092 
3093   public:
3094     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3095 
3096     bool useLifetimeMarkers() const {
3097       return SizeForLifetimeMarkers != nullptr;
3098     }
3099     llvm::Value *getSizeForLifetimeMarkers() const {
3100       assert(useLifetimeMarkers());
3101       return SizeForLifetimeMarkers;
3102     }
3103 
3104     /// Returns the raw, allocated address, which is not necessarily
3105     /// the address of the object itself. It is casted to default
3106     /// address space for address space agnostic languages.
3107     Address getAllocatedAddress() const {
3108       return Addr;
3109     }
3110 
3111     /// Returns the address for the original alloca instruction.
3112     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3113 
3114     /// Returns the address of the object within this declaration.
3115     /// Note that this does not chase the forwarding pointer for
3116     /// __block decls.
3117     Address getObjectAddress(CodeGenFunction &CGF) const {
3118       if (!IsEscapingByRef) return Addr;
3119 
3120       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3121     }
3122   };
3123   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3124   void EmitAutoVarInit(const AutoVarEmission &emission);
3125   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3126   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3127                               QualType::DestructionKind dtorKind);
3128 
3129   /// Emits the alloca and debug information for the size expressions for each
3130   /// dimension of an array. It registers the association of its (1-dimensional)
3131   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3132   /// reference this node when creating the DISubrange object to describe the
3133   /// array types.
3134   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3135                                               const VarDecl &D,
3136                                               bool EmitDebugInfo);
3137 
3138   void EmitStaticVarDecl(const VarDecl &D,
3139                          llvm::GlobalValue::LinkageTypes Linkage);
3140 
3141   class ParamValue {
3142     llvm::Value *Value;
3143     llvm::Type *ElementType;
3144     unsigned Alignment;
3145     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3146         : Value(V), ElementType(T), Alignment(A) {}
3147   public:
3148     static ParamValue forDirect(llvm::Value *value) {
3149       return ParamValue(value, nullptr, 0);
3150     }
3151     static ParamValue forIndirect(Address addr) {
3152       assert(!addr.getAlignment().isZero());
3153       return ParamValue(addr.getPointer(), addr.getElementType(),
3154                         addr.getAlignment().getQuantity());
3155     }
3156 
3157     bool isIndirect() const { return Alignment != 0; }
3158     llvm::Value *getAnyValue() const { return Value; }
3159 
3160     llvm::Value *getDirectValue() const {
3161       assert(!isIndirect());
3162       return Value;
3163     }
3164 
3165     Address getIndirectAddress() const {
3166       assert(isIndirect());
3167       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3168     }
3169   };
3170 
3171   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3172   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3173 
3174   /// protectFromPeepholes - Protect a value that we're intending to
3175   /// store to the side, but which will probably be used later, from
3176   /// aggressive peepholing optimizations that might delete it.
3177   ///
3178   /// Pass the result to unprotectFromPeepholes to declare that
3179   /// protection is no longer required.
3180   ///
3181   /// There's no particular reason why this shouldn't apply to
3182   /// l-values, it's just that no existing peepholes work on pointers.
3183   PeepholeProtection protectFromPeepholes(RValue rvalue);
3184   void unprotectFromPeepholes(PeepholeProtection protection);
3185 
3186   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3187                                     SourceLocation Loc,
3188                                     SourceLocation AssumptionLoc,
3189                                     llvm::Value *Alignment,
3190                                     llvm::Value *OffsetValue,
3191                                     llvm::Value *TheCheck,
3192                                     llvm::Instruction *Assumption);
3193 
3194   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3195                                SourceLocation Loc, SourceLocation AssumptionLoc,
3196                                llvm::Value *Alignment,
3197                                llvm::Value *OffsetValue = nullptr);
3198 
3199   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3200                                SourceLocation AssumptionLoc,
3201                                llvm::Value *Alignment,
3202                                llvm::Value *OffsetValue = nullptr);
3203 
3204   //===--------------------------------------------------------------------===//
3205   //                             Statement Emission
3206   //===--------------------------------------------------------------------===//
3207 
3208   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3209   void EmitStopPoint(const Stmt *S);
3210 
3211   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3212   /// this function even if there is no current insertion point.
3213   ///
3214   /// This function may clear the current insertion point; callers should use
3215   /// EnsureInsertPoint if they wish to subsequently generate code without first
3216   /// calling EmitBlock, EmitBranch, or EmitStmt.
3217   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt);
3218 
3219   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3220   /// necessarily require an insertion point or debug information; typically
3221   /// because the statement amounts to a jump or a container of other
3222   /// statements.
3223   ///
3224   /// \return True if the statement was handled.
3225   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3226 
3227   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3228                            AggValueSlot AVS = AggValueSlot::ignored());
3229   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3230                                        bool GetLast = false,
3231                                        AggValueSlot AVS =
3232                                                 AggValueSlot::ignored());
3233 
3234   /// EmitLabel - Emit the block for the given label. It is legal to call this
3235   /// function even if there is no current insertion point.
3236   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3237 
3238   void EmitLabelStmt(const LabelStmt &S);
3239   void EmitAttributedStmt(const AttributedStmt &S);
3240   void EmitGotoStmt(const GotoStmt &S);
3241   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3242   void EmitIfStmt(const IfStmt &S);
3243 
3244   void EmitWhileStmt(const WhileStmt &S,
3245                      ArrayRef<const Attr *> Attrs = std::nullopt);
3246   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt);
3247   void EmitForStmt(const ForStmt &S,
3248                    ArrayRef<const Attr *> Attrs = std::nullopt);
3249   void EmitReturnStmt(const ReturnStmt &S);
3250   void EmitDeclStmt(const DeclStmt &S);
3251   void EmitBreakStmt(const BreakStmt &S);
3252   void EmitContinueStmt(const ContinueStmt &S);
3253   void EmitSwitchStmt(const SwitchStmt &S);
3254   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3255   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3256   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3257   void EmitAsmStmt(const AsmStmt &S);
3258 
3259   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3260   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3261   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3262   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3263   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3264 
3265   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3266   void EmitCoreturnStmt(const CoreturnStmt &S);
3267   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3268                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3269                          bool ignoreResult = false);
3270   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3271   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3272                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3273                          bool ignoreResult = false);
3274   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3275   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3276 
3277   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3278   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3279 
3280   void EmitCXXTryStmt(const CXXTryStmt &S);
3281   void EmitSEHTryStmt(const SEHTryStmt &S);
3282   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3283   void EnterSEHTryStmt(const SEHTryStmt &S);
3284   void ExitSEHTryStmt(const SEHTryStmt &S);
3285   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3286                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3287 
3288   void pushSEHCleanup(CleanupKind kind,
3289                       llvm::Function *FinallyFunc);
3290   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3291                               const Stmt *OutlinedStmt);
3292 
3293   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3294                                             const SEHExceptStmt &Except);
3295 
3296   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3297                                              const SEHFinallyStmt &Finally);
3298 
3299   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3300                                 llvm::Value *ParentFP,
3301                                 llvm::Value *EntryEBP);
3302   llvm::Value *EmitSEHExceptionCode();
3303   llvm::Value *EmitSEHExceptionInfo();
3304   llvm::Value *EmitSEHAbnormalTermination();
3305 
3306   /// Emit simple code for OpenMP directives in Simd-only mode.
3307   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3308 
3309   /// Scan the outlined statement for captures from the parent function. For
3310   /// each capture, mark the capture as escaped and emit a call to
3311   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3312   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3313                           bool IsFilter);
3314 
3315   /// Recovers the address of a local in a parent function. ParentVar is the
3316   /// address of the variable used in the immediate parent function. It can
3317   /// either be an alloca or a call to llvm.localrecover if there are nested
3318   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3319   /// frame.
3320   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3321                                     Address ParentVar,
3322                                     llvm::Value *ParentFP);
3323 
3324   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3325                            ArrayRef<const Attr *> Attrs = std::nullopt);
3326 
3327   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3328   class OMPCancelStackRAII {
3329     CodeGenFunction &CGF;
3330 
3331   public:
3332     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3333                        bool HasCancel)
3334         : CGF(CGF) {
3335       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3336     }
3337     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3338   };
3339 
3340   /// Returns calculated size of the specified type.
3341   llvm::Value *getTypeSize(QualType Ty);
3342   LValue InitCapturedStruct(const CapturedStmt &S);
3343   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3344   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3345   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3346   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3347                                                      SourceLocation Loc);
3348   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3349                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3350   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3351                           SourceLocation Loc);
3352   /// Perform element by element copying of arrays with type \a
3353   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3354   /// generated by \a CopyGen.
3355   ///
3356   /// \param DestAddr Address of the destination array.
3357   /// \param SrcAddr Address of the source array.
3358   /// \param OriginalType Type of destination and source arrays.
3359   /// \param CopyGen Copying procedure that copies value of single array element
3360   /// to another single array element.
3361   void EmitOMPAggregateAssign(
3362       Address DestAddr, Address SrcAddr, QualType OriginalType,
3363       const llvm::function_ref<void(Address, Address)> CopyGen);
3364   /// Emit proper copying of data from one variable to another.
3365   ///
3366   /// \param OriginalType Original type of the copied variables.
3367   /// \param DestAddr Destination address.
3368   /// \param SrcAddr Source address.
3369   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3370   /// type of the base array element).
3371   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3372   /// the base array element).
3373   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3374   /// DestVD.
3375   void EmitOMPCopy(QualType OriginalType,
3376                    Address DestAddr, Address SrcAddr,
3377                    const VarDecl *DestVD, const VarDecl *SrcVD,
3378                    const Expr *Copy);
3379   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3380   /// \a X = \a E \a BO \a E.
3381   ///
3382   /// \param X Value to be updated.
3383   /// \param E Update value.
3384   /// \param BO Binary operation for update operation.
3385   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3386   /// expression, false otherwise.
3387   /// \param AO Atomic ordering of the generated atomic instructions.
3388   /// \param CommonGen Code generator for complex expressions that cannot be
3389   /// expressed through atomicrmw instruction.
3390   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3391   /// generated, <false, RValue::get(nullptr)> otherwise.
3392   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3393       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3394       llvm::AtomicOrdering AO, SourceLocation Loc,
3395       const llvm::function_ref<RValue(RValue)> CommonGen);
3396   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3397                                  OMPPrivateScope &PrivateScope);
3398   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3399                             OMPPrivateScope &PrivateScope);
3400   void EmitOMPUseDevicePtrClause(
3401       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3402       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3403   void EmitOMPUseDeviceAddrClause(
3404       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3405       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3406   /// Emit code for copyin clause in \a D directive. The next code is
3407   /// generated at the start of outlined functions for directives:
3408   /// \code
3409   /// threadprivate_var1 = master_threadprivate_var1;
3410   /// operator=(threadprivate_var2, master_threadprivate_var2);
3411   /// ...
3412   /// __kmpc_barrier(&loc, global_tid);
3413   /// \endcode
3414   ///
3415   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3416   /// \returns true if at least one copyin variable is found, false otherwise.
3417   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3418   /// Emit initial code for lastprivate variables. If some variable is
3419   /// not also firstprivate, then the default initialization is used. Otherwise
3420   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3421   /// method.
3422   ///
3423   /// \param D Directive that may have 'lastprivate' directives.
3424   /// \param PrivateScope Private scope for capturing lastprivate variables for
3425   /// proper codegen in internal captured statement.
3426   ///
3427   /// \returns true if there is at least one lastprivate variable, false
3428   /// otherwise.
3429   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3430                                     OMPPrivateScope &PrivateScope);
3431   /// Emit final copying of lastprivate values to original variables at
3432   /// the end of the worksharing or simd directive.
3433   ///
3434   /// \param D Directive that has at least one 'lastprivate' directives.
3435   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3436   /// it is the last iteration of the loop code in associated directive, or to
3437   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3438   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3439                                      bool NoFinals,
3440                                      llvm::Value *IsLastIterCond = nullptr);
3441   /// Emit initial code for linear clauses.
3442   void EmitOMPLinearClause(const OMPLoopDirective &D,
3443                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3444   /// Emit final code for linear clauses.
3445   /// \param CondGen Optional conditional code for final part of codegen for
3446   /// linear clause.
3447   void EmitOMPLinearClauseFinal(
3448       const OMPLoopDirective &D,
3449       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3450   /// Emit initial code for reduction variables. Creates reduction copies
3451   /// and initializes them with the values according to OpenMP standard.
3452   ///
3453   /// \param D Directive (possibly) with the 'reduction' clause.
3454   /// \param PrivateScope Private scope for capturing reduction variables for
3455   /// proper codegen in internal captured statement.
3456   ///
3457   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3458                                   OMPPrivateScope &PrivateScope,
3459                                   bool ForInscan = false);
3460   /// Emit final update of reduction values to original variables at
3461   /// the end of the directive.
3462   ///
3463   /// \param D Directive that has at least one 'reduction' directives.
3464   /// \param ReductionKind The kind of reduction to perform.
3465   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3466                                    const OpenMPDirectiveKind ReductionKind);
3467   /// Emit initial code for linear variables. Creates private copies
3468   /// and initializes them with the values according to OpenMP standard.
3469   ///
3470   /// \param D Directive (possibly) with the 'linear' clause.
3471   /// \return true if at least one linear variable is found that should be
3472   /// initialized with the value of the original variable, false otherwise.
3473   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3474 
3475   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3476                                         llvm::Function * /*OutlinedFn*/,
3477                                         const OMPTaskDataTy & /*Data*/)>
3478       TaskGenTy;
3479   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3480                                  const OpenMPDirectiveKind CapturedRegion,
3481                                  const RegionCodeGenTy &BodyGen,
3482                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3483   struct OMPTargetDataInfo {
3484     Address BasePointersArray = Address::invalid();
3485     Address PointersArray = Address::invalid();
3486     Address SizesArray = Address::invalid();
3487     Address MappersArray = Address::invalid();
3488     unsigned NumberOfTargetItems = 0;
3489     explicit OMPTargetDataInfo() = default;
3490     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3491                       Address SizesArray, Address MappersArray,
3492                       unsigned NumberOfTargetItems)
3493         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3494           SizesArray(SizesArray), MappersArray(MappersArray),
3495           NumberOfTargetItems(NumberOfTargetItems) {}
3496   };
3497   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3498                                        const RegionCodeGenTy &BodyGen,
3499                                        OMPTargetDataInfo &InputInfo);
3500   void processInReduction(const OMPExecutableDirective &S,
3501                           OMPTaskDataTy &Data,
3502                           CodeGenFunction &CGF,
3503                           const CapturedStmt *CS,
3504                           OMPPrivateScope &Scope);
3505   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3506   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3507   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3508   void EmitOMPTileDirective(const OMPTileDirective &S);
3509   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3510   void EmitOMPForDirective(const OMPForDirective &S);
3511   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3512   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3513   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3514   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3515   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3516   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3517   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3518   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3519   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3520   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3521   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3522   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3523   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3524   void EmitOMPErrorDirective(const OMPErrorDirective &S);
3525   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3526   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3527   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3528   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3529   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3530   void EmitOMPScanDirective(const OMPScanDirective &S);
3531   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3532   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3533   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3534   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3535   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3536   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3537   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3538   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3539   void
3540   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3541   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3542   void
3543   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3544   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3545   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3546   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3547   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3548   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3549   void
3550   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3551   void EmitOMPParallelMasterTaskLoopDirective(
3552       const OMPParallelMasterTaskLoopDirective &S);
3553   void EmitOMPParallelMasterTaskLoopSimdDirective(
3554       const OMPParallelMasterTaskLoopSimdDirective &S);
3555   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3556   void EmitOMPDistributeParallelForDirective(
3557       const OMPDistributeParallelForDirective &S);
3558   void EmitOMPDistributeParallelForSimdDirective(
3559       const OMPDistributeParallelForSimdDirective &S);
3560   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3561   void EmitOMPTargetParallelForSimdDirective(
3562       const OMPTargetParallelForSimdDirective &S);
3563   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3564   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3565   void
3566   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3567   void EmitOMPTeamsDistributeParallelForSimdDirective(
3568       const OMPTeamsDistributeParallelForSimdDirective &S);
3569   void EmitOMPTeamsDistributeParallelForDirective(
3570       const OMPTeamsDistributeParallelForDirective &S);
3571   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3572   void EmitOMPTargetTeamsDistributeDirective(
3573       const OMPTargetTeamsDistributeDirective &S);
3574   void EmitOMPTargetTeamsDistributeParallelForDirective(
3575       const OMPTargetTeamsDistributeParallelForDirective &S);
3576   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3577       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3578   void EmitOMPTargetTeamsDistributeSimdDirective(
3579       const OMPTargetTeamsDistributeSimdDirective &S);
3580   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3581   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3582 
3583   /// Emit device code for the target directive.
3584   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3585                                           StringRef ParentName,
3586                                           const OMPTargetDirective &S);
3587   static void
3588   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3589                                       const OMPTargetParallelDirective &S);
3590   /// Emit device code for the target parallel for directive.
3591   static void EmitOMPTargetParallelForDeviceFunction(
3592       CodeGenModule &CGM, StringRef ParentName,
3593       const OMPTargetParallelForDirective &S);
3594   /// Emit device code for the target parallel for simd directive.
3595   static void EmitOMPTargetParallelForSimdDeviceFunction(
3596       CodeGenModule &CGM, StringRef ParentName,
3597       const OMPTargetParallelForSimdDirective &S);
3598   /// Emit device code for the target teams directive.
3599   static void
3600   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3601                                    const OMPTargetTeamsDirective &S);
3602   /// Emit device code for the target teams distribute directive.
3603   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3604       CodeGenModule &CGM, StringRef ParentName,
3605       const OMPTargetTeamsDistributeDirective &S);
3606   /// Emit device code for the target teams distribute simd directive.
3607   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3608       CodeGenModule &CGM, StringRef ParentName,
3609       const OMPTargetTeamsDistributeSimdDirective &S);
3610   /// Emit device code for the target simd directive.
3611   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3612                                               StringRef ParentName,
3613                                               const OMPTargetSimdDirective &S);
3614   /// Emit device code for the target teams distribute parallel for simd
3615   /// directive.
3616   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3617       CodeGenModule &CGM, StringRef ParentName,
3618       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3619 
3620   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3621       CodeGenModule &CGM, StringRef ParentName,
3622       const OMPTargetTeamsDistributeParallelForDirective &S);
3623 
3624   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3625   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3626   /// future it is meant to be the number of loops expected in the loop nests
3627   /// (usually specified by the "collapse" clause) that are collapsed to a
3628   /// single loop by this function.
3629   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3630                                                              int Depth);
3631 
3632   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3633   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3634 
3635   /// Emit inner loop of the worksharing/simd construct.
3636   ///
3637   /// \param S Directive, for which the inner loop must be emitted.
3638   /// \param RequiresCleanup true, if directive has some associated private
3639   /// variables.
3640   /// \param LoopCond Bollean condition for loop continuation.
3641   /// \param IncExpr Increment expression for loop control variable.
3642   /// \param BodyGen Generator for the inner body of the inner loop.
3643   /// \param PostIncGen Genrator for post-increment code (required for ordered
3644   /// loop directvies).
3645   void EmitOMPInnerLoop(
3646       const OMPExecutableDirective &S, bool RequiresCleanup,
3647       const Expr *LoopCond, const Expr *IncExpr,
3648       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3649       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3650 
3651   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3652   /// Emit initial code for loop counters of loop-based directives.
3653   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3654                                   OMPPrivateScope &LoopScope);
3655 
3656   /// Helper for the OpenMP loop directives.
3657   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3658 
3659   /// Emit code for the worksharing loop-based directive.
3660   /// \return true, if this construct has any lastprivate clause, false -
3661   /// otherwise.
3662   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3663                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3664                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3665 
3666   /// Emit code for the distribute loop-based directive.
3667   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3668                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3669 
3670   /// Helpers for the OpenMP loop directives.
3671   void EmitOMPSimdInit(const OMPLoopDirective &D);
3672   void EmitOMPSimdFinal(
3673       const OMPLoopDirective &D,
3674       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3675 
3676   /// Emits the lvalue for the expression with possibly captured variable.
3677   LValue EmitOMPSharedLValue(const Expr *E);
3678 
3679 private:
3680   /// Helpers for blocks.
3681   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3682 
3683   /// struct with the values to be passed to the OpenMP loop-related functions
3684   struct OMPLoopArguments {
3685     /// loop lower bound
3686     Address LB = Address::invalid();
3687     /// loop upper bound
3688     Address UB = Address::invalid();
3689     /// loop stride
3690     Address ST = Address::invalid();
3691     /// isLastIteration argument for runtime functions
3692     Address IL = Address::invalid();
3693     /// Chunk value generated by sema
3694     llvm::Value *Chunk = nullptr;
3695     /// EnsureUpperBound
3696     Expr *EUB = nullptr;
3697     /// IncrementExpression
3698     Expr *IncExpr = nullptr;
3699     /// Loop initialization
3700     Expr *Init = nullptr;
3701     /// Loop exit condition
3702     Expr *Cond = nullptr;
3703     /// Update of LB after a whole chunk has been executed
3704     Expr *NextLB = nullptr;
3705     /// Update of UB after a whole chunk has been executed
3706     Expr *NextUB = nullptr;
3707     OMPLoopArguments() = default;
3708     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3709                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3710                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3711                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3712                      Expr *NextUB = nullptr)
3713         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3714           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3715           NextUB(NextUB) {}
3716   };
3717   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3718                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3719                         const OMPLoopArguments &LoopArgs,
3720                         const CodeGenLoopTy &CodeGenLoop,
3721                         const CodeGenOrderedTy &CodeGenOrdered);
3722   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3723                            bool IsMonotonic, const OMPLoopDirective &S,
3724                            OMPPrivateScope &LoopScope, bool Ordered,
3725                            const OMPLoopArguments &LoopArgs,
3726                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3727   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3728                                   const OMPLoopDirective &S,
3729                                   OMPPrivateScope &LoopScope,
3730                                   const OMPLoopArguments &LoopArgs,
3731                                   const CodeGenLoopTy &CodeGenLoopContent);
3732   /// Emit code for sections directive.
3733   void EmitSections(const OMPExecutableDirective &S);
3734 
3735 public:
3736 
3737   //===--------------------------------------------------------------------===//
3738   //                         LValue Expression Emission
3739   //===--------------------------------------------------------------------===//
3740 
3741   /// Create a check that a scalar RValue is non-null.
3742   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3743 
3744   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3745   RValue GetUndefRValue(QualType Ty);
3746 
3747   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3748   /// and issue an ErrorUnsupported style diagnostic (using the
3749   /// provided Name).
3750   RValue EmitUnsupportedRValue(const Expr *E,
3751                                const char *Name);
3752 
3753   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3754   /// an ErrorUnsupported style diagnostic (using the provided Name).
3755   LValue EmitUnsupportedLValue(const Expr *E,
3756                                const char *Name);
3757 
3758   /// EmitLValue - Emit code to compute a designator that specifies the location
3759   /// of the expression.
3760   ///
3761   /// This can return one of two things: a simple address or a bitfield
3762   /// reference.  In either case, the LLVM Value* in the LValue structure is
3763   /// guaranteed to be an LLVM pointer type.
3764   ///
3765   /// If this returns a bitfield reference, nothing about the pointee type of
3766   /// the LLVM value is known: For example, it may not be a pointer to an
3767   /// integer.
3768   ///
3769   /// If this returns a normal address, and if the lvalue's C type is fixed
3770   /// size, this method guarantees that the returned pointer type will point to
3771   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3772   /// variable length type, this is not possible.
3773   ///
3774   LValue EmitLValue(const Expr *E);
3775 
3776   /// Same as EmitLValue but additionally we generate checking code to
3777   /// guard against undefined behavior.  This is only suitable when we know
3778   /// that the address will be used to access the object.
3779   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3780 
3781   RValue convertTempToRValue(Address addr, QualType type,
3782                              SourceLocation Loc);
3783 
3784   void EmitAtomicInit(Expr *E, LValue lvalue);
3785 
3786   bool LValueIsSuitableForInlineAtomic(LValue Src);
3787 
3788   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3789                         AggValueSlot Slot = AggValueSlot::ignored());
3790 
3791   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3792                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3793                         AggValueSlot slot = AggValueSlot::ignored());
3794 
3795   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3796 
3797   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3798                        bool IsVolatile, bool isInit);
3799 
3800   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3801       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3802       llvm::AtomicOrdering Success =
3803           llvm::AtomicOrdering::SequentiallyConsistent,
3804       llvm::AtomicOrdering Failure =
3805           llvm::AtomicOrdering::SequentiallyConsistent,
3806       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3807 
3808   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3809                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3810                         bool IsVolatile);
3811 
3812   /// EmitToMemory - Change a scalar value from its value
3813   /// representation to its in-memory representation.
3814   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3815 
3816   /// EmitFromMemory - Change a scalar value from its memory
3817   /// representation to its value representation.
3818   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3819 
3820   /// Check if the scalar \p Value is within the valid range for the given
3821   /// type \p Ty.
3822   ///
3823   /// Returns true if a check is needed (even if the range is unknown).
3824   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3825                             SourceLocation Loc);
3826 
3827   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3828   /// care to appropriately convert from the memory representation to
3829   /// the LLVM value representation.
3830   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3831                                 SourceLocation Loc,
3832                                 AlignmentSource Source = AlignmentSource::Type,
3833                                 bool isNontemporal = false) {
3834     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3835                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3836   }
3837 
3838   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3839                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3840                                 TBAAAccessInfo TBAAInfo,
3841                                 bool isNontemporal = false);
3842 
3843   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3844   /// care to appropriately convert from the memory representation to
3845   /// the LLVM value representation.  The l-value must be a simple
3846   /// l-value.
3847   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3848 
3849   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3850   /// care to appropriately convert from the memory representation to
3851   /// the LLVM value representation.
3852   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3853                          bool Volatile, QualType Ty,
3854                          AlignmentSource Source = AlignmentSource::Type,
3855                          bool isInit = false, bool isNontemporal = false) {
3856     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3857                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3858   }
3859 
3860   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3861                          bool Volatile, QualType Ty,
3862                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3863                          bool isInit = false, bool isNontemporal = false);
3864 
3865   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3866   /// care to appropriately convert from the memory representation to
3867   /// the LLVM value representation.  The l-value must be a simple
3868   /// l-value.  The isInit flag indicates whether this is an initialization.
3869   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3870   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3871 
3872   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3873   /// this method emits the address of the lvalue, then loads the result as an
3874   /// rvalue, returning the rvalue.
3875   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3876   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3877   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3878   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3879 
3880   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3881   /// lvalue, where both are guaranteed to the have the same type, and that type
3882   /// is 'Ty'.
3883   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3884   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3885   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3886 
3887   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3888   /// as EmitStoreThroughLValue.
3889   ///
3890   /// \param Result [out] - If non-null, this will be set to a Value* for the
3891   /// bit-field contents after the store, appropriate for use as the result of
3892   /// an assignment to the bit-field.
3893   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3894                                       llvm::Value **Result=nullptr);
3895 
3896   /// Emit an l-value for an assignment (simple or compound) of complex type.
3897   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3898   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3899   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3900                                              llvm::Value *&Result);
3901 
3902   // Note: only available for agg return types
3903   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3904   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3905   // Note: only available for agg return types
3906   LValue EmitCallExprLValue(const CallExpr *E);
3907   // Note: only available for agg return types
3908   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3909   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3910   LValue EmitStringLiteralLValue(const StringLiteral *E);
3911   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3912   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3913   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3914   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3915                                 bool Accessed = false);
3916   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3917   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3918                                  bool IsLowerBound = true);
3919   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3920   LValue EmitMemberExpr(const MemberExpr *E);
3921   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3922   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3923   LValue EmitInitListLValue(const InitListExpr *E);
3924   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
3925   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3926   LValue EmitCastLValue(const CastExpr *E);
3927   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3928   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3929 
3930   Address EmitExtVectorElementLValue(LValue V);
3931 
3932   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3933 
3934   Address EmitArrayToPointerDecay(const Expr *Array,
3935                                   LValueBaseInfo *BaseInfo = nullptr,
3936                                   TBAAAccessInfo *TBAAInfo = nullptr);
3937 
3938   class ConstantEmission {
3939     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3940     ConstantEmission(llvm::Constant *C, bool isReference)
3941       : ValueAndIsReference(C, isReference) {}
3942   public:
3943     ConstantEmission() {}
3944     static ConstantEmission forReference(llvm::Constant *C) {
3945       return ConstantEmission(C, true);
3946     }
3947     static ConstantEmission forValue(llvm::Constant *C) {
3948       return ConstantEmission(C, false);
3949     }
3950 
3951     explicit operator bool() const {
3952       return ValueAndIsReference.getOpaqueValue() != nullptr;
3953     }
3954 
3955     bool isReference() const { return ValueAndIsReference.getInt(); }
3956     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3957       assert(isReference());
3958       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3959                                             refExpr->getType());
3960     }
3961 
3962     llvm::Constant *getValue() const {
3963       assert(!isReference());
3964       return ValueAndIsReference.getPointer();
3965     }
3966   };
3967 
3968   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3969   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3970   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3971 
3972   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3973                                 AggValueSlot slot = AggValueSlot::ignored());
3974   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3975 
3976   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3977                               const ObjCIvarDecl *Ivar);
3978   llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
3979                                            const ObjCIvarDecl *Ivar);
3980   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3981   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3982 
3983   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3984   /// if the Field is a reference, this will return the address of the reference
3985   /// and not the address of the value stored in the reference.
3986   LValue EmitLValueForFieldInitialization(LValue Base,
3987                                           const FieldDecl* Field);
3988 
3989   LValue EmitLValueForIvar(QualType ObjectTy,
3990                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3991                            unsigned CVRQualifiers);
3992 
3993   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3994   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3995   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3996   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3997 
3998   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3999   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4000   LValue EmitStmtExprLValue(const StmtExpr *E);
4001   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4002   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4003   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4004 
4005   //===--------------------------------------------------------------------===//
4006   //                         Scalar Expression Emission
4007   //===--------------------------------------------------------------------===//
4008 
4009   /// EmitCall - Generate a call of the given function, expecting the given
4010   /// result type, and using the given argument list which specifies both the
4011   /// LLVM arguments and the types they were derived from.
4012   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4013                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4014                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4015                   SourceLocation Loc);
4016   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4017                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4018                   llvm::CallBase **callOrInvoke = nullptr,
4019                   bool IsMustTail = false) {
4020     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4021                     IsMustTail, SourceLocation());
4022   }
4023   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4024                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4025   RValue EmitCallExpr(const CallExpr *E,
4026                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4027   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4028   CGCallee EmitCallee(const Expr *E);
4029 
4030   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4031   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4032 
4033   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4034                                   const Twine &name = "");
4035   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4036                                   ArrayRef<llvm::Value *> args,
4037                                   const Twine &name = "");
4038   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4039                                           const Twine &name = "");
4040   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4041                                           ArrayRef<llvm::Value *> args,
4042                                           const Twine &name = "");
4043 
4044   SmallVector<llvm::OperandBundleDef, 1>
4045   getBundlesForFunclet(llvm::Value *Callee);
4046 
4047   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4048                                    ArrayRef<llvm::Value *> Args,
4049                                    const Twine &Name = "");
4050   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4051                                           ArrayRef<llvm::Value *> args,
4052                                           const Twine &name = "");
4053   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4054                                           const Twine &name = "");
4055   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4056                                        ArrayRef<llvm::Value *> args);
4057 
4058   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4059                                      NestedNameSpecifier *Qual,
4060                                      llvm::Type *Ty);
4061 
4062   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4063                                                CXXDtorType Type,
4064                                                const CXXRecordDecl *RD);
4065 
4066   // Return the copy constructor name with the prefix "__copy_constructor_"
4067   // removed.
4068   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4069                                                      CharUnits Alignment,
4070                                                      bool IsVolatile,
4071                                                      ASTContext &Ctx);
4072 
4073   // Return the destructor name with the prefix "__destructor_" removed.
4074   static std::string getNonTrivialDestructorStr(QualType QT,
4075                                                 CharUnits Alignment,
4076                                                 bool IsVolatile,
4077                                                 ASTContext &Ctx);
4078 
4079   // These functions emit calls to the special functions of non-trivial C
4080   // structs.
4081   void defaultInitNonTrivialCStructVar(LValue Dst);
4082   void callCStructDefaultConstructor(LValue Dst);
4083   void callCStructDestructor(LValue Dst);
4084   void callCStructCopyConstructor(LValue Dst, LValue Src);
4085   void callCStructMoveConstructor(LValue Dst, LValue Src);
4086   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4087   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4088 
4089   RValue
4090   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4091                               const CGCallee &Callee,
4092                               ReturnValueSlot ReturnValue, llvm::Value *This,
4093                               llvm::Value *ImplicitParam,
4094                               QualType ImplicitParamTy, const CallExpr *E,
4095                               CallArgList *RtlArgs);
4096   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4097                                llvm::Value *This, QualType ThisTy,
4098                                llvm::Value *ImplicitParam,
4099                                QualType ImplicitParamTy, const CallExpr *E);
4100   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4101                                ReturnValueSlot ReturnValue);
4102   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4103                                                const CXXMethodDecl *MD,
4104                                                ReturnValueSlot ReturnValue,
4105                                                bool HasQualifier,
4106                                                NestedNameSpecifier *Qualifier,
4107                                                bool IsArrow, const Expr *Base);
4108   // Compute the object pointer.
4109   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4110                                           llvm::Value *memberPtr,
4111                                           const MemberPointerType *memberPtrType,
4112                                           LValueBaseInfo *BaseInfo = nullptr,
4113                                           TBAAAccessInfo *TBAAInfo = nullptr);
4114   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4115                                       ReturnValueSlot ReturnValue);
4116 
4117   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4118                                        const CXXMethodDecl *MD,
4119                                        ReturnValueSlot ReturnValue);
4120   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4121 
4122   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4123                                 ReturnValueSlot ReturnValue);
4124 
4125   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4126   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4127   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4128 
4129   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4130                          const CallExpr *E, ReturnValueSlot ReturnValue);
4131 
4132   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4133 
4134   /// Emit IR for __builtin_os_log_format.
4135   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4136 
4137   /// Emit IR for __builtin_is_aligned.
4138   RValue EmitBuiltinIsAligned(const CallExpr *E);
4139   /// Emit IR for __builtin_align_up/__builtin_align_down.
4140   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4141 
4142   llvm::Function *generateBuiltinOSLogHelperFunction(
4143       const analyze_os_log::OSLogBufferLayout &Layout,
4144       CharUnits BufferAlignment);
4145 
4146   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4147 
4148   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4149   /// is unhandled by the current target.
4150   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4151                                      ReturnValueSlot ReturnValue);
4152 
4153   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4154                                              const llvm::CmpInst::Predicate Fp,
4155                                              const llvm::CmpInst::Predicate Ip,
4156                                              const llvm::Twine &Name = "");
4157   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4158                                   ReturnValueSlot ReturnValue,
4159                                   llvm::Triple::ArchType Arch);
4160   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4161                                      ReturnValueSlot ReturnValue,
4162                                      llvm::Triple::ArchType Arch);
4163   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4164                                      ReturnValueSlot ReturnValue,
4165                                      llvm::Triple::ArchType Arch);
4166   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4167                                    QualType RTy);
4168   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4169                                    QualType RTy);
4170 
4171   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4172                                          unsigned LLVMIntrinsic,
4173                                          unsigned AltLLVMIntrinsic,
4174                                          const char *NameHint,
4175                                          unsigned Modifier,
4176                                          const CallExpr *E,
4177                                          SmallVectorImpl<llvm::Value *> &Ops,
4178                                          Address PtrOp0, Address PtrOp1,
4179                                          llvm::Triple::ArchType Arch);
4180 
4181   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4182                                           unsigned Modifier, llvm::Type *ArgTy,
4183                                           const CallExpr *E);
4184   llvm::Value *EmitNeonCall(llvm::Function *F,
4185                             SmallVectorImpl<llvm::Value*> &O,
4186                             const char *name,
4187                             unsigned shift = 0, bool rightshift = false);
4188   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4189                              const llvm::ElementCount &Count);
4190   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4191   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4192                                    bool negateForRightShift);
4193   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4194                                  llvm::Type *Ty, bool usgn, const char *name);
4195   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4196   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4197   /// access builtin.  Only required if it can't be inferred from the base
4198   /// pointer operand.
4199   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4200 
4201   SmallVector<llvm::Type *, 2>
4202   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4203                       ArrayRef<llvm::Value *> Ops);
4204   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4205   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4206   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4207   llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4208                                     llvm::Type *ReturnType,
4209                                     ArrayRef<llvm::Value *> Ops);
4210   llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4211                                   llvm::Type *ReturnType,
4212                                   ArrayRef<llvm::Value *> Ops);
4213   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4214   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4215   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4216   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4217   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4218                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4219                             unsigned BuiltinID);
4220   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4221                            llvm::ArrayRef<llvm::Value *> Ops,
4222                            unsigned BuiltinID);
4223   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4224                                     llvm::ScalableVectorType *VTy);
4225   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4226                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4227                                  unsigned IntID);
4228   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4229                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4230                                    unsigned IntID);
4231   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4232                                  SmallVectorImpl<llvm::Value *> &Ops,
4233                                  unsigned BuiltinID, bool IsZExtReturn);
4234   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4235                                   SmallVectorImpl<llvm::Value *> &Ops,
4236                                   unsigned BuiltinID);
4237   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4238                                    SmallVectorImpl<llvm::Value *> &Ops,
4239                                    unsigned BuiltinID);
4240   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4241                                      SmallVectorImpl<llvm::Value *> &Ops,
4242                                      unsigned IntID);
4243   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4244                                  SmallVectorImpl<llvm::Value *> &Ops,
4245                                  unsigned IntID);
4246   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4247                                   SmallVectorImpl<llvm::Value *> &Ops,
4248                                   unsigned IntID);
4249   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4250 
4251   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4252                                       llvm::Triple::ArchType Arch);
4253   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4254 
4255   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4256   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4257   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4258   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4259   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4260   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4261   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4262                                           const CallExpr *E);
4263   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4264   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4265                                     ReturnValueSlot ReturnValue);
4266   llvm::Value *EmitLoongArchBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4267   void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4268                                llvm::AtomicOrdering &AO,
4269                                llvm::SyncScope::ID &SSID);
4270 
4271   enum class MSVCIntrin;
4272   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4273 
4274   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4275 
4276   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4277   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4278   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4279   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4280   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4281   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4282                                 const ObjCMethodDecl *MethodWithObjects);
4283   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4284   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4285                              ReturnValueSlot Return = ReturnValueSlot());
4286 
4287   /// Retrieves the default cleanup kind for an ARC cleanup.
4288   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4289   CleanupKind getARCCleanupKind() {
4290     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4291              ? NormalAndEHCleanup : NormalCleanup;
4292   }
4293 
4294   // ARC primitives.
4295   void EmitARCInitWeak(Address addr, llvm::Value *value);
4296   void EmitARCDestroyWeak(Address addr);
4297   llvm::Value *EmitARCLoadWeak(Address addr);
4298   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4299   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4300   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4301   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4302   void EmitARCCopyWeak(Address dst, Address src);
4303   void EmitARCMoveWeak(Address dst, Address src);
4304   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4305   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4306   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4307                                   bool resultIgnored);
4308   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4309                                       bool resultIgnored);
4310   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4311   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4312   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4313   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4314   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4315   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4316   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4317   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4318   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4319   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4320 
4321   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4322   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4323                                       llvm::Type *returnType);
4324   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4325 
4326   std::pair<LValue,llvm::Value*>
4327   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4328   std::pair<LValue,llvm::Value*>
4329   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4330   std::pair<LValue,llvm::Value*>
4331   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4332 
4333   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4334                              llvm::Type *returnType);
4335   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4336                                      llvm::Type *returnType);
4337   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4338 
4339   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4340   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4341   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4342 
4343   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4344   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4345                                             bool allowUnsafeClaim);
4346   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4347   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4348   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4349 
4350   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4351 
4352   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4353 
4354   static Destroyer destroyARCStrongImprecise;
4355   static Destroyer destroyARCStrongPrecise;
4356   static Destroyer destroyARCWeak;
4357   static Destroyer emitARCIntrinsicUse;
4358   static Destroyer destroyNonTrivialCStruct;
4359 
4360   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4361   llvm::Value *EmitObjCAutoreleasePoolPush();
4362   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4363   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4364   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4365 
4366   /// Emits a reference binding to the passed in expression.
4367   RValue EmitReferenceBindingToExpr(const Expr *E);
4368 
4369   //===--------------------------------------------------------------------===//
4370   //                           Expression Emission
4371   //===--------------------------------------------------------------------===//
4372 
4373   // Expressions are broken into three classes: scalar, complex, aggregate.
4374 
4375   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4376   /// scalar type, returning the result.
4377   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4378 
4379   /// Emit a conversion from the specified type to the specified destination
4380   /// type, both of which are LLVM scalar types.
4381   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4382                                     QualType DstTy, SourceLocation Loc);
4383 
4384   /// Emit a conversion from the specified complex type to the specified
4385   /// destination type, where the destination type is an LLVM scalar type.
4386   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4387                                              QualType DstTy,
4388                                              SourceLocation Loc);
4389 
4390   /// EmitAggExpr - Emit the computation of the specified expression
4391   /// of aggregate type.  The result is computed into the given slot,
4392   /// which may be null to indicate that the value is not needed.
4393   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4394 
4395   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4396   /// aggregate type into a temporary LValue.
4397   LValue EmitAggExprToLValue(const Expr *E);
4398 
4399   /// Build all the stores needed to initialize an aggregate at Dest with the
4400   /// value Val.
4401   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4402 
4403   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4404   /// make sure it survives garbage collection until this point.
4405   void EmitExtendGCLifetime(llvm::Value *object);
4406 
4407   /// EmitComplexExpr - Emit the computation of the specified expression of
4408   /// complex type, returning the result.
4409   ComplexPairTy EmitComplexExpr(const Expr *E,
4410                                 bool IgnoreReal = false,
4411                                 bool IgnoreImag = false);
4412 
4413   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4414   /// type and place its result into the specified l-value.
4415   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4416 
4417   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4418   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4419 
4420   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4421   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4422 
4423   ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4424   llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4425   ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4426   ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
4427 
4428   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4429   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4430 
4431   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4432   /// global variable that has already been created for it.  If the initializer
4433   /// has a different type than GV does, this may free GV and return a different
4434   /// one.  Otherwise it just returns GV.
4435   llvm::GlobalVariable *
4436   AddInitializerToStaticVarDecl(const VarDecl &D,
4437                                 llvm::GlobalVariable *GV);
4438 
4439   // Emit an @llvm.invariant.start call for the given memory region.
4440   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4441 
4442   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4443   /// variable with global storage.
4444   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4445                                 bool PerformInit);
4446 
4447   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4448                                    llvm::Constant *Addr);
4449 
4450   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4451                                       llvm::FunctionCallee Dtor,
4452                                       llvm::Constant *Addr,
4453                                       llvm::FunctionCallee &AtExit);
4454 
4455   /// Call atexit() with a function that passes the given argument to
4456   /// the given function.
4457   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4458                                     llvm::Constant *addr);
4459 
4460   /// Call atexit() with function dtorStub.
4461   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4462 
4463   /// Call unatexit() with function dtorStub.
4464   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4465 
4466   /// Emit code in this function to perform a guarded variable
4467   /// initialization.  Guarded initializations are used when it's not
4468   /// possible to prove that an initialization will be done exactly
4469   /// once, e.g. with a static local variable or a static data member
4470   /// of a class template.
4471   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4472                           bool PerformInit);
4473 
4474   enum class GuardKind { VariableGuard, TlsGuard };
4475 
4476   /// Emit a branch to select whether or not to perform guarded initialization.
4477   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4478                                 llvm::BasicBlock *InitBlock,
4479                                 llvm::BasicBlock *NoInitBlock,
4480                                 GuardKind Kind, const VarDecl *D);
4481 
4482   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4483   /// variables.
4484   void
4485   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4486                             ArrayRef<llvm::Function *> CXXThreadLocals,
4487                             ConstantAddress Guard = ConstantAddress::invalid());
4488 
4489   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4490   /// variables.
4491   void GenerateCXXGlobalCleanUpFunc(
4492       llvm::Function *Fn,
4493       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4494                           llvm::Constant *>>
4495           DtorsOrStermFinalizers);
4496 
4497   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4498                                         const VarDecl *D,
4499                                         llvm::GlobalVariable *Addr,
4500                                         bool PerformInit);
4501 
4502   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4503 
4504   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4505 
4506   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4507 
4508   RValue EmitAtomicExpr(AtomicExpr *E);
4509 
4510   //===--------------------------------------------------------------------===//
4511   //                         Annotations Emission
4512   //===--------------------------------------------------------------------===//
4513 
4514   /// Emit an annotation call (intrinsic).
4515   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4516                                   llvm::Value *AnnotatedVal,
4517                                   StringRef AnnotationStr,
4518                                   SourceLocation Location,
4519                                   const AnnotateAttr *Attr);
4520 
4521   /// Emit local annotations for the local variable V, declared by D.
4522   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4523 
4524   /// Emit field annotations for the given field & value. Returns the
4525   /// annotation result.
4526   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4527 
4528   //===--------------------------------------------------------------------===//
4529   //                             Internal Helpers
4530   //===--------------------------------------------------------------------===//
4531 
4532   /// ContainsLabel - Return true if the statement contains a label in it.  If
4533   /// this statement is not executed normally, it not containing a label means
4534   /// that we can just remove the code.
4535   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4536 
4537   /// containsBreak - Return true if the statement contains a break out of it.
4538   /// If the statement (recursively) contains a switch or loop with a break
4539   /// inside of it, this is fine.
4540   static bool containsBreak(const Stmt *S);
4541 
4542   /// Determine if the given statement might introduce a declaration into the
4543   /// current scope, by being a (possibly-labelled) DeclStmt.
4544   static bool mightAddDeclToScope(const Stmt *S);
4545 
4546   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4547   /// to a constant, or if it does but contains a label, return false.  If it
4548   /// constant folds return true and set the boolean result in Result.
4549   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4550                                     bool AllowLabels = false);
4551 
4552   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4553   /// to a constant, or if it does but contains a label, return false.  If it
4554   /// constant folds return true and set the folded value.
4555   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4556                                     bool AllowLabels = false);
4557 
4558   /// isInstrumentedCondition - Determine whether the given condition is an
4559   /// instrumentable condition (i.e. no "&&" or "||").
4560   static bool isInstrumentedCondition(const Expr *C);
4561 
4562   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4563   /// increments a profile counter based on the semantics of the given logical
4564   /// operator opcode.  This is used to instrument branch condition coverage
4565   /// for logical operators.
4566   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4567                                 llvm::BasicBlock *TrueBlock,
4568                                 llvm::BasicBlock *FalseBlock,
4569                                 uint64_t TrueCount = 0,
4570                                 Stmt::Likelihood LH = Stmt::LH_None,
4571                                 const Expr *CntrIdx = nullptr);
4572 
4573   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4574   /// if statement) to the specified blocks.  Based on the condition, this might
4575   /// try to simplify the codegen of the conditional based on the branch.
4576   /// TrueCount should be the number of times we expect the condition to
4577   /// evaluate to true based on PGO data.
4578   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4579                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4580                             Stmt::Likelihood LH = Stmt::LH_None);
4581 
4582   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4583   /// nonnull, if \p LHS is marked _Nonnull.
4584   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4585 
4586   /// An enumeration which makes it easier to specify whether or not an
4587   /// operation is a subtraction.
4588   enum { NotSubtraction = false, IsSubtraction = true };
4589 
4590   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4591   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4592   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4593   /// \p IsSubtraction indicates whether the expression used to form the GEP
4594   /// is a subtraction.
4595   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4596                                       ArrayRef<llvm::Value *> IdxList,
4597                                       bool SignedIndices,
4598                                       bool IsSubtraction,
4599                                       SourceLocation Loc,
4600                                       const Twine &Name = "");
4601 
4602   /// Specifies which type of sanitizer check to apply when handling a
4603   /// particular builtin.
4604   enum BuiltinCheckKind {
4605     BCK_CTZPassedZero,
4606     BCK_CLZPassedZero,
4607   };
4608 
4609   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4610   /// enabled, a runtime check specified by \p Kind is also emitted.
4611   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4612 
4613   /// Emit a description of a type in a format suitable for passing to
4614   /// a runtime sanitizer handler.
4615   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4616 
4617   /// Convert a value into a format suitable for passing to a runtime
4618   /// sanitizer handler.
4619   llvm::Value *EmitCheckValue(llvm::Value *V);
4620 
4621   /// Emit a description of a source location in a format suitable for
4622   /// passing to a runtime sanitizer handler.
4623   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4624 
4625   void EmitKCFIOperandBundle(const CGCallee &Callee,
4626                              SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4627 
4628   /// Create a basic block that will either trap or call a handler function in
4629   /// the UBSan runtime with the provided arguments, and create a conditional
4630   /// branch to it.
4631   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4632                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4633                  ArrayRef<llvm::Value *> DynamicArgs);
4634 
4635   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4636   /// if Cond if false.
4637   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4638                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4639                             ArrayRef<llvm::Constant *> StaticArgs);
4640 
4641   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4642   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4643   void EmitUnreachable(SourceLocation Loc);
4644 
4645   /// Create a basic block that will call the trap intrinsic, and emit a
4646   /// conditional branch to it, for the -ftrapv checks.
4647   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4648 
4649   /// Emit a call to trap or debugtrap and attach function attribute
4650   /// "trap-func-name" if specified.
4651   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4652 
4653   /// Emit a stub for the cross-DSO CFI check function.
4654   void EmitCfiCheckStub();
4655 
4656   /// Emit a cross-DSO CFI failure handling function.
4657   void EmitCfiCheckFail();
4658 
4659   /// Create a check for a function parameter that may potentially be
4660   /// declared as non-null.
4661   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4662                            AbstractCallee AC, unsigned ParmNum);
4663 
4664   /// EmitCallArg - Emit a single call argument.
4665   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4666 
4667   /// EmitDelegateCallArg - We are performing a delegate call; that
4668   /// is, the current function is delegating to another one.  Produce
4669   /// a r-value suitable for passing the given parameter.
4670   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4671                            SourceLocation loc);
4672 
4673   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4674   /// point operation, expressed as the maximum relative error in ulp.
4675   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4676 
4677   /// Set the codegen fast-math flags.
4678   void SetFastMathFlags(FPOptions FPFeatures);
4679 
4680   // Truncate or extend a boolean vector to the requested number of elements.
4681   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4682                                      unsigned NumElementsDst,
4683                                      const llvm::Twine &Name = "");
4684 
4685 private:
4686   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4687   void EmitReturnOfRValue(RValue RV, QualType Ty);
4688 
4689   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4690 
4691   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4692       DeferredReplacements;
4693 
4694   /// Set the address of a local variable.
4695   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4696     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4697     LocalDeclMap.insert({VD, Addr});
4698   }
4699 
4700   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4701   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4702   ///
4703   /// \param AI - The first function argument of the expansion.
4704   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4705                           llvm::Function::arg_iterator &AI);
4706 
4707   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4708   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4709   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4710   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4711                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4712                         unsigned &IRCallArgPos);
4713 
4714   std::pair<llvm::Value *, llvm::Type *>
4715   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4716                std::string &ConstraintStr);
4717 
4718   std::pair<llvm::Value *, llvm::Type *>
4719   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4720                      QualType InputType, std::string &ConstraintStr,
4721                      SourceLocation Loc);
4722 
4723   /// Attempts to statically evaluate the object size of E. If that
4724   /// fails, emits code to figure the size of E out for us. This is
4725   /// pass_object_size aware.
4726   ///
4727   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4728   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4729                                                llvm::IntegerType *ResType,
4730                                                llvm::Value *EmittedE,
4731                                                bool IsDynamic);
4732 
4733   /// Emits the size of E, as required by __builtin_object_size. This
4734   /// function is aware of pass_object_size parameters, and will act accordingly
4735   /// if E is a parameter with the pass_object_size attribute.
4736   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4737                                      llvm::IntegerType *ResType,
4738                                      llvm::Value *EmittedE,
4739                                      bool IsDynamic);
4740 
4741   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4742                                        Address Loc);
4743 
4744 public:
4745   enum class EvaluationOrder {
4746     ///! No language constraints on evaluation order.
4747     Default,
4748     ///! Language semantics require left-to-right evaluation.
4749     ForceLeftToRight,
4750     ///! Language semantics require right-to-left evaluation.
4751     ForceRightToLeft
4752   };
4753 
4754   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4755   // an ObjCMethodDecl.
4756   struct PrototypeWrapper {
4757     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4758 
4759     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4760     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4761   };
4762 
4763   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4764                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4765                     AbstractCallee AC = AbstractCallee(),
4766                     unsigned ParamsToSkip = 0,
4767                     EvaluationOrder Order = EvaluationOrder::Default);
4768 
4769   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4770   /// emit the value and compute our best estimate of the alignment of the
4771   /// pointee.
4772   ///
4773   /// \param BaseInfo - If non-null, this will be initialized with
4774   /// information about the source of the alignment and the may-alias
4775   /// attribute.  Note that this function will conservatively fall back on
4776   /// the type when it doesn't recognize the expression and may-alias will
4777   /// be set to false.
4778   ///
4779   /// One reasonable way to use this information is when there's a language
4780   /// guarantee that the pointer must be aligned to some stricter value, and
4781   /// we're simply trying to ensure that sufficiently obvious uses of under-
4782   /// aligned objects don't get miscompiled; for example, a placement new
4783   /// into the address of a local variable.  In such a case, it's quite
4784   /// reasonable to just ignore the returned alignment when it isn't from an
4785   /// explicit source.
4786   Address EmitPointerWithAlignment(const Expr *Addr,
4787                                    LValueBaseInfo *BaseInfo = nullptr,
4788                                    TBAAAccessInfo *TBAAInfo = nullptr);
4789 
4790   /// If \p E references a parameter with pass_object_size info or a constant
4791   /// array size modifier, emit the object size divided by the size of \p EltTy.
4792   /// Otherwise return null.
4793   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4794 
4795   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4796 
4797   struct MultiVersionResolverOption {
4798     llvm::Function *Function;
4799     struct Conds {
4800       StringRef Architecture;
4801       llvm::SmallVector<StringRef, 8> Features;
4802 
4803       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4804           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4805     } Conditions;
4806 
4807     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4808                                ArrayRef<StringRef> Feats)
4809         : Function(F), Conditions(Arch, Feats) {}
4810   };
4811 
4812   // Emits the body of a multiversion function's resolver. Assumes that the
4813   // options are already sorted in the proper order, with the 'default' option
4814   // last (if it exists).
4815   void EmitMultiVersionResolver(llvm::Function *Resolver,
4816                                 ArrayRef<MultiVersionResolverOption> Options);
4817   void
4818   EmitX86MultiVersionResolver(llvm::Function *Resolver,
4819                               ArrayRef<MultiVersionResolverOption> Options);
4820   void
4821   EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
4822                                   ArrayRef<MultiVersionResolverOption> Options);
4823 
4824 private:
4825   QualType getVarArgType(const Expr *Arg);
4826 
4827   void EmitDeclMetadata();
4828 
4829   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4830                                   const AutoVarEmission &emission);
4831 
4832   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4833 
4834   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4835   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4836   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4837   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4838   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4839   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4840   llvm::Value *EmitX86CpuInit();
4841   llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO);
4842   llvm::Value *EmitAArch64CpuInit();
4843   llvm::Value *
4844   FormAArch64ResolverCondition(const MultiVersionResolverOption &RO);
4845   llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
4846 };
4847 
4848 
4849 inline DominatingLLVMValue::saved_type
4850 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4851   if (!needsSaving(value)) return saved_type(value, false);
4852 
4853   // Otherwise, we need an alloca.
4854   auto align = CharUnits::fromQuantity(
4855       CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
4856   Address alloca =
4857       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4858   CGF.Builder.CreateStore(value, alloca);
4859 
4860   return saved_type(alloca.getPointer(), true);
4861 }
4862 
4863 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4864                                                  saved_type value) {
4865   // If the value says it wasn't saved, trust that it's still dominating.
4866   if (!value.getInt()) return value.getPointer();
4867 
4868   // Otherwise, it should be an alloca instruction, as set up in save().
4869   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4870   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4871                                        alloca->getAlign());
4872 }
4873 
4874 }  // end namespace CodeGen
4875 
4876 // Map the LangOption for floating point exception behavior into
4877 // the corresponding enum in the IR.
4878 llvm::fp::ExceptionBehavior
4879 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4880 }  // end namespace clang
4881 
4882 #endif
4883