xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.h (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class BlockDecl;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class EnumConstantDecl;
64 class FunctionDecl;
65 class FunctionProtoType;
66 class LabelStmt;
67 class ObjCContainerDecl;
68 class ObjCInterfaceDecl;
69 class ObjCIvarDecl;
70 class ObjCMethodDecl;
71 class ObjCImplementationDecl;
72 class ObjCPropertyImplDecl;
73 class TargetInfo;
74 class VarDecl;
75 class ObjCForCollectionStmt;
76 class ObjCAtTryStmt;
77 class ObjCAtThrowStmt;
78 class ObjCAtSynchronizedStmt;
79 class ObjCAutoreleasePoolStmt;
80 class OMPUseDevicePtrClause;
81 class OMPUseDeviceAddrClause;
82 class ReturnsNonNullAttr;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGRecordLayout;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFlags;
100 class BlockFieldFlags;
101 class RegionCodeGenTy;
102 class TargetCodeGenInfo;
103 struct OMPTaskDataTy;
104 struct CGCoroData;
105 
106 /// The kind of evaluation to perform on values of a particular
107 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
108 /// CGExprAgg?
109 ///
110 /// TODO: should vectors maybe be split out into their own thing?
111 enum TypeEvaluationKind {
112   TEK_Scalar,
113   TEK_Complex,
114   TEK_Aggregate
115 };
116 
117 #define LIST_SANITIZER_CHECKS                                                  \
118   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
119   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
120   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
121   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
122   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
123   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
124   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
125   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
126   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
127   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
128   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
129   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
130   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
131   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
132   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
133   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
134   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
135   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
136   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
137   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
138   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
139   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
140   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
141   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
142   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
143 
144 enum SanitizerHandler {
145 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
146   LIST_SANITIZER_CHECKS
147 #undef SANITIZER_CHECK
148 };
149 
150 /// Helper class with most of the code for saving a value for a
151 /// conditional expression cleanup.
152 struct DominatingLLVMValue {
153   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
154 
155   /// Answer whether the given value needs extra work to be saved.
156   static bool needsSaving(llvm::Value *value) {
157     // If it's not an instruction, we don't need to save.
158     if (!isa<llvm::Instruction>(value)) return false;
159 
160     // If it's an instruction in the entry block, we don't need to save.
161     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
162     return (block != &block->getParent()->getEntryBlock());
163   }
164 
165   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
166   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
167 };
168 
169 /// A partial specialization of DominatingValue for llvm::Values that
170 /// might be llvm::Instructions.
171 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
172   typedef T *type;
173   static type restore(CodeGenFunction &CGF, saved_type value) {
174     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
175   }
176 };
177 
178 /// A specialization of DominatingValue for Address.
179 template <> struct DominatingValue<Address> {
180   typedef Address type;
181 
182   struct saved_type {
183     DominatingLLVMValue::saved_type SavedValue;
184     CharUnits Alignment;
185   };
186 
187   static bool needsSaving(type value) {
188     return DominatingLLVMValue::needsSaving(value.getPointer());
189   }
190   static saved_type save(CodeGenFunction &CGF, type value) {
191     return { DominatingLLVMValue::save(CGF, value.getPointer()),
192              value.getAlignment() };
193   }
194   static type restore(CodeGenFunction &CGF, saved_type value) {
195     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
196                    value.Alignment);
197   }
198 };
199 
200 /// A specialization of DominatingValue for RValue.
201 template <> struct DominatingValue<RValue> {
202   typedef RValue type;
203   class saved_type {
204     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
205                 AggregateAddress, ComplexAddress };
206 
207     llvm::Value *Value;
208     unsigned K : 3;
209     unsigned Align : 29;
210     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
211       : Value(v), K(k), Align(a) {}
212 
213   public:
214     static bool needsSaving(RValue value);
215     static saved_type save(CodeGenFunction &CGF, RValue value);
216     RValue restore(CodeGenFunction &CGF);
217 
218     // implementations in CGCleanup.cpp
219   };
220 
221   static bool needsSaving(type value) {
222     return saved_type::needsSaving(value);
223   }
224   static saved_type save(CodeGenFunction &CGF, type value) {
225     return saved_type::save(CGF, value);
226   }
227   static type restore(CodeGenFunction &CGF, saved_type value) {
228     return value.restore(CGF);
229   }
230 };
231 
232 /// CodeGenFunction - This class organizes the per-function state that is used
233 /// while generating LLVM code.
234 class CodeGenFunction : public CodeGenTypeCache {
235   CodeGenFunction(const CodeGenFunction &) = delete;
236   void operator=(const CodeGenFunction &) = delete;
237 
238   friend class CGCXXABI;
239 public:
240   /// A jump destination is an abstract label, branching to which may
241   /// require a jump out through normal cleanups.
242   struct JumpDest {
243     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
244     JumpDest(llvm::BasicBlock *Block,
245              EHScopeStack::stable_iterator Depth,
246              unsigned Index)
247       : Block(Block), ScopeDepth(Depth), Index(Index) {}
248 
249     bool isValid() const { return Block != nullptr; }
250     llvm::BasicBlock *getBlock() const { return Block; }
251     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
252     unsigned getDestIndex() const { return Index; }
253 
254     // This should be used cautiously.
255     void setScopeDepth(EHScopeStack::stable_iterator depth) {
256       ScopeDepth = depth;
257     }
258 
259   private:
260     llvm::BasicBlock *Block;
261     EHScopeStack::stable_iterator ScopeDepth;
262     unsigned Index;
263   };
264 
265   CodeGenModule &CGM;  // Per-module state.
266   const TargetInfo &Target;
267 
268   // For EH/SEH outlined funclets, this field points to parent's CGF
269   CodeGenFunction *ParentCGF = nullptr;
270 
271   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
272   LoopInfoStack LoopStack;
273   CGBuilderTy Builder;
274 
275   // Stores variables for which we can't generate correct lifetime markers
276   // because of jumps.
277   VarBypassDetector Bypasses;
278 
279   // CodeGen lambda for loops and support for ordered clause
280   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
281                                   JumpDest)>
282       CodeGenLoopTy;
283   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
284                                   const unsigned, const bool)>
285       CodeGenOrderedTy;
286 
287   // Codegen lambda for loop bounds in worksharing loop constructs
288   typedef llvm::function_ref<std::pair<LValue, LValue>(
289       CodeGenFunction &, const OMPExecutableDirective &S)>
290       CodeGenLoopBoundsTy;
291 
292   // Codegen lambda for loop bounds in dispatch-based loop implementation
293   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
294       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
295       Address UB)>
296       CodeGenDispatchBoundsTy;
297 
298   /// CGBuilder insert helper. This function is called after an
299   /// instruction is created using Builder.
300   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
301                     llvm::BasicBlock *BB,
302                     llvm::BasicBlock::iterator InsertPt) const;
303 
304   /// CurFuncDecl - Holds the Decl for the current outermost
305   /// non-closure context.
306   const Decl *CurFuncDecl;
307   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
308   const Decl *CurCodeDecl;
309   const CGFunctionInfo *CurFnInfo;
310   QualType FnRetTy;
311   llvm::Function *CurFn = nullptr;
312 
313   // Holds coroutine data if the current function is a coroutine. We use a
314   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
315   // in this header.
316   struct CGCoroInfo {
317     std::unique_ptr<CGCoroData> Data;
318     CGCoroInfo();
319     ~CGCoroInfo();
320   };
321   CGCoroInfo CurCoro;
322 
323   bool isCoroutine() const {
324     return CurCoro.Data != nullptr;
325   }
326 
327   /// CurGD - The GlobalDecl for the current function being compiled.
328   GlobalDecl CurGD;
329 
330   /// PrologueCleanupDepth - The cleanup depth enclosing all the
331   /// cleanups associated with the parameters.
332   EHScopeStack::stable_iterator PrologueCleanupDepth;
333 
334   /// ReturnBlock - Unified return block.
335   JumpDest ReturnBlock;
336 
337   /// ReturnValue - The temporary alloca to hold the return
338   /// value. This is invalid iff the function has no return value.
339   Address ReturnValue = Address::invalid();
340 
341   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
342   /// This is invalid if sret is not in use.
343   Address ReturnValuePointer = Address::invalid();
344 
345   /// If a return statement is being visited, this holds the return statment's
346   /// result expression.
347   const Expr *RetExpr = nullptr;
348 
349   /// Return true if a label was seen in the current scope.
350   bool hasLabelBeenSeenInCurrentScope() const {
351     if (CurLexicalScope)
352       return CurLexicalScope->hasLabels();
353     return !LabelMap.empty();
354   }
355 
356   /// AllocaInsertPoint - This is an instruction in the entry block before which
357   /// we prefer to insert allocas.
358   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
359 
360   /// API for captured statement code generation.
361   class CGCapturedStmtInfo {
362   public:
363     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
364         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
365     explicit CGCapturedStmtInfo(const CapturedStmt &S,
366                                 CapturedRegionKind K = CR_Default)
367       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
368 
369       RecordDecl::field_iterator Field =
370         S.getCapturedRecordDecl()->field_begin();
371       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
372                                                 E = S.capture_end();
373            I != E; ++I, ++Field) {
374         if (I->capturesThis())
375           CXXThisFieldDecl = *Field;
376         else if (I->capturesVariable())
377           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
378         else if (I->capturesVariableByCopy())
379           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
380       }
381     }
382 
383     virtual ~CGCapturedStmtInfo();
384 
385     CapturedRegionKind getKind() const { return Kind; }
386 
387     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
388     // Retrieve the value of the context parameter.
389     virtual llvm::Value *getContextValue() const { return ThisValue; }
390 
391     /// Lookup the captured field decl for a variable.
392     virtual const FieldDecl *lookup(const VarDecl *VD) const {
393       return CaptureFields.lookup(VD->getCanonicalDecl());
394     }
395 
396     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
397     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
398 
399     static bool classof(const CGCapturedStmtInfo *) {
400       return true;
401     }
402 
403     /// Emit the captured statement body.
404     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
405       CGF.incrementProfileCounter(S);
406       CGF.EmitStmt(S);
407     }
408 
409     /// Get the name of the capture helper.
410     virtual StringRef getHelperName() const { return "__captured_stmt"; }
411 
412   private:
413     /// The kind of captured statement being generated.
414     CapturedRegionKind Kind;
415 
416     /// Keep the map between VarDecl and FieldDecl.
417     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
418 
419     /// The base address of the captured record, passed in as the first
420     /// argument of the parallel region function.
421     llvm::Value *ThisValue;
422 
423     /// Captured 'this' type.
424     FieldDecl *CXXThisFieldDecl;
425   };
426   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
427 
428   /// RAII for correct setting/restoring of CapturedStmtInfo.
429   class CGCapturedStmtRAII {
430   private:
431     CodeGenFunction &CGF;
432     CGCapturedStmtInfo *PrevCapturedStmtInfo;
433   public:
434     CGCapturedStmtRAII(CodeGenFunction &CGF,
435                        CGCapturedStmtInfo *NewCapturedStmtInfo)
436         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
437       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
438     }
439     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
440   };
441 
442   /// An abstract representation of regular/ObjC call/message targets.
443   class AbstractCallee {
444     /// The function declaration of the callee.
445     const Decl *CalleeDecl;
446 
447   public:
448     AbstractCallee() : CalleeDecl(nullptr) {}
449     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
450     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
451     bool hasFunctionDecl() const {
452       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
453     }
454     const Decl *getDecl() const { return CalleeDecl; }
455     unsigned getNumParams() const {
456       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
457         return FD->getNumParams();
458       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
459     }
460     const ParmVarDecl *getParamDecl(unsigned I) const {
461       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
462         return FD->getParamDecl(I);
463       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
464     }
465   };
466 
467   /// Sanitizers enabled for this function.
468   SanitizerSet SanOpts;
469 
470   /// True if CodeGen currently emits code implementing sanitizer checks.
471   bool IsSanitizerScope = false;
472 
473   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
474   class SanitizerScope {
475     CodeGenFunction *CGF;
476   public:
477     SanitizerScope(CodeGenFunction *CGF);
478     ~SanitizerScope();
479   };
480 
481   /// In C++, whether we are code generating a thunk.  This controls whether we
482   /// should emit cleanups.
483   bool CurFuncIsThunk = false;
484 
485   /// In ARC, whether we should autorelease the return value.
486   bool AutoreleaseResult = false;
487 
488   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
489   /// potentially set the return value.
490   bool SawAsmBlock = false;
491 
492   const NamedDecl *CurSEHParent = nullptr;
493 
494   /// True if the current function is an outlined SEH helper. This can be a
495   /// finally block or filter expression.
496   bool IsOutlinedSEHHelper = false;
497 
498   /// True if CodeGen currently emits code inside presereved access index
499   /// region.
500   bool IsInPreservedAIRegion = false;
501 
502   /// True if the current statement has nomerge attribute.
503   bool InNoMergeAttributedStmt = false;
504 
505   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
506   llvm::Value *BlockPointer = nullptr;
507 
508   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
509   FieldDecl *LambdaThisCaptureField = nullptr;
510 
511   /// A mapping from NRVO variables to the flags used to indicate
512   /// when the NRVO has been applied to this variable.
513   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
514 
515   EHScopeStack EHStack;
516   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
517   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
518 
519   llvm::Instruction *CurrentFuncletPad = nullptr;
520 
521   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
522     llvm::Value *Addr;
523     llvm::Value *Size;
524 
525   public:
526     CallLifetimeEnd(Address addr, llvm::Value *size)
527         : Addr(addr.getPointer()), Size(size) {}
528 
529     void Emit(CodeGenFunction &CGF, Flags flags) override {
530       CGF.EmitLifetimeEnd(Size, Addr);
531     }
532   };
533 
534   /// Header for data within LifetimeExtendedCleanupStack.
535   struct LifetimeExtendedCleanupHeader {
536     /// The size of the following cleanup object.
537     unsigned Size;
538     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
539     unsigned Kind : 31;
540     /// Whether this is a conditional cleanup.
541     unsigned IsConditional : 1;
542 
543     size_t getSize() const { return Size; }
544     CleanupKind getKind() const { return (CleanupKind)Kind; }
545     bool isConditional() const { return IsConditional; }
546   };
547 
548   /// i32s containing the indexes of the cleanup destinations.
549   Address NormalCleanupDest = Address::invalid();
550 
551   unsigned NextCleanupDestIndex = 1;
552 
553   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
554   llvm::BasicBlock *EHResumeBlock = nullptr;
555 
556   /// The exception slot.  All landing pads write the current exception pointer
557   /// into this alloca.
558   llvm::Value *ExceptionSlot = nullptr;
559 
560   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
561   /// write the current selector value into this alloca.
562   llvm::AllocaInst *EHSelectorSlot = nullptr;
563 
564   /// A stack of exception code slots. Entering an __except block pushes a slot
565   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
566   /// a value from the top of the stack.
567   SmallVector<Address, 1> SEHCodeSlotStack;
568 
569   /// Value returned by __exception_info intrinsic.
570   llvm::Value *SEHInfo = nullptr;
571 
572   /// Emits a landing pad for the current EH stack.
573   llvm::BasicBlock *EmitLandingPad();
574 
575   llvm::BasicBlock *getInvokeDestImpl();
576 
577   /// Parent loop-based directive for scan directive.
578   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
579   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
580   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
581   llvm::BasicBlock *OMPScanExitBlock = nullptr;
582   llvm::BasicBlock *OMPScanDispatch = nullptr;
583   bool OMPFirstScanLoop = false;
584 
585   /// Manages parent directive for scan directives.
586   class ParentLoopDirectiveForScanRegion {
587     CodeGenFunction &CGF;
588     const OMPExecutableDirective *ParentLoopDirectiveForScan;
589 
590   public:
591     ParentLoopDirectiveForScanRegion(
592         CodeGenFunction &CGF,
593         const OMPExecutableDirective &ParentLoopDirectiveForScan)
594         : CGF(CGF),
595           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
596       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
597     }
598     ~ParentLoopDirectiveForScanRegion() {
599       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
600     }
601   };
602 
603   template <class T>
604   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
605     return DominatingValue<T>::save(*this, value);
606   }
607 
608   class CGFPOptionsRAII {
609   public:
610     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
611     ~CGFPOptionsRAII();
612 
613   private:
614     CodeGenFunction &CGF;
615     FPOptions OldFPFeatures;
616     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
617   };
618   FPOptions CurFPFeatures;
619 
620 public:
621   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
622   /// rethrows.
623   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
624 
625   /// A class controlling the emission of a finally block.
626   class FinallyInfo {
627     /// Where the catchall's edge through the cleanup should go.
628     JumpDest RethrowDest;
629 
630     /// A function to call to enter the catch.
631     llvm::FunctionCallee BeginCatchFn;
632 
633     /// An i1 variable indicating whether or not the @finally is
634     /// running for an exception.
635     llvm::AllocaInst *ForEHVar;
636 
637     /// An i8* variable into which the exception pointer to rethrow
638     /// has been saved.
639     llvm::AllocaInst *SavedExnVar;
640 
641   public:
642     void enter(CodeGenFunction &CGF, const Stmt *Finally,
643                llvm::FunctionCallee beginCatchFn,
644                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
645     void exit(CodeGenFunction &CGF);
646   };
647 
648   /// Returns true inside SEH __try blocks.
649   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
650 
651   /// Returns true while emitting a cleanuppad.
652   bool isCleanupPadScope() const {
653     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
654   }
655 
656   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
657   /// current full-expression.  Safe against the possibility that
658   /// we're currently inside a conditionally-evaluated expression.
659   template <class T, class... As>
660   void pushFullExprCleanup(CleanupKind kind, As... A) {
661     // If we're not in a conditional branch, or if none of the
662     // arguments requires saving, then use the unconditional cleanup.
663     if (!isInConditionalBranch())
664       return EHStack.pushCleanup<T>(kind, A...);
665 
666     // Stash values in a tuple so we can guarantee the order of saves.
667     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
668     SavedTuple Saved{saveValueInCond(A)...};
669 
670     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
671     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
672     initFullExprCleanup();
673   }
674 
675   /// Queue a cleanup to be pushed after finishing the current
676   /// full-expression.
677   template <class T, class... As>
678   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
679     if (!isInConditionalBranch())
680       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
681 
682     Address ActiveFlag = createCleanupActiveFlag();
683     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
684            "cleanup active flag should never need saving");
685 
686     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
687     SavedTuple Saved{saveValueInCond(A)...};
688 
689     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
690     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
691   }
692 
693   template <class T, class... As>
694   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
695                                     As... A) {
696     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
697                                             ActiveFlag.isValid()};
698 
699     size_t OldSize = LifetimeExtendedCleanupStack.size();
700     LifetimeExtendedCleanupStack.resize(
701         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
702         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
703 
704     static_assert(sizeof(Header) % alignof(T) == 0,
705                   "Cleanup will be allocated on misaligned address");
706     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
707     new (Buffer) LifetimeExtendedCleanupHeader(Header);
708     new (Buffer + sizeof(Header)) T(A...);
709     if (Header.IsConditional)
710       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
711   }
712 
713   /// Set up the last cleanup that was pushed as a conditional
714   /// full-expression cleanup.
715   void initFullExprCleanup() {
716     initFullExprCleanupWithFlag(createCleanupActiveFlag());
717   }
718 
719   void initFullExprCleanupWithFlag(Address ActiveFlag);
720   Address createCleanupActiveFlag();
721 
722   /// PushDestructorCleanup - Push a cleanup to call the
723   /// complete-object destructor of an object of the given type at the
724   /// given address.  Does nothing if T is not a C++ class type with a
725   /// non-trivial destructor.
726   void PushDestructorCleanup(QualType T, Address Addr);
727 
728   /// PushDestructorCleanup - Push a cleanup to call the
729   /// complete-object variant of the given destructor on the object at
730   /// the given address.
731   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
732                              Address Addr);
733 
734   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
735   /// process all branch fixups.
736   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
737 
738   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
739   /// The block cannot be reactivated.  Pops it if it's the top of the
740   /// stack.
741   ///
742   /// \param DominatingIP - An instruction which is known to
743   ///   dominate the current IP (if set) and which lies along
744   ///   all paths of execution between the current IP and the
745   ///   the point at which the cleanup comes into scope.
746   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
747                               llvm::Instruction *DominatingIP);
748 
749   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
750   /// Cannot be used to resurrect a deactivated cleanup.
751   ///
752   /// \param DominatingIP - An instruction which is known to
753   ///   dominate the current IP (if set) and which lies along
754   ///   all paths of execution between the current IP and the
755   ///   the point at which the cleanup comes into scope.
756   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
757                             llvm::Instruction *DominatingIP);
758 
759   /// Enters a new scope for capturing cleanups, all of which
760   /// will be executed once the scope is exited.
761   class RunCleanupsScope {
762     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
763     size_t LifetimeExtendedCleanupStackSize;
764     bool OldDidCallStackSave;
765   protected:
766     bool PerformCleanup;
767   private:
768 
769     RunCleanupsScope(const RunCleanupsScope &) = delete;
770     void operator=(const RunCleanupsScope &) = delete;
771 
772   protected:
773     CodeGenFunction& CGF;
774 
775   public:
776     /// Enter a new cleanup scope.
777     explicit RunCleanupsScope(CodeGenFunction &CGF)
778       : PerformCleanup(true), CGF(CGF)
779     {
780       CleanupStackDepth = CGF.EHStack.stable_begin();
781       LifetimeExtendedCleanupStackSize =
782           CGF.LifetimeExtendedCleanupStack.size();
783       OldDidCallStackSave = CGF.DidCallStackSave;
784       CGF.DidCallStackSave = false;
785       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
786       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
787     }
788 
789     /// Exit this cleanup scope, emitting any accumulated cleanups.
790     ~RunCleanupsScope() {
791       if (PerformCleanup)
792         ForceCleanup();
793     }
794 
795     /// Determine whether this scope requires any cleanups.
796     bool requiresCleanups() const {
797       return CGF.EHStack.stable_begin() != CleanupStackDepth;
798     }
799 
800     /// Force the emission of cleanups now, instead of waiting
801     /// until this object is destroyed.
802     /// \param ValuesToReload - A list of values that need to be available at
803     /// the insertion point after cleanup emission. If cleanup emission created
804     /// a shared cleanup block, these value pointers will be rewritten.
805     /// Otherwise, they not will be modified.
806     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
807       assert(PerformCleanup && "Already forced cleanup");
808       CGF.DidCallStackSave = OldDidCallStackSave;
809       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
810                            ValuesToReload);
811       PerformCleanup = false;
812       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
813     }
814   };
815 
816   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
817   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
818       EHScopeStack::stable_end();
819 
820   class LexicalScope : public RunCleanupsScope {
821     SourceRange Range;
822     SmallVector<const LabelDecl*, 4> Labels;
823     LexicalScope *ParentScope;
824 
825     LexicalScope(const LexicalScope &) = delete;
826     void operator=(const LexicalScope &) = delete;
827 
828   public:
829     /// Enter a new cleanup scope.
830     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
831       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
832       CGF.CurLexicalScope = this;
833       if (CGDebugInfo *DI = CGF.getDebugInfo())
834         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
835     }
836 
837     void addLabel(const LabelDecl *label) {
838       assert(PerformCleanup && "adding label to dead scope?");
839       Labels.push_back(label);
840     }
841 
842     /// Exit this cleanup scope, emitting any accumulated
843     /// cleanups.
844     ~LexicalScope() {
845       if (CGDebugInfo *DI = CGF.getDebugInfo())
846         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
847 
848       // If we should perform a cleanup, force them now.  Note that
849       // this ends the cleanup scope before rescoping any labels.
850       if (PerformCleanup) {
851         ApplyDebugLocation DL(CGF, Range.getEnd());
852         ForceCleanup();
853       }
854     }
855 
856     /// Force the emission of cleanups now, instead of waiting
857     /// until this object is destroyed.
858     void ForceCleanup() {
859       CGF.CurLexicalScope = ParentScope;
860       RunCleanupsScope::ForceCleanup();
861 
862       if (!Labels.empty())
863         rescopeLabels();
864     }
865 
866     bool hasLabels() const {
867       return !Labels.empty();
868     }
869 
870     void rescopeLabels();
871   };
872 
873   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
874 
875   /// The class used to assign some variables some temporarily addresses.
876   class OMPMapVars {
877     DeclMapTy SavedLocals;
878     DeclMapTy SavedTempAddresses;
879     OMPMapVars(const OMPMapVars &) = delete;
880     void operator=(const OMPMapVars &) = delete;
881 
882   public:
883     explicit OMPMapVars() = default;
884     ~OMPMapVars() {
885       assert(SavedLocals.empty() && "Did not restored original addresses.");
886     };
887 
888     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
889     /// function \p CGF.
890     /// \return true if at least one variable was set already, false otherwise.
891     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
892                     Address TempAddr) {
893       LocalVD = LocalVD->getCanonicalDecl();
894       // Only save it once.
895       if (SavedLocals.count(LocalVD)) return false;
896 
897       // Copy the existing local entry to SavedLocals.
898       auto it = CGF.LocalDeclMap.find(LocalVD);
899       if (it != CGF.LocalDeclMap.end())
900         SavedLocals.try_emplace(LocalVD, it->second);
901       else
902         SavedLocals.try_emplace(LocalVD, Address::invalid());
903 
904       // Generate the private entry.
905       QualType VarTy = LocalVD->getType();
906       if (VarTy->isReferenceType()) {
907         Address Temp = CGF.CreateMemTemp(VarTy);
908         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
909         TempAddr = Temp;
910       }
911       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
912 
913       return true;
914     }
915 
916     /// Applies new addresses to the list of the variables.
917     /// \return true if at least one variable is using new address, false
918     /// otherwise.
919     bool apply(CodeGenFunction &CGF) {
920       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
921       SavedTempAddresses.clear();
922       return !SavedLocals.empty();
923     }
924 
925     /// Restores original addresses of the variables.
926     void restore(CodeGenFunction &CGF) {
927       if (!SavedLocals.empty()) {
928         copyInto(SavedLocals, CGF.LocalDeclMap);
929         SavedLocals.clear();
930       }
931     }
932 
933   private:
934     /// Copy all the entries in the source map over the corresponding
935     /// entries in the destination, which must exist.
936     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
937       for (auto &Pair : Src) {
938         if (!Pair.second.isValid()) {
939           Dest.erase(Pair.first);
940           continue;
941         }
942 
943         auto I = Dest.find(Pair.first);
944         if (I != Dest.end())
945           I->second = Pair.second;
946         else
947           Dest.insert(Pair);
948       }
949     }
950   };
951 
952   /// The scope used to remap some variables as private in the OpenMP loop body
953   /// (or other captured region emitted without outlining), and to restore old
954   /// vars back on exit.
955   class OMPPrivateScope : public RunCleanupsScope {
956     OMPMapVars MappedVars;
957     OMPPrivateScope(const OMPPrivateScope &) = delete;
958     void operator=(const OMPPrivateScope &) = delete;
959 
960   public:
961     /// Enter a new OpenMP private scope.
962     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
963 
964     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
965     /// function for it to generate corresponding private variable. \p
966     /// PrivateGen returns an address of the generated private variable.
967     /// \return true if the variable is registered as private, false if it has
968     /// been privatized already.
969     bool addPrivate(const VarDecl *LocalVD,
970                     const llvm::function_ref<Address()> PrivateGen) {
971       assert(PerformCleanup && "adding private to dead scope");
972       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
973     }
974 
975     /// Privatizes local variables previously registered as private.
976     /// Registration is separate from the actual privatization to allow
977     /// initializers use values of the original variables, not the private one.
978     /// This is important, for example, if the private variable is a class
979     /// variable initialized by a constructor that references other private
980     /// variables. But at initialization original variables must be used, not
981     /// private copies.
982     /// \return true if at least one variable was privatized, false otherwise.
983     bool Privatize() { return MappedVars.apply(CGF); }
984 
985     void ForceCleanup() {
986       RunCleanupsScope::ForceCleanup();
987       MappedVars.restore(CGF);
988     }
989 
990     /// Exit scope - all the mapped variables are restored.
991     ~OMPPrivateScope() {
992       if (PerformCleanup)
993         ForceCleanup();
994     }
995 
996     /// Checks if the global variable is captured in current function.
997     bool isGlobalVarCaptured(const VarDecl *VD) const {
998       VD = VD->getCanonicalDecl();
999       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1000     }
1001   };
1002 
1003   /// Save/restore original map of previously emitted local vars in case when we
1004   /// need to duplicate emission of the same code several times in the same
1005   /// function for OpenMP code.
1006   class OMPLocalDeclMapRAII {
1007     CodeGenFunction &CGF;
1008     DeclMapTy SavedMap;
1009 
1010   public:
1011     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1012         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1013     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1014   };
1015 
1016   /// Takes the old cleanup stack size and emits the cleanup blocks
1017   /// that have been added.
1018   void
1019   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1020                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1021 
1022   /// Takes the old cleanup stack size and emits the cleanup blocks
1023   /// that have been added, then adds all lifetime-extended cleanups from
1024   /// the given position to the stack.
1025   void
1026   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1027                    size_t OldLifetimeExtendedStackSize,
1028                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1029 
1030   void ResolveBranchFixups(llvm::BasicBlock *Target);
1031 
1032   /// The given basic block lies in the current EH scope, but may be a
1033   /// target of a potentially scope-crossing jump; get a stable handle
1034   /// to which we can perform this jump later.
1035   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1036     return JumpDest(Target,
1037                     EHStack.getInnermostNormalCleanup(),
1038                     NextCleanupDestIndex++);
1039   }
1040 
1041   /// The given basic block lies in the current EH scope, but may be a
1042   /// target of a potentially scope-crossing jump; get a stable handle
1043   /// to which we can perform this jump later.
1044   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1045     return getJumpDestInCurrentScope(createBasicBlock(Name));
1046   }
1047 
1048   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1049   /// block through the normal cleanup handling code (if any) and then
1050   /// on to \arg Dest.
1051   void EmitBranchThroughCleanup(JumpDest Dest);
1052 
1053   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1054   /// specified destination obviously has no cleanups to run.  'false' is always
1055   /// a conservatively correct answer for this method.
1056   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1057 
1058   /// popCatchScope - Pops the catch scope at the top of the EHScope
1059   /// stack, emitting any required code (other than the catch handlers
1060   /// themselves).
1061   void popCatchScope();
1062 
1063   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1064   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1065   llvm::BasicBlock *
1066   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1067 
1068   /// An object to manage conditionally-evaluated expressions.
1069   class ConditionalEvaluation {
1070     llvm::BasicBlock *StartBB;
1071 
1072   public:
1073     ConditionalEvaluation(CodeGenFunction &CGF)
1074       : StartBB(CGF.Builder.GetInsertBlock()) {}
1075 
1076     void begin(CodeGenFunction &CGF) {
1077       assert(CGF.OutermostConditional != this);
1078       if (!CGF.OutermostConditional)
1079         CGF.OutermostConditional = this;
1080     }
1081 
1082     void end(CodeGenFunction &CGF) {
1083       assert(CGF.OutermostConditional != nullptr);
1084       if (CGF.OutermostConditional == this)
1085         CGF.OutermostConditional = nullptr;
1086     }
1087 
1088     /// Returns a block which will be executed prior to each
1089     /// evaluation of the conditional code.
1090     llvm::BasicBlock *getStartingBlock() const {
1091       return StartBB;
1092     }
1093   };
1094 
1095   /// isInConditionalBranch - Return true if we're currently emitting
1096   /// one branch or the other of a conditional expression.
1097   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1098 
1099   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1100     assert(isInConditionalBranch());
1101     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1102     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1103     store->setAlignment(addr.getAlignment().getAsAlign());
1104   }
1105 
1106   /// An RAII object to record that we're evaluating a statement
1107   /// expression.
1108   class StmtExprEvaluation {
1109     CodeGenFunction &CGF;
1110 
1111     /// We have to save the outermost conditional: cleanups in a
1112     /// statement expression aren't conditional just because the
1113     /// StmtExpr is.
1114     ConditionalEvaluation *SavedOutermostConditional;
1115 
1116   public:
1117     StmtExprEvaluation(CodeGenFunction &CGF)
1118       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1119       CGF.OutermostConditional = nullptr;
1120     }
1121 
1122     ~StmtExprEvaluation() {
1123       CGF.OutermostConditional = SavedOutermostConditional;
1124       CGF.EnsureInsertPoint();
1125     }
1126   };
1127 
1128   /// An object which temporarily prevents a value from being
1129   /// destroyed by aggressive peephole optimizations that assume that
1130   /// all uses of a value have been realized in the IR.
1131   class PeepholeProtection {
1132     llvm::Instruction *Inst;
1133     friend class CodeGenFunction;
1134 
1135   public:
1136     PeepholeProtection() : Inst(nullptr) {}
1137   };
1138 
1139   /// A non-RAII class containing all the information about a bound
1140   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1141   /// this which makes individual mappings very simple; using this
1142   /// class directly is useful when you have a variable number of
1143   /// opaque values or don't want the RAII functionality for some
1144   /// reason.
1145   class OpaqueValueMappingData {
1146     const OpaqueValueExpr *OpaqueValue;
1147     bool BoundLValue;
1148     CodeGenFunction::PeepholeProtection Protection;
1149 
1150     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1151                            bool boundLValue)
1152       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1153   public:
1154     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1155 
1156     static bool shouldBindAsLValue(const Expr *expr) {
1157       // gl-values should be bound as l-values for obvious reasons.
1158       // Records should be bound as l-values because IR generation
1159       // always keeps them in memory.  Expressions of function type
1160       // act exactly like l-values but are formally required to be
1161       // r-values in C.
1162       return expr->isGLValue() ||
1163              expr->getType()->isFunctionType() ||
1164              hasAggregateEvaluationKind(expr->getType());
1165     }
1166 
1167     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1168                                        const OpaqueValueExpr *ov,
1169                                        const Expr *e) {
1170       if (shouldBindAsLValue(ov))
1171         return bind(CGF, ov, CGF.EmitLValue(e));
1172       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1173     }
1174 
1175     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1176                                        const OpaqueValueExpr *ov,
1177                                        const LValue &lv) {
1178       assert(shouldBindAsLValue(ov));
1179       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1180       return OpaqueValueMappingData(ov, true);
1181     }
1182 
1183     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1184                                        const OpaqueValueExpr *ov,
1185                                        const RValue &rv) {
1186       assert(!shouldBindAsLValue(ov));
1187       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1188 
1189       OpaqueValueMappingData data(ov, false);
1190 
1191       // Work around an extremely aggressive peephole optimization in
1192       // EmitScalarConversion which assumes that all other uses of a
1193       // value are extant.
1194       data.Protection = CGF.protectFromPeepholes(rv);
1195 
1196       return data;
1197     }
1198 
1199     bool isValid() const { return OpaqueValue != nullptr; }
1200     void clear() { OpaqueValue = nullptr; }
1201 
1202     void unbind(CodeGenFunction &CGF) {
1203       assert(OpaqueValue && "no data to unbind!");
1204 
1205       if (BoundLValue) {
1206         CGF.OpaqueLValues.erase(OpaqueValue);
1207       } else {
1208         CGF.OpaqueRValues.erase(OpaqueValue);
1209         CGF.unprotectFromPeepholes(Protection);
1210       }
1211     }
1212   };
1213 
1214   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1215   class OpaqueValueMapping {
1216     CodeGenFunction &CGF;
1217     OpaqueValueMappingData Data;
1218 
1219   public:
1220     static bool shouldBindAsLValue(const Expr *expr) {
1221       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1222     }
1223 
1224     /// Build the opaque value mapping for the given conditional
1225     /// operator if it's the GNU ?: extension.  This is a common
1226     /// enough pattern that the convenience operator is really
1227     /// helpful.
1228     ///
1229     OpaqueValueMapping(CodeGenFunction &CGF,
1230                        const AbstractConditionalOperator *op) : CGF(CGF) {
1231       if (isa<ConditionalOperator>(op))
1232         // Leave Data empty.
1233         return;
1234 
1235       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1236       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1237                                           e->getCommon());
1238     }
1239 
1240     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1241     /// expression is set to the expression the OVE represents.
1242     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1243         : CGF(CGF) {
1244       if (OV) {
1245         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1246                                       "for OVE with no source expression");
1247         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1248       }
1249     }
1250 
1251     OpaqueValueMapping(CodeGenFunction &CGF,
1252                        const OpaqueValueExpr *opaqueValue,
1253                        LValue lvalue)
1254       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1255     }
1256 
1257     OpaqueValueMapping(CodeGenFunction &CGF,
1258                        const OpaqueValueExpr *opaqueValue,
1259                        RValue rvalue)
1260       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1261     }
1262 
1263     void pop() {
1264       Data.unbind(CGF);
1265       Data.clear();
1266     }
1267 
1268     ~OpaqueValueMapping() {
1269       if (Data.isValid()) Data.unbind(CGF);
1270     }
1271   };
1272 
1273 private:
1274   CGDebugInfo *DebugInfo;
1275   /// Used to create unique names for artificial VLA size debug info variables.
1276   unsigned VLAExprCounter = 0;
1277   bool DisableDebugInfo = false;
1278 
1279   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1280   /// calling llvm.stacksave for multiple VLAs in the same scope.
1281   bool DidCallStackSave = false;
1282 
1283   /// IndirectBranch - The first time an indirect goto is seen we create a block
1284   /// with an indirect branch.  Every time we see the address of a label taken,
1285   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1286   /// codegen'd as a jump to the IndirectBranch's basic block.
1287   llvm::IndirectBrInst *IndirectBranch = nullptr;
1288 
1289   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1290   /// decls.
1291   DeclMapTy LocalDeclMap;
1292 
1293   // Keep track of the cleanups for callee-destructed parameters pushed to the
1294   // cleanup stack so that they can be deactivated later.
1295   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1296       CalleeDestructedParamCleanups;
1297 
1298   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1299   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1300   /// parameter.
1301   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1302       SizeArguments;
1303 
1304   /// Track escaped local variables with auto storage. Used during SEH
1305   /// outlining to produce a call to llvm.localescape.
1306   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1307 
1308   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1309   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1310 
1311   // BreakContinueStack - This keeps track of where break and continue
1312   // statements should jump to.
1313   struct BreakContinue {
1314     BreakContinue(JumpDest Break, JumpDest Continue)
1315       : BreakBlock(Break), ContinueBlock(Continue) {}
1316 
1317     JumpDest BreakBlock;
1318     JumpDest ContinueBlock;
1319   };
1320   SmallVector<BreakContinue, 8> BreakContinueStack;
1321 
1322   /// Handles cancellation exit points in OpenMP-related constructs.
1323   class OpenMPCancelExitStack {
1324     /// Tracks cancellation exit point and join point for cancel-related exit
1325     /// and normal exit.
1326     struct CancelExit {
1327       CancelExit() = default;
1328       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1329                  JumpDest ContBlock)
1330           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1331       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1332       /// true if the exit block has been emitted already by the special
1333       /// emitExit() call, false if the default codegen is used.
1334       bool HasBeenEmitted = false;
1335       JumpDest ExitBlock;
1336       JumpDest ContBlock;
1337     };
1338 
1339     SmallVector<CancelExit, 8> Stack;
1340 
1341   public:
1342     OpenMPCancelExitStack() : Stack(1) {}
1343     ~OpenMPCancelExitStack() = default;
1344     /// Fetches the exit block for the current OpenMP construct.
1345     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1346     /// Emits exit block with special codegen procedure specific for the related
1347     /// OpenMP construct + emits code for normal construct cleanup.
1348     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1349                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1350       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1351         assert(CGF.getOMPCancelDestination(Kind).isValid());
1352         assert(CGF.HaveInsertPoint());
1353         assert(!Stack.back().HasBeenEmitted);
1354         auto IP = CGF.Builder.saveAndClearIP();
1355         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1356         CodeGen(CGF);
1357         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1358         CGF.Builder.restoreIP(IP);
1359         Stack.back().HasBeenEmitted = true;
1360       }
1361       CodeGen(CGF);
1362     }
1363     /// Enter the cancel supporting \a Kind construct.
1364     /// \param Kind OpenMP directive that supports cancel constructs.
1365     /// \param HasCancel true, if the construct has inner cancel directive,
1366     /// false otherwise.
1367     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1368       Stack.push_back({Kind,
1369                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1370                                  : JumpDest(),
1371                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1372                                  : JumpDest()});
1373     }
1374     /// Emits default exit point for the cancel construct (if the special one
1375     /// has not be used) + join point for cancel/normal exits.
1376     void exit(CodeGenFunction &CGF) {
1377       if (getExitBlock().isValid()) {
1378         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1379         bool HaveIP = CGF.HaveInsertPoint();
1380         if (!Stack.back().HasBeenEmitted) {
1381           if (HaveIP)
1382             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1383           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1384           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1385         }
1386         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1387         if (!HaveIP) {
1388           CGF.Builder.CreateUnreachable();
1389           CGF.Builder.ClearInsertionPoint();
1390         }
1391       }
1392       Stack.pop_back();
1393     }
1394   };
1395   OpenMPCancelExitStack OMPCancelStack;
1396 
1397   CodeGenPGO PGO;
1398 
1399   /// Calculate branch weights appropriate for PGO data
1400   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1401   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1402   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1403                                             uint64_t LoopCount);
1404 
1405 public:
1406   /// Increment the profiler's counter for the given statement by \p StepV.
1407   /// If \p StepV is null, the default increment is 1.
1408   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1409     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1410       PGO.emitCounterIncrement(Builder, S, StepV);
1411     PGO.setCurrentStmt(S);
1412   }
1413 
1414   /// Get the profiler's count for the given statement.
1415   uint64_t getProfileCount(const Stmt *S) {
1416     Optional<uint64_t> Count = PGO.getStmtCount(S);
1417     if (!Count.hasValue())
1418       return 0;
1419     return *Count;
1420   }
1421 
1422   /// Set the profiler's current count.
1423   void setCurrentProfileCount(uint64_t Count) {
1424     PGO.setCurrentRegionCount(Count);
1425   }
1426 
1427   /// Get the profiler's current count. This is generally the count for the most
1428   /// recently incremented counter.
1429   uint64_t getCurrentProfileCount() {
1430     return PGO.getCurrentRegionCount();
1431   }
1432 
1433 private:
1434 
1435   /// SwitchInsn - This is nearest current switch instruction. It is null if
1436   /// current context is not in a switch.
1437   llvm::SwitchInst *SwitchInsn = nullptr;
1438   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1439   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1440 
1441   /// CaseRangeBlock - This block holds if condition check for last case
1442   /// statement range in current switch instruction.
1443   llvm::BasicBlock *CaseRangeBlock = nullptr;
1444 
1445   /// OpaqueLValues - Keeps track of the current set of opaque value
1446   /// expressions.
1447   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1448   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1449 
1450   // VLASizeMap - This keeps track of the associated size for each VLA type.
1451   // We track this by the size expression rather than the type itself because
1452   // in certain situations, like a const qualifier applied to an VLA typedef,
1453   // multiple VLA types can share the same size expression.
1454   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1455   // enter/leave scopes.
1456   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1457 
1458   /// A block containing a single 'unreachable' instruction.  Created
1459   /// lazily by getUnreachableBlock().
1460   llvm::BasicBlock *UnreachableBlock = nullptr;
1461 
1462   /// Counts of the number return expressions in the function.
1463   unsigned NumReturnExprs = 0;
1464 
1465   /// Count the number of simple (constant) return expressions in the function.
1466   unsigned NumSimpleReturnExprs = 0;
1467 
1468   /// The last regular (non-return) debug location (breakpoint) in the function.
1469   SourceLocation LastStopPoint;
1470 
1471 public:
1472   /// Source location information about the default argument or member
1473   /// initializer expression we're evaluating, if any.
1474   CurrentSourceLocExprScope CurSourceLocExprScope;
1475   using SourceLocExprScopeGuard =
1476       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1477 
1478   /// A scope within which we are constructing the fields of an object which
1479   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1480   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1481   class FieldConstructionScope {
1482   public:
1483     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1484         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1485       CGF.CXXDefaultInitExprThis = This;
1486     }
1487     ~FieldConstructionScope() {
1488       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1489     }
1490 
1491   private:
1492     CodeGenFunction &CGF;
1493     Address OldCXXDefaultInitExprThis;
1494   };
1495 
1496   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1497   /// is overridden to be the object under construction.
1498   class CXXDefaultInitExprScope  {
1499   public:
1500     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1501         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1502           OldCXXThisAlignment(CGF.CXXThisAlignment),
1503           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1504       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1505       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1506     }
1507     ~CXXDefaultInitExprScope() {
1508       CGF.CXXThisValue = OldCXXThisValue;
1509       CGF.CXXThisAlignment = OldCXXThisAlignment;
1510     }
1511 
1512   public:
1513     CodeGenFunction &CGF;
1514     llvm::Value *OldCXXThisValue;
1515     CharUnits OldCXXThisAlignment;
1516     SourceLocExprScopeGuard SourceLocScope;
1517   };
1518 
1519   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1520     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1521         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1522   };
1523 
1524   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1525   /// current loop index is overridden.
1526   class ArrayInitLoopExprScope {
1527   public:
1528     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1529       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1530       CGF.ArrayInitIndex = Index;
1531     }
1532     ~ArrayInitLoopExprScope() {
1533       CGF.ArrayInitIndex = OldArrayInitIndex;
1534     }
1535 
1536   private:
1537     CodeGenFunction &CGF;
1538     llvm::Value *OldArrayInitIndex;
1539   };
1540 
1541   class InlinedInheritingConstructorScope {
1542   public:
1543     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1544         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1545           OldCurCodeDecl(CGF.CurCodeDecl),
1546           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1547           OldCXXABIThisValue(CGF.CXXABIThisValue),
1548           OldCXXThisValue(CGF.CXXThisValue),
1549           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1550           OldCXXThisAlignment(CGF.CXXThisAlignment),
1551           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1552           OldCXXInheritedCtorInitExprArgs(
1553               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1554       CGF.CurGD = GD;
1555       CGF.CurFuncDecl = CGF.CurCodeDecl =
1556           cast<CXXConstructorDecl>(GD.getDecl());
1557       CGF.CXXABIThisDecl = nullptr;
1558       CGF.CXXABIThisValue = nullptr;
1559       CGF.CXXThisValue = nullptr;
1560       CGF.CXXABIThisAlignment = CharUnits();
1561       CGF.CXXThisAlignment = CharUnits();
1562       CGF.ReturnValue = Address::invalid();
1563       CGF.FnRetTy = QualType();
1564       CGF.CXXInheritedCtorInitExprArgs.clear();
1565     }
1566     ~InlinedInheritingConstructorScope() {
1567       CGF.CurGD = OldCurGD;
1568       CGF.CurFuncDecl = OldCurFuncDecl;
1569       CGF.CurCodeDecl = OldCurCodeDecl;
1570       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1571       CGF.CXXABIThisValue = OldCXXABIThisValue;
1572       CGF.CXXThisValue = OldCXXThisValue;
1573       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1574       CGF.CXXThisAlignment = OldCXXThisAlignment;
1575       CGF.ReturnValue = OldReturnValue;
1576       CGF.FnRetTy = OldFnRetTy;
1577       CGF.CXXInheritedCtorInitExprArgs =
1578           std::move(OldCXXInheritedCtorInitExprArgs);
1579     }
1580 
1581   private:
1582     CodeGenFunction &CGF;
1583     GlobalDecl OldCurGD;
1584     const Decl *OldCurFuncDecl;
1585     const Decl *OldCurCodeDecl;
1586     ImplicitParamDecl *OldCXXABIThisDecl;
1587     llvm::Value *OldCXXABIThisValue;
1588     llvm::Value *OldCXXThisValue;
1589     CharUnits OldCXXABIThisAlignment;
1590     CharUnits OldCXXThisAlignment;
1591     Address OldReturnValue;
1592     QualType OldFnRetTy;
1593     CallArgList OldCXXInheritedCtorInitExprArgs;
1594   };
1595 
1596   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1597   // region body, and finalization codegen callbacks. This will class will also
1598   // contain privatization functions used by the privatization call backs
1599   //
1600   // TODO: this is temporary class for things that are being moved out of
1601   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1602   // utility function for use with the OMPBuilder. Once that move to use the
1603   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1604   // directly, or a new helper class that will contain functions used by both
1605   // this and the OMPBuilder
1606 
1607   struct OMPBuilderCBHelpers {
1608 
1609     OMPBuilderCBHelpers() = delete;
1610     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1611     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1612 
1613     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1614 
1615     /// Cleanup action for allocate support.
1616     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1617 
1618     private:
1619       llvm::CallInst *RTLFnCI;
1620 
1621     public:
1622       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1623         RLFnCI->removeFromParent();
1624       }
1625 
1626       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1627         if (!CGF.HaveInsertPoint())
1628           return;
1629         CGF.Builder.Insert(RTLFnCI);
1630       }
1631     };
1632 
1633     /// Returns address of the threadprivate variable for the current
1634     /// thread. This Also create any necessary OMP runtime calls.
1635     ///
1636     /// \param VD VarDecl for Threadprivate variable.
1637     /// \param VDAddr Address of the Vardecl
1638     /// \param Loc  The location where the barrier directive was encountered
1639     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1640                                           const VarDecl *VD, Address VDAddr,
1641                                           SourceLocation Loc);
1642 
1643     /// Gets the OpenMP-specific address of the local variable /p VD.
1644     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1645                                              const VarDecl *VD);
1646     /// Get the platform-specific name separator.
1647     /// \param Parts different parts of the final name that needs separation
1648     /// \param FirstSeparator First separator used between the initial two
1649     ///        parts of the name.
1650     /// \param Separator separator used between all of the rest consecutinve
1651     ///        parts of the name
1652     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1653                                              StringRef FirstSeparator = ".",
1654                                              StringRef Separator = ".");
1655     /// Emit the Finalization for an OMP region
1656     /// \param CGF	The Codegen function this belongs to
1657     /// \param IP	Insertion point for generating the finalization code.
1658     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1659       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1660       assert(IP.getBlock()->end() != IP.getPoint() &&
1661              "OpenMP IR Builder should cause terminated block!");
1662 
1663       llvm::BasicBlock *IPBB = IP.getBlock();
1664       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1665       assert(DestBB && "Finalization block should have one successor!");
1666 
1667       // erase and replace with cleanup branch.
1668       IPBB->getTerminator()->eraseFromParent();
1669       CGF.Builder.SetInsertPoint(IPBB);
1670       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1671       CGF.EmitBranchThroughCleanup(Dest);
1672     }
1673 
1674     /// Emit the body of an OMP region
1675     /// \param CGF	The Codegen function this belongs to
1676     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1677     /// 			 generated
1678     /// \param CodeGenIP	Insertion point for generating the body code.
1679     /// \param FiniBB	The finalization basic block
1680     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1681                                   const Stmt *RegionBodyStmt,
1682                                   InsertPointTy CodeGenIP,
1683                                   llvm::BasicBlock &FiniBB) {
1684       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1685       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1686         CodeGenIPBBTI->eraseFromParent();
1687 
1688       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1689 
1690       CGF.EmitStmt(RegionBodyStmt);
1691 
1692       if (CGF.Builder.saveIP().isSet())
1693         CGF.Builder.CreateBr(&FiniBB);
1694     }
1695 
1696     /// RAII for preserving necessary info during Outlined region body codegen.
1697     class OutlinedRegionBodyRAII {
1698 
1699       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1700       CodeGenFunction::JumpDest OldReturnBlock;
1701       CGBuilderTy::InsertPoint IP;
1702       CodeGenFunction &CGF;
1703 
1704     public:
1705       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1706                              llvm::BasicBlock &RetBB)
1707           : CGF(cgf) {
1708         assert(AllocaIP.isSet() &&
1709                "Must specify Insertion point for allocas of outlined function");
1710         OldAllocaIP = CGF.AllocaInsertPt;
1711         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1712         IP = CGF.Builder.saveIP();
1713 
1714         OldReturnBlock = CGF.ReturnBlock;
1715         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1716       }
1717 
1718       ~OutlinedRegionBodyRAII() {
1719         CGF.AllocaInsertPt = OldAllocaIP;
1720         CGF.ReturnBlock = OldReturnBlock;
1721         CGF.Builder.restoreIP(IP);
1722       }
1723     };
1724 
1725     /// RAII for preserving necessary info during inlined region body codegen.
1726     class InlinedRegionBodyRAII {
1727 
1728       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1729       CodeGenFunction &CGF;
1730 
1731     public:
1732       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1733                             llvm::BasicBlock &FiniBB)
1734           : CGF(cgf) {
1735         // Alloca insertion block should be in the entry block of the containing
1736         // function so it expects an empty AllocaIP in which case will reuse the
1737         // old alloca insertion point, or a new AllocaIP in the same block as
1738         // the old one
1739         assert((!AllocaIP.isSet() ||
1740                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1741                "Insertion point should be in the entry block of containing "
1742                "function!");
1743         OldAllocaIP = CGF.AllocaInsertPt;
1744         if (AllocaIP.isSet())
1745           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1746 
1747         // TODO: Remove the call, after making sure the counter is not used by
1748         //       the EHStack.
1749         // Since this is an inlined region, it should not modify the
1750         // ReturnBlock, and should reuse the one for the enclosing outlined
1751         // region. So, the JumpDest being return by the function is discarded
1752         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1753       }
1754 
1755       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1756     };
1757   };
1758 
1759 private:
1760   /// CXXThisDecl - When generating code for a C++ member function,
1761   /// this will hold the implicit 'this' declaration.
1762   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1763   llvm::Value *CXXABIThisValue = nullptr;
1764   llvm::Value *CXXThisValue = nullptr;
1765   CharUnits CXXABIThisAlignment;
1766   CharUnits CXXThisAlignment;
1767 
1768   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1769   /// this expression.
1770   Address CXXDefaultInitExprThis = Address::invalid();
1771 
1772   /// The current array initialization index when evaluating an
1773   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1774   llvm::Value *ArrayInitIndex = nullptr;
1775 
1776   /// The values of function arguments to use when evaluating
1777   /// CXXInheritedCtorInitExprs within this context.
1778   CallArgList CXXInheritedCtorInitExprArgs;
1779 
1780   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1781   /// destructor, this will hold the implicit argument (e.g. VTT).
1782   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1783   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1784 
1785   /// OutermostConditional - Points to the outermost active
1786   /// conditional control.  This is used so that we know if a
1787   /// temporary should be destroyed conditionally.
1788   ConditionalEvaluation *OutermostConditional = nullptr;
1789 
1790   /// The current lexical scope.
1791   LexicalScope *CurLexicalScope = nullptr;
1792 
1793   /// The current source location that should be used for exception
1794   /// handling code.
1795   SourceLocation CurEHLocation;
1796 
1797   /// BlockByrefInfos - For each __block variable, contains
1798   /// information about the layout of the variable.
1799   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1800 
1801   /// Used by -fsanitize=nullability-return to determine whether the return
1802   /// value can be checked.
1803   llvm::Value *RetValNullabilityPrecondition = nullptr;
1804 
1805   /// Check if -fsanitize=nullability-return instrumentation is required for
1806   /// this function.
1807   bool requiresReturnValueNullabilityCheck() const {
1808     return RetValNullabilityPrecondition;
1809   }
1810 
1811   /// Used to store precise source locations for return statements by the
1812   /// runtime return value checks.
1813   Address ReturnLocation = Address::invalid();
1814 
1815   /// Check if the return value of this function requires sanitization.
1816   bool requiresReturnValueCheck() const;
1817 
1818   llvm::BasicBlock *TerminateLandingPad = nullptr;
1819   llvm::BasicBlock *TerminateHandler = nullptr;
1820   llvm::BasicBlock *TrapBB = nullptr;
1821 
1822   /// Terminate funclets keyed by parent funclet pad.
1823   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1824 
1825   /// Largest vector width used in ths function. Will be used to create a
1826   /// function attribute.
1827   unsigned LargestVectorWidth = 0;
1828 
1829   /// True if we need emit the life-time markers.
1830   const bool ShouldEmitLifetimeMarkers;
1831 
1832   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1833   /// the function metadata.
1834   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1835                                 llvm::Function *Fn);
1836 
1837 public:
1838   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1839   ~CodeGenFunction();
1840 
1841   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1842   ASTContext &getContext() const { return CGM.getContext(); }
1843   CGDebugInfo *getDebugInfo() {
1844     if (DisableDebugInfo)
1845       return nullptr;
1846     return DebugInfo;
1847   }
1848   void disableDebugInfo() { DisableDebugInfo = true; }
1849   void enableDebugInfo() { DisableDebugInfo = false; }
1850 
1851   bool shouldUseFusedARCCalls() {
1852     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1853   }
1854 
1855   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1856 
1857   /// Returns a pointer to the function's exception object and selector slot,
1858   /// which is assigned in every landing pad.
1859   Address getExceptionSlot();
1860   Address getEHSelectorSlot();
1861 
1862   /// Returns the contents of the function's exception object and selector
1863   /// slots.
1864   llvm::Value *getExceptionFromSlot();
1865   llvm::Value *getSelectorFromSlot();
1866 
1867   Address getNormalCleanupDestSlot();
1868 
1869   llvm::BasicBlock *getUnreachableBlock() {
1870     if (!UnreachableBlock) {
1871       UnreachableBlock = createBasicBlock("unreachable");
1872       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1873     }
1874     return UnreachableBlock;
1875   }
1876 
1877   llvm::BasicBlock *getInvokeDest() {
1878     if (!EHStack.requiresLandingPad()) return nullptr;
1879     return getInvokeDestImpl();
1880   }
1881 
1882   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1883 
1884   const TargetInfo &getTarget() const { return Target; }
1885   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1886   const TargetCodeGenInfo &getTargetHooks() const {
1887     return CGM.getTargetCodeGenInfo();
1888   }
1889 
1890   //===--------------------------------------------------------------------===//
1891   //                                  Cleanups
1892   //===--------------------------------------------------------------------===//
1893 
1894   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1895 
1896   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1897                                         Address arrayEndPointer,
1898                                         QualType elementType,
1899                                         CharUnits elementAlignment,
1900                                         Destroyer *destroyer);
1901   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1902                                       llvm::Value *arrayEnd,
1903                                       QualType elementType,
1904                                       CharUnits elementAlignment,
1905                                       Destroyer *destroyer);
1906 
1907   void pushDestroy(QualType::DestructionKind dtorKind,
1908                    Address addr, QualType type);
1909   void pushEHDestroy(QualType::DestructionKind dtorKind,
1910                      Address addr, QualType type);
1911   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1912                    Destroyer *destroyer, bool useEHCleanupForArray);
1913   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1914                                    QualType type, Destroyer *destroyer,
1915                                    bool useEHCleanupForArray);
1916   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1917                                    llvm::Value *CompletePtr,
1918                                    QualType ElementType);
1919   void pushStackRestore(CleanupKind kind, Address SPMem);
1920   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1921                    bool useEHCleanupForArray);
1922   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1923                                         Destroyer *destroyer,
1924                                         bool useEHCleanupForArray,
1925                                         const VarDecl *VD);
1926   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1927                         QualType elementType, CharUnits elementAlign,
1928                         Destroyer *destroyer,
1929                         bool checkZeroLength, bool useEHCleanup);
1930 
1931   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1932 
1933   /// Determines whether an EH cleanup is required to destroy a type
1934   /// with the given destruction kind.
1935   bool needsEHCleanup(QualType::DestructionKind kind) {
1936     switch (kind) {
1937     case QualType::DK_none:
1938       return false;
1939     case QualType::DK_cxx_destructor:
1940     case QualType::DK_objc_weak_lifetime:
1941     case QualType::DK_nontrivial_c_struct:
1942       return getLangOpts().Exceptions;
1943     case QualType::DK_objc_strong_lifetime:
1944       return getLangOpts().Exceptions &&
1945              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1946     }
1947     llvm_unreachable("bad destruction kind");
1948   }
1949 
1950   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1951     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1952   }
1953 
1954   //===--------------------------------------------------------------------===//
1955   //                                  Objective-C
1956   //===--------------------------------------------------------------------===//
1957 
1958   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1959 
1960   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1961 
1962   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1963   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1964                           const ObjCPropertyImplDecl *PID);
1965   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1966                               const ObjCPropertyImplDecl *propImpl,
1967                               const ObjCMethodDecl *GetterMothodDecl,
1968                               llvm::Constant *AtomicHelperFn);
1969 
1970   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1971                                   ObjCMethodDecl *MD, bool ctor);
1972 
1973   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1974   /// for the given property.
1975   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1976                           const ObjCPropertyImplDecl *PID);
1977   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1978                               const ObjCPropertyImplDecl *propImpl,
1979                               llvm::Constant *AtomicHelperFn);
1980 
1981   //===--------------------------------------------------------------------===//
1982   //                                  Block Bits
1983   //===--------------------------------------------------------------------===//
1984 
1985   /// Emit block literal.
1986   /// \return an LLVM value which is a pointer to a struct which contains
1987   /// information about the block, including the block invoke function, the
1988   /// captured variables, etc.
1989   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1990 
1991   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1992                                         const CGBlockInfo &Info,
1993                                         const DeclMapTy &ldm,
1994                                         bool IsLambdaConversionToBlock,
1995                                         bool BuildGlobalBlock);
1996 
1997   /// Check if \p T is a C++ class that has a destructor that can throw.
1998   static bool cxxDestructorCanThrow(QualType T);
1999 
2000   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2001   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2002   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2003                                              const ObjCPropertyImplDecl *PID);
2004   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2005                                              const ObjCPropertyImplDecl *PID);
2006   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2007 
2008   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2009                          bool CanThrow);
2010 
2011   class AutoVarEmission;
2012 
2013   void emitByrefStructureInit(const AutoVarEmission &emission);
2014 
2015   /// Enter a cleanup to destroy a __block variable.  Note that this
2016   /// cleanup should be a no-op if the variable hasn't left the stack
2017   /// yet; if a cleanup is required for the variable itself, that needs
2018   /// to be done externally.
2019   ///
2020   /// \param Kind Cleanup kind.
2021   ///
2022   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2023   /// structure that will be passed to _Block_object_dispose. When
2024   /// \p LoadBlockVarAddr is true, the address of the field of the block
2025   /// structure that holds the address of the __block structure.
2026   ///
2027   /// \param Flags The flag that will be passed to _Block_object_dispose.
2028   ///
2029   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2030   /// \p Addr to get the address of the __block structure.
2031   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2032                          bool LoadBlockVarAddr, bool CanThrow);
2033 
2034   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2035                                 llvm::Value *ptr);
2036 
2037   Address LoadBlockStruct();
2038   Address GetAddrOfBlockDecl(const VarDecl *var);
2039 
2040   /// BuildBlockByrefAddress - Computes the location of the
2041   /// data in a variable which is declared as __block.
2042   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2043                                 bool followForward = true);
2044   Address emitBlockByrefAddress(Address baseAddr,
2045                                 const BlockByrefInfo &info,
2046                                 bool followForward,
2047                                 const llvm::Twine &name);
2048 
2049   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2050 
2051   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2052 
2053   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2054                     const CGFunctionInfo &FnInfo);
2055 
2056   /// Annotate the function with an attribute that disables TSan checking at
2057   /// runtime.
2058   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2059 
2060   /// Emit code for the start of a function.
2061   /// \param Loc       The location to be associated with the function.
2062   /// \param StartLoc  The location of the function body.
2063   void StartFunction(GlobalDecl GD,
2064                      QualType RetTy,
2065                      llvm::Function *Fn,
2066                      const CGFunctionInfo &FnInfo,
2067                      const FunctionArgList &Args,
2068                      SourceLocation Loc = SourceLocation(),
2069                      SourceLocation StartLoc = SourceLocation());
2070 
2071   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2072 
2073   void EmitConstructorBody(FunctionArgList &Args);
2074   void EmitDestructorBody(FunctionArgList &Args);
2075   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2076   void EmitFunctionBody(const Stmt *Body);
2077   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2078 
2079   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2080                                   CallArgList &CallArgs);
2081   void EmitLambdaBlockInvokeBody();
2082   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2083   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2084   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2085     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2086   }
2087   void EmitAsanPrologueOrEpilogue(bool Prologue);
2088 
2089   /// Emit the unified return block, trying to avoid its emission when
2090   /// possible.
2091   /// \return The debug location of the user written return statement if the
2092   /// return block is is avoided.
2093   llvm::DebugLoc EmitReturnBlock();
2094 
2095   /// FinishFunction - Complete IR generation of the current function. It is
2096   /// legal to call this function even if there is no current insertion point.
2097   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2098 
2099   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2100                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2101 
2102   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2103                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2104 
2105   void FinishThunk();
2106 
2107   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2108   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2109                          llvm::FunctionCallee Callee);
2110 
2111   /// Generate a thunk for the given method.
2112   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2113                      GlobalDecl GD, const ThunkInfo &Thunk,
2114                      bool IsUnprototyped);
2115 
2116   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2117                                        const CGFunctionInfo &FnInfo,
2118                                        GlobalDecl GD, const ThunkInfo &Thunk);
2119 
2120   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2121                         FunctionArgList &Args);
2122 
2123   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2124 
2125   /// Struct with all information about dynamic [sub]class needed to set vptr.
2126   struct VPtr {
2127     BaseSubobject Base;
2128     const CXXRecordDecl *NearestVBase;
2129     CharUnits OffsetFromNearestVBase;
2130     const CXXRecordDecl *VTableClass;
2131   };
2132 
2133   /// Initialize the vtable pointer of the given subobject.
2134   void InitializeVTablePointer(const VPtr &vptr);
2135 
2136   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2137 
2138   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2139   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2140 
2141   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2142                          CharUnits OffsetFromNearestVBase,
2143                          bool BaseIsNonVirtualPrimaryBase,
2144                          const CXXRecordDecl *VTableClass,
2145                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2146 
2147   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2148 
2149   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2150   /// to by This.
2151   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2152                             const CXXRecordDecl *VTableClass);
2153 
2154   enum CFITypeCheckKind {
2155     CFITCK_VCall,
2156     CFITCK_NVCall,
2157     CFITCK_DerivedCast,
2158     CFITCK_UnrelatedCast,
2159     CFITCK_ICall,
2160     CFITCK_NVMFCall,
2161     CFITCK_VMFCall,
2162   };
2163 
2164   /// Derived is the presumed address of an object of type T after a
2165   /// cast. If T is a polymorphic class type, emit a check that the virtual
2166   /// table for Derived belongs to a class derived from T.
2167   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2168                                  bool MayBeNull, CFITypeCheckKind TCK,
2169                                  SourceLocation Loc);
2170 
2171   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2172   /// If vptr CFI is enabled, emit a check that VTable is valid.
2173   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2174                                  CFITypeCheckKind TCK, SourceLocation Loc);
2175 
2176   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2177   /// RD using llvm.type.test.
2178   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2179                           CFITypeCheckKind TCK, SourceLocation Loc);
2180 
2181   /// If whole-program virtual table optimization is enabled, emit an assumption
2182   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2183   /// enabled, emit a check that VTable is a member of RD's type identifier.
2184   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2185                                     llvm::Value *VTable, SourceLocation Loc);
2186 
2187   /// Returns whether we should perform a type checked load when loading a
2188   /// virtual function for virtual calls to members of RD. This is generally
2189   /// true when both vcall CFI and whole-program-vtables are enabled.
2190   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2191 
2192   /// Emit a type checked load from the given vtable.
2193   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2194                                          uint64_t VTableByteOffset);
2195 
2196   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2197   /// given phase of destruction for a destructor.  The end result
2198   /// should call destructors on members and base classes in reverse
2199   /// order of their construction.
2200   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2201 
2202   /// ShouldInstrumentFunction - Return true if the current function should be
2203   /// instrumented with __cyg_profile_func_* calls
2204   bool ShouldInstrumentFunction();
2205 
2206   /// ShouldXRayInstrument - Return true if the current function should be
2207   /// instrumented with XRay nop sleds.
2208   bool ShouldXRayInstrumentFunction() const;
2209 
2210   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2211   /// XRay custom event handling calls.
2212   bool AlwaysEmitXRayCustomEvents() const;
2213 
2214   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2215   /// XRay typed event handling calls.
2216   bool AlwaysEmitXRayTypedEvents() const;
2217 
2218   /// Encode an address into a form suitable for use in a function prologue.
2219   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2220                                              llvm::Constant *Addr);
2221 
2222   /// Decode an address used in a function prologue, encoded by \c
2223   /// EncodeAddrForUseInPrologue.
2224   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2225                                         llvm::Value *EncodedAddr);
2226 
2227   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2228   /// arguments for the given function. This is also responsible for naming the
2229   /// LLVM function arguments.
2230   void EmitFunctionProlog(const CGFunctionInfo &FI,
2231                           llvm::Function *Fn,
2232                           const FunctionArgList &Args);
2233 
2234   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2235   /// given temporary.
2236   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2237                           SourceLocation EndLoc);
2238 
2239   /// Emit a test that checks if the return value \p RV is nonnull.
2240   void EmitReturnValueCheck(llvm::Value *RV);
2241 
2242   /// EmitStartEHSpec - Emit the start of the exception spec.
2243   void EmitStartEHSpec(const Decl *D);
2244 
2245   /// EmitEndEHSpec - Emit the end of the exception spec.
2246   void EmitEndEHSpec(const Decl *D);
2247 
2248   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2249   llvm::BasicBlock *getTerminateLandingPad();
2250 
2251   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2252   /// terminate.
2253   llvm::BasicBlock *getTerminateFunclet();
2254 
2255   /// getTerminateHandler - Return a handler (not a landing pad, just
2256   /// a catch handler) that just calls terminate.  This is used when
2257   /// a terminate scope encloses a try.
2258   llvm::BasicBlock *getTerminateHandler();
2259 
2260   llvm::Type *ConvertTypeForMem(QualType T);
2261   llvm::Type *ConvertType(QualType T);
2262   llvm::Type *ConvertType(const TypeDecl *T) {
2263     return ConvertType(getContext().getTypeDeclType(T));
2264   }
2265 
2266   /// LoadObjCSelf - Load the value of self. This function is only valid while
2267   /// generating code for an Objective-C method.
2268   llvm::Value *LoadObjCSelf();
2269 
2270   /// TypeOfSelfObject - Return type of object that this self represents.
2271   QualType TypeOfSelfObject();
2272 
2273   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2274   static TypeEvaluationKind getEvaluationKind(QualType T);
2275 
2276   static bool hasScalarEvaluationKind(QualType T) {
2277     return getEvaluationKind(T) == TEK_Scalar;
2278   }
2279 
2280   static bool hasAggregateEvaluationKind(QualType T) {
2281     return getEvaluationKind(T) == TEK_Aggregate;
2282   }
2283 
2284   /// createBasicBlock - Create an LLVM basic block.
2285   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2286                                      llvm::Function *parent = nullptr,
2287                                      llvm::BasicBlock *before = nullptr) {
2288     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2289   }
2290 
2291   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2292   /// label maps to.
2293   JumpDest getJumpDestForLabel(const LabelDecl *S);
2294 
2295   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2296   /// another basic block, simplify it. This assumes that no other code could
2297   /// potentially reference the basic block.
2298   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2299 
2300   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2301   /// adding a fall-through branch from the current insert block if
2302   /// necessary. It is legal to call this function even if there is no current
2303   /// insertion point.
2304   ///
2305   /// IsFinished - If true, indicates that the caller has finished emitting
2306   /// branches to the given block and does not expect to emit code into it. This
2307   /// means the block can be ignored if it is unreachable.
2308   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2309 
2310   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2311   /// near its uses, and leave the insertion point in it.
2312   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2313 
2314   /// EmitBranch - Emit a branch to the specified basic block from the current
2315   /// insert block, taking care to avoid creation of branches from dummy
2316   /// blocks. It is legal to call this function even if there is no current
2317   /// insertion point.
2318   ///
2319   /// This function clears the current insertion point. The caller should follow
2320   /// calls to this function with calls to Emit*Block prior to generation new
2321   /// code.
2322   void EmitBranch(llvm::BasicBlock *Block);
2323 
2324   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2325   /// indicates that the current code being emitted is unreachable.
2326   bool HaveInsertPoint() const {
2327     return Builder.GetInsertBlock() != nullptr;
2328   }
2329 
2330   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2331   /// emitted IR has a place to go. Note that by definition, if this function
2332   /// creates a block then that block is unreachable; callers may do better to
2333   /// detect when no insertion point is defined and simply skip IR generation.
2334   void EnsureInsertPoint() {
2335     if (!HaveInsertPoint())
2336       EmitBlock(createBasicBlock());
2337   }
2338 
2339   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2340   /// specified stmt yet.
2341   void ErrorUnsupported(const Stmt *S, const char *Type);
2342 
2343   //===--------------------------------------------------------------------===//
2344   //                                  Helpers
2345   //===--------------------------------------------------------------------===//
2346 
2347   LValue MakeAddrLValue(Address Addr, QualType T,
2348                         AlignmentSource Source = AlignmentSource::Type) {
2349     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2350                             CGM.getTBAAAccessInfo(T));
2351   }
2352 
2353   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2354                         TBAAAccessInfo TBAAInfo) {
2355     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2356   }
2357 
2358   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2359                         AlignmentSource Source = AlignmentSource::Type) {
2360     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2361                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2362   }
2363 
2364   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2365                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2366     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2367                             BaseInfo, TBAAInfo);
2368   }
2369 
2370   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2371   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2372 
2373   Address EmitLoadOfReference(LValue RefLVal,
2374                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2375                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2376   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2377   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2378                                    AlignmentSource Source =
2379                                        AlignmentSource::Type) {
2380     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2381                                     CGM.getTBAAAccessInfo(RefTy));
2382     return EmitLoadOfReferenceLValue(RefLVal);
2383   }
2384 
2385   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2386                             LValueBaseInfo *BaseInfo = nullptr,
2387                             TBAAAccessInfo *TBAAInfo = nullptr);
2388   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2389 
2390   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2391   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2392   /// insertion point of the builder. The caller is responsible for setting an
2393   /// appropriate alignment on
2394   /// the alloca.
2395   ///
2396   /// \p ArraySize is the number of array elements to be allocated if it
2397   ///    is not nullptr.
2398   ///
2399   /// LangAS::Default is the address space of pointers to local variables and
2400   /// temporaries, as exposed in the source language. In certain
2401   /// configurations, this is not the same as the alloca address space, and a
2402   /// cast is needed to lift the pointer from the alloca AS into
2403   /// LangAS::Default. This can happen when the target uses a restricted
2404   /// address space for the stack but the source language requires
2405   /// LangAS::Default to be a generic address space. The latter condition is
2406   /// common for most programming languages; OpenCL is an exception in that
2407   /// LangAS::Default is the private address space, which naturally maps
2408   /// to the stack.
2409   ///
2410   /// Because the address of a temporary is often exposed to the program in
2411   /// various ways, this function will perform the cast. The original alloca
2412   /// instruction is returned through \p Alloca if it is not nullptr.
2413   ///
2414   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2415   /// more efficient if the caller knows that the address will not be exposed.
2416   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2417                                      llvm::Value *ArraySize = nullptr);
2418   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2419                            const Twine &Name = "tmp",
2420                            llvm::Value *ArraySize = nullptr,
2421                            Address *Alloca = nullptr);
2422   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2423                                       const Twine &Name = "tmp",
2424                                       llvm::Value *ArraySize = nullptr);
2425 
2426   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2427   /// default ABI alignment of the given LLVM type.
2428   ///
2429   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2430   /// any given AST type that happens to have been lowered to the
2431   /// given IR type.  This should only ever be used for function-local,
2432   /// IR-driven manipulations like saving and restoring a value.  Do
2433   /// not hand this address off to arbitrary IRGen routines, and especially
2434   /// do not pass it as an argument to a function that might expect a
2435   /// properly ABI-aligned value.
2436   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2437                                        const Twine &Name = "tmp");
2438 
2439   /// InitTempAlloca - Provide an initial value for the given alloca which
2440   /// will be observable at all locations in the function.
2441   ///
2442   /// The address should be something that was returned from one of
2443   /// the CreateTempAlloca or CreateMemTemp routines, and the
2444   /// initializer must be valid in the entry block (i.e. it must
2445   /// either be a constant or an argument value).
2446   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2447 
2448   /// CreateIRTemp - Create a temporary IR object of the given type, with
2449   /// appropriate alignment. This routine should only be used when an temporary
2450   /// value needs to be stored into an alloca (for example, to avoid explicit
2451   /// PHI construction), but the type is the IR type, not the type appropriate
2452   /// for storing in memory.
2453   ///
2454   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2455   /// ConvertType instead of ConvertTypeForMem.
2456   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2457 
2458   /// CreateMemTemp - Create a temporary memory object of the given type, with
2459   /// appropriate alignmen and cast it to the default address space. Returns
2460   /// the original alloca instruction by \p Alloca if it is not nullptr.
2461   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2462                         Address *Alloca = nullptr);
2463   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2464                         Address *Alloca = nullptr);
2465 
2466   /// CreateMemTemp - Create a temporary memory object of the given type, with
2467   /// appropriate alignmen without casting it to the default address space.
2468   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2469   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2470                                    const Twine &Name = "tmp");
2471 
2472   /// CreateAggTemp - Create a temporary memory object for the given
2473   /// aggregate type.
2474   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2475                              Address *Alloca = nullptr) {
2476     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2477                                  T.getQualifiers(),
2478                                  AggValueSlot::IsNotDestructed,
2479                                  AggValueSlot::DoesNotNeedGCBarriers,
2480                                  AggValueSlot::IsNotAliased,
2481                                  AggValueSlot::DoesNotOverlap);
2482   }
2483 
2484   /// Emit a cast to void* in the appropriate address space.
2485   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2486 
2487   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2488   /// expression and compare the result against zero, returning an Int1Ty value.
2489   llvm::Value *EvaluateExprAsBool(const Expr *E);
2490 
2491   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2492   void EmitIgnoredExpr(const Expr *E);
2493 
2494   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2495   /// any type.  The result is returned as an RValue struct.  If this is an
2496   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2497   /// the result should be returned.
2498   ///
2499   /// \param ignoreResult True if the resulting value isn't used.
2500   RValue EmitAnyExpr(const Expr *E,
2501                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2502                      bool ignoreResult = false);
2503 
2504   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2505   // or the value of the expression, depending on how va_list is defined.
2506   Address EmitVAListRef(const Expr *E);
2507 
2508   /// Emit a "reference" to a __builtin_ms_va_list; this is
2509   /// always the value of the expression, because a __builtin_ms_va_list is a
2510   /// pointer to a char.
2511   Address EmitMSVAListRef(const Expr *E);
2512 
2513   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2514   /// always be accessible even if no aggregate location is provided.
2515   RValue EmitAnyExprToTemp(const Expr *E);
2516 
2517   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2518   /// arbitrary expression into the given memory location.
2519   void EmitAnyExprToMem(const Expr *E, Address Location,
2520                         Qualifiers Quals, bool IsInitializer);
2521 
2522   void EmitAnyExprToExn(const Expr *E, Address Addr);
2523 
2524   /// EmitExprAsInit - Emits the code necessary to initialize a
2525   /// location in memory with the given initializer.
2526   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2527                       bool capturedByInit);
2528 
2529   /// hasVolatileMember - returns true if aggregate type has a volatile
2530   /// member.
2531   bool hasVolatileMember(QualType T) {
2532     if (const RecordType *RT = T->getAs<RecordType>()) {
2533       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2534       return RD->hasVolatileMember();
2535     }
2536     return false;
2537   }
2538 
2539   /// Determine whether a return value slot may overlap some other object.
2540   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2541     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2542     // class subobjects. These cases may need to be revisited depending on the
2543     // resolution of the relevant core issue.
2544     return AggValueSlot::DoesNotOverlap;
2545   }
2546 
2547   /// Determine whether a field initialization may overlap some other object.
2548   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2549 
2550   /// Determine whether a base class initialization may overlap some other
2551   /// object.
2552   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2553                                                 const CXXRecordDecl *BaseRD,
2554                                                 bool IsVirtual);
2555 
2556   /// Emit an aggregate assignment.
2557   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2558     bool IsVolatile = hasVolatileMember(EltTy);
2559     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2560   }
2561 
2562   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2563                              AggValueSlot::Overlap_t MayOverlap) {
2564     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2565   }
2566 
2567   /// EmitAggregateCopy - Emit an aggregate copy.
2568   ///
2569   /// \param isVolatile \c true iff either the source or the destination is
2570   ///        volatile.
2571   /// \param MayOverlap Whether the tail padding of the destination might be
2572   ///        occupied by some other object. More efficient code can often be
2573   ///        generated if not.
2574   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2575                          AggValueSlot::Overlap_t MayOverlap,
2576                          bool isVolatile = false);
2577 
2578   /// GetAddrOfLocalVar - Return the address of a local variable.
2579   Address GetAddrOfLocalVar(const VarDecl *VD) {
2580     auto it = LocalDeclMap.find(VD);
2581     assert(it != LocalDeclMap.end() &&
2582            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2583     return it->second;
2584   }
2585 
2586   /// Given an opaque value expression, return its LValue mapping if it exists,
2587   /// otherwise create one.
2588   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2589 
2590   /// Given an opaque value expression, return its RValue mapping if it exists,
2591   /// otherwise create one.
2592   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2593 
2594   /// Get the index of the current ArrayInitLoopExpr, if any.
2595   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2596 
2597   /// getAccessedFieldNo - Given an encoded value and a result number, return
2598   /// the input field number being accessed.
2599   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2600 
2601   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2602   llvm::BasicBlock *GetIndirectGotoBlock();
2603 
2604   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2605   static bool IsWrappedCXXThis(const Expr *E);
2606 
2607   /// EmitNullInitialization - Generate code to set a value of the given type to
2608   /// null, If the type contains data member pointers, they will be initialized
2609   /// to -1 in accordance with the Itanium C++ ABI.
2610   void EmitNullInitialization(Address DestPtr, QualType Ty);
2611 
2612   /// Emits a call to an LLVM variable-argument intrinsic, either
2613   /// \c llvm.va_start or \c llvm.va_end.
2614   /// \param ArgValue A reference to the \c va_list as emitted by either
2615   /// \c EmitVAListRef or \c EmitMSVAListRef.
2616   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2617   /// calls \c llvm.va_end.
2618   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2619 
2620   /// Generate code to get an argument from the passed in pointer
2621   /// and update it accordingly.
2622   /// \param VE The \c VAArgExpr for which to generate code.
2623   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2624   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2625   /// \returns A pointer to the argument.
2626   // FIXME: We should be able to get rid of this method and use the va_arg
2627   // instruction in LLVM instead once it works well enough.
2628   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2629 
2630   /// emitArrayLength - Compute the length of an array, even if it's a
2631   /// VLA, and drill down to the base element type.
2632   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2633                                QualType &baseType,
2634                                Address &addr);
2635 
2636   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2637   /// the given variably-modified type and store them in the VLASizeMap.
2638   ///
2639   /// This function can be called with a null (unreachable) insert point.
2640   void EmitVariablyModifiedType(QualType Ty);
2641 
2642   struct VlaSizePair {
2643     llvm::Value *NumElts;
2644     QualType Type;
2645 
2646     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2647   };
2648 
2649   /// Return the number of elements for a single dimension
2650   /// for the given array type.
2651   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2652   VlaSizePair getVLAElements1D(QualType vla);
2653 
2654   /// Returns an LLVM value that corresponds to the size,
2655   /// in non-variably-sized elements, of a variable length array type,
2656   /// plus that largest non-variably-sized element type.  Assumes that
2657   /// the type has already been emitted with EmitVariablyModifiedType.
2658   VlaSizePair getVLASize(const VariableArrayType *vla);
2659   VlaSizePair getVLASize(QualType vla);
2660 
2661   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2662   /// generating code for an C++ member function.
2663   llvm::Value *LoadCXXThis() {
2664     assert(CXXThisValue && "no 'this' value for this function");
2665     return CXXThisValue;
2666   }
2667   Address LoadCXXThisAddress();
2668 
2669   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2670   /// virtual bases.
2671   // FIXME: Every place that calls LoadCXXVTT is something
2672   // that needs to be abstracted properly.
2673   llvm::Value *LoadCXXVTT() {
2674     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2675     return CXXStructorImplicitParamValue;
2676   }
2677 
2678   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2679   /// complete class to the given direct base.
2680   Address
2681   GetAddressOfDirectBaseInCompleteClass(Address Value,
2682                                         const CXXRecordDecl *Derived,
2683                                         const CXXRecordDecl *Base,
2684                                         bool BaseIsVirtual);
2685 
2686   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2687 
2688   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2689   /// load of 'this' and returns address of the base class.
2690   Address GetAddressOfBaseClass(Address Value,
2691                                 const CXXRecordDecl *Derived,
2692                                 CastExpr::path_const_iterator PathBegin,
2693                                 CastExpr::path_const_iterator PathEnd,
2694                                 bool NullCheckValue, SourceLocation Loc);
2695 
2696   Address GetAddressOfDerivedClass(Address Value,
2697                                    const CXXRecordDecl *Derived,
2698                                    CastExpr::path_const_iterator PathBegin,
2699                                    CastExpr::path_const_iterator PathEnd,
2700                                    bool NullCheckValue);
2701 
2702   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2703   /// base constructor/destructor with virtual bases.
2704   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2705   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2706   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2707                                bool Delegating);
2708 
2709   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2710                                       CXXCtorType CtorType,
2711                                       const FunctionArgList &Args,
2712                                       SourceLocation Loc);
2713   // It's important not to confuse this and the previous function. Delegating
2714   // constructors are the C++0x feature. The constructor delegate optimization
2715   // is used to reduce duplication in the base and complete consturctors where
2716   // they are substantially the same.
2717   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2718                                         const FunctionArgList &Args);
2719 
2720   /// Emit a call to an inheriting constructor (that is, one that invokes a
2721   /// constructor inherited from a base class) by inlining its definition. This
2722   /// is necessary if the ABI does not support forwarding the arguments to the
2723   /// base class constructor (because they're variadic or similar).
2724   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2725                                                CXXCtorType CtorType,
2726                                                bool ForVirtualBase,
2727                                                bool Delegating,
2728                                                CallArgList &Args);
2729 
2730   /// Emit a call to a constructor inherited from a base class, passing the
2731   /// current constructor's arguments along unmodified (without even making
2732   /// a copy).
2733   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2734                                        bool ForVirtualBase, Address This,
2735                                        bool InheritedFromVBase,
2736                                        const CXXInheritedCtorInitExpr *E);
2737 
2738   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2739                               bool ForVirtualBase, bool Delegating,
2740                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2741 
2742   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2743                               bool ForVirtualBase, bool Delegating,
2744                               Address This, CallArgList &Args,
2745                               AggValueSlot::Overlap_t Overlap,
2746                               SourceLocation Loc, bool NewPointerIsChecked);
2747 
2748   /// Emit assumption load for all bases. Requires to be be called only on
2749   /// most-derived class and not under construction of the object.
2750   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2751 
2752   /// Emit assumption that vptr load == global vtable.
2753   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2754 
2755   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2756                                       Address This, Address Src,
2757                                       const CXXConstructExpr *E);
2758 
2759   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2760                                   const ArrayType *ArrayTy,
2761                                   Address ArrayPtr,
2762                                   const CXXConstructExpr *E,
2763                                   bool NewPointerIsChecked,
2764                                   bool ZeroInitialization = false);
2765 
2766   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2767                                   llvm::Value *NumElements,
2768                                   Address ArrayPtr,
2769                                   const CXXConstructExpr *E,
2770                                   bool NewPointerIsChecked,
2771                                   bool ZeroInitialization = false);
2772 
2773   static Destroyer destroyCXXObject;
2774 
2775   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2776                              bool ForVirtualBase, bool Delegating, Address This,
2777                              QualType ThisTy);
2778 
2779   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2780                                llvm::Type *ElementTy, Address NewPtr,
2781                                llvm::Value *NumElements,
2782                                llvm::Value *AllocSizeWithoutCookie);
2783 
2784   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2785                         Address Ptr);
2786 
2787   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2788   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2789 
2790   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2791   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2792 
2793   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2794                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2795                       CharUnits CookieSize = CharUnits());
2796 
2797   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2798                                   const CallExpr *TheCallExpr, bool IsDelete);
2799 
2800   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2801   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2802   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2803 
2804   /// Situations in which we might emit a check for the suitability of a
2805   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2806   /// compiler-rt.
2807   enum TypeCheckKind {
2808     /// Checking the operand of a load. Must be suitably sized and aligned.
2809     TCK_Load,
2810     /// Checking the destination of a store. Must be suitably sized and aligned.
2811     TCK_Store,
2812     /// Checking the bound value in a reference binding. Must be suitably sized
2813     /// and aligned, but is not required to refer to an object (until the
2814     /// reference is used), per core issue 453.
2815     TCK_ReferenceBinding,
2816     /// Checking the object expression in a non-static data member access. Must
2817     /// be an object within its lifetime.
2818     TCK_MemberAccess,
2819     /// Checking the 'this' pointer for a call to a non-static member function.
2820     /// Must be an object within its lifetime.
2821     TCK_MemberCall,
2822     /// Checking the 'this' pointer for a constructor call.
2823     TCK_ConstructorCall,
2824     /// Checking the operand of a static_cast to a derived pointer type. Must be
2825     /// null or an object within its lifetime.
2826     TCK_DowncastPointer,
2827     /// Checking the operand of a static_cast to a derived reference type. Must
2828     /// be an object within its lifetime.
2829     TCK_DowncastReference,
2830     /// Checking the operand of a cast to a base object. Must be suitably sized
2831     /// and aligned.
2832     TCK_Upcast,
2833     /// Checking the operand of a cast to a virtual base object. Must be an
2834     /// object within its lifetime.
2835     TCK_UpcastToVirtualBase,
2836     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2837     TCK_NonnullAssign,
2838     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2839     /// null or an object within its lifetime.
2840     TCK_DynamicOperation
2841   };
2842 
2843   /// Determine whether the pointer type check \p TCK permits null pointers.
2844   static bool isNullPointerAllowed(TypeCheckKind TCK);
2845 
2846   /// Determine whether the pointer type check \p TCK requires a vptr check.
2847   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2848 
2849   /// Whether any type-checking sanitizers are enabled. If \c false,
2850   /// calls to EmitTypeCheck can be skipped.
2851   bool sanitizePerformTypeCheck() const;
2852 
2853   /// Emit a check that \p V is the address of storage of the
2854   /// appropriate size and alignment for an object of type \p Type
2855   /// (or if ArraySize is provided, for an array of that bound).
2856   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2857                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2858                      SanitizerSet SkippedChecks = SanitizerSet(),
2859                      llvm::Value *ArraySize = nullptr);
2860 
2861   /// Emit a check that \p Base points into an array object, which
2862   /// we can access at index \p Index. \p Accessed should be \c false if we
2863   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2864   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2865                        QualType IndexType, bool Accessed);
2866 
2867   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2868                                        bool isInc, bool isPre);
2869   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2870                                          bool isInc, bool isPre);
2871 
2872   /// Converts Location to a DebugLoc, if debug information is enabled.
2873   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2874 
2875   /// Get the record field index as represented in debug info.
2876   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2877 
2878 
2879   //===--------------------------------------------------------------------===//
2880   //                            Declaration Emission
2881   //===--------------------------------------------------------------------===//
2882 
2883   /// EmitDecl - Emit a declaration.
2884   ///
2885   /// This function can be called with a null (unreachable) insert point.
2886   void EmitDecl(const Decl &D);
2887 
2888   /// EmitVarDecl - Emit a local variable declaration.
2889   ///
2890   /// This function can be called with a null (unreachable) insert point.
2891   void EmitVarDecl(const VarDecl &D);
2892 
2893   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2894                       bool capturedByInit);
2895 
2896   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2897                              llvm::Value *Address);
2898 
2899   /// Determine whether the given initializer is trivial in the sense
2900   /// that it requires no code to be generated.
2901   bool isTrivialInitializer(const Expr *Init);
2902 
2903   /// EmitAutoVarDecl - Emit an auto variable declaration.
2904   ///
2905   /// This function can be called with a null (unreachable) insert point.
2906   void EmitAutoVarDecl(const VarDecl &D);
2907 
2908   class AutoVarEmission {
2909     friend class CodeGenFunction;
2910 
2911     const VarDecl *Variable;
2912 
2913     /// The address of the alloca for languages with explicit address space
2914     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2915     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2916     /// as a global constant.
2917     Address Addr;
2918 
2919     llvm::Value *NRVOFlag;
2920 
2921     /// True if the variable is a __block variable that is captured by an
2922     /// escaping block.
2923     bool IsEscapingByRef;
2924 
2925     /// True if the variable is of aggregate type and has a constant
2926     /// initializer.
2927     bool IsConstantAggregate;
2928 
2929     /// Non-null if we should use lifetime annotations.
2930     llvm::Value *SizeForLifetimeMarkers;
2931 
2932     /// Address with original alloca instruction. Invalid if the variable was
2933     /// emitted as a global constant.
2934     Address AllocaAddr;
2935 
2936     struct Invalid {};
2937     AutoVarEmission(Invalid)
2938         : Variable(nullptr), Addr(Address::invalid()),
2939           AllocaAddr(Address::invalid()) {}
2940 
2941     AutoVarEmission(const VarDecl &variable)
2942         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2943           IsEscapingByRef(false), IsConstantAggregate(false),
2944           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2945 
2946     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2947 
2948   public:
2949     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2950 
2951     bool useLifetimeMarkers() const {
2952       return SizeForLifetimeMarkers != nullptr;
2953     }
2954     llvm::Value *getSizeForLifetimeMarkers() const {
2955       assert(useLifetimeMarkers());
2956       return SizeForLifetimeMarkers;
2957     }
2958 
2959     /// Returns the raw, allocated address, which is not necessarily
2960     /// the address of the object itself. It is casted to default
2961     /// address space for address space agnostic languages.
2962     Address getAllocatedAddress() const {
2963       return Addr;
2964     }
2965 
2966     /// Returns the address for the original alloca instruction.
2967     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2968 
2969     /// Returns the address of the object within this declaration.
2970     /// Note that this does not chase the forwarding pointer for
2971     /// __block decls.
2972     Address getObjectAddress(CodeGenFunction &CGF) const {
2973       if (!IsEscapingByRef) return Addr;
2974 
2975       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2976     }
2977   };
2978   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2979   void EmitAutoVarInit(const AutoVarEmission &emission);
2980   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2981   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2982                               QualType::DestructionKind dtorKind);
2983 
2984   /// Emits the alloca and debug information for the size expressions for each
2985   /// dimension of an array. It registers the association of its (1-dimensional)
2986   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2987   /// reference this node when creating the DISubrange object to describe the
2988   /// array types.
2989   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2990                                               const VarDecl &D,
2991                                               bool EmitDebugInfo);
2992 
2993   void EmitStaticVarDecl(const VarDecl &D,
2994                          llvm::GlobalValue::LinkageTypes Linkage);
2995 
2996   class ParamValue {
2997     llvm::Value *Value;
2998     unsigned Alignment;
2999     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3000   public:
3001     static ParamValue forDirect(llvm::Value *value) {
3002       return ParamValue(value, 0);
3003     }
3004     static ParamValue forIndirect(Address addr) {
3005       assert(!addr.getAlignment().isZero());
3006       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3007     }
3008 
3009     bool isIndirect() const { return Alignment != 0; }
3010     llvm::Value *getAnyValue() const { return Value; }
3011 
3012     llvm::Value *getDirectValue() const {
3013       assert(!isIndirect());
3014       return Value;
3015     }
3016 
3017     Address getIndirectAddress() const {
3018       assert(isIndirect());
3019       return Address(Value, CharUnits::fromQuantity(Alignment));
3020     }
3021   };
3022 
3023   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3024   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3025 
3026   /// protectFromPeepholes - Protect a value that we're intending to
3027   /// store to the side, but which will probably be used later, from
3028   /// aggressive peepholing optimizations that might delete it.
3029   ///
3030   /// Pass the result to unprotectFromPeepholes to declare that
3031   /// protection is no longer required.
3032   ///
3033   /// There's no particular reason why this shouldn't apply to
3034   /// l-values, it's just that no existing peepholes work on pointers.
3035   PeepholeProtection protectFromPeepholes(RValue rvalue);
3036   void unprotectFromPeepholes(PeepholeProtection protection);
3037 
3038   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3039                                     SourceLocation Loc,
3040                                     SourceLocation AssumptionLoc,
3041                                     llvm::Value *Alignment,
3042                                     llvm::Value *OffsetValue,
3043                                     llvm::Value *TheCheck,
3044                                     llvm::Instruction *Assumption);
3045 
3046   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3047                                SourceLocation Loc, SourceLocation AssumptionLoc,
3048                                llvm::Value *Alignment,
3049                                llvm::Value *OffsetValue = nullptr);
3050 
3051   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3052                                SourceLocation AssumptionLoc,
3053                                llvm::Value *Alignment,
3054                                llvm::Value *OffsetValue = nullptr);
3055 
3056   //===--------------------------------------------------------------------===//
3057   //                             Statement Emission
3058   //===--------------------------------------------------------------------===//
3059 
3060   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3061   void EmitStopPoint(const Stmt *S);
3062 
3063   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3064   /// this function even if there is no current insertion point.
3065   ///
3066   /// This function may clear the current insertion point; callers should use
3067   /// EnsureInsertPoint if they wish to subsequently generate code without first
3068   /// calling EmitBlock, EmitBranch, or EmitStmt.
3069   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3070 
3071   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3072   /// necessarily require an insertion point or debug information; typically
3073   /// because the statement amounts to a jump or a container of other
3074   /// statements.
3075   ///
3076   /// \return True if the statement was handled.
3077   bool EmitSimpleStmt(const Stmt *S);
3078 
3079   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3080                            AggValueSlot AVS = AggValueSlot::ignored());
3081   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3082                                        bool GetLast = false,
3083                                        AggValueSlot AVS =
3084                                                 AggValueSlot::ignored());
3085 
3086   /// EmitLabel - Emit the block for the given label. It is legal to call this
3087   /// function even if there is no current insertion point.
3088   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3089 
3090   void EmitLabelStmt(const LabelStmt &S);
3091   void EmitAttributedStmt(const AttributedStmt &S);
3092   void EmitGotoStmt(const GotoStmt &S);
3093   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3094   void EmitIfStmt(const IfStmt &S);
3095 
3096   void EmitWhileStmt(const WhileStmt &S,
3097                      ArrayRef<const Attr *> Attrs = None);
3098   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3099   void EmitForStmt(const ForStmt &S,
3100                    ArrayRef<const Attr *> Attrs = None);
3101   void EmitReturnStmt(const ReturnStmt &S);
3102   void EmitDeclStmt(const DeclStmt &S);
3103   void EmitBreakStmt(const BreakStmt &S);
3104   void EmitContinueStmt(const ContinueStmt &S);
3105   void EmitSwitchStmt(const SwitchStmt &S);
3106   void EmitDefaultStmt(const DefaultStmt &S);
3107   void EmitCaseStmt(const CaseStmt &S);
3108   void EmitCaseStmtRange(const CaseStmt &S);
3109   void EmitAsmStmt(const AsmStmt &S);
3110 
3111   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3112   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3113   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3114   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3115   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3116 
3117   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3118   void EmitCoreturnStmt(const CoreturnStmt &S);
3119   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3120                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3121                          bool ignoreResult = false);
3122   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3123   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3124                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3125                          bool ignoreResult = false);
3126   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3127   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3128 
3129   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3130   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3131 
3132   void EmitCXXTryStmt(const CXXTryStmt &S);
3133   void EmitSEHTryStmt(const SEHTryStmt &S);
3134   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3135   void EnterSEHTryStmt(const SEHTryStmt &S);
3136   void ExitSEHTryStmt(const SEHTryStmt &S);
3137 
3138   void pushSEHCleanup(CleanupKind kind,
3139                       llvm::Function *FinallyFunc);
3140   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3141                               const Stmt *OutlinedStmt);
3142 
3143   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3144                                             const SEHExceptStmt &Except);
3145 
3146   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3147                                              const SEHFinallyStmt &Finally);
3148 
3149   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3150                                 llvm::Value *ParentFP,
3151                                 llvm::Value *EntryEBP);
3152   llvm::Value *EmitSEHExceptionCode();
3153   llvm::Value *EmitSEHExceptionInfo();
3154   llvm::Value *EmitSEHAbnormalTermination();
3155 
3156   /// Emit simple code for OpenMP directives in Simd-only mode.
3157   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3158 
3159   /// Scan the outlined statement for captures from the parent function. For
3160   /// each capture, mark the capture as escaped and emit a call to
3161   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3162   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3163                           bool IsFilter);
3164 
3165   /// Recovers the address of a local in a parent function. ParentVar is the
3166   /// address of the variable used in the immediate parent function. It can
3167   /// either be an alloca or a call to llvm.localrecover if there are nested
3168   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3169   /// frame.
3170   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3171                                     Address ParentVar,
3172                                     llvm::Value *ParentFP);
3173 
3174   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3175                            ArrayRef<const Attr *> Attrs = None);
3176 
3177   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3178   class OMPCancelStackRAII {
3179     CodeGenFunction &CGF;
3180 
3181   public:
3182     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3183                        bool HasCancel)
3184         : CGF(CGF) {
3185       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3186     }
3187     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3188   };
3189 
3190   /// Returns calculated size of the specified type.
3191   llvm::Value *getTypeSize(QualType Ty);
3192   LValue InitCapturedStruct(const CapturedStmt &S);
3193   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3194   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3195   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3196   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3197                                                      SourceLocation Loc);
3198   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3199                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3200   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3201                           SourceLocation Loc);
3202   /// Perform element by element copying of arrays with type \a
3203   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3204   /// generated by \a CopyGen.
3205   ///
3206   /// \param DestAddr Address of the destination array.
3207   /// \param SrcAddr Address of the source array.
3208   /// \param OriginalType Type of destination and source arrays.
3209   /// \param CopyGen Copying procedure that copies value of single array element
3210   /// to another single array element.
3211   void EmitOMPAggregateAssign(
3212       Address DestAddr, Address SrcAddr, QualType OriginalType,
3213       const llvm::function_ref<void(Address, Address)> CopyGen);
3214   /// Emit proper copying of data from one variable to another.
3215   ///
3216   /// \param OriginalType Original type of the copied variables.
3217   /// \param DestAddr Destination address.
3218   /// \param SrcAddr Source address.
3219   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3220   /// type of the base array element).
3221   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3222   /// the base array element).
3223   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3224   /// DestVD.
3225   void EmitOMPCopy(QualType OriginalType,
3226                    Address DestAddr, Address SrcAddr,
3227                    const VarDecl *DestVD, const VarDecl *SrcVD,
3228                    const Expr *Copy);
3229   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3230   /// \a X = \a E \a BO \a E.
3231   ///
3232   /// \param X Value to be updated.
3233   /// \param E Update value.
3234   /// \param BO Binary operation for update operation.
3235   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3236   /// expression, false otherwise.
3237   /// \param AO Atomic ordering of the generated atomic instructions.
3238   /// \param CommonGen Code generator for complex expressions that cannot be
3239   /// expressed through atomicrmw instruction.
3240   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3241   /// generated, <false, RValue::get(nullptr)> otherwise.
3242   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3243       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3244       llvm::AtomicOrdering AO, SourceLocation Loc,
3245       const llvm::function_ref<RValue(RValue)> CommonGen);
3246   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3247                                  OMPPrivateScope &PrivateScope);
3248   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3249                             OMPPrivateScope &PrivateScope);
3250   void EmitOMPUseDevicePtrClause(
3251       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3252       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3253   void EmitOMPUseDeviceAddrClause(
3254       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3255       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3256   /// Emit code for copyin clause in \a D directive. The next code is
3257   /// generated at the start of outlined functions for directives:
3258   /// \code
3259   /// threadprivate_var1 = master_threadprivate_var1;
3260   /// operator=(threadprivate_var2, master_threadprivate_var2);
3261   /// ...
3262   /// __kmpc_barrier(&loc, global_tid);
3263   /// \endcode
3264   ///
3265   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3266   /// \returns true if at least one copyin variable is found, false otherwise.
3267   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3268   /// Emit initial code for lastprivate variables. If some variable is
3269   /// not also firstprivate, then the default initialization is used. Otherwise
3270   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3271   /// method.
3272   ///
3273   /// \param D Directive that may have 'lastprivate' directives.
3274   /// \param PrivateScope Private scope for capturing lastprivate variables for
3275   /// proper codegen in internal captured statement.
3276   ///
3277   /// \returns true if there is at least one lastprivate variable, false
3278   /// otherwise.
3279   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3280                                     OMPPrivateScope &PrivateScope);
3281   /// Emit final copying of lastprivate values to original variables at
3282   /// the end of the worksharing or simd directive.
3283   ///
3284   /// \param D Directive that has at least one 'lastprivate' directives.
3285   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3286   /// it is the last iteration of the loop code in associated directive, or to
3287   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3288   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3289                                      bool NoFinals,
3290                                      llvm::Value *IsLastIterCond = nullptr);
3291   /// Emit initial code for linear clauses.
3292   void EmitOMPLinearClause(const OMPLoopDirective &D,
3293                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3294   /// Emit final code for linear clauses.
3295   /// \param CondGen Optional conditional code for final part of codegen for
3296   /// linear clause.
3297   void EmitOMPLinearClauseFinal(
3298       const OMPLoopDirective &D,
3299       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3300   /// Emit initial code for reduction variables. Creates reduction copies
3301   /// and initializes them with the values according to OpenMP standard.
3302   ///
3303   /// \param D Directive (possibly) with the 'reduction' clause.
3304   /// \param PrivateScope Private scope for capturing reduction variables for
3305   /// proper codegen in internal captured statement.
3306   ///
3307   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3308                                   OMPPrivateScope &PrivateScope,
3309                                   bool ForInscan = false);
3310   /// Emit final update of reduction values to original variables at
3311   /// the end of the directive.
3312   ///
3313   /// \param D Directive that has at least one 'reduction' directives.
3314   /// \param ReductionKind The kind of reduction to perform.
3315   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3316                                    const OpenMPDirectiveKind ReductionKind);
3317   /// Emit initial code for linear variables. Creates private copies
3318   /// and initializes them with the values according to OpenMP standard.
3319   ///
3320   /// \param D Directive (possibly) with the 'linear' clause.
3321   /// \return true if at least one linear variable is found that should be
3322   /// initialized with the value of the original variable, false otherwise.
3323   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3324 
3325   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3326                                         llvm::Function * /*OutlinedFn*/,
3327                                         const OMPTaskDataTy & /*Data*/)>
3328       TaskGenTy;
3329   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3330                                  const OpenMPDirectiveKind CapturedRegion,
3331                                  const RegionCodeGenTy &BodyGen,
3332                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3333   struct OMPTargetDataInfo {
3334     Address BasePointersArray = Address::invalid();
3335     Address PointersArray = Address::invalid();
3336     Address SizesArray = Address::invalid();
3337     unsigned NumberOfTargetItems = 0;
3338     explicit OMPTargetDataInfo() = default;
3339     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3340                       Address SizesArray, unsigned NumberOfTargetItems)
3341         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3342           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3343   };
3344   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3345                                        const RegionCodeGenTy &BodyGen,
3346                                        OMPTargetDataInfo &InputInfo);
3347 
3348   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3349   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3350   void EmitOMPForDirective(const OMPForDirective &S);
3351   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3352   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3353   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3354   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3355   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3356   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3357   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3358   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3359   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3360   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3361   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3362   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3363   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3364   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3365   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3366   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3367   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3368   void EmitOMPScanDirective(const OMPScanDirective &S);
3369   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3370   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3371   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3372   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3373   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3374   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3375   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3376   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3377   void
3378   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3379   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3380   void
3381   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3382   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3383   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3384   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3385   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3386   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3387   void
3388   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3389   void EmitOMPParallelMasterTaskLoopDirective(
3390       const OMPParallelMasterTaskLoopDirective &S);
3391   void EmitOMPParallelMasterTaskLoopSimdDirective(
3392       const OMPParallelMasterTaskLoopSimdDirective &S);
3393   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3394   void EmitOMPDistributeParallelForDirective(
3395       const OMPDistributeParallelForDirective &S);
3396   void EmitOMPDistributeParallelForSimdDirective(
3397       const OMPDistributeParallelForSimdDirective &S);
3398   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3399   void EmitOMPTargetParallelForSimdDirective(
3400       const OMPTargetParallelForSimdDirective &S);
3401   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3402   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3403   void
3404   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3405   void EmitOMPTeamsDistributeParallelForSimdDirective(
3406       const OMPTeamsDistributeParallelForSimdDirective &S);
3407   void EmitOMPTeamsDistributeParallelForDirective(
3408       const OMPTeamsDistributeParallelForDirective &S);
3409   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3410   void EmitOMPTargetTeamsDistributeDirective(
3411       const OMPTargetTeamsDistributeDirective &S);
3412   void EmitOMPTargetTeamsDistributeParallelForDirective(
3413       const OMPTargetTeamsDistributeParallelForDirective &S);
3414   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3415       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3416   void EmitOMPTargetTeamsDistributeSimdDirective(
3417       const OMPTargetTeamsDistributeSimdDirective &S);
3418 
3419   /// Emit device code for the target directive.
3420   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3421                                           StringRef ParentName,
3422                                           const OMPTargetDirective &S);
3423   static void
3424   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3425                                       const OMPTargetParallelDirective &S);
3426   /// Emit device code for the target parallel for directive.
3427   static void EmitOMPTargetParallelForDeviceFunction(
3428       CodeGenModule &CGM, StringRef ParentName,
3429       const OMPTargetParallelForDirective &S);
3430   /// Emit device code for the target parallel for simd directive.
3431   static void EmitOMPTargetParallelForSimdDeviceFunction(
3432       CodeGenModule &CGM, StringRef ParentName,
3433       const OMPTargetParallelForSimdDirective &S);
3434   /// Emit device code for the target teams directive.
3435   static void
3436   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3437                                    const OMPTargetTeamsDirective &S);
3438   /// Emit device code for the target teams distribute directive.
3439   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3440       CodeGenModule &CGM, StringRef ParentName,
3441       const OMPTargetTeamsDistributeDirective &S);
3442   /// Emit device code for the target teams distribute simd directive.
3443   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3444       CodeGenModule &CGM, StringRef ParentName,
3445       const OMPTargetTeamsDistributeSimdDirective &S);
3446   /// Emit device code for the target simd directive.
3447   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3448                                               StringRef ParentName,
3449                                               const OMPTargetSimdDirective &S);
3450   /// Emit device code for the target teams distribute parallel for simd
3451   /// directive.
3452   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3453       CodeGenModule &CGM, StringRef ParentName,
3454       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3455 
3456   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3457       CodeGenModule &CGM, StringRef ParentName,
3458       const OMPTargetTeamsDistributeParallelForDirective &S);
3459   /// Emit inner loop of the worksharing/simd construct.
3460   ///
3461   /// \param S Directive, for which the inner loop must be emitted.
3462   /// \param RequiresCleanup true, if directive has some associated private
3463   /// variables.
3464   /// \param LoopCond Bollean condition for loop continuation.
3465   /// \param IncExpr Increment expression for loop control variable.
3466   /// \param BodyGen Generator for the inner body of the inner loop.
3467   /// \param PostIncGen Genrator for post-increment code (required for ordered
3468   /// loop directvies).
3469   void EmitOMPInnerLoop(
3470       const OMPExecutableDirective &S, bool RequiresCleanup,
3471       const Expr *LoopCond, const Expr *IncExpr,
3472       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3473       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3474 
3475   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3476   /// Emit initial code for loop counters of loop-based directives.
3477   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3478                                   OMPPrivateScope &LoopScope);
3479 
3480   /// Helper for the OpenMP loop directives.
3481   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3482 
3483   /// Emit code for the worksharing loop-based directive.
3484   /// \return true, if this construct has any lastprivate clause, false -
3485   /// otherwise.
3486   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3487                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3488                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3489 
3490   /// Emit code for the distribute loop-based directive.
3491   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3492                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3493 
3494   /// Helpers for the OpenMP loop directives.
3495   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3496   void EmitOMPSimdFinal(
3497       const OMPLoopDirective &D,
3498       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3499 
3500   /// Emits the lvalue for the expression with possibly captured variable.
3501   LValue EmitOMPSharedLValue(const Expr *E);
3502 
3503 private:
3504   /// Helpers for blocks.
3505   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3506 
3507   /// struct with the values to be passed to the OpenMP loop-related functions
3508   struct OMPLoopArguments {
3509     /// loop lower bound
3510     Address LB = Address::invalid();
3511     /// loop upper bound
3512     Address UB = Address::invalid();
3513     /// loop stride
3514     Address ST = Address::invalid();
3515     /// isLastIteration argument for runtime functions
3516     Address IL = Address::invalid();
3517     /// Chunk value generated by sema
3518     llvm::Value *Chunk = nullptr;
3519     /// EnsureUpperBound
3520     Expr *EUB = nullptr;
3521     /// IncrementExpression
3522     Expr *IncExpr = nullptr;
3523     /// Loop initialization
3524     Expr *Init = nullptr;
3525     /// Loop exit condition
3526     Expr *Cond = nullptr;
3527     /// Update of LB after a whole chunk has been executed
3528     Expr *NextLB = nullptr;
3529     /// Update of UB after a whole chunk has been executed
3530     Expr *NextUB = nullptr;
3531     OMPLoopArguments() = default;
3532     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3533                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3534                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3535                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3536                      Expr *NextUB = nullptr)
3537         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3538           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3539           NextUB(NextUB) {}
3540   };
3541   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3542                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3543                         const OMPLoopArguments &LoopArgs,
3544                         const CodeGenLoopTy &CodeGenLoop,
3545                         const CodeGenOrderedTy &CodeGenOrdered);
3546   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3547                            bool IsMonotonic, const OMPLoopDirective &S,
3548                            OMPPrivateScope &LoopScope, bool Ordered,
3549                            const OMPLoopArguments &LoopArgs,
3550                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3551   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3552                                   const OMPLoopDirective &S,
3553                                   OMPPrivateScope &LoopScope,
3554                                   const OMPLoopArguments &LoopArgs,
3555                                   const CodeGenLoopTy &CodeGenLoopContent);
3556   /// Emit code for sections directive.
3557   void EmitSections(const OMPExecutableDirective &S);
3558 
3559 public:
3560 
3561   //===--------------------------------------------------------------------===//
3562   //                         LValue Expression Emission
3563   //===--------------------------------------------------------------------===//
3564 
3565   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3566   RValue GetUndefRValue(QualType Ty);
3567 
3568   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3569   /// and issue an ErrorUnsupported style diagnostic (using the
3570   /// provided Name).
3571   RValue EmitUnsupportedRValue(const Expr *E,
3572                                const char *Name);
3573 
3574   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3575   /// an ErrorUnsupported style diagnostic (using the provided Name).
3576   LValue EmitUnsupportedLValue(const Expr *E,
3577                                const char *Name);
3578 
3579   /// EmitLValue - Emit code to compute a designator that specifies the location
3580   /// of the expression.
3581   ///
3582   /// This can return one of two things: a simple address or a bitfield
3583   /// reference.  In either case, the LLVM Value* in the LValue structure is
3584   /// guaranteed to be an LLVM pointer type.
3585   ///
3586   /// If this returns a bitfield reference, nothing about the pointee type of
3587   /// the LLVM value is known: For example, it may not be a pointer to an
3588   /// integer.
3589   ///
3590   /// If this returns a normal address, and if the lvalue's C type is fixed
3591   /// size, this method guarantees that the returned pointer type will point to
3592   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3593   /// variable length type, this is not possible.
3594   ///
3595   LValue EmitLValue(const Expr *E);
3596 
3597   /// Same as EmitLValue but additionally we generate checking code to
3598   /// guard against undefined behavior.  This is only suitable when we know
3599   /// that the address will be used to access the object.
3600   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3601 
3602   RValue convertTempToRValue(Address addr, QualType type,
3603                              SourceLocation Loc);
3604 
3605   void EmitAtomicInit(Expr *E, LValue lvalue);
3606 
3607   bool LValueIsSuitableForInlineAtomic(LValue Src);
3608 
3609   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3610                         AggValueSlot Slot = AggValueSlot::ignored());
3611 
3612   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3613                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3614                         AggValueSlot slot = AggValueSlot::ignored());
3615 
3616   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3617 
3618   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3619                        bool IsVolatile, bool isInit);
3620 
3621   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3622       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3623       llvm::AtomicOrdering Success =
3624           llvm::AtomicOrdering::SequentiallyConsistent,
3625       llvm::AtomicOrdering Failure =
3626           llvm::AtomicOrdering::SequentiallyConsistent,
3627       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3628 
3629   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3630                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3631                         bool IsVolatile);
3632 
3633   /// EmitToMemory - Change a scalar value from its value
3634   /// representation to its in-memory representation.
3635   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3636 
3637   /// EmitFromMemory - Change a scalar value from its memory
3638   /// representation to its value representation.
3639   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3640 
3641   /// Check if the scalar \p Value is within the valid range for the given
3642   /// type \p Ty.
3643   ///
3644   /// Returns true if a check is needed (even if the range is unknown).
3645   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3646                             SourceLocation Loc);
3647 
3648   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3649   /// care to appropriately convert from the memory representation to
3650   /// the LLVM value representation.
3651   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3652                                 SourceLocation Loc,
3653                                 AlignmentSource Source = AlignmentSource::Type,
3654                                 bool isNontemporal = false) {
3655     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3656                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3657   }
3658 
3659   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3660                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3661                                 TBAAAccessInfo TBAAInfo,
3662                                 bool isNontemporal = false);
3663 
3664   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3665   /// care to appropriately convert from the memory representation to
3666   /// the LLVM value representation.  The l-value must be a simple
3667   /// l-value.
3668   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3669 
3670   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3671   /// care to appropriately convert from the memory representation to
3672   /// the LLVM value representation.
3673   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3674                          bool Volatile, QualType Ty,
3675                          AlignmentSource Source = AlignmentSource::Type,
3676                          bool isInit = false, bool isNontemporal = false) {
3677     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3678                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3679   }
3680 
3681   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3682                          bool Volatile, QualType Ty,
3683                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3684                          bool isInit = false, bool isNontemporal = false);
3685 
3686   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3687   /// care to appropriately convert from the memory representation to
3688   /// the LLVM value representation.  The l-value must be a simple
3689   /// l-value.  The isInit flag indicates whether this is an initialization.
3690   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3691   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3692 
3693   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3694   /// this method emits the address of the lvalue, then loads the result as an
3695   /// rvalue, returning the rvalue.
3696   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3697   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3698   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3699   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3700 
3701   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3702   /// lvalue, where both are guaranteed to the have the same type, and that type
3703   /// is 'Ty'.
3704   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3705   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3706   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3707 
3708   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3709   /// as EmitStoreThroughLValue.
3710   ///
3711   /// \param Result [out] - If non-null, this will be set to a Value* for the
3712   /// bit-field contents after the store, appropriate for use as the result of
3713   /// an assignment to the bit-field.
3714   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3715                                       llvm::Value **Result=nullptr);
3716 
3717   /// Emit an l-value for an assignment (simple or compound) of complex type.
3718   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3719   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3720   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3721                                              llvm::Value *&Result);
3722 
3723   // Note: only available for agg return types
3724   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3725   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3726   // Note: only available for agg return types
3727   LValue EmitCallExprLValue(const CallExpr *E);
3728   // Note: only available for agg return types
3729   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3730   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3731   LValue EmitStringLiteralLValue(const StringLiteral *E);
3732   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3733   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3734   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3735   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3736                                 bool Accessed = false);
3737   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3738   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3739                                  bool IsLowerBound = true);
3740   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3741   LValue EmitMemberExpr(const MemberExpr *E);
3742   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3743   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3744   LValue EmitInitListLValue(const InitListExpr *E);
3745   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3746   LValue EmitCastLValue(const CastExpr *E);
3747   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3748   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3749 
3750   Address EmitExtVectorElementLValue(LValue V);
3751 
3752   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3753 
3754   Address EmitArrayToPointerDecay(const Expr *Array,
3755                                   LValueBaseInfo *BaseInfo = nullptr,
3756                                   TBAAAccessInfo *TBAAInfo = nullptr);
3757 
3758   class ConstantEmission {
3759     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3760     ConstantEmission(llvm::Constant *C, bool isReference)
3761       : ValueAndIsReference(C, isReference) {}
3762   public:
3763     ConstantEmission() {}
3764     static ConstantEmission forReference(llvm::Constant *C) {
3765       return ConstantEmission(C, true);
3766     }
3767     static ConstantEmission forValue(llvm::Constant *C) {
3768       return ConstantEmission(C, false);
3769     }
3770 
3771     explicit operator bool() const {
3772       return ValueAndIsReference.getOpaqueValue() != nullptr;
3773     }
3774 
3775     bool isReference() const { return ValueAndIsReference.getInt(); }
3776     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3777       assert(isReference());
3778       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3779                                             refExpr->getType());
3780     }
3781 
3782     llvm::Constant *getValue() const {
3783       assert(!isReference());
3784       return ValueAndIsReference.getPointer();
3785     }
3786   };
3787 
3788   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3789   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3790   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3791 
3792   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3793                                 AggValueSlot slot = AggValueSlot::ignored());
3794   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3795 
3796   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3797                               const ObjCIvarDecl *Ivar);
3798   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3799   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3800 
3801   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3802   /// if the Field is a reference, this will return the address of the reference
3803   /// and not the address of the value stored in the reference.
3804   LValue EmitLValueForFieldInitialization(LValue Base,
3805                                           const FieldDecl* Field);
3806 
3807   LValue EmitLValueForIvar(QualType ObjectTy,
3808                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3809                            unsigned CVRQualifiers);
3810 
3811   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3812   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3813   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3814   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3815 
3816   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3817   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3818   LValue EmitStmtExprLValue(const StmtExpr *E);
3819   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3820   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3821   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3822 
3823   //===--------------------------------------------------------------------===//
3824   //                         Scalar Expression Emission
3825   //===--------------------------------------------------------------------===//
3826 
3827   /// EmitCall - Generate a call of the given function, expecting the given
3828   /// result type, and using the given argument list which specifies both the
3829   /// LLVM arguments and the types they were derived from.
3830   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3831                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3832                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3833   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3834                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3835                   llvm::CallBase **callOrInvoke = nullptr) {
3836     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3837                     SourceLocation());
3838   }
3839   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3840                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3841   RValue EmitCallExpr(const CallExpr *E,
3842                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3843   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3844   CGCallee EmitCallee(const Expr *E);
3845 
3846   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3847   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3848 
3849   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3850                                   const Twine &name = "");
3851   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3852                                   ArrayRef<llvm::Value *> args,
3853                                   const Twine &name = "");
3854   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3855                                           const Twine &name = "");
3856   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3857                                           ArrayRef<llvm::Value *> args,
3858                                           const Twine &name = "");
3859 
3860   SmallVector<llvm::OperandBundleDef, 1>
3861   getBundlesForFunclet(llvm::Value *Callee);
3862 
3863   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3864                                    ArrayRef<llvm::Value *> Args,
3865                                    const Twine &Name = "");
3866   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3867                                           ArrayRef<llvm::Value *> args,
3868                                           const Twine &name = "");
3869   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3870                                           const Twine &name = "");
3871   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3872                                        ArrayRef<llvm::Value *> args);
3873 
3874   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3875                                      NestedNameSpecifier *Qual,
3876                                      llvm::Type *Ty);
3877 
3878   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3879                                                CXXDtorType Type,
3880                                                const CXXRecordDecl *RD);
3881 
3882   // Return the copy constructor name with the prefix "__copy_constructor_"
3883   // removed.
3884   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3885                                                      CharUnits Alignment,
3886                                                      bool IsVolatile,
3887                                                      ASTContext &Ctx);
3888 
3889   // Return the destructor name with the prefix "__destructor_" removed.
3890   static std::string getNonTrivialDestructorStr(QualType QT,
3891                                                 CharUnits Alignment,
3892                                                 bool IsVolatile,
3893                                                 ASTContext &Ctx);
3894 
3895   // These functions emit calls to the special functions of non-trivial C
3896   // structs.
3897   void defaultInitNonTrivialCStructVar(LValue Dst);
3898   void callCStructDefaultConstructor(LValue Dst);
3899   void callCStructDestructor(LValue Dst);
3900   void callCStructCopyConstructor(LValue Dst, LValue Src);
3901   void callCStructMoveConstructor(LValue Dst, LValue Src);
3902   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3903   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3904 
3905   RValue
3906   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3907                               const CGCallee &Callee,
3908                               ReturnValueSlot ReturnValue, llvm::Value *This,
3909                               llvm::Value *ImplicitParam,
3910                               QualType ImplicitParamTy, const CallExpr *E,
3911                               CallArgList *RtlArgs);
3912   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3913                                llvm::Value *This, QualType ThisTy,
3914                                llvm::Value *ImplicitParam,
3915                                QualType ImplicitParamTy, const CallExpr *E);
3916   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3917                                ReturnValueSlot ReturnValue);
3918   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3919                                                const CXXMethodDecl *MD,
3920                                                ReturnValueSlot ReturnValue,
3921                                                bool HasQualifier,
3922                                                NestedNameSpecifier *Qualifier,
3923                                                bool IsArrow, const Expr *Base);
3924   // Compute the object pointer.
3925   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3926                                           llvm::Value *memberPtr,
3927                                           const MemberPointerType *memberPtrType,
3928                                           LValueBaseInfo *BaseInfo = nullptr,
3929                                           TBAAAccessInfo *TBAAInfo = nullptr);
3930   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3931                                       ReturnValueSlot ReturnValue);
3932 
3933   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3934                                        const CXXMethodDecl *MD,
3935                                        ReturnValueSlot ReturnValue);
3936   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3937 
3938   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3939                                 ReturnValueSlot ReturnValue);
3940 
3941   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3942                                        ReturnValueSlot ReturnValue);
3943   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3944                                         ReturnValueSlot ReturnValue);
3945 
3946   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3947                          const CallExpr *E, ReturnValueSlot ReturnValue);
3948 
3949   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3950 
3951   /// Emit IR for __builtin_os_log_format.
3952   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3953 
3954   /// Emit IR for __builtin_is_aligned.
3955   RValue EmitBuiltinIsAligned(const CallExpr *E);
3956   /// Emit IR for __builtin_align_up/__builtin_align_down.
3957   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3958 
3959   llvm::Function *generateBuiltinOSLogHelperFunction(
3960       const analyze_os_log::OSLogBufferLayout &Layout,
3961       CharUnits BufferAlignment);
3962 
3963   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3964 
3965   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3966   /// is unhandled by the current target.
3967   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3968                                      ReturnValueSlot ReturnValue);
3969 
3970   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3971                                              const llvm::CmpInst::Predicate Fp,
3972                                              const llvm::CmpInst::Predicate Ip,
3973                                              const llvm::Twine &Name = "");
3974   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3975                                   ReturnValueSlot ReturnValue,
3976                                   llvm::Triple::ArchType Arch);
3977   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3978                                      ReturnValueSlot ReturnValue,
3979                                      llvm::Triple::ArchType Arch);
3980   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3981                                      ReturnValueSlot ReturnValue,
3982                                      llvm::Triple::ArchType Arch);
3983   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
3984                                    QualType RTy);
3985   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
3986                                    QualType RTy);
3987 
3988   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3989                                          unsigned LLVMIntrinsic,
3990                                          unsigned AltLLVMIntrinsic,
3991                                          const char *NameHint,
3992                                          unsigned Modifier,
3993                                          const CallExpr *E,
3994                                          SmallVectorImpl<llvm::Value *> &Ops,
3995                                          Address PtrOp0, Address PtrOp1,
3996                                          llvm::Triple::ArchType Arch);
3997 
3998   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3999                                           unsigned Modifier, llvm::Type *ArgTy,
4000                                           const CallExpr *E);
4001   llvm::Value *EmitNeonCall(llvm::Function *F,
4002                             SmallVectorImpl<llvm::Value*> &O,
4003                             const char *name,
4004                             unsigned shift = 0, bool rightshift = false);
4005   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4006                              const llvm::ElementCount &Count);
4007   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4008   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4009                                    bool negateForRightShift);
4010   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4011                                  llvm::Type *Ty, bool usgn, const char *name);
4012   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4013   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4014   /// access builtin.  Only required if it can't be inferred from the base
4015   /// pointer operand.
4016   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4017 
4018   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4019                                                    llvm::Type *ReturnType,
4020                                                    ArrayRef<llvm::Value *> Ops);
4021   llvm::Type *getEltType(SVETypeFlags TypeFlags);
4022   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4023   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4024   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4025   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4026   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4027   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4028   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4029                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4030                             unsigned BuiltinID);
4031   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4032                            llvm::ArrayRef<llvm::Value *> Ops,
4033                            unsigned BuiltinID);
4034   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4035                                     llvm::ScalableVectorType *VTy);
4036   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4037                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4038                                  unsigned IntID);
4039   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4040                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4041                                    unsigned IntID);
4042   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4043                                  SmallVectorImpl<llvm::Value *> &Ops,
4044                                  unsigned BuiltinID, bool IsZExtReturn);
4045   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4046                                   SmallVectorImpl<llvm::Value *> &Ops,
4047                                   unsigned BuiltinID);
4048   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4049                                    SmallVectorImpl<llvm::Value *> &Ops,
4050                                    unsigned BuiltinID);
4051   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4052                                      SmallVectorImpl<llvm::Value *> &Ops,
4053                                      unsigned IntID);
4054   llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4055                                  SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4056   llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4057                                   SmallVectorImpl<llvm::Value *> &Ops,
4058                                   unsigned IntID);
4059   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4060 
4061   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4062                                       llvm::Triple::ArchType Arch);
4063   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4064 
4065   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4066   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4067   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4068   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4069   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4070   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4071   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4072                                           const CallExpr *E);
4073   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4074   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4075                                llvm::AtomicOrdering &AO,
4076                                llvm::SyncScope::ID &SSID);
4077 
4078 private:
4079   enum class MSVCIntrin;
4080 
4081 public:
4082   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4083 
4084   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
4085 
4086   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4087   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4088   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4089   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4090   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4091   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4092                                 const ObjCMethodDecl *MethodWithObjects);
4093   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4094   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4095                              ReturnValueSlot Return = ReturnValueSlot());
4096 
4097   /// Retrieves the default cleanup kind for an ARC cleanup.
4098   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4099   CleanupKind getARCCleanupKind() {
4100     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4101              ? NormalAndEHCleanup : NormalCleanup;
4102   }
4103 
4104   // ARC primitives.
4105   void EmitARCInitWeak(Address addr, llvm::Value *value);
4106   void EmitARCDestroyWeak(Address addr);
4107   llvm::Value *EmitARCLoadWeak(Address addr);
4108   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4109   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4110   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4111   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4112   void EmitARCCopyWeak(Address dst, Address src);
4113   void EmitARCMoveWeak(Address dst, Address src);
4114   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4115   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4116   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4117                                   bool resultIgnored);
4118   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4119                                       bool resultIgnored);
4120   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4121   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4122   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4123   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4124   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4125   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4126   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4127   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4128   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4129   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4130 
4131   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4132   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4133                                       llvm::Type *returnType);
4134   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4135 
4136   std::pair<LValue,llvm::Value*>
4137   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4138   std::pair<LValue,llvm::Value*>
4139   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4140   std::pair<LValue,llvm::Value*>
4141   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4142 
4143   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4144                              llvm::Type *returnType);
4145   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4146                                      llvm::Type *returnType);
4147   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4148 
4149   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4150   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4151   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4152 
4153   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4154   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4155                                             bool allowUnsafeClaim);
4156   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4157   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4158   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4159 
4160   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4161 
4162   static Destroyer destroyARCStrongImprecise;
4163   static Destroyer destroyARCStrongPrecise;
4164   static Destroyer destroyARCWeak;
4165   static Destroyer emitARCIntrinsicUse;
4166   static Destroyer destroyNonTrivialCStruct;
4167 
4168   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4169   llvm::Value *EmitObjCAutoreleasePoolPush();
4170   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4171   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4172   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4173 
4174   /// Emits a reference binding to the passed in expression.
4175   RValue EmitReferenceBindingToExpr(const Expr *E);
4176 
4177   //===--------------------------------------------------------------------===//
4178   //                           Expression Emission
4179   //===--------------------------------------------------------------------===//
4180 
4181   // Expressions are broken into three classes: scalar, complex, aggregate.
4182 
4183   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4184   /// scalar type, returning the result.
4185   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4186 
4187   /// Emit a conversion from the specified type to the specified destination
4188   /// type, both of which are LLVM scalar types.
4189   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4190                                     QualType DstTy, SourceLocation Loc);
4191 
4192   /// Emit a conversion from the specified complex type to the specified
4193   /// destination type, where the destination type is an LLVM scalar type.
4194   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4195                                              QualType DstTy,
4196                                              SourceLocation Loc);
4197 
4198   /// EmitAggExpr - Emit the computation of the specified expression
4199   /// of aggregate type.  The result is computed into the given slot,
4200   /// which may be null to indicate that the value is not needed.
4201   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4202 
4203   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4204   /// aggregate type into a temporary LValue.
4205   LValue EmitAggExprToLValue(const Expr *E);
4206 
4207   /// Build all the stores needed to initialize an aggregate at Dest with the
4208   /// value Val.
4209   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4210 
4211   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4212   /// make sure it survives garbage collection until this point.
4213   void EmitExtendGCLifetime(llvm::Value *object);
4214 
4215   /// EmitComplexExpr - Emit the computation of the specified expression of
4216   /// complex type, returning the result.
4217   ComplexPairTy EmitComplexExpr(const Expr *E,
4218                                 bool IgnoreReal = false,
4219                                 bool IgnoreImag = false);
4220 
4221   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4222   /// type and place its result into the specified l-value.
4223   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4224 
4225   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4226   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4227 
4228   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4229   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4230 
4231   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4232   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4233 
4234   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4235   /// global variable that has already been created for it.  If the initializer
4236   /// has a different type than GV does, this may free GV and return a different
4237   /// one.  Otherwise it just returns GV.
4238   llvm::GlobalVariable *
4239   AddInitializerToStaticVarDecl(const VarDecl &D,
4240                                 llvm::GlobalVariable *GV);
4241 
4242   // Emit an @llvm.invariant.start call for the given memory region.
4243   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4244 
4245   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4246   /// variable with global storage.
4247   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4248                                 bool PerformInit);
4249 
4250   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4251                                    llvm::Constant *Addr);
4252 
4253   /// Call atexit() with a function that passes the given argument to
4254   /// the given function.
4255   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4256                                     llvm::Constant *addr);
4257 
4258   /// Call atexit() with function dtorStub.
4259   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4260 
4261   /// Call unatexit() with function dtorStub.
4262   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub);
4263 
4264   /// Emit code in this function to perform a guarded variable
4265   /// initialization.  Guarded initializations are used when it's not
4266   /// possible to prove that an initialization will be done exactly
4267   /// once, e.g. with a static local variable or a static data member
4268   /// of a class template.
4269   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4270                           bool PerformInit);
4271 
4272   enum class GuardKind { VariableGuard, TlsGuard };
4273 
4274   /// Emit a branch to select whether or not to perform guarded initialization.
4275   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4276                                 llvm::BasicBlock *InitBlock,
4277                                 llvm::BasicBlock *NoInitBlock,
4278                                 GuardKind Kind, const VarDecl *D);
4279 
4280   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4281   /// variables.
4282   void
4283   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4284                             ArrayRef<llvm::Function *> CXXThreadLocals,
4285                             ConstantAddress Guard = ConstantAddress::invalid());
4286 
4287   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4288   /// variables.
4289   void GenerateCXXGlobalCleanUpFunc(
4290       llvm::Function *Fn,
4291       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4292                                    llvm::Constant *>> &DtorsOrStermFinalizers);
4293 
4294   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4295                                         const VarDecl *D,
4296                                         llvm::GlobalVariable *Addr,
4297                                         bool PerformInit);
4298 
4299   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4300 
4301   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4302 
4303   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4304 
4305   RValue EmitAtomicExpr(AtomicExpr *E);
4306 
4307   //===--------------------------------------------------------------------===//
4308   //                         Annotations Emission
4309   //===--------------------------------------------------------------------===//
4310 
4311   /// Emit an annotation call (intrinsic).
4312   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4313                                   llvm::Value *AnnotatedVal,
4314                                   StringRef AnnotationStr,
4315                                   SourceLocation Location);
4316 
4317   /// Emit local annotations for the local variable V, declared by D.
4318   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4319 
4320   /// Emit field annotations for the given field & value. Returns the
4321   /// annotation result.
4322   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4323 
4324   //===--------------------------------------------------------------------===//
4325   //                             Internal Helpers
4326   //===--------------------------------------------------------------------===//
4327 
4328   /// ContainsLabel - Return true if the statement contains a label in it.  If
4329   /// this statement is not executed normally, it not containing a label means
4330   /// that we can just remove the code.
4331   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4332 
4333   /// containsBreak - Return true if the statement contains a break out of it.
4334   /// If the statement (recursively) contains a switch or loop with a break
4335   /// inside of it, this is fine.
4336   static bool containsBreak(const Stmt *S);
4337 
4338   /// Determine if the given statement might introduce a declaration into the
4339   /// current scope, by being a (possibly-labelled) DeclStmt.
4340   static bool mightAddDeclToScope(const Stmt *S);
4341 
4342   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4343   /// to a constant, or if it does but contains a label, return false.  If it
4344   /// constant folds return true and set the boolean result in Result.
4345   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4346                                     bool AllowLabels = false);
4347 
4348   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4349   /// to a constant, or if it does but contains a label, return false.  If it
4350   /// constant folds return true and set the folded value.
4351   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4352                                     bool AllowLabels = false);
4353 
4354   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4355   /// if statement) to the specified blocks.  Based on the condition, this might
4356   /// try to simplify the codegen of the conditional based on the branch.
4357   /// TrueCount should be the number of times we expect the condition to
4358   /// evaluate to true based on PGO data.
4359   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4360                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4361 
4362   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4363   /// nonnull, if \p LHS is marked _Nonnull.
4364   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4365 
4366   /// An enumeration which makes it easier to specify whether or not an
4367   /// operation is a subtraction.
4368   enum { NotSubtraction = false, IsSubtraction = true };
4369 
4370   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4371   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4372   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4373   /// \p IsSubtraction indicates whether the expression used to form the GEP
4374   /// is a subtraction.
4375   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4376                                       ArrayRef<llvm::Value *> IdxList,
4377                                       bool SignedIndices,
4378                                       bool IsSubtraction,
4379                                       SourceLocation Loc,
4380                                       const Twine &Name = "");
4381 
4382   /// Specifies which type of sanitizer check to apply when handling a
4383   /// particular builtin.
4384   enum BuiltinCheckKind {
4385     BCK_CTZPassedZero,
4386     BCK_CLZPassedZero,
4387   };
4388 
4389   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4390   /// enabled, a runtime check specified by \p Kind is also emitted.
4391   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4392 
4393   /// Emit a description of a type in a format suitable for passing to
4394   /// a runtime sanitizer handler.
4395   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4396 
4397   /// Convert a value into a format suitable for passing to a runtime
4398   /// sanitizer handler.
4399   llvm::Value *EmitCheckValue(llvm::Value *V);
4400 
4401   /// Emit a description of a source location in a format suitable for
4402   /// passing to a runtime sanitizer handler.
4403   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4404 
4405   /// Create a basic block that will either trap or call a handler function in
4406   /// the UBSan runtime with the provided arguments, and create a conditional
4407   /// branch to it.
4408   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4409                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4410                  ArrayRef<llvm::Value *> DynamicArgs);
4411 
4412   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4413   /// if Cond if false.
4414   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4415                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4416                             ArrayRef<llvm::Constant *> StaticArgs);
4417 
4418   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4419   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4420   void EmitUnreachable(SourceLocation Loc);
4421 
4422   /// Create a basic block that will call the trap intrinsic, and emit a
4423   /// conditional branch to it, for the -ftrapv checks.
4424   void EmitTrapCheck(llvm::Value *Checked);
4425 
4426   /// Emit a call to trap or debugtrap and attach function attribute
4427   /// "trap-func-name" if specified.
4428   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4429 
4430   /// Emit a stub for the cross-DSO CFI check function.
4431   void EmitCfiCheckStub();
4432 
4433   /// Emit a cross-DSO CFI failure handling function.
4434   void EmitCfiCheckFail();
4435 
4436   /// Create a check for a function parameter that may potentially be
4437   /// declared as non-null.
4438   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4439                            AbstractCallee AC, unsigned ParmNum);
4440 
4441   /// EmitCallArg - Emit a single call argument.
4442   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4443 
4444   /// EmitDelegateCallArg - We are performing a delegate call; that
4445   /// is, the current function is delegating to another one.  Produce
4446   /// a r-value suitable for passing the given parameter.
4447   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4448                            SourceLocation loc);
4449 
4450   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4451   /// point operation, expressed as the maximum relative error in ulp.
4452   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4453 
4454   /// SetFPModel - Control floating point behavior via fp-model settings.
4455   void SetFPModel();
4456 
4457   /// Set the codegen fast-math flags.
4458   void SetFastMathFlags(FPOptions FPFeatures);
4459 
4460 private:
4461   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4462   void EmitReturnOfRValue(RValue RV, QualType Ty);
4463 
4464   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4465 
4466   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4467   DeferredReplacements;
4468 
4469   /// Set the address of a local variable.
4470   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4471     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4472     LocalDeclMap.insert({VD, Addr});
4473   }
4474 
4475   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4476   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4477   ///
4478   /// \param AI - The first function argument of the expansion.
4479   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4480                           llvm::Function::arg_iterator &AI);
4481 
4482   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4483   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4484   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4485   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4486                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4487                         unsigned &IRCallArgPos);
4488 
4489   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4490                             const Expr *InputExpr, std::string &ConstraintStr);
4491 
4492   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4493                                   LValue InputValue, QualType InputType,
4494                                   std::string &ConstraintStr,
4495                                   SourceLocation Loc);
4496 
4497   /// Attempts to statically evaluate the object size of E. If that
4498   /// fails, emits code to figure the size of E out for us. This is
4499   /// pass_object_size aware.
4500   ///
4501   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4502   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4503                                                llvm::IntegerType *ResType,
4504                                                llvm::Value *EmittedE,
4505                                                bool IsDynamic);
4506 
4507   /// Emits the size of E, as required by __builtin_object_size. This
4508   /// function is aware of pass_object_size parameters, and will act accordingly
4509   /// if E is a parameter with the pass_object_size attribute.
4510   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4511                                      llvm::IntegerType *ResType,
4512                                      llvm::Value *EmittedE,
4513                                      bool IsDynamic);
4514 
4515   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4516                                        Address Loc);
4517 
4518 public:
4519 #ifndef NDEBUG
4520   // Determine whether the given argument is an Objective-C method
4521   // that may have type parameters in its signature.
4522   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4523     const DeclContext *dc = method->getDeclContext();
4524     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4525       return classDecl->getTypeParamListAsWritten();
4526     }
4527 
4528     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4529       return catDecl->getTypeParamList();
4530     }
4531 
4532     return false;
4533   }
4534 
4535   template<typename T>
4536   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4537 #endif
4538 
4539   enum class EvaluationOrder {
4540     ///! No language constraints on evaluation order.
4541     Default,
4542     ///! Language semantics require left-to-right evaluation.
4543     ForceLeftToRight,
4544     ///! Language semantics require right-to-left evaluation.
4545     ForceRightToLeft
4546   };
4547 
4548   /// EmitCallArgs - Emit call arguments for a function.
4549   template <typename T>
4550   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4551                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4552                     AbstractCallee AC = AbstractCallee(),
4553                     unsigned ParamsToSkip = 0,
4554                     EvaluationOrder Order = EvaluationOrder::Default) {
4555     SmallVector<QualType, 16> ArgTypes;
4556     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4557 
4558     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4559            "Can't skip parameters if type info is not provided");
4560     if (CallArgTypeInfo) {
4561 #ifndef NDEBUG
4562       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4563 #endif
4564 
4565       // First, use the argument types that the type info knows about
4566       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4567                 E = CallArgTypeInfo->param_type_end();
4568            I != E; ++I, ++Arg) {
4569         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4570         assert((isGenericMethod ||
4571                 ((*I)->isVariablyModifiedType() ||
4572                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4573                  getContext()
4574                          .getCanonicalType((*I).getNonReferenceType())
4575                          .getTypePtr() ==
4576                      getContext()
4577                          .getCanonicalType((*Arg)->getType())
4578                          .getTypePtr())) &&
4579                "type mismatch in call argument!");
4580         ArgTypes.push_back(*I);
4581       }
4582     }
4583 
4584     // Either we've emitted all the call args, or we have a call to variadic
4585     // function.
4586     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4587             CallArgTypeInfo->isVariadic()) &&
4588            "Extra arguments in non-variadic function!");
4589 
4590     // If we still have any arguments, emit them using the type of the argument.
4591     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4592       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4593 
4594     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4595   }
4596 
4597   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4598                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4599                     AbstractCallee AC = AbstractCallee(),
4600                     unsigned ParamsToSkip = 0,
4601                     EvaluationOrder Order = EvaluationOrder::Default);
4602 
4603   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4604   /// emit the value and compute our best estimate of the alignment of the
4605   /// pointee.
4606   ///
4607   /// \param BaseInfo - If non-null, this will be initialized with
4608   /// information about the source of the alignment and the may-alias
4609   /// attribute.  Note that this function will conservatively fall back on
4610   /// the type when it doesn't recognize the expression and may-alias will
4611   /// be set to false.
4612   ///
4613   /// One reasonable way to use this information is when there's a language
4614   /// guarantee that the pointer must be aligned to some stricter value, and
4615   /// we're simply trying to ensure that sufficiently obvious uses of under-
4616   /// aligned objects don't get miscompiled; for example, a placement new
4617   /// into the address of a local variable.  In such a case, it's quite
4618   /// reasonable to just ignore the returned alignment when it isn't from an
4619   /// explicit source.
4620   Address EmitPointerWithAlignment(const Expr *Addr,
4621                                    LValueBaseInfo *BaseInfo = nullptr,
4622                                    TBAAAccessInfo *TBAAInfo = nullptr);
4623 
4624   /// If \p E references a parameter with pass_object_size info or a constant
4625   /// array size modifier, emit the object size divided by the size of \p EltTy.
4626   /// Otherwise return null.
4627   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4628 
4629   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4630 
4631   struct MultiVersionResolverOption {
4632     llvm::Function *Function;
4633     FunctionDecl *FD;
4634     struct Conds {
4635       StringRef Architecture;
4636       llvm::SmallVector<StringRef, 8> Features;
4637 
4638       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4639           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4640     } Conditions;
4641 
4642     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4643                                ArrayRef<StringRef> Feats)
4644         : Function(F), Conditions(Arch, Feats) {}
4645   };
4646 
4647   // Emits the body of a multiversion function's resolver. Assumes that the
4648   // options are already sorted in the proper order, with the 'default' option
4649   // last (if it exists).
4650   void EmitMultiVersionResolver(llvm::Function *Resolver,
4651                                 ArrayRef<MultiVersionResolverOption> Options);
4652 
4653   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4654 
4655 private:
4656   QualType getVarArgType(const Expr *Arg);
4657 
4658   void EmitDeclMetadata();
4659 
4660   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4661                                   const AutoVarEmission &emission);
4662 
4663   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4664 
4665   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4666   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4667   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4668   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4669   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4670   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4671   llvm::Value *EmitX86CpuInit();
4672   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4673 };
4674 
4675 inline DominatingLLVMValue::saved_type
4676 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4677   if (!needsSaving(value)) return saved_type(value, false);
4678 
4679   // Otherwise, we need an alloca.
4680   auto align = CharUnits::fromQuantity(
4681             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4682   Address alloca =
4683     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4684   CGF.Builder.CreateStore(value, alloca);
4685 
4686   return saved_type(alloca.getPointer(), true);
4687 }
4688 
4689 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4690                                                  saved_type value) {
4691   // If the value says it wasn't saved, trust that it's still dominating.
4692   if (!value.getInt()) return value.getPointer();
4693 
4694   // Otherwise, it should be an alloca instruction, as set up in save().
4695   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4696   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4697 }
4698 
4699 }  // end namespace CodeGen
4700 
4701 // Map the LangOption for floating point exception behavior into
4702 // the corresponding enum in the IR.
4703 llvm::fp::ExceptionBehavior
4704 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4705 }  // end namespace clang
4706 
4707 #endif
4708