1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 class CanonicalLoopInfo; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class OMPUseDevicePtrClause; 79 class OMPUseDeviceAddrClause; 80 class SVETypeFlags; 81 class OMPExecutableDirective; 82 83 namespace analyze_os_log { 84 class OSLogBufferLayout; 85 } 86 87 namespace CodeGen { 88 class CodeGenTypes; 89 class CGCallee; 90 class CGFunctionInfo; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFieldFlags; 96 class RegionCodeGenTy; 97 class TargetCodeGenInfo; 98 struct OMPTaskDataTy; 99 struct CGCoroData; 100 101 /// The kind of evaluation to perform on values of a particular 102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 103 /// CGExprAgg? 104 /// 105 /// TODO: should vectors maybe be split out into their own thing? 106 enum TypeEvaluationKind { 107 TEK_Scalar, 108 TEK_Complex, 109 TEK_Aggregate 110 }; 111 112 #define LIST_SANITIZER_CHECKS \ 113 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 114 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 115 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 116 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 117 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 118 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 119 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 120 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 121 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 122 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 llvm::Type *ElementType; 180 CharUnits Alignment; 181 }; 182 183 static bool needsSaving(type value) { 184 return DominatingLLVMValue::needsSaving(value.getPointer()); 185 } 186 static saved_type save(CodeGenFunction &CGF, type value) { 187 return { DominatingLLVMValue::save(CGF, value.getPointer()), 188 value.getElementType(), value.getAlignment() }; 189 } 190 static type restore(CodeGenFunction &CGF, saved_type value) { 191 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 192 value.ElementType, value.Alignment); 193 } 194 }; 195 196 /// A specialization of DominatingValue for RValue. 197 template <> struct DominatingValue<RValue> { 198 typedef RValue type; 199 class saved_type { 200 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 201 AggregateAddress, ComplexAddress }; 202 203 llvm::Value *Value; 204 unsigned K : 3; 205 unsigned Align : 29; 206 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 207 : Value(v), K(k), Align(a) {} 208 209 public: 210 static bool needsSaving(RValue value); 211 static saved_type save(CodeGenFunction &CGF, RValue value); 212 RValue restore(CodeGenFunction &CGF); 213 214 // implementations in CGCleanup.cpp 215 }; 216 217 static bool needsSaving(type value) { 218 return saved_type::needsSaving(value); 219 } 220 static saved_type save(CodeGenFunction &CGF, type value) { 221 return saved_type::save(CGF, value); 222 } 223 static type restore(CodeGenFunction &CGF, saved_type value) { 224 return value.restore(CGF); 225 } 226 }; 227 228 /// CodeGenFunction - This class organizes the per-function state that is used 229 /// while generating LLVM code. 230 class CodeGenFunction : public CodeGenTypeCache { 231 CodeGenFunction(const CodeGenFunction &) = delete; 232 void operator=(const CodeGenFunction &) = delete; 233 234 friend class CGCXXABI; 235 public: 236 /// A jump destination is an abstract label, branching to which may 237 /// require a jump out through normal cleanups. 238 struct JumpDest { 239 JumpDest() : Block(nullptr), Index(0) {} 240 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 241 unsigned Index) 242 : Block(Block), ScopeDepth(Depth), Index(Index) {} 243 244 bool isValid() const { return Block != nullptr; } 245 llvm::BasicBlock *getBlock() const { return Block; } 246 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 247 unsigned getDestIndex() const { return Index; } 248 249 // This should be used cautiously. 250 void setScopeDepth(EHScopeStack::stable_iterator depth) { 251 ScopeDepth = depth; 252 } 253 254 private: 255 llvm::BasicBlock *Block; 256 EHScopeStack::stable_iterator ScopeDepth; 257 unsigned Index; 258 }; 259 260 CodeGenModule &CGM; // Per-module state. 261 const TargetInfo &Target; 262 263 // For EH/SEH outlined funclets, this field points to parent's CGF 264 CodeGenFunction *ParentCGF = nullptr; 265 266 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 267 LoopInfoStack LoopStack; 268 CGBuilderTy Builder; 269 270 // Stores variables for which we can't generate correct lifetime markers 271 // because of jumps. 272 VarBypassDetector Bypasses; 273 274 /// List of recently emitted OMPCanonicalLoops. 275 /// 276 /// Since OMPCanonicalLoops are nested inside other statements (in particular 277 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 278 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 279 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 280 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 281 /// this stack when done. Entering a new loop requires clearing this list; it 282 /// either means we start parsing a new loop nest (in which case the previous 283 /// loop nest goes out of scope) or a second loop in the same level in which 284 /// case it would be ambiguous into which of the two (or more) loops the loop 285 /// nest would extend. 286 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 287 288 /// Number of nested loop to be consumed by the last surrounding 289 /// loop-associated directive. 290 int ExpectedOMPLoopDepth = 0; 291 292 // CodeGen lambda for loops and support for ordered clause 293 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 294 JumpDest)> 295 CodeGenLoopTy; 296 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 297 const unsigned, const bool)> 298 CodeGenOrderedTy; 299 300 // Codegen lambda for loop bounds in worksharing loop constructs 301 typedef llvm::function_ref<std::pair<LValue, LValue>( 302 CodeGenFunction &, const OMPExecutableDirective &S)> 303 CodeGenLoopBoundsTy; 304 305 // Codegen lambda for loop bounds in dispatch-based loop implementation 306 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 307 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 308 Address UB)> 309 CodeGenDispatchBoundsTy; 310 311 /// CGBuilder insert helper. This function is called after an 312 /// instruction is created using Builder. 313 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 314 llvm::BasicBlock *BB, 315 llvm::BasicBlock::iterator InsertPt) const; 316 317 /// CurFuncDecl - Holds the Decl for the current outermost 318 /// non-closure context. 319 const Decl *CurFuncDecl; 320 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 321 const Decl *CurCodeDecl; 322 const CGFunctionInfo *CurFnInfo; 323 QualType FnRetTy; 324 llvm::Function *CurFn = nullptr; 325 326 /// Save Parameter Decl for coroutine. 327 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 328 329 // Holds coroutine data if the current function is a coroutine. We use a 330 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 331 // in this header. 332 struct CGCoroInfo { 333 std::unique_ptr<CGCoroData> Data; 334 CGCoroInfo(); 335 ~CGCoroInfo(); 336 }; 337 CGCoroInfo CurCoro; 338 339 bool isCoroutine() const { 340 return CurCoro.Data != nullptr; 341 } 342 343 /// CurGD - The GlobalDecl for the current function being compiled. 344 GlobalDecl CurGD; 345 346 /// PrologueCleanupDepth - The cleanup depth enclosing all the 347 /// cleanups associated with the parameters. 348 EHScopeStack::stable_iterator PrologueCleanupDepth; 349 350 /// ReturnBlock - Unified return block. 351 JumpDest ReturnBlock; 352 353 /// ReturnValue - The temporary alloca to hold the return 354 /// value. This is invalid iff the function has no return value. 355 Address ReturnValue = Address::invalid(); 356 357 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 358 /// This is invalid if sret is not in use. 359 Address ReturnValuePointer = Address::invalid(); 360 361 /// If a return statement is being visited, this holds the return statment's 362 /// result expression. 363 const Expr *RetExpr = nullptr; 364 365 /// Return true if a label was seen in the current scope. 366 bool hasLabelBeenSeenInCurrentScope() const { 367 if (CurLexicalScope) 368 return CurLexicalScope->hasLabels(); 369 return !LabelMap.empty(); 370 } 371 372 /// AllocaInsertPoint - This is an instruction in the entry block before which 373 /// we prefer to insert allocas. 374 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 375 376 private: 377 /// PostAllocaInsertPt - This is a place in the prologue where code can be 378 /// inserted that will be dominated by all the static allocas. This helps 379 /// achieve two things: 380 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 381 /// 2. All other prologue code (which are dominated by static allocas) do 382 /// appear in the source order immediately after all static allocas. 383 /// 384 /// PostAllocaInsertPt will be lazily created when it is *really* required. 385 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 386 387 public: 388 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 389 /// immediately after AllocaInsertPt. 390 llvm::Instruction *getPostAllocaInsertPoint() { 391 if (!PostAllocaInsertPt) { 392 assert(AllocaInsertPt && 393 "Expected static alloca insertion point at function prologue"); 394 assert(AllocaInsertPt->getParent()->isEntryBlock() && 395 "EBB should be entry block of the current code gen function"); 396 PostAllocaInsertPt = AllocaInsertPt->clone(); 397 PostAllocaInsertPt->setName("postallocapt"); 398 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 399 } 400 401 return PostAllocaInsertPt; 402 } 403 404 /// API for captured statement code generation. 405 class CGCapturedStmtInfo { 406 public: 407 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 408 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 409 explicit CGCapturedStmtInfo(const CapturedStmt &S, 410 CapturedRegionKind K = CR_Default) 411 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 412 413 RecordDecl::field_iterator Field = 414 S.getCapturedRecordDecl()->field_begin(); 415 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 416 E = S.capture_end(); 417 I != E; ++I, ++Field) { 418 if (I->capturesThis()) 419 CXXThisFieldDecl = *Field; 420 else if (I->capturesVariable()) 421 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 422 else if (I->capturesVariableByCopy()) 423 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 424 } 425 } 426 427 virtual ~CGCapturedStmtInfo(); 428 429 CapturedRegionKind getKind() const { return Kind; } 430 431 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 432 // Retrieve the value of the context parameter. 433 virtual llvm::Value *getContextValue() const { return ThisValue; } 434 435 /// Lookup the captured field decl for a variable. 436 virtual const FieldDecl *lookup(const VarDecl *VD) const { 437 return CaptureFields.lookup(VD->getCanonicalDecl()); 438 } 439 440 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 441 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 442 443 static bool classof(const CGCapturedStmtInfo *) { 444 return true; 445 } 446 447 /// Emit the captured statement body. 448 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 449 CGF.incrementProfileCounter(S); 450 CGF.EmitStmt(S); 451 } 452 453 /// Get the name of the capture helper. 454 virtual StringRef getHelperName() const { return "__captured_stmt"; } 455 456 /// Get the CaptureFields 457 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 458 return CaptureFields; 459 } 460 461 private: 462 /// The kind of captured statement being generated. 463 CapturedRegionKind Kind; 464 465 /// Keep the map between VarDecl and FieldDecl. 466 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 467 468 /// The base address of the captured record, passed in as the first 469 /// argument of the parallel region function. 470 llvm::Value *ThisValue; 471 472 /// Captured 'this' type. 473 FieldDecl *CXXThisFieldDecl; 474 }; 475 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 476 477 /// RAII for correct setting/restoring of CapturedStmtInfo. 478 class CGCapturedStmtRAII { 479 private: 480 CodeGenFunction &CGF; 481 CGCapturedStmtInfo *PrevCapturedStmtInfo; 482 public: 483 CGCapturedStmtRAII(CodeGenFunction &CGF, 484 CGCapturedStmtInfo *NewCapturedStmtInfo) 485 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 486 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 487 } 488 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 489 }; 490 491 /// An abstract representation of regular/ObjC call/message targets. 492 class AbstractCallee { 493 /// The function declaration of the callee. 494 const Decl *CalleeDecl; 495 496 public: 497 AbstractCallee() : CalleeDecl(nullptr) {} 498 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 499 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 500 bool hasFunctionDecl() const { 501 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 502 } 503 const Decl *getDecl() const { return CalleeDecl; } 504 unsigned getNumParams() const { 505 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 506 return FD->getNumParams(); 507 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 508 } 509 const ParmVarDecl *getParamDecl(unsigned I) const { 510 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 511 return FD->getParamDecl(I); 512 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 513 } 514 }; 515 516 /// Sanitizers enabled for this function. 517 SanitizerSet SanOpts; 518 519 /// True if CodeGen currently emits code implementing sanitizer checks. 520 bool IsSanitizerScope = false; 521 522 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 523 class SanitizerScope { 524 CodeGenFunction *CGF; 525 public: 526 SanitizerScope(CodeGenFunction *CGF); 527 ~SanitizerScope(); 528 }; 529 530 /// In C++, whether we are code generating a thunk. This controls whether we 531 /// should emit cleanups. 532 bool CurFuncIsThunk = false; 533 534 /// In ARC, whether we should autorelease the return value. 535 bool AutoreleaseResult = false; 536 537 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 538 /// potentially set the return value. 539 bool SawAsmBlock = false; 540 541 const NamedDecl *CurSEHParent = nullptr; 542 543 /// True if the current function is an outlined SEH helper. This can be a 544 /// finally block or filter expression. 545 bool IsOutlinedSEHHelper = false; 546 547 /// True if CodeGen currently emits code inside presereved access index 548 /// region. 549 bool IsInPreservedAIRegion = false; 550 551 /// True if the current statement has nomerge attribute. 552 bool InNoMergeAttributedStmt = false; 553 554 // The CallExpr within the current statement that the musttail attribute 555 // applies to. nullptr if there is no 'musttail' on the current statement. 556 const CallExpr *MustTailCall = nullptr; 557 558 /// Returns true if a function must make progress, which means the 559 /// mustprogress attribute can be added. 560 bool checkIfFunctionMustProgress() { 561 if (CGM.getCodeGenOpts().getFiniteLoops() == 562 CodeGenOptions::FiniteLoopsKind::Never) 563 return false; 564 565 // C++11 and later guarantees that a thread eventually will do one of the 566 // following (6.9.2.3.1 in C++11): 567 // - terminate, 568 // - make a call to a library I/O function, 569 // - perform an access through a volatile glvalue, or 570 // - perform a synchronization operation or an atomic operation. 571 // 572 // Hence each function is 'mustprogress' in C++11 or later. 573 return getLangOpts().CPlusPlus11; 574 } 575 576 /// Returns true if a loop must make progress, which means the mustprogress 577 /// attribute can be added. \p HasConstantCond indicates whether the branch 578 /// condition is a known constant. 579 bool checkIfLoopMustProgress(bool HasConstantCond) { 580 if (CGM.getCodeGenOpts().getFiniteLoops() == 581 CodeGenOptions::FiniteLoopsKind::Always) 582 return true; 583 if (CGM.getCodeGenOpts().getFiniteLoops() == 584 CodeGenOptions::FiniteLoopsKind::Never) 585 return false; 586 587 // If the containing function must make progress, loops also must make 588 // progress (as in C++11 and later). 589 if (checkIfFunctionMustProgress()) 590 return true; 591 592 // Now apply rules for plain C (see 6.8.5.6 in C11). 593 // Loops with constant conditions do not have to make progress in any C 594 // version. 595 if (HasConstantCond) 596 return false; 597 598 // Loops with non-constant conditions must make progress in C11 and later. 599 return getLangOpts().C11; 600 } 601 602 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 603 llvm::Value *BlockPointer = nullptr; 604 605 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 606 FieldDecl *LambdaThisCaptureField = nullptr; 607 608 /// A mapping from NRVO variables to the flags used to indicate 609 /// when the NRVO has been applied to this variable. 610 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 611 612 EHScopeStack EHStack; 613 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 614 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 615 616 llvm::Instruction *CurrentFuncletPad = nullptr; 617 618 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 619 bool isRedundantBeforeReturn() override { return true; } 620 621 llvm::Value *Addr; 622 llvm::Value *Size; 623 624 public: 625 CallLifetimeEnd(Address addr, llvm::Value *size) 626 : Addr(addr.getPointer()), Size(size) {} 627 628 void Emit(CodeGenFunction &CGF, Flags flags) override { 629 CGF.EmitLifetimeEnd(Size, Addr); 630 } 631 }; 632 633 /// Header for data within LifetimeExtendedCleanupStack. 634 struct LifetimeExtendedCleanupHeader { 635 /// The size of the following cleanup object. 636 unsigned Size; 637 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 638 unsigned Kind : 31; 639 /// Whether this is a conditional cleanup. 640 unsigned IsConditional : 1; 641 642 size_t getSize() const { return Size; } 643 CleanupKind getKind() const { return (CleanupKind)Kind; } 644 bool isConditional() const { return IsConditional; } 645 }; 646 647 /// i32s containing the indexes of the cleanup destinations. 648 Address NormalCleanupDest = Address::invalid(); 649 650 unsigned NextCleanupDestIndex = 1; 651 652 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 653 llvm::BasicBlock *EHResumeBlock = nullptr; 654 655 /// The exception slot. All landing pads write the current exception pointer 656 /// into this alloca. 657 llvm::Value *ExceptionSlot = nullptr; 658 659 /// The selector slot. Under the MandatoryCleanup model, all landing pads 660 /// write the current selector value into this alloca. 661 llvm::AllocaInst *EHSelectorSlot = nullptr; 662 663 /// A stack of exception code slots. Entering an __except block pushes a slot 664 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 665 /// a value from the top of the stack. 666 SmallVector<Address, 1> SEHCodeSlotStack; 667 668 /// Value returned by __exception_info intrinsic. 669 llvm::Value *SEHInfo = nullptr; 670 671 /// Emits a landing pad for the current EH stack. 672 llvm::BasicBlock *EmitLandingPad(); 673 674 llvm::BasicBlock *getInvokeDestImpl(); 675 676 /// Parent loop-based directive for scan directive. 677 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 678 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 679 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 680 llvm::BasicBlock *OMPScanExitBlock = nullptr; 681 llvm::BasicBlock *OMPScanDispatch = nullptr; 682 bool OMPFirstScanLoop = false; 683 684 /// Manages parent directive for scan directives. 685 class ParentLoopDirectiveForScanRegion { 686 CodeGenFunction &CGF; 687 const OMPExecutableDirective *ParentLoopDirectiveForScan; 688 689 public: 690 ParentLoopDirectiveForScanRegion( 691 CodeGenFunction &CGF, 692 const OMPExecutableDirective &ParentLoopDirectiveForScan) 693 : CGF(CGF), 694 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 695 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 696 } 697 ~ParentLoopDirectiveForScanRegion() { 698 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 699 } 700 }; 701 702 template <class T> 703 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 704 return DominatingValue<T>::save(*this, value); 705 } 706 707 class CGFPOptionsRAII { 708 public: 709 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 710 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 711 ~CGFPOptionsRAII(); 712 713 private: 714 void ConstructorHelper(FPOptions FPFeatures); 715 CodeGenFunction &CGF; 716 FPOptions OldFPFeatures; 717 llvm::fp::ExceptionBehavior OldExcept; 718 llvm::RoundingMode OldRounding; 719 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 720 }; 721 FPOptions CurFPFeatures; 722 723 public: 724 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 725 /// rethrows. 726 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 727 728 /// A class controlling the emission of a finally block. 729 class FinallyInfo { 730 /// Where the catchall's edge through the cleanup should go. 731 JumpDest RethrowDest; 732 733 /// A function to call to enter the catch. 734 llvm::FunctionCallee BeginCatchFn; 735 736 /// An i1 variable indicating whether or not the @finally is 737 /// running for an exception. 738 llvm::AllocaInst *ForEHVar; 739 740 /// An i8* variable into which the exception pointer to rethrow 741 /// has been saved. 742 llvm::AllocaInst *SavedExnVar; 743 744 public: 745 void enter(CodeGenFunction &CGF, const Stmt *Finally, 746 llvm::FunctionCallee beginCatchFn, 747 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 748 void exit(CodeGenFunction &CGF); 749 }; 750 751 /// Returns true inside SEH __try blocks. 752 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 753 754 /// Returns true while emitting a cleanuppad. 755 bool isCleanupPadScope() const { 756 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 757 } 758 759 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 760 /// current full-expression. Safe against the possibility that 761 /// we're currently inside a conditionally-evaluated expression. 762 template <class T, class... As> 763 void pushFullExprCleanup(CleanupKind kind, As... A) { 764 // If we're not in a conditional branch, or if none of the 765 // arguments requires saving, then use the unconditional cleanup. 766 if (!isInConditionalBranch()) 767 return EHStack.pushCleanup<T>(kind, A...); 768 769 // Stash values in a tuple so we can guarantee the order of saves. 770 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 771 SavedTuple Saved{saveValueInCond(A)...}; 772 773 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 774 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 775 initFullExprCleanup(); 776 } 777 778 /// Queue a cleanup to be pushed after finishing the current full-expression, 779 /// potentially with an active flag. 780 template <class T, class... As> 781 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 782 if (!isInConditionalBranch()) 783 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 784 A...); 785 786 Address ActiveFlag = createCleanupActiveFlag(); 787 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 788 "cleanup active flag should never need saving"); 789 790 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 791 SavedTuple Saved{saveValueInCond(A)...}; 792 793 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 794 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 795 } 796 797 template <class T, class... As> 798 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 799 Address ActiveFlag, As... A) { 800 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 801 ActiveFlag.isValid()}; 802 803 size_t OldSize = LifetimeExtendedCleanupStack.size(); 804 LifetimeExtendedCleanupStack.resize( 805 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 806 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 807 808 static_assert(sizeof(Header) % alignof(T) == 0, 809 "Cleanup will be allocated on misaligned address"); 810 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 811 new (Buffer) LifetimeExtendedCleanupHeader(Header); 812 new (Buffer + sizeof(Header)) T(A...); 813 if (Header.IsConditional) 814 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 815 } 816 817 /// Set up the last cleanup that was pushed as a conditional 818 /// full-expression cleanup. 819 void initFullExprCleanup() { 820 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 821 } 822 823 void initFullExprCleanupWithFlag(Address ActiveFlag); 824 Address createCleanupActiveFlag(); 825 826 /// PushDestructorCleanup - Push a cleanup to call the 827 /// complete-object destructor of an object of the given type at the 828 /// given address. Does nothing if T is not a C++ class type with a 829 /// non-trivial destructor. 830 void PushDestructorCleanup(QualType T, Address Addr); 831 832 /// PushDestructorCleanup - Push a cleanup to call the 833 /// complete-object variant of the given destructor on the object at 834 /// the given address. 835 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 836 Address Addr); 837 838 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 839 /// process all branch fixups. 840 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 841 842 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 843 /// The block cannot be reactivated. Pops it if it's the top of the 844 /// stack. 845 /// 846 /// \param DominatingIP - An instruction which is known to 847 /// dominate the current IP (if set) and which lies along 848 /// all paths of execution between the current IP and the 849 /// the point at which the cleanup comes into scope. 850 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 851 llvm::Instruction *DominatingIP); 852 853 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 854 /// Cannot be used to resurrect a deactivated cleanup. 855 /// 856 /// \param DominatingIP - An instruction which is known to 857 /// dominate the current IP (if set) and which lies along 858 /// all paths of execution between the current IP and the 859 /// the point at which the cleanup comes into scope. 860 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 861 llvm::Instruction *DominatingIP); 862 863 /// Enters a new scope for capturing cleanups, all of which 864 /// will be executed once the scope is exited. 865 class RunCleanupsScope { 866 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 867 size_t LifetimeExtendedCleanupStackSize; 868 bool OldDidCallStackSave; 869 protected: 870 bool PerformCleanup; 871 private: 872 873 RunCleanupsScope(const RunCleanupsScope &) = delete; 874 void operator=(const RunCleanupsScope &) = delete; 875 876 protected: 877 CodeGenFunction& CGF; 878 879 public: 880 /// Enter a new cleanup scope. 881 explicit RunCleanupsScope(CodeGenFunction &CGF) 882 : PerformCleanup(true), CGF(CGF) 883 { 884 CleanupStackDepth = CGF.EHStack.stable_begin(); 885 LifetimeExtendedCleanupStackSize = 886 CGF.LifetimeExtendedCleanupStack.size(); 887 OldDidCallStackSave = CGF.DidCallStackSave; 888 CGF.DidCallStackSave = false; 889 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 890 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 891 } 892 893 /// Exit this cleanup scope, emitting any accumulated cleanups. 894 ~RunCleanupsScope() { 895 if (PerformCleanup) 896 ForceCleanup(); 897 } 898 899 /// Determine whether this scope requires any cleanups. 900 bool requiresCleanups() const { 901 return CGF.EHStack.stable_begin() != CleanupStackDepth; 902 } 903 904 /// Force the emission of cleanups now, instead of waiting 905 /// until this object is destroyed. 906 /// \param ValuesToReload - A list of values that need to be available at 907 /// the insertion point after cleanup emission. If cleanup emission created 908 /// a shared cleanup block, these value pointers will be rewritten. 909 /// Otherwise, they not will be modified. 910 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 911 assert(PerformCleanup && "Already forced cleanup"); 912 CGF.DidCallStackSave = OldDidCallStackSave; 913 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 914 ValuesToReload); 915 PerformCleanup = false; 916 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 917 } 918 }; 919 920 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 921 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 922 EHScopeStack::stable_end(); 923 924 class LexicalScope : public RunCleanupsScope { 925 SourceRange Range; 926 SmallVector<const LabelDecl*, 4> Labels; 927 LexicalScope *ParentScope; 928 929 LexicalScope(const LexicalScope &) = delete; 930 void operator=(const LexicalScope &) = delete; 931 932 public: 933 /// Enter a new cleanup scope. 934 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 935 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 936 CGF.CurLexicalScope = this; 937 if (CGDebugInfo *DI = CGF.getDebugInfo()) 938 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 939 } 940 941 void addLabel(const LabelDecl *label) { 942 assert(PerformCleanup && "adding label to dead scope?"); 943 Labels.push_back(label); 944 } 945 946 /// Exit this cleanup scope, emitting any accumulated 947 /// cleanups. 948 ~LexicalScope() { 949 if (CGDebugInfo *DI = CGF.getDebugInfo()) 950 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 951 952 // If we should perform a cleanup, force them now. Note that 953 // this ends the cleanup scope before rescoping any labels. 954 if (PerformCleanup) { 955 ApplyDebugLocation DL(CGF, Range.getEnd()); 956 ForceCleanup(); 957 } 958 } 959 960 /// Force the emission of cleanups now, instead of waiting 961 /// until this object is destroyed. 962 void ForceCleanup() { 963 CGF.CurLexicalScope = ParentScope; 964 RunCleanupsScope::ForceCleanup(); 965 966 if (!Labels.empty()) 967 rescopeLabels(); 968 } 969 970 bool hasLabels() const { 971 return !Labels.empty(); 972 } 973 974 void rescopeLabels(); 975 }; 976 977 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 978 979 /// The class used to assign some variables some temporarily addresses. 980 class OMPMapVars { 981 DeclMapTy SavedLocals; 982 DeclMapTy SavedTempAddresses; 983 OMPMapVars(const OMPMapVars &) = delete; 984 void operator=(const OMPMapVars &) = delete; 985 986 public: 987 explicit OMPMapVars() = default; 988 ~OMPMapVars() { 989 assert(SavedLocals.empty() && "Did not restored original addresses."); 990 }; 991 992 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 993 /// function \p CGF. 994 /// \return true if at least one variable was set already, false otherwise. 995 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 996 Address TempAddr) { 997 LocalVD = LocalVD->getCanonicalDecl(); 998 // Only save it once. 999 if (SavedLocals.count(LocalVD)) return false; 1000 1001 // Copy the existing local entry to SavedLocals. 1002 auto it = CGF.LocalDeclMap.find(LocalVD); 1003 if (it != CGF.LocalDeclMap.end()) 1004 SavedLocals.try_emplace(LocalVD, it->second); 1005 else 1006 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1007 1008 // Generate the private entry. 1009 QualType VarTy = LocalVD->getType(); 1010 if (VarTy->isReferenceType()) { 1011 Address Temp = CGF.CreateMemTemp(VarTy); 1012 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1013 TempAddr = Temp; 1014 } 1015 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1016 1017 return true; 1018 } 1019 1020 /// Applies new addresses to the list of the variables. 1021 /// \return true if at least one variable is using new address, false 1022 /// otherwise. 1023 bool apply(CodeGenFunction &CGF) { 1024 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1025 SavedTempAddresses.clear(); 1026 return !SavedLocals.empty(); 1027 } 1028 1029 /// Restores original addresses of the variables. 1030 void restore(CodeGenFunction &CGF) { 1031 if (!SavedLocals.empty()) { 1032 copyInto(SavedLocals, CGF.LocalDeclMap); 1033 SavedLocals.clear(); 1034 } 1035 } 1036 1037 private: 1038 /// Copy all the entries in the source map over the corresponding 1039 /// entries in the destination, which must exist. 1040 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1041 for (auto &Pair : Src) { 1042 if (!Pair.second.isValid()) { 1043 Dest.erase(Pair.first); 1044 continue; 1045 } 1046 1047 auto I = Dest.find(Pair.first); 1048 if (I != Dest.end()) 1049 I->second = Pair.second; 1050 else 1051 Dest.insert(Pair); 1052 } 1053 } 1054 }; 1055 1056 /// The scope used to remap some variables as private in the OpenMP loop body 1057 /// (or other captured region emitted without outlining), and to restore old 1058 /// vars back on exit. 1059 class OMPPrivateScope : public RunCleanupsScope { 1060 OMPMapVars MappedVars; 1061 OMPPrivateScope(const OMPPrivateScope &) = delete; 1062 void operator=(const OMPPrivateScope &) = delete; 1063 1064 public: 1065 /// Enter a new OpenMP private scope. 1066 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1067 1068 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 1069 /// function for it to generate corresponding private variable. \p 1070 /// PrivateGen returns an address of the generated private variable. 1071 /// \return true if the variable is registered as private, false if it has 1072 /// been privatized already. 1073 bool addPrivate(const VarDecl *LocalVD, 1074 const llvm::function_ref<Address()> PrivateGen) { 1075 assert(PerformCleanup && "adding private to dead scope"); 1076 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 1077 } 1078 1079 /// Privatizes local variables previously registered as private. 1080 /// Registration is separate from the actual privatization to allow 1081 /// initializers use values of the original variables, not the private one. 1082 /// This is important, for example, if the private variable is a class 1083 /// variable initialized by a constructor that references other private 1084 /// variables. But at initialization original variables must be used, not 1085 /// private copies. 1086 /// \return true if at least one variable was privatized, false otherwise. 1087 bool Privatize() { return MappedVars.apply(CGF); } 1088 1089 void ForceCleanup() { 1090 RunCleanupsScope::ForceCleanup(); 1091 MappedVars.restore(CGF); 1092 } 1093 1094 /// Exit scope - all the mapped variables are restored. 1095 ~OMPPrivateScope() { 1096 if (PerformCleanup) 1097 ForceCleanup(); 1098 } 1099 1100 /// Checks if the global variable is captured in current function. 1101 bool isGlobalVarCaptured(const VarDecl *VD) const { 1102 VD = VD->getCanonicalDecl(); 1103 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1104 } 1105 }; 1106 1107 /// Save/restore original map of previously emitted local vars in case when we 1108 /// need to duplicate emission of the same code several times in the same 1109 /// function for OpenMP code. 1110 class OMPLocalDeclMapRAII { 1111 CodeGenFunction &CGF; 1112 DeclMapTy SavedMap; 1113 1114 public: 1115 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1116 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1117 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1118 }; 1119 1120 /// Takes the old cleanup stack size and emits the cleanup blocks 1121 /// that have been added. 1122 void 1123 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1124 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1125 1126 /// Takes the old cleanup stack size and emits the cleanup blocks 1127 /// that have been added, then adds all lifetime-extended cleanups from 1128 /// the given position to the stack. 1129 void 1130 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1131 size_t OldLifetimeExtendedStackSize, 1132 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1133 1134 void ResolveBranchFixups(llvm::BasicBlock *Target); 1135 1136 /// The given basic block lies in the current EH scope, but may be a 1137 /// target of a potentially scope-crossing jump; get a stable handle 1138 /// to which we can perform this jump later. 1139 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1140 return JumpDest(Target, 1141 EHStack.getInnermostNormalCleanup(), 1142 NextCleanupDestIndex++); 1143 } 1144 1145 /// The given basic block lies in the current EH scope, but may be a 1146 /// target of a potentially scope-crossing jump; get a stable handle 1147 /// to which we can perform this jump later. 1148 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1149 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1150 } 1151 1152 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1153 /// block through the normal cleanup handling code (if any) and then 1154 /// on to \arg Dest. 1155 void EmitBranchThroughCleanup(JumpDest Dest); 1156 1157 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1158 /// specified destination obviously has no cleanups to run. 'false' is always 1159 /// a conservatively correct answer for this method. 1160 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1161 1162 /// popCatchScope - Pops the catch scope at the top of the EHScope 1163 /// stack, emitting any required code (other than the catch handlers 1164 /// themselves). 1165 void popCatchScope(); 1166 1167 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1168 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1169 llvm::BasicBlock * 1170 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1171 1172 /// An object to manage conditionally-evaluated expressions. 1173 class ConditionalEvaluation { 1174 llvm::BasicBlock *StartBB; 1175 1176 public: 1177 ConditionalEvaluation(CodeGenFunction &CGF) 1178 : StartBB(CGF.Builder.GetInsertBlock()) {} 1179 1180 void begin(CodeGenFunction &CGF) { 1181 assert(CGF.OutermostConditional != this); 1182 if (!CGF.OutermostConditional) 1183 CGF.OutermostConditional = this; 1184 } 1185 1186 void end(CodeGenFunction &CGF) { 1187 assert(CGF.OutermostConditional != nullptr); 1188 if (CGF.OutermostConditional == this) 1189 CGF.OutermostConditional = nullptr; 1190 } 1191 1192 /// Returns a block which will be executed prior to each 1193 /// evaluation of the conditional code. 1194 llvm::BasicBlock *getStartingBlock() const { 1195 return StartBB; 1196 } 1197 }; 1198 1199 /// isInConditionalBranch - Return true if we're currently emitting 1200 /// one branch or the other of a conditional expression. 1201 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1202 1203 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1204 assert(isInConditionalBranch()); 1205 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1206 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1207 store->setAlignment(addr.getAlignment().getAsAlign()); 1208 } 1209 1210 /// An RAII object to record that we're evaluating a statement 1211 /// expression. 1212 class StmtExprEvaluation { 1213 CodeGenFunction &CGF; 1214 1215 /// We have to save the outermost conditional: cleanups in a 1216 /// statement expression aren't conditional just because the 1217 /// StmtExpr is. 1218 ConditionalEvaluation *SavedOutermostConditional; 1219 1220 public: 1221 StmtExprEvaluation(CodeGenFunction &CGF) 1222 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1223 CGF.OutermostConditional = nullptr; 1224 } 1225 1226 ~StmtExprEvaluation() { 1227 CGF.OutermostConditional = SavedOutermostConditional; 1228 CGF.EnsureInsertPoint(); 1229 } 1230 }; 1231 1232 /// An object which temporarily prevents a value from being 1233 /// destroyed by aggressive peephole optimizations that assume that 1234 /// all uses of a value have been realized in the IR. 1235 class PeepholeProtection { 1236 llvm::Instruction *Inst; 1237 friend class CodeGenFunction; 1238 1239 public: 1240 PeepholeProtection() : Inst(nullptr) {} 1241 }; 1242 1243 /// A non-RAII class containing all the information about a bound 1244 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1245 /// this which makes individual mappings very simple; using this 1246 /// class directly is useful when you have a variable number of 1247 /// opaque values or don't want the RAII functionality for some 1248 /// reason. 1249 class OpaqueValueMappingData { 1250 const OpaqueValueExpr *OpaqueValue; 1251 bool BoundLValue; 1252 CodeGenFunction::PeepholeProtection Protection; 1253 1254 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1255 bool boundLValue) 1256 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1257 public: 1258 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1259 1260 static bool shouldBindAsLValue(const Expr *expr) { 1261 // gl-values should be bound as l-values for obvious reasons. 1262 // Records should be bound as l-values because IR generation 1263 // always keeps them in memory. Expressions of function type 1264 // act exactly like l-values but are formally required to be 1265 // r-values in C. 1266 return expr->isGLValue() || 1267 expr->getType()->isFunctionType() || 1268 hasAggregateEvaluationKind(expr->getType()); 1269 } 1270 1271 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1272 const OpaqueValueExpr *ov, 1273 const Expr *e) { 1274 if (shouldBindAsLValue(ov)) 1275 return bind(CGF, ov, CGF.EmitLValue(e)); 1276 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1277 } 1278 1279 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1280 const OpaqueValueExpr *ov, 1281 const LValue &lv) { 1282 assert(shouldBindAsLValue(ov)); 1283 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1284 return OpaqueValueMappingData(ov, true); 1285 } 1286 1287 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1288 const OpaqueValueExpr *ov, 1289 const RValue &rv) { 1290 assert(!shouldBindAsLValue(ov)); 1291 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1292 1293 OpaqueValueMappingData data(ov, false); 1294 1295 // Work around an extremely aggressive peephole optimization in 1296 // EmitScalarConversion which assumes that all other uses of a 1297 // value are extant. 1298 data.Protection = CGF.protectFromPeepholes(rv); 1299 1300 return data; 1301 } 1302 1303 bool isValid() const { return OpaqueValue != nullptr; } 1304 void clear() { OpaqueValue = nullptr; } 1305 1306 void unbind(CodeGenFunction &CGF) { 1307 assert(OpaqueValue && "no data to unbind!"); 1308 1309 if (BoundLValue) { 1310 CGF.OpaqueLValues.erase(OpaqueValue); 1311 } else { 1312 CGF.OpaqueRValues.erase(OpaqueValue); 1313 CGF.unprotectFromPeepholes(Protection); 1314 } 1315 } 1316 }; 1317 1318 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1319 class OpaqueValueMapping { 1320 CodeGenFunction &CGF; 1321 OpaqueValueMappingData Data; 1322 1323 public: 1324 static bool shouldBindAsLValue(const Expr *expr) { 1325 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1326 } 1327 1328 /// Build the opaque value mapping for the given conditional 1329 /// operator if it's the GNU ?: extension. This is a common 1330 /// enough pattern that the convenience operator is really 1331 /// helpful. 1332 /// 1333 OpaqueValueMapping(CodeGenFunction &CGF, 1334 const AbstractConditionalOperator *op) : CGF(CGF) { 1335 if (isa<ConditionalOperator>(op)) 1336 // Leave Data empty. 1337 return; 1338 1339 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1340 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1341 e->getCommon()); 1342 } 1343 1344 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1345 /// expression is set to the expression the OVE represents. 1346 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1347 : CGF(CGF) { 1348 if (OV) { 1349 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1350 "for OVE with no source expression"); 1351 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1352 } 1353 } 1354 1355 OpaqueValueMapping(CodeGenFunction &CGF, 1356 const OpaqueValueExpr *opaqueValue, 1357 LValue lvalue) 1358 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1359 } 1360 1361 OpaqueValueMapping(CodeGenFunction &CGF, 1362 const OpaqueValueExpr *opaqueValue, 1363 RValue rvalue) 1364 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1365 } 1366 1367 void pop() { 1368 Data.unbind(CGF); 1369 Data.clear(); 1370 } 1371 1372 ~OpaqueValueMapping() { 1373 if (Data.isValid()) Data.unbind(CGF); 1374 } 1375 }; 1376 1377 private: 1378 CGDebugInfo *DebugInfo; 1379 /// Used to create unique names for artificial VLA size debug info variables. 1380 unsigned VLAExprCounter = 0; 1381 bool DisableDebugInfo = false; 1382 1383 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1384 /// calling llvm.stacksave for multiple VLAs in the same scope. 1385 bool DidCallStackSave = false; 1386 1387 /// IndirectBranch - The first time an indirect goto is seen we create a block 1388 /// with an indirect branch. Every time we see the address of a label taken, 1389 /// we add the label to the indirect goto. Every subsequent indirect goto is 1390 /// codegen'd as a jump to the IndirectBranch's basic block. 1391 llvm::IndirectBrInst *IndirectBranch = nullptr; 1392 1393 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1394 /// decls. 1395 DeclMapTy LocalDeclMap; 1396 1397 // Keep track of the cleanups for callee-destructed parameters pushed to the 1398 // cleanup stack so that they can be deactivated later. 1399 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1400 CalleeDestructedParamCleanups; 1401 1402 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1403 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1404 /// parameter. 1405 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1406 SizeArguments; 1407 1408 /// Track escaped local variables with auto storage. Used during SEH 1409 /// outlining to produce a call to llvm.localescape. 1410 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1411 1412 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1413 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1414 1415 // BreakContinueStack - This keeps track of where break and continue 1416 // statements should jump to. 1417 struct BreakContinue { 1418 BreakContinue(JumpDest Break, JumpDest Continue) 1419 : BreakBlock(Break), ContinueBlock(Continue) {} 1420 1421 JumpDest BreakBlock; 1422 JumpDest ContinueBlock; 1423 }; 1424 SmallVector<BreakContinue, 8> BreakContinueStack; 1425 1426 /// Handles cancellation exit points in OpenMP-related constructs. 1427 class OpenMPCancelExitStack { 1428 /// Tracks cancellation exit point and join point for cancel-related exit 1429 /// and normal exit. 1430 struct CancelExit { 1431 CancelExit() = default; 1432 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1433 JumpDest ContBlock) 1434 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1435 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1436 /// true if the exit block has been emitted already by the special 1437 /// emitExit() call, false if the default codegen is used. 1438 bool HasBeenEmitted = false; 1439 JumpDest ExitBlock; 1440 JumpDest ContBlock; 1441 }; 1442 1443 SmallVector<CancelExit, 8> Stack; 1444 1445 public: 1446 OpenMPCancelExitStack() : Stack(1) {} 1447 ~OpenMPCancelExitStack() = default; 1448 /// Fetches the exit block for the current OpenMP construct. 1449 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1450 /// Emits exit block with special codegen procedure specific for the related 1451 /// OpenMP construct + emits code for normal construct cleanup. 1452 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1453 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1454 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1455 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1456 assert(CGF.HaveInsertPoint()); 1457 assert(!Stack.back().HasBeenEmitted); 1458 auto IP = CGF.Builder.saveAndClearIP(); 1459 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1460 CodeGen(CGF); 1461 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1462 CGF.Builder.restoreIP(IP); 1463 Stack.back().HasBeenEmitted = true; 1464 } 1465 CodeGen(CGF); 1466 } 1467 /// Enter the cancel supporting \a Kind construct. 1468 /// \param Kind OpenMP directive that supports cancel constructs. 1469 /// \param HasCancel true, if the construct has inner cancel directive, 1470 /// false otherwise. 1471 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1472 Stack.push_back({Kind, 1473 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1474 : JumpDest(), 1475 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1476 : JumpDest()}); 1477 } 1478 /// Emits default exit point for the cancel construct (if the special one 1479 /// has not be used) + join point for cancel/normal exits. 1480 void exit(CodeGenFunction &CGF) { 1481 if (getExitBlock().isValid()) { 1482 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1483 bool HaveIP = CGF.HaveInsertPoint(); 1484 if (!Stack.back().HasBeenEmitted) { 1485 if (HaveIP) 1486 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1487 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1488 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1489 } 1490 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1491 if (!HaveIP) { 1492 CGF.Builder.CreateUnreachable(); 1493 CGF.Builder.ClearInsertionPoint(); 1494 } 1495 } 1496 Stack.pop_back(); 1497 } 1498 }; 1499 OpenMPCancelExitStack OMPCancelStack; 1500 1501 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1502 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1503 Stmt::Likelihood LH); 1504 1505 CodeGenPGO PGO; 1506 1507 /// Calculate branch weights appropriate for PGO data 1508 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1509 uint64_t FalseCount) const; 1510 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1511 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1512 uint64_t LoopCount) const; 1513 1514 public: 1515 /// Increment the profiler's counter for the given statement by \p StepV. 1516 /// If \p StepV is null, the default increment is 1. 1517 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1518 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1519 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1520 PGO.emitCounterIncrement(Builder, S, StepV); 1521 PGO.setCurrentStmt(S); 1522 } 1523 1524 /// Get the profiler's count for the given statement. 1525 uint64_t getProfileCount(const Stmt *S) { 1526 Optional<uint64_t> Count = PGO.getStmtCount(S); 1527 if (!Count.hasValue()) 1528 return 0; 1529 return *Count; 1530 } 1531 1532 /// Set the profiler's current count. 1533 void setCurrentProfileCount(uint64_t Count) { 1534 PGO.setCurrentRegionCount(Count); 1535 } 1536 1537 /// Get the profiler's current count. This is generally the count for the most 1538 /// recently incremented counter. 1539 uint64_t getCurrentProfileCount() { 1540 return PGO.getCurrentRegionCount(); 1541 } 1542 1543 private: 1544 1545 /// SwitchInsn - This is nearest current switch instruction. It is null if 1546 /// current context is not in a switch. 1547 llvm::SwitchInst *SwitchInsn = nullptr; 1548 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1549 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1550 1551 /// The likelihood attributes of the SwitchCase. 1552 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1553 1554 /// CaseRangeBlock - This block holds if condition check for last case 1555 /// statement range in current switch instruction. 1556 llvm::BasicBlock *CaseRangeBlock = nullptr; 1557 1558 /// OpaqueLValues - Keeps track of the current set of opaque value 1559 /// expressions. 1560 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1561 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1562 1563 // VLASizeMap - This keeps track of the associated size for each VLA type. 1564 // We track this by the size expression rather than the type itself because 1565 // in certain situations, like a const qualifier applied to an VLA typedef, 1566 // multiple VLA types can share the same size expression. 1567 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1568 // enter/leave scopes. 1569 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1570 1571 /// A block containing a single 'unreachable' instruction. Created 1572 /// lazily by getUnreachableBlock(). 1573 llvm::BasicBlock *UnreachableBlock = nullptr; 1574 1575 /// Counts of the number return expressions in the function. 1576 unsigned NumReturnExprs = 0; 1577 1578 /// Count the number of simple (constant) return expressions in the function. 1579 unsigned NumSimpleReturnExprs = 0; 1580 1581 /// The last regular (non-return) debug location (breakpoint) in the function. 1582 SourceLocation LastStopPoint; 1583 1584 public: 1585 /// Source location information about the default argument or member 1586 /// initializer expression we're evaluating, if any. 1587 CurrentSourceLocExprScope CurSourceLocExprScope; 1588 using SourceLocExprScopeGuard = 1589 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1590 1591 /// A scope within which we are constructing the fields of an object which 1592 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1593 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1594 class FieldConstructionScope { 1595 public: 1596 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1597 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1598 CGF.CXXDefaultInitExprThis = This; 1599 } 1600 ~FieldConstructionScope() { 1601 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1602 } 1603 1604 private: 1605 CodeGenFunction &CGF; 1606 Address OldCXXDefaultInitExprThis; 1607 }; 1608 1609 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1610 /// is overridden to be the object under construction. 1611 class CXXDefaultInitExprScope { 1612 public: 1613 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1614 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1615 OldCXXThisAlignment(CGF.CXXThisAlignment), 1616 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1617 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1618 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1619 } 1620 ~CXXDefaultInitExprScope() { 1621 CGF.CXXThisValue = OldCXXThisValue; 1622 CGF.CXXThisAlignment = OldCXXThisAlignment; 1623 } 1624 1625 public: 1626 CodeGenFunction &CGF; 1627 llvm::Value *OldCXXThisValue; 1628 CharUnits OldCXXThisAlignment; 1629 SourceLocExprScopeGuard SourceLocScope; 1630 }; 1631 1632 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1633 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1634 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1635 }; 1636 1637 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1638 /// current loop index is overridden. 1639 class ArrayInitLoopExprScope { 1640 public: 1641 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1642 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1643 CGF.ArrayInitIndex = Index; 1644 } 1645 ~ArrayInitLoopExprScope() { 1646 CGF.ArrayInitIndex = OldArrayInitIndex; 1647 } 1648 1649 private: 1650 CodeGenFunction &CGF; 1651 llvm::Value *OldArrayInitIndex; 1652 }; 1653 1654 class InlinedInheritingConstructorScope { 1655 public: 1656 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1657 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1658 OldCurCodeDecl(CGF.CurCodeDecl), 1659 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1660 OldCXXABIThisValue(CGF.CXXABIThisValue), 1661 OldCXXThisValue(CGF.CXXThisValue), 1662 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1663 OldCXXThisAlignment(CGF.CXXThisAlignment), 1664 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1665 OldCXXInheritedCtorInitExprArgs( 1666 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1667 CGF.CurGD = GD; 1668 CGF.CurFuncDecl = CGF.CurCodeDecl = 1669 cast<CXXConstructorDecl>(GD.getDecl()); 1670 CGF.CXXABIThisDecl = nullptr; 1671 CGF.CXXABIThisValue = nullptr; 1672 CGF.CXXThisValue = nullptr; 1673 CGF.CXXABIThisAlignment = CharUnits(); 1674 CGF.CXXThisAlignment = CharUnits(); 1675 CGF.ReturnValue = Address::invalid(); 1676 CGF.FnRetTy = QualType(); 1677 CGF.CXXInheritedCtorInitExprArgs.clear(); 1678 } 1679 ~InlinedInheritingConstructorScope() { 1680 CGF.CurGD = OldCurGD; 1681 CGF.CurFuncDecl = OldCurFuncDecl; 1682 CGF.CurCodeDecl = OldCurCodeDecl; 1683 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1684 CGF.CXXABIThisValue = OldCXXABIThisValue; 1685 CGF.CXXThisValue = OldCXXThisValue; 1686 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1687 CGF.CXXThisAlignment = OldCXXThisAlignment; 1688 CGF.ReturnValue = OldReturnValue; 1689 CGF.FnRetTy = OldFnRetTy; 1690 CGF.CXXInheritedCtorInitExprArgs = 1691 std::move(OldCXXInheritedCtorInitExprArgs); 1692 } 1693 1694 private: 1695 CodeGenFunction &CGF; 1696 GlobalDecl OldCurGD; 1697 const Decl *OldCurFuncDecl; 1698 const Decl *OldCurCodeDecl; 1699 ImplicitParamDecl *OldCXXABIThisDecl; 1700 llvm::Value *OldCXXABIThisValue; 1701 llvm::Value *OldCXXThisValue; 1702 CharUnits OldCXXABIThisAlignment; 1703 CharUnits OldCXXThisAlignment; 1704 Address OldReturnValue; 1705 QualType OldFnRetTy; 1706 CallArgList OldCXXInheritedCtorInitExprArgs; 1707 }; 1708 1709 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1710 // region body, and finalization codegen callbacks. This will class will also 1711 // contain privatization functions used by the privatization call backs 1712 // 1713 // TODO: this is temporary class for things that are being moved out of 1714 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1715 // utility function for use with the OMPBuilder. Once that move to use the 1716 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1717 // directly, or a new helper class that will contain functions used by both 1718 // this and the OMPBuilder 1719 1720 struct OMPBuilderCBHelpers { 1721 1722 OMPBuilderCBHelpers() = delete; 1723 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1724 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1725 1726 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1727 1728 /// Cleanup action for allocate support. 1729 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1730 1731 private: 1732 llvm::CallInst *RTLFnCI; 1733 1734 public: 1735 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1736 RLFnCI->removeFromParent(); 1737 } 1738 1739 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1740 if (!CGF.HaveInsertPoint()) 1741 return; 1742 CGF.Builder.Insert(RTLFnCI); 1743 } 1744 }; 1745 1746 /// Returns address of the threadprivate variable for the current 1747 /// thread. This Also create any necessary OMP runtime calls. 1748 /// 1749 /// \param VD VarDecl for Threadprivate variable. 1750 /// \param VDAddr Address of the Vardecl 1751 /// \param Loc The location where the barrier directive was encountered 1752 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1753 const VarDecl *VD, Address VDAddr, 1754 SourceLocation Loc); 1755 1756 /// Gets the OpenMP-specific address of the local variable /p VD. 1757 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1758 const VarDecl *VD); 1759 /// Get the platform-specific name separator. 1760 /// \param Parts different parts of the final name that needs separation 1761 /// \param FirstSeparator First separator used between the initial two 1762 /// parts of the name. 1763 /// \param Separator separator used between all of the rest consecutinve 1764 /// parts of the name 1765 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1766 StringRef FirstSeparator = ".", 1767 StringRef Separator = "."); 1768 /// Emit the Finalization for an OMP region 1769 /// \param CGF The Codegen function this belongs to 1770 /// \param IP Insertion point for generating the finalization code. 1771 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1772 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1773 assert(IP.getBlock()->end() != IP.getPoint() && 1774 "OpenMP IR Builder should cause terminated block!"); 1775 1776 llvm::BasicBlock *IPBB = IP.getBlock(); 1777 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1778 assert(DestBB && "Finalization block should have one successor!"); 1779 1780 // erase and replace with cleanup branch. 1781 IPBB->getTerminator()->eraseFromParent(); 1782 CGF.Builder.SetInsertPoint(IPBB); 1783 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1784 CGF.EmitBranchThroughCleanup(Dest); 1785 } 1786 1787 /// Emit the body of an OMP region 1788 /// \param CGF The Codegen function this belongs to 1789 /// \param RegionBodyStmt The body statement for the OpenMP region being 1790 /// generated 1791 /// \param CodeGenIP Insertion point for generating the body code. 1792 /// \param FiniBB The finalization basic block 1793 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1794 const Stmt *RegionBodyStmt, 1795 InsertPointTy CodeGenIP, 1796 llvm::BasicBlock &FiniBB) { 1797 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1798 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1799 CodeGenIPBBTI->eraseFromParent(); 1800 1801 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1802 1803 CGF.EmitStmt(RegionBodyStmt); 1804 1805 if (CGF.Builder.saveIP().isSet()) 1806 CGF.Builder.CreateBr(&FiniBB); 1807 } 1808 1809 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1810 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1811 ArrayRef<llvm::Value *> Args) { 1812 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1813 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1814 CodeGenIPBBTI->eraseFromParent(); 1815 1816 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1817 1818 if (Fn->doesNotThrow()) 1819 CGF.EmitNounwindRuntimeCall(Fn, Args); 1820 else 1821 CGF.EmitRuntimeCall(Fn, Args); 1822 1823 if (CGF.Builder.saveIP().isSet()) 1824 CGF.Builder.CreateBr(&FiniBB); 1825 } 1826 1827 /// RAII for preserving necessary info during Outlined region body codegen. 1828 class OutlinedRegionBodyRAII { 1829 1830 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1831 CodeGenFunction::JumpDest OldReturnBlock; 1832 CGBuilderTy::InsertPoint IP; 1833 CodeGenFunction &CGF; 1834 1835 public: 1836 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1837 llvm::BasicBlock &RetBB) 1838 : CGF(cgf) { 1839 assert(AllocaIP.isSet() && 1840 "Must specify Insertion point for allocas of outlined function"); 1841 OldAllocaIP = CGF.AllocaInsertPt; 1842 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1843 IP = CGF.Builder.saveIP(); 1844 1845 OldReturnBlock = CGF.ReturnBlock; 1846 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1847 } 1848 1849 ~OutlinedRegionBodyRAII() { 1850 CGF.AllocaInsertPt = OldAllocaIP; 1851 CGF.ReturnBlock = OldReturnBlock; 1852 CGF.Builder.restoreIP(IP); 1853 } 1854 }; 1855 1856 /// RAII for preserving necessary info during inlined region body codegen. 1857 class InlinedRegionBodyRAII { 1858 1859 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1860 CodeGenFunction &CGF; 1861 1862 public: 1863 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1864 llvm::BasicBlock &FiniBB) 1865 : CGF(cgf) { 1866 // Alloca insertion block should be in the entry block of the containing 1867 // function so it expects an empty AllocaIP in which case will reuse the 1868 // old alloca insertion point, or a new AllocaIP in the same block as 1869 // the old one 1870 assert((!AllocaIP.isSet() || 1871 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1872 "Insertion point should be in the entry block of containing " 1873 "function!"); 1874 OldAllocaIP = CGF.AllocaInsertPt; 1875 if (AllocaIP.isSet()) 1876 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1877 1878 // TODO: Remove the call, after making sure the counter is not used by 1879 // the EHStack. 1880 // Since this is an inlined region, it should not modify the 1881 // ReturnBlock, and should reuse the one for the enclosing outlined 1882 // region. So, the JumpDest being return by the function is discarded 1883 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1884 } 1885 1886 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1887 }; 1888 }; 1889 1890 private: 1891 /// CXXThisDecl - When generating code for a C++ member function, 1892 /// this will hold the implicit 'this' declaration. 1893 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1894 llvm::Value *CXXABIThisValue = nullptr; 1895 llvm::Value *CXXThisValue = nullptr; 1896 CharUnits CXXABIThisAlignment; 1897 CharUnits CXXThisAlignment; 1898 1899 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1900 /// this expression. 1901 Address CXXDefaultInitExprThis = Address::invalid(); 1902 1903 /// The current array initialization index when evaluating an 1904 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1905 llvm::Value *ArrayInitIndex = nullptr; 1906 1907 /// The values of function arguments to use when evaluating 1908 /// CXXInheritedCtorInitExprs within this context. 1909 CallArgList CXXInheritedCtorInitExprArgs; 1910 1911 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1912 /// destructor, this will hold the implicit argument (e.g. VTT). 1913 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1914 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1915 1916 /// OutermostConditional - Points to the outermost active 1917 /// conditional control. This is used so that we know if a 1918 /// temporary should be destroyed conditionally. 1919 ConditionalEvaluation *OutermostConditional = nullptr; 1920 1921 /// The current lexical scope. 1922 LexicalScope *CurLexicalScope = nullptr; 1923 1924 /// The current source location that should be used for exception 1925 /// handling code. 1926 SourceLocation CurEHLocation; 1927 1928 /// BlockByrefInfos - For each __block variable, contains 1929 /// information about the layout of the variable. 1930 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1931 1932 /// Used by -fsanitize=nullability-return to determine whether the return 1933 /// value can be checked. 1934 llvm::Value *RetValNullabilityPrecondition = nullptr; 1935 1936 /// Check if -fsanitize=nullability-return instrumentation is required for 1937 /// this function. 1938 bool requiresReturnValueNullabilityCheck() const { 1939 return RetValNullabilityPrecondition; 1940 } 1941 1942 /// Used to store precise source locations for return statements by the 1943 /// runtime return value checks. 1944 Address ReturnLocation = Address::invalid(); 1945 1946 /// Check if the return value of this function requires sanitization. 1947 bool requiresReturnValueCheck() const; 1948 1949 llvm::BasicBlock *TerminateLandingPad = nullptr; 1950 llvm::BasicBlock *TerminateHandler = nullptr; 1951 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1952 1953 /// Terminate funclets keyed by parent funclet pad. 1954 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1955 1956 /// Largest vector width used in ths function. Will be used to create a 1957 /// function attribute. 1958 unsigned LargestVectorWidth = 0; 1959 1960 /// True if we need emit the life-time markers. This is initially set in 1961 /// the constructor, but could be overwritten to true if this is a coroutine. 1962 bool ShouldEmitLifetimeMarkers; 1963 1964 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1965 /// the function metadata. 1966 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1967 llvm::Function *Fn); 1968 1969 public: 1970 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1971 ~CodeGenFunction(); 1972 1973 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1974 ASTContext &getContext() const { return CGM.getContext(); } 1975 CGDebugInfo *getDebugInfo() { 1976 if (DisableDebugInfo) 1977 return nullptr; 1978 return DebugInfo; 1979 } 1980 void disableDebugInfo() { DisableDebugInfo = true; } 1981 void enableDebugInfo() { DisableDebugInfo = false; } 1982 1983 bool shouldUseFusedARCCalls() { 1984 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1985 } 1986 1987 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1988 1989 /// Returns a pointer to the function's exception object and selector slot, 1990 /// which is assigned in every landing pad. 1991 Address getExceptionSlot(); 1992 Address getEHSelectorSlot(); 1993 1994 /// Returns the contents of the function's exception object and selector 1995 /// slots. 1996 llvm::Value *getExceptionFromSlot(); 1997 llvm::Value *getSelectorFromSlot(); 1998 1999 Address getNormalCleanupDestSlot(); 2000 2001 llvm::BasicBlock *getUnreachableBlock() { 2002 if (!UnreachableBlock) { 2003 UnreachableBlock = createBasicBlock("unreachable"); 2004 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2005 } 2006 return UnreachableBlock; 2007 } 2008 2009 llvm::BasicBlock *getInvokeDest() { 2010 if (!EHStack.requiresLandingPad()) return nullptr; 2011 return getInvokeDestImpl(); 2012 } 2013 2014 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 2015 2016 const TargetInfo &getTarget() const { return Target; } 2017 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2018 const TargetCodeGenInfo &getTargetHooks() const { 2019 return CGM.getTargetCodeGenInfo(); 2020 } 2021 2022 //===--------------------------------------------------------------------===// 2023 // Cleanups 2024 //===--------------------------------------------------------------------===// 2025 2026 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2027 2028 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2029 Address arrayEndPointer, 2030 QualType elementType, 2031 CharUnits elementAlignment, 2032 Destroyer *destroyer); 2033 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2034 llvm::Value *arrayEnd, 2035 QualType elementType, 2036 CharUnits elementAlignment, 2037 Destroyer *destroyer); 2038 2039 void pushDestroy(QualType::DestructionKind dtorKind, 2040 Address addr, QualType type); 2041 void pushEHDestroy(QualType::DestructionKind dtorKind, 2042 Address addr, QualType type); 2043 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2044 Destroyer *destroyer, bool useEHCleanupForArray); 2045 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2046 QualType type, Destroyer *destroyer, 2047 bool useEHCleanupForArray); 2048 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2049 llvm::Value *CompletePtr, 2050 QualType ElementType); 2051 void pushStackRestore(CleanupKind kind, Address SPMem); 2052 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2053 bool useEHCleanupForArray); 2054 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2055 Destroyer *destroyer, 2056 bool useEHCleanupForArray, 2057 const VarDecl *VD); 2058 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2059 QualType elementType, CharUnits elementAlign, 2060 Destroyer *destroyer, 2061 bool checkZeroLength, bool useEHCleanup); 2062 2063 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2064 2065 /// Determines whether an EH cleanup is required to destroy a type 2066 /// with the given destruction kind. 2067 bool needsEHCleanup(QualType::DestructionKind kind) { 2068 switch (kind) { 2069 case QualType::DK_none: 2070 return false; 2071 case QualType::DK_cxx_destructor: 2072 case QualType::DK_objc_weak_lifetime: 2073 case QualType::DK_nontrivial_c_struct: 2074 return getLangOpts().Exceptions; 2075 case QualType::DK_objc_strong_lifetime: 2076 return getLangOpts().Exceptions && 2077 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2078 } 2079 llvm_unreachable("bad destruction kind"); 2080 } 2081 2082 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2083 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2084 } 2085 2086 //===--------------------------------------------------------------------===// 2087 // Objective-C 2088 //===--------------------------------------------------------------------===// 2089 2090 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2091 2092 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2093 2094 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2095 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2096 const ObjCPropertyImplDecl *PID); 2097 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2098 const ObjCPropertyImplDecl *propImpl, 2099 const ObjCMethodDecl *GetterMothodDecl, 2100 llvm::Constant *AtomicHelperFn); 2101 2102 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2103 ObjCMethodDecl *MD, bool ctor); 2104 2105 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2106 /// for the given property. 2107 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2108 const ObjCPropertyImplDecl *PID); 2109 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2110 const ObjCPropertyImplDecl *propImpl, 2111 llvm::Constant *AtomicHelperFn); 2112 2113 //===--------------------------------------------------------------------===// 2114 // Block Bits 2115 //===--------------------------------------------------------------------===// 2116 2117 /// Emit block literal. 2118 /// \return an LLVM value which is a pointer to a struct which contains 2119 /// information about the block, including the block invoke function, the 2120 /// captured variables, etc. 2121 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2122 2123 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2124 const CGBlockInfo &Info, 2125 const DeclMapTy &ldm, 2126 bool IsLambdaConversionToBlock, 2127 bool BuildGlobalBlock); 2128 2129 /// Check if \p T is a C++ class that has a destructor that can throw. 2130 static bool cxxDestructorCanThrow(QualType T); 2131 2132 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2133 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2134 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2135 const ObjCPropertyImplDecl *PID); 2136 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2137 const ObjCPropertyImplDecl *PID); 2138 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2139 2140 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2141 bool CanThrow); 2142 2143 class AutoVarEmission; 2144 2145 void emitByrefStructureInit(const AutoVarEmission &emission); 2146 2147 /// Enter a cleanup to destroy a __block variable. Note that this 2148 /// cleanup should be a no-op if the variable hasn't left the stack 2149 /// yet; if a cleanup is required for the variable itself, that needs 2150 /// to be done externally. 2151 /// 2152 /// \param Kind Cleanup kind. 2153 /// 2154 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2155 /// structure that will be passed to _Block_object_dispose. When 2156 /// \p LoadBlockVarAddr is true, the address of the field of the block 2157 /// structure that holds the address of the __block structure. 2158 /// 2159 /// \param Flags The flag that will be passed to _Block_object_dispose. 2160 /// 2161 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2162 /// \p Addr to get the address of the __block structure. 2163 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2164 bool LoadBlockVarAddr, bool CanThrow); 2165 2166 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2167 llvm::Value *ptr); 2168 2169 Address LoadBlockStruct(); 2170 Address GetAddrOfBlockDecl(const VarDecl *var); 2171 2172 /// BuildBlockByrefAddress - Computes the location of the 2173 /// data in a variable which is declared as __block. 2174 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2175 bool followForward = true); 2176 Address emitBlockByrefAddress(Address baseAddr, 2177 const BlockByrefInfo &info, 2178 bool followForward, 2179 const llvm::Twine &name); 2180 2181 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2182 2183 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2184 2185 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2186 const CGFunctionInfo &FnInfo); 2187 2188 /// Annotate the function with an attribute that disables TSan checking at 2189 /// runtime. 2190 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2191 2192 /// Emit code for the start of a function. 2193 /// \param Loc The location to be associated with the function. 2194 /// \param StartLoc The location of the function body. 2195 void StartFunction(GlobalDecl GD, 2196 QualType RetTy, 2197 llvm::Function *Fn, 2198 const CGFunctionInfo &FnInfo, 2199 const FunctionArgList &Args, 2200 SourceLocation Loc = SourceLocation(), 2201 SourceLocation StartLoc = SourceLocation()); 2202 2203 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2204 2205 void EmitConstructorBody(FunctionArgList &Args); 2206 void EmitDestructorBody(FunctionArgList &Args); 2207 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2208 void EmitFunctionBody(const Stmt *Body); 2209 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2210 2211 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2212 CallArgList &CallArgs); 2213 void EmitLambdaBlockInvokeBody(); 2214 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2215 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2216 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2217 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2218 } 2219 void EmitAsanPrologueOrEpilogue(bool Prologue); 2220 2221 /// Emit the unified return block, trying to avoid its emission when 2222 /// possible. 2223 /// \return The debug location of the user written return statement if the 2224 /// return block is is avoided. 2225 llvm::DebugLoc EmitReturnBlock(); 2226 2227 /// FinishFunction - Complete IR generation of the current function. It is 2228 /// legal to call this function even if there is no current insertion point. 2229 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2230 2231 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2232 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2233 2234 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2235 const ThunkInfo *Thunk, bool IsUnprototyped); 2236 2237 void FinishThunk(); 2238 2239 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2240 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2241 llvm::FunctionCallee Callee); 2242 2243 /// Generate a thunk for the given method. 2244 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2245 GlobalDecl GD, const ThunkInfo &Thunk, 2246 bool IsUnprototyped); 2247 2248 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2249 const CGFunctionInfo &FnInfo, 2250 GlobalDecl GD, const ThunkInfo &Thunk); 2251 2252 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2253 FunctionArgList &Args); 2254 2255 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2256 2257 /// Struct with all information about dynamic [sub]class needed to set vptr. 2258 struct VPtr { 2259 BaseSubobject Base; 2260 const CXXRecordDecl *NearestVBase; 2261 CharUnits OffsetFromNearestVBase; 2262 const CXXRecordDecl *VTableClass; 2263 }; 2264 2265 /// Initialize the vtable pointer of the given subobject. 2266 void InitializeVTablePointer(const VPtr &vptr); 2267 2268 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2269 2270 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2271 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2272 2273 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2274 CharUnits OffsetFromNearestVBase, 2275 bool BaseIsNonVirtualPrimaryBase, 2276 const CXXRecordDecl *VTableClass, 2277 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2278 2279 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2280 2281 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2282 /// to by This. 2283 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2284 const CXXRecordDecl *VTableClass); 2285 2286 enum CFITypeCheckKind { 2287 CFITCK_VCall, 2288 CFITCK_NVCall, 2289 CFITCK_DerivedCast, 2290 CFITCK_UnrelatedCast, 2291 CFITCK_ICall, 2292 CFITCK_NVMFCall, 2293 CFITCK_VMFCall, 2294 }; 2295 2296 /// Derived is the presumed address of an object of type T after a 2297 /// cast. If T is a polymorphic class type, emit a check that the virtual 2298 /// table for Derived belongs to a class derived from T. 2299 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2300 bool MayBeNull, CFITypeCheckKind TCK, 2301 SourceLocation Loc); 2302 2303 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2304 /// If vptr CFI is enabled, emit a check that VTable is valid. 2305 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2306 CFITypeCheckKind TCK, SourceLocation Loc); 2307 2308 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2309 /// RD using llvm.type.test. 2310 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2311 CFITypeCheckKind TCK, SourceLocation Loc); 2312 2313 /// If whole-program virtual table optimization is enabled, emit an assumption 2314 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2315 /// enabled, emit a check that VTable is a member of RD's type identifier. 2316 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2317 llvm::Value *VTable, SourceLocation Loc); 2318 2319 /// Returns whether we should perform a type checked load when loading a 2320 /// virtual function for virtual calls to members of RD. This is generally 2321 /// true when both vcall CFI and whole-program-vtables are enabled. 2322 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2323 2324 /// Emit a type checked load from the given vtable. 2325 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2326 uint64_t VTableByteOffset); 2327 2328 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2329 /// given phase of destruction for a destructor. The end result 2330 /// should call destructors on members and base classes in reverse 2331 /// order of their construction. 2332 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2333 2334 /// ShouldInstrumentFunction - Return true if the current function should be 2335 /// instrumented with __cyg_profile_func_* calls 2336 bool ShouldInstrumentFunction(); 2337 2338 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2339 /// should not be instrumented with sanitizers. 2340 bool ShouldSkipSanitizerInstrumentation(); 2341 2342 /// ShouldXRayInstrument - Return true if the current function should be 2343 /// instrumented with XRay nop sleds. 2344 bool ShouldXRayInstrumentFunction() const; 2345 2346 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2347 /// XRay custom event handling calls. 2348 bool AlwaysEmitXRayCustomEvents() const; 2349 2350 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2351 /// XRay typed event handling calls. 2352 bool AlwaysEmitXRayTypedEvents() const; 2353 2354 /// Encode an address into a form suitable for use in a function prologue. 2355 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2356 llvm::Constant *Addr); 2357 2358 /// Decode an address used in a function prologue, encoded by \c 2359 /// EncodeAddrForUseInPrologue. 2360 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2361 llvm::Value *EncodedAddr); 2362 2363 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2364 /// arguments for the given function. This is also responsible for naming the 2365 /// LLVM function arguments. 2366 void EmitFunctionProlog(const CGFunctionInfo &FI, 2367 llvm::Function *Fn, 2368 const FunctionArgList &Args); 2369 2370 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2371 /// given temporary. 2372 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2373 SourceLocation EndLoc); 2374 2375 /// Emit a test that checks if the return value \p RV is nonnull. 2376 void EmitReturnValueCheck(llvm::Value *RV); 2377 2378 /// EmitStartEHSpec - Emit the start of the exception spec. 2379 void EmitStartEHSpec(const Decl *D); 2380 2381 /// EmitEndEHSpec - Emit the end of the exception spec. 2382 void EmitEndEHSpec(const Decl *D); 2383 2384 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2385 llvm::BasicBlock *getTerminateLandingPad(); 2386 2387 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2388 /// terminate. 2389 llvm::BasicBlock *getTerminateFunclet(); 2390 2391 /// getTerminateHandler - Return a handler (not a landing pad, just 2392 /// a catch handler) that just calls terminate. This is used when 2393 /// a terminate scope encloses a try. 2394 llvm::BasicBlock *getTerminateHandler(); 2395 2396 llvm::Type *ConvertTypeForMem(QualType T); 2397 llvm::Type *ConvertType(QualType T); 2398 llvm::Type *ConvertType(const TypeDecl *T) { 2399 return ConvertType(getContext().getTypeDeclType(T)); 2400 } 2401 2402 /// LoadObjCSelf - Load the value of self. This function is only valid while 2403 /// generating code for an Objective-C method. 2404 llvm::Value *LoadObjCSelf(); 2405 2406 /// TypeOfSelfObject - Return type of object that this self represents. 2407 QualType TypeOfSelfObject(); 2408 2409 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2410 static TypeEvaluationKind getEvaluationKind(QualType T); 2411 2412 static bool hasScalarEvaluationKind(QualType T) { 2413 return getEvaluationKind(T) == TEK_Scalar; 2414 } 2415 2416 static bool hasAggregateEvaluationKind(QualType T) { 2417 return getEvaluationKind(T) == TEK_Aggregate; 2418 } 2419 2420 /// createBasicBlock - Create an LLVM basic block. 2421 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2422 llvm::Function *parent = nullptr, 2423 llvm::BasicBlock *before = nullptr) { 2424 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2425 } 2426 2427 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2428 /// label maps to. 2429 JumpDest getJumpDestForLabel(const LabelDecl *S); 2430 2431 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2432 /// another basic block, simplify it. This assumes that no other code could 2433 /// potentially reference the basic block. 2434 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2435 2436 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2437 /// adding a fall-through branch from the current insert block if 2438 /// necessary. It is legal to call this function even if there is no current 2439 /// insertion point. 2440 /// 2441 /// IsFinished - If true, indicates that the caller has finished emitting 2442 /// branches to the given block and does not expect to emit code into it. This 2443 /// means the block can be ignored if it is unreachable. 2444 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2445 2446 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2447 /// near its uses, and leave the insertion point in it. 2448 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2449 2450 /// EmitBranch - Emit a branch to the specified basic block from the current 2451 /// insert block, taking care to avoid creation of branches from dummy 2452 /// blocks. It is legal to call this function even if there is no current 2453 /// insertion point. 2454 /// 2455 /// This function clears the current insertion point. The caller should follow 2456 /// calls to this function with calls to Emit*Block prior to generation new 2457 /// code. 2458 void EmitBranch(llvm::BasicBlock *Block); 2459 2460 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2461 /// indicates that the current code being emitted is unreachable. 2462 bool HaveInsertPoint() const { 2463 return Builder.GetInsertBlock() != nullptr; 2464 } 2465 2466 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2467 /// emitted IR has a place to go. Note that by definition, if this function 2468 /// creates a block then that block is unreachable; callers may do better to 2469 /// detect when no insertion point is defined and simply skip IR generation. 2470 void EnsureInsertPoint() { 2471 if (!HaveInsertPoint()) 2472 EmitBlock(createBasicBlock()); 2473 } 2474 2475 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2476 /// specified stmt yet. 2477 void ErrorUnsupported(const Stmt *S, const char *Type); 2478 2479 //===--------------------------------------------------------------------===// 2480 // Helpers 2481 //===--------------------------------------------------------------------===// 2482 2483 LValue MakeAddrLValue(Address Addr, QualType T, 2484 AlignmentSource Source = AlignmentSource::Type) { 2485 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2486 CGM.getTBAAAccessInfo(T)); 2487 } 2488 2489 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2490 TBAAAccessInfo TBAAInfo) { 2491 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2492 } 2493 2494 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2495 AlignmentSource Source = AlignmentSource::Type) { 2496 Address Addr(V, ConvertTypeForMem(T), Alignment); 2497 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2498 CGM.getTBAAAccessInfo(T)); 2499 } 2500 2501 LValue 2502 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2503 AlignmentSource Source = AlignmentSource::Type) { 2504 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2505 TBAAAccessInfo()); 2506 } 2507 2508 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2509 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2510 2511 Address EmitLoadOfReference(LValue RefLVal, 2512 LValueBaseInfo *PointeeBaseInfo = nullptr, 2513 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2514 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2515 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2516 AlignmentSource Source = 2517 AlignmentSource::Type) { 2518 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2519 CGM.getTBAAAccessInfo(RefTy)); 2520 return EmitLoadOfReferenceLValue(RefLVal); 2521 } 2522 2523 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2524 LValueBaseInfo *BaseInfo = nullptr, 2525 TBAAAccessInfo *TBAAInfo = nullptr); 2526 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2527 2528 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2529 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2530 /// insertion point of the builder. The caller is responsible for setting an 2531 /// appropriate alignment on 2532 /// the alloca. 2533 /// 2534 /// \p ArraySize is the number of array elements to be allocated if it 2535 /// is not nullptr. 2536 /// 2537 /// LangAS::Default is the address space of pointers to local variables and 2538 /// temporaries, as exposed in the source language. In certain 2539 /// configurations, this is not the same as the alloca address space, and a 2540 /// cast is needed to lift the pointer from the alloca AS into 2541 /// LangAS::Default. This can happen when the target uses a restricted 2542 /// address space for the stack but the source language requires 2543 /// LangAS::Default to be a generic address space. The latter condition is 2544 /// common for most programming languages; OpenCL is an exception in that 2545 /// LangAS::Default is the private address space, which naturally maps 2546 /// to the stack. 2547 /// 2548 /// Because the address of a temporary is often exposed to the program in 2549 /// various ways, this function will perform the cast. The original alloca 2550 /// instruction is returned through \p Alloca if it is not nullptr. 2551 /// 2552 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2553 /// more efficient if the caller knows that the address will not be exposed. 2554 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2555 llvm::Value *ArraySize = nullptr); 2556 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2557 const Twine &Name = "tmp", 2558 llvm::Value *ArraySize = nullptr, 2559 Address *Alloca = nullptr); 2560 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2561 const Twine &Name = "tmp", 2562 llvm::Value *ArraySize = nullptr); 2563 2564 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2565 /// default ABI alignment of the given LLVM type. 2566 /// 2567 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2568 /// any given AST type that happens to have been lowered to the 2569 /// given IR type. This should only ever be used for function-local, 2570 /// IR-driven manipulations like saving and restoring a value. Do 2571 /// not hand this address off to arbitrary IRGen routines, and especially 2572 /// do not pass it as an argument to a function that might expect a 2573 /// properly ABI-aligned value. 2574 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2575 const Twine &Name = "tmp"); 2576 2577 /// CreateIRTemp - Create a temporary IR object of the given type, with 2578 /// appropriate alignment. This routine should only be used when an temporary 2579 /// value needs to be stored into an alloca (for example, to avoid explicit 2580 /// PHI construction), but the type is the IR type, not the type appropriate 2581 /// for storing in memory. 2582 /// 2583 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2584 /// ConvertType instead of ConvertTypeForMem. 2585 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2586 2587 /// CreateMemTemp - Create a temporary memory object of the given type, with 2588 /// appropriate alignmen and cast it to the default address space. Returns 2589 /// the original alloca instruction by \p Alloca if it is not nullptr. 2590 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2591 Address *Alloca = nullptr); 2592 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2593 Address *Alloca = nullptr); 2594 2595 /// CreateMemTemp - Create a temporary memory object of the given type, with 2596 /// appropriate alignmen without casting it to the default address space. 2597 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2598 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2599 const Twine &Name = "tmp"); 2600 2601 /// CreateAggTemp - Create a temporary memory object for the given 2602 /// aggregate type. 2603 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2604 Address *Alloca = nullptr) { 2605 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2606 T.getQualifiers(), 2607 AggValueSlot::IsNotDestructed, 2608 AggValueSlot::DoesNotNeedGCBarriers, 2609 AggValueSlot::IsNotAliased, 2610 AggValueSlot::DoesNotOverlap); 2611 } 2612 2613 /// Emit a cast to void* in the appropriate address space. 2614 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2615 2616 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2617 /// expression and compare the result against zero, returning an Int1Ty value. 2618 llvm::Value *EvaluateExprAsBool(const Expr *E); 2619 2620 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2621 void EmitIgnoredExpr(const Expr *E); 2622 2623 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2624 /// any type. The result is returned as an RValue struct. If this is an 2625 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2626 /// the result should be returned. 2627 /// 2628 /// \param ignoreResult True if the resulting value isn't used. 2629 RValue EmitAnyExpr(const Expr *E, 2630 AggValueSlot aggSlot = AggValueSlot::ignored(), 2631 bool ignoreResult = false); 2632 2633 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2634 // or the value of the expression, depending on how va_list is defined. 2635 Address EmitVAListRef(const Expr *E); 2636 2637 /// Emit a "reference" to a __builtin_ms_va_list; this is 2638 /// always the value of the expression, because a __builtin_ms_va_list is a 2639 /// pointer to a char. 2640 Address EmitMSVAListRef(const Expr *E); 2641 2642 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2643 /// always be accessible even if no aggregate location is provided. 2644 RValue EmitAnyExprToTemp(const Expr *E); 2645 2646 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2647 /// arbitrary expression into the given memory location. 2648 void EmitAnyExprToMem(const Expr *E, Address Location, 2649 Qualifiers Quals, bool IsInitializer); 2650 2651 void EmitAnyExprToExn(const Expr *E, Address Addr); 2652 2653 /// EmitExprAsInit - Emits the code necessary to initialize a 2654 /// location in memory with the given initializer. 2655 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2656 bool capturedByInit); 2657 2658 /// hasVolatileMember - returns true if aggregate type has a volatile 2659 /// member. 2660 bool hasVolatileMember(QualType T) { 2661 if (const RecordType *RT = T->getAs<RecordType>()) { 2662 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2663 return RD->hasVolatileMember(); 2664 } 2665 return false; 2666 } 2667 2668 /// Determine whether a return value slot may overlap some other object. 2669 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2670 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2671 // class subobjects. These cases may need to be revisited depending on the 2672 // resolution of the relevant core issue. 2673 return AggValueSlot::DoesNotOverlap; 2674 } 2675 2676 /// Determine whether a field initialization may overlap some other object. 2677 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2678 2679 /// Determine whether a base class initialization may overlap some other 2680 /// object. 2681 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2682 const CXXRecordDecl *BaseRD, 2683 bool IsVirtual); 2684 2685 /// Emit an aggregate assignment. 2686 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2687 bool IsVolatile = hasVolatileMember(EltTy); 2688 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2689 } 2690 2691 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2692 AggValueSlot::Overlap_t MayOverlap) { 2693 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2694 } 2695 2696 /// EmitAggregateCopy - Emit an aggregate copy. 2697 /// 2698 /// \param isVolatile \c true iff either the source or the destination is 2699 /// volatile. 2700 /// \param MayOverlap Whether the tail padding of the destination might be 2701 /// occupied by some other object. More efficient code can often be 2702 /// generated if not. 2703 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2704 AggValueSlot::Overlap_t MayOverlap, 2705 bool isVolatile = false); 2706 2707 /// GetAddrOfLocalVar - Return the address of a local variable. 2708 Address GetAddrOfLocalVar(const VarDecl *VD) { 2709 auto it = LocalDeclMap.find(VD); 2710 assert(it != LocalDeclMap.end() && 2711 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2712 return it->second; 2713 } 2714 2715 /// Given an opaque value expression, return its LValue mapping if it exists, 2716 /// otherwise create one. 2717 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2718 2719 /// Given an opaque value expression, return its RValue mapping if it exists, 2720 /// otherwise create one. 2721 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2722 2723 /// Get the index of the current ArrayInitLoopExpr, if any. 2724 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2725 2726 /// getAccessedFieldNo - Given an encoded value and a result number, return 2727 /// the input field number being accessed. 2728 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2729 2730 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2731 llvm::BasicBlock *GetIndirectGotoBlock(); 2732 2733 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2734 static bool IsWrappedCXXThis(const Expr *E); 2735 2736 /// EmitNullInitialization - Generate code to set a value of the given type to 2737 /// null, If the type contains data member pointers, they will be initialized 2738 /// to -1 in accordance with the Itanium C++ ABI. 2739 void EmitNullInitialization(Address DestPtr, QualType Ty); 2740 2741 /// Emits a call to an LLVM variable-argument intrinsic, either 2742 /// \c llvm.va_start or \c llvm.va_end. 2743 /// \param ArgValue A reference to the \c va_list as emitted by either 2744 /// \c EmitVAListRef or \c EmitMSVAListRef. 2745 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2746 /// calls \c llvm.va_end. 2747 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2748 2749 /// Generate code to get an argument from the passed in pointer 2750 /// and update it accordingly. 2751 /// \param VE The \c VAArgExpr for which to generate code. 2752 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2753 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2754 /// \returns A pointer to the argument. 2755 // FIXME: We should be able to get rid of this method and use the va_arg 2756 // instruction in LLVM instead once it works well enough. 2757 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2758 2759 /// emitArrayLength - Compute the length of an array, even if it's a 2760 /// VLA, and drill down to the base element type. 2761 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2762 QualType &baseType, 2763 Address &addr); 2764 2765 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2766 /// the given variably-modified type and store them in the VLASizeMap. 2767 /// 2768 /// This function can be called with a null (unreachable) insert point. 2769 void EmitVariablyModifiedType(QualType Ty); 2770 2771 struct VlaSizePair { 2772 llvm::Value *NumElts; 2773 QualType Type; 2774 2775 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2776 }; 2777 2778 /// Return the number of elements for a single dimension 2779 /// for the given array type. 2780 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2781 VlaSizePair getVLAElements1D(QualType vla); 2782 2783 /// Returns an LLVM value that corresponds to the size, 2784 /// in non-variably-sized elements, of a variable length array type, 2785 /// plus that largest non-variably-sized element type. Assumes that 2786 /// the type has already been emitted with EmitVariablyModifiedType. 2787 VlaSizePair getVLASize(const VariableArrayType *vla); 2788 VlaSizePair getVLASize(QualType vla); 2789 2790 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2791 /// generating code for an C++ member function. 2792 llvm::Value *LoadCXXThis() { 2793 assert(CXXThisValue && "no 'this' value for this function"); 2794 return CXXThisValue; 2795 } 2796 Address LoadCXXThisAddress(); 2797 2798 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2799 /// virtual bases. 2800 // FIXME: Every place that calls LoadCXXVTT is something 2801 // that needs to be abstracted properly. 2802 llvm::Value *LoadCXXVTT() { 2803 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2804 return CXXStructorImplicitParamValue; 2805 } 2806 2807 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2808 /// complete class to the given direct base. 2809 Address 2810 GetAddressOfDirectBaseInCompleteClass(Address Value, 2811 const CXXRecordDecl *Derived, 2812 const CXXRecordDecl *Base, 2813 bool BaseIsVirtual); 2814 2815 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2816 2817 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2818 /// load of 'this' and returns address of the base class. 2819 Address GetAddressOfBaseClass(Address Value, 2820 const CXXRecordDecl *Derived, 2821 CastExpr::path_const_iterator PathBegin, 2822 CastExpr::path_const_iterator PathEnd, 2823 bool NullCheckValue, SourceLocation Loc); 2824 2825 Address GetAddressOfDerivedClass(Address Value, 2826 const CXXRecordDecl *Derived, 2827 CastExpr::path_const_iterator PathBegin, 2828 CastExpr::path_const_iterator PathEnd, 2829 bool NullCheckValue); 2830 2831 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2832 /// base constructor/destructor with virtual bases. 2833 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2834 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2835 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2836 bool Delegating); 2837 2838 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2839 CXXCtorType CtorType, 2840 const FunctionArgList &Args, 2841 SourceLocation Loc); 2842 // It's important not to confuse this and the previous function. Delegating 2843 // constructors are the C++0x feature. The constructor delegate optimization 2844 // is used to reduce duplication in the base and complete consturctors where 2845 // they are substantially the same. 2846 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2847 const FunctionArgList &Args); 2848 2849 /// Emit a call to an inheriting constructor (that is, one that invokes a 2850 /// constructor inherited from a base class) by inlining its definition. This 2851 /// is necessary if the ABI does not support forwarding the arguments to the 2852 /// base class constructor (because they're variadic or similar). 2853 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2854 CXXCtorType CtorType, 2855 bool ForVirtualBase, 2856 bool Delegating, 2857 CallArgList &Args); 2858 2859 /// Emit a call to a constructor inherited from a base class, passing the 2860 /// current constructor's arguments along unmodified (without even making 2861 /// a copy). 2862 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2863 bool ForVirtualBase, Address This, 2864 bool InheritedFromVBase, 2865 const CXXInheritedCtorInitExpr *E); 2866 2867 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2868 bool ForVirtualBase, bool Delegating, 2869 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2870 2871 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2872 bool ForVirtualBase, bool Delegating, 2873 Address This, CallArgList &Args, 2874 AggValueSlot::Overlap_t Overlap, 2875 SourceLocation Loc, bool NewPointerIsChecked); 2876 2877 /// Emit assumption load for all bases. Requires to be be called only on 2878 /// most-derived class and not under construction of the object. 2879 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2880 2881 /// Emit assumption that vptr load == global vtable. 2882 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2883 2884 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2885 Address This, Address Src, 2886 const CXXConstructExpr *E); 2887 2888 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2889 const ArrayType *ArrayTy, 2890 Address ArrayPtr, 2891 const CXXConstructExpr *E, 2892 bool NewPointerIsChecked, 2893 bool ZeroInitialization = false); 2894 2895 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2896 llvm::Value *NumElements, 2897 Address ArrayPtr, 2898 const CXXConstructExpr *E, 2899 bool NewPointerIsChecked, 2900 bool ZeroInitialization = false); 2901 2902 static Destroyer destroyCXXObject; 2903 2904 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2905 bool ForVirtualBase, bool Delegating, Address This, 2906 QualType ThisTy); 2907 2908 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2909 llvm::Type *ElementTy, Address NewPtr, 2910 llvm::Value *NumElements, 2911 llvm::Value *AllocSizeWithoutCookie); 2912 2913 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2914 Address Ptr); 2915 2916 void EmitSehCppScopeBegin(); 2917 void EmitSehCppScopeEnd(); 2918 void EmitSehTryScopeBegin(); 2919 void EmitSehTryScopeEnd(); 2920 2921 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2922 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2923 2924 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2925 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2926 2927 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2928 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2929 CharUnits CookieSize = CharUnits()); 2930 2931 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2932 const CallExpr *TheCallExpr, bool IsDelete); 2933 2934 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2935 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2936 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2937 2938 /// Situations in which we might emit a check for the suitability of a 2939 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2940 /// compiler-rt. 2941 enum TypeCheckKind { 2942 /// Checking the operand of a load. Must be suitably sized and aligned. 2943 TCK_Load, 2944 /// Checking the destination of a store. Must be suitably sized and aligned. 2945 TCK_Store, 2946 /// Checking the bound value in a reference binding. Must be suitably sized 2947 /// and aligned, but is not required to refer to an object (until the 2948 /// reference is used), per core issue 453. 2949 TCK_ReferenceBinding, 2950 /// Checking the object expression in a non-static data member access. Must 2951 /// be an object within its lifetime. 2952 TCK_MemberAccess, 2953 /// Checking the 'this' pointer for a call to a non-static member function. 2954 /// Must be an object within its lifetime. 2955 TCK_MemberCall, 2956 /// Checking the 'this' pointer for a constructor call. 2957 TCK_ConstructorCall, 2958 /// Checking the operand of a static_cast to a derived pointer type. Must be 2959 /// null or an object within its lifetime. 2960 TCK_DowncastPointer, 2961 /// Checking the operand of a static_cast to a derived reference type. Must 2962 /// be an object within its lifetime. 2963 TCK_DowncastReference, 2964 /// Checking the operand of a cast to a base object. Must be suitably sized 2965 /// and aligned. 2966 TCK_Upcast, 2967 /// Checking the operand of a cast to a virtual base object. Must be an 2968 /// object within its lifetime. 2969 TCK_UpcastToVirtualBase, 2970 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2971 TCK_NonnullAssign, 2972 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2973 /// null or an object within its lifetime. 2974 TCK_DynamicOperation 2975 }; 2976 2977 /// Determine whether the pointer type check \p TCK permits null pointers. 2978 static bool isNullPointerAllowed(TypeCheckKind TCK); 2979 2980 /// Determine whether the pointer type check \p TCK requires a vptr check. 2981 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2982 2983 /// Whether any type-checking sanitizers are enabled. If \c false, 2984 /// calls to EmitTypeCheck can be skipped. 2985 bool sanitizePerformTypeCheck() const; 2986 2987 /// Emit a check that \p V is the address of storage of the 2988 /// appropriate size and alignment for an object of type \p Type 2989 /// (or if ArraySize is provided, for an array of that bound). 2990 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2991 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2992 SanitizerSet SkippedChecks = SanitizerSet(), 2993 llvm::Value *ArraySize = nullptr); 2994 2995 /// Emit a check that \p Base points into an array object, which 2996 /// we can access at index \p Index. \p Accessed should be \c false if we 2997 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2998 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2999 QualType IndexType, bool Accessed); 3000 3001 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3002 bool isInc, bool isPre); 3003 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3004 bool isInc, bool isPre); 3005 3006 /// Converts Location to a DebugLoc, if debug information is enabled. 3007 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3008 3009 /// Get the record field index as represented in debug info. 3010 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3011 3012 3013 //===--------------------------------------------------------------------===// 3014 // Declaration Emission 3015 //===--------------------------------------------------------------------===// 3016 3017 /// EmitDecl - Emit a declaration. 3018 /// 3019 /// This function can be called with a null (unreachable) insert point. 3020 void EmitDecl(const Decl &D); 3021 3022 /// EmitVarDecl - Emit a local variable declaration. 3023 /// 3024 /// This function can be called with a null (unreachable) insert point. 3025 void EmitVarDecl(const VarDecl &D); 3026 3027 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3028 bool capturedByInit); 3029 3030 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3031 llvm::Value *Address); 3032 3033 /// Determine whether the given initializer is trivial in the sense 3034 /// that it requires no code to be generated. 3035 bool isTrivialInitializer(const Expr *Init); 3036 3037 /// EmitAutoVarDecl - Emit an auto variable declaration. 3038 /// 3039 /// This function can be called with a null (unreachable) insert point. 3040 void EmitAutoVarDecl(const VarDecl &D); 3041 3042 class AutoVarEmission { 3043 friend class CodeGenFunction; 3044 3045 const VarDecl *Variable; 3046 3047 /// The address of the alloca for languages with explicit address space 3048 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3049 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3050 /// as a global constant. 3051 Address Addr; 3052 3053 llvm::Value *NRVOFlag; 3054 3055 /// True if the variable is a __block variable that is captured by an 3056 /// escaping block. 3057 bool IsEscapingByRef; 3058 3059 /// True if the variable is of aggregate type and has a constant 3060 /// initializer. 3061 bool IsConstantAggregate; 3062 3063 /// Non-null if we should use lifetime annotations. 3064 llvm::Value *SizeForLifetimeMarkers; 3065 3066 /// Address with original alloca instruction. Invalid if the variable was 3067 /// emitted as a global constant. 3068 Address AllocaAddr; 3069 3070 struct Invalid {}; 3071 AutoVarEmission(Invalid) 3072 : Variable(nullptr), Addr(Address::invalid()), 3073 AllocaAddr(Address::invalid()) {} 3074 3075 AutoVarEmission(const VarDecl &variable) 3076 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3077 IsEscapingByRef(false), IsConstantAggregate(false), 3078 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3079 3080 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3081 3082 public: 3083 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3084 3085 bool useLifetimeMarkers() const { 3086 return SizeForLifetimeMarkers != nullptr; 3087 } 3088 llvm::Value *getSizeForLifetimeMarkers() const { 3089 assert(useLifetimeMarkers()); 3090 return SizeForLifetimeMarkers; 3091 } 3092 3093 /// Returns the raw, allocated address, which is not necessarily 3094 /// the address of the object itself. It is casted to default 3095 /// address space for address space agnostic languages. 3096 Address getAllocatedAddress() const { 3097 return Addr; 3098 } 3099 3100 /// Returns the address for the original alloca instruction. 3101 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3102 3103 /// Returns the address of the object within this declaration. 3104 /// Note that this does not chase the forwarding pointer for 3105 /// __block decls. 3106 Address getObjectAddress(CodeGenFunction &CGF) const { 3107 if (!IsEscapingByRef) return Addr; 3108 3109 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3110 } 3111 }; 3112 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3113 void EmitAutoVarInit(const AutoVarEmission &emission); 3114 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3115 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3116 QualType::DestructionKind dtorKind); 3117 3118 /// Emits the alloca and debug information for the size expressions for each 3119 /// dimension of an array. It registers the association of its (1-dimensional) 3120 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3121 /// reference this node when creating the DISubrange object to describe the 3122 /// array types. 3123 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3124 const VarDecl &D, 3125 bool EmitDebugInfo); 3126 3127 void EmitStaticVarDecl(const VarDecl &D, 3128 llvm::GlobalValue::LinkageTypes Linkage); 3129 3130 class ParamValue { 3131 llvm::Value *Value; 3132 llvm::Type *ElementType; 3133 unsigned Alignment; 3134 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3135 : Value(V), ElementType(T), Alignment(A) {} 3136 public: 3137 static ParamValue forDirect(llvm::Value *value) { 3138 return ParamValue(value, nullptr, 0); 3139 } 3140 static ParamValue forIndirect(Address addr) { 3141 assert(!addr.getAlignment().isZero()); 3142 return ParamValue(addr.getPointer(), addr.getElementType(), 3143 addr.getAlignment().getQuantity()); 3144 } 3145 3146 bool isIndirect() const { return Alignment != 0; } 3147 llvm::Value *getAnyValue() const { return Value; } 3148 3149 llvm::Value *getDirectValue() const { 3150 assert(!isIndirect()); 3151 return Value; 3152 } 3153 3154 Address getIndirectAddress() const { 3155 assert(isIndirect()); 3156 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3157 } 3158 }; 3159 3160 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3161 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3162 3163 /// protectFromPeepholes - Protect a value that we're intending to 3164 /// store to the side, but which will probably be used later, from 3165 /// aggressive peepholing optimizations that might delete it. 3166 /// 3167 /// Pass the result to unprotectFromPeepholes to declare that 3168 /// protection is no longer required. 3169 /// 3170 /// There's no particular reason why this shouldn't apply to 3171 /// l-values, it's just that no existing peepholes work on pointers. 3172 PeepholeProtection protectFromPeepholes(RValue rvalue); 3173 void unprotectFromPeepholes(PeepholeProtection protection); 3174 3175 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3176 SourceLocation Loc, 3177 SourceLocation AssumptionLoc, 3178 llvm::Value *Alignment, 3179 llvm::Value *OffsetValue, 3180 llvm::Value *TheCheck, 3181 llvm::Instruction *Assumption); 3182 3183 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3184 SourceLocation Loc, SourceLocation AssumptionLoc, 3185 llvm::Value *Alignment, 3186 llvm::Value *OffsetValue = nullptr); 3187 3188 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3189 SourceLocation AssumptionLoc, 3190 llvm::Value *Alignment, 3191 llvm::Value *OffsetValue = nullptr); 3192 3193 //===--------------------------------------------------------------------===// 3194 // Statement Emission 3195 //===--------------------------------------------------------------------===// 3196 3197 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3198 void EmitStopPoint(const Stmt *S); 3199 3200 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3201 /// this function even if there is no current insertion point. 3202 /// 3203 /// This function may clear the current insertion point; callers should use 3204 /// EnsureInsertPoint if they wish to subsequently generate code without first 3205 /// calling EmitBlock, EmitBranch, or EmitStmt. 3206 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3207 3208 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3209 /// necessarily require an insertion point or debug information; typically 3210 /// because the statement amounts to a jump or a container of other 3211 /// statements. 3212 /// 3213 /// \return True if the statement was handled. 3214 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3215 3216 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3217 AggValueSlot AVS = AggValueSlot::ignored()); 3218 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3219 bool GetLast = false, 3220 AggValueSlot AVS = 3221 AggValueSlot::ignored()); 3222 3223 /// EmitLabel - Emit the block for the given label. It is legal to call this 3224 /// function even if there is no current insertion point. 3225 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3226 3227 void EmitLabelStmt(const LabelStmt &S); 3228 void EmitAttributedStmt(const AttributedStmt &S); 3229 void EmitGotoStmt(const GotoStmt &S); 3230 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3231 void EmitIfStmt(const IfStmt &S); 3232 3233 void EmitWhileStmt(const WhileStmt &S, 3234 ArrayRef<const Attr *> Attrs = None); 3235 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3236 void EmitForStmt(const ForStmt &S, 3237 ArrayRef<const Attr *> Attrs = None); 3238 void EmitReturnStmt(const ReturnStmt &S); 3239 void EmitDeclStmt(const DeclStmt &S); 3240 void EmitBreakStmt(const BreakStmt &S); 3241 void EmitContinueStmt(const ContinueStmt &S); 3242 void EmitSwitchStmt(const SwitchStmt &S); 3243 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3244 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3245 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3246 void EmitAsmStmt(const AsmStmt &S); 3247 3248 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3249 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3250 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3251 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3252 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3253 3254 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3255 void EmitCoreturnStmt(const CoreturnStmt &S); 3256 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3257 AggValueSlot aggSlot = AggValueSlot::ignored(), 3258 bool ignoreResult = false); 3259 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3260 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3261 AggValueSlot aggSlot = AggValueSlot::ignored(), 3262 bool ignoreResult = false); 3263 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3264 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3265 3266 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3267 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3268 3269 void EmitCXXTryStmt(const CXXTryStmt &S); 3270 void EmitSEHTryStmt(const SEHTryStmt &S); 3271 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3272 void EnterSEHTryStmt(const SEHTryStmt &S); 3273 void ExitSEHTryStmt(const SEHTryStmt &S); 3274 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3275 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3276 3277 void pushSEHCleanup(CleanupKind kind, 3278 llvm::Function *FinallyFunc); 3279 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3280 const Stmt *OutlinedStmt); 3281 3282 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3283 const SEHExceptStmt &Except); 3284 3285 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3286 const SEHFinallyStmt &Finally); 3287 3288 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3289 llvm::Value *ParentFP, 3290 llvm::Value *EntryEBP); 3291 llvm::Value *EmitSEHExceptionCode(); 3292 llvm::Value *EmitSEHExceptionInfo(); 3293 llvm::Value *EmitSEHAbnormalTermination(); 3294 3295 /// Emit simple code for OpenMP directives in Simd-only mode. 3296 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3297 3298 /// Scan the outlined statement for captures from the parent function. For 3299 /// each capture, mark the capture as escaped and emit a call to 3300 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3301 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3302 bool IsFilter); 3303 3304 /// Recovers the address of a local in a parent function. ParentVar is the 3305 /// address of the variable used in the immediate parent function. It can 3306 /// either be an alloca or a call to llvm.localrecover if there are nested 3307 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3308 /// frame. 3309 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3310 Address ParentVar, 3311 llvm::Value *ParentFP); 3312 3313 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3314 ArrayRef<const Attr *> Attrs = None); 3315 3316 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3317 class OMPCancelStackRAII { 3318 CodeGenFunction &CGF; 3319 3320 public: 3321 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3322 bool HasCancel) 3323 : CGF(CGF) { 3324 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3325 } 3326 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3327 }; 3328 3329 /// Returns calculated size of the specified type. 3330 llvm::Value *getTypeSize(QualType Ty); 3331 LValue InitCapturedStruct(const CapturedStmt &S); 3332 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3333 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3334 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3335 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3336 SourceLocation Loc); 3337 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3338 SmallVectorImpl<llvm::Value *> &CapturedVars); 3339 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3340 SourceLocation Loc); 3341 /// Perform element by element copying of arrays with type \a 3342 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3343 /// generated by \a CopyGen. 3344 /// 3345 /// \param DestAddr Address of the destination array. 3346 /// \param SrcAddr Address of the source array. 3347 /// \param OriginalType Type of destination and source arrays. 3348 /// \param CopyGen Copying procedure that copies value of single array element 3349 /// to another single array element. 3350 void EmitOMPAggregateAssign( 3351 Address DestAddr, Address SrcAddr, QualType OriginalType, 3352 const llvm::function_ref<void(Address, Address)> CopyGen); 3353 /// Emit proper copying of data from one variable to another. 3354 /// 3355 /// \param OriginalType Original type of the copied variables. 3356 /// \param DestAddr Destination address. 3357 /// \param SrcAddr Source address. 3358 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3359 /// type of the base array element). 3360 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3361 /// the base array element). 3362 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3363 /// DestVD. 3364 void EmitOMPCopy(QualType OriginalType, 3365 Address DestAddr, Address SrcAddr, 3366 const VarDecl *DestVD, const VarDecl *SrcVD, 3367 const Expr *Copy); 3368 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3369 /// \a X = \a E \a BO \a E. 3370 /// 3371 /// \param X Value to be updated. 3372 /// \param E Update value. 3373 /// \param BO Binary operation for update operation. 3374 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3375 /// expression, false otherwise. 3376 /// \param AO Atomic ordering of the generated atomic instructions. 3377 /// \param CommonGen Code generator for complex expressions that cannot be 3378 /// expressed through atomicrmw instruction. 3379 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3380 /// generated, <false, RValue::get(nullptr)> otherwise. 3381 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3382 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3383 llvm::AtomicOrdering AO, SourceLocation Loc, 3384 const llvm::function_ref<RValue(RValue)> CommonGen); 3385 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3386 OMPPrivateScope &PrivateScope); 3387 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3388 OMPPrivateScope &PrivateScope); 3389 void EmitOMPUseDevicePtrClause( 3390 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3391 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3392 void EmitOMPUseDeviceAddrClause( 3393 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3394 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3395 /// Emit code for copyin clause in \a D directive. The next code is 3396 /// generated at the start of outlined functions for directives: 3397 /// \code 3398 /// threadprivate_var1 = master_threadprivate_var1; 3399 /// operator=(threadprivate_var2, master_threadprivate_var2); 3400 /// ... 3401 /// __kmpc_barrier(&loc, global_tid); 3402 /// \endcode 3403 /// 3404 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3405 /// \returns true if at least one copyin variable is found, false otherwise. 3406 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3407 /// Emit initial code for lastprivate variables. If some variable is 3408 /// not also firstprivate, then the default initialization is used. Otherwise 3409 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3410 /// method. 3411 /// 3412 /// \param D Directive that may have 'lastprivate' directives. 3413 /// \param PrivateScope Private scope for capturing lastprivate variables for 3414 /// proper codegen in internal captured statement. 3415 /// 3416 /// \returns true if there is at least one lastprivate variable, false 3417 /// otherwise. 3418 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3419 OMPPrivateScope &PrivateScope); 3420 /// Emit final copying of lastprivate values to original variables at 3421 /// the end of the worksharing or simd directive. 3422 /// 3423 /// \param D Directive that has at least one 'lastprivate' directives. 3424 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3425 /// it is the last iteration of the loop code in associated directive, or to 3426 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3427 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3428 bool NoFinals, 3429 llvm::Value *IsLastIterCond = nullptr); 3430 /// Emit initial code for linear clauses. 3431 void EmitOMPLinearClause(const OMPLoopDirective &D, 3432 CodeGenFunction::OMPPrivateScope &PrivateScope); 3433 /// Emit final code for linear clauses. 3434 /// \param CondGen Optional conditional code for final part of codegen for 3435 /// linear clause. 3436 void EmitOMPLinearClauseFinal( 3437 const OMPLoopDirective &D, 3438 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3439 /// Emit initial code for reduction variables. Creates reduction copies 3440 /// and initializes them with the values according to OpenMP standard. 3441 /// 3442 /// \param D Directive (possibly) with the 'reduction' clause. 3443 /// \param PrivateScope Private scope for capturing reduction variables for 3444 /// proper codegen in internal captured statement. 3445 /// 3446 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3447 OMPPrivateScope &PrivateScope, 3448 bool ForInscan = false); 3449 /// Emit final update of reduction values to original variables at 3450 /// the end of the directive. 3451 /// 3452 /// \param D Directive that has at least one 'reduction' directives. 3453 /// \param ReductionKind The kind of reduction to perform. 3454 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3455 const OpenMPDirectiveKind ReductionKind); 3456 /// Emit initial code for linear variables. Creates private copies 3457 /// and initializes them with the values according to OpenMP standard. 3458 /// 3459 /// \param D Directive (possibly) with the 'linear' clause. 3460 /// \return true if at least one linear variable is found that should be 3461 /// initialized with the value of the original variable, false otherwise. 3462 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3463 3464 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3465 llvm::Function * /*OutlinedFn*/, 3466 const OMPTaskDataTy & /*Data*/)> 3467 TaskGenTy; 3468 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3469 const OpenMPDirectiveKind CapturedRegion, 3470 const RegionCodeGenTy &BodyGen, 3471 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3472 struct OMPTargetDataInfo { 3473 Address BasePointersArray = Address::invalid(); 3474 Address PointersArray = Address::invalid(); 3475 Address SizesArray = Address::invalid(); 3476 Address MappersArray = Address::invalid(); 3477 unsigned NumberOfTargetItems = 0; 3478 explicit OMPTargetDataInfo() = default; 3479 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3480 Address SizesArray, Address MappersArray, 3481 unsigned NumberOfTargetItems) 3482 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3483 SizesArray(SizesArray), MappersArray(MappersArray), 3484 NumberOfTargetItems(NumberOfTargetItems) {} 3485 }; 3486 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3487 const RegionCodeGenTy &BodyGen, 3488 OMPTargetDataInfo &InputInfo); 3489 3490 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3491 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3492 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3493 void EmitOMPTileDirective(const OMPTileDirective &S); 3494 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3495 void EmitOMPForDirective(const OMPForDirective &S); 3496 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3497 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3498 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3499 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3500 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3501 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3502 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3503 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3504 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3505 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3506 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3507 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3508 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3509 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3510 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3511 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3512 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3513 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3514 void EmitOMPScanDirective(const OMPScanDirective &S); 3515 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3516 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3517 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3518 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3519 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3520 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3521 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3522 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3523 void 3524 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3525 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3526 void 3527 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3528 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3529 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3530 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3531 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3532 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3533 void 3534 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3535 void EmitOMPParallelMasterTaskLoopDirective( 3536 const OMPParallelMasterTaskLoopDirective &S); 3537 void EmitOMPParallelMasterTaskLoopSimdDirective( 3538 const OMPParallelMasterTaskLoopSimdDirective &S); 3539 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3540 void EmitOMPDistributeParallelForDirective( 3541 const OMPDistributeParallelForDirective &S); 3542 void EmitOMPDistributeParallelForSimdDirective( 3543 const OMPDistributeParallelForSimdDirective &S); 3544 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3545 void EmitOMPTargetParallelForSimdDirective( 3546 const OMPTargetParallelForSimdDirective &S); 3547 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3548 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3549 void 3550 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3551 void EmitOMPTeamsDistributeParallelForSimdDirective( 3552 const OMPTeamsDistributeParallelForSimdDirective &S); 3553 void EmitOMPTeamsDistributeParallelForDirective( 3554 const OMPTeamsDistributeParallelForDirective &S); 3555 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3556 void EmitOMPTargetTeamsDistributeDirective( 3557 const OMPTargetTeamsDistributeDirective &S); 3558 void EmitOMPTargetTeamsDistributeParallelForDirective( 3559 const OMPTargetTeamsDistributeParallelForDirective &S); 3560 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3561 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3562 void EmitOMPTargetTeamsDistributeSimdDirective( 3563 const OMPTargetTeamsDistributeSimdDirective &S); 3564 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3565 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3566 3567 /// Emit device code for the target directive. 3568 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3569 StringRef ParentName, 3570 const OMPTargetDirective &S); 3571 static void 3572 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3573 const OMPTargetParallelDirective &S); 3574 /// Emit device code for the target parallel for directive. 3575 static void EmitOMPTargetParallelForDeviceFunction( 3576 CodeGenModule &CGM, StringRef ParentName, 3577 const OMPTargetParallelForDirective &S); 3578 /// Emit device code for the target parallel for simd directive. 3579 static void EmitOMPTargetParallelForSimdDeviceFunction( 3580 CodeGenModule &CGM, StringRef ParentName, 3581 const OMPTargetParallelForSimdDirective &S); 3582 /// Emit device code for the target teams directive. 3583 static void 3584 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3585 const OMPTargetTeamsDirective &S); 3586 /// Emit device code for the target teams distribute directive. 3587 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3588 CodeGenModule &CGM, StringRef ParentName, 3589 const OMPTargetTeamsDistributeDirective &S); 3590 /// Emit device code for the target teams distribute simd directive. 3591 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3592 CodeGenModule &CGM, StringRef ParentName, 3593 const OMPTargetTeamsDistributeSimdDirective &S); 3594 /// Emit device code for the target simd directive. 3595 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3596 StringRef ParentName, 3597 const OMPTargetSimdDirective &S); 3598 /// Emit device code for the target teams distribute parallel for simd 3599 /// directive. 3600 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3601 CodeGenModule &CGM, StringRef ParentName, 3602 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3603 3604 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3605 CodeGenModule &CGM, StringRef ParentName, 3606 const OMPTargetTeamsDistributeParallelForDirective &S); 3607 3608 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3609 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3610 /// future it is meant to be the number of loops expected in the loop nests 3611 /// (usually specified by the "collapse" clause) that are collapsed to a 3612 /// single loop by this function. 3613 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3614 int Depth); 3615 3616 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3617 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3618 3619 /// Emit inner loop of the worksharing/simd construct. 3620 /// 3621 /// \param S Directive, for which the inner loop must be emitted. 3622 /// \param RequiresCleanup true, if directive has some associated private 3623 /// variables. 3624 /// \param LoopCond Bollean condition for loop continuation. 3625 /// \param IncExpr Increment expression for loop control variable. 3626 /// \param BodyGen Generator for the inner body of the inner loop. 3627 /// \param PostIncGen Genrator for post-increment code (required for ordered 3628 /// loop directvies). 3629 void EmitOMPInnerLoop( 3630 const OMPExecutableDirective &S, bool RequiresCleanup, 3631 const Expr *LoopCond, const Expr *IncExpr, 3632 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3633 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3634 3635 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3636 /// Emit initial code for loop counters of loop-based directives. 3637 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3638 OMPPrivateScope &LoopScope); 3639 3640 /// Helper for the OpenMP loop directives. 3641 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3642 3643 /// Emit code for the worksharing loop-based directive. 3644 /// \return true, if this construct has any lastprivate clause, false - 3645 /// otherwise. 3646 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3647 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3648 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3649 3650 /// Emit code for the distribute loop-based directive. 3651 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3652 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3653 3654 /// Helpers for the OpenMP loop directives. 3655 void EmitOMPSimdInit(const OMPLoopDirective &D); 3656 void EmitOMPSimdFinal( 3657 const OMPLoopDirective &D, 3658 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3659 3660 /// Emits the lvalue for the expression with possibly captured variable. 3661 LValue EmitOMPSharedLValue(const Expr *E); 3662 3663 private: 3664 /// Helpers for blocks. 3665 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3666 3667 /// struct with the values to be passed to the OpenMP loop-related functions 3668 struct OMPLoopArguments { 3669 /// loop lower bound 3670 Address LB = Address::invalid(); 3671 /// loop upper bound 3672 Address UB = Address::invalid(); 3673 /// loop stride 3674 Address ST = Address::invalid(); 3675 /// isLastIteration argument for runtime functions 3676 Address IL = Address::invalid(); 3677 /// Chunk value generated by sema 3678 llvm::Value *Chunk = nullptr; 3679 /// EnsureUpperBound 3680 Expr *EUB = nullptr; 3681 /// IncrementExpression 3682 Expr *IncExpr = nullptr; 3683 /// Loop initialization 3684 Expr *Init = nullptr; 3685 /// Loop exit condition 3686 Expr *Cond = nullptr; 3687 /// Update of LB after a whole chunk has been executed 3688 Expr *NextLB = nullptr; 3689 /// Update of UB after a whole chunk has been executed 3690 Expr *NextUB = nullptr; 3691 OMPLoopArguments() = default; 3692 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3693 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3694 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3695 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3696 Expr *NextUB = nullptr) 3697 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3698 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3699 NextUB(NextUB) {} 3700 }; 3701 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3702 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3703 const OMPLoopArguments &LoopArgs, 3704 const CodeGenLoopTy &CodeGenLoop, 3705 const CodeGenOrderedTy &CodeGenOrdered); 3706 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3707 bool IsMonotonic, const OMPLoopDirective &S, 3708 OMPPrivateScope &LoopScope, bool Ordered, 3709 const OMPLoopArguments &LoopArgs, 3710 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3711 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3712 const OMPLoopDirective &S, 3713 OMPPrivateScope &LoopScope, 3714 const OMPLoopArguments &LoopArgs, 3715 const CodeGenLoopTy &CodeGenLoopContent); 3716 /// Emit code for sections directive. 3717 void EmitSections(const OMPExecutableDirective &S); 3718 3719 public: 3720 3721 //===--------------------------------------------------------------------===// 3722 // LValue Expression Emission 3723 //===--------------------------------------------------------------------===// 3724 3725 /// Create a check that a scalar RValue is non-null. 3726 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3727 3728 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3729 RValue GetUndefRValue(QualType Ty); 3730 3731 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3732 /// and issue an ErrorUnsupported style diagnostic (using the 3733 /// provided Name). 3734 RValue EmitUnsupportedRValue(const Expr *E, 3735 const char *Name); 3736 3737 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3738 /// an ErrorUnsupported style diagnostic (using the provided Name). 3739 LValue EmitUnsupportedLValue(const Expr *E, 3740 const char *Name); 3741 3742 /// EmitLValue - Emit code to compute a designator that specifies the location 3743 /// of the expression. 3744 /// 3745 /// This can return one of two things: a simple address or a bitfield 3746 /// reference. In either case, the LLVM Value* in the LValue structure is 3747 /// guaranteed to be an LLVM pointer type. 3748 /// 3749 /// If this returns a bitfield reference, nothing about the pointee type of 3750 /// the LLVM value is known: For example, it may not be a pointer to an 3751 /// integer. 3752 /// 3753 /// If this returns a normal address, and if the lvalue's C type is fixed 3754 /// size, this method guarantees that the returned pointer type will point to 3755 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3756 /// variable length type, this is not possible. 3757 /// 3758 LValue EmitLValue(const Expr *E); 3759 3760 /// Same as EmitLValue but additionally we generate checking code to 3761 /// guard against undefined behavior. This is only suitable when we know 3762 /// that the address will be used to access the object. 3763 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3764 3765 RValue convertTempToRValue(Address addr, QualType type, 3766 SourceLocation Loc); 3767 3768 void EmitAtomicInit(Expr *E, LValue lvalue); 3769 3770 bool LValueIsSuitableForInlineAtomic(LValue Src); 3771 3772 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3773 AggValueSlot Slot = AggValueSlot::ignored()); 3774 3775 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3776 llvm::AtomicOrdering AO, bool IsVolatile = false, 3777 AggValueSlot slot = AggValueSlot::ignored()); 3778 3779 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3780 3781 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3782 bool IsVolatile, bool isInit); 3783 3784 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3785 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3786 llvm::AtomicOrdering Success = 3787 llvm::AtomicOrdering::SequentiallyConsistent, 3788 llvm::AtomicOrdering Failure = 3789 llvm::AtomicOrdering::SequentiallyConsistent, 3790 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3791 3792 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3793 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3794 bool IsVolatile); 3795 3796 /// EmitToMemory - Change a scalar value from its value 3797 /// representation to its in-memory representation. 3798 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3799 3800 /// EmitFromMemory - Change a scalar value from its memory 3801 /// representation to its value representation. 3802 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3803 3804 /// Check if the scalar \p Value is within the valid range for the given 3805 /// type \p Ty. 3806 /// 3807 /// Returns true if a check is needed (even if the range is unknown). 3808 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3809 SourceLocation Loc); 3810 3811 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3812 /// care to appropriately convert from the memory representation to 3813 /// the LLVM value representation. 3814 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3815 SourceLocation Loc, 3816 AlignmentSource Source = AlignmentSource::Type, 3817 bool isNontemporal = false) { 3818 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3819 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3820 } 3821 3822 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3823 SourceLocation Loc, LValueBaseInfo BaseInfo, 3824 TBAAAccessInfo TBAAInfo, 3825 bool isNontemporal = false); 3826 3827 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3828 /// care to appropriately convert from the memory representation to 3829 /// the LLVM value representation. The l-value must be a simple 3830 /// l-value. 3831 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3832 3833 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3834 /// care to appropriately convert from the memory representation to 3835 /// the LLVM value representation. 3836 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3837 bool Volatile, QualType Ty, 3838 AlignmentSource Source = AlignmentSource::Type, 3839 bool isInit = false, bool isNontemporal = false) { 3840 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3841 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3842 } 3843 3844 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3845 bool Volatile, QualType Ty, 3846 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3847 bool isInit = false, bool isNontemporal = false); 3848 3849 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3850 /// care to appropriately convert from the memory representation to 3851 /// the LLVM value representation. The l-value must be a simple 3852 /// l-value. The isInit flag indicates whether this is an initialization. 3853 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3854 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3855 3856 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3857 /// this method emits the address of the lvalue, then loads the result as an 3858 /// rvalue, returning the rvalue. 3859 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3860 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3861 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3862 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3863 3864 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3865 /// lvalue, where both are guaranteed to the have the same type, and that type 3866 /// is 'Ty'. 3867 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3868 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3869 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3870 3871 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3872 /// as EmitStoreThroughLValue. 3873 /// 3874 /// \param Result [out] - If non-null, this will be set to a Value* for the 3875 /// bit-field contents after the store, appropriate for use as the result of 3876 /// an assignment to the bit-field. 3877 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3878 llvm::Value **Result=nullptr); 3879 3880 /// Emit an l-value for an assignment (simple or compound) of complex type. 3881 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3882 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3883 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3884 llvm::Value *&Result); 3885 3886 // Note: only available for agg return types 3887 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3888 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3889 // Note: only available for agg return types 3890 LValue EmitCallExprLValue(const CallExpr *E); 3891 // Note: only available for agg return types 3892 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3893 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3894 LValue EmitStringLiteralLValue(const StringLiteral *E); 3895 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3896 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3897 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3898 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3899 bool Accessed = false); 3900 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3901 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3902 bool IsLowerBound = true); 3903 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3904 LValue EmitMemberExpr(const MemberExpr *E); 3905 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3906 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3907 LValue EmitInitListLValue(const InitListExpr *E); 3908 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3909 LValue EmitCastLValue(const CastExpr *E); 3910 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3911 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3912 3913 Address EmitExtVectorElementLValue(LValue V); 3914 3915 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3916 3917 Address EmitArrayToPointerDecay(const Expr *Array, 3918 LValueBaseInfo *BaseInfo = nullptr, 3919 TBAAAccessInfo *TBAAInfo = nullptr); 3920 3921 class ConstantEmission { 3922 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3923 ConstantEmission(llvm::Constant *C, bool isReference) 3924 : ValueAndIsReference(C, isReference) {} 3925 public: 3926 ConstantEmission() {} 3927 static ConstantEmission forReference(llvm::Constant *C) { 3928 return ConstantEmission(C, true); 3929 } 3930 static ConstantEmission forValue(llvm::Constant *C) { 3931 return ConstantEmission(C, false); 3932 } 3933 3934 explicit operator bool() const { 3935 return ValueAndIsReference.getOpaqueValue() != nullptr; 3936 } 3937 3938 bool isReference() const { return ValueAndIsReference.getInt(); } 3939 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3940 assert(isReference()); 3941 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3942 refExpr->getType()); 3943 } 3944 3945 llvm::Constant *getValue() const { 3946 assert(!isReference()); 3947 return ValueAndIsReference.getPointer(); 3948 } 3949 }; 3950 3951 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3952 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3953 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3954 3955 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3956 AggValueSlot slot = AggValueSlot::ignored()); 3957 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3958 3959 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3960 const ObjCIvarDecl *Ivar); 3961 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3962 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3963 3964 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3965 /// if the Field is a reference, this will return the address of the reference 3966 /// and not the address of the value stored in the reference. 3967 LValue EmitLValueForFieldInitialization(LValue Base, 3968 const FieldDecl* Field); 3969 3970 LValue EmitLValueForIvar(QualType ObjectTy, 3971 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3972 unsigned CVRQualifiers); 3973 3974 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3975 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3976 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3977 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3978 3979 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3980 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3981 LValue EmitStmtExprLValue(const StmtExpr *E); 3982 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3983 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3984 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3985 3986 //===--------------------------------------------------------------------===// 3987 // Scalar Expression Emission 3988 //===--------------------------------------------------------------------===// 3989 3990 /// EmitCall - Generate a call of the given function, expecting the given 3991 /// result type, and using the given argument list which specifies both the 3992 /// LLVM arguments and the types they were derived from. 3993 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3994 ReturnValueSlot ReturnValue, const CallArgList &Args, 3995 llvm::CallBase **callOrInvoke, bool IsMustTail, 3996 SourceLocation Loc); 3997 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3998 ReturnValueSlot ReturnValue, const CallArgList &Args, 3999 llvm::CallBase **callOrInvoke = nullptr, 4000 bool IsMustTail = false) { 4001 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4002 IsMustTail, SourceLocation()); 4003 } 4004 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4005 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4006 RValue EmitCallExpr(const CallExpr *E, 4007 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4008 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4009 CGCallee EmitCallee(const Expr *E); 4010 4011 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4012 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4013 4014 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4015 const Twine &name = ""); 4016 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4017 ArrayRef<llvm::Value *> args, 4018 const Twine &name = ""); 4019 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4020 const Twine &name = ""); 4021 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4022 ArrayRef<llvm::Value *> args, 4023 const Twine &name = ""); 4024 4025 SmallVector<llvm::OperandBundleDef, 1> 4026 getBundlesForFunclet(llvm::Value *Callee); 4027 4028 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4029 ArrayRef<llvm::Value *> Args, 4030 const Twine &Name = ""); 4031 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4032 ArrayRef<llvm::Value *> args, 4033 const Twine &name = ""); 4034 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4035 const Twine &name = ""); 4036 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4037 ArrayRef<llvm::Value *> args); 4038 4039 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4040 NestedNameSpecifier *Qual, 4041 llvm::Type *Ty); 4042 4043 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4044 CXXDtorType Type, 4045 const CXXRecordDecl *RD); 4046 4047 // Return the copy constructor name with the prefix "__copy_constructor_" 4048 // removed. 4049 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4050 CharUnits Alignment, 4051 bool IsVolatile, 4052 ASTContext &Ctx); 4053 4054 // Return the destructor name with the prefix "__destructor_" removed. 4055 static std::string getNonTrivialDestructorStr(QualType QT, 4056 CharUnits Alignment, 4057 bool IsVolatile, 4058 ASTContext &Ctx); 4059 4060 // These functions emit calls to the special functions of non-trivial C 4061 // structs. 4062 void defaultInitNonTrivialCStructVar(LValue Dst); 4063 void callCStructDefaultConstructor(LValue Dst); 4064 void callCStructDestructor(LValue Dst); 4065 void callCStructCopyConstructor(LValue Dst, LValue Src); 4066 void callCStructMoveConstructor(LValue Dst, LValue Src); 4067 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4068 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4069 4070 RValue 4071 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4072 const CGCallee &Callee, 4073 ReturnValueSlot ReturnValue, llvm::Value *This, 4074 llvm::Value *ImplicitParam, 4075 QualType ImplicitParamTy, const CallExpr *E, 4076 CallArgList *RtlArgs); 4077 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4078 llvm::Value *This, QualType ThisTy, 4079 llvm::Value *ImplicitParam, 4080 QualType ImplicitParamTy, const CallExpr *E); 4081 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4082 ReturnValueSlot ReturnValue); 4083 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4084 const CXXMethodDecl *MD, 4085 ReturnValueSlot ReturnValue, 4086 bool HasQualifier, 4087 NestedNameSpecifier *Qualifier, 4088 bool IsArrow, const Expr *Base); 4089 // Compute the object pointer. 4090 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4091 llvm::Value *memberPtr, 4092 const MemberPointerType *memberPtrType, 4093 LValueBaseInfo *BaseInfo = nullptr, 4094 TBAAAccessInfo *TBAAInfo = nullptr); 4095 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4096 ReturnValueSlot ReturnValue); 4097 4098 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4099 const CXXMethodDecl *MD, 4100 ReturnValueSlot ReturnValue); 4101 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4102 4103 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4104 ReturnValueSlot ReturnValue); 4105 4106 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4107 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4108 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4109 4110 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4111 const CallExpr *E, ReturnValueSlot ReturnValue); 4112 4113 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4114 4115 /// Emit IR for __builtin_os_log_format. 4116 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4117 4118 /// Emit IR for __builtin_is_aligned. 4119 RValue EmitBuiltinIsAligned(const CallExpr *E); 4120 /// Emit IR for __builtin_align_up/__builtin_align_down. 4121 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4122 4123 llvm::Function *generateBuiltinOSLogHelperFunction( 4124 const analyze_os_log::OSLogBufferLayout &Layout, 4125 CharUnits BufferAlignment); 4126 4127 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4128 4129 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4130 /// is unhandled by the current target. 4131 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4132 ReturnValueSlot ReturnValue); 4133 4134 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4135 const llvm::CmpInst::Predicate Fp, 4136 const llvm::CmpInst::Predicate Ip, 4137 const llvm::Twine &Name = ""); 4138 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4139 ReturnValueSlot ReturnValue, 4140 llvm::Triple::ArchType Arch); 4141 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4142 ReturnValueSlot ReturnValue, 4143 llvm::Triple::ArchType Arch); 4144 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4145 ReturnValueSlot ReturnValue, 4146 llvm::Triple::ArchType Arch); 4147 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4148 QualType RTy); 4149 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4150 QualType RTy); 4151 4152 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4153 unsigned LLVMIntrinsic, 4154 unsigned AltLLVMIntrinsic, 4155 const char *NameHint, 4156 unsigned Modifier, 4157 const CallExpr *E, 4158 SmallVectorImpl<llvm::Value *> &Ops, 4159 Address PtrOp0, Address PtrOp1, 4160 llvm::Triple::ArchType Arch); 4161 4162 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4163 unsigned Modifier, llvm::Type *ArgTy, 4164 const CallExpr *E); 4165 llvm::Value *EmitNeonCall(llvm::Function *F, 4166 SmallVectorImpl<llvm::Value*> &O, 4167 const char *name, 4168 unsigned shift = 0, bool rightshift = false); 4169 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4170 const llvm::ElementCount &Count); 4171 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4172 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4173 bool negateForRightShift); 4174 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4175 llvm::Type *Ty, bool usgn, const char *name); 4176 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4177 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4178 /// access builtin. Only required if it can't be inferred from the base 4179 /// pointer operand. 4180 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4181 4182 SmallVector<llvm::Type *, 2> 4183 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4184 ArrayRef<llvm::Value *> Ops); 4185 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4186 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4187 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4188 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4189 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4190 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4191 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4192 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4193 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4194 unsigned BuiltinID); 4195 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4196 llvm::ArrayRef<llvm::Value *> Ops, 4197 unsigned BuiltinID); 4198 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4199 llvm::ScalableVectorType *VTy); 4200 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4201 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4202 unsigned IntID); 4203 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4204 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4205 unsigned IntID); 4206 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4207 SmallVectorImpl<llvm::Value *> &Ops, 4208 unsigned BuiltinID, bool IsZExtReturn); 4209 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4210 SmallVectorImpl<llvm::Value *> &Ops, 4211 unsigned BuiltinID); 4212 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4213 SmallVectorImpl<llvm::Value *> &Ops, 4214 unsigned BuiltinID); 4215 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4216 SmallVectorImpl<llvm::Value *> &Ops, 4217 unsigned IntID); 4218 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4219 SmallVectorImpl<llvm::Value *> &Ops, 4220 unsigned IntID); 4221 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4222 SmallVectorImpl<llvm::Value *> &Ops, 4223 unsigned IntID); 4224 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4225 4226 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4227 llvm::Triple::ArchType Arch); 4228 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4229 4230 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4231 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4232 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4233 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4234 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4235 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4236 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4237 const CallExpr *E); 4238 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4239 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4240 ReturnValueSlot ReturnValue); 4241 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4242 llvm::AtomicOrdering &AO, 4243 llvm::SyncScope::ID &SSID); 4244 4245 enum class MSVCIntrin; 4246 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4247 4248 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4249 4250 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4251 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4252 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4253 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4254 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4255 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4256 const ObjCMethodDecl *MethodWithObjects); 4257 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4258 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4259 ReturnValueSlot Return = ReturnValueSlot()); 4260 4261 /// Retrieves the default cleanup kind for an ARC cleanup. 4262 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4263 CleanupKind getARCCleanupKind() { 4264 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4265 ? NormalAndEHCleanup : NormalCleanup; 4266 } 4267 4268 // ARC primitives. 4269 void EmitARCInitWeak(Address addr, llvm::Value *value); 4270 void EmitARCDestroyWeak(Address addr); 4271 llvm::Value *EmitARCLoadWeak(Address addr); 4272 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4273 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4274 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4275 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4276 void EmitARCCopyWeak(Address dst, Address src); 4277 void EmitARCMoveWeak(Address dst, Address src); 4278 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4279 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4280 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4281 bool resultIgnored); 4282 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4283 bool resultIgnored); 4284 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4285 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4286 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4287 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4288 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4289 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4290 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4291 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4292 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4293 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4294 4295 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4296 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4297 llvm::Type *returnType); 4298 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4299 4300 std::pair<LValue,llvm::Value*> 4301 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4302 std::pair<LValue,llvm::Value*> 4303 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4304 std::pair<LValue,llvm::Value*> 4305 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4306 4307 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4308 llvm::Type *returnType); 4309 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4310 llvm::Type *returnType); 4311 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4312 4313 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4314 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4315 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4316 4317 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4318 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4319 bool allowUnsafeClaim); 4320 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4321 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4322 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4323 4324 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4325 4326 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4327 4328 static Destroyer destroyARCStrongImprecise; 4329 static Destroyer destroyARCStrongPrecise; 4330 static Destroyer destroyARCWeak; 4331 static Destroyer emitARCIntrinsicUse; 4332 static Destroyer destroyNonTrivialCStruct; 4333 4334 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4335 llvm::Value *EmitObjCAutoreleasePoolPush(); 4336 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4337 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4338 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4339 4340 /// Emits a reference binding to the passed in expression. 4341 RValue EmitReferenceBindingToExpr(const Expr *E); 4342 4343 //===--------------------------------------------------------------------===// 4344 // Expression Emission 4345 //===--------------------------------------------------------------------===// 4346 4347 // Expressions are broken into three classes: scalar, complex, aggregate. 4348 4349 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4350 /// scalar type, returning the result. 4351 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4352 4353 /// Emit a conversion from the specified type to the specified destination 4354 /// type, both of which are LLVM scalar types. 4355 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4356 QualType DstTy, SourceLocation Loc); 4357 4358 /// Emit a conversion from the specified complex type to the specified 4359 /// destination type, where the destination type is an LLVM scalar type. 4360 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4361 QualType DstTy, 4362 SourceLocation Loc); 4363 4364 /// EmitAggExpr - Emit the computation of the specified expression 4365 /// of aggregate type. The result is computed into the given slot, 4366 /// which may be null to indicate that the value is not needed. 4367 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4368 4369 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4370 /// aggregate type into a temporary LValue. 4371 LValue EmitAggExprToLValue(const Expr *E); 4372 4373 /// Build all the stores needed to initialize an aggregate at Dest with the 4374 /// value Val. 4375 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4376 4377 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4378 /// make sure it survives garbage collection until this point. 4379 void EmitExtendGCLifetime(llvm::Value *object); 4380 4381 /// EmitComplexExpr - Emit the computation of the specified expression of 4382 /// complex type, returning the result. 4383 ComplexPairTy EmitComplexExpr(const Expr *E, 4384 bool IgnoreReal = false, 4385 bool IgnoreImag = false); 4386 4387 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4388 /// type and place its result into the specified l-value. 4389 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4390 4391 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4392 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4393 4394 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4395 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4396 4397 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4398 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4399 4400 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4401 /// global variable that has already been created for it. If the initializer 4402 /// has a different type than GV does, this may free GV and return a different 4403 /// one. Otherwise it just returns GV. 4404 llvm::GlobalVariable * 4405 AddInitializerToStaticVarDecl(const VarDecl &D, 4406 llvm::GlobalVariable *GV); 4407 4408 // Emit an @llvm.invariant.start call for the given memory region. 4409 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4410 4411 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4412 /// variable with global storage. 4413 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4414 bool PerformInit); 4415 4416 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4417 llvm::Constant *Addr); 4418 4419 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4420 llvm::FunctionCallee Dtor, 4421 llvm::Constant *Addr, 4422 llvm::FunctionCallee &AtExit); 4423 4424 /// Call atexit() with a function that passes the given argument to 4425 /// the given function. 4426 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4427 llvm::Constant *addr); 4428 4429 /// Call atexit() with function dtorStub. 4430 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4431 4432 /// Call unatexit() with function dtorStub. 4433 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4434 4435 /// Emit code in this function to perform a guarded variable 4436 /// initialization. Guarded initializations are used when it's not 4437 /// possible to prove that an initialization will be done exactly 4438 /// once, e.g. with a static local variable or a static data member 4439 /// of a class template. 4440 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4441 bool PerformInit); 4442 4443 enum class GuardKind { VariableGuard, TlsGuard }; 4444 4445 /// Emit a branch to select whether or not to perform guarded initialization. 4446 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4447 llvm::BasicBlock *InitBlock, 4448 llvm::BasicBlock *NoInitBlock, 4449 GuardKind Kind, const VarDecl *D); 4450 4451 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4452 /// variables. 4453 void 4454 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4455 ArrayRef<llvm::Function *> CXXThreadLocals, 4456 ConstantAddress Guard = ConstantAddress::invalid()); 4457 4458 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4459 /// variables. 4460 void GenerateCXXGlobalCleanUpFunc( 4461 llvm::Function *Fn, 4462 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4463 llvm::Constant *>> 4464 DtorsOrStermFinalizers); 4465 4466 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4467 const VarDecl *D, 4468 llvm::GlobalVariable *Addr, 4469 bool PerformInit); 4470 4471 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4472 4473 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4474 4475 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4476 4477 RValue EmitAtomicExpr(AtomicExpr *E); 4478 4479 //===--------------------------------------------------------------------===// 4480 // Annotations Emission 4481 //===--------------------------------------------------------------------===// 4482 4483 /// Emit an annotation call (intrinsic). 4484 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4485 llvm::Value *AnnotatedVal, 4486 StringRef AnnotationStr, 4487 SourceLocation Location, 4488 const AnnotateAttr *Attr); 4489 4490 /// Emit local annotations for the local variable V, declared by D. 4491 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4492 4493 /// Emit field annotations for the given field & value. Returns the 4494 /// annotation result. 4495 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4496 4497 //===--------------------------------------------------------------------===// 4498 // Internal Helpers 4499 //===--------------------------------------------------------------------===// 4500 4501 /// ContainsLabel - Return true if the statement contains a label in it. If 4502 /// this statement is not executed normally, it not containing a label means 4503 /// that we can just remove the code. 4504 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4505 4506 /// containsBreak - Return true if the statement contains a break out of it. 4507 /// If the statement (recursively) contains a switch or loop with a break 4508 /// inside of it, this is fine. 4509 static bool containsBreak(const Stmt *S); 4510 4511 /// Determine if the given statement might introduce a declaration into the 4512 /// current scope, by being a (possibly-labelled) DeclStmt. 4513 static bool mightAddDeclToScope(const Stmt *S); 4514 4515 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4516 /// to a constant, or if it does but contains a label, return false. If it 4517 /// constant folds return true and set the boolean result in Result. 4518 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4519 bool AllowLabels = false); 4520 4521 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4522 /// to a constant, or if it does but contains a label, return false. If it 4523 /// constant folds return true and set the folded value. 4524 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4525 bool AllowLabels = false); 4526 4527 /// isInstrumentedCondition - Determine whether the given condition is an 4528 /// instrumentable condition (i.e. no "&&" or "||"). 4529 static bool isInstrumentedCondition(const Expr *C); 4530 4531 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4532 /// increments a profile counter based on the semantics of the given logical 4533 /// operator opcode. This is used to instrument branch condition coverage 4534 /// for logical operators. 4535 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4536 llvm::BasicBlock *TrueBlock, 4537 llvm::BasicBlock *FalseBlock, 4538 uint64_t TrueCount = 0, 4539 Stmt::Likelihood LH = Stmt::LH_None, 4540 const Expr *CntrIdx = nullptr); 4541 4542 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4543 /// if statement) to the specified blocks. Based on the condition, this might 4544 /// try to simplify the codegen of the conditional based on the branch. 4545 /// TrueCount should be the number of times we expect the condition to 4546 /// evaluate to true based on PGO data. 4547 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4548 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4549 Stmt::Likelihood LH = Stmt::LH_None); 4550 4551 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4552 /// nonnull, if \p LHS is marked _Nonnull. 4553 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4554 4555 /// An enumeration which makes it easier to specify whether or not an 4556 /// operation is a subtraction. 4557 enum { NotSubtraction = false, IsSubtraction = true }; 4558 4559 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4560 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4561 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4562 /// \p IsSubtraction indicates whether the expression used to form the GEP 4563 /// is a subtraction. 4564 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4565 ArrayRef<llvm::Value *> IdxList, 4566 bool SignedIndices, 4567 bool IsSubtraction, 4568 SourceLocation Loc, 4569 const Twine &Name = ""); 4570 4571 /// Specifies which type of sanitizer check to apply when handling a 4572 /// particular builtin. 4573 enum BuiltinCheckKind { 4574 BCK_CTZPassedZero, 4575 BCK_CLZPassedZero, 4576 }; 4577 4578 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4579 /// enabled, a runtime check specified by \p Kind is also emitted. 4580 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4581 4582 /// Emit a description of a type in a format suitable for passing to 4583 /// a runtime sanitizer handler. 4584 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4585 4586 /// Convert a value into a format suitable for passing to a runtime 4587 /// sanitizer handler. 4588 llvm::Value *EmitCheckValue(llvm::Value *V); 4589 4590 /// Emit a description of a source location in a format suitable for 4591 /// passing to a runtime sanitizer handler. 4592 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4593 4594 /// Create a basic block that will either trap or call a handler function in 4595 /// the UBSan runtime with the provided arguments, and create a conditional 4596 /// branch to it. 4597 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4598 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4599 ArrayRef<llvm::Value *> DynamicArgs); 4600 4601 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4602 /// if Cond if false. 4603 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4604 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4605 ArrayRef<llvm::Constant *> StaticArgs); 4606 4607 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4608 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4609 void EmitUnreachable(SourceLocation Loc); 4610 4611 /// Create a basic block that will call the trap intrinsic, and emit a 4612 /// conditional branch to it, for the -ftrapv checks. 4613 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4614 4615 /// Emit a call to trap or debugtrap and attach function attribute 4616 /// "trap-func-name" if specified. 4617 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4618 4619 /// Emit a stub for the cross-DSO CFI check function. 4620 void EmitCfiCheckStub(); 4621 4622 /// Emit a cross-DSO CFI failure handling function. 4623 void EmitCfiCheckFail(); 4624 4625 /// Create a check for a function parameter that may potentially be 4626 /// declared as non-null. 4627 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4628 AbstractCallee AC, unsigned ParmNum); 4629 4630 /// EmitCallArg - Emit a single call argument. 4631 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4632 4633 /// EmitDelegateCallArg - We are performing a delegate call; that 4634 /// is, the current function is delegating to another one. Produce 4635 /// a r-value suitable for passing the given parameter. 4636 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4637 SourceLocation loc); 4638 4639 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4640 /// point operation, expressed as the maximum relative error in ulp. 4641 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4642 4643 /// Set the codegen fast-math flags. 4644 void SetFastMathFlags(FPOptions FPFeatures); 4645 4646 private: 4647 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4648 void EmitReturnOfRValue(RValue RV, QualType Ty); 4649 4650 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4651 4652 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4653 DeferredReplacements; 4654 4655 /// Set the address of a local variable. 4656 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4657 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4658 LocalDeclMap.insert({VD, Addr}); 4659 } 4660 4661 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4662 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4663 /// 4664 /// \param AI - The first function argument of the expansion. 4665 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4666 llvm::Function::arg_iterator &AI); 4667 4668 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4669 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4670 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4671 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4672 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4673 unsigned &IRCallArgPos); 4674 4675 std::pair<llvm::Value *, llvm::Type *> 4676 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4677 std::string &ConstraintStr); 4678 4679 std::pair<llvm::Value *, llvm::Type *> 4680 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4681 QualType InputType, std::string &ConstraintStr, 4682 SourceLocation Loc); 4683 4684 /// Attempts to statically evaluate the object size of E. If that 4685 /// fails, emits code to figure the size of E out for us. This is 4686 /// pass_object_size aware. 4687 /// 4688 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4689 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4690 llvm::IntegerType *ResType, 4691 llvm::Value *EmittedE, 4692 bool IsDynamic); 4693 4694 /// Emits the size of E, as required by __builtin_object_size. This 4695 /// function is aware of pass_object_size parameters, and will act accordingly 4696 /// if E is a parameter with the pass_object_size attribute. 4697 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4698 llvm::IntegerType *ResType, 4699 llvm::Value *EmittedE, 4700 bool IsDynamic); 4701 4702 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4703 Address Loc); 4704 4705 public: 4706 enum class EvaluationOrder { 4707 ///! No language constraints on evaluation order. 4708 Default, 4709 ///! Language semantics require left-to-right evaluation. 4710 ForceLeftToRight, 4711 ///! Language semantics require right-to-left evaluation. 4712 ForceRightToLeft 4713 }; 4714 4715 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4716 // an ObjCMethodDecl. 4717 struct PrototypeWrapper { 4718 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4719 4720 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4721 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4722 }; 4723 4724 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4725 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4726 AbstractCallee AC = AbstractCallee(), 4727 unsigned ParamsToSkip = 0, 4728 EvaluationOrder Order = EvaluationOrder::Default); 4729 4730 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4731 /// emit the value and compute our best estimate of the alignment of the 4732 /// pointee. 4733 /// 4734 /// \param BaseInfo - If non-null, this will be initialized with 4735 /// information about the source of the alignment and the may-alias 4736 /// attribute. Note that this function will conservatively fall back on 4737 /// the type when it doesn't recognize the expression and may-alias will 4738 /// be set to false. 4739 /// 4740 /// One reasonable way to use this information is when there's a language 4741 /// guarantee that the pointer must be aligned to some stricter value, and 4742 /// we're simply trying to ensure that sufficiently obvious uses of under- 4743 /// aligned objects don't get miscompiled; for example, a placement new 4744 /// into the address of a local variable. In such a case, it's quite 4745 /// reasonable to just ignore the returned alignment when it isn't from an 4746 /// explicit source. 4747 Address EmitPointerWithAlignment(const Expr *Addr, 4748 LValueBaseInfo *BaseInfo = nullptr, 4749 TBAAAccessInfo *TBAAInfo = nullptr); 4750 4751 /// If \p E references a parameter with pass_object_size info or a constant 4752 /// array size modifier, emit the object size divided by the size of \p EltTy. 4753 /// Otherwise return null. 4754 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4755 4756 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4757 4758 struct MultiVersionResolverOption { 4759 llvm::Function *Function; 4760 struct Conds { 4761 StringRef Architecture; 4762 llvm::SmallVector<StringRef, 8> Features; 4763 4764 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4765 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4766 } Conditions; 4767 4768 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4769 ArrayRef<StringRef> Feats) 4770 : Function(F), Conditions(Arch, Feats) {} 4771 }; 4772 4773 // Emits the body of a multiversion function's resolver. Assumes that the 4774 // options are already sorted in the proper order, with the 'default' option 4775 // last (if it exists). 4776 void EmitMultiVersionResolver(llvm::Function *Resolver, 4777 ArrayRef<MultiVersionResolverOption> Options); 4778 4779 private: 4780 QualType getVarArgType(const Expr *Arg); 4781 4782 void EmitDeclMetadata(); 4783 4784 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4785 const AutoVarEmission &emission); 4786 4787 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4788 4789 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4790 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4791 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4792 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4793 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4794 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4795 llvm::Value *EmitX86CpuInit(); 4796 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4797 }; 4798 4799 /// TargetFeatures - This class is used to check whether the builtin function 4800 /// has the required tagert specific features. It is able to support the 4801 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4802 /// ',' is higher than that of '|' . 4803 /// E.g: 4804 /// A,B|C means the builtin function requires both A and B, or C. 4805 /// If we want the builtin function requires both A and B, or both A and C, 4806 /// there are two ways: A,B|A,C or A,(B|C). 4807 /// The FeaturesList should not contain spaces, and brackets must appear in 4808 /// pairs. 4809 class TargetFeatures { 4810 struct FeatureListStatus { 4811 bool HasFeatures; 4812 StringRef CurFeaturesList; 4813 }; 4814 4815 const llvm::StringMap<bool> &CallerFeatureMap; 4816 4817 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4818 int InParentheses = 0; 4819 bool HasFeatures = true; 4820 size_t SubexpressionStart = 0; 4821 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4822 char CurrentToken = FeatureList[i]; 4823 switch (CurrentToken) { 4824 default: 4825 break; 4826 case '(': 4827 if (InParentheses == 0) 4828 SubexpressionStart = i + 1; 4829 ++InParentheses; 4830 break; 4831 case ')': 4832 --InParentheses; 4833 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4834 LLVM_FALLTHROUGH; 4835 case '|': 4836 case ',': 4837 if (InParentheses == 0) { 4838 if (HasFeatures && i != SubexpressionStart) { 4839 StringRef F = FeatureList.slice(SubexpressionStart, i); 4840 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4841 : CallerFeatureMap.lookup(F); 4842 } 4843 SubexpressionStart = i + 1; 4844 if (CurrentToken == '|') { 4845 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4846 } 4847 } 4848 break; 4849 } 4850 } 4851 assert(InParentheses == 0 && "Parentheses are not in pair"); 4852 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4853 HasFeatures = 4854 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4855 return {HasFeatures, StringRef()}; 4856 } 4857 4858 public: 4859 bool hasRequiredFeatures(StringRef FeatureList) { 4860 FeatureListStatus FS = {false, FeatureList}; 4861 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4862 FS = getAndFeatures(FS.CurFeaturesList); 4863 return FS.HasFeatures; 4864 } 4865 4866 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4867 : CallerFeatureMap(CallerFeatureMap) {} 4868 }; 4869 4870 inline DominatingLLVMValue::saved_type 4871 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4872 if (!needsSaving(value)) return saved_type(value, false); 4873 4874 // Otherwise, we need an alloca. 4875 auto align = CharUnits::fromQuantity( 4876 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4877 Address alloca = 4878 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4879 CGF.Builder.CreateStore(value, alloca); 4880 4881 return saved_type(alloca.getPointer(), true); 4882 } 4883 4884 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4885 saved_type value) { 4886 // If the value says it wasn't saved, trust that it's still dominating. 4887 if (!value.getInt()) return value.getPointer(); 4888 4889 // Otherwise, it should be an alloca instruction, as set up in save(). 4890 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4891 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4892 alloca->getAlign()); 4893 } 4894 4895 } // end namespace CodeGen 4896 4897 // Map the LangOption for floating point exception behavior into 4898 // the corresponding enum in the IR. 4899 llvm::fp::ExceptionBehavior 4900 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4901 } // end namespace clang 4902 4903 #endif 4904